WO2009057131A2 - Polyolefin composition having high melt strength - Google Patents

Polyolefin composition having high melt strength Download PDF

Info

Publication number
WO2009057131A2
WO2009057131A2 PCT/IN2008/000379 IN2008000379W WO2009057131A2 WO 2009057131 A2 WO2009057131 A2 WO 2009057131A2 IN 2008000379 W IN2008000379 W IN 2008000379W WO 2009057131 A2 WO2009057131 A2 WO 2009057131A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
polyolefin
mixture
weight
range
Prior art date
Application number
PCT/IN2008/000379
Other languages
French (fr)
Other versions
WO2009057131A3 (en
Inventor
Sandeep Tyagi
Vishal Anand
Bhawna Kulshreshtha
Nisha Preschilla
Natarajan Venkateswaran
Amit Biswas
Original Assignee
Reliance Industries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliance Industries Limited filed Critical Reliance Industries Limited
Publication of WO2009057131A2 publication Critical patent/WO2009057131A2/en
Publication of WO2009057131A3 publication Critical patent/WO2009057131A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • Polyolefin compositions are widely used for the manufacture of various articles and products.
  • Polyolefin, especially polypropylene exhibit good resistance to deformation at elevated temperatures and has high tensile strength, surface hardness, and good toughness at ambient temperatures.
  • Sheets and films of polypropylene are conveniently prepared by extrusion.
  • Polypropylene resin sheets and films are, however, not commonly used in industrial processes such as thermoforming, melt spinning, blow molding and foaming due to the requirement, in such processes, of superior elasticity of the sheets in order to resist sagging. Due to their sharp melting point, polyolefins such as polypropylene pass through the viscoelastic plateau very rapidly on heating, resulting in poor melt strength and sag. The occurrence of sagging in industrial processes such as thermoforming may lead to irregularity in articles or even result in tearing of the polymer sheet used for the process.
  • WO200012572 discloses a long-chain branched polypropylene with high melt strength and good processability formed by contacting propylene monomers in a reactor with an inert hydrocarbon solvent and one or more single site catalysts capable of producing stereospecific propylene at
  • Polyolefin can be a homopolymer or copolymer of monomers not limited to ethylene, propylene, alpha-olefms such as 1-butene, 1-pentene, 1-hexene, 4-methyl-l- pentene, 1-octene, 1-decene, other linear, branched or cyclic olefins having of from 4 to 12 carbon atoms.

Abstract

The invention relates to filled polyolefin compositions having improved mechanical and surface properties and to a process for preparing them. The invention provides a composition of polyolefin reinforced with filler(s), impact modifier(s) and a fibrous sub micron structured material, the composition having improved surface properties, mechanical properties and crystallinity, the composition comprising atleast two polyolefins, one polyolefin having high melt flow index (MFI) and another polyolefin having low melt flow index. The invention also provides a process for preparing a filled polyolefin composition by melt mixing a mixture of polyolefins, impact modifier(s), a fibrous sub micron structured material and filler(s), the mixture comprising at least two polyolefins, one polyolefin having a higher MFI than the other.

Description

TITLE OF THE INVENTION
Polyolefin composition having high melt strength
FIELD OF INVENTION
The invention relates to a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, an inorganic filler and a mixture of polyolefin resins. The invention also relates to a method for preparing the composition and to the articles arid products prepared thereof.
BACKGROUND
Polyolefin compositions are widely used for the manufacture of various articles and products. Polyolefin, especially polypropylene, exhibit good resistance to deformation at elevated temperatures and has high tensile strength, surface hardness, and good toughness at ambient temperatures. Sheets and films of polypropylene are conveniently prepared by extrusion. Polypropylene resin sheets and films are, however, not commonly used in industrial processes such as thermoforming, melt spinning, blow molding and foaming due to the requirement, in such processes, of superior elasticity of the sheets in order to resist sagging. Due to their sharp melting point, polyolefins such as polypropylene pass through the viscoelastic plateau very rapidly on heating, resulting in poor melt strength and sag. The occurrence of sagging in industrial processes such as thermoforming may lead to irregularity in articles or even result in tearing of the polymer sheet used for the process.
WO200012572 discloses a long-chain branched polypropylene with high melt strength and good processability formed by contacting propylene monomers in a reactor with an inert hydrocarbon solvent and one or more single site catalysts capable of producing stereospecific propylene at
40-120° C. However, the improvement in melt strength by the use of such high-melt-strength polypropylene in this disclosure is very limited. JP5175761 discloses a polypropylene sheet laminated onto a sagging-free sheet of a resin different from polypropylene. H ( owever, lamination means for sag reduction tend to be rather cumbersome and cost intensive and may also result voids in the formed products. US6770697 discloses a high melt strength polyolefϊn- nanoclay composite for thermoforming application. There is scope for further improvement in melt strength and sag resistance of polyolefin compositions.
DETAILED DESCRIPTION
Accordingly, the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, inorganic filler(s) and. a mixture of polyolefin resins.
In one embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, an impact modifier, an inorganic filler and a mixture of polyolefin resins, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes.
In one embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the mixture is present in an amount ranging from 53 to 95.99% by weight of the composition, the fibrous submicron structured polymeric material is present in an amount ranging from 0.01 to 2% by weight of the composition, the impact modifier is present in an amount ranging from 3 to 25% by weight of the composition and the inorganic filler is present in an amount ranging from 1 to 20% by weight of the composition.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the mixture is present in an amount ranging from 64 to 91.9% by weight of the composition, the fibrous submicron structured polymeric material is present in an amount ranging from 0.1 to 1% by weight of the composition, the impact modifier is present in an amount ranging from 5 to 20% by weight of the composition and the inorganic filler is present in an amount ranging from 3 to 15% by weight of the composition. In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the first polyolefin resin has a melt flow index in the range of 0.3 to 1 g/10 minutes and the second polyolefin resin has a melt flow index in the range of 1.5 to 3.5 g/10 minutes.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the fibrous submicron structured polymeric material is selected from the group consisting of an ultra high molecular polyethylene, a cellullosic material and a fluoropolymer.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein impact modifier is an elastomer.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 tol.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the inorganic filler is selected from the group consisting of inorganic oxides, inorganic carbonates, silicate materials and clays.
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins,, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 tol.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the inorganic filler is clay or mica
In another embodiment the invention provides a filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, optionally an impact modifier, an inorganic filler and a mixture of polyolefin resins, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 tol .4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes wherein the polyolefin is polypropylene, polyethylene or a propylene-ethylene copolymer.
In another embodiment the invention provides a method for preparing a filled polyolefin composition, the method comprising blending a composition comprising a mixture of polyolefin resins, at least one fibrous submicron structured polymeric material, an impact modifier and an inorganic filler in a twin-screw extruder at a temperature in the range of 150°C to 250°C at a specific energy in the range of 0.1 to 2.5 kilo watt hr/kg. In another embodiment the invention provides a method for manufacturing articles, the method comprising thermoforming the filled polyolefin composition
In another embodiment the invention provides a method for manufacturing articles, the method comprising melting by heating the filled polyolefin composition, extruding the molten composition into a hollow tube and inflating the extruded melt to the desired shape.
In a further embodiment the invention provides shaped articles prepared from the filled polyolefin compositions
The filled polyolefin compositions of the invention comprise a mixture of polyolefin resins having different flow characteristics. In particular, mixture of polyolefin comprise one polyolefin having a low melt flow index (MFI) and another polyolefin resin having relatively high melt flow index. The low MFI polyolefin used in the invention is preferably one selected from the group consisting of polypropylene having MFI in the range of 0.1 to 1.4 g/10min, polyethylene having MFI in the range of 0.1 to 1.4 g/10min and ethylene-propylene copolymer having MFI in the range of 0.1 to 1.4 g/10min. The high MFI polyolefin is preferably one selected from the group consisting of polypropylene having MFI in the range of 1.5 to 15 g/10min, polyethylene having MFI in the range of 1.5 to 15 g/10min and ethylene- propylene copolymer having MFI in the range of 1.5 to 15 g/10min. The polyolefin resins used include thermoplastic and/or crosslinkable polyolefins as well as random, block or graft copolymers of ethylene and propylene. Polyolefin used to prepare the compositions of the invention can be made using olefin polymerization reaction carried out in the gas phase, slurry phase and solution phase The catalysts used for the polymerization reaction include, but are not limited to, coordination anionic catalysts, cationic catalysts, free radical catalysts, Ziegler-Natta catalysts as well as metallocenes reacted with an alkyl or alcoxy metal compound, or with an ionic compound. The catalysts can also be in the form of catalyst precursor compositions that are partially or completely activated and those catalysts modified by pre-polymerization or any similar technique for the catalyst conditioning. A definition of Ziegler-Natta catalysts may be found in the chapter "Definitions, stereochemistry, experimental methods and commercial polymers", from the book by John Boor, Jr., "Ziegler-Natta Catalysts and Polymerizations", p. 32-35, Academic Press. Polyolefin can be a homopolymer or copolymer of monomers not limited to ethylene, propylene, alpha-olefms such as 1-butene, 1-pentene, 1-hexene, 4-methyl-l- pentene, 1-octene, 1-decene, other linear, branched or cyclic olefins having of from 4 to 12 carbon atoms.
In addition to the mixture of polyolefin resins the filled polyolefin composition of the invention comprise inorganic fillers, impact modifiers and at least one fibrous submicron structured polymeric material. The fillers used in the invention include fillers and solid compounding ingredients or agents commonly used in polymeric compounds. Typical fillers include all kinds of clays, layered silicate materials, carbon black, wood flour either with or without oil, various forms of silica including common sand, glass, metals, metal oxides such as aluminum oxide and titanium oxide, aluminum trihydrate and titanium dioxide magnesium oxide, calcium carbonate, barium carbonate, magnesium carbonate, barium sulfate, antimony trioxide, calcium silicate, diatomaceous earth, fuller earth, kieselguhr, mica, talc, slate flour, volcanic ash, cotton flock, asbestos, kaolin, sulfates of barium, calcium sulfate, titanium, organically modified clays, zeolites, vanadium oxide, wollastonite, titanium boride, zinc borate, tungsten carbide, ferrites, molybdium disulfide, asbestos, cristobalite, silica and layered silicate materials including Vermiculite, bentonite, montmorillonite, Na-montmorillonite, Ca-montmorillonite, kaolinite, mica, hectorite, fluorohectorite, saponite, beidelite, nontronite, stevensite, hallosite, volkonskoite, suconite, magadite and kenyalite in the modified or unmodified form. Modifiers are usually organic substances having atleast one functional group selected from primary ammonium to quaternary ammonium, phosphonium, maleate, succinate, acrylate, benzylic hydrogen, oxazoline, and dimethyldistearylammonium groups. Aluminosilicates like calcium aluminum magnesium silicate hydroxide, pyrophyllite, magnesium aluminum silicate, lithium aluminium silicates and zirconium silicates as well as silica which includes precipitated or hydrated, fumed or pyrogenic, vitreous, fused or colloidal and hydroxides of aluminium or ammonium or magnesium, zirconia, nanoscale titania and their suitable combinations are also used as fillers. Inorganic oxide or mixtures of two or more inorganic oxides are also used as fillers to prepare the composition of the invention. Such fillers include oxides of the metals in periods 2, 3, 4, 5 and 6 of Groups Ib, lib, Ha, IHb, IVa, IVb (except carbon), Va, Via, Villa and VIII of the Periodic Table.
The fillers used in the composition of the invention could also be fibrous fillers which include fibers like glass fibers, basalt fibers, aramid fibers, carbon fibers, carbon nanofibers, melamine fibers, polyamide fibers, metal fibers. Fillers like carbon nanotubes, carbon buckyballs, potassium titanate whiskers, aluminum borate whiskers can also be used. Preferred fillers are those selected from the group consisting of calcium carbonate, talc, glass fibers, carbon fibers, mica, organically modified clay, kaolin, wollastonite, calcium sulfate, barium sulfate, titanium, silica, carbon black and their suitable combinations. When a layered silicate material is used as filler in the composition, it is optionally pre-blended with functionalized polyolefin. The functionalized polyolefin is at least one compound selected from the group consisting of ethylene-ethylene anhydride-acrylic acid copolymer, ethylene-ethyl acrylate copolymer,ethylene-alkyl acrylate-acrylic acid copolymer, maleic anhydride modified (graft) polyethylenes, ethylene-alkyl (meth) acrylate-(meth)acrylic acid copolymer, ethylene-butyl acrylate copolymer, ethylene-vinyl acetate copolymer, maleic anhydride modified (graft) ethylene-vinyl acetate copolymer and maleic anhydride modified polypropylenes. Any elastomer or rubbery material in any form can be used as impact modifier for preparing the compositions of the invention. The impact modifier is typically a copolymer or terpolymer, consisting of monomers selected from ethylene, C3-20 α-olefins and unsaturated comonomers like C4-2o dienes, vinyl aromatic compounds, (meth)acrylic compounds and (meth)acrylate compounds. The copolymer or terpolymer is a random, block or graft copolymer. The impact modifier is optionally a blend of (homo/co)polyolefins and rubber, in varied relative amounts of each component. Preferably, impact modifiers based on Ethylene-α-olefin copolymers are used.
The fibrous sub micron structured material used in the composition of the invention is selected from UHMWPE (Ultra High Molecular Weight Polyethylene), cellulosic material or fluoropolymers. Suitable fluoropolymers include homopolymers and copolymers comprising structural units derived from one or more fluorinated alpha-olefin monomers, that is, an alpha- olefin monomer that includes at least one fluorine atom in place of a hydrogen atom. The fluoropolymer can contain structural units derived from two or more fluorinated alpha-olefin, for example tetrafluoroethylene, hexafluoroethylene, and the like. The fluoropolymer can also contain structural units derived from one or more fluorinated alpha-olefin monomers and one or more non-fluorinated monoethylenically unsaturated monomers that are copolymerizable with the fluorinated monomers, for example alpha-monoethylenically unsaturated copolymerizable monomers such as ethylene, propylene, butene, acrylate monomers (e.g., methyl methacrylate and butyl acrylate), vinyl ethers, (e. g., cyclohexyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, vinyl esters) and the like. Specific examples of fluoropolymers include polytetrafluoroethylene, polyhexafluoropropylene, polyvinylidene fluoride, polychlorotrifluoroethylene, ethylene tetrafluoroethylene, fluorinated ethylene-propylene, polyvinyl fluoride, and ethylene chlorotrifluoroethylene. Combinations of the foregoing fluoropolymers may also be used. The articles made from the composition of the invention find applications in telecommunication and automotive industry as well as in the manufacture of home appliances and electrical components. The composition of the invention can be used for manufacturing various articles and products including aircrafts, automotives, trucks, military vehicles and of components such as panels, quarter panels, rocker panels, trim, fenders, doors, deck lids, trunk lids, hoods, bonnets, roofs, bumpers, fascia, grilles, mirror housings, pillar appliques, cladding, body side moldings, wheel covers, hubcaps, door handles, spoilers, window frames, headlamp bezels, headlamps, tail lamps, tail lamp housings, tail lamp bezels, license plate enclosures, roof racks, and running boards; enclosures, housings, panels, parts for outdoor vehicles and devices; enclosures for electrical and telecommunication devices; outdoor furniture and aircraft components. The composition is also suitable for the manufacture of boats and marine equipments, including trim, enclosures, and housings; outboard motor housings; depth finder housings, personal water-craft; jet-skis; pools; spas; hot-tubs; steps; step coverings and for building and construction applications such in glazing and in the manufacture of roofs, windows, floors, decorative window furnishings; treated glass covers for pictures, paintings, posters, display items; wall panels, and doors; counter tops; protected graphics; outdoor and indoor signs; enclosures, housings, panels, parts for automatic teller machines (ATM); computer and computer peripherals; FAX machine; copier; telephone; phone bezels; mobile phone; radio sender; radio receiver; enclosures, housings, panels, and parts for lawn and garden tractors, lawn mowers, and tools, including lawn and garden tools; window and door trim; sports equipment and toys; enclosures, housings, panels, and parts for snowmobiles; recreational vehicle panels and components; playground equipment; shoe laces; articles made from plastic-wood combinations; golf course markers; utility pit covers; light fixtures; lighting appliances; network interface device housings; transformer housings; air conditioner housings; cladding or seating for public transportation; cladding or seating for trains, subways, or buses; meter housings; antenna housings; cladding for satellite dishes; coated helmets and personal protective equipment; coated synthetic or natural textiles; coated painted articles; coated dyed articles; coated fluorescent articles; coated foam articles; multilayered and bubble guard sheets, pipes; oriented polyolefin composite articles using films, tape, fiber, yarn or sheets; raffia bags or the like.
In the examples and results that follow, the melt flow index is determined by measuring the flow ability of the resin under a load of 2.1kg at 230°C in accordance with the ASTM D 1238 standard test method. The melt flow index expressed in terms of g/10 minutes.
Tensile strength and elongation at break was measured using a polyolefin specimen having a thickness of 2±0.5 mm. Measurement was carried out at a tensile speed of 50 mm/min. by a tensile tester in accordance with the ASTM D638 standard test method.
Flexural modulus of elasticity was determined by plotting a load curve while bending a bar at a speed of 5 mm/min., in accordance with the ASTM D790 standard test method. The flexural modulus of elasticity was obtained from the slope of initial linear section. Izod impact strength was measured by using a 3.2mm-thick injection-molded specimen in accordance with the ASTM D256 standard test method. Parison sag tests were carried out on a blow molding machine. The blow moulding machine is based on a standard extruder barrel and screw assembly to plasticise the polymer. The molten polymer is led through a right angle and through a die to emerge as a hollow (usually circular) pipe section called a parison. In parison sag test method, time is noted for the parison to reach a sufficient length (165cm). This parison is then allowed to fall under gravity. Melt strength will be determined by the time parison it takes to sag from 165 cm. If the melt strength is extremely superior, parison will not sag and freeze at the original distance. These tests were carried out at the extrusion temperature of 175°C at the start of the extruder and 210°C at the end of the extruder. The various polypropylene resins used to prepare polypropylene compositions according to the procedure laid out in the ensuing examples are identified in table 1.
Table 1 : Different polypropylene resins used to prepare the polypropylene compositions displayed in table 2
Figure imgf000013_0001
The invention is further illustrated by way of the following non limiting examples EXAMPLES
Example-1: Preparation of polyolefϊn resin-clay composition comprising a single polyolefin resin.
Pre-mix containing 83 weight % of polypropylene, 6 weight % of clay, 5 weight % of ethylene- octene copolymer and 6 weight % of malic anhydride - grafted - polypropylene were prepared using an internal mixture at room temperature. This pre-mix was then blended using a twin- screw extruder, extruding the mixture, cutting and drying the extrudate. The temperature profile in extruder ranged between 1600C at first barrel to 2100C at the last barrel. The specific energy during blending ranged between 0.3 to 1.5 kilo watt hr/kg. The properties of the polypropylene resin compositions are displayed in table 2(against experimental Nos 1,2 and 4) Example-2: Preparation of polyolefin resin-mica composition comprising a single polyolefin resin.
Pre-mix containing 95 weight % of polypropylene and 5 weight % of mica were prepared using an internal mixture at room temperature. This pre-mix was then blended using a twin-screw extruder, extruding the mixture, cutting and drying the extrudate. The temperature profile in extruder ranged between 160°C at first barrel to 210°C at the last barrel. The specific energy during blending ranged between 0.3 to 1.5 kilo watt hr/kg. The properties of the polypropylene resin compositions are displayed in table 2(against experimental No 3)
Example-3: Preparation of filled polyolefin resin composition comprising a mixture of polyolefin resins, impact modifier, inorganic filler and fibrous submicron structured polymeric material.
Pre-mix containing 7.5 weight % of PPi, 80 weight % of PP3, 6 weight % of clay (or 5 weight % of mica) , 6 weight % of malic anhydride - grafted - polypropylene and 0.5 weight % of polytetraflouroethylene (PTFE) were prepared using an internal mixture at room temperature. This pre-mix was then blended using a twin-screw extruder, extruding the mixture, cutting and drying the extrudate. The temperature profile in extruder ranged between 160°C at first barrel to 210°C at the last barrel. The specific energy during blending ranged between 0.3 to 1.5 kilo watt hr/kg. The properties of the polypropylene resin compositions are displayed in table 2(against experimental Nos 5 to 7)
Table: 2 Comparative study of the properties of the filled polyolefin resin compositions prepared by using polyolefin resin(s) identified in Table 1 and by following the procedure as given in the examples
Figure imgf000015_0001
tDDTM=Dimethyl dihydrogenated taloammonium modified montmorillonite 1^ Micai refers to dry ground mica 1^ Mica2 refers to wet ground mica
From table 2 it is evident that the filled polyolefin resin compositions of the invention (displayed against experiments 5 to 7) develop no sag during parison sag test. In comparison the polyolefin resin compositions (displayed against experiments 1 to 4) without the fibrous submicron structured polymeric material and having only a single polyolefin resin developed sag and possess a low sag time during parison sag test.
Due to the absence of sag formation during thermoforming, the compositions of the invention lead to articles that are more regular and uniform as compared to those prepared from the conventional polyolefin resin compositions. Further the compositions of the invention exhibit good mechanical strength as evidenced by the high values of impact strength, tensile strength as well as flexural modulus (as displayed in table 2). Therefore the filled polyolefin composition of the invention enables to prepare quality articles and products.

Claims

CLAIMS :
1. A filled polyolefin composition comprising at least one fibrous submicron structured polymeric material, an inorganic filler and a mixture of polyolefin resins, the mixture comprising a first polyolefin resin having a melt flow index in the range of 0.1 to 1.4 g/10 minutes and a second polyolefin resin having a melt flow index in the range of 1.5 to 15 g/10 minutes.
2. The composition as claimed in claim 1 additionally comprising an impact modifier
3. The composition as claimed in claim 1 or 2 wherein the mixture is present in an amount ranging from 53 to 95.99% by weight of the composition, the fibrous submicron structured polymeric material is present in an amount ranging from 0.01 to 2% by weight of the composition, the impact modifier is present in an amount ranging from 3 to 25% by weight of the composition and the inorganic filler is present in an amount ranging from 1 to 20% by weight of the composition.
4. The composition as claimed in anyone of the claims claim 1 to 3 wherein the mixture is present in an amount ranging from 64 to 91.9% by weight of the composition, the fibrous submicron structured polymeric material is present in an amount ranging from 0.1 to 1% by weight of the composition, the impact modifier is present in an amount ranging from 5 to 20% by weight of the composition and the inorganic filler is present in an amount ranging from 3 to 15% by weight of the composition.
5. The composition as claimed in anyone of the claims 1 to 4 wherein the first polyolefin resin has a melt flow index in the range of 0.3 to 1 g/10 minutes and the second polyolefin resin has a melt flow index in the range of l.5 to 3.5 g/10 minutes.
6. The composition as claimed in anyone of the claims 1 to 5 wherein the fibrous submicron structured polymeric material is selected from the group consisting of an ultra high molecular polyethylene, a cellullosic material and a fluoropolymer.
7. The composition as claimed in anyone of the claims 1 to 6 wherein impact modifier is an elastomer.
8. The composition as claimed in anyone of the claims 1 to 7 wherein the inorganic filler is selected from the group consisting of inorganic oxides, inorganic carbonates, silicate materials and clays.
9. The composition as claimed in anyone of the claims 1 to 8 wherein the inorganic filler is clay or mica
10. The composition as claimed in anyone of the claims 1 to 9 wherein the polyolefin is polypropylene, polyethylene or a propylene-ethylene copolymer.
11. A method for preparing a filled polyolefin composition, the method comprising blending a composition comprising a mixture of polyolefin resins, at least one fibrous submicron structured polymeric material, an impact modifier and an inorganic filler in a twin-screw extruder at a temperature in the range of 150°C to 250°C at a specific energy in the range of 0.1 to 2.5 kilo watt hr/kg.
12. A method for manufacturing articles, the method comprising thermoforming the composition as claimed in anyone of the above claims.
13. A method for manufacturing articles, the method comprising melting by heating the composition as claimed in any one of the above claims, extruding the molten composition into a hollow tube and inflating the extruded melt to the desired shape.
14. Shaped articles prepared by the method as claimed in claim 12 or 13.
PCT/IN2008/000379 2007-05-29 2008-05-29 Polyolefin composition having high melt strength WO2009057131A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN974MU2007 2007-05-29
IN974/MUM/2007 2007-05-29

Publications (2)

Publication Number Publication Date
WO2009057131A2 true WO2009057131A2 (en) 2009-05-07
WO2009057131A3 WO2009057131A3 (en) 2009-07-02

Family

ID=40591600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2008/000379 WO2009057131A2 (en) 2007-05-29 2008-05-29 Polyolefin composition having high melt strength

Country Status (1)

Country Link
WO (1) WO2009057131A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018172674A (en) * 2017-03-31 2018-11-08 トーレ プラスティックス (アメリカ) インコーポレイテッド Coextruded, crosslinked polyolefin foam with tpu cap layers
CN109310365A (en) * 2016-05-03 2019-02-05 圣犹达医疗用品国际控股有限公司 Distortion of field detection and correction in magnetic orientation system
US10384388B2 (en) 2014-12-30 2019-08-20 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures and methods of making the same
US10501598B2 (en) 2017-06-29 2019-12-10 Toray Plastics (America), Inc. Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US10814590B2 (en) 2013-12-31 2020-10-27 Toray Plastics (America), Inc. Methods of producing foam structures from recycled metallized polyolefin material
US11007761B2 (en) 2017-03-31 2021-05-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
CN113268558A (en) * 2021-07-19 2021-08-17 智广海联(天津)大数据技术有限公司 Public facility management system and method based on two-dimensional code and geographic space coordinate
CN114058115A (en) * 2021-08-31 2022-02-18 成都金发科技新材料有限公司 Antibacterial and antiviral high-impact polypropylene composition and preparation method and application thereof
US11590730B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Coextruded, crosslinked polyolefin foam with KEE cap layers
US11590677B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Method of making coextruded, crosslinked polyolefin foam with KEE cap layers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD151131A1 (en) * 1980-05-30 1981-10-08 Siegfried Hentzschel METHOD AND DEVICE FOR PRODUCING FILLED PLASTIC MASS FROM POLYOLEFINES
JPH08165358A (en) * 1994-12-14 1996-06-25 Kanegafuchi Chem Ind Co Ltd Polyolefin sheet for thermal forming
EP0920990A2 (en) * 1997-12-04 1999-06-09 Japan Polychem Corporation Composite olefin resin laminated sheet
WO2007016277A1 (en) * 2005-07-28 2007-02-08 Chemtura Corporation Cellulosic-thermoplastic composite and method of making the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD151131A1 (en) * 1980-05-30 1981-10-08 Siegfried Hentzschel METHOD AND DEVICE FOR PRODUCING FILLED PLASTIC MASS FROM POLYOLEFINES
JPH08165358A (en) * 1994-12-14 1996-06-25 Kanegafuchi Chem Ind Co Ltd Polyolefin sheet for thermal forming
EP0920990A2 (en) * 1997-12-04 1999-06-09 Japan Polychem Corporation Composite olefin resin laminated sheet
WO2007016277A1 (en) * 2005-07-28 2007-02-08 Chemtura Corporation Cellulosic-thermoplastic composite and method of making the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814590B2 (en) 2013-12-31 2020-10-27 Toray Plastics (America), Inc. Methods of producing foam structures from recycled metallized polyolefin material
US10384388B2 (en) 2014-12-30 2019-08-20 Toray Plastics (America), Inc. Coextruded, crosslinked multilayer polyolefin foam structures and methods of making the same
CN109310365A (en) * 2016-05-03 2019-02-05 圣犹达医疗用品国际控股有限公司 Distortion of field detection and correction in magnetic orientation system
JP7066483B2 (en) 2017-03-31 2022-05-13 トーレ プラスティックス (アメリカ) インコーポレイテッド Coextruded crosslinked polyolefin foam with TPU cap layer
JP2018172674A (en) * 2017-03-31 2018-11-08 トーレ プラスティックス (アメリカ) インコーポレイテッド Coextruded, crosslinked polyolefin foam with tpu cap layers
US11007761B2 (en) 2017-03-31 2021-05-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
US11628657B2 (en) 2017-03-31 2023-04-18 Toray Plastics (America), Inc. Method of making coextruded, cross-linked polyolefin foam with TPU cap layers
US10501598B2 (en) 2017-06-29 2019-12-10 Toray Plastics (America), Inc. Method of making coextruded, crosslinked multilayer polyolefin foam structures from recycled crosslinked polyolefin foam material
US11590730B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Coextruded, crosslinked polyolefin foam with KEE cap layers
US11590677B2 (en) 2019-03-29 2023-02-28 Toray Plastics (America), Inc. Method of making coextruded, crosslinked polyolefin foam with KEE cap layers
CN113268558B (en) * 2021-07-19 2021-09-24 智广海联(天津)大数据技术有限公司 Public facility management system and method based on two-dimensional code and geographic space coordinate
CN113268558A (en) * 2021-07-19 2021-08-17 智广海联(天津)大数据技术有限公司 Public facility management system and method based on two-dimensional code and geographic space coordinate
CN114058115A (en) * 2021-08-31 2022-02-18 成都金发科技新材料有限公司 Antibacterial and antiviral high-impact polypropylene composition and preparation method and application thereof

Also Published As

Publication number Publication date
WO2009057131A3 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
WO2009057131A2 (en) Polyolefin composition having high melt strength
CN1276019C (en) Blow moldable propylene polymer compositions
US8207270B2 (en) Thermoplastic elastomer compositions, methods of making and articles made from the same
EP1920001A1 (en) Molding-compositions composed of filler-reinforced thermoplastic material with very good scratch resistance and soft-touch feel
JP2002544344A (en) Highly crystalline EAODM interpolymer
WO2008018951A1 (en) Polymer compositions comprising cyclic olefin polymers, polyolefin modifiers, and fillers
KR20110030704A (en) Process for preparing modified polypropylene compositions
KR20010074730A (en) High surface gloss, co-extruded sheets from olefin polymer materials
JP2004010888A (en) Polypropylene resin composition for car door trim excellent in impact resistance and scratch resistance
WO2006063698A1 (en) Polypropylene composition having improved scratch resistance
JP2007537352A (en) Low gloss thermoplastic polyolefin composition
EP1939246B1 (en) Polyolefin composition comprising silicon-containing filler
CN1845963A (en) Glass-filled prolylene polymer composition
JP2008208303A (en) Propylenic resin composition, its production method and injection molded article
JP2007112921A (en) Method for processing into organic peroxide crosslinked rubber continuous molding and crosslinked rubber molding prepared thereby
CN108570186A (en) Polypropylene resin composite and its shaped article
CN1164658C (en) Dynamic fully-cross-linked thermoplastic sulfurized rubber composition and its preparing process
WO2017077890A1 (en) Resin composition and molded body of same
US11795311B2 (en) Polypropylene resin composition with improved scratch resistance and vehicle molded parts manufactured therefrom
JP3842226B2 (en) Flame retardant resin composition
EP3665224A1 (en) Composition comprising heterophasic propylene copolymer
KR101431906B1 (en) Polypropylene resin composition with low gloss
CN114058107A (en) Thermoplastic elastomer composition
US20200062941A1 (en) Polypropylene resin composition and molded product thereof
JPS5956442A (en) Olefin polymer composition

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08845441

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08845441

Country of ref document: EP

Kind code of ref document: A2