WO2009059889A1 - Household appliance having a heat pump unit and means for cooling a component thereof - Google Patents

Household appliance having a heat pump unit and means for cooling a component thereof Download PDF

Info

Publication number
WO2009059889A1
WO2009059889A1 PCT/EP2008/064168 EP2008064168W WO2009059889A1 WO 2009059889 A1 WO2009059889 A1 WO 2009059889A1 EP 2008064168 W EP2008064168 W EP 2008064168W WO 2009059889 A1 WO2009059889 A1 WO 2009059889A1
Authority
WO
WIPO (PCT)
Prior art keywords
household appliance
refrigerant
control unit
cooling
housing
Prior art date
Application number
PCT/EP2008/064168
Other languages
French (fr)
Inventor
Iñigo BERAZALUCE MINONDO
Pilar Balerdi Azpilicueta
Roberto San Martin Sancho
Original Assignee
BSH Bosch und Siemens Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39231050&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009059889(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BSH Bosch und Siemens Hausgeräte GmbH filed Critical BSH Bosch und Siemens Hausgeräte GmbH
Priority to EA201070560A priority Critical patent/EA201070560A1/en
Priority to US12/681,934 priority patent/US20100242297A1/en
Priority to EP08848321A priority patent/EP2212463B1/en
Priority to CN200880114995A priority patent/CN101849061A/en
Priority to AT08848321T priority patent/ATE516401T1/en
Publication of WO2009059889A1 publication Critical patent/WO2009059889A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/48Control of the energy consumption
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/32Temperature
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/50Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to heat pumps, e.g. pressure or flow rate
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/26Heat pumps
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/30Blowers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/32Control of operations performed in domestic laundry dryers 
    • D06F58/34Control of operations performed in domestic laundry dryers  characterised by the purpose or target of the control
    • D06F58/46Control of the operating time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • Household appliance having a heat pump unit and means for cooling a component thereof
  • the invention relates to a household appliance having a housing and comprising within said housing a control unit, a drying chamber for containing articles to be dried, a closed- loop process air channel having a first blower operable by said control unit for conveying process air along the articles to effect drying, a heat pump unit operable by said control unit for extracting humidity from the process air, a condensate collector for collecting condensate thus formed by the heat pump unit, and means for cooling at least one component of said heat pump unit including a second blower operable by said control unit.
  • a household appliance of this type is apparent from EP 1 209 277 B1.
  • Drying of wet articles in a household appliance generally requires evaporating the humidity on the articles and transporting away by means of a current of heated process air.
  • Such process air loaded with evaporated humidity may be discharged from the appliance, or subjected to a condensation process to recover the transported humidity in liquid form for collection and disposal.
  • Such condensation process in turn requires cooling the process air, thereby extracting heat. That heat may again be discharged from the appliance simply; in order to keep consumption of energy low however, it may be desired to recover that heat at least to an extent.
  • a household appliance has been developed that incorporates a heat pump which recovers energy taken from the process air by evaporating a refrigerant or heat transfer fluid, subsequently compressing that heat transfer fluid and releasing heat from it back into the process air which circulates in an essentially closed loop. While it may be expedient or even required to open such process air loop at least occasionally as described in EP 0 467 188 B1 , pertinent IEC standards require that a dryer which is claimed to recover humidity by condensation keep any leakage of humidity below 20% of the total humidity present. Problems still to be encountered with household appliances incorporating heat pumps are high manufacturing costs, relatively long periods needed to dry convenient charges of laundry or the like, and possible environmental hazards from heat transfer fluids applied in such appliances.
  • the pickup of humidity from articles to be dried by process air is only effective if the process air is heated over any normal ambient temperature, preferably to a temperature higher than 60 0 C. That temperature will be brought down by the evaporation process to a somewhat lower temperature.
  • a temperature around or above 35°C at an inlet of an evaporator heat exchanger may be expected to pose a problem to a heat pump of the type specified in the introductory chapter and designed in accordance with practice common in the art of refrigeration, in that compressors and refrigerant fluids (generally specified as "heat transfer fluids" herein) from normal refrigeration practice are not suitable for the purpose.
  • g., water as adsorptive used in combination with a Zeolith as adsorbent may be specified. Every heat pump, however, requires an input of energy to effect the desired pumping of heat from a cold terminal to a warm terminal, with such input of energy resulting in an amount of excess heat generated in addition to the heat that is pumped. On one hand, it is in accordance with usual practice to develop a heat pump unit that minimizes production of such excess heat. On the other hand, at least an amount of excess heat may be welcome in a household appliance dedicated to drying, as usual practice requires preheating the articles to be dried to an elevated temperature to help evaporate liquid from the articles. If the heat pump unit is the only source of heat in the appliance, it is only the excess heat that is available for the preheating. Accordingly, the preheating may take a very long time if the heat pump unit is designed to minimize excess heat; to speed up the drying process, even an additional electric heater may be provided to provide for preheating over a suitably short period of time.
  • a household appliance comprising a heat pump unit and a second blower dedicated to establish a flow of air around the compressor included in the heat pump unit, for cooling the compressor.
  • the document does not address the problem that the usual housing of a household appliance will provide a considerable degree of heat insulation of the system contained in the housing from the ambient of the appliance. On one hand, this insulation is quite profitable as it helps prevent undesirable leakage of heat from the drying process. On the other hand, heat contained in the housing will spread into the heat pump unit and heat up its components including the refrigerant possibly contained therein, and possibly impart the proper function of the heat pump unit.
  • the second blower can provide for some re-distribution of heat within the housing; in sum however, the second blower's contribution to removal of excess heat from the heat pump will be low.
  • the present invention provides a solution embodied in the household appliance as defined in the independent claim.
  • Preferred embodiments of the invention are defined in the dependent claims.
  • a household appliance having a housing and comprising within said housing a control unit, a drying chamber for containing articles to be dried, a closed-loop process air channel having a first blower operable by said control unit for conveying process air along the articles to effect drying, a heat pump unit operable by said control unit for extracting humidity from the process air, a condensate collector for collecting condensate thus formed by the heat pump unit, and means for cooling at least one component of said heat pump unit including a second blower operable by said control unit.
  • Said means for cooling include an open-loop cooling channel having said second blower, for conveying cooling air from outside said housing to the at least one component.
  • the invention provides means for balancing generation of excess heat within the housing of the appliance with removal of heat from the inside of the housing.
  • excess heat generated may be dissipated from the appliance by transporting the excess heat away from the appliance through the dedicated open-loop cooling channel which conveys the excess heat out of the housing and into the appliance's ambient.
  • the invention sets out from the discovery that the heat insulating properties of the housing need to be taken into account to provide for proper handling of such excess heat. It may be stated that any known household appliance that solely relies on a heat pump unit for drying has failed to provide means for fully dissipating excess heat to avoid any negative influence on the drying process.
  • the invention enables utilization of excess heat generated by the heat pump unit to speed up preheating, by limiting the dissipation of excess heat to stages of the drying process that are designed to be more or less stationary.
  • excess heat may be admitted to remain within the housing during initial stages of the process where preheating of the articles to be dried is still incomplete.
  • the controlled dissipation of excess energy according to the invention may produce an overall reduction of energy consumption for a drying process due to a reduction of time required for the process, by regarding excess heat generated by the heat pump unit not as an unavoidable inconvenience but as a proper design element for the drying process.
  • a separate heater for use during an initial stage of the drying process to help preheating may be avoided as well.
  • the invention provides efficient help in controlling the temperatures within the heat pump unit, to avoid excesses and establish substantially constant operating temperatures within given ranges. This will greatly improve the appliance's flexibility for functioning in a variety of circumstances given by varying ambient temperatures and loads.
  • the heat pump unit comprises an evaporator heat exchanger included in the process air channel for cooling the process air by evaporating a refrigerant, a liquefier heat exchanger for heating said process air by liquefying the refrigerant, a closed-loop refrigerant channel for conveying the refrigerant, a compressor for compressing the refrigerant upon exiting said evaporator heat exchanger and forwarding to the liquefier heat exchanger, and a throttle for decompressing the refrigerant upon exiting said liquefier heat exchanger and forwarding to said evaporator heat exchanger.
  • the at least one component to be cooled by cooling air conveyed through the open-loop cooling channel includes the compressor.
  • the refrigerant channel comprises a refrigerant cooler for cooling the refrigerant
  • the at least one component includes the refrigerant cooler.
  • a temperature sensor operable by the control unit is disposed within the housing for generating a signal dependent from a temperature within said housing, and the control unit is programmed to operate the second blower in response to the signal.
  • the means for cooling may be set inoperational during an initial period of operation during a drying process, to allow excess heat generated to contribute to a quick heating up of the appliance and the articles placed therein to be dried. Removal of excess heat may be applied only to improve stability of operation during periods where operation is desired to be stationary at least to an extent, by setting the means for cooling operational only during such periods.
  • the senor is disposed at the heat pump unit, and the temperature to be detected is a temperature of the refrigerant. Still more preferred, the sensor is disposed adjacent to the liquefier heat exchanger, to obtain a temperature reading that corresponds to a maximum temperature attained by the refrigerant during its cycling through the heat pump unit. Yet more preferred, the control unit is programmed to operate said second blower under a condition that the signal indicates that the temperature is above a predetermined threshold.
  • the second blower has a fixed-speed motor operable by said control unit, and the control unit is programmed to operate the motor intermittently in response to the signal obtained from the temperature sensor.
  • the second blower has a variable-speed motor operable by the control unit, and the control unit is programmed to operate said motor at speeds varying in response to the signal.
  • the cooling channel comprises a guide including the second blower, the guide connecting an inlet in the housing to said at least one component for cooling and opening into said housing, and the housing has at least one outlet allowing cooling air to flow out of said housing.
  • the at least one outlet is a multiplicity of outlets. It may be noted that it is quite common for a household appliance to have a housing that comprises some outlets connecting the appliance's interior to its environment, the outlets being placed in a back wall of the housing in particular. In a condensation-type dryer however, such outlets do not have any function associated with the normal operation of the dryer. Their principal determination is to allow for a small exchange of air within the interior to avoid collection of undesirable humidity therein, etc.
  • the heat pump unit is a sole means for extracting humidity from the process air.
  • Such appliance generally has no means that would allow for dissipation of excess heat from the process air channel and the components associated thereto without any such means being especially provided.
  • the invention provides a useful and simple means to allow for an efficient control of heat contained in the process air channel and its associated components.
  • the drying chamber is a rotatable drum, and the articles to be dried are pieces of laundry.
  • FIG.1 This drawing shows a sketch of a vertical section through a household appliance as embodied in a dryer for drying laundry.
  • FIG. 1 shows a household appliance 1 comprising a housing 2.
  • that housing 2 will be shaped according to de facto standards that would call, for example, for a column having a length and a depth of 60 cm each and a height of 80 cm, in Europe.
  • a control unit 3 that controls, via control lines 4, the various components of the appliance 1 that are functional when the appliance 1 is operated.
  • the control unit 3 is also designed to provide an interface between the appliance 1 and a user, via inputting means like dials, switches, and toggles, and outputting means like alphanumeric displays and indicator lights.
  • Disposed within the housing 2 is a drying chamber 5 that is determined to contain articles 6 to be dried.
  • the drying chamber 5 is a drum rotatable around an axis by a motor not shown for simplicity.
  • the articles 6 to be dried are pieces of laundry 6, and may be placed into the drum 5 through a door 7 that allows access through the housing 2.
  • a process air channel 8 which has a first blower 9 operated by a first blower motor 10 for conveying process air along the laundry 6 to effect drying in a closed loop.
  • the process air picks up humidity from the laundry 6 and is guided through a lint collector 1 1 , to catch lint, which is an amount of small fibrous particles taken from the laundry 6 and suspended within the process air as it exits drum 5.
  • the process air flows through a heat pump unit 12, 13, 14, 15, 16, 17, 18. That unit comprises an evaporator heat exchanger 12 which is provided to cool the process air flowing through, in order to make humidity collected from the laundry 6 condense to liquid that may in its turn be removed from the process air.
  • the process air flows into a liquefier heat exchanger 13 where it is heated again, prior to being conveyed back to the drum 5 by first blower 9.
  • Condensate that has been separated from the process air in the evaporator heat exchanger 12 flows through a condensate guide 19 to a condensate collector 20 for storing as long as the drying process runs.
  • the condensate collector 20 may be removed from the appliance 1 , and the condensate disposed of appropriately.
  • An electric heater 21 is also present in the process air channel 8 between the first blower 9 and the drum 5. This electric heater 21 may be used to obtain a quick pre-heating of the process air channel 8 and the articles 6 to be dried.
  • the heat pump unit 12 to 18 will provide for any necessary pre-heating only very slowly, which may be regarded as a furious disadvantage by a user, due to the normally quite high purchasing price of such appliance 1 comprising a heat pump unit 12 to 18.
  • a working fluid or refrigerant is conveyed through a refrigerant channel 14 in a closed loop.
  • the refrigerant channel 14 comprises the evaporator heat exchanger 12 and the liquefier heat exchanger 13, a compressor 15 driven by compressor motor 16, and a throttle 17 in addition.
  • a refrigerant cooler 18 is also comprised by the refrigerant channel 14.
  • the function of the heat pump unit 12 to 18 is as follows: The refrigerant enters the evaporator heat exchanger 12 in a liquid state; within the evaporator heat exchanger 12, the refrigerant is evaporated by absorbing heat from the process air flowing through.
  • the evaporated refrigerant exits the evaporator heat exchanger 12 and is conveyed to the compressor 15. There, it is compressed to a relatively high pressure and forwarded to the liquefier heat exchanger 13. In the liquefier heat exchanger 13, the refrigerant transfers heat generated by its compression to the process air flowing through, and is liquefied thereby.
  • the refrigerant cooler 18 may be included into the refrigerant channel 14 in order to allow for some additional cooling of the refrigerant, which may be necessary to keep temperature levels within the heat pump unit 12 to 18 below pertinent maxima.
  • the temperature of the refrigerant may become much higher than the temperature of a refrigerant in a refrigerator or a climate control application where heat pump units as the one shown here are also frequently used. Accordingly, the thermodynamic properties of the refrigerant used may necessitate some additional cooling, in order to avoid critical states of the refrigerant that might question stable operation of the heat pump unit 12 to 18.
  • liquefied refrigerant will exit the liquefier heat exchanger 13 and flow through a throttle 17.
  • Such throttle 17 may be a check valve or a capillary as a appropriate. Within the throttle 17, the internal pressure of the refrigerant is reduced; allowing the refrigerant to evaporate in the evaporator heat exchanger 12 which is entered upon exiting the throttle 17, thus completing the cycle and closing the loop formed by refrigerant channel 14.
  • means 22, 23, 24, 25, 26, 27 are provided to affect a flow of cooling air to cool the compressor 15 with associated compressor motor 16 and refrigerant cooler 18.
  • These means 22, 23, 24, 25, 26, 27 comprise a second blower 22 driven by a second blower motor 23, the second blower 22 included into open-loop cooling channel 24.
  • That channel comprises a cooling air guide 25 that opens at an inlet 26 to an ambient of the appliance 1 and leads through second blower 22 to the compressor 15 and the refrigerant cooler 18.
  • the cooling air guide 25 ends within the housing 2 near the compressor 15 and the refrigerant cooler 18. Cooling air exiting guide 25 may flow more or less freely about components 15, 16 and 18 to cool, and exit housing 2 at a plurality of outlets 27.
  • outlets 27 are indicated only schematically; in reality, they may be slit-like structures in a back wall that is part of the housing 2.
  • the said means 22, 23, 24, 25, 26, 27 provide for cool air from the ambient to be guided towards those components of the heat pump unit 12 to 18 where a dissipation of excess heat is to be effected. It is no disadvantage that such excess heat is carried more or less freely through housing 2 and along functional units of the appliance 1 housed therein; quiet to the contrary, the transport of warm air about these functional units contributes to avoiding undesirable losses of heat from such units.
  • a temperature sensor 28 operable by the control unit 3 is disposed adjacent to the liquefier heat exchanger 13, in order to measure a temperature of the refrigerant in or at the liquefier heat exchanger 13. That temperature is an effective indication of the thermal load imposed on the heat pump unit 12 to 18, and can be utilized in several ways to improve the function of the appliance 1. First of all, operation of second blower 22 can be effected only under condition that the temperature measured by the sensor 28 exceeds a predetermined threshold. Secondly, a degree of control of the said temperature can be affected by operating the second blower 22 in response to the signal.
  • the second blower motor 23 is a fixed-speed motor 23
  • control of operation may be effected by operating the motor 23 intermittently in response to the signal obtained from the said temperature.
  • a fixed-speed motor 23 is a proper choice due to the relative cheapness of such motor.
  • the second blower motor 23 may also be a variable speed-motor that may be more expensive but that allows a fine control of its output power. In such case, the motor 23 may be operated at speeds varying in response to the signal.
  • the invention provide for effective control and disposal of excess heat in a household appliance designed for drying articles by operation of a heat pump unit.
  • control unit 4 control line

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)
  • Drying Of Solid Materials (AREA)
  • Cleaning And Drying Hair (AREA)

Abstract

The invention relates to a household appliance (1) having a housing (2) and comprising within said housing (2) a control unit (3), a drying chamber (5) for containing articles (6) to be dried, a closed-loop process air channel (8) having a first blower (9) operable by said control unit (3) for conveying process air along the articles (6) to effect drying, a heat pump unit (12, 13, 14, 15, 16, 17, 18) operable by said control unit (3) for extracting humidity from the process air, a condensate collector (20) for collecting condensate thus formed by the heat pump unit (12, 13, 14, 15, 16, 17, 18), and means (22, 23, 24, 25) for cooling at least one component (15, 18) of said heat pump unit (12, 13, 14, 15, 16, 17, 18) including a second blower (22) operable by said control unit (3). Said means (22, 23, 24, 25) for cooling include an open-loop cooling channel (24) having said second blower (22), for conveying cooling air from outside said housing (2) to said at least one component (15, 18).

Description

Household appliance having a heat pump unit and means for cooling a component thereof
The invention relates to a household appliance having a housing and comprising within said housing a control unit, a drying chamber for containing articles to be dried, a closed- loop process air channel having a first blower operable by said control unit for conveying process air along the articles to effect drying, a heat pump unit operable by said control unit for extracting humidity from the process air, a condensate collector for collecting condensate thus formed by the heat pump unit, and means for cooling at least one component of said heat pump unit including a second blower operable by said control unit.
A household appliance of this type is apparent from EP 1 209 277 B1.
That document as well as EP 0 467 188 B1 contain a detailed description of a household appliance that is configured as a dryer for drying articles which are wet laundry. The documents refer to many details of the household appliance that may be necessary or at any rate advantageous in making or using the appliance. Accordingly, the whole content of these documents is incorporated herein by reference.
Related art for household appliances is apparent from documents WO 2006/029953 A1 that specifies a dishwasher in relation to a laundry dryer or combined laundry washer and dryer, DE 197 38 735 C2 that discloses a household appliance with a different type of heat pump, EP 1 672 294 A2, and EP 1 672 295 A2, the latter two disclosing air conditioning devices that have cooling circuits which are in some aspects similar to the heat pump considered herein incorporated therein.
Drying of wet articles in a household appliance generally requires evaporating the humidity on the articles and transporting away by means of a current of heated process air. Such process air loaded with evaporated humidity may be discharged from the appliance, or subjected to a condensation process to recover the transported humidity in liquid form for collection and disposal. Such condensation process in turn requires cooling the process air, thereby extracting heat. That heat may again be discharged from the appliance simply; in order to keep consumption of energy low however, it may be desired to recover that heat at least to an extent. To that end, a household appliance has been developed that incorporates a heat pump which recovers energy taken from the process air by evaporating a refrigerant or heat transfer fluid, subsequently compressing that heat transfer fluid and releasing heat from it back into the process air which circulates in an essentially closed loop. While it may be expedient or even required to open such process air loop at least occasionally as described in EP 0 467 188 B1 , pertinent IEC standards require that a dryer which is claimed to recover humidity by condensation keep any leakage of humidity below 20% of the total humidity present. Problems still to be encountered with household appliances incorporating heat pumps are high manufacturing costs, relatively long periods needed to dry convenient charges of laundry or the like, and possible environmental hazards from heat transfer fluids applied in such appliances. To mitigate such hazards that are predominantly related to ozone-destroying properties of such compounds, chlorinated hydrocarbons that had been applied frequently in the past are presently prohibited from use due to pertinent legislation. Two other concerns that have grown to become determinative for the design of heat pump systems containing heat transfer fluids are the Global Warming Potentials of such compounds, that is their effect as infrared backscatterers when dispersed in the atmosphere, and, of course, their flammabilities.
The pickup of humidity from articles to be dried by process air is only effective if the process air is heated over any normal ambient temperature, preferably to a temperature higher than 600C. That temperature will be brought down by the evaporation process to a somewhat lower temperature. At any rate, a temperature around or above 35°C at an inlet of an evaporator heat exchanger may be expected to pose a problem to a heat pump of the type specified in the introductory chapter and designed in accordance with practice common in the art of refrigeration, in that compressors and refrigerant fluids (generally specified as "heat transfer fluids" herein) from normal refrigeration practice are not suitable for the purpose. It has been considered to obtain relief by reverting to refrigerants of remarkably high critical temperatures so as to ascertain their function at working temperatures up to 600C, but no thorough analysis and guidance is available so far. Other measures that have been applied to obtain relief are bringing excess heat out of the appliance, by exhaling warm process air in exchange for cooler air and including additional heat exchangers to take excess heat from the heat transfer fluid. As a general remark, not only heat pump units of the type specified above are considered for use in a household appliance dedicated to drying articles. As examples, heat pump units that rely on utilizing the familiar Peltier effect or thermal effects related to adsorption and desorption of certain adsorptives at certain adsorbents (e. g., water as adsorptive used in combination with a Zeolith as adsorbent) may be specified. Every heat pump, however, requires an input of energy to effect the desired pumping of heat from a cold terminal to a warm terminal, with such input of energy resulting in an amount of excess heat generated in addition to the heat that is pumped. On one hand, it is in accordance with usual practice to develop a heat pump unit that minimizes production of such excess heat. On the other hand, at least an amount of excess heat may be welcome in a household appliance dedicated to drying, as usual practice requires preheating the articles to be dried to an elevated temperature to help evaporate liquid from the articles. If the heat pump unit is the only source of heat in the appliance, it is only the excess heat that is available for the preheating. Accordingly, the preheating may take a very long time if the heat pump unit is designed to minimize excess heat; to speed up the drying process, even an additional electric heater may be provided to provide for preheating over a suitably short period of time.
As to EP 1 209 277 B1 again, there is disclosed a household appliance comprising a heat pump unit and a second blower dedicated to establish a flow of air around the compressor included in the heat pump unit, for cooling the compressor. The document however does not address the problem that the usual housing of a household appliance will provide a considerable degree of heat insulation of the system contained in the housing from the ambient of the appliance. On one hand, this insulation is quite profitable as it helps prevent undesirable leakage of heat from the drying process. On the other hand, heat contained in the housing will spread into the heat pump unit and heat up its components including the refrigerant possibly contained therein, and possibly impart the proper function of the heat pump unit. It may be noted that the second blower can provide for some re-distribution of heat within the housing; in sum however, the second blower's contribution to removal of excess heat from the heat pump will be low.
Accordingly, it is an object of the invention to specify a household appliance as defined in the introductory chapter herein that has a heat pump which is detailed in a way so as to alleviate the problems specified above and allows for quicker drying of articles at an appropriate expense.
The present invention provides a solution embodied in the household appliance as defined in the independent claim. Preferred embodiments of the invention are defined in the dependent claims.
According to the invention, there is specified a household appliance having a housing and comprising within said housing a control unit, a drying chamber for containing articles to be dried, a closed-loop process air channel having a first blower operable by said control unit for conveying process air along the articles to effect drying, a heat pump unit operable by said control unit for extracting humidity from the process air, a condensate collector for collecting condensate thus formed by the heat pump unit, and means for cooling at least one component of said heat pump unit including a second blower operable by said control unit. Said means for cooling include an open-loop cooling channel having said second blower, for conveying cooling air from outside said housing to the at least one component.
The invention provides means for balancing generation of excess heat within the housing of the appliance with removal of heat from the inside of the housing. According to the invention, excess heat generated may be dissipated from the appliance by transporting the excess heat away from the appliance through the dedicated open-loop cooling channel which conveys the excess heat out of the housing and into the appliance's ambient. The invention sets out from the discovery that the heat insulating properties of the housing need to be taken into account to provide for proper handling of such excess heat. It may be stated that any known household appliance that solely relies on a heat pump unit for drying has failed to provide means for fully dissipating excess heat to avoid any negative influence on the drying process.
In addition, the invention enables utilization of excess heat generated by the heat pump unit to speed up preheating, by limiting the dissipation of excess heat to stages of the drying process that are designed to be more or less stationary. In particular, excess heat may be admitted to remain within the housing during initial stages of the process where preheating of the articles to be dried is still incomplete. Further, the controlled dissipation of excess energy according to the invention may produce an overall reduction of energy consumption for a drying process due to a reduction of time required for the process, by regarding excess heat generated by the heat pump unit not as an unavoidable inconvenience but as a proper design element for the drying process. In this context, a separate heater for use during an initial stage of the drying process to help preheating may be avoided as well.
Not at last, the invention provides efficient help in controlling the temperatures within the heat pump unit, to avoid excesses and establish substantially constant operating temperatures within given ranges. This will greatly improve the appliance's flexibility for functioning in a variety of circumstances given by varying ambient temperatures and loads.
In accordance with a preferred embodiment of the invention, the heat pump unit comprises an evaporator heat exchanger included in the process air channel for cooling the process air by evaporating a refrigerant, a liquefier heat exchanger for heating said process air by liquefying the refrigerant, a closed-loop refrigerant channel for conveying the refrigerant, a compressor for compressing the refrigerant upon exiting said evaporator heat exchanger and forwarding to the liquefier heat exchanger, and a throttle for decompressing the refrigerant upon exiting said liquefier heat exchanger and forwarding to said evaporator heat exchanger. This qualifies the com pressor- type heat pump for application with the invention. More preferred, the at least one component to be cooled by cooling air conveyed through the open-loop cooling channel includes the compressor. Thereby, effective cooling is provided to a prominent source of excess heat in the compressor-type heat pump. More preferred also, the refrigerant channel comprises a refrigerant cooler for cooling the refrigerant, and the at least one component includes the refrigerant cooler. Thereby, another means to remove excess heat from the compressor- type heat pump is provided, contributing to an increase in reliability and operational stability.
In accordance with another preferred embodiment of the invention, a temperature sensor operable by the control unit is disposed within the housing for generating a signal dependent from a temperature within said housing, and the control unit is programmed to operate the second blower in response to the signal. This enables operational control of the inventive means for cooling. In particular, the means for cooling may be set inoperational during an initial period of operation during a drying process, to allow excess heat generated to contribute to a quick heating up of the appliance and the articles placed therein to be dried. Removal of excess heat may be applied only to improve stability of operation during periods where operation is desired to be stationary at least to an extent, by setting the means for cooling operational only during such periods. More preferred, the sensor is disposed at the heat pump unit, and the temperature to be detected is a temperature of the refrigerant. Still more preferred, the sensor is disposed adjacent to the liquefier heat exchanger, to obtain a temperature reading that corresponds to a maximum temperature attained by the refrigerant during its cycling through the heat pump unit. Yet more preferred, the control unit is programmed to operate said second blower under a condition that the signal indicates that the temperature is above a predetermined threshold.
In accordance with a further preferred embodiment of the invention, the second blower has a fixed-speed motor operable by said control unit, and the control unit is programmed to operate the motor intermittently in response to the signal obtained from the temperature sensor. As an alternative, the second blower has a variable-speed motor operable by the control unit, and the control unit is programmed to operate said motor at speeds varying in response to the signal.
In accordance with yet another preferred embodiment of the invention, the cooling channel comprises a guide including the second blower, the guide connecting an inlet in the housing to said at least one component for cooling and opening into said housing, and the housing has at least one outlet allowing cooling air to flow out of said housing. More preferred, the at least one outlet is a multiplicity of outlets. It may be noted that it is quite common for a household appliance to have a housing that comprises some outlets connecting the appliance's interior to its environment, the outlets being placed in a back wall of the housing in particular. In a condensation-type dryer however, such outlets do not have any function associated with the normal operation of the dryer. Their principal determination is to allow for a small exchange of air within the interior to avoid collection of undesirable humidity therein, etc. In accordance with the preferred embodiment just specified, such outlets are applied in a particular useful way to assist in removing excess heat from the appliance. In accordance with still another preferred embodiment of the invention, the heat pump unit is a sole means for extracting humidity from the process air. Such appliance generally has no means that would allow for dissipation of excess heat from the process air channel and the components associated thereto without any such means being especially provided. The invention provides a useful and simple means to allow for an efficient control of heat contained in the process air channel and its associated components.
In accordance with still a further preferred embodiment of the invention, the drying chamber is a rotatable drum, and the articles to be dried are pieces of laundry.
An exemplary embodiment of the invention comprising a combination of many preferred embodiments as described above is detailed now with reference to the accompanying drawing. Fig.1 : This drawing shows a sketch of a vertical section through a household appliance as embodied in a dryer for drying laundry.
Figure 1 shows a household appliance 1 comprising a housing 2. In practice, that housing 2 will be shaped according to de facto standards that would call, for example, for a column having a length and a depth of 60 cm each and a height of 80 cm, in Europe. In the housing 2 there is disposed a control unit 3 that controls, via control lines 4, the various components of the appliance 1 that are functional when the appliance 1 is operated. The control unit 3 is also designed to provide an interface between the appliance 1 and a user, via inputting means like dials, switches, and toggles, and outputting means like alphanumeric displays and indicator lights. Disposed within the housing 2 is a drying chamber 5 that is determined to contain articles 6 to be dried. Presently, the drying chamber 5 is a drum rotatable around an axis by a motor not shown for simplicity. The articles 6 to be dried are pieces of laundry 6, and may be placed into the drum 5 through a door 7 that allows access through the housing 2.
Within the housing 2 there is also disposed a process air channel 8 which has a first blower 9 operated by a first blower motor 10 for conveying process air along the laundry 6 to effect drying in a closed loop. The process air picks up humidity from the laundry 6 and is guided through a lint collector 1 1 , to catch lint, which is an amount of small fibrous particles taken from the laundry 6 and suspended within the process air as it exits drum 5. Upon exiting the lint collector 11 , the process air flows through a heat pump unit 12, 13, 14, 15, 16, 17, 18. That unit comprises an evaporator heat exchanger 12 which is provided to cool the process air flowing through, in order to make humidity collected from the laundry 6 condense to liquid that may in its turn be removed from the process air. Subsequently, the process air flows into a liquefier heat exchanger 13 where it is heated again, prior to being conveyed back to the drum 5 by first blower 9. Condensate that has been separated from the process air in the evaporator heat exchanger 12 flows through a condensate guide 19 to a condensate collector 20 for storing as long as the drying process runs. Subsequently, the condensate collector 20 may be removed from the appliance 1 , and the condensate disposed of appropriately. An electric heater 21 is also present in the process air channel 8 between the first blower 9 and the drum 5. This electric heater 21 may be used to obtain a quick pre-heating of the process air channel 8 and the articles 6 to be dried. As a rule, the heat pump unit 12 to 18 will provide for any necessary pre-heating only very slowly, which may be regarded as a furious disadvantage by a user, due to the normally quite high purchasing price of such appliance 1 comprising a heat pump unit 12 to 18.
In the heat pump unit 12 to 18, a working fluid or refrigerant is conveyed through a refrigerant channel 14 in a closed loop. The refrigerant channel 14 comprises the evaporator heat exchanger 12 and the liquefier heat exchanger 13, a compressor 15 driven by compressor motor 16, and a throttle 17 in addition. As an optional component, a refrigerant cooler 18 is also comprised by the refrigerant channel 14. The function of the heat pump unit 12 to 18 is as follows: The refrigerant enters the evaporator heat exchanger 12 in a liquid state; within the evaporator heat exchanger 12, the refrigerant is evaporated by absorbing heat from the process air flowing through. The evaporated refrigerant exits the evaporator heat exchanger 12 and is conveyed to the compressor 15. There, it is compressed to a relatively high pressure and forwarded to the liquefier heat exchanger 13. In the liquefier heat exchanger 13, the refrigerant transfers heat generated by its compression to the process air flowing through, and is liquefied thereby. The refrigerant cooler 18 may be included into the refrigerant channel 14 in order to allow for some additional cooling of the refrigerant, which may be necessary to keep temperature levels within the heat pump unit 12 to 18 below pertinent maxima. In the present application, the temperature of the refrigerant may become much higher than the temperature of a refrigerant in a refrigerator or a climate control application where heat pump units as the one shown here are also frequently used. Accordingly, the thermodynamic properties of the refrigerant used may necessitate some additional cooling, in order to avoid critical states of the refrigerant that might question stable operation of the heat pump unit 12 to 18. Anyway, liquefied refrigerant will exit the liquefier heat exchanger 13 and flow through a throttle 17. Such throttle 17 may be a check valve or a capillary as a appropriate. Within the throttle 17, the internal pressure of the refrigerant is reduced; allowing the refrigerant to evaporate in the evaporator heat exchanger 12 which is entered upon exiting the throttle 17, thus completing the cycle and closing the loop formed by refrigerant channel 14.
To facilitate cooling of the heat pump unit 12 to 18, means 22, 23, 24, 25, 26, 27 are provided to affect a flow of cooling air to cool the compressor 15 with associated compressor motor 16 and refrigerant cooler 18. These means 22, 23, 24, 25, 26, 27 comprise a second blower 22 driven by a second blower motor 23, the second blower 22 included into open-loop cooling channel 24. That channel comprises a cooling air guide 25 that opens at an inlet 26 to an ambient of the appliance 1 and leads through second blower 22 to the compressor 15 and the refrigerant cooler 18. The cooling air guide 25 ends within the housing 2 near the compressor 15 and the refrigerant cooler 18. Cooling air exiting guide 25 may flow more or less freely about components 15, 16 and 18 to cool, and exit housing 2 at a plurality of outlets 27. These outlets 27 are indicated only schematically; in reality, they may be slit-like structures in a back wall that is part of the housing 2. At any rate, the said means 22, 23, 24, 25, 26, 27 provide for cool air from the ambient to be guided towards those components of the heat pump unit 12 to 18 where a dissipation of excess heat is to be effected. It is no disadvantage that such excess heat is carried more or less freely through housing 2 and along functional units of the appliance 1 housed therein; quiet to the contrary, the transport of warm air about these functional units contributes to avoiding undesirable losses of heat from such units.
In order to control the dissipation of excess heat as explained above, a temperature sensor 28 operable by the control unit 3 is disposed adjacent to the liquefier heat exchanger 13, in order to measure a temperature of the refrigerant in or at the liquefier heat exchanger 13. That temperature is an effective indication of the thermal load imposed on the heat pump unit 12 to 18, and can be utilized in several ways to improve the function of the appliance 1. First of all, operation of second blower 22 can be effected only under condition that the temperature measured by the sensor 28 exceeds a predetermined threshold. Secondly, a degree of control of the said temperature can be affected by operating the second blower 22 in response to the signal. In case that the second blower motor 23 is a fixed-speed motor 23, control of operation may be effected by operating the motor 23 intermittently in response to the signal obtained from the said temperature. A fixed-speed motor 23 is a proper choice due to the relative cheapness of such motor. In case that a finer control is desired, the second blower motor 23 may also be a variable speed-motor that may be more expensive but that allows a fine control of its output power. In such case, the motor 23 may be operated at speeds varying in response to the signal.
At any rate, the invention provide for effective control and disposal of excess heat in a household appliance designed for drying articles by operation of a heat pump unit.
LIST OF REFERENCE NUMERALS
1 household appliance, laundry dryer
2 housing
3 control unit 4 control line
5 drying chamber
6 article to be dried, piece of laundry
7 door
8 process air channel 9 first blower
10 first blower motor
1 1 lint collector
12 heat pump unit, evaporator heat exchanger
13 heat pump unit, liquefier heat exchanger 14 heat pump unit, refrigerant channel
15 heat pump unit, compressor
16 heat pump unit, compressor motor
17 heat pump unit, throttle
18 heat pump unit, refrigerant cooler 19 condensate guide
20 condensate collector
21 electric heater
22 second blower
23 second blower motor 24 open-loop cooling channel
25 cooling air guide
26 inlet
27 outlet
28 temperature sensor

Claims

PATENT CLAIMS
1. Household appliance (1 ) having a housing (2) and comprising within said housing (2) a control unit (3), a drying chamber (5) for containing articles (6) to be dried, a closed-loop process air channel (8) having a first blower (9) operable by said control unit (3) for conveying process air along the articles (6) to effect drying, a heat pump unit (12, 13, 14, 15, 16, 17, 18) operable by said control unit (3) for extracting humidity from the process air, a condensate collector (20) for collecting condensate thus formed by the heat pump unit (12, 13, 14, 15, 16, 17, 18), and means (22, 23, 24, 25) for cooling at least one component (15, 18) of said heat pump unit (12, 13, 14, 15, 16, 17, 18) including a second blower (22) operable by said control unit (3), characterized in that said means (22, 23, 24, 25) for cooling include an open-loop cooling channel (24) having said second blower (22), for conveying cooling air from outside said housing (2) to said at least one component (15, 18).
2. Household appliance (1 ) as claimed in claim 1 , wherein said heat pump unit (12, 13, 14, 15, 16, 17, 18) comprises an evaporator heat exchanger (12) included in said process air channel (8) for cooling the process air by evaporating a refrigerant, a liquefier heat exchanger (13) for heating said process air by liquefying said refrigerant, a closed-loop refrigerant channel (14) for conveying said refrigerant, a compressor (15) for compressing said refrigerant upon exiting said evaporator heat exchanger (12) and forwarding to said liquefier heat exchanger (13), and a throttle (17) for decompressing said refrigerant upon exiting said liquefier heat exchanger (13) and forwarding to said evaporator heat exchanger (12).
3. Household appliance (1 ) as claimed in claim 2, wherein said at least one component (15, 18) includes said compressor (15).
4. Household appliance (1 ) as claimed in claim 2 or claim 3, wherein said refrigerant channel (14) comprises a refrigerant cooler (18) for cooling said refrigerant, and wherein said at least one component (15, 18) includes said refrigerant cooler (18).
5. Household appliance (1 ) as claimed in one of the preceding claims, wherein a temperature sensor (28) operable by said control unit (3) is disposed within said housing (2) for generating a signal dependent from a temperature within said housing (2), and wherein said control unit (3) is programmed to operate said second blower (22) in response to the signal.
6. Household appliance (1 ) as claimed in claim 5, wherein said sensor (28) is disposed at said heat pump unit (12, 13, 14, 15, 16, 17, 18), and wherein the temperature is a temperature of the refrigerant.
7. Household appliance (1 ) as claimed in claim 6, wherein said sensor (28) is disposed adjacent to said liquefier heat exchanger (13).
8. Household appliance as claimed in one of claims 5 to 8, wherein said control unit (3) is programmed to operate said second blower (22) under a condition that the signal indicates that the temperature is above a predetermined threshold.
9. Household appliance (1 ) as claimed in one of claims 5 to 8, wherein said second blower (22) has a fixed-speed motor (23) operable by said control unit (3), and wherein said control unit (3) is programmed to operate said motor (23) intermittently in response to the signal.
10. Household appliance (1 ) as claimed in one of claims 5 to 8, wherein said second blower (22) has a variable-speed motor (23) operable by said control unit (3), and wherein said control unit (3) is programmed to operate said motor (23) at speeds varying in response to the signal.
11. Household appliance (1 ) as claimed in one of the preceding claims, wherein said cooling channel (24) comprises a guide (25) including said second blower (22), said guide (25) connecting an inlet (26) in said housing (2) to said at least one component (15, 18) for cooling, and opening into said housing (2), and wherein said housing (2) has at least one outlet (27) allowing cooling air to flow out of said housing (2).
12. Household appliance as claimed in claim 11 , wherein said at least one outlet (27) is a multiplicity of outlets (27).
13. Household appliance (1 ) as claimed in one of the preceding claims, wherein said heat pump unit (12, 13, 14, 15, 16, 17, 18) is a sole means for extracting humidity from the process air.
14. Household appliance as claimed in one of the preceding claims, wherein said drying chamber (3) is a rotatable drum (3), and wherein the articles (6) to be dried are pieces of laundry (6).
PCT/EP2008/064168 2007-11-06 2008-10-21 Household appliance having a heat pump unit and means for cooling a component thereof WO2009059889A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EA201070560A EA201070560A1 (en) 2007-11-06 2008-10-21 HOUSEHOLD DEVICE WITH HEAT PUMP AND TOOLS FOR COOLING OF THE PUMP COMPONENT
US12/681,934 US20100242297A1 (en) 2007-11-06 2008-10-21 Household appliance having a heat pump unit and means for cooling a component thereof
EP08848321A EP2212463B1 (en) 2007-11-06 2008-10-21 Household appliance having a heat pump unit and means for cooling a component thereof
CN200880114995A CN101849061A (en) 2007-11-06 2008-10-21 Household appliance having a heat pump unit and means for cooling a component thereof
AT08848321T ATE516401T1 (en) 2007-11-06 2008-10-21 HOUSEHOLD APPLIANCE COMPRISING A HEAT PUMP UNIT AND MEANS FOR COOLING A COMPONENT THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07380307A EP2058427A1 (en) 2007-11-06 2007-11-06 Household appliance having a heat pump unit and means for cooling a component thereof
EP07380307.4 2007-11-06

Publications (1)

Publication Number Publication Date
WO2009059889A1 true WO2009059889A1 (en) 2009-05-14

Family

ID=39231050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064168 WO2009059889A1 (en) 2007-11-06 2008-10-21 Household appliance having a heat pump unit and means for cooling a component thereof

Country Status (6)

Country Link
US (1) US20100242297A1 (en)
EP (3) EP2058427A1 (en)
CN (1) CN101849061A (en)
AT (1) ATE516401T1 (en)
EA (1) EA201070560A1 (en)
WO (1) WO2009059889A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343410A2 (en) 2010-01-12 2011-07-13 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance with a housing comprising an opening and method for operating the same
EP2684994A1 (en) 2012-07-11 2014-01-15 BSH Bosch und Siemens Hausgeräte GmbH Dryer with heat pump with additional suitability for use as a room dehumidifier
US20140109426A1 (en) * 2012-10-22 2014-04-24 Seungphyo AHN Dryer having evaporator equipped with second condenser
DE102014225806A1 (en) 2014-12-15 2016-06-16 BSH Hausgeräte GmbH Household appliance for drying laundry
US9803313B2 (en) 2014-12-29 2017-10-31 Lg Electronics Inc. Clothes treating apparatus

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351042B1 (en) * 2007-08-03 2014-01-10 엘지전자 주식회사 Controll method of the laundry treating machine
ES2373135B1 (en) * 2009-12-14 2012-12-13 Bsh Electrodomesticos España S.A DOMESTIC APPLIANCE THAT INCLUDES AN EXPANSION SYSTEM.
EP2519686B1 (en) * 2009-12-31 2016-08-10 Arçelik Anonim Sirketi Heat pump laundry dryer
US20120030959A1 (en) * 2010-08-09 2012-02-09 Tai-Her Yang Rotary drum dryer with heat recycling and water collecting function
EP2476796B1 (en) * 2011-01-13 2012-11-21 Miele & Cie. KG Washer dryer with heat pump
AU2015268730B2 (en) * 2011-03-29 2017-12-14 Lg Electronics Inc. Controlling method for clothes dryer
EP2691568B1 (en) * 2011-03-29 2017-12-27 LG Electronics Inc. Controlling method for a clothes dryer
US9417009B2 (en) * 2012-03-06 2016-08-16 Lg Electronics Inc. Controlling method for a washing machine
WO2013144780A1 (en) * 2012-03-30 2013-10-03 BSH Bosch und Siemens Hausgeräte GmbH Heat pump for a clothes treatment appliance, and clothes treatment appliance comprising such heat pump
EP2733253A1 (en) * 2012-11-16 2014-05-21 Electrolux Home Products Corporation N.V. Method of operating a heat pump laundry dryer and heat pump laundry dryer or heat pump washing machine having drying function
EP2733256A1 (en) * 2012-11-16 2014-05-21 Electrolux Home Products Corporation N.V. Heat pump laundry treatment apparatus and method of operating a heat pump laundry treatment apparatus
EP2733252A1 (en) 2012-11-16 2014-05-21 Electrolux Home Products Corporation N.V. Method of operating a heat pump laundry dryer and heat pump laundry dryer or heat pump washing machine having drying function
EP2733254A1 (en) 2012-11-16 2014-05-21 Electrolux Home Products Corporation N.V. Heat pump laundry treatment apparatus and method of operating a heat pump laundry treatment apparatus
CN103070656B (en) * 2013-01-23 2015-01-07 林贤华 Dish washing machine based on heating and drying of heat pump
ITPR20130024A1 (en) * 2013-03-29 2014-09-30 Indesit Co Spa DRYING APPLIANCES.
CN105473779B (en) * 2013-07-09 2018-04-03 伊莱克斯家用电器股份公司 The clothes drying utensil of operating flexibility with enhancing
KR102127383B1 (en) * 2013-08-01 2020-06-26 엘지전자 주식회사 Laundry Machine
EP2985466A1 (en) 2014-08-14 2016-02-17 BSH Electrodomésticos España, S.A. Rotary compressor, heat pump, and household appliance
PL3059342T3 (en) * 2015-02-20 2023-03-13 Electrolux Appliances Aktiebolag Method of operating a laundry treatment apparatus using operation state information
EP3124679B1 (en) 2015-07-27 2018-03-28 Electrolux Appliances Aktiebolag Laundry treating machine
WO2017152947A1 (en) * 2016-03-08 2017-09-14 Arcelik Anonim Sirketi Laundry treatment appliance with improved corrosion protection and safety
DK179480B1 (en) * 2016-06-10 2018-12-12 Force Technology Dryer and method of drying
EP3351678A1 (en) 2017-01-24 2018-07-25 Whirlpool Corporation Machine for drying laundry including a heat pump unit and operational method thereof
EP3388571B1 (en) 2017-04-10 2020-07-29 BSH Hausgeräte GmbH Clothes drying appliance
EP3382315B1 (en) 2017-03-31 2019-11-20 BSH Hausgeräte GmbH Laundry drying appliance comprising at least one finned-tube heat exchanger
EP3467187B1 (en) 2017-10-09 2021-12-22 Whirlpool Corporation Filter configured for being used in a machine for drying laundry and machine for drying laundry equipped with such a filter
CN111335000A (en) * 2018-12-18 2020-06-26 青岛海尔滚筒洗衣机有限公司 Clothes drying device and control method thereof
DE102019207225A1 (en) * 2019-05-17 2020-11-19 BSH Hausgeräte GmbH Apparatus for drying laundry and a method for operating a heat pump of such an apparatus
CN113375397A (en) * 2021-05-27 2021-09-10 五邑大学 Refrigerator based on molecular sieve
CN113339905B (en) * 2021-05-27 2022-09-27 五邑大学 Air conditioner based on molecular sieve
CN113340019B (en) * 2021-05-27 2024-05-28 五邑大学 Refrigerator based on molecular sieve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409607A1 (en) * 1993-04-21 1994-10-27 Miele & Cie Condensation-type laundry drier with a heat pump
EP0999302A1 (en) 1998-10-21 2000-05-10 Whirlpool Corporation Tumble dryer with a heat pump
EP0467188B1 (en) 1990-07-19 2001-04-04 BSH Bosch und Siemens Hausgeräte GmbH Clothes dryer with heat pump
DE19738735C2 (en) 1997-09-04 2003-02-20 Bsh Bosch Siemens Hausgeraete Condensation dryer with a closed drying air circuit
EP1209277B1 (en) 2000-11-20 2003-12-10 Electrolux Zanussi S.p.A. Heat-pump clothes drying machine
WO2006029953A1 (en) 2004-09-13 2006-03-23 BSH Bosch und Siemens Hausgeräte GmbH Drying method for a household appliance and household appliance for carrying the drying method
EP1672294A2 (en) 2004-12-14 2006-06-21 BSH Bosch und Siemens Hausgeräte GmbH Air conditionig system
EP1672295A2 (en) 2004-12-16 2006-06-21 BSH Bosch und Siemens Hausgeräte GmbH Air-conditioning device
EP1884586A2 (en) 2006-11-06 2008-02-06 V-Zug AG Laundry dryer with supplementary heat exchanger

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4367634A (en) * 1979-04-12 1983-01-11 Bolton Bruce E Modulating heat pump system
US8844160B2 (en) * 1997-04-29 2014-09-30 Whirlpool Corporation Modular fabric revitalizing system
RU2006114770A (en) * 2003-09-29 2007-11-10 Селф Пропеллед Рисерч энд Дивелопмент Спешелистс,эЛэЛСи (US) DRYING DEVICE (OPTIONS), WASHING DEVICE AND DRYING CHAMBER (OPTIONS)
JP4330467B2 (en) * 2004-02-26 2009-09-16 東京エレクトロン株式会社 Process apparatus and particle removal method in the process apparatus
US7526879B2 (en) * 2005-11-04 2009-05-05 Lg Electronics Inc. Drum washing machine and clothes dryer using peltier thermoelectric module
DE102005058285A1 (en) * 2005-12-06 2007-06-14 BSH Bosch und Siemens Hausgeräte GmbH Device for drying laundry
DE202006018205U1 (en) * 2006-11-06 2007-02-15 V-Zug Ag Clothes dryer with a drum and a heat pump circuit comprising a condenser, a throttle, an evaporator and a compressor comprises an auxiliary heat exchanger between the condenser and the throttle
JP4889545B2 (en) * 2007-03-30 2012-03-07 三洋電機株式会社 Drying apparatus and washing and drying machine equipped with this apparatus
PL2235249T3 (en) * 2007-12-11 2016-11-30 Household appliance comprising a first air conduit and a heat pump
DE102008044323A1 (en) * 2008-12-03 2010-06-10 BSH Bosch und Siemens Hausgeräte GmbH Condensation dryer with a housing
DE102008054693A1 (en) * 2008-12-16 2010-06-17 BSH Bosch und Siemens Hausgeräte GmbH Condensation dryer and method for its operation
EP2440104B1 (en) * 2009-06-10 2020-04-15 BSH Hausgeräte GmbH Dishwasher having two water connections and control method
US8196395B2 (en) * 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
EP2495362B1 (en) * 2009-10-27 2017-10-11 Panasonic Corporation Clothes dryer and washer/dryer
AU2011245858B2 (en) * 2010-04-28 2014-06-12 Lg Electronics Inc. Laundry treating apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467188B1 (en) 1990-07-19 2001-04-04 BSH Bosch und Siemens Hausgeräte GmbH Clothes dryer with heat pump
DE4409607A1 (en) * 1993-04-21 1994-10-27 Miele & Cie Condensation-type laundry drier with a heat pump
DE19738735C2 (en) 1997-09-04 2003-02-20 Bsh Bosch Siemens Hausgeraete Condensation dryer with a closed drying air circuit
EP0999302A1 (en) 1998-10-21 2000-05-10 Whirlpool Corporation Tumble dryer with a heat pump
EP1209277B1 (en) 2000-11-20 2003-12-10 Electrolux Zanussi S.p.A. Heat-pump clothes drying machine
WO2006029953A1 (en) 2004-09-13 2006-03-23 BSH Bosch und Siemens Hausgeräte GmbH Drying method for a household appliance and household appliance for carrying the drying method
EP1672294A2 (en) 2004-12-14 2006-06-21 BSH Bosch und Siemens Hausgeräte GmbH Air conditionig system
EP1672295A2 (en) 2004-12-16 2006-06-21 BSH Bosch und Siemens Hausgeräte GmbH Air-conditioning device
EP1884586A2 (en) 2006-11-06 2008-02-06 V-Zug AG Laundry dryer with supplementary heat exchanger

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343410A2 (en) 2010-01-12 2011-07-13 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance with a housing comprising an opening and method for operating the same
DE102010000794A1 (en) 2010-01-12 2011-07-14 BSH Bosch und Siemens Hausgeräte GmbH, 81739 Domestic appliance with a housing having an opening, and method of operating such
EP2343410A3 (en) * 2010-01-12 2014-09-03 BSH Bosch und Siemens Hausgeräte GmbH Domestic appliance with a housing comprising an opening and method for operating the same
EP2684994A1 (en) 2012-07-11 2014-01-15 BSH Bosch und Siemens Hausgeräte GmbH Dryer with heat pump with additional suitability for use as a room dehumidifier
DE102012212162A1 (en) 2012-07-11 2014-01-16 BSH Bosch und Siemens Hausgeräte GmbH Dryer with heat pump with additional suitability for a dehumidification and process for its operation
US20140109426A1 (en) * 2012-10-22 2014-04-24 Seungphyo AHN Dryer having evaporator equipped with second condenser
US9207015B2 (en) * 2012-10-22 2015-12-08 Lg Electronics Inc. Dryer having evaporator equipped with second condenser
DE102014225806A1 (en) 2014-12-15 2016-06-16 BSH Hausgeräte GmbH Household appliance for drying laundry
US9803313B2 (en) 2014-12-29 2017-10-31 Lg Electronics Inc. Clothes treating apparatus

Also Published As

Publication number Publication date
CN101849061A (en) 2010-09-29
US20100242297A1 (en) 2010-09-30
ATE516401T1 (en) 2011-07-15
EP2212463A1 (en) 2010-08-04
EP2253757A1 (en) 2010-11-24
EA201070560A1 (en) 2010-10-29
EP2058427A1 (en) 2009-05-13
EP2212463B1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
EP2212463B1 (en) Household appliance having a heat pump unit and means for cooling a component thereof
JP4629670B2 (en) Heat pump type drying device, drying device, and drying method
US9803313B2 (en) Clothes treating apparatus
EP2132370B1 (en) Household appliance with heat pump
US8356423B2 (en) Household appliance containing a heat transfer fluid
EP2235249B1 (en) Household appliance comprising a first air conduit and a heat pump
EP2489774A1 (en) A heat pump laundry dryer
US9146056B2 (en) Laundry treating apparatus having expansion valve which is variable according to the driving mode
WO2013014137A1 (en) A heat pump system for a laundry dryer
CN108289589B (en) Household appliance having a heat pump and method for operating a household appliance
EP2341180A1 (en) A heat pump system for a tumble dryer
CN107208350B (en) For seeking the method for washings characteristic and suitable for this condenser dryer
JP2004135752A (en) Clothes dryer apparatus
CN110093759B (en) Appliance for drying laundry and method for operating a heat pump of such an appliance
CN108118507A (en) Cabinet-type heat pump energy-conserving dryer and its method of work
EP2147999A1 (en) Home laundry drier
EP2071069A1 (en) Household appliance comprising a first air conduit and a heat pump
CN213066798U (en) Closed-loop heat pump constant-temperature dryer system
EP3173009A1 (en) Household appliance with a heat pump and method for operating a household appliance
CN114606738A (en) Clothes dryer and heat pump system and control method thereof
CN111945401A (en) Appliance for drying laundry and method for operating a heat pump of such an appliance

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880114995.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08848321

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12681934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008848321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201070560

Country of ref document: EA