WO2009056052A1 - Procédé de réalisation, pcrf et af de technologie nat dans une infrastructure pcc - Google Patents

Procédé de réalisation, pcrf et af de technologie nat dans une infrastructure pcc Download PDF

Info

Publication number
WO2009056052A1
WO2009056052A1 PCT/CN2008/072804 CN2008072804W WO2009056052A1 WO 2009056052 A1 WO2009056052 A1 WO 2009056052A1 CN 2008072804 W CN2008072804 W CN 2008072804W WO 2009056052 A1 WO2009056052 A1 WO 2009056052A1
Authority
WO
WIPO (PCT)
Prior art keywords
network address
pcrf
address
related information
network
Prior art date
Application number
PCT/CN2008/072804
Other languages
English (en)
French (fr)
Inventor
Xiaoyan Shi
Yan Li
Shiyong Tan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009056052A1 publication Critical patent/WO2009056052A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for implementing Network Address Translation (NAT) technology in a Policy and Charging Control (PCC) architecture, and a policy control and charging rule.
  • NAT Network Address Translation
  • PCC Policy and Charging Control
  • PCR Policy Control and Charging Rules Function
  • AF Application Function
  • Communication networks are undergoing a history of evolution from traditional Circuit Switched (CS) networks to IP-based Packet Switched (PS) networks.
  • CS Circuit Switched
  • PS IP-based Packet Switched
  • QoS quality of service
  • the evolved network is required to have the ability to charge for different service data flows and QoS levels.
  • the third generation mobile communication standardization partner project (3GPP, 3rd Generation
  • the Partnership Project defines the PCC architecture. Based on the PCC architecture, the evolved network can perform QoS control and accounting statistics for different service data streams detected.
  • Figure 1 is a schematic diagram of the PCC architecture.
  • PCRF Policy and Charging Enforcement Function
  • SPR Subscribescription Profile Repository
  • AF Application Function
  • the PCRF is mainly based on factors such as an operator policy, restrictions on user access to the network, user subscription data, and service information of the service currently being performed by the user.
  • the policy is called a PCC rule.
  • the PCC rule may generally include a detection rule of the service data flow, a QoS control rule corresponding to the service data flow, and a charging rule based on the service data flow, etc., wherein the service data flow detection rule may also be referred to as an IP packet filtering rule;
  • PCEF It mainly performs the PCC rules formulated by the PCRF, such as detecting and measuring the service data flow according to the PCC rules, ensuring the QoS of the service, establishing the user plane traffic, and triggering the session management of the control plane, etc.; further, to ensure the QoS of the service And charging the service data stream, all IP data packets sent by the user equipment (UE, User Equipment) or all IP data packets to be received need to pass through the PCEF, and the PCEF utilizes the PCRF.
  • IP packet filtering rules in the issued PCC rules filtering service data streams for each IP packet, allowing IP packets that meet the requirements to pass; IP packet filtering rules specifying the source address of IP packets allowed to pass through the PCEF Information with destination address, business data traffic, etc.
  • SPR mainly provides user contracting data for formulating PCC rules to the PCRF
  • the AF mainly provides the application layer service information dynamically to the PCRF, and the PCRF can dynamically generate or modify the corresponding PCC rule according to the service information.
  • FIG. 2 is a schematic diagram of signaling interaction between the UE and the UE based on the PCC architecture.
  • FIG. 3 is a specific flowchart of establishing an IP-CAN session of the UE in FIG. The process is briefly described as follows:
  • Steps 301 to 302 The PCEF receives the IP-CAN session establishment request message sent by the UE, and sends a request to the PCRF to request a PCR-information request (Diameter CCR, Credit-Control-Request) message based on the Diameter protocol, requesting the PCRF
  • a PCR-information request (Diameter CCR, Credit-Control-Request) message based on the Diameter protocol, requesting the PCRF
  • the default PCC rule of the UE is delivered.
  • session one For convenience of presentation, the session between PCEF and PCRF is called session one.
  • the above Diameter CCR message carries the network address and network identifier of the UE, such as an international mobile subscriber identity code.
  • IMSI InternationalMobileSubscriber Identity
  • IMSI InternationalMobileSubscriber Identity
  • Step 303 The PCRF stores the UE related information in the received Diameter CCR message. If the UE has successfully established an IP-CAN session, the PCC rule related to the UE is retained on the PCRF, and the PCRF selects the PCC rule, and the steps are performed. 308; Otherwise, step 304 to step 307 are performed.
  • Step 304 to step 307 the PCRF sends a request message to the SPR, requesting the user to sign the data; after receiving the request message, the SPR returns the user subscription data to the PCRF; after receiving the user subscription data returned by the PCEF, the PCRF formulates the UE-related PCC rule.
  • the PCC rule is stored, and step 308 is performed.
  • Step 308 The PCRF sends the UE-related PCC rule to the PCEF through the Diameter CCR message, and the session between the PCRF and the PCEF ends.
  • Step 309 to step 310 The PCEF installs the received default PCC rule, and returns a response indicating that the IP-CAN session is successfully established to the UE.
  • FIG. 4 is a flow chart of service control of the UE in the PCC architecture. The process is briefly described as follows:
  • Step 401 to step 403 After the AF is triggered, the service information of the UE is defined, and the service information of the UE is passed.
  • the Diameter AAR message is sent to the PCRF to initiate a session between the AF and the PCRF.
  • the service information of the UE may include a network address of the UE, a network identifier, service data flow description information, and the like.
  • the session between AF and PCRF can be called session two.
  • Step 404 After receiving the AAR message sent by the AF, the PCRF stores the service information of the UE, and if the PCRF does not store the user subscription data, step 405 is performed; otherwise, step 407 is performed.
  • Step 405 to step 406 The PCRF sends a request message requesting user subscription data to the SPR. After receiving the request message, the SPR returns the user subscription data to the PCRF.
  • Step 407 to step 409 the PCRF binds the session 1 to the session 2 according to the network address of the UE sent by the AF in the session 2, and the network address of the UE sent by the PCEF received in the session 1. After the binding is successful, the binding is successful.
  • the PCRF formulates and stores a PCC rule, and sends a response indicating that the session binding is successful to the AF.
  • the response of the PCRF to the AF may be a Diameter AAA message.
  • the binding of session one to session two can be referred to as session binding. Since the PCRF is responsible for managing different PCC rules for different UEs, the PCEF is responsible for performing different PCC rules for different UEs. Therefore, in order to ensure that the PCC rules executed by the PCEF are directed to the services requested by the UE, the PCRF is required to session one.
  • the session is bound to the session 2, that is, the network address of the UE for session binding reported by the AF is determined to be the same as the network address of the UE for session binding reported by the PCEF. If the same, the session 1 and the session 2 are the same.
  • the binding is successful; otherwise, the binding fails.
  • the PCRF can formulate the corresponding PCC rule according to the service information of the UE, and deliver the PCC rule to the PCEF in the session 1 that is successfully bound to the session 2.
  • the PCEF controls the request of the UE. business.
  • Step 410 to step 414 the UE initiates a request to modify the IP-CAN session to the PCEF; after receiving the request, the PCEF sends a Diameter CCR message requesting to obtain the PCC rule to the PCRF; after receiving the message sent by the PCEF, the PCRF receives the message from the PCEF.
  • the PCC rule associated with the UE is selected in the stored PCC rule, and the PCC rule is sent to the PCEF.
  • the PCEF installs the PCC rule, and returns to the UE to indicate that the IP-CAN session is successfully modified.
  • the Credit Meter Control Answer (Diameter CCA, Credit-Control- Answer) message The Credit Meter Control Answer (Diameter CCA, Credit-Control- Answer) message.
  • the network address includes a Network Information Center (NIC) or an Internet Service Provider (ISP).
  • NIC Network Information Center
  • ISP Internet Service Provider
  • the real network address of the UE is a host address that cannot be used for addressing, such as a private network address, in order to make the UE Access to the public network such as the Internet usually requires NAT technology to translate the UE's host address into an addressable legal network address.
  • the host address includes the host IP address and port number, and the legal network address includes a legal IP address and a port number.
  • the main function of the NAT technology is to enable multiple UEs in the LAN to share a legal IP address to alleviate the shortage of legitimate IP address resources.
  • a router, a firewall, etc. usually has a NAT function.
  • the firewall converts the host address 192.168.1.1 of the network server to a legal IP address of 202.96.23.11, the external server accesses the network server by accessing the address 202.96.23.11.
  • the device having the NAT function is generally referred to as a NAT device, and the legal network address obtained by the NAT device conversion is a reverse address, and the reverse address includes an addressable IP address and a port number.
  • NAT technology can include: Static NAT, Dynamic NAT, and Port-Level NAT.
  • the static NAT is a NAT device that permanently maps the host address of each UE in the private network to a legitimate network address.
  • Dynamic NAT The NAT device dynamically allocates a legal network address to each UE, and maps the host address of the UE to a legal network address. After the UE disconnects from the external network, the legal network address assigned to the UE is released. In NAPT, the NAT device maps the UE's host address to a separate legal IP address, and adds a port number selected by the NAT device to the legal IP address.
  • the legal network address obtained through NAT conversion is also difficult to use for communication in some application scenarios. For this reason, a relay server is usually used to allocate a relay address to the user equipment. Also a legal network address.
  • the NAT technology enables multiple UEs to share a legal IP address to alleviate the shortage of legitimate IP address resources.
  • session binding failure may occur, making it difficult for the UE to conduct services.
  • the embodiment of the present invention provides a method for implementing the NAT technology in the PCC architecture.
  • the session between the PCRF and the AF and the session between the PCRF and the PCEF are implemented.
  • a method for implementing NAT technology in a PCC architecture including:
  • the PCRF receives a first network address of the UE for session binding sent by the PCEF;
  • the PCRF receives network address related information of the UE that is sent by the AF, and the network address related information includes multiple network addresses that are used to indicate the network location where the UE is located; The PCRF determines that the first network address is included in the multiple network addresses;
  • the PCRF binds a session between the PCRF and the AF, and a session between the PCRF and the PCEF.
  • the embodiment of the present invention provides a PCRF, which implements a session between a PCRF and an AF and a session between a PCRF and a PCEF in a PCC architecture that introduces a NAT technology.
  • a PCRF comprising: a first receiving module, a second receiving module, a determining module, and a binding module; wherein, the first receiving module is configured to receive the AF sending in a session between the PCRF and the AF Network address related information of the UE; the network address related information includes a plurality of network addresses for indicating a network location where the UE is located;
  • the second receiving module is configured to receive, by the PCRF and the PCEF, a first network address of the UE for session binding sent by the PCEF;
  • the determining module is configured to determine that the first network address is included in the multiple network addresses, and the binding module is configured to use a session between the PCRF and the AF, and the PCRF Session binding between the PCEFs.
  • the embodiment of the present invention further provides an AF, which provides the PCRF with network address related information of the UE.
  • An AF including:
  • the information obtaining module is configured to acquire network address related information of the UE, where the network address related information includes multiple network addresses for indicating a network location where the UE is located;
  • the sending processing module is configured to send the network address related information acquired by the information acquiring module to the PCRF.
  • the embodiment of the present invention further provides a method for providing network address related information of a UE, including: acquiring network address related information of a UE, where the network address related information includes multiple identifiers for indicating the same network location where the UE is located. website address;
  • the network address related information of the UE is obtained by the AFF to the PCRF, and the network address related information of the UE is obtained by the PCRF, and then the PCRF may determine the first network address according to the network address related information of the UE. Then, based on the session between the PCRF and the AF, the session between the PCRF and the PCEF uses the first network address to indicate the network location of the UE, and the two sessions are successfully bound.
  • DRAWINGS 1 is a schematic diagram of an existing PCC architecture
  • FIG. 2 is a schematic diagram of signaling interaction between a UE and a UE based on a PCC architecture
  • FIG. 3 is a specific flowchart of establishing an IP-CAN session of the UE in FIG. 2;
  • FIG. 5 is a schematic diagram of an application scenario of a NAT technology in a PCC architecture
  • FIG. 6 is a schematic diagram of another application scenario of the NAT technology in the PCC architecture
  • FIG. 7 is a flowchart of a method for implementing NAT technology in a PCC architecture according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural diagram of a PCRF according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of implementing NAT technology in a PCC structure according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of an application scenario of a NAT technology in a PCC architecture according to Embodiment 4 of the present invention.
  • FIG. 11 is a flowchart of implementing NAT technology in a PCC structure according to Embodiment 4 of the present invention.
  • FIG. 13 is a flowchart of a method for providing network address related information of a UE according to Embodiment 6 of the present invention.
  • FIG. 14 is a schematic structural diagram of an AF according to Embodiment 7 of the present invention.
  • FIG. 15 is a flowchart of providing network address related information of a UE to a PCRF by an AF according to Embodiment 8 of the present invention
  • FIG. 16 is a flowchart of providing network address information of a UE to a PCRF by an AF according to Embodiment 9 of the present invention
  • the AF provides a flow chart of the network address related information of the UE to the PCRF.
  • the reason why the NAT technology is difficult to be applied to the PCC architecture is because the network technology of the UE for session binding reported by the AF is used for session binding with the PCEF.
  • the network address of the UE may be different, and it is difficult for the PCRF to perceive whether the two different network addresses correspond to the same UE. As a result, the PCRF cannot bind the session to the session 2 successfully, which ultimately makes the UE difficult to carry out related services. .
  • FIG. 5 is a schematic diagram of an application scenario of a NAT technology in a PCC architecture.
  • the NAT device is placed between the communication links between the UE and the PCEF.
  • the UE expects to access the remote PDN.
  • the IP address of the UE is IP1 and the port is Port1.
  • the IP address of the remote network address is IP_remote and the port is Port_remote.
  • the IP address of the reverse address of the UE obtained by the NAT device is IP2. For Port2.
  • the source network address of the IP data packet is the reverse address of the UE, and the destination network address is unchanged, and is still the accessed remote network address, if the IP data packet can pass PCEF, then the IP packet will be sent to the remote PDN according to its destination network address.
  • the UE collects the host address and the reverse address indicating the location of the network, and the UE will instruct the AF to use the UE.
  • the network address for external communication may be the host address or the reverse address. If the UE indicates that its host address is used for external communication, the AF will report the host address of the UE for session binding reported to the PCRF according to the indication of the UE; and the UE is used for session binding for the session binding. To the address. The PCRF failed to perform session binding because the host address is different from the reverse address.
  • FIG. 6 is a schematic diagram of another application scenario of the NAT technology in the PCC architecture.
  • the NAT device is disposed on a communication link between the PCEF and the remote PDN, and is disposed outside the multi-communication link between the UE and the PCEF, and A relay server is disposed between the NAT device and the remote PDN.
  • the relay server allocates a relay address to the UE.
  • the IP address is IP3 and the port is Port3.
  • the IP address of the relay server's listening address is IPR and the port is PortR.
  • the UE not only collects the host address of the UE, the reverse address of the UE, but also collects the relay address of the UE.
  • the UE will report the collected address to the AF.
  • the network address of the UE used for session binding reported by the AF to the PCRF according to the report of the UE may be the host address of the UE or the reverse address of the UE.
  • PCC rules are inconsistent with the actual service data flow, which may make it difficult for the UE to send the service-related IP data packets, and the UE also has difficulty receiving the IP data of the UE. package.
  • the service data flow description information may include a service data flow description information in an uplink direction and/or a service data flow description information in a downlink direction; wherein, the service data flow description in the uplink direction
  • the information is used to describe the source network address and the destination network address of the transmitted IP data packet in the uplink direction in which the UE sends data to the remote PDN.
  • the service data flow description information in the downlink direction is used to describe that the UE receives the remote PDN. In the downstream direction of the data, the source network address and destination network address of the received IP packet.
  • the source network address is the reverse address of the UE
  • the destination network address is the accessed remote network address
  • the service data flow in the downlink direction In the description information, the source network address is the accessed remote network address, and the destination network address is the reverse address of the UE.
  • the PCRF formulates an IP packet filtering rule in the PCC rule based on the service data flow description information sent by the AF.
  • the IP packet filtering rule specifies which IP packets can pass from the PCEF, correspondingly, PCEF
  • the IP data packet filtering rule is used to detect the service data flow.
  • the network address of the UE for session binding reported by the AF to the PCRF is the host address of the UE.
  • the IP packet in the IP packet filtering rule in the uplink direction is the source.
  • the network address is the host address of the UE, and the destination network address is the data packet of the accessed remote network address;
  • the IP data packet in the IP packet filtering rule in the downlink direction is the source network address is the accessed remote network address,
  • the destination network address is the packet of the UE's host address.
  • the IP packet filtering rule defined by the PCRF does not match the actual service data flow reported by the AF. Therefore, when the PCEF executes the PCC rule including the IP packet filtering rule defined by the PCRF, any IP data sent by the UE will not be allowed.
  • the packet passed, and the IP packet that should be received by the UE is rejected by the PCEF because it cannot pass the PCEF, and it is also difficult for the UE to receive the IP packet. Therefore, the introduction of the NAT technology also makes it difficult for the PCRF to formulate PCC rules that conform to the actual service data flow, thereby making it difficult for the UE to carry out related services.
  • the reason why the PCRF is difficult to work out the PCC rules that meet the actual service data flow is that the network address of the UE used for session binding reported by the AF and the PCEF report are used in the scenario where the NAT technology is introduced.
  • the network address of the UE to which the session is bound does not match, and the PCC rule that is specified for the service of the UE does not match the actual service data flow reported by the AF.
  • the embodiment of the present invention provides an implementation scheme of the NAT technology in the PCC architecture.
  • the AF in the session between the AF and the PCRF, the AF sends the network address related information of the UE to the PCRF, where the network address related information includes The plurality of network addresses indicating the location of the network where the UE is located, where the plurality of network addresses actually include the first network address of the UE for session binding sent by the PCEF to the PCRF in the session between the PCEF and the PCRF. .
  • the PCRF determines, in the plurality of network addresses, a first network address capable of binding a session between the PCRF and the AF, and a session between the PCRF and the PCEF, and further, for the service of the same UE,
  • the PCRF can be used to perceive the network address of the UE reported by the PCEF in the session 1, based on the obtained network address information of the UE, and the network address of the UE reported by the AF in the session 2 is the same, and the session of the session 1 and the session 2 is tied. set.
  • FIG. 7 is a flowchart of a method for implementing NAT technology in a PCC architecture according to an embodiment of the present invention, where the process may include the following steps:
  • Step 701 In the PCRF and PCEF session, the PCRF receives the session binding used by the PCEF.
  • the first network address of the UE is the first network address of the UE.
  • Step 702 In the session between the PCRF and the AF, the PCRF receives network address related information of the UE that is sent by the AF.
  • the network address related information includes multiple network addresses used to indicate the same network location where the UE is located. In the embodiment of the present invention, there may be multiple network addresses for indicating the same network location where the UE is located, such as the host addresses IP1 and Port1 of the UE, the reverse addresses IP2 and Port2 of the UE, and the relay addresses IP3 and Port3 of the UE;
  • the information about the network address that can be obtained by the PCRF may include: a host address and a reverse address of the UE, or a host address and a relay address of the UE, or a reverse address and a relay address of the UE, or a host address of the UE, and a reverse To address and relay address.
  • the first network address that can be used for session binding may be a host address or a reverse address of the UE.
  • Step 703 The PCRF determines, in the plurality of network addresses, the first network address of the UE used for session binding sent by the PCEF to the PCRF in the session between the PCEF and the PCRF.
  • the PCRF determines that the multiple network addresses include the first network address, and the PCRF matches some or all of the multiple network addresses with the first network address, if the matching result is multiple.
  • One of the network addresses can match the first network address, and it is determined that the plurality of network addresses include the first network address.
  • the PCRF can match multiple network addresses one by one with the first network address until a network address that matches the success is found.
  • the PCRF can be set to match the host address of the UE with the first network address by default. If the matching is successful, it is directly determined that the plurality of network addresses include the first network address.
  • Step 704 The PCRF binds the session between the PCRF and the AF, and the session between the PCRF and the PCEF.
  • the PCRF when the PCRF determines that the first network address is included in the multiple network addresses, the PCRF may perceive the UE targeted by the session between the PCRF and the AF, and the session between the PCRF and the PCEF. If the target UE is the same UE, the two sessions are successfully bound.
  • the PCRF may combine the first network address, the network address related information of the UE, the service data flow description information of the UE reported by the AF, and the related information of the accessed remote network address. , to develop PCC rules that match the actual business data flow.
  • the network address related information of the accessed end may be obtained by using an acquisition manner similar to the information about the network address of the acquiring UE, and the AF and the accessed end may perform message interaction to obtain the network address related information of the accessed end. , and then sent to the PCRF, the detailed description can be found later.
  • the service data flow description information of the UE may include: a source network address and a destination network address of the transmitted IP data packet in the uplink direction; and/or a source network of the received IP data packet in the downlink direction. Address and destination network address.
  • the so-called “and/or” means that the service data flow description information of the UE may only include the service data flow description information in the uplink direction, or may only include the service data flow description information in the downlink direction, and may also include the uplink and the Service data flow description information in the downlink direction.
  • the network address related information of the accessed end may include one or more remote addresses.
  • the PCRF does not actually distinguish the address of the remote address.
  • the remote address may be the host address IP_remotel and P 0 rt_rem 0 tel of the accessed end, or It is the reverse address IP_remote2 and Port_remote2 of the accessed end obtained after the remote device uses the NAT device to convert the host address of the accessed end.
  • the PCRF formulating the PCC rule includes formulating an IP packet filtering rule that can pass the PCEF, which is referred to as an IP packet filtering rule, that is, a service data flow description information corresponding to the UE reported by the AF, and can be formulated in the uplink direction.
  • the service data flow description information corresponds to the uplink IP packet filtering rule; and/or, the downlink IP packet filtering rule corresponding to the service data flow description information in the downlink direction is formulated.
  • the formula for formulating an uplink IP packet includes: determining, according to the determined first network address, a source network address of the transmitted IP packet that can pass through the PCEF as the first network address;
  • the network address related information of the access end, the destination network address of the IP packet that can be sent through the PCEF is the network address of the accessed end, and further, if the acquired network address of the accessed end has one, the first remote address is set.
  • the destination network address of the IP packet that can be sent through the PCEF is the first remote address; if the obtained network address of the accessed end is two, the first remote address and the second remote address are set.
  • the destination network address of the transmitted IP packet that can pass through the PCEF is determined to be the first remote address or the second remote address.
  • the number of uplink IP packet filtering rules that are determined by the PCRF may be determined based on the number of network addresses of the accessed end, that is, if N remote addresses are obtained, the uplink IP packet filtering rule The number of bars is N.
  • the formulation of the downlink IP packet filtering rule is similar to the formulation of the uplink IP packet filtering rule, and will be described in detail in the subsequent embodiments.
  • the PCRF needs to obtain the listening address of the relay server first, and then the PCR address is required to be consistent with the actual service data flow, and then An uplink IP packet filtering rule may be added on the basis of the developed uplink or downlink IP packet filtering rule, or a downlink IP packet filtering rule may be added.
  • the source network address of the transmitted IP packet is still the first network address
  • the destination network address is the listening address of the relay server.
  • the destination network address of the received IP packet is still the first network address
  • the source network address is the listening address of the relay server.
  • the manner in which the PCRF obtains the listening address of the relay server may include: receiving a listening address of the relay server sent by the AF; or sending a message requesting the listening address to the SPR; receiving the SPR return The listening address.
  • the listening address of the relay server includes an IPR and a PortR.
  • FIG. 8 is a schematic structural diagram of a PCRF according to an embodiment of the present invention.
  • a PCRF may include: a first receiving module 801, a second receiving module 802, a determining module 803, and a binding module 804; a receiving module 801, configured to receive network address related information of the UE sent by the AF in the session between the PCRF and the AF; the network address related information includes multiple network addresses used to indicate the network location where the UE is located; 802, in a PCRF and PCEF session, receiving a first network address of a UE for session binding sent by a PCEF;
  • a determining module 803, configured to determine, in the foregoing multiple network addresses, a first network address
  • the binding module 804 is configured to bind the session between the PCRF and the AF, and the session between the PCRF and the PCEF.
  • the determining module 803 may include: a matching unit 8031 and a determining unit 8032.
  • the matching unit 8031 is configured to match some or all of the plurality of network addresses to the first network address.
  • the determining unit 8032 is configured to determine, when the matching result of the matching unit 8031 is that one of the plurality of network addresses can match the first network address, and determine that the plurality of network addresses include the first network address.
  • the PCRF may further comprise:
  • the third receiving module 805 is configured to receive network address related information of the accessed end that is acquired by the AF and sent by the AF.
  • the PCRF may further include: a fourth receiving module 806, configured to receive service data flow description information sent by the AF.
  • the PCRF may further include: a rule making module 807 for formulating a PCC specification 1J that conforms to the actual service data flow.
  • the rule making module 807 can include: a first formulating unit 8071 and/or a second formulating unit 8072;
  • the first determining unit 8071 is configured to formulate an uplink IP packet filtering rule corresponding to the service data flow description information in the uplink direction;
  • the second determining unit 8072 is configured to formulate a downlink corresponding to the service data flow description information in the downlink direction.
  • the PCRF may further include: a rule number determining module 808, configured to determine the number of uplink IP packet filtering rules and/or the number of downlink IP packet filtering rules.
  • the session between the PCRF and the AF, and the session between the PCRF and the PCEF use the first network address to indicate the network of the UE. Location, successfully binds two sessions.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the host address of the UE includes IP1 and Port1
  • the reverse address of the UE includes IP2 and Port2.
  • the network address of the accessed end includes IP_remotel and Port_remotel.
  • the network address information of the accessed end obtained by the AF includes the host addresses IP_remotel and Port_remotel of the accessed end.
  • the AF sends the network address information of the accessed end to the PCRF in advance.
  • An IP-CAN session has been established between the UE and the PCEF, and the first network address that the PCEF sends to the PCRF for session binding is the reverse address of the UE.
  • FIG. 9 is a flowchart of implementing NAT technology in a PCC architecture in this embodiment, and the process may include the following steps:
  • Step 901 The AF acquires network address related information of the UE.
  • the network address related information of the acquired UE includes the host address and the reverse address of the UE.
  • Step 902 The AF sends the service information of the UE, including the network address information of the UE, to the PCRF.
  • the AF may configure the service information of the UE, including the network address information of the UE, in the same Diameter AAR message, and carry the information to the PCRF.
  • the two types of information may be respectively configured in different Diameter AAR messages and carried to the PCRF. .
  • the AF may also send the service information of the UE, including the network address, information to the PCRF through the Diameter RAR message.
  • Step 903 The PCRF performs session binding by using the received network address information of the UE.
  • the PCRF can match the host address of the UE and the reverse address of the UE to the reverse address of the UE that is sent to the PCRF by the PCEF for session binding, and the PCRF default can be set.
  • the host address of the UE is used for matching. If the matching is unsuccessful, the PCRF re-informs the network address of the UE. The reverse address of the UE in the match matches the first network address. If the PCRF first matches the reverse address of the UE, after the matching is successful, the UE's host address can no longer be matched. Based on the matching result, it may be determined that the first network address is the reverse address of the UE. After the matching is successful, the PCRF can pass the first network address to
  • the port number corresponding to the IP address is not provided in the network address information of the UE provided by the AF, the port number may be derived from the service data flow description information.
  • Step 904 After the session is successfully bound, the PCRF returns a response message indicating that the binding is successful to the AF to the AF.
  • the response message sent by the PCRF to the AF may be corresponding to the Diameter AAR message.
  • a Diameter AAA message may be a Diameter RAA message corresponding to a Diameter RAR message.
  • Step 905 The PCRF formulates a PCC rule that matches the actual service data flow according to the first network address used for session binding, the service data flow description information of the UE, and the network address of the accessed end, and stores the determined
  • the service data flow description information of the UE reported by the AF includes two, which are:
  • the source network address of the transmitted IP packet is the reverse address of the UE, IP2 and Port2, and the destination network address is the network address of the accessed end, IP_remote and Port_remote;
  • the source network address of the received IP packet is the network address IP_remote and Port remote of the accessed end, and the destination network address is the reverse address IP2 and Port2 of the UE.
  • IP packet filtering rules defined by the PCRF, namely, an uplink IP packet filtering rule and a downlink IP packet filtering rule, where
  • the uplink IP packet filtering rule includes: in the uplink direction, the source network address of the transmitted IP packet is the reverse address of the UE, that is, the source address is IP2, the source port is Port2, and the destination network address is the network address of the accessed end. That is, the destination address is IP_remotel, and the destination port is Port_remotel;
  • the downlink IP packet filtering rule includes: in the downlink direction, the source network address of the received IP packet is the network address of the accessed end, that is, the destination address is IP_remotel, the destination port is Port_remotel; and the destination network address is the reverse address of the UE. That is, the source address is IP2 and the source port is Port2.
  • the PCRF can send the PCC rule to the PCEF according to the actual service data flow, and the PCEF executes the PCC rule to perform correct policy and charging control on the service of the UE.
  • the network address related information of the UE can be obtained by the PCRF by sending the network address related information of the UE to the PCRF, and then the PCRF can perform successful session binding according to the network address related information of the UE, and further, The PCRF can continue to carry out UE services based on successful session binding, including formulation and UE.
  • the actual service data flow conforms to the PCC rules, and the PCC rules are executed by the PCEF to implement policy and charging control for the UE service.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • a NAT device is disposed between communication links between the UE and the PCEF, and a relay server is disposed between the PCEF and the accessed terminal.
  • the relay server allocates a relay address to the UE.
  • the IP address is IP3 and the port is Port3.
  • the IP address of the relay server's listening address is IPR and the port is PortR.
  • the host address of the UE includes IP1 and Port1, and the reverse address of the UE obtained after the NAT device is translated includes IP2 and Port2.
  • the network address related information of the accessed end obtained by the AF and the accessed end information includes two remote addresses, which are the host address IP_remotel and P Port remotel of the accessed end, and the reverse address IP_remote2 and P Port_remote2 of the accessed end.
  • the AF sends the network address information of the accessed end to the PCRF in advance.
  • an IP-CAN session is established between the UE and the PCEF, and the first network address used by the PCEF for the session binding by the PCF is the reverse address of the UE.
  • FIG. 11 is a flowchart of implementing NAT technology in a PCC structure according to an embodiment of the present invention, and the process may include the following steps:
  • Step 1 101 The AF acquires network address related information of the UE.
  • the network address related information of the UE acquired by the AF includes a host address of the UE, a reverse address of the UE, and a relay address of the UE.
  • step 1 102 is similar to the description of step 902 above.
  • the service data flow description information of the UE reported by the AF includes two, respectively: in the uplink direction, the source network address of the transmitted IP data packet is the relay address IP3 and Port3 of the UE, and the destination network address is The network addresses IP_remote and Port_remote of the visited end;
  • the source network address of the received IP packet is the network address IP_remote and Port remote of the visited end, and the destination network address is the relay addresses IP3 and Port3 of the UE.
  • the AF may further send the listening address of the relay server to the PCRF through a message.
  • Step 1103 The PCRF performs session binding by using the received network address information of the UE.
  • the PCRF matches the host address of the UE, the reverse address of the UE, and the relay address of the UE with the first network address. After the matching is successful, the first network address may be determined as the reverse address of the UE. Through the first network address, the session between it and AF, and its session with the PCEF.
  • Step 1 104 After the session binding is successful, the PCRF returns a response message indicating that the binding is successful to the AF to the AF.
  • the response message sent by the PCRF to the AF may be a Diameter AAA message corresponding to the Diameter AAR message, or may be a Diameter RAA message corresponding to the Diameter RAR message.
  • Step 1105 The PCRF formulates a PCC rule that matches the actual service data flow according to the first network address used for session binding, the service data flow description information of the UE, and the network address of the accessed end.
  • IP packet filtering rules There are six IP packet filtering rules, namely three uplink IP packet filtering rules and three downstream IP packet filtering rules.
  • IP packet filtering rule 1 In the upstream direction, the source address of the transmitted IP packet is IP2, the source port is Port2, the destination address is IP_remote 1, and the destination port is Port_remote 1;
  • IP packet filtering rule ⁇ In the downstream direction, the destination address of the received IP packet is IP2, the destination port is Port2; the source address is IP_remotel, and the destination port is Port_remotel;
  • IP packet filtering rule 2 In the uplink direction, the source address of the transmitted IP packet is IP2, the source port is Port2, the destination address is IP_remote2, and the destination port is Port_remote2;
  • IP packet filtering rule 2' In the downstream direction, the destination address of the received IP packet is IP2, the destination port is Port2; the source address is IP_remote2, and the destination port is Port_remote2;
  • IP packet filtering rule 3 In the uplink direction, the source IP address of the transmitted IP packet is IP2, the source port is Port2, the destination address is IPR, and the destination port is PortR.
  • IP packet filtering rule 3 ' In the downstream direction, the destination IP address of the received IP packet is IP2, the destination port is Port2, the source address is IPR, and the destination port is PortR.
  • the PCRF can send the established PCC rules to the PCEF according to the actual service data flow.
  • the PCEF executes the PCC rules to perform correct policy and charging control for the services of the UE.
  • the network address related information of the UE can be obtained by the PCRF by sending the network address related information of the UE to the PCRF, and then the PCRF can perform successful session binding according to the network address related information of the UE, and further, The PCRF can continue to perform the UE's services based on the successful session binding, including the PCC rules that are consistent with the actual service data flow of the UE, and implement the PCC rules through the PCEF to implement policy and charging control for the UE service.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the NAT device is disposed on a communication link between the PCEF and the remote PDN, and a relay server is disposed between the NAT device and the remote PDN.
  • the host address of the UE includes IP1 and Port1
  • the reverse address of the UE obtained after the NAT device is translated includes IP2 and Port2
  • the relay address allocated by the relay server for the UE includes IP3.
  • the listening address of the relay server includes IPR and PortR.
  • the network address of the accessed end includes IP_remote and Port_remote.
  • the information about the network address of the accessed end obtained by the AF interacting with the accessed end information includes two remote addresses, namely the host addresses IP_remotel and Port_remote 1, and the reverse addresses IP_remote2 and Port_remote2 of the accessed end.
  • the AF sends the network address information of the accessed end to the PCRF in advance.
  • an IP-CAN session is established between the UE and the PCEF, and the address used by the PCEF for the session binding by the PCF is the host address of the UE.
  • FIG. 12 is a flowchart of implementing NAT technology in a PCC architecture according to an embodiment of the present invention, where the process may include the following steps:
  • Step 1201 The AF acquires network address related information of the UE.
  • the network address related information of the UE acquired by the AF includes a host address of the UE, a reverse address of the UE, and a relay address of the UE.
  • step 1202 is similar to the description of step 902 above.
  • the service data flow description information of the UE reported by the AF includes two, respectively: in the uplink direction, the source network address of the transmitted IP data packet is the host address IP1 and Port1 of the UE, and the destination network address is The network addresses IP_remote and Port_remote of the access side;
  • the source network address of the received IP packet is the network address IP_remote and Port remote of the accessed end, and the destination network address is the host address IP1 and Portl of the UE.
  • the AF may further send the listening address of the relay server to the PCRF through a message.
  • Step 1203 The PCRF performs session binding by using the received network address information of the UE.
  • the method of performing address matching and session binding by the PCRF is similar to the method of the step 1103 described above, and the PCRF performs address matching and session binding, and details are not described herein.
  • the PCRF determines that the first network address is the host address of the UE.
  • Step 1204 After the session is successfully bound, the PCRF returns a response message indicating that the binding is successful to the AF to the AF.
  • the response message sent by the PCRF to the AF may be a Diameter AAA message corresponding to the Diameter AAR message, or may be a Diameter RAA message corresponding to the Diameter RAR message.
  • Step 1205 The PCRF formulates a PCC rule that conforms to the actual service data flow according to the first network address used for session binding, the service data flow description information of the UE, and the network address of the accessed end.
  • IP packet filtering rules There are six IP packet filtering rules, which are three uplink IP packet filtering rules and downlink IP packet filtering rules. Then three, of which are six IP packet filtering rules.
  • IP packet filtering rule 1 In the upstream direction, the source address of the transmitted IP packet is IP1, the source port is Portl, the destination address is IP_remote 1, and the destination port is Port_remote 1;
  • IP packet filtering rule ⁇ In the downstream direction, the destination address of the received IP packet is IP1, the destination port is Portl; the source address is IP_remotel, and the destination port is Port_remotel;
  • IP packet filtering rule 2 In the uplink direction, the source address of the transmitted IP packet is IP1, the source port is Portl, the destination address is IP_remote2, and the destination port is Port_remote2;
  • IP packet filtering rule 2' In the downstream direction, the destination address of the received IP packet is IP1, the destination port is Portl; the source address is IP_remote2, and the destination port is Port_remote2;
  • IP packet filtering rule 3 In the uplink direction, the source IP address of the transmitted IP packet is IP1, the source port is Portl, the destination address is IPR, and the destination port is PortR.
  • IP packet filtering rule 3 ' In the downstream direction, the destination IP address of the received IP packet is IP1, the destination port is Portl, the source address is IPR, and the destination port is PortR.
  • the PCRF may send a PCC rule for the UE according to the request of the PCEF, and the PCEF executes the PCC rule to perform correct policy and charging control on the service of the UE.
  • the NAT device In actual applications, if no NAT device is deployed on the UE side, the NAT device is deployed on the visited end, and the access terminal provides two remote addresses. Although the NAT device is not deployed on the UE side, the UE can still collect at least two network addresses, that is, the UE's host address and the UE's reverse address, except that the UE's host address is the same as the UE's reverse address.
  • the foregoing describes the implementation method of the NAT technology in the PCC architecture provided by the embodiment of the present invention and the application of the PCRF in certain scenarios.
  • the implementation of the NAT technology in the PCC architecture provided by the embodiment of the present invention is also applicable to other scenarios in which the NAT technology is introduced under the PCC architecture.
  • the network address related information of the UE can be obtained by the PCRF by sending the network address related information of the UE to the PCRF, and then the PCRF can perform successful session binding according to the network address related information of the UE, and further, The PCRF can continue to perform the UE's services based on the successful session binding, including the PCC rules that are consistent with the actual service data flow of the UE, and implement the PCC rules through the PCEF to implement policy and charging control for the UE service.
  • FIG. 13 is a flowchart of the method, where the process may include the following steps:
  • Step 1301 The AF acquires network address related information of the UE, where the network address related information includes A plurality of network addresses indicating the same network location where the UE is located.
  • the AF may acquire the network address related information of the UE by performing information exchange with the UE, and the network address related information of the UE may include any combination of the following: a host address of the UE, and a reverse direction of the UE generated by the NAT device. Address, relay address of the UE assigned by the relay server.
  • the UE may send a message including the information related to the network address to the AF.
  • the format of the candidate address in the SDP message sent by the UE is as follows:
  • connection-address and “port” are candidate address parameters
  • SP cand-type indicates the type of candidate address.
  • the UE sends the network address related information of the UE to the AF by sending the following SDP message to the AF, and the message instance is as follows:
  • a candidate: l 1 UDP 1694498815 192.0.2.3 45664 typ srflx raddr 10.0.1.1 rport 8998.
  • the host address of the UE includes an IP address of 10.0.1.1 and port 8998; and the reverse address of the UE includes an IP address of 192.0.2.3 and a port of 45664.
  • the network address related information of the UE may be obtained from the Via line of the header field of the SIP message sent by the UE.
  • the Via line of the header field of the SIP message sent by the UE may be obtained from the Via line of the header field of the SIP message sent by the UE.
  • the method for acquiring the network address related information of the UE by the AF may be: receiving an SDP message that is sent by the UE and carrying the network address related information of the UE; parsing the network address related information of the UE from the SDP message, and storing UE network address related information
  • the AF and the UE cannot support the SDP message but support the SIP message, the AF can send the SIP from the UE.
  • the network address of the UE is obtained in the header field of the message.
  • Step 1302 The AF sends the network address related information to the PCRF.
  • the information about the network address of the UE may be actively sent by the AF to the PCRF.
  • the information about the network address of the UE is configured in the Diameter AAR message, and the information about the network address of the UE is carried to the PCRF by using the message.
  • the request message may be sent by the PCRF to the AF.
  • the AF sends the network address related information of the UE to the PCRF.
  • the PCRF sends a request by using a Diameter RAR message, and the AF configures the network address related information of the UE to the Diameter RAA message.
  • the network address related information of the UE is carried to the PCRF by using the message.
  • the method for the AF to specifically send the network address related information of the UE may be that the network address related information of the UE is configured in text mode in the Codec-Address AVP of the Diameter AAR message or the Diameter RAA message. In this way, you don't need to improve the Codec-Address AVP, just add the text line.
  • the method for the AF to specifically send the network address related information of the UE may be: configuring the network address related information of the UE in the newly added Candidate-Address AVP in the Diameter AAR message or the Diameter RAA message.
  • the following is an example of the structure of the new Candidate-Address AVP: Candidate- Address : : ⁇ AVP Header: XXXX >
  • Candidate-IP can be used to represent the IP address in the network address
  • Candidate-port can be used to represent the port in the network address
  • Candidate-type can be used to indicate the type of network address such as host address, reverse address , relay address, etc.
  • Candidate-IP is a mandatory item, that is, the configuration content is required
  • Candidate-port and Candidate-type are optional.
  • the SDP message may be extended, a candidate address description line that can be used to describe the address of the relay server is added, the content is configured by the UE, and then the extended SDP message is sent to
  • the AF enables the AF to acquire the listening address of the relay server, and the AF transmits the acquired listening address of the relay server to the PCRF.
  • the network address related information of the UE can be obtained by the PCRF by sending the network address related information of the UE to the PCRF, and then the PCRF can perform successful session binding according to the network address related information of the UE, and further, The PCRF can continue to perform the UE's services based on the successful session binding, including the PCC rules that are consistent with the actual service data flow of the UE, and implement the PCC rules through the PCEF to implement policy and charging control for the UE service.
  • FIG. 14 is a schematic structural diagram of the AF, including: an information acquiring module 1401 and a sending processing module 1402;
  • the information obtaining module 1401 is configured to acquire network address related information of the UE, where the network address related information includes multiple network addresses for indicating a network location where the UE is located;
  • the sending processing module 1402 is configured to send the network address related information acquired by the information acquiring module 1401 to the PCRF.
  • the information acquisition module 1401 may include: an information receiving unit 1401a, a parsing unit 1401b, and a storage unit 1401c;
  • the information receiving unit 1401a is configured to receive, by the UE, a message that carries network address related information of the UE; the message may be an SDP message or a SIP message;
  • the parsing unit I401b is configured to parse the network address related information of the UE from the foregoing message;
  • the storage unit 1401c is configured to store network address related information of the UE.
  • the information obtaining module 1401 is further configured to obtain a listening address of the relay server, where
  • the information receiving unit 1401a may be further configured to receive, by the UE, a message that carries a listening address of the relay server, where the message may be an SDP message;
  • the parsing unit 1401b may be further configured to parse a message following the listening address of the server from the message; the storage unit 1401c may be further configured to store a message following the listening address of the server.
  • the sending processing module 1402 may include: a configuration unit 1402a and a transmitting unit 1402b, where
  • the configuration unit 1402a is configured to configure the network address related information of the UE in the Diameter AAR message, or configured in the Diameter RAA message;
  • the sending unit 1402b is configured to send a Diameter AAR message or a Diameter RAA message configured with the network address related information of the UE by the configuration unit 1402a to the PCRF.
  • the application scenario of the NAT technology in the PCC architecture can be seen in FIG. 5.
  • the UE's host address include IP1 and Portl
  • the UE's reverse address include IP2 and Port2.
  • FIG. 15 is a flowchart of the network address information of the UE provided by the AF to the PCRF in the embodiment, where the process may include the following steps:
  • Step 1501 The UE sends an SDP message to the AF.
  • the SDP message carries the network address related information of the UE, including the host address and the reverse address of the UE, and the candidate address description line includes:
  • a candidate: l 1 UDP 2130706431 IP1 Portl typ host;
  • Step 1502 The AF acquires and stores the network address related information of the UE according to the received SDP message.
  • Step 1503 The AF performs an SDP message interaction with the accessed device or other device such as the AF to obtain network address related information of other UEs.
  • Step 1504 The AF actively sends the service information to the PCRF through the Diameter AAR message, where the service information includes the network address related information of the UE.
  • the network address related information of the UE may be configured in a new Candidate-Addres AVP in the AAR message.
  • the Candidate-Addres AVP indicates that the host address of the UE includes IP1 and Portl, and the reverse address includes IP2 and Port2.
  • Step 1505 After receiving the SDP message sent by the AF, the PCRF parses the service information including the network address related information of the UE in the SDP message, and stores the service information. The PCRF performs session binding.
  • Step 1505 the session binding performed by the PCRF can be referred to the related description, and details are not described herein again.
  • Step 1507 The AF sends a response message in the SDP message to the UE.
  • the PCRF can formulate and store PCC rules according to the service information reported by the AF and the like.
  • the network address related information of the UE can be obtained by the PCRF by sending the network address related information of the UE to the PCRF, and then the PCRF can perform successful session binding according to the network address related information of the UE, and further, The PCRF can continue to perform UE services based on successful session binding, including formulating PCC rules that are consistent with the actual service data flow of the UE, and executing the PCC rules through the PCEF to implement the UE industry. Policy and billing control.
  • the application scenario of the NAT technology in the PCC architecture can be seen in FIG. 6 or FIG.
  • the host address of the UE includes IP1 and Portl
  • the reverse address of the UE includes IP2 and Port2
  • the relay address of the UE includes IP3 and Port3
  • the listening address of the relay server includes IPR and PortR.
  • FIG. 16 is a flow chart of the AF providing the UE with the network address related information of the UE in the embodiment, where the process may include the following steps:
  • Step 1601 The UE sends an SDP message to the AF.
  • the SDP message carries the network address related information of the UE, including the host address, the reverse address, and the relay address of the UE.
  • the SDP message further carries the interception address of the relay server.
  • the candidate address description line includes:
  • a candidate: l 1 UDP 2130706431 IPl Portl typ host;
  • Step 1602 The AF acquires and stores the network address related information of the UE according to the received SDP message.
  • Step 1603 The AF performs an SDP message exchange with other devices such as the accessed end or other AFs to obtain network address related information of other UEs.
  • Step 1604 The AF actively sends service information to the PCRF through the Diameter AAR message, where the service information includes information about the network address of the UE.
  • the network address related information of the UE may be configured in the Codec-Data AVP describing the service information in the AAR message, that is, the Codec-Data AVP includes the following description lines:
  • a candidate: l 1 UDP 2130706431 IPl Portl typ host;
  • Step 1605 After receiving the SDP message sent by the AF, the PCRF parses the service information including the network address related information of the UE in the SDP message, and stores the service information. The PCRF performs session binding.
  • Step 1605 the session binding performed by the PCRF can be referred to the related description, and details are not described herein again.
  • Step 1606 After the session binding is successful, the PCRF sends a Diameter AAA message to the AF.
  • Step 1607 The AF sends a response message in the SDP message to the UE.
  • the PCRF can formulate PCC rules according to the service information reported by the AF and the like.
  • the network address related information of the UE can be obtained by the PCRF by sending the network address related information of the UE to the PCRF, and then the PCRF can perform successful session binding according to the network address related information of the UE, and further, The PCRF can continue to perform the UE's services based on the successful session binding, including the PCC rules that are consistent with the actual service data flow of the UE, and implement the PCC rules through the PCEF to implement policy and charging control for the UE service.
  • the application scenario of the NAT technology in the PCC architecture can be seen in FIG. 5.
  • the UE's host address include IP1 and Portl
  • the UE's reverse address include IP2 and Port2.
  • FIG. 17 is a flow chart showing the information about the network address of the UE provided by the AF to the PCRF in the embodiment, and the process may include the following steps:
  • Step 1701 The UE sends an SIP message to the AF.
  • the SIP message may be a SIP registration message or the like, and the Via line of the SIP message header field carries the network address related information of the UE, including the host address and the reverse address of the UE.
  • Step 1702 The AF acquires and stores the network address related information of the UE according to the received SIP message.
  • step 1703 to step 1704 the AF performs SIP message exchange with other devices such as the accessed terminal or other AFs to obtain network address related information of other UEs, and receives a response, such as a 2XX message, returned by the access terminal indicating that the reception is successful.
  • Step 1705 The AF sends a response message indicating that the reception is successful to the UE.
  • Step 1706 The AF actively sends the service information to the PCRF through the Diameter AAR message, where the service information includes the network address related information of the UE.
  • the network address related information of the UE may be configured in a Candidata-Address AVP describing the service information in the AAR message, and the description line is as follows:
  • a candidate: l 1 UDP 2130706431 IP1 Portl typ host;
  • Step 1707 After receiving the SDP message sent by the AF, the PCRF parses the service information including the network address related information of the UE in the SDP message, and stores the service information. The PCRF performs session binding.
  • Step 1707 the session binding performed by the PCRF can be referred to the related description, and details are not described herein again.
  • the embodiment of the present invention provides a complete technical solution for implementing the NAT technology in the PCC architecture.
  • the network address related information of the UE may be obtained by the AFF to the PCRF, and the PCRF may obtain the network address related information of the UE, and then the PCRF may perform successful session binding according to the network address related information of the UE, and further The PCRF can continue to carry out the service of the UE based on the successful session binding, including formulating a PCC rule that is consistent with the actual service data flow of the UE, and executing the PCC rule through the PCEF to implement policy and charging control for the UE service.
  • the embodiments of the present invention can be implemented by software, and the corresponding software can be stored in a readable storage medium, such as a hard disk, a floppy disk or an optical disk of a computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

NAT技术在 PCC架构中的实现方法、 PCRF及 AF 技术领域
本发明涉及通信技术领域, 尤其涉及一种网络地址转换 (NAT, Network Address Translation) 技术在策略和计费控制 (PCC, Policy and Charging Control) 架构中的实 现方法及一种策略控制和计费规则功能 (PCRF , Policy Control and Charging Rules Function) 实体及应用功能 ( AF, Application Function) 实体。
背景技术
通信网络正在经历从传统的电路交换 (CS, Circuit Switched) 网络向以 IP为承载 的分组交换 (PS, Packet Switched) 网络演进的历程。 其间, 为实现在演进网络中也能 为用户提供电信级服务, 需要解决端到端的业务质量 (QoS, Quality of Service) 问题。 同时, 为保障运营商的利益, 要求演进网络具有能够针对不同业务数据流与 QoS级别 进行计费的能力。
基于演进网络的发展需求,第三代移动通信标准化伙伴项目(3GPP, 3rd Generation
Partnership Project) 定义了 PCC架构, 基于 PCC架构, 演进网络能够针对检测到的不 同业务数据流进行 QoS控制和计费统计。
参见图 1, 图 1是该 PCC架构的示意图。 下面主要讨论图 1中的 PCRF、 策略和计 费执行(PCEF, Policy and Charging Enforcement Function)实体、用户签约数据库 ( SPR, Subscription Profile Repository) 禾口应用功能 ( AF, Application Function) 实体等几个功 能实体在 PCC架构中的作用。
其中, PCRF主要是根据运营商策略、 对用户接入网络的限制、 用户签约数据以及 用户当前正在进行的业务的业务信息等因素, 制定对应的策略, 该策略称为 PCC规则。 PCC规则通常可包括业务数据流的检测规则, 业务数据流对应的 QoS控制规则和基于 业务数据流的计费规则等等; 其中, 业务数据流检测规则也可称为 IP数据包过滤规则; PCEF主要是执行 PCRF制定的 PCC规则, 如根据 PCC规则, 对业务数据流进行 检测和测量, 保证业务的 QoS, 用户面流量树立和触发控制面的会话管理等等; 进一步 说明,为保证业务的 QoS以及对业务数据流进行计费,用户设备(UE, User Equipment) 发出的所有 IP数据包或待接收的所有 IP数据包需要经过 PCEF, 由 PCEF利用 PCRF 下发的 PCC规则中的 IP数据包过滤规则, 对各 IP数据包进行业务数据流过滤, 允许 符合要求的 IP数据包通过; IP数据包过滤规则规定了允许通过 PCEF的 IP数据包的源 地址与目的地址、 业务数据流量等等信息;
SPR主要是向 PCRF提供用于制定 PCC规则的用户签约数据;
AF主要是向 PCRF动态提供应用层的业务信息, PCRF可根据该业务信息动态生 成或修改对应的 PCC规则。
基于 PCC架构, 可建立用户终端与网络侧之间的 IP-CAN会话, UE基于被建立的 IP-CAN会话, 开展自己的业务。 参见图 2, 图 2是现有基于 PCC架构实现 UE开展业 务的信令交互示意图。参见图 3, 图 3是图 2中建立 UE的 IP-CAN会话的具体流程图。 该流程简要描述如下:
步骤 301至 302、 PCEF收到 UE发送的 IP-CAN会话建立请求消息, 基于 Diameter 协议, 向 PCRF 发送请求与 PCRF 进行会话的贷计控制请求 (Diameter CCR, Credit-Control-Request ) 消息, 请求 PCRF下发该 UE的缺省 PCC规则。
为方便表述, 称 PCEF与 PCRF之间的会话为会话一。
上述 Diameter CCR消息中携带 UE的网络地址、 网络标识如国际移动用户识别码
( IMSI, InternationalMobileSubscriber Identity) 等等的 UE相关信息。
步骤 303、 PCRF存储所接收到的 Diameter CCR消息中的 UE相关信息, 若 UE曾 成功建立过 IP-CAN会话, 则 PCRF上会保留有该 UE相关的 PCC规则, PCRF选择该 PCC规则, 执行步骤 308; 否则, 执行步骤 304至步骤 307。
步骤 304至步骤 307、 PCRF向 SPR发送请求消息, 请求用户签约数据; SPR收到 该请求消息后, 将用户签约数据返回 PCRF; PCRF收到 PCEF返回的用户签约数据后, 制定 UE相关的 PCC规则, 存储该 PCC规则, 执行步骤 308。
步骤 308、PCRF将 UE相关的 PCC规则通过 Diameter CCR消息下发给 PCEF, PCRF 与 PCEF之间的会话告一段落。
步骤 309至步骤 310、 PCEF安装收到的缺省 PCC规则, 向 UE返回表示 IP-CAN 会话建立成功的响应。
图 3所示流程所建立的 IP-CAN会话建立了一条 UE与 PCEF之间的缺省承载, 基 于会话一中建立的该缺省承载, UE可发起业务请求。 为对 UE将开展的业务进行控制, 需要针对 UE所请求的业务制定合适的 PCC规则。 参见图 4, 图 4是 PCC架构下对 UE 的业务控制流程图。 该流程简要说明如下:
步骤 401至步骤 403、 AF被触发后, 定义 UE的业务信息, 将 UE的业务信息通过 Diameter AAR消息发送给 PCRF, 发起 AF与 PCRF之间的会话。
UE的业务信息可包括 UE的网络地址、 网络标识、 业务数据流描述信息等等。 且 为表述方便, 可称 AF与 PCRF之间的会话为会话二。
步骤 404、 PCRF收到 AF发来的 AAR消息后, 存储其中 UE的业务信息, PCRF 若没有存储用户签约数据, 则执行步骤 405 ; 否则, 执行步骤 407。
步骤 405至步骤 406、 PCRF向 SPR发送请求用户签约数据的请求消息; SPR收到 该请求消息后, 向 PCRF返回用户签约数据。
步骤 407至步骤 409、 PCRF根据会话二中 AF发来的 UE的网络地址, 与会话一中 收到的 PCEF发来的 UE的网络地址, 进行会话一与会话二的绑定, 绑定成功后, PCRF 制定并存储 PCC规则, 向 AF发送表示会话绑定成功的响应。
PCRF返回 AF的响应可以是 Diameter AAA消息。
可简称会话一与会话二的绑定为会话绑定。 由于 PCRF负责管理针对不同 UE的不 同 PCC规则, 相应地, PCEF负责执行针对不同 UE的不同 PCC规则, 因此, 为确保 PCEF所执行的 PCC规则针对的是 UE所请求的业务, 需要 PCRF将会话一与会话二进 行会话绑定, 即确定 AF上报的用于会话绑定的 UE的网络地址, 与 PCEF上报的用于 会话绑定的 UE的网络地址是否相同, 若相同, 则会话一与会话二绑定成功; 否则, 绑 定失败。 在会话绑定成功后, PCRF才能够根据 UE的业务信息制定对应的 PCC规则, 且将该 PCC规则下发给与会话二绑定成功的会话一中的 PCEF, 由 PCEF控制该 UE所 请求的业务。
步骤 410至步骤 414、 UE发起要求修改 IP-CAN会话的请求给 PCEF; PCEF收到 该请求后, 向 PCRF发送要求获取 PCC规则的 Diameter CCR消息; PCRF收到 PCEF 发来的消息后, 从所存储的 PCC规则中选出与该 UE相关的 PCC规则, 将该 PCC规则 下发给 PCEF; PCEF收到 PCRF返回的 PCC规则后, 安装该 PCC规则, 且向 UE返回 表示 IP-CAN会话修改成功的贷计控制应答 (Diameter CCA, Credit-Control- Answer) 消息。
上述图 3与图 4所示流程中, 若 UE自身拥有可寻址的合法网络地址, 该网络地址 包含由网络信息中心 (NIC, Network Information Center) 或网络服务提供商 (ISP, Internet Service Provider) 分配的具有全球唯一性的可寻址 IP地址, 则会话一中 PCEF 上报给 PCRF的 UE的网络地址, 和, 会话二中 AF上报给 PCRF的 UE的网络地址为 同一个网络地址, 则 PCRF可进行成功的会话绑定。
但有时, UE 真实的网络地址为不能用于寻址的主机地址, 如私网地址, 为使 UE 能够访问因特网等公网, 通常需要采用 NAT技术, 将 UE的主机地址转换为一个可寻 址的合法网络地址。 其中, 主机地址包括主机 IP地址和端口号, 合法网络地址包括合 法 IP地址和端口号。 NAT技术的主要作用在于使局域网内多个 UE共享一个合法 IP地 址,以缓解合法 IP地址资源紧缺问题。路由器、防火墙等等网络设备上通常设置有 NAT 功能, 如防火墙将网络服务器的主机地址 192.168.1.1转换为合法 IP地址 202.96.23.11, 则外部实际通过访问 202.96.23.11 地址访问该网络服务器。 本申请中, 统称具有 NAT 功能的设备为 NAT设备, 并称经过 NAT设备转换得到的合法网络地址为反向地址, 该 反向地址包括可寻址的 IP地址、 端口号。
NAT技术可包括: 静态 NAT ( Static NAT ) 、 动态地址 NAT (Pooled NAT)以及网 络地址端口转换 (NAPT, Port -Level NAT ) 。
其中,静态 NAT是 NAT设备将私网中每个 UE的主机地址都永久地映射成某个合 法网络地址。 动态地址 NAT是 NAT设备为每个 UE动态分配合法网络地址, 将该 UE 的主机地址映射成某合法网络地址, 在 UE与外网断开后, 释放分配给该 UE的合法网 络地址。 NAPT则是 NAT设备将 UE的主机地址映射成一个单独的合法 IP地址, 并在 该合法 IP地址上加一个由该 NAT设备选定的端口号。
另外, NAT技术中, 经过 NAT转换得到的合法网络地址在某些应用场景下也难以 用于通信, 为此通常采用中继 (Relay) 服务器, 为用户设备分配一个中继地址, 该中 继地址也是合法网络地址。
NAT技术能够使多个 UE共享一个合法 IP地址,以缓解合法 IP地址资源紧缺问题。 但现有技术中, 若将 NAT技术引入 PCC 架构, 将会出现会话绑定失败, 使得 UE难以 开展业务。
发明内容
本发明实施例提供一种 NAT技术在 PCC架构中的实现方法, 在引入 NAT技术的 PCC架构中, 实现 PCRF与 AF之间的会话, 和 PCRF与 PCEF之间的会话的绑定。
一种 NAT技术在 PCC架构中的实现方法, 包括:
PCRF与 PCEF会话中, 所述 PCRF接收所述 PCEF发送的用于会话绑定的 UE的 第一网络地址;
所述 PCRF与 AF的会话中, 所述 PCRF接收所述 AF发送的 UE的网络地址相关 信息, 所述网络地址相关信息包括用于标示该 UE所在网络位置的多个网络地址; 所述 PCRF确定所述多个网络地址中, 包含所述第一网络地址;
所述 PCRF将所述 PCRF与所述 AF之间的会话, 和所述 PCRF与所述 PCEF之间 的会话绑定。
本发明实施例提供一种 PCRF, 在引入 NAT技术的 PCC架构中, 实现 PCRF与 AF 之间的会话, 和 PCRF与 PCEF之间的会话的绑定。
一种 PCRF, 包括: 第一接收模块、 第二接收模块、 确定模块和绑定模块; 其中, 所述第一接收模块,用于所述 PCRF与 AF之间的会话中, 接收所述 AF发送的 UE 的网络地址相关信息;所述网络地址相关信息包括用于标示该 UE所在网络位置的多个 网络地址;
所述第二接收模块, 用于所述 PCRF与 PCEF会话中, 接收所述 PCEF发送的用于 会话绑定的 UE的第一网络地址;
所述确定模块, 用于确定所述多个网络地址中, 包含所述第一网络地址; 所述绑定模块,用于将所述 PCRF与所述 AF之间的会话,和所述 PCRF与所述 PCEF 之间的会话绑定。
本发明实施例还提供一种 AF, 为 PCRF提供 UE的网络地址相关信息。
一种 AF, 包括:
信息获取模块和发送处理模块;
所述信息获取模块, 用于获取 UE的网络地址相关信息; 所述网络地址相关信息包 括用于标示该 UE所在网络位置的多个网络地址;
所述发送处理模块,用于将所述信息获取模块获取到的所述网络地址相关信息发送 给 PCRF。
本发明实施例还提供了一种用于提供 UE的网络地址相关信息的方法, 包括: 获取 UE的网络地址相关信息; 所述网络地址相关信息包括用于标示该 UE所在同 一网络位置的多个网络地址;
Figure imgf000007_0001
本发明实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF 获取到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息, 在确 定出第一网络地址后, 基于 PCRF与 AF之间的会话, 禾 P PCRF与 PCEF之间的会话均 采用第一网络地址标示 UE的网络位置, 将两个会话成功绑定。 附图说明 图 1是现有 PCC架构的示意图;
图 2是现有基于 PCC架构实现 UE开展业务的信令交互示意图;
图 3是图 2中建立 UE的 IP-CAN会话的具体流程图;
图 4是现有 PCC架构下对 UE的业务控制流程图;
图 5是 NAT技术在 PCC架构中的应用场景示意图;
图 6是 NAT技术在 PCC架构中的另一应用场景示意图;
图 7是本发明实施例一中 NAT技术在 PCC架构中的实现方法流程图;
图 8是本发明实施例二提供的 PCRF的结构示意图;
图 9是本发明实施例三中 NAT技术在 PCC结构中的实现流程图;
图 10是本发明实施例四中 NAT技术在 PCC架构中的应用场景示意图;
图 11是本发明实施例四中 NAT技术在 PCC结构中的实现流程图;
图 12是本发明实施例五中 NAT技术在 PCC结构中的实现流程图;
图 13是本发明实施例六用于提供 UE的网络地址相关信息的方法流程图;
图 14是本发明实施例七提供的 AF的结构示意图;
图 15是本发明实施例八中 AF向 PCRF提供 UE的网络地址相关信息的流程图; 图 16是本发明实施例九中 AF向 PCRF提供 UE的网络地址相关信息的流程图; 图 17是本发明实施例十中 AF向 PCRF提供 UE的网络地址相关信息的流程图。 具体实施方式
下面将结合附图对本发明实施例提供的技术方案作进一步详细描述。
现有技术中, NAT技术之所以难以很好地应用在 PCC架构中, 是因为 NAT技术 的引入, 使得 AF上报的用于会话绑定的 UE的网络地址, 与 PCEF上报的用于会话绑 定的 UE的网络地址可能不同, 而使 PCRF难以感知两个不同的网络地址是否对应同一 个 UE, 从而导致 PCRF无法将会话一与会话二进行成功的会话绑定, 最终导致该 UE 难以开展相关业务。
参见图 5, 图 5是 NAT技术在 PCC架构中的应用场景示意图。 图 5中, NAT设 备被设置在 UE与 PCEF之间的通信链路之间。 UE期望访问远端 PDN。 设 UE的主机 地址中 IP地址为 IP1, 端口为 Portl ; 被访问的远端网络地址中 IP地址为 IP_remote, 端口为 Port_remote; 经过 NAT设备转换得到的 UE的反向地址中 IP地址为 IP2、 端口 为 Port2。 从 UE发出的 IP数据包经过 NAT设备后, IP数据包的源网络地址为 UE的 反向地址, 目的网络地址未变, 仍为被访问的远端网络地址, 若 IP 数据包能够通过 PCEF, 则该 IP数据包将按其目的网络地址被发送到远端 PDN。
实际上, NAT技术的引入, 使得 UE发出的 IP数据包难以通过 PCEF, 因为实际 应用中, UE会收集到标示其网络位置的主机地址和反向地址, 并且, UE将指示 AF该 UE用于对外通信的网络地址可能是主机地址, 也可能是反向地址。 若 UE指示其主机 地址用于对外通信, 则 AF会根据 UE的指示, 向 PCRF上报的用于会话绑定的为 UE 的主机地址; 而 PCEF上报的用于会话绑定的是该 UE的反向地址。 因主机地址与反向 地址不同, 导致 PCRF执行会话绑定失败。
参见图 6, 图 6是 NAT技术在 PCC架构中的另一应用场景示意图。 与图 5所示场 景不同, 图 6所示场景中, NAT设备被设置在 UE与 PCEF之间的多通信链路之外, 被 设置在 PCEF与远端 PDN之间的通信链路上, 且 NAT设备与远端 PDN之间设置有中 继服务器。 中继服务器为 UE分配中继地址, 其中, IP地址为 IP3, 端口为 Port3, 中继 服务器的监听地址中 IP地址为 IPR, 端口为 PortR。 图 6所示场景中, UE不仅会收集 到 UE的主机地址、 UE的反向地址, 还会收集到 UE的中继地址。 UE会将收集到的地 址上报给 AF, AF根据 UE的上报向 PCRF上报的用于会话绑定的 UE的网络地址可能 是 UE的主机地址, 也可能是 UE的反向地址。 从而, 与图 5所示场景中应用 NAT技 术类似的问题将会发生。
NAT技术在 PCC架构中的引入还会导致 PCRF难以制定出符合实际业务数据流的 PCC规则。而当 PCEF执行该 PCC规则时, 由于 PCC规则与实际业务数据流不相符合, 将导致 UE难以将业务相关的 IP数据包发送出去,且 UE也难以接收到实际接收者为该 UE的 IP数据包。
下面对 NAT技术在 PCC架构中的引入导致 PCRF难以制定出符合实际业务数据流 的 PCC规则进行说明。 AF上报给 PCRF的业务信息中, 业务数据流描述信息可包括一 条上行方向上的业务数据流描述信息和 /或一条下行方向上的业务数据流描述信息; 其 中, 上行方向上的业务数据流描述信息用于描述 UE向远端 PDN发送数据的上行方向 上, 被发送 IP数据包的源网路地址与目的网络地址; 下行方向上的业务数据流描述信 息用于描述 UE接收远端 PDN发来的数据的下行方向上, 被接收 IP数据包的源网路地 址与目的网络地址。 仍参见图 5, 图 5中, 上行方向上的业务数据流描述信息中, 设源 网络地址为 UE的反向地址, 目的网络地址为被访问的远端网络地址; 下行方向上的业 务数据流描述信息中, 源网络地址为被访问的远端网络地址, 目的网络地址为 UE的反 向地址。 PCRF基于 AF发来的业务数据流描述信息制定 PCC规则中的 IP数据包过滤 规则。 该 IP数据包过滤规则规定了哪些 IP数据包能够从 PCEF通过, 对应地, PCEF 利用该 IP数据包过滤规则检测业务数据流。 由于 AF上报给 PCRF的用于会话绑定的 UE的网络地址是 UE的主机地址, 因此, PCRF在制定 IP数据包过滤规则中, 上行方 向上的 IP数据包过滤规则中的 IP数据包是源网络地址为 UE的主机地址, 目的网络地 址为被访问的远端网络地址的数据包; 下行方向上的 IP数据包过滤规则中的 IP数据包 是源网络地址为被访问的远端网络地址, 目的网络地址为 UE 的主机地址的数据包。 PCRF所制定的 IP数据包过滤规则与 AF上报的实际业务数据流不相符合, 因此, 在 PCEF执行 PCRF所制定的包含 IP数据包过滤规则的 PCC规则时, 将不允许 UE发出 的任何 IP数据包通过, 且本应由 UE接收的 IP数据包因无法通过 PCEF, 而被 PCEF 拒绝, 也使 UE难以接收到该 IP数据包。 因此, NAT技术的引入也会使得 PCRF难以 制定出符合实际业务数据流的 PCC规则, 从而使 UE难以开展相关业务。
PCRF之所以难以制定出符合实际业务数据流的 PCC规则, 一个主要的原因也在 于, 在引入 NAT技术的场景下, AF上报的用于会话绑定的 UE的网络地址, 与 PCEF 上报的用于会话绑定的 UE 的网络地址不符合, 从而导致针对该 UE 的业务所制定的 PCC规则, 也与 AF上报的实际业务数据流不符合。
本发明实施例提供了关于 NAT技术在 PCC架构中的实现方案, 本发明实施例中, 在 AF与 PCRF的会话中, AF将发送 UE的网络地址相关信息给 PCRF, 该网络地址相 关信息包括用于标示该 UE所在网络位置的多个网络地址, 实际上该多个网络地址中, 包含 PCEF与 PCRF之间的会话中, PCEF发送给 PCRF的用于会话绑定的该 UE的第 一网络地址。 因此, PCRF在确定且该多个网络地址中存在能够将 PCRF与 AF之间的 会话, 和 PCRF与 PCEF之间的会话进行会话绑定的第一网络地址, 进而, 对于同一个 UE的业务, PCRF可基于所获知的 UE的网络地址相关信息, 感知会话一中, PCEF上 报的 UE的网络地址, 与会话二中, AF上报的 UE的网络地址相同, 实现对会话一与 会话二的会话绑定。
下面结合具体的实施例对本发明实施例提供的技术方案作详细说明。
实施例一
参见图 7,图 7是本发明实施例提供的 NAT技术在 PCC架构中的实现方法流程图, 该流程可包括以下步骤:
步骤 701、 PCRF与 PCEF会话中, PCRF接收所述 PCEF发送的用于会话绑定的
UE的第一网络地址。
步骤 702、 PCRF与 AF之间的会话中, PCRF接收 AF发送的 UE的网络地址相关 信息; 该网络地址相关信息包括用于标示该 UE所在同一网络位置的多个网络地址。 本发明实施例中, 用于标示 UE 所在同一个网络位置的网络地址可能有多个, 如 UE的主机地址 IP1和 Portl , UE的反向地址 IP2和 Port2, UE的中继地址 IP3和 Port3 ; 则 PCRF可获取到的网络地址相关信息可包括: UE的主机地址与反向地址, 或 UE的 主机地址与中继地址, 或 UE的反向地址与中继地址, 或 UE的主机地址、 反向地址和 中继地址。 其中, 可用于会话绑定的第一网络地址可以是 UE的主机地址或反向地址。
步骤 703、PCRF确定该多个网络地址中,包含 PCEF与 PCRF之间的会话中, PCEF 发送给 PCRF的用于会话绑定的该 UE的第一网络地址。
本发明实施例中, PCRF确定多个网络地址包含第一网络地址的做法可以是, PCRF 将多个网络地址中的部分或全部网络地址, 分别与第一网络地址进行匹配, 若匹配结果 是多个网络地址中的其中一个网络地址能够与第一网络地址相匹配,则确定多个网络地 址包含第一网络地址。 在执行匹配时, PCRF可将多个网络地址逐个与第一网络地址进 行匹配, 直至找到能够匹配成功的网络地址。 实际应用中, 可设置 PCRF默认采用 UE 的主机地址与第一网络地址进行匹配, 若匹配成功, 则直接确定多个网络地址中包含第 一网络地址。
步骤 704、 PCRF将该 PCRF与上述 AF之间的会话, 和该 PCRF与上述 PCEF之间 的会话绑定。
本发明实施例中, 在 PCRF确定上述多个网络地址中包含第一网络地址, 则 PCRF 就可感知该 PCRF与上述 AF之间的会话所针对的 UE,和该 PCRF与上述 PCEF之间的 会话所针对的 UE为同一个 UE, 则将两个会话进行成功绑定。
本发明实施例中, 在确定出第一网络地址后, PCRF可结合第一网络地址、 UE 的 网络地址相关信息、 AF上报的 UE的业务数据流描述信息以及被访问的远端网络地址 相关信息, 来制定符合实际业务数据流的 PCC规则。 其中, 对于被访问端的网络地址 相关信息, 可采用与获取 UE 的网络地址相关信息类似的获取方式来获取到, 即可由 AF与被访问端进行消息交互,获取到被访问端的网络地址相关信息后,再发送给 PCRF, 详细说明可参见后文。
本发明实施例中, UE的业务数据流描述信息可包括: 上行方向上, 被发送 IP数据 包的源网络地址与目的网络地址; 和 /或, 下行方向上, 被接收 IP数据包的源网络地址 与目的网络地址。 所谓 "和 /或"指的是, UE的业务数据流描述信息中可只包含上行方 向上的业务数据流描述信息, 也可只包含下行方向上的业务数据流描述信息, 也可包含 上行与下行方向上的业务数据流描述信息。
本发明实施例中,被访问端的网络地址相关信息中可包括一个或多个远端地址。在 PCRF制定 PCC规则时, PCRF实际上并不区分远端地址到底是什么地址, 如被访问端 的网络地址相关信息中, 远端地址可以是被访问端的主机地址 IP_remotel 和 P0rt_rem0tel,或可以是在远端采用 NAT设备将被访问端的主机地址进行了转换处理后 得到的被访问端的反向地址 IP_remote2和 Port_remote2。
本发明实施例中, PCRF制定 PCC规则包括制定能够通过 PCEF的 IP数据包过滤 规则, 简称 IP数据包过滤规则, 即对应于 AF上报的 UE的业务数据流描述信息, 可制 定与上行方向上的业务数据流描述信息相对应的上行 IP数据包过滤规则; 和 /或, 制定 与下行方向上的业务数据流描述信息相对应的下行 IP数据包过滤规则。
本发明实施例中, 制订上行 IP数据包过滤规则包括: 根据被确定出的第一网络地 址, 制定能够通过 PCEF的被发送 IP数据包的源网络地址为第一网络地址; 根据获取 到的被访问端的网络地址相关信息, 制定能够通过 PCEF的被发送 IP数据包的目的网 络地址为被访问端的网络地址, 进一步地, 若获取到的被访问端的网络地址有一个, 设 为第一远端地址, 则制定能够通过 PCEF的被发送 IP数据包的目的网络地址为第一远 端地址; 若获取到的被访问端的网络地址有两个, 设为第一远端地址与第二远端地址, 则制定能够通过 PCEF的被发送 IP数据包的目的网络地址为第一远端地址或第二远端 地址。对应地, PCRF所制定出来的上行 IP数据包过滤规则的条数可基于获取到的被访 问端的网络地址的个数来确定, 即若获取到 N个远端地址, 则上行 IP数据包过滤规则 的条数即为 N个。
有关下行 IP数据包过滤规则的制定, 与上行 IP数据包过滤规则的制定类似, 后续 实施例中再作详细说明。
还需要说明的是, 若 UE的网络地址相关信息中提及了 UE的中继地址, 则 PCRF 为制定与实际业务数据流相符合的 PCC规则, 需要先获取到中继服务器的监听地址, 然后, 可在已制定出的上行或下行 IP数据包过滤规则的基础上再增加一条上行 IP数据 包过滤规则, 或再增加一条下行 IP数据包过滤规则。 所增加的上行 IP数据包过滤规则 中, 被发送 IP数据包的源网络地址仍然为第一网络地址, 目的网络地址为中继服务器 的监听地址。 所增加的下行 IP数据包过滤规则中, 被接收 IP数据包的目的网络地址仍 然为第一网络地址, 源网络地址为中继服务器的监听地址。
本发明实施例中, PCRF 获取中继服务器的监听地址的方式可包括: 接收所述 AF 发送的所述中继服务器的监听地址; 或, 向 SPR发送请求所述监听地址的消息; 接收 SPR 返回的所述监听地址。 本发明实施例中, 设中继服务器的监听地址包括 IPR 和 PortR。 本实施例中, PCRF根据获取到 UE的网络地址相关信息确定出第一网络地址后, 基于 PCRF与 AF之间的会话, 和 PCRF与 PCEF之间的会话均采用第一网络地址标示 UE的网络位置, 将两个会话成功绑定。
实施例二
参见图 8, 图 8是本发明实施例提供的 PCRF的结构示意图, 图 8中, PCRF可包 括: 第一接收模块 801、 第二接收模块 802、 确定模块 803和绑定模块 804; 其中, 第一接收模块 801,用于 PCRF与 AF之间的会话中, 接收 AF发送的 UE的网络地 址相关信息; 网络地址相关信息包括用于标示该 UE所在网络位置的多个网络地址; 第二接收模块 802, 用于 PCRF与 PCEF会话中, 接收 PCEF发送的用于会话绑定 的 UE的第一网络地址;
确定模块 803, 用于确定上述多个网络地址中, 包含第一网络地址;
绑定模块 804, 用于将该 PCRF与该 AF之间的会话, 禾 P该 PCRF与该 PCEF之间 的会话绑定。
进一步地, 确定模块 803可包括: 匹配单元 8031和确定单元 8032; 其中, 匹配单元 8031, 用于将上述多个网络地址中的部分或全部网络地址, 分别与上述 第一网络地址进行匹配;
确定单元 8032, 用于当匹配单元 8031的匹配结果为上述多个网络地址中的其中一 个网络地址能够与上述第一网络地址相匹配,确定上述多个网络地址包含上述第一网络 地址。
PCRF进一步可包括:
第三接收模块 805, 用于接收 AF发送的被所述 AF获取到的被访问端的网络地址 相关信息。
PCRF进一步可包括: 第四接收模块 806, 用于接收 AF发送的业务数据流描述信 息。
PCRF进一步可包括: 规则制定模块 807, 用于制定符合实际业务数据流的 PCC规 贝 1J。
规则制定模块 807可包括: 第一制定单元 8071和 /或第二制定单元 8072;
第一制定单元 8071, 用于制定与上行方向上的业务数据流描述信息相对应的上行 IP数据包过滤规则;
第二制定单元 8072, 用于制定与下行方向上的业务数据流描述信息相对应的下行
IP数据包过滤规则。 PCRF进一步可包括: 规则个数确定模块 808, 用于确定上行 IP数据包过滤规则的 个数和 /或下行 IP数据包过滤规则的个数。
本实施例中, PCRF根据获取到 UE的网络地址相关信息确定出第一网络地址后, 基于 PCRF与 AF之间的会话, 和 PCRF与 PCEF之间的会话均采用第一网络地址标示 UE的网络位置, 将两个会话成功绑定。
实施例三:
本实施例中 NAT技术在 PCC架构中的应用场景示意图可参见图 5。 图 5中 UE的 主机地址包括 IP1和 Portl , UE的反向地址包括 IP2和 Port2, UE期望访问的远端 PDN 中, 被访问端的网络地址包括 IP_remotel和 Port_remotel。 本发明实施例中, AF获取 到的被访问端的网络地址信息包括被访问端的主机地址 IP_remotel和 Port_remotel。本 实施例中, AF预先将被访问端的网络地址信息发送给了 PCRF。 UE与 PCEF之间已建 立了一条 IP-CAN会话, PCEF发送给 PCRF的用于会话绑定的第一网络地址为 UE的 反向地址。
参见图 9, 图 9是本实施例中 NAT技术在 PCC架构中的实现流程图, 该流程可包 括以下步骤:
步骤 901、 AF获取 UE的网络地址相关信息。
有关本发明实施例中 AF如何获取 UE的网络地址相关信息, 可参见后文记载。 本实施例中, AF通过与 UE进行信息交互时, 获取到的 UE的网络地址相关信息 包括 UE的主机地址与反向地址。
步骤 902、 AF将 UE的业务信息包括 UE的网络地址相关信息发送给 PCRF。
有关本发明实施例中 AF如何将获取 UE的网络地址相关信息发送给 PCRF, 可参 见后文记载。
本实施例中, AF可将 UE的业务信息包括 UE的网络地址相关信息配置在同一条 Diameter AAR消息中, 携带给 PCRF, 也可以将两种信息分别配置在不同的 Diameter AAR消息中携带给 PCRF。
实际应用中, AF也可通过 Diameter RAR消息将 UE的业务信息包括网络地址相关 信息发送给 PCRF。
步骤 903、 PCRF利用收到的 UE的网络地址相关信息进行会话绑定。
本实施例中, PCRF可将 UE的主机地址与 UE的反向地址, 分别与 PCEF发送给 PCRF的用于会话绑定的第一网络地址即 UE的反向地址, 进行匹配, 可设置 PCRF默 认采用 UE的主机地址进行匹配, 若匹配不成功, PCRF再将 UE的网络地址相关信息 中的 UE的反向地址, 与第一网络地址进行匹配。 若 PCRF先采用 UE的反向地址进行 匹配, 则匹配成功后, 可不再需要用 UE的主机地址进行匹配。 根据匹配结果, 可确定 出第一网络地址为 UE的反向地址。 匹配成功后, PCRF通过第一网络地址, 可将其与
AF之间的会话, 以及其与 PCEF之间的会话绑定。
实际应用中, 若 AF所提供的 UE的网络地址相关信息中, 没有提供与 IP地址对应 的端口号, 则该端口号可从业务数据流描述信息中导出。
步骤 904、 PCRF在会话绑定成功后, 向 AF返回表示绑定成功的应答消息给 AF。 本实施例中, PCRF 发给 AF 的应答消息可以是对应于 Diameter AAR 消息的
Diameter AAA消息, 或可以是对应于 Diameter RAR消息的 Diameter RAA消息。
步骤 905、 PCRF根据用于会话绑定的第一网络地址、 UE的业务数据流描述信息以 及被访问端的网络地址, 制定与实际业务数据流相符合的 PCC规则, 并存储制定出的
PCC规则。
本实施例中,上述步骤 902中, 设 AF上报的 UE的业务数据流描述信息包括两条, 分别是:
上行方向上, 被发送 IP数据包的源网络地址是 UE的反向地址 IP2和 Port2, 目的 网络地址是被访问端的网络地址 IP_remote和 Port_remote;
下行方向上, 被接收 IP数据包的源网络地址是被访问端的网络地址 IP_remote和 Port remote, 目的网络地址是 UE的反向地址 IP2和 Port2。
对应地, PCRF所制定的 IP数据包过滤规则有两条, 分别是上行 IP数据包过滤规 则与下行 IP数据包过滤规则, 其中,
上行 IP数据包过滤规则包括, 上行方向上, 被发送的 IP 数据包的源网络地址为 UE的反向地址, 即源地址为 IP2, 源端口为 Port2; 目的网络地址为被访问端的网络地 址, 即目的地址为 IP_remotel, 目的端口为 Port_remotel;
下行 IP数据包过滤规则包括, 下行方向上, 被接收的 IP数据包的源网络地址为被 访问端的网络地址, 即目的地址为 IP_remotel, 目的端口为 Port_remotel; 目的网络地 址为 UE的反向地址, 即源地址为 IP2, 源端口为 Port2。
后续, PCRF 可将制定好的与实际业务数据流相符合 PCC 规则发送给 PCEF, 由 PCEF执行该 PCC规则, 以对该 UE的业务进行正确的策略与计费控制。
本实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF获取 到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成功的 会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定与 UE 的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业 务的策略和计费控制。
实施例四:
本实施例中 NAT技术在 PCC架构中的应用场景示意图可参见图 10。图 10中, NAT 设备被设置在 UE与 PCEF之间的通信链路之间, 且 PCEF与被访问端之间设置有中继 服务器。 中继服务器为 UE分配中继地址, 其中, IP地址为 IP3, 端口为 Port3, 中继服 务器的监听地址中 IP地址为 IPR, 端口为 PortR。 设 UE的主机地址包括 IP1和 Portl , 经过 NAT设备转换后得到的 UE的反向地址包括 IP2和 Port2。 AF与被访问端信息交 互所得到的被访问端的网络地址相关信息包括两个远端地址,分别是被访问端的主机地 址 IP_remotel禾 P Port remotel, 与, 被访问端的反向地址 IP_remote2禾 P Port_remote2。 本实施例中, AF预先将被访问端的网络地址信息发送给了 PCRF。 本实施例中, 设 UE 与 PCEF之间建立了一条 IP-CAN会话, PCEF发送给 PCRF的用于会话绑定的第一网 络地址为 UE的反向地址。
参见图 11, 图 1 1是本发明实施例中 NAT技术在 PCC结构中的实现流程图, 该流 程可包括以下步骤:
步骤 1 101、 AF获取 UE的网络地址相关信息。
有关本发明实施例中 AF如何获取 UE的网络地址相关信息, 可参见后文记载。 本实施例中, AF所获取到的 UE的网络地址相关信息包括 UE的主机地址、 UE的 反向地址和 UE的中继地址。
步骤 1 102的描述与上述步骤 902的描述类似。
本实施例中, 设 AF上报的 UE的业务数据流描述信息包括两条, 分别是: 上行方向上, 被发送 IP数据包的源网络地址是 UE的中继地址 IP3和 Port3, 目的 网络地址是被访问端的网络地址 IP_remote和 Port_remote;
下行方向上, 被接收 IP数据包的源网络地址是被访问端的网络地址 IP_remote和 Port remote, 目的网络地址是 UE的中继地址 IP3和 Port3。
该步骤 1102中, AF可进一步将中继服务器的监听地址通过消息发送给 PCRF。 步骤 1 103、 PCRF利用收到的 UE的网络地址相关信息进行会话绑定。
本实施例中, PCRF将 UE的主机地址、 UE的反向地址和 UE的中继地址分别与第 一网络地址进行匹配, 匹配成功后, 可确定第一网络地址为 UE的反向地址, PCRF通 过第一网络地址, 将其与 AF之间的会话, 以及其与 PCEF之间的会话绑定。
步骤 1 104、 PCRF在会话绑定成功后, 向 AF返回表示绑定成功的应答消息给 AF。 本实施例中, PCRF 发给 AF 的应答消息可以是对应于 Diameter AAR 消息的 Diameter AAA消息, 或可以是对应于 Diameter RAR消息的 Diameter RAA消息。
步骤 1105、 PCRF根据用于会话绑定的第一网络地址、 UE的业务数据流描述信息 以及被访问端的网络地址, 制定与数实际业务数据流相符合的 PCC规则。
对应于上述步骤 1102中, AF上报的 UE的业务数据流描述信息, PCRF所制定的
IP数据包过滤规则有六条,分别是上行 IP数据包过滤规则三条与下行 IP数据包过滤规 则三条, 其中,
IP数据包过滤规则 1:上行方向,被发送 IP数据包的源地址为 IP2,源端口为 Port2, 目的地址为 IP_remote 1, 目的端口为 Port_remote 1;
IP数据包过滤规则 Γ : 下行方向, 被接收 IP数据包的目的地址为 IP2, 目的端口 为 Port2; 源地址为 IP_remotel, 目的端口为 Port_remotel;
IP数据包过滤规则 2:上行方向,被发送 IP数据包的源地址为 IP2,源端口为 Port2, 目的地址为 IP_remote2, 目的端口为 Port_remote2;
IP数据包过滤规则 2': 下行方向, 被接收 IP数据包的目的地址为 IP2, 目的端口 为 Port2; 源地址为 IP_remote2, 目的端口为 Port_remote2;
IP数据包过滤规则 3:上行方向,被发送 IP数据包的源地址为 IP2,源端口为 Port2, 目的地址为 IPR, 目的端口为 PortR;
IP数据包过滤规则 3 ': 下行方向, 被接收 IP数据包的目的地址为 IP2, 目的端口 为 Port2; 源地址为 IPR, 目的端口为 PortR。
后续, PCRF 可将制定好的与实际业务数据流相符合 PCC 规则发送给 PCEF, 由
PCEF执行该 PCC规则, 以对该 UE的业务进行正确的策略与计费控制。
本实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF获取 到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成功的 会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定与 UE 的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业 务的策略和计费控制。
实施例五:
本实施例中 NAT技术在 PCC架构中的应用场景示意图可参见图 6。 图 6中, NAT 设备被设置在 PCEF与远端 PDN之间的通信链路上, 且 NAT设备与远端 PDN之间设 置有中继服务器。 本实施例中, UE的主机地址包括 IP1和 Portl , 经过 NAT设备转换 后得到的 UE的反向地址包括 IP2和 Port2, 中继服务器为 UE分配的中继地址包括 IP3 和 Port3, 中继服务器的监听地址包括 IPR和 PortR, UE期望访问的远端 PDN中, 被 访问端的网络地址包括 IP_remote和 Port_remote。 AF与被访问端信息交互所得到的被 访问端的网络地址相关信息包括两个远端地址,分别是被访问端的主机地址 IP_remotel 和 Port_remote 1, 与, 被访问端的反向地址 IP_remote2和 Port_remote2。 本实施例中, AF预先将被访问端的网络地址信息发送给了 PCRF。 本实施例中, 设 UE与 PCEF之间 建立了一条 IP-CAN会话, PCEF发送给 PCRF的用于会话绑定的地址为 UE的主机地 址。
参见图 12, 图 12是本发明实施例中 NAT技术在 PCC架构中的实现流程图, 该流 程可包括以下步骤:
步骤 1201、 AF获取 UE的网络地址相关信息。
有关本发明实施例中 AF如何获取 UE的网络地址相关信息, 可参见后文记载。 本实施例中, AF所获取到的 UE的网络地址相关信息包括 UE的主机地址、 UE的 反向地址和 UE的中继地址。
步骤 1202的描述与上述步骤 902的描述类似。
本实施例中, 设 AF上报的 UE的业务数据流描述信息包括两条, 分别是: 上行方向上, 被发送 IP数据包的源网络地址是 UE的主机地址 IP1和 Portl , 目的 网络地址是被访问端的网络地址 IP_remote和 Port_remote;
下行方向上, 被接收 IP数据包的源网络地址是被访问端的网络地址 IP_remote和 Port remote, 目的网络地址是 UE的主机地址 IP1和 Portl。
该步骤 1202中, AF可进一步将中继服务器的监听地址通过消息发送给 PCRF。 步骤 1203、 PCRF利用收到的 UE的网络地址相关信息进行会话绑定。
本实施例中, PCRF进行地址匹配以及会话绑定的做法与上述关于步骤 1103 的描 述中, PCRF进行地址匹配以及会话绑定的做法类似, 不再赘述。
本实施例中, PCRF确定第一网络地址为 UE的主机地址。
步骤 1204、 PCRF在会话绑定成功后, 向 AF返回表示绑定成功的应答消息给 AF。 本实施例中, PCRF 发给 AF 的应答消息可以是对应于 Diameter AAR 消息的 Diameter AAA消息, 或可以是对应于 Diameter RAR消息的 Diameter RAA消息。
步骤 1205、 PCRF根据用于会话绑定的第一网络地址、 UE的业务数据流描述信息 以及被访问端的网络地址, 制定与实际业务数据流相符合的 PCC规则。
对应于上述步骤 1202中, AF上报的 UE的业务数据流描述信息, PCRF所制定的
IP数据包过滤规则有六条,分别是上行 IP数据包过滤规则三条与下行 IP数据包过滤规 则三条, 其中,
IP数据包过滤规则 1:上行方向,被发送 IP数据包的源地址为 IP1,源端口为 Portl, 目的地址为 IP_remote 1, 目的端口为 Port_remote 1;
IP数据包过滤规则 Γ : 下行方向, 被接收 IP数据包的目的地址为 IP1, 目的端口 为 Portl; 源地址为 IP_remotel, 目的端口为 Port_remotel;
IP数据包过滤规则 2:上行方向,被发送 IP数据包的源地址为 IP1,源端口为 Portl, 目的地址为 IP_remote2, 目的端口为 Port_remote2;
IP数据包过滤规则 2': 下行方向, 被接收 IP数据包的目的地址为 IP1, 目的端口 为 Portl; 源地址为 IP_remote2, 目的端口为 Port_remote2;
IP数据包过滤规则 3:上行方向,被发送 IP数据包的源地址为 IP1,源端口为 Portl, 目的地址为 IPR, 目的端口为 PortR;
IP数据包过滤规则 3 ': 下行方向, 被接收 IP数据包的目的地址为 IP1, 目的端口 为 Portl; 源地址为 IPR, 目的端口为 PortR。
后续, PCRF可根据 PCEF的请求, 下发针对该 UE的 PCC规则, 由 PCEF执行该 PCC规则, 以对该 UE的业务进行正确的策略与计费控制。
实际应用中, 若 UE侧没有部署 NAT设备, NAT设备被部署在被访问端, 被访问 端会提供两个远端地址。 虽然 UE侧没有部署 NAT设备, 但是 UE仍能够收集到至少 两个网络地址, 即 UE的主机地址与 UE的反向地址, 只是 UE的主机地址与 UE的反 向地址相同。
以上列举了本发明实施例所提供的 NAT技术在 PCC架构中的实现方法及 PCRF的 在某些场景下的应用。 实际应用中, 本发明实施例提供的 NAT技术在 PCC架构中的实 现方案同样适用于在 PCC架构下引入 NAT技术的其他场景。
本实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF获取 到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成功的 会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定与 UE 的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业 务的策略和计费控制。
实施例六
本发明实施例还提供了一种用于提供 UE的网络地址相关信息的方法, 参见图 13, 图 13是该方法的流程图, 该流程可包括以下步骤:
步骤 1301、 AF获取 UE的网络地址相关信息; 所述网络地址相关信息包括用于标 示该 UE所在同一网络位置的多个网络地址。
本发明实施例中, AF可通过与 UE进行信息交互, 获取到 UE的网络地址相关信 息, UE的网络地址相关信息可包括以下任意组合: UE的主机地址、 由 NAT设备生 成的 UE的反向地址、 中继服务器分配的 UE的中继地址。
通常, UE在收集到自己的网络地址相关信息后, 可向 AF发送包含网络地址相关 信息的消息。 如 UE发送的 SDP消息中候选地址的格式如下:
candidate-attribute = "candidate" ":" foundation SP component-id SP transport SP
priority SP
connection-address SP; from RFC 4566
port ; port from RFC 4566
SP cand-type
[SP rel-addr]
[SP rel-port]
*(SP extension-att-name SP
extension-att-value)
其中, " connection-address "与 " port"为候选地址参数, " SP cand-type "表明候 选地址的类型。 如 UE通过向 AF发送如下 SDP消息, 将 UE的网络地址相关信息提供 给 AF, 该消息实例例如:
a=candidate: l 1 UDP 1694498815 192.0.2.3 45664 typ srflx raddr 10.0.1.1 rport 8998。 其中, UE的主机地址包括 IP地址 10.0.1.1、 端口 8998 ; UE的反向地址包括 IP地 址 192.0.2.3、 端口 45664。
再如,从 UE发送的 SIP消息的头域的 Via行中可获取到 UE的网络地址相关信息。 如:
Via: SIP/2.0/UDP 10.1.1.1 :4540; received=192.0.2.1 ; rport=9988;
其中, UE的主机地址为 IP地址 10.1.1.1、 端口 4540; UE的反向地址为 IP地址 192.0.2.1、 端口 rport=9988。
本发明实施例中, AF获取 UE的网络地址相关信息的做法可以是: 接收 UE发送 的携带 UE的网络地址相关信息的 SDP消息; 从该 SDP消息中解析出 UE的网络地址 相关信息, 且存储 UE的网络地址相关信息
若 AF与 UE之间不能支持 SDP消息,而支持 SIP消息,则 AF可从 UE发来的 SIP 消息的头域中获得 UE的网络地址相关信息。
步骤 1302、 AF将所述网络地址相关信息发送给 PCRF。
本发明实施例中, 可采用由 AF主动发送网络地址相关信息给 PCRF , 如 AF将 UE 的网络地址相关信息配置到 Diameter AAR消息中, 通过该消息将 UE的网络地址相关 信息携带给 PCRF ; 也可以由 PCRF 向 AF发送请求消息, AF收到该请求消息后, 将 UE的网络地址相关信息发送给 PCRF , 如 PCRF通过 Diameter RAR消息发送请求, AF 将 UE的网络地址相关信息配置到 Diameter RAA消息中, 通过该消息将 UE的网络地 址相关信息携带给 PCRF。
本发明实施例中, AF具体发送 UE的网络地址相关信息的做法可以是, 将 UE的 网络地址相关信息以文本方式配置于 Diameter AAR 消息或 Diameter RAA 消息的 Codec- Address AVP中。 该做法中, 可不需要对 Codec-Address AVP进行改进, 只需要 增加其中的文本行即可。
本发明实施例中, AF 具体发送 UE 的网络地址相关信息的做法还可以是, 将 UE 的网络地址相关信息配置于 Diameter AAR 消息或 Diameter RAA 消息中新增的 Candidate- Address AVP中。 下面列举新增的 Candidate-Address AVP的结构实例如下: Candidate- Address : := < AVP Header: XXXX >
{Candidate-IP}
[Candidate-port]
[Candidate-type ]
其中, " Candidate-IP " 可用于表示网络地址中的 IP地址, " Candidate-port " 可 用于表示网络地址中的端口, " Candidate-type " 可用于表示网络地址的类型如主机地 址、 反向地址、 中继地址等, 其中 Candidate-IP为必须填写项, 即需为该项配置内容; Candidate-port禾口 Candidate-type为可选项。
另外, 本发明实施例中, 还可通过对 SDP消息进行扩展, 在其中增加可用于描述 中继服务器地址的候选地址描述行, 由 UE配置其中的内容, 然后将该经过扩展的 SDP 消息发送给 AF, 使 AF能够获取到中继服务器的监听地址, 并由 AF将所获取到的中继 服务器的监听地址发送给 PCRF。
本发明实施例中, 对 SDP消息进行扩展以携带中继服务器的监听地址的做法可以 是, 扩展 SDP 消息中的候选地址描述行, 即 " a=candidate "行, 增加一个候选地址类 型, 该类型表示该候选地址是中继服务器的监听地址, 经过扩展的 SDP消息可用于传 输中继服务器的监听地址。 列举扩展的候选地址描述行实例如下: a=candidate:2 1 UDP 1694498562 $Relay-LIS-l .IP $Relay-LIS-l .PORT typ lsrly raddr $L-PRIV-1.IP rport $L-PRIV-l .PORT
其中, " lsrly" 指示该候选地址为中继服务器的监听地址; " $Relay-LIS-l .IP " 为 监听地址的 IP地址, " $Relay-LIS-l .PORT " 为监听地址的端口号。
实际应用中, 消息扩展的具体形式不限于本申请列举的上述各实例。
本实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF获取 到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成功的 会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定与 UE 的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业 务的策略和计费控制。
实施例七
相应地, 本发明实施例还提供一种 AF, 参见图 14, 图 14是该 AF的结构示意图, 包括: 信息获取模块 1401和发送处理模块 1402; 其中,
信息获取模块 1401,用于获取 UE的网络地址相关信息; 上述网络地址相关信息包 括用于标示该 UE所在网络位置的多个网络地址;
发送处理模块 1402, 用于将信息获取模块 1401获取到的网络地址相关信息发送给 PCRF。
信息获取模块 1401 可包括: 信息接收单元 1401a、 解析单元 1401b 和存储单元 1401c;
信息接收单元 1401a, 用于接收所述 UE发送的携带所述 UE的网络地址相关信息 的消息; 该消息可以是 SDP消息或 SIP消息;
解析单元 I401b, 用于从上述消息中解析出 UE的网络地址相关信息;
存储单元 1401c, 用于存储 UE的网络地址相关信息。
信息获取模块 1401可进一步用于获取中继服务器的监听地址, 其中,
信息接收单元 1401a可进一步用于接收 UE发送的携带中继服务器的监听地址的消 息, 该消息可以是 SDP消息;
解析单元 1401b可进一步用于从该消息中解析出继服务器的监听地址的消息; 存储单元 1401c可进一步用于存储继服务器的监听地址的消息。
发送处理模块 1402可包括: 配置单元 1402a和发送单元 1402b, 其中,
配置单元 1402a, 用于将 UE的网络地址相关信息配置于 Diameter AAR消息中, 或配置于 Diameter RAA消息中; 发送单元 1402b, 用于将被配置单元 1402a 配置有 UE 的网络地址相关信息的 Diameter AAR消息或 Diameter RAA消息发送给 PCRF。
下面结合具体的实施例对本发明实施例所提供的用于提供 UE的网络地址相关信息 的方法及 AF作详细说明。
实施例八:
本实施例中, 设 NAT技术在 PCC架构中的应用场景可参见图 5。 设 UE的主机地 址包括 IP1和 Portl , UE的反向地址包括 IP2和 Port2。
参见图 15, 图 15是本实施例中 AF向 PCRF提供 UE的网络地址相关信息的流程 图, 该流程可包括以下步骤:
步骤 1501、 UE向 AF发送 SDP消息。
该 SDP消息中携带 UE的网络地址相关信息, 包括 UE的主机地址和反向地址, 候 选地址描述行包括:
a=candidate: l 1 UDP 2130706431 IP1 Portl typ host;
a=candidate:2 1 UDP 1694498815 IP2 Port2 typ srflx raddr IP1 rport Portl。
步骤 1502、 AF根据收到的 SDP消息获取并存储 UE的网络地址相关信息。
步骤 1503、 AF与被访问端或者其他 AF等其他设备进行 SDP消息交互, 以获取其 他 UE的网络地址相关信息。
步骤 1504、 AF通过 Diameter AAR消息主动发送业务信息给 PCRF,业务信息中包 含 UE的网络地址相关信息。
UE的网络地址相关信息可被配置在 AAR消息中新增的 Candidate- Addres AVP中,
Candidate- Addres AVP指出 UE的主机地址包括 IP1和 Portl、反向地址包括 IP2和 Port2。
步骤 1505、 PCRF收到 AF发送的 SDP消息后, 解析出该 SDP消息中包含 UE的 网络地址相关信息的业务信息, 并存储该业务信息。 PCRF进行会话绑定。
该步骤 1505中, PCRF所执行的会话绑定可参见上述相关描述, 在此不再赘述。 步骤 1506、 PCRF在会话绑定成功后, 发送 Diameter AAA消息给 AF。
步骤 1507、 AF发送 SDP消息中的响应消息给 UE。
后续, PCRF可根据 AF上报的业务信息等等制定并存储 PCC规则。
本实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF获取 到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成功的 会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定与 UE 的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业 务的策略和计费控制。
本实施例中, PCRF制定 PCC规则的做法可参见上述相关描述, 不再赘述。
实施例九:
本实施例中, 设 NAT技术在 PCC架构中的应用场景可参见图 6或图 10。设 UE的 主机地址包括 IP1和 Portl , UE的反向地址包括 IP2和 Port2, UE的中继地址包括 IP3 和 Port3, 中继服务器的监听地址包括 IPR和 PortR。
参见图 16, 图 16是本实施例中 AF向 PCRF提供 UE的网络地址相关信息的流程 图, 该流程可包括以下步骤:
步骤 1601、 UE向 AF发送 SDP消息。
该 SDP消息中携带 UE的网络地址相关信息, 包括 UE的主机地址、反向地址和中 继地址, 另外, 该 SDP消息中, 进一步携带中继服务器的监听地址。 该 SDP消息中, 候选地址描述行包括:
a=candidate: l 1 UDP 2130706431 IPl Portl typ host;
a=candidate:2 1 UDP 1694498815 IP2 Port2 typ srflx raddr IPl rport Portl ;
a=candidate:3 1 UDP 1450435391 IP3 Port3 typ relay raddr IP2 rport Port2;
a=candidate:3 1 UDP 2651268134 IPR PortR typ lsrly raddr IP2 rport Port2。
步骤 1602、 AF根据收到的 SDP消息获取并存储 UE的网络地址相关信息。
步骤 1603、 AF与被访问端或者其他 AF等其他设备进行 SDP消息交互, 以获取其 他 UE的网络地址相关信息。
步骤 1604、 AF通过 Diameter AAR消息主动发送业务信息给 PCRF,业务信息中包 含 UE的网络地址相关信息。
UE的网络地址相关信息可被配置在 AAR消息中描述业务信息的 Codec-Data AVP 中, 即 Codec-Data AVP中含有如下描述行:
a=candidate: l 1 UDP 2130706431 IPl Portl typ host;
a=candidate:2 1 UDP 1694498815 IP2 Port2 typ srflx raddr IPl rport Portl; a=candidate:3 1 UDP 1450435391 IP3 Port3 typ relay raddr IP2 rport Port2;
a=candidate:3 1 UDP 2651268134 IPR PortR typ lsrly raddr IP2 rport Port2。
步骤 1605、 PCRF收到 AF发送的 SDP消息后, 解析出该 SDP消息中包含 UE的 网络地址相关信息的业务信息, 并存储该业务信息。 PCRF进行会话绑定。
该步骤 1605中, PCRF所执行的会话绑定可参见上述相关描述, 在此不再赘述。 步骤 1606、 PCRF在会话绑定成功后, 发送 Diameter AAA消息给 AF。 步骤 1607、 AF发送 SDP消息中的响应消息给 UE。
后续, PCRF可根据 AF上报的业务信息等等制定 PCC规则。
本实施例中, PCRF制定 PCC规则的做法可参见上述相关描述, 不再赘述。
本实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF获取 到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成功的 会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定与 UE 的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业 务的策略和计费控制。
实施例十:
本实施例中, 设 NAT技术在 PCC架构中的应用场景可参见图 5。 设 UE的主机地 址包括 IP1和 Portl , UE的反向地址包括 IP2和 Port2。
参见图 17, 图 17是本实施例中 AF向 PCRF提供 UE的网络地址相关信息的流程 图, 该流程可包括以下步骤:
步骤 1701、 UE向 AF发送 SIP消息。
该 SIP消息可以是 SIP注册消息等等, 该 SIP消息头域的 Via行中携带 UE的网络 地址相关信息, 包括 UE的主机地址和反向地址。
步骤 1702、 AF根据收到的 SIP消息获取并存储 UE的网络地址相关信息。
步骤 1703至步骤 1704、AF与被访问端或者其他 AF等其他设备进行 SIP消息交互, 以获取其他 UE 的网络地址相关信息, 并收到被访问端返回表示接收成功的应答, 如 2XX消息。
步骤 1705、 AF发送表示接收成功的应答消息给 UE。
步骤 1706、 AF通过 Diameter AAR消息主动发送业务信息给 PCRF,业务信息中包 含 UE的网络地址相关信息。
UE 的网络地址相关信息可被配置在 AAR 消息中描述业务信息的 Candidata- Address AVP中, 描述行如下:
a=candidate: l 1 UDP 2130706431 IP1 Portl typ host;
a=candidate:2 1 UDP 1694498815 IP2 Port2 typ srflx raddr IP1 rport Portl。
步骤 1707、 PCRF收到 AF发送的 SDP消息后, 解析出该 SDP消息中包含 UE的 网络地址相关信息的业务信息, 并存储该业务信息。 PCRF进行会话绑定。
该步骤 1707中, PCRF所执行的会话绑定可参见上述相关描述, 在此不再赘述。 步骤 1708、 PCRF在会话绑定成功后, 发送 Diameter AAA消息给 AF。 后续, PCRF可根据 AF上报的业务信息等等制定 PCC规则。
本实施例中, PCRF制定 PCC规则的做法可参见上述相关描述, 不再赘述。
综上所述, 本发明实施例为 NAT技术在 PCC架构中的实现, 提供了完整的技术方 案。 本发明实施例中, 可通过由 AF向 PCRF发送 UE的网络地址相关信息, 由 PCRF 获取到 UE的网络地址相关信息, 之后, PCRF可根据 UE的网络地址相关信息进行成 功的会话绑定, 进而, PCRF可基于成功的会话绑定, 继续开展 UE的业务, 包括制定 与 UE的实际业务数据流相符合的 PCC规则, 并通过 PCEF执行该 PCC规则, 实现对 UE业务的策略和计费控制。
本发明实施例可以通过软件实现, 相应的软件可以存储在可读取的存储介质中, 如 计算机的硬盘、 软盘或光盘中。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神和原 则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种网络地址转换 NAT技术在策略和计费控制 PCC架构中的实现方法, 其特 征在于, 包括:
策略控制和计费规则功能实体 PCRF与策略和计费执行实体 PCEF会话中, 所述 PCRF接收所述 PCEF发送的用于会话绑定的 UE的第一网络地址;
所述 PCRF与应用功能实体 AF的会话中, 所述 PCRF接收所述 AF发送的用户设 备 UE的网络地址相关信息, 所述网络地址相关信息包括用于标示所述 UE所在网络位 置的多个网络地址;
所述 PCRF确定所述多个网络地址中, 包含所述第一网络地址;
所述 PCRF将所述 PCRF与所述 AF之间的会话, 和所述 PCRF与所述 PCEF之间 的会话绑定。
2、 根据权利要求 1所述的方法, 其特征在于, 所述多个网络地址包括以下任意组 合.
所述 UE的主机地址、 由网络地址转换 NAT设备生成的所述 UE的反向地址、 由 中继服务器分配的所述 UE的中继地址;
所述第一网络地址为所述 UE的主机地址或所述 UE的反向地址。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述 PCRF确定所述多个网络 地址中, 包含所述第一网络地址, 包括:
所述 PCRF将所述多个网络地址中的部分或全部网络地址,分别与所述第一网络地 址进行匹配,若所述多个网络地址中的其中一个网络地址能够与所述第一网络地址相匹 配, 则确定所述多个网络地址包含所述第一网络地址。
4、 根据权利要求 2所述的方法, 其特征在于, 所述 PCRF将所述 PCRF与所述 AF 之间的会话, 和所述 PCRF与所述 PCEF之间的会话绑定后, 所述方法进一步包括: 根据所述网络地址相关信息, 制定符合实际业务数据流的策略和计费控制 PCC规 贝 lj。
5、根据权利要求 4所述的方法,其特征在于,所述制定符合实际业务数据流的 PCC 规则之前, 所述方法进一步包括:
所述 AF获取被访问端的网络地址相关信息; 接收所述 AF发送的被所述 AF获取到的所述被访问端的网络地址相关信息。
6、根据权利要求 5所述的方法,其特征在于,所述制定符合实际业务数据流的 PCC 规则之前, 所述方法进一步包括:
接收所述 AF发送的业务数据流描述信息;
所述业务数据流描述信息包括:
所述 UE向所述被访问端发送 IP数据包的上行方向上, 被发送 IP数据包的源网络 地址与目的网络地址; 和 /或,
所述 UE接收所述被访问端发来的 IP数据包的下行方向上, 被接收 IP数据包的源 网络地址与目的网络地址。
7、 根据权利要求 6所述的方法, 其特征在于, 所述 PCC规则包括: 能够通过所述 PCEF的 IP数据包过滤规则;
所述制定符合实际业务数据流的 PCC规则包括:
制定与所述上行方向上的业务数据流描述信息相对应的上行 IP数据包过滤规则; 和 /或,
制定与所述下行方向上的业务数据流描述信息相对应的下行 IP数据包过滤规则。
8、 根据权利要求 7所述的方法, 其特征在于, 所述制定与所述上行方向上的业务 数据流描述信息相对应的上行 IP数据包过滤规则包括:
根据所述第一网络地址, 制定能够通过所述 PCEF的被发送 IP数据包的源网络地 址为所述第一网络地址。
9、 根据权利要求 8所述的方法, 其特征在于, 所述被访问端的网络地址相关信息 包括: 所述被访问端的第一远端地址; 或, 所述被访问端的第一远端地址和第二远端地 址;
所述制定与所述上行方向上的业务数据流描述信息相对应的上行 IP数据包过滤规 则包括:
制定能够通过所述 PCEF的被发送 IP数据包的目的网络地址为所述第一远端地址 或所述第二远端地址。
10、 根据权利要求 7至 9中任一项所述的方法, 其特征在于, 所述多个网络地址包 括所述第一网络地址和所述 UE的中继地址;
所述制定所述上行 IP数据包过滤规则之前, 所述方法进一步包括:
获取所述中继服务器的监听地址。
11、 根据权利要求 10所述的方法, 其特征在于, 所述获取所述中继服务器的监听 地址包括: 向用户签约数据库 SPR发送请求所述监听地址的消息;
接收所述 SPR返回的所述监听地址。
12、 根据权利要求 1 1所述的方法, 其特征在于, 所述制定与所述上行方向上的业 务数据流描述信息相对应的上行 IP数据包过滤规则包括:
制定能够通过所述 PCEF的被发送 IP数据包的目的网络地址为所述中继服务器的 监听地址。
13、 根据权利要求 7所述的方法, 其特征在于, 所述制定与所述下行方向上的业务 数据流描述信息相对应的下行 IP数据包过滤规则包括:
根据所述第一网络地址, 制定能够通过所述 PCEF的被接收 IP数据包的目的网络 地址为所述第一网络地址。
14、 根据权利要求 13所述的方法, 其特征在于, 所述被访问端的网络地址相关信 息包括: 所述被访问端的第一远端地址; 或, 所述被访问端的第一远端地址和第二远端 地址;
所述制定与所述下行方向上的业务数据流描述信息相对应的下行 IP数据包过滤规 则包括:
制定能够通过所述 PCEF的被接收 IP数据包的源网络地址为所述第一远端地址或 所述第二远端地址。
15、 根据权利要求 13或 14所述的方法, 其特征在于, 所述多个网络地址包括所述 第一网络地址和所述 UE的中继地址;
所述制定与所述下行方向上的业务数据流描述信息相对应的下行 IP数据包过滤规 则包括:
制定能够通过所述 PCEF的被接收 IP数据包的源网络地址为所述中继服务器的监 听地址。
16、 根据权利要求 7所述的方法, 其特征在于, 所述制定符合实际业务数据流的 PCC规则包括:
确定所述上行 IP数据包过滤规则的个数和 /或所述下行 IP数据包过滤规则的个数。
17、 根据权利要求 16所述的方法, 其特征在于, 所述确定所述上行 IP数据包过滤 规则的个数, 或所述下行 IP数据包过滤规则的个数包括:
设所述被访问端的网络地址相关信息包括 N个远端地址, 且所述多个网络地址中 不包含所述 UE的中继地址, 则所述上行 IP数据包过滤规则的个数, 或所述下行 IP数 据包过滤规则的个数为 N个。
18、 根据权利要求 17所述的方法, 其特征在于, 所述确定所述上行 IP数据包过滤 规则的个数, 或所述下行 IP数据包过滤规则的个数包括:
设所述被访问端的网络地址相关信息包括 N个远端地址, 且所述多个网络地址中 包含所述 UE的中继地址, 则所述上行 IP数据包过滤规则的个数, 或所述下行 IP数据 包过滤规则的个数为 N+ 1个。
19、 根据权利要求 1或 2所述的方法, 其特征在于, 所述 PCRF接收所述 AF发送 的 UE的网络地址相关信息之前, 所述方法进一步包括:
所述 AF获取所述 UE的网络地址相关信息, 将所述网络地址相关信息发送给 PCRF。
20、 根据权利要求 19所述的方法, 其特征在于, 所述获取所述 UE的网络地址相 关信息包括:
接收所述 UE发送的携带所述 UE的网络地址相关信息的消息;
从所述消息中解析出所述 UE的网络地址相关信息, 且存储所述 UE的网络地址相 关信息。
21、 根据权利要求 20所述的方法, 其特征在于, 所述消息为: SDP消息或 SIP消 息。
22、 根据权利要求 21所述的方法, 其特征在于, 所述方法进一步包括:
接收所述 UE发送的携带所述中继服务器的监听地址的 SDP消息, 所述中继服务 器的监听地址被配置于所述 SDP消息中被扩展的候选地址描述行中。
23、 根据权利要求 19至 22中任一项所述的方法, 其特征在于, 所述将所述网络地 址相关信息发送给 PCRF包括:
将所述 UE的网络地址相关信息通过所述 Diameter AAR消息携带给所述 PCRF ;或, 在收到所述 PCRF发来的重新授权请求消息 Diameter RAR消息后, 将所述 UE的 网络地址相关信息通过所述重新授权应答消息 Diameter RAA消息发送给所述 PCRF。
24、 根据权利要求 23所述的方法, 其特征在于, 所述将所述网络地址相关信息发 送给 PCRF包括:
将所述 UE的网络地址相关信息以文本方式配置于所述 Diameter AAR消息或所述 Diameter RAA消息的属性取值对 Codec-Address AVP中; 或,
将所述 UE的网络地址相关信息配置于所述 Diameter AAR消息或所述 Diameter RAA消息中的候选地址属性取值对 Candidate-Address AVP中;
将配置有所述 UE的网络地址相关信息的 Diameter AAR消息或 Diameter RAA消息 发送给所述 PCRF。
25、 一种 PCRF, 其特征在于, 包括: 第一接收模块、 第二接收模块、 确定模块和 绑定模块; 其中,
所述第一接收模块,用于所述 PCRF与 AF之间的会话中, 接收所述 AF发送的 UE 的网络地址相关信息;所述网络地址相关信息包括用于标示该 UE所在网络位置的多个 网络地址;
所述第二接收模块, 用于所述 PCRF与 PCEF会话中, 接收所述 PCEF发送的用于 会话绑定的 UE的第一网络地址;
所述确定模块, 用于确定所述多个网络地址中, 包含所述第一网络地址; 所述绑定模块,用于将所述 PCRF与所述 AF之间的会话,和所述 PCRF与所述 PCEF 之间的会话绑定。
26、 根据权利要求 25所述的 PCRF, 其特征在于, 所述确定模块包括: 匹配单元 和确定单元; 其中,
所述匹配单元, 用于将所述多个网络地址中的部分或全部网络地址, 分别与所述第 一网络地址进行匹配;
所述确定单元,用于当所述匹配单元的匹配结果为所述多个网络地址中的其中一个 网络地址能够与所述第一网络地址相匹配,确定所述多个网络地址包含所述第一网络地 址。
27、 根据权利要求 25所述的 PCRF, 其特征在于, 所述 PCRF进一步包括: 规则制定模块,用于根据所述网络地址相关信息,制定符合实际业务数据流的 PCC 规则。
28、 根据权利要求 27所述的 PCRF, 其特征在于, 所述 PCRF进一步包括: 第三接收模块, 用于接收所述 AF发送的被所述 AF获取到的所述被访问端的网络 地址相关信息。
29、 根据权利要求 27或 28所述的 PCRF, 其特征在于, 所述 PCRF进一步包括: 第四接收模块, 接收所述 AF发送的业务数据流描述信息;
所述业务数据流描述信息包括:
所述 UE向所述被访问端发送 IP数据包的上行方向上, 被发送 IP数据包的源网络 地址与目的网络地址; 和 /或,
所述 UE接收所述被访问端发来的 IP数据包的下行方向上, 被接收 IP数据包的源 网络地址与目的网络地址。
30、 根据权利要求 29所述的 PCRF, 其特征在于, 所述规则制定模块包括: 第一 制定单元和 /或第二制定单元;
所述第一制定单元,用于制定与所述上行方向上的业务数据流描述信息相对应的上 行 IP数据包过滤规则;
所述第二制定单元,用于制定与所述下行方向上的业务数据流描述信息相对应的下 行 IP数据包过滤规则。
31、 根据权利要求 29所述的 PCRF, 其特征在于, 所述 PCRF进一步包括: 规则 个数确定模块, 用于确定所述上行 IP数据包过滤规则的个数和 /或所述下行 IP数据包 过滤规则的个数。
32、 一种 AF, 其特征在于, 包括: 信息获取模块和发送处理模块;
所述信息获取模块, 用于获取 UE的网络地址相关信息; 所述网络地址相关信息包 括用于标示该 UE所在网络位置的多个网络地址;
所述发送处理模块,用于将所述信息获取模块获取到的所述网络地址相关信息发送 给 PCRF。
33、 根据权利要求 32所述的应用功能实体, 其特征在于, 所述信息获取模块包括: 信息接收单元、 解析单元和存储单元;
所述信息接收单元, 用于接收所述 UE发送的携带所述 UE的网络地址相关信息的 消息;
所述解析单元, 用于从所述消息中解析出所述 UE的网络地址相关信息; 所述存储单元, 用于存储所述 UE的网络地址相关信息。
34、 根据权利要求 32或 33所述的实体, 其特征在于, 所述发送处理模块包括: 配 置单元和发送单元, 其中,
所述配置单元,用于将所述 UE的网络地址相关信息配置于 Diameter AAR消息中, 或配置于 Diameter RAA消息中;
所述发送单元, 用于将被所述配置单元配置有所述 UE的网络地址相关信息的
Diameter AAR消息或 Diameter RAA消息发送给所述 PCRF。
35、 根据权利要求 34所述的实体, 其特征在于, 所述信息获取模块, 进一步用于 获取中继服务器的监听地址;
相应地, 所述信息接收单元, 进一步用于接收所述 UE发送的携带所述中继服务器 的监听地址的 SDP消息;
所述解析单元,进一步用于从所述 SDP消息中解析出所述中继服务器的监听地址; 所述存储单元, 进一步用于存储所述中继服务器的监听地址。
36、 一种用于提供 UE的网络地址相关信息的方法, 其特征在于, 包括: 获取 UE的网络地址相关信息; 所述网络地址相关信息包括用于标示该 UE所在同 一网络位置的多个网络地址;
将所述网络地址相关信息发送给 PCRF。
37、 根据权利要求 36所述的方法, 其特征在于, 所述 UE的网络地址相关信息包 括以下任意组合:
所述 UE的主机地址、 由 NAT设备生成的所述 UE的反向地址、 由中继服务器分 配的所述 UE的中继地址。
38、 根据权利要求 37所述的方法, 其特征在于, 所述获取 UE的网络地址相关信 息包括:
接收所述 UE发送的携带所述 UE的网络地址相关信息的消息;
从所述消息中解析出所述 UE的网络地址相关信息, 且存储所述 UE的网络地址相 关信息。
39、 根据权利要求 38所述的方法, 其特征在于, 所述消息为: SDP消息或 SIP消 息。
40、 根据权利要求 38所述的方法, 其特征在于, 所述方法进一步包括: 接收所述 UE发送的携带所述中继服务器的监听地址的 SDP消息, 所述中继服务 器的监听地址被配置于该 SDP消息中被扩展的候选地址描述行中。
41、 根据权利要求 36至 40中任一项所述的方法, 其特征在于, 所述将所述网络地 址相关信息发送给 PCRF包括:
将所述 UE的网络地址相关信息通过 Diameter AAR消息携带给所述 PCRF; 或, 在收到所述 PCRF发来的重新授权请求消息 Diameter RAR消息后, 将所述 UE的 网络地址相关信息通过所述重新授权应答消息 Diameter RAA消息发送给所述 PCRF。
42、 根据权利要求 41所述的方法, 其特征在于, 将所述网络地址相关信息发送给
PCRF包括:
将所述 UE的网络地址相关信息以文本方式配置于所述 Diameter AAR消息或所述 Diameter RAA消息的属性取值对 Codec-Address AVP中; 或,
将所述 UE的网络地址相关信息配置于所述 Diameter AAR消息或所述 Diameter RAA消息中的候选地址属性取值对 Candidate-Address AVP中。
43、 根据权利要求 36所述的方法, 其特征在于, 将所述网络地址相关信息发送给 PCRF后, 所述方法进一步包括:
所述 PCRF利用所述 UE的网络地址相关信息, 将所述 PCRF与 AF之间的会话, 和所述 PCRF与 PCEF之间的会话进行会话绑定; 和 /或
制定符合实际业务数据流的 PCC规则。
PCT/CN2008/072804 2007-10-25 2008-10-23 Procédé de réalisation, pcrf et af de technologie nat dans une infrastructure pcc WO2009056052A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101657133A CN101420674B (zh) 2007-10-25 2007-10-25 Nat技术在pcc架构中的实现方法、pcrf及af
CN200710165713.3 2007-10-25

Publications (1)

Publication Number Publication Date
WO2009056052A1 true WO2009056052A1 (fr) 2009-05-07

Family

ID=40590558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072804 WO2009056052A1 (fr) 2007-10-25 2008-10-23 Procédé de réalisation, pcrf et af de technologie nat dans une infrastructure pcc

Country Status (2)

Country Link
CN (1) CN101420674B (zh)
WO (1) WO2009056052A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158514A (zh) * 2010-02-11 2011-08-17 中兴通讯股份有限公司 一种通信系统以及关联业务策略信息的方法
CN102158562A (zh) * 2010-02-11 2011-08-17 中兴通讯股份有限公司 一种下发pcc策略信息的方法及系统
CN102238507B (zh) * 2010-04-26 2015-08-12 中兴通讯股份有限公司 确定策略和计费规则功能的方法及系统
CN101895856A (zh) * 2010-05-10 2010-11-24 中国联合网络通信集团有限公司 用户重定向方法及系统
WO2011144083A2 (zh) 2011-05-25 2011-11-24 华为技术有限公司 策略控制方法及设备
WO2013023690A1 (en) * 2011-08-17 2013-02-21 Telefonaktiebolaget L M Ericsson (Publ) Advanced determination, processing and control in communication networks
CN103139762A (zh) * 2011-11-22 2013-06-05 中兴通讯股份有限公司 一种策略控制实体的选择方法及系统
CN103200151A (zh) * 2012-01-04 2013-07-10 中国移动通信集团公司 一种nat部署环境下的pcc会话绑定的方法、系统和pcrf
CN103220377A (zh) * 2012-05-08 2013-07-24 西北工业大学 一种nat穿越以及带宽复用的系统和方法
CN105101176B (zh) * 2014-05-05 2019-06-11 华为技术有限公司 一种漫游场景下的会话绑定方法、装置和系统
CN105764043A (zh) * 2014-12-15 2016-07-13 中国移动通信集团公司 一种会话绑定方法、pcrf和会话绑定系统
CN106211117B (zh) * 2015-04-29 2021-01-26 中兴通讯股份有限公司 策略规则制定方法、系统及装置
CN106804033A (zh) * 2015-11-26 2017-06-06 中国电信股份有限公司 会话绑定方法和系统及能力开放网关
CN109548008B (zh) * 2017-08-15 2021-09-14 华为技术有限公司 网络侧对远端用户设备的识别和控制方法以及设备
CN109548063B (zh) * 2017-09-20 2020-09-04 华为技术有限公司 处理报文的方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679302A (zh) * 2002-07-03 2005-10-05 艾利森公司 动态同时连接到多个服务提供商的系统和方法
CN101047988A (zh) * 2006-05-30 2007-10-03 华为技术有限公司 一种用户漫游状态下的策略及计费控制方法
CN101060703A (zh) * 2006-04-21 2007-10-24 华为技术有限公司 用户设备切换时的策略和计费控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679302A (zh) * 2002-07-03 2005-10-05 艾利森公司 动态同时连接到多个服务提供商的系统和方法
CN101060703A (zh) * 2006-04-21 2007-10-24 华为技术有限公司 用户设备切换时的策略和计费控制方法
CN101047988A (zh) * 2006-05-30 2007-10-03 华为技术有限公司 一种用户漫游状态下的策略及计费控制方法

Also Published As

Publication number Publication date
CN101420674A (zh) 2009-04-29
CN101420674B (zh) 2010-07-28

Similar Documents

Publication Publication Date Title
WO2009056052A1 (fr) Procédé de réalisation, pcrf et af de technologie nat dans une infrastructure pcc
JP5298203B2 (ja) Nat経由のデータセッションのポリシー及び課金制御のための制御セッションのトークンベースの相関
US10911932B2 (en) Method and system for hub breakout roaming
CN107409067B (zh) 在网络环境中发现策略计费和规则功能(pcrf)的系统和方法
US9456006B2 (en) Method, device and system for session binding
KR101807888B1 (ko) 게이트웨이 세션 확립을 위한 방법 및 장치
CN103262505B (zh) 使用网络地址转换的网络业务的区分处理
US20060056420A1 (en) Communication apparatus selecting a source address
EP2521385B1 (en) Policy and charging control method, gateway and mobile terminal thereof
EP2547049B1 (en) Method, system and corresponding apparatus for implementing policy and charging control
US11240199B2 (en) Service provision in scenarios with network address translation
WO2013041574A1 (en) Deferred address allocation of ipv4 or ipv6 in case of interworking between non-3gpp access and evolved packet core
WO2009033382A1 (fr) Procédé et dispositif d&#39;élément de réseau destinés à acquérir l&#39;information de contrôle des règles d&#39;une session d&#39;accès ip
WO2009092304A1 (zh) 选择策略和计费规则功能实体的方法和装置
WO2013064070A1 (zh) 一种实现反射QoS机制的方法、系统和PCRF
WO2015169044A1 (zh) 一种漫游场景下的会话绑定方法、裝置和系统
WO2011134327A1 (zh) 确定策略和计费规则功能的方法及系统
WO2011144083A2 (zh) 策略控制方法及设备
CN101998515B (zh) 控制pcrf负载均衡的实现方法和实现系统
WO2013063795A1 (zh) 用户设备下线的处理方法、装置和网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08845636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08845636

Country of ref document: EP

Kind code of ref document: A1