WO2009056020A1 - General hardware platform, corresponding architecture system, and power supply method for advanced mezzanine card - Google Patents

General hardware platform, corresponding architecture system, and power supply method for advanced mezzanine card Download PDF

Info

Publication number
WO2009056020A1
WO2009056020A1 PCT/CN2008/072130 CN2008072130W WO2009056020A1 WO 2009056020 A1 WO2009056020 A1 WO 2009056020A1 CN 2008072130 W CN2008072130 W CN 2008072130W WO 2009056020 A1 WO2009056020 A1 WO 2009056020A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
mezzanine card
advanced mezzanine
power supply
channel
Prior art date
Application number
PCT/CN2008/072130
Other languages
English (en)
French (fr)
Inventor
Cheng Chen
Feng Hong
Shanfu Li
Longji Rao
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08784120A priority Critical patent/EP2207304A4/en
Publication of WO2009056020A1 publication Critical patent/WO2009056020A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/183Internal mounting support structures, e.g. for printed circuit boards, internal connecting means
    • G06F1/185Mounting of expansion boards
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof

Definitions

  • the present invention relates to a general purpose hardware platform and a general hardware platform architecture system based on the platform and a power supply method for a progressive mezzanine card.
  • Telecommunications Computing Architecture including Advanced Common Hardware Platform Architecture (ATCA: Advanced TCA) and Small Common Hardware Platform Architecture (MTCA: Micro TCA).
  • ATCA Advanced Common Hardware Platform Architecture
  • MTCA Small Common Hardware Platform Architecture
  • the MTCA platform usually includes a chassis and a platform management service system.
  • the chassis provides physical structure support and power and signal channels for each module of the system.
  • the platform management service system provides an AMC management and operation environment, mainly including a switch control module. (MCH: MTCA Carrier Hub) and Power Module (PM: Power Module).
  • MCH MTCA Carrier Hub
  • PM Power Module
  • Chassis The chassis provides the connection interfaces and the connection channels between the modules of the MTCA system through the backplane, including: the interface provided to the AMC, such as interface 1 and interface 2 in Figure 1; connecting MCH and other
  • the intelligent platform management bus (IPMB) of each module includes IPMB-0 connecting MCH and PM and IPMB-L connecting MCH and AMC; hardware signal channel and load power channel connecting PM and each plug interface.
  • Figure 2 is an example of the arrangement of each module in the machine frame.
  • the machine frame includes "Tier 2 (layer 2)" and “Tier 1 (layer 1)” upper and lower layers, with 14 slots.
  • the two power modules PM1 and PM3 in slot 1 supply power to the plug interfaces of Tier 1 and Tier 2 respectively.
  • the MCH in slot 2 manages the power modules PM1 and PM3 and AMC, and the MCHs in slots 13 and 14
  • the MCH and PM1 and PM3 of PM2 and PM4 and slots 2 and 1 are mutually redundant, and 20 plug interfaces of slots 3 to 12 are provided to the AMC.
  • the MCH and the PM can be connected to the chassis by means of a pluggable module.
  • the plug interface referred to herein refers to the plug interface provided by the chassis for the AMC.
  • AMC usually supports hot swapping. It is a field replaceable unit (FRU).
  • the specific types include digital signal processing (DSP: Digital Signal Processing) AMC, central processing unit (CPU) AMC, and network processor. (NP: Network Processor) AMC, interface AMC, storage AMC, etc.
  • DSP Digital Signal Processing
  • CPU central processing unit
  • NP Network Processor
  • AMC interface AMC
  • storage AMC etc.
  • the commonly used AMC specifications are shown in Figure 3, including double width and full height, double width and half height, single width and full height, and single width and half height.
  • the AMCs of different specifications can be mixed and configured, and the slots of the chassis can be allocated as needed.
  • slots 3 and 4 in Figure 2 can support one full-height double-width AMC, or two half-height double-width AMCs, or One half-height double-width AMC + two half-height single-width AMC, or four half-height single-width AMC.
  • the single-width and double-width AMCs only provide one connector, the standard connector 40.
  • the AMC can be directly plugged into the jack of the chassis backplane through the standard connector 40.
  • the standard connector area includes the interface of the load power channel, the interface of the hardware signal channel (such as the PS1 (Present Signal 1) in-position signal 1 that detects the AMC in place), and the module management controller (MMC: Management Controller) and software on the AMC.
  • the interface of the signal channel IPMB-L, etc. refer to the AMC.0 specification for the specific pin definition and signal interaction of the standard connector area of the AMC.
  • AMC ZONE 2 and AMC ZONE 3 which are designed to assist the auxiliary connector, are also defined for the AMC.
  • PM is responsible for providing load power to the AMC connected to the plug-in through the load power channel connected to each plug interface, usually +12V.
  • the PM is usually provided with an EMMC (Enhanced Management Controller), which can supply load power to the corresponding plug-in interface according to information such as the AMC in-position detection signal of the plug interface obtained from the hardware signal channel.
  • EMMC Enhanced Management Controller
  • MCH The MMC is equipped with an MTCA Bearer Management Controller (MCMC: MTCA Carrier Manager Controller).
  • MCMC MTCA Bearer Management Controller
  • the MCMC connects to the MMC of each AMC through IPMB-L to implement MCH management for each AMC.
  • the MCMC connects to the EMMC of the PM through IPMB-0. , to achieve MCH management of PM.
  • the TCA platform provided in the existing TCA system that is compatible with the AMC standard connector cannot meet the diversified functional power requirements that may occur in the AMC (this article) Medium, other classes that will be AMC in addition to load power requirements Types of power requirements are called functional power requirements), such as +48V Power over Ethernet (POE) power supply, 90V 20Hz AC ringing power supply, etc., which limits the expansion of AMC functions.
  • functional power requirements such as +48V Power over Ethernet (POE) power supply, 90V 20Hz AC ringing power supply, etc.
  • Embodiments of the present invention provide a general hardware platform, a general hardware platform architecture system, and an advanced mezzanine card power supply method capable of flexibly meeting the functional power requirements of an advanced mezzanine card.
  • a general hardware platform includes: a backplane for providing a load power channel and a signal channel; and a platform management service system for acquiring power supply requirement information of an advanced mezzanine card plugged into the backplane through the signal channel; The power supply requirement information determines a functional power supply requirement of the advanced mezzanine card; and provides a functional power supply to the advanced mezzanine card through a load power supply channel connected to the advanced mezzanine card according to the determined functional power supply requirement.
  • a general hardware platform architecture system includes a general hardware platform and an advanced mezzanine card; the advanced mezzanine card includes a connector and a module management controller; the universal hardware platform includes a backplane, a switch control module, and a power module; a second management bus for providing a load power channel and a first management bus and a switch control module and a power module; the connector for one or more plug interfaces provided through the backplane, Plugged in the backplane; the module management controller is configured to provide power configuration information to the switch control module by using the connector; and the switch control module is configured to be connected to the connector
  • the first management bus acquires the power configuration information provided by the module management controller, and feeds back the power configuration information to the power module through the second management bus; the power module is configured to be configured according to the power supply Information determining the functional power requirements of the advanced mezzanine card; passing the electrical power according to the determined functional power requirements Channel, the power on function providing the connector load supply passage connected.
  • An advanced mezzanine card power supply method includes: obtaining, by using a signal channel provided by the backboard, power supply requirement information of an advanced mezzanine card inserted on the backplane; and determining, according to the power supply requirement information, a functional power requirement of the advanced mezzanine card; Providing a corresponding functional power supply to the advanced mezzanine card through a load power channel provided by the backplane and connected to the advanced mezzanine card according to the determined functional power requirement.
  • the platform management service system identifies the power supply requirement information of the advanced mezzanine card connected to the plug interface, thereby providing the required function power according to the requirements of the advanced mezzanine card. Thanks to the power supply method based on information recognition, the output function power can be flexibly selected to fully meet the diversified functional power requirements that may occur in advanced mezzanine cards.
  • FIG. 1 is a schematic diagram of the basic structure of an existing MTCA system
  • FIG. 2 is a view showing an example of an arrangement form of each module in the existing machine frame
  • Figure 3 is a schematic diagram of a plurality of existing AMCs
  • Figure 4 is a schematic view of a conventional AMC standard connector
  • Figure 5 is a schematic diagram showing the definition of a conventional AMC connector area
  • FIG. 6 is a schematic diagram of a basic structure of a general hardware platform according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the logical structure of a general hardware platform according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a specific logical structure of a power module in the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a logical structure of a general hardware platform architecture system according to Embodiment 1 of the present invention
  • FIG. 10 is a schematic diagram showing a logical structure of a general hardware platform according to Embodiment 2 of the present invention
  • FIG. 11 is a schematic diagram showing a specific logical structure of a power module in Embodiment 2 of the present invention.
  • FIG. 12 is a schematic diagram showing the logical structure of a general hardware platform architecture system according to Embodiment 2 of the present invention
  • FIG. 13 is a schematic diagram showing the logical structure of a power conversion module of an AMC according to Embodiment 2 of the present invention
  • FIG. 14 is a schematic diagram showing the logical structure of an MTCA system according to Example 1 of the present invention;
  • Figure 15 is a diagram showing the logical structure of an MTCA system of Example 2 of the present invention.
  • the embodiment of the present invention provides a general hardware platform, and the basic structure thereof is as shown in FIG. 6, including: a backplane 001 for providing a load power channel B and a signal channel C.
  • the load power channel refers to the power channel used to provide the load power on the backplane according to the usual specifications.
  • the backplane 001 provides a load power channel B and a signal channel C to the advanced mezzanine card AMC through a plurality of plug connectors A-1 ⁇ A-n;
  • the AMC After the AMC is plugged into the backplane through one or more plug interfaces, it can be connected to the load power channel B and the signal channel C;
  • the platform management service system 002 is configured to acquire, by using the signal channel C, the power supply requirement information of the AMC inserted on the backplane; determine the functional power requirement of the connected AMC according to the obtained power supply requirement information; and pass the determined power supply requirement according to the determined function
  • the AMC is connected to the load power channel B to provide the corresponding functional power to the AMC.
  • the logical structure provided by the above general hardware platform satisfies: 1 Identify the function AMC inserted into the backplane.
  • the identification of the power supply requirements used can be from a single plug-in interface or from multiple plug-ins.
  • the power supply demand information may be a software signal or a hardware signal, or a combination of two signals.
  • the content and connection method of the power supply demand information can be defined in the following two ways:
  • the backplane needs to provide a dedicated connection signal path.
  • the corresponding function AMC also needs to be designed with an auxiliary connector outside the existing standard connector. It can be designed in the auxiliary connector area of the standard connector. Or auxiliary connector area three.
  • the structure of the backplane can be changed without any changes.
  • the use of the plug-in interface provided by the AMC to the standard connector can be divided into the following two cases:
  • the function AMC provides power supply requirement information by multiplexing the signals and pins provided by its standard connector.
  • the backplane only needs to provide a functional interface for the function AMC to be fitted with the standard connector.
  • This plug interface adapted to the AMC standard connector is simply referred to as a standard interface.
  • B2 Function AMC provides auxiliary power supply information in the auxiliary connector area 2 or auxiliary connector area 3 of the standard connector.
  • the backplane needs to provide two standard interfaces for the function AMC.
  • a dedicated power module can be used, or the output capability of a power module that provides the load power supply can be extended to provide a functional power supply.
  • the backplane outputs a functional power supply by sharing a load power channel.
  • the structure of the backplane can be changed without changing; the function AMC can obtain the functional power by multiplexing the load power channel provided by its standard connector.
  • the load power is obtained by converting the input functional power supply.
  • the backplane provides only a standard interface for the functional AMC; of course, the functional AMC can also pass through the auxiliary connector area of the standard connector.
  • the auxiliary connector of the auxiliary connector area 3 is designed to input the functional power supply.
  • the backplane provides two standard interfaces for the functional AMC.
  • Plug-in interface types include: Plug-in interfaces for functional AMCs that use only one standard connector (this type of plug-in interface is compatible with normal AMC using standard connectors); A combination of a standard connector and an auxiliary connector (the auxiliary connector is compatible with the standard connector design) function AMC plug-in interface (two plug-in interfaces in this plug-in interface combination are compatible with the normal AMC using standard connectors) ; Provides a combination of plug-in interfaces for a functional AMC that uses a standard connector and an auxiliary connector that is not compatible with standard connector designs.
  • the method for powering the AMC by the above-mentioned general hardware platform can be summarized as follows: the power supply requirement information of the advanced mezzanine card inserted on the backboard is obtained through the signal channel provided by the backplane; and the function of the advanced mezzanine card is determined according to the power supply requirement information.
  • Embodiment 1 is a general hardware platform.
  • the general hardware platform in this embodiment provides a software signal channel to transmit power supply requirement information of the AMC.
  • the logical structure is as shown in FIG. 7, including the backplane 11 and the platform management service system.
  • the example platform management service system includes a switch control module 12 and a power module 13.
  • the backboard 11 is configured to provide a load power channel B1 and a first management bus C1; and a second management bus D1 that connects the switch control module 12 and the power module 13.
  • the backplane 11 provides a load power supply channel B 1 and a first management bus C 1 to the AMC through a plurality of plug interfaces Al-1 ⁇ Al -n.
  • the switching control module 12 is configured to obtain power configuration information of the AMC through the first management bus C1 connected to the AMC; and feed the obtained power configuration information to the power module 13 through the second management bus D1. Since the AMC can be plugged into the backplane 11 through one or more plug interfaces, for the sake of clarity of description, it is assumed that one of the plug interfaces used by the AMC is "interface one", and the switch control module 12 passes the first management belonging to interface one. Bus C 1 acquires the power configuration information of the AMC.
  • the power module 13 is configured to determine, according to the power configuration information provided by the switch control module 12, the functional power requirement of the AMC connected to the interface; and provide the corresponding AMC to the AMC through the load power channel B1 connected to the AMC according to the determined functional power requirement.
  • Functional power supply can select the load power channel that belongs to interface one, or the load power channel that belongs to other plug interfaces connected to the AMC.
  • the power module 13 can specifically adopt the structure shown in FIG. 8, and includes:
  • the power circuit 131 is configured to convert the input power, and the converted power source includes one or one The above functional power supply;
  • the enhanced module management controller EMMC 132 is configured to obtain power configuration information of the AMC through the second management bus D1, determine a functional power requirement of the AMC according to the obtained power configuration information, and generate a software control signal according to the determined functional power requirement;
  • the control circuit 133 is configured to provide a corresponding converted power source to a load power supply channel B1 connected to the AMC according to the software control signal of the enhanced module management controller 132.
  • the power module 13 can only consider the output function power supply, and can of course be compatible with the output load power supply.
  • the function power supply outputted by the power supply circuit 131 in FIG. 8 can be replaced by the 12V load power supply output.
  • B1 can be selected to output functional power and load power.
  • the first management bus C1 provided by the backplane 11 serves as a software signal channel for acquiring power supply requirement information of the AMC, and can be defined based on the existing software signal channel IPMB-L, so that the design of the part related to the identification function AMC in the interface one is The design of existing standard interfaces is compatible.
  • the second management bus D1 provided by the backplane 11 can be defined based on the existing software signal path IPMB-0, and the MCMC of the switching control module 12 communicates with the EMMC of the power module 13 in the manner defined by IPMB-0.
  • the FRU information stored in the AMC, in the function AMC, the FRU information includes new power configuration information, and the specific content may be the identification information or other configuration information of the function power required by the function AMC.
  • the general hardware platform can obtain the identification information of the function AMC through the first management bus belonging to the interface one, and provide the function power to the function AMC through the load power channel belonging to the other plug interface (assumed to be the interface 2).
  • the interface can be designed according to the standard interface, and the interface 2 can be designed according to the standard interface (the load power channel is selected to output the load power supply and the functional power supply), or can be specially designed.
  • the interface 2 can be located in the auxiliary connector area 2 of the interface one, and the corresponding function AMC is the full height specification; or the interface 2 can be located in the auxiliary connector area 3 of the interface one, and the corresponding function AMC is double wide. specification.
  • the universal hardware platform can also acquire the function AMC identification through the interface one.
  • the information is also supplied to the function AMC through the interface.
  • the load power channel is selected to output the load power supply and the functional power supply.
  • the interface can be designed according to the standard interface, but the corresponding function AMC needs to design the power conversion circuit to convert the input functional power to obtain the load power supply to meet Load power requirements.
  • the functional AMC does not require the use of an auxiliary connector.
  • the plug interfaces provided by the backplane may include different types, and not all plug interfaces need to be connected to C1; for example, if some plug interfaces on the backplane are dedicated to providing functional power to the function AMC, Types of plug-in interfaces may not support connection to C1 because they do not require software signal interaction with the platform services system.
  • a general hardware platform architecture system based on the general hardware platform of the first embodiment is shown below. As shown in FIG. 9, the general hardware platform and the advanced mezzanine card 14 are included.
  • the general hardware platform uses the structure in the first embodiment, including the backplane 11, Exchange control module 12 and power module 13; advanced mezzanine card 14 includes a connector 141 and a module management controller MMC 142;
  • the backboard 11 is configured to provide a load power channel B1 and a first management bus C1; and a second management bus D1 that connects the switch control module 12 and the power module 13;
  • the connector 141 is configured to be inserted into the backplane through one or more plug interfaces provided by the backboard 11.
  • the module management controller MMC 142 is configured to provide power configuration information to the switch control module 12 by means of the connector 141 to provide FRU information;
  • the switching control module 12 is configured to obtain the power configuration information provided by the MMC 142 through the first management bus C1 connected to the connector 141; and feed the obtained power configuration information to the power module 13 through the second management bus D1;
  • the power module 13 is configured to determine a functional power requirement of the advanced mezzanine card 14 according to the obtained power configuration information; and provide a corresponding functional power supply on the load power channel connected to the connector 141 through the power channel B1 according to the determined function power requirement.
  • the connector 141 can adopt the structure of a standard connector, or a standard connector plus an auxiliary connector (two or three in the auxiliary connector area, compatible with the standard connector) Design), or a standard connector plus an auxiliary connector (two or three in the auxiliary connector area, not compatible with the standard connector design) structure.
  • A1-1 is used as the interface 1 for acquiring the power configuration information of the AMC
  • the connector 141 is exemplarily used with a standard connection.
  • the connector is equipped with a structure compatible with the standard design of the auxiliary connector.
  • the B1 can select the output load power supply and the functional power supply, and can supply the load power to the standard connector connected to the A1-1. Therefore, the B1 and FIG. The connection relationship of standard connectors.
  • the platform management service system uses the software signal channel to identify the power supply requirement information of the advanced mezzanine card inserted on the backplane, thereby providing the required functional power according to the requirements of the advanced mezzanine card. Thanks to the power supply based on information recognition, the output power supply can be flexibly selected to fully meet the diversified functional power requirements of advanced mezzanine cards. At the same time, the transmission of software identification signals and the provision of functional power supplies can be designed to be compatible with the definition of existing standard interfaces, making small changes to existing equipment and easy to implement.
  • Embodiment 2 A general hardware platform, compared with the first embodiment, the general hardware platform in this embodiment provides a hardware signal channel to transmit the power supply requirement information of the AMC in addition to the software signal channel, and the logical structure is as shown in FIG.
  • the platform management service system includes a switch control module 22 and a power module 23, including the backplane 21 and the platform management service system.
  • the backboard 21 is configured to provide a load power channel B2, a first management bus C2, and a hardware signal channel E2; and a second management bus D2 that connects the switch control module 22 and the power module 23.
  • the backplane 21 provides a load power channel B2 and a first management bus C2 to the AMC through a plurality of plug interfaces, and two plug interfaces A2-1 and A2-2 are exemplarily shown in FIG.
  • the switching control module 22 is configured to obtain power configuration information of the AMC through the first management bus C2 connected to the AMC; and feed the obtained power configuration information to the power module 23 through the second management bus D2. Since the AMC can be plugged into the backplane 21 through one or more plug interfaces, for the sake of clarity of description, it is assumed that one of the plug interfaces used by the AMC is "interface one", and the switch control module 22 passes the first management belonging to interface one. Bus C2 acquires the power configuration information of the AMC.
  • the power module 23 is configured to acquire an in-position detection signal of the AMC through the hardware signal channel E2 connected to the AMC; determine whether it is needed according to the power configuration information provided by the exchange control module 22 and the in-position detection signal acquired through the hardware signal channel E2 A corresponding functional power supply is provided on the load power supply channel B2 that belongs to the same plug interface as the hardware signal channel E2 that provides the bit detection signal; and the corresponding functional power supply is provided on the load power supply channel B2 according to the determined result. It is assumed that the hardware signal channel E2 of the in-position detection signal of the AMC belongs to the interface 2, the interface 2 and the interface 1 may be the same plug interface, or the interface 2 may be another plug interface other than the interface 1. In the latter case, the pre-specified slot can be used The bit allocation mode is used to determine the relationship between interface 1 and interface 2. For example, for the two-layer backplane, two adjacent interfaces on the backplane can be used as interface one and interface two.
  • the AMC uses a double-width specification with a standard connector and an auxiliary connector located in the auxiliary connector area 3. It is also possible to use two adjacent plug-in interfaces on the same layer of the backplane as interface one and interface two, and the corresponding functions AMC ⁇ With full height specifications, with standard connectors and auxiliary connectors located in the auxiliary connector area 2. For clarity, in Figure 10, A2-1 is used as interface one, and A2-2 is used as interface two.
  • the power module 23 can specifically adopt the structure shown in FIG. 11, and includes:
  • the power circuit 231 is configured to convert the input power, and the converted power source includes one or more functional power sources;
  • the enhanced module management controller EMMC 232 is configured to obtain power configuration information of the AMC through the second management bus D2, determine a functional power requirement of the AMC according to the obtained power configuration information, and generate a software control signal according to the determined functional power requirement;
  • the control circuit 233 is configured to acquire an in-position detection signal of the AMC plugged on the interface A2-2 through the hardware signal channel E2 belonging to the interface two A2-2; for controlling the software control signal according to the enhancement module management controller 132 and The in-position detection signal on interface A2-2 supplies a corresponding converted power supply to the AMC through the load power supply channel B2 belonging to interface two A2-2.
  • the in-position detection signal provided by the hardware signal channel E2 can also be provided to the enhanced module management controller EMMC 232, together with the power configuration information as a basis for determining the functional power requirement of the AMC. , the part is connected to the map
  • the power module 23 can only consider the output function power supply, and can of course be compatible with the output load power supply.
  • the function power output of the power supply circuit 231 in FIG. 11 is replaced with the 12V load power output.
  • the corresponding EMMC 232 can also generate a software control signal for controlling the output of the load power supply.
  • the load power channel B2 belonging to the interface A2-2 becomes a shared channel of the function power source and the load power source, and the control circuit 233 is controlled according to software.
  • the signal and in-position detection signals are selected to output a load power supply or a functional power supply on the power supply channel B2 belonging to interface two A2-2.
  • the hardware signal channel E2 provided by the backplane 21 for transmitting the in-position detection signal can be defined based on the existing PS1 signal for detecting the AMC in position, so that the design of the portion related to the identification function AMC in the interface A2-2 is existing and existing.
  • the design of the standard interface is compatible. Since the PS1 signal belongs to the standard slot definition range, the hardware signal channel E2 is also connected to the interface A2-1 in FIG. Obviously, in the case that the interface 2 and the interface 1 are the same plug interface, that is, the software and hardware channel of the identification function AMC belong to the same plug interface, and the plug interface can also be compatible with the design of the existing standard interface.
  • the following is a general hardware platform architecture system based on the second embodiment of the general hardware platform, as shown in FIG. 12, including a general hardware platform and an advanced mezzanine card 24; the general hardware platform uses the structure in the second embodiment, including the backplane 21, Exchange control module 22 and power module 23; advanced mezzanine card 24 includes a connector 241 and a module management controller MMC242;
  • the backboard 21 is configured to provide a load power channel B2, a first management bus C2, and a hardware signal channel E2; a second management bus D2 that provides a connection exchange control module 22 and a power module 23;
  • the connector 241 is configured to be plugged into the backboard 21 through one or more plug interfaces provided by the backboard 21;
  • the module management controller MMC 242 is configured to provide power configuration information to the switch control module 22 by means of the connector 241 to provide FRU information;
  • the exchange control module 22 is configured to acquire the MMC through the first management bus C2 connected to the connector 241.
  • the power module 23 is configured to acquire an in-position detection signal of the AMC through the hardware signal channel E2 connected to the connector 241; and determine, according to the acquired power configuration information and the in-position detection signal of the AMC, whether it is needed to provide the in-position detection signal
  • the hardware signal channel E2 belongs to the same power supply channel B2 of the same plug interface to provide corresponding functional power; according to the determined result, the corresponding functional power is provided on the load power channel B2. It is assumed that the first management bus C2 that acquires the power configuration information of the AMC belongs to the interface one, and the hardware signal channel E2 that provides the in-position detection signal of the AMC belongs to the interface two:
  • the connector 241 includes a standard connector and an auxiliary connector.
  • the auxiliary connector is located in the auxiliary connector area 2 of the standard connector or the auxiliary connector area 3; the standard connector is used to provide a connection interface with the interface 1, and the auxiliary connector is used. Provides a connection interface with interface 2.
  • Figure 12 is drawn in this case, and assuming that B2 can select the output function power supply and the load power supply, B2 is also connected to interface A2-1.
  • the advanced mezzanine card 24 also needs to include a power conversion module 243.
  • the schematic diagram of the module is shown in FIG. 13 for converting the functional power input from the connector 241.
  • the converted power supply includes a load power supply and a functional power supply, respectively.
  • the corresponding functional circuit and load circuit are used.
  • the platform management service system uses software and hardware signal channels to identify the power supply requirement information of the advanced mezzanine card connected to the backplane, thereby providing the required functional power according to the requirements of the advanced mezzanine card. Thanks to the power supply based on information recognition, the output function power can be flexibly selected to fully meet the diversified functional power requirements of advanced mezzanine cards. At the same time, the transmission of the identification signal and the provision of the functional power supply can be designed in accordance with the definition of the existing standard interface, and the modification of the existing equipment is small and easy to implement.
  • Example 1 Applicable to the function of double-width specification
  • the schematic logic structure of the MTCA system of AMC is shown in Figure 14.
  • the backplane of the MTCA system has a two-layer structure.
  • the upper and lower adjacent plug-in interfaces serve as interface one and interface two.
  • the plug-in interface of Tier2 is used as interface two, and the plug-in interface of Tierl is used as interface one.
  • the corresponding functional AMC connector includes a standard connector and an auxiliary connector designed to be compatible with a standard connector.
  • the auxiliary connector is located in the AMC ZONE 3 connector area of the standard connector and provides a connection between the POE power channel and the hardware control signal. How to support the POE function inside the functional AMC can be designed according to the Institute of Electrical and Electronics Engineers' 802.3af standard. This example is not limited.
  • the IPMB-L bus on the plug interface of the Tier 2 connection auxiliary connector is not shown in FIG. Since the PS1 signal and power supply mode of Tier 1 are not involved in the analysis of this example, the hardware signal of Tier 1 is not shown in FIG. Channel and power module.
  • Figure 14 shows the connection of a common single-width AMC in Tier 2, the connection of a double-wide functional AMC, and the connection of two empty-plug interfaces in Tier 1 and Tier 2 respectively.
  • the hardware channel (hereinafter referred to as the PS1 channel) for transmitting the PS1 signal is connected to each plug interface and the power module of the Tier 2, and the PS1 is pulled up inside the power module.
  • the PS1 channel When a plug interface is inserted into the common single-width AMC, the common single-width AMC is used.
  • the PS1 signal line is internally pulled low. Therefore, when the EMMC of the power module detects that a certain PS1 line is low, it can be judged that the plug interface has a common single-width AMC insertion, thereby controlling the load power output.
  • the different levels of PS1 are used to determine the insertion of the double-wide function AMC, that is, to pull the PS1 high to the inside of the double-wide function AMC.
  • the EMMC of the power module detects that a certain PS1 is high, the plug interface may be inserted into the double-wide function AMC or the plug interface is empty.
  • the double-width function AMC is required to be connected to the Tier 1, such as IPMB- L bus connection to distinguish between these two possible situations.
  • the MCH can read the slot application information of Tier 1 through the IPMB-L bus.
  • the POE-related power configuration information is saved in the FRU information, and the MMC of the double-wide function AMC can read these power configurations.
  • the MCMC of MCH can feed back the power configuration information to the EMMC of the power module through the IPMB-0 bus, the level of the EMMC integrated PS1 and the power configuration information obtained by communication using the IPMB bus, so as to accurately determine whether a certain plug interface is inserted into the double. Wide function AMC.
  • the MCH cannot read the power configuration information from the corresponding Tier 1 plug interface through the IPMB-L bus, so the MCH can know that the plug interface is not inserted into the dual interface.
  • the wide-function AMC, MCH MCMC can notify the EMMC of the power module through the IPMB-0 bus.
  • the power module can determine whether a Tier 2 slot is empty by comprehensive analysis of the PS1 signal and the IPMB interaction information.
  • the PS1 signal is also connected as a hardware control signal to the control circuit of each power supply (the control circuit includes the POE power control part and the load power control part).
  • the control circuit includes the POE power control part and the load power control part.
  • PS1 is high level is the hardware control condition for turning on the POE power supply
  • PS1 is low level is the hardware control condition for turning on the load power supply.
  • EMMC is still root According to the state of the PS 1 signal and the information obtained through the IPMB bus communication, after making the insertion AMC type judgment, the software control signal is output, and the switch of the POE power source and the load power source is controlled (the software control signal can use the POE enable signal POE-EN and The load power enable signal POW—EN, POE—EN is high for software control conditions to turn on the POE power supply, and POW—EN is high for software control conditions to turn on the load power supply.
  • the relationship between the soft/hardware control signal and the power supply output is shown in Table 1, where 0 is low and 1 is high.
  • the example MTCA system manages and controls the Tier 2's POE power output.
  • the power module detects the PS1 signal and obtains the level state of the PS1. When the PS1 is low, it judges that the ordinary single-width AMC is inserted. When the PS1 is high, it is judged that the double-width function AMC is inserted or the AMC is not inserted. Time:
  • the power module requires the MCH to provide the module information for reading the corresponding Tier 1 plug interface.
  • the MCH communicates with the module located in Tier 1 through the IPMB-L bus of the corresponding Tier 1 plug interface, and feeds back information through the IPMB-0 bus. Give the power module.
  • the power module judges according to the information fed back by the MCH, for example, whether there is POE power configuration information.
  • the Tier 2 plug interface is plugged into a double wide function AMC or an empty plug interface.
  • the power module outputs the corresponding software control signal according to the judgment of the inserted AMC type, and combines the hardware control signals to jointly control the power control circuit and output the power required by the AMC to the shared power channel.
  • the AMC ZONE 3 auxiliary connector area is used to implement POE power supply.
  • the AMC ZONE 2 auxiliary connector area can also be used to implement POE power supply.
  • interface one and interface two are in the same layer. Two adjacent plug-in interfaces, the corresponding function AMC uses full height specifications, and the connection and control methods can be referred to this example design, and will not be described again.
  • Example 2 Applicable to the function of using a single standard connector
  • the AMC MTCA system, the system logic structure is shown in Figure 15.
  • the plug-in interface of the backplane of the MTCA system and the corresponding function AMC connector are compatible with the standard AMC connector zone definition.
  • the management and control process of this example system will be described in detail below with reference to FIG. 15:
  • Figure 15 shows the connection of a normal single-width AMC, the connection of a single-wide-function AMC, and the connection of an empty-plug interface.
  • the PS1 channel is connected to each plug interface and the power module respectively.
  • the PS1 is pulled up inside the power module.
  • the ordinary single-width AMC internally pulls the PS 1 signal line low, and the single-width function AMC also pulls the PS 1 to the low level. Therefore, when the EMMC of the power module detects that a certain PS1 is low, the plug interface may be inserted with a common single wide AMC or a single wide function AMC.
  • the power configuration information related to the POE should also be saved in the FRU information, and the MMC of the single-width function AMC can read the power configuration information, and pass the IPMB-L bus and the MCMC of the MCH.
  • the communication is performed, and the power configuration information is fed back to the MCH, so the MCH can know that the plug interface is inserted into the single-width function AMC.
  • the MCMC of MCH can feed back the power configuration information to the EMMC of the power module through the IPMB-0 bus.
  • the level of the EMMC integrated PS1 and the power configuration information obtained by communication using the IPMB bus can accurately determine that a certain plug interface is inserted into the common Single-width AMC is also a single-wide function AMC.
  • the internal control mode of the power module is the same as that of the first example, and will not be described again.
  • the relationship between the soft/hardware control signal and the power supply output in this example is shown in Table 2, where 0 is low and 1 is high.
  • the single-width function AMC when inserting the single-width function AMC, the single-wide function AMC can only obtain 48V POE power from the shared power channel. Therefore, the single-width function AMC needs to design a power conversion circuit to convert from the 48V POE power supply to the internal needs. Load power supply.
  • the example MTCA system manages and controls the POE power output as follows:
  • the power module detects the PS1 signal and obtains the level state of PS1. When PS1 is low, it judges that the ordinary single-width AMC or single-width function AMC is inserted. When PS1 is high, it is judged that AMC is not inserted.
  • the power module requires MCH to read the module information of the corresponding plug interface, MCH communicates with the module through the IPMB-L bus of the corresponding plug interface, and feeds the module information back to the power module through the IPMB-0 bus. .
  • the power module determines whether the plug interface is inserted with a common single-width AMC or a single-wide function AMC according to the module information fed back by the MCH, for example, whether there is POE power configuration information.
  • the power module outputs the corresponding software control signal according to the judgment of the inserted AMC type, and combines the hardware control signals to jointly control the power control circuit and output the power required by the AMC to the shared power channel.
  • the platform management service system identifies the power supply requirement information of the advanced mezzanine card connected on the backboard, so as to provide the required functional power according to the requirements of the advanced mezzanine card.
  • the general hardware platform of the embodiment of the present invention uses information based on information Other power supply modes, flexible selection of output function power supply, fully meet the diversified functional power requirements of advanced mezzanine cards.
  • the transmission of the hardware/software identification signal and the provision of the functional power supply can be designed to be compatible with the definition of the existing standard interface, and the modification of the existing device is small and easy to implement.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Power Sources (AREA)

Description

通用硬件平台及相应的架构系统和先进夹层卡供电方法
本申请要求于 2007 年 10 月 30 日提交中国专利局、 申请号为 200710164395.9 , 发明名称为"通用硬件平台及相应的架构系统和先进夹层卡 供电方法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通用硬件平台以及基于该平台的通用硬件平台架构系统和先 进夹层卡供电方法。
背景技术
为满足电信和计算等应用中对集中计算和处理的需求,基于模块应用的灵 活性以及通用化、标准化等特点,提出了电信和计算通用硬件平台架构(TCA: Telecommunications Computing Architecture ), 其中具体包括高级通用硬件平台 架构( ATCA: Advanced TCA )和小型通用硬件平台架构( MTCA: Micro TCA ) 等类型。
以 MTCA系统为例, 基本结构如图 1所示, 包括 MTCA平台和先进夹层 卡( AMC: Advanced Mezzanine Card )。 MTCA平台通常包括机框和平台管理 服务系统,其中机框为系统各模块提供物理结构支持以及所使用的电源和信号 通道等, 平台管理服务系统提供 AMC的管理和运行环境, 主要包括交换控制 模块( MCH: MTCA Carrier Hub )和电源模块( PM: Power Module )。 以下, 参照图 1 , 对 MTCA系统的各个部分进行说明:
机框: 机框通过背板为 MTCA系统的各个模块提供连接接口和相互之间 的连接通道, 其中包括: 提供给 AMC的插接口, 如图 1中的接口 1和接口 2; 连接 MCH 和其他各模块的智能平台管理总线 (IPMB: Intelligent Platform Management Bus ), 包括连接 MCH和 PM的 IPMB-0与连接 MCH和 AMC的 IPMB-L; 连接 PM和各个插接口的硬件信号通道和负载电源通道。 图 2是各 模块在机框中的排布形式的一个示例, 图 2中机框包括" Tier 2 (层 2 ) "和" Tier 1 (层 1 ) "上下两层, 有 14个槽位, 位于槽位 1的两个电源模块 PM1和 PM3 分别给 Tier 1和 Tier 2的插接口供电,位于槽位 2的 MCH对电源模块 PM1和 PM3和 AMC进行管理, 位于槽位 13和 14的 MCH和 PM2、 PM4与槽位 2 和 1的 MCH和 PM1、 PM3互为冗余,槽位 3 ~ 12的 20个插接口提供给 AMC。 显然 MCH和 PM可以釆用可插拔模块的方式连接到机框上, 为清楚起见, 本 文中所称插接口指机框为 AMC提供的插接口。
AMC : AMC 通常支持热插拔, 是一种现场可更换单元 (FRU: Field Replaceable Unit ),具体类型包括数字信号处理( DSP: Digital Signal Processing ) AMC、 中央处理器( CPU ) AMC、 网络处理器( NP: Network Processor ) AMC、 接口 AMC、存储 AMC等。通常使用的 AMC规格如图 3所示,包括双宽全高、 双宽半高、 单宽全高、 单宽半高四种。 在 MTCA系统中不同规格的 AMC可 混合配置, 根据需要进行机框槽位的分配, 例如, 图 2中的槽位 3和 4可以支 持 1个全高双宽 AMC,或者 2个半高双宽 AMC,或者 1个半高双宽 AMC + 2 个半高单宽 AMC, 或者 4个半高单宽 AMC。 目前, 如图 4所示, 单宽和双宽 的 AMC均只提供一个连接器, 即标准连接器 40, AMC可以通过标准连接器 40 直接插到机框背板的插接口上。 标准连接器区包括负载电源通道的接口、 硬件信号通道的接口 (例如检测 AMC在位的 PS1 ( Present Signal 1 )在位信 号 1 ) 以及 AMC上的模块管理控制器(MMC: Management Controller )与软 件信号通道 IPMB-L的接口等, 关于 AMC的标准连接器区具体的管脚定义和 信号交互等内容可参考 AMC.0规范。 此外, 如图 5所示, 还为 AMC定义了 可设计辅助连接器的辅助连接器区二 (AMC ZONE 2 ) 和辅助连接器区三 ( AMC ZONE 3 )。
PM: PM 负责通过与各个插接口连接的负载电源通道为插接口上连接的 AMC提供负载电源, 通常为 +12V电源。 PM上通常设置有增强模块管理控制 器(EMMC: Enhanced Management Controller ), 能够根据从硬件信号通道获 取的插接口的 AMC在位检测信号等信息为相应的插接口提供负载电源。
MCH: MCH上设置有 MTCA承载管理控制器(MCMC: MTCA Carrier Manager Controller ), MCMC通过 IPMB-L与各个 AMC的 MMC连接, 实现 MCH对各 AMC的管理; MCMC通过 IPMB-0与 PM的 EMMC连接, 实现 MCH对 PM的管理。
在对现有技术的研究和实践过程中, 限于 AMC标准连接器的定义, 现有 TCA系统中提供的与 AMC标准连接器适配的 TCA平台不能满足 AMC可能 出现的多样化功能电源需求(本文中, 将 AMC在负载电源需求之外的其他类 型的电源需求称为功能电源需求),例如 +48V的以太网供电(POE: Power Over Ethernet ) 电源、 90V 20Hz的交流振铃电源等, 限制了 AMC功能的扩展。 发明内容
本发明实施例提供一种能够灵活满足先进夹层卡的功能电源需求的通用 硬件平台、 通用硬件平台架构系统及先进夹层卡供电方法。
一种通用硬件平台, 包括: 背板, 用于提供负载电源通道和信号通道; 平 台管理服务系统,用于通过所述信号通道获取插接在背板上的先进夹层卡的供 电需求信息; 根据所述供电需求信息确定所述先进夹层卡的功能电源需求; 按 照确定的功能电源需求通过与所述先进夹层卡连接的负载电源通道,向所述先 进夹层卡提供功能电源。
一种通用硬件平台架构系统, 包括通用硬件平台和先进夹层卡; 所述先进 夹层卡包括连接器和模块管理控制器; 所述通用硬件平台包括背板、 交换控制 模块和电源模块; 所述背板, 用于提供负载电源通道和第一管理总线及连接所 述交换控制模块和电源模块的第二管理总线; 所述连接器, 用于通过所述背板 提供的一个或一个以上插接口, 插接在所述背板上; 所述模块管理控制器, 用 于通过所述连接器向所述交换控制模块提供电源配置信息; 所述交换控制模 块,用于通过与所述连接器连接的第一管理总线获取所述模块管理控制器提供 的电源配置信息,并通过所述第二管理总线将所述电源配置信息反馈到所述电 源模块; 所述电源模块, 用于根据所述电源配置信息确定所述先进夹层卡的功 能电源需求; 按照确定的功能电源需求通过所述电源通道,在与所述连接器连 接的负载电源通道上提供功能电源。
一种先进夹层卡供电方法, 包括: 通过背板提供的信号通道获取插接在背 板上的先进夹层卡的供电需求信息;根据所述供电需求信息确定所述先进夹层 卡的功能电源需求;按照确定的功能电源需求通过背板提供的与所述先进夹层 卡连接的负载电源通道, 向所述先进夹层卡提供相应的功能电源。
上述技术方案中通过平台管理服务系统对插接口上连接的先进夹层卡的 供电需求信息进行识别,从而根据先进夹层卡的需求向其提供所需要的功能电 源。由于釆用了基于信息识别的电源提供方式,能够灵活的选择输出功能电源, 充分满足先进夹层卡可能出现的多样化功能电源需求。 附图说明
图 1是现有 MTCA系统的基本结构示意图;
图 2是现有机框中各模块的排布形式的一个示例图;
图 3是现有多种规格的 AMC示意图;
图 4是现有 AMC标准连接器示意图;
图 5是现有 AMC连接器区的定义示意图;
图 6是本发明实施例的通用硬件平台基本结构示意图;
图 7是本发明实施例一通用硬件平台逻辑结构示意图;
图 8是本发明实施例一中电源模块具体的逻辑结构示意图;
图 9是本发明实施例一的通用硬件平台架构系统逻辑结构示意图; 图 10是本发明实施例二通用硬件平台逻辑结构示意图;
图 11是本发明实施例二中电源模块具体的逻辑结构示意图;
图 12是本发明实施例二的通用硬件平台架构系统逻辑结构示意图; 图 13是本发明实施例二中 AMC的电源转换模块的逻辑结构示意图; 图 14是本发明示例一的 MTCA系统逻辑结构示意图;
图 15是本发明示例二的 MTCA系统逻辑结构示意图。
具体实施方式
本发明实施例提供一种通用硬件平台, 其基本结构如图 6所示, 包括: 背板 001 , 用于提供负载电源通道 B和信号通道 C。 本文中, 负载电源通道 指按照通常的规范, 背板上用来提供负载电源的电源通道。 背板 001通过若干 个插接口 A-1 ~ A-n来向先进夹层卡 AMC提供负载电源通道 B和信号通道 C;
AMC通过一个或一个以上的插接口插接到背板上以后,即可与负载电源通道 B 和信号通道 C连接;
平台管理服务系统 002, 用于通过信号通道 C获取插接在背板上的 AMC的 供电需求信息; 根据获取的供电需求信息确定所连接的 AMC的功能电源需求; 按照确定的功能电源需求通过与 AMC连接的负载电源通道 B , 向 AMC提供相 应的功能电源。
下面, 对上述基本结构进行分析。 清楚起见, 以下将具有功能电源需求的 AMC称为功能 AMC。 上述通用硬件平台提供的逻辑结构满足: ①识别插入到背板上的功能 AMC。
识别所使用的供电需求信息可以釆自单个插接口, 也可以釆自多个插接 口。供电需求信息可以是软件信号也可以是硬件信号,或者是两种信号的综合。 供电需求信息的内容和连接方式可釆用如下两种定义方式:
a、 专门定义。 这种情况下, 背板需要提供专用的连接信号通道, 相应的 功能 AMC也需要在现有的标准连接器之外设计适配的辅助连接器, 可设计在 标准连接器的辅助连接器区二或辅助连接器区三。
b、 基于现有标准连接器提供的管脚和连接信号通道。 这种情况下背板的 结构可无须更改; 根据功能 AMC对背板提供的与标准连接器适配的插接口的 使用方式可具体分为如下两种情况:
bl、 功能 AMC通过对自身标准连接器提供的信号和管脚的复用来提供供 电需求信息, 此时, 背板仅需要为功能 AMC提供一个与标准连接器适配的插 接口, 本文中将这种与 AMC标准连接器适配的插接口简称为标准接口。
b2、 功能 AMC在标准连接器的辅助连接器区二或辅助连接器区三设计辅 助连接器来提供供电需求信息, 此时, 背板需要为功能 AMC提供两个标准接 口。
②为功能 AMC提供功能电源。
可以使用专门的电源模块 ,也可以扩展原有提供负载电源的电源模块的输 出能力来提供功能电源。本发明中背板通过共享负载电源通道的方式来输出功 能电源, 这种情况下背板的结构可无须更改; 功能 AMC可通过对自身标准连 接器提供的负载电源通道的复用来获得功能电源,另外通过对输入的功能电源 进行转换获得负载电源, 此时结合前述情况 bl , 背板仅为功能 AMC提供一个 标准接口; 当然, 功能 AMC也可以通过在标准连接器的辅助连接器区二或辅 助连接器区三设计的辅助连接器来输入功能电源, 此时结合前述情况 b2, 背板 为功能 AMC提供两个标准接口。
当然,上述各种不同的识别和电源提供方式也可以在同一通用硬件平台中 混合使用, 例如, 可在背板上同时配置不同类型的插接口, 根据插接口的类别 按照对应的方式进行管理,插接口类型包括: 提供给仅使用一个标准连接器的 功能 AMC的插接口(该类插接口兼容使用标准连接器的普通 AMC ); 提供给使 用一个标准连接器和一个辅助连接器 (该辅助连接器兼容标准连接器设计 )的 功能 AMC的插接口组合(该类插接口组合中的两个插接口均兼容使用标准连 接器的普通 AMC ); 提供给使用一个标准连接器和一个辅助连接器(该辅助连 接器不兼容标准连接器设计) 的功能 AMC的插接口组合。
上述通用硬件平台为 AMC供电的方法可归纳为: 通过背板提供的信号通 道获取插接在背板上的先进夹层卡的供电需求信息;根据所述供电需求信息确 定所述先进夹层卡的功能电源需求;按照确定的功能电源需求通过背板提供的 与所述先进夹层卡连接的负载电源通道,向所述先进夹层卡提供相应的功能电 源。
以下分别对基于上述基本结构的通用硬件平台和通用硬件平台架构系统 进行详细说明。
实施例一、一种通用硬件平台, 本实施例中的通用硬件平台提供软件信号 通道来传输 AMC的供电需求信息, 逻辑结构如图 7所示, 包括背板 11和平台管 理服务系统, 本实施例平台管理服务系统包括交换控制模块 12和电源模块 13。
背板 11 , 用于提供负载电源通道 B1和第一管理总线 C1 ; 提供连接交换控 制模块 12和电源模块 13的第二管理总线 Dl。 背板 11通过若干个插接口 Al-1 ~ Al -n来向 AMC提供负载电源通道 B 1和第一管理总线 C 1。
交换控制模块 12, 用于通过与 AMC连接的第一管理总线 C1获取 AMC的电 源配置信息; 通过第二管理总线 D1将获取的电源配置信息反馈到电源模块 13。 由于 AMC可以通过一个或一个以上的插接口插接到背板 11上, 为描述清楚起 见, 假定 AMC使用的插接口之一为 "接口一", 交换控制模块 12通过属于接口 一的第一管理总线 C 1获取 AMC的电源配置信息。
电源模块 13 ,用于根据交换控制模块 12提供的电源配置信息确定与接口一 连接的 AMC的功能电源需求; 按照确定的功能电源需求通过与该 AMC连接的 负载电源通道 B1向该 AMC提供相应的功能电源。 当然, 被用来向 AMC提供功 能电源的负载电源通道 B1可以选择属于接口一的负载电源通道, 也可以选择 属于与该 AMC连接的其他插接口的负载电源通道。
电源模块 13具体可釆用如图 8所示的结构, 包括:
电源电路 131 , 用于对输入电源进行转换, 转换后的电源包括一种或一种 以上的功能电源;
增强模块管理控制器 EMMC 132, 用于通过第二管理总线 D1获取 AMC的 电源配置信息, 根据获取的电源配置信息确定 AMC的功能电源需求, 按照确 定的功能电源需求生成软件控制信号;
控制电路 133 , 用于根据增强模块管理控制器 132的软件控制信号, 将相应 的一种转换后的电源提供给与 AMC连接的某一条负载电源通道 B 1。
电源模块 13可仅考虑输出功能电源, 当然也可以兼容输出负载电源, 这种 情况下, 将图 8中电源电路 131输出的某一路功能电源更换为 12V负载电源输出 即可, 此时负载电源通道 B1可被选择输出功能电源和负载电源。
下面, 对本实施例通用硬件平台的结构进行分析。
①识别插入到背板上的功能 AMC。
背板 11提供的第一管理总线 C1作为获取 AMC的供电需求信息的软件信号 通道, 可以基于现有的软件信号通道 IPMB-L定义, 这样, 接口一中与识别功 能 AMC有关的部分的设计与现有标准接口的设计兼容。 背板 11提供的第二管 理总线 D1可以基于现有的软件信号通道 IPMB-0定义, 交换控制模块 12的 MCMC按照 IPMB -0定义的方式与电源模块 13的 EMMC通讯。
AMC中存储的 FRU信息, 在功能 AMC中, 该 FRU信息中包含有新增的电源配 置信息, 其具体内容可以是该功能 AMC所需要的功能电源的标识信息或其它 配置信息等。
②为功能 AMC提供功能电源。
在本实施例中,通用硬件平台可以通过属于接口一的第一管理总线获取功 能 AMC的识别信息, 再通过属于另一插接口 (假定为接口二) 的负载电源通 道向功能 AMC提供功能电源。 这种情况下, 接口一可按照标准接口设计, 接 口二可按照标准接口设计 (负载电源通道被选择输出负载电源和功能电源 ), 也可以专门设计。 基于现有 AMC的规格, 接口二可位于接口一的辅助连接器 区二, 相应的功能 AMC为全高规格; 或者, 接口二可位于接口一的辅助连接 器区三, 相应的功能 AMC为双宽规格。
在本实施例中, 通用硬件平台也可以既通过接口一获取功能 AMC的识别 信息, 又通过接口一向功能 AMC提供功能电源。 这种情况下, 负载电源通道 被选择输出负载电源和功能电源,接口一可按照标准接口设计, 只是相应的功 能 AMC中需要设计电源转换电路,对输入的功能电源进行转换获得负载电源, 以满足负载电源需求。 这种结构下, 功能 AMC无须使用辅助连接器。
通过上述分析可知, 背板提供的插接口可以包括不同的类型, 并不是所有 插接口都需要与 C1连接; 例如, 若背板上某些插接口专用于向功能 AMC提供 功能电源, 则这种类型的插接口由于不需要与平台服务系统进行软件信号交 互, 因此可以不支持与 C1的连接。
下面给出基于实施例一通用硬件平台的通用硬件平台架构系统, 如图 9所 示,包括通用硬件平台和先进夹层卡 14;通用硬件平台釆用实施例一中的结构, 包括背板 11、 交换控制模块 12和电源模块 13; 先进夹层卡 14包括连接器 141和 模块管理控制器 MMC 142;
背板 11 , 用于提供负载电源通道 B1和第一管理总线 C1 ; 提供连接交换控 制模块 12和电源模块 13的第二管理总线 D1 ;
连接器 141 , 用于通过背板 11提供的一个或一个以上插接口, 插接在背板
11上;
模块管理控制器 MMC 142,用于通过连接器 141 ,以提供 FRU信息的方式, 向交换控制模块 12提供电源配置信息;
交换控制模块 12,用于通过与连接器 141连接的第一管理总线 C1获取 MMC 142提供的电源配置信息; 通过第二管理总线 D1将获取的电源配置信息反馈到 电源模块 13;
电源模块 13 ,用于根据获取的电源配置信息确定先进夹层卡 14的功能电源 需求; 按照确定的功能电源需求通过电源通道 B1 , 在与连接器 141连接的负载 电源通道上提供相应的功能电源。
基于实施例一中提供的通用硬件平台的结构, 连接器 141可以釆用一个标 准连接器的结构, 或者一个标准连接器加一个辅助连接器(位于辅助连接器区 二或三, 兼容标准连接器设计)的结构, 或者一个标准连接器加一个辅助连接 器(位于辅助连接器区二或三,不兼容标准连接器设计)的结构。 图 9中以 A1-1 作为获取 AMC的电源配置信息的接口一, 连接器 141示例性的釆用一个标准连 接器加一个兼容标准设计的辅助连接器的结构, 此时 B1可选择输出负载电源 和功能电源, 能够为与 A1-1连接的标准连接器提供负载电源, 因此图 9中画出 了 B1与标准连接器的连接关系。
本实施例中通过平台管理服务系统釆用软件信号通道对背板上插接的先 进夹层卡的供电需求信息进行识别,从而根据先进夹层卡的需求向其提供所需 要的功能电源。 由于釆用了基于信息识别的电源提供方式, 能够灵活的选择输 出功能电源, 充分满足先进夹层卡可能出现的多样化功能电源需求。 同时, 软 件识别信号的传输和功能电源的提供可兼容现有标准接口的定义进行设计,对 现有设备改动小, 容易实现。
实施例二、 一种通用硬件平台, 与实施例一相比, 本实施例中的通用硬件 平台除了提供软件信号通道以外还提供硬件信号通道来传输 AMC的供电需求 信息, 逻辑结构如图 10所示, 包括背板 21和平台管理服务系统, 本实施例平台 管理服务系统包括交换控制模块 22和电源模块 23。
背板 21 , 用于提供负载电源通道 B2、 第一管理总线 C2和硬件信号通道 E2; 提供连接交换控制模块 22和电源模块 23的第二管理总线 D2。 背板 21通过若干 个插接口来向 AMC提供负载电源通道 B2和第一管理总线 C2, 图 10中示例性的 画出了两个插接口 A2-1和 A2-2。
交换控制模块 22, 用于通过与 AMC连接的第一管理总线 C2获取 AMC的电 源配置信息; 通过第二管理总线 D2将获取的电源配置信息反馈到电源模块 23。 由于 AMC可以通过一个或一个以上的插接口插接到背板 21上, 为描述清楚起 见, 假定 AMC使用的插接口之一为 "接口一", 交换控制模块 22通过属于接口 一的第一管理总线 C2获取 AMC的电源配置信息。
电源模块 23 , 用于通过与 AMC连接的硬件信号通道 E2获取 AMC的在位检 测信号; 根据交换控制模块 22提供的电源配置信息以及通过硬件信号通道 E2 获取的在位检测信号,确定是否需要在与提供在位检测信号的硬件信号通道 E2 属于同一插接口的负载电源通道 B2上提供相应的功能电源; 按照确定的结果 在负载电源通道 B2上提供相应的功能电源。 假定提供 AMC的在位检测信号的 硬件信号通道 E2属于接口二,接口二与接口一可以是同一个插接口,或者接口 二可以是接口一以外的另一插接口。在后一种情况下, 可以通过预先规定的槽 位分配方式来确定接口一和接口二的关联关系, 例如,对于两层结构的背板可 以将位于背板上下两层的相邻两个插接口作为接口一和接口二, 相应的功能
AMC釆用双宽规格, 具有标准连接器和位于辅助连接器区三的辅助连接器; 也可以将位于背板同一层的相邻两个插接口作为接口一和接口二,相应的功能 AMC釆用全高规格, 具有标准连接器和位于辅助连接器区二的辅助连接器。 清楚起见, 图 10中以 A2-1作为接口一, 以 A2-2作为接口二。
电源模块 23具体可釆用如图 11所示的结构, 包括:
电源电路 231 , 用于对输入电源进行转换, 转换后的电源包括一种或一种 以上的功能电源;
增强模块管理控制器 EMMC 232, 用于通过第二管理总线 D2获取 AMC的 电源配置信息, 根据获取的电源配置信息确定 AMC的功能电源需求, 按照确 定的功能电源需求生成软件控制信号;
控制电路 233 , 用于通过属于接口二 A2-2的硬件信号通道 E2获取插接在接 口二 A2-2上的 AMC的在位检测信号; 用于根据增强模块管理控制器 132的软件 控制信号和接口二 A2-2上的在位检测信号,将相应的一种转换后的电源通过属 于接口二 A2-2的负载电源通道 B2提供给 AMC。
清楚起见, 图 11中只画出了电源模块 23到一个插接口的一路输出, 多个插 接口的情况可类推。 此外, 为提高电源输出控制的可靠性, 硬件信号通道 E2 提供的在位检测信号, 也可以同时提供给增强模块管理控制器 EMMC 232, 与 电源配置信息一起作为其判断 AMC的功能电源需求的依据, 该部分连接在图
11中以虚线画出。
与实施例一中类似, 电源模块 23可仅考虑输出功能电源, 当然也可以兼容 输出负载电源, 这种情况下, 将图 11中电源电路 231输出的某一路功能电源更 换为 12V负载电源输出即可, 当然, 相应的 EMMC 232, 还可以生成控制负载 电源输出的软件控制信号, 此时属于接口二 A2-2的负载电源通道 B2成为功能 电源和负载电源的共享通道, 控制电路 233根据软件控制信号和在位检测信号 选择在属于接口二 A2-2的电源通道 B2上输出负载电源或者一种功能电源。
下面, 对本实施例通用硬件平台的结构进行分析。
①识别插入到背板上的功能 AMC。 本实施例中, 对从软件信号通道 C2获取的供电需求信息部分的分析与实 施例一类似。背板 21提供的传输在位检测信号的硬件信号通道 E2可以基于现有 的检测 AMC在位的 PS1信号来定义, 这样, 接口二 A2-2中与识别功能 AMC有 关的部分的设计与现有标准接口的设计兼容。 由于 PS1信号属于标准槽位定义 范围, 因此图 10中同样为接口一 A2-1连接了硬件信号通道 E2。 显然, 在接口 二与接口一是同一插接口的情况下, 即识别功能 AMC的软件和硬件通道属于 同一插接口, 该插接口也能够与现有标准接口的设计兼容。
②为功能 AMC提供功能电源。
本实施例中, 对功能电源的提供的分析与实施例一类似, 不再赘述。
下面给出基于实施例二通用硬件平台的通用硬件平台架构系统, 如图 12 所示, 包括通用硬件平台和先进夹层卡 24; 通用硬件平台釆用实施例二中的结 构, 包括背板 21、交换控制模块 22和电源模块 23;先进夹层卡 24包括连接器 241 和模块管理控制器 MMC242;
背板 21 , 用于提供负载电源通道 B2、 第一管理总线 C2和硬件信号通道 E2; 提供连接交换控制模块 22和电源模块 23的第二管理总线 D2;
连接器 241 , 用于通过背板 21提供的一个或一个以上插接口, 插接在背板 21上;
模块管理控制器 MMC 242,用于通过连接器 241 ,以提供 FRU信息的方式, 向交换控制模块 22提供电源配置信息;
交换控制模块 22,用于通过与连接器 241连接的第一管理总线 C2获取 MMC
242提供的电源配置信息; 通过第二管理总线 D2将获取的电源配置信息反馈到 电源模块 23;
电源模块 23 ,用于通过与连接器 241连接的硬件信号通道 E2获取 AMC的在 位检测信号; 根据获取的电源配置信息以及 AMC的在位检测信号, 确定是否 需要在与提供在位检测信号的硬件信号通道 E2属于同一插接口的负载电源通 道 B2上提供相应的功能电源; 按照确定的结果在负载电源通道 B2上提供相应 的功能电源。 假定获取 AMC的电源配置信息的第一管理总线 C2属于接口一, 提供 AMC的在位检测信号的硬件信号通道 E2属于接口二:
①若接口二是接口一以外的另一插接口; 则连接器 241包括一个标准连接器和一个辅助连接器, 辅助连接器位于标 准连接器的辅助连接器区二或者辅助连接器区三;标准连接器用于提供与接口 一的连接接口,辅助连接器用于提供与接口二的连接接口。 图 12以这种情况画 出, 并且假设 B2能选择输出功能电源与负载电源, 因此同样为接口一 A2-1连 接了 B2。
②若接口二与接口一是同一插接口;
则先进夹层卡 24还需要包括电源转换模块 243 ,该模块示意图如图 13所示, 用于对从连接器 241输入的功能电源进行转换, 转换后的电源包括负载电源和 功能电源, 分别提供给相应的功能电路和负载电路使用。
本实施例中通过平台管理服务系统釆用软件和硬件信号通道对背板上连 接的先进夹层卡的供电需求信息进行识别,从而根据先进夹层卡的需求向其提 供所需要的功能电源。 由于釆用了基于信息识别的电源提供方式, 能够灵活的 选择输出功能电源, 充分满足先进夹层卡可能出现的多样化功能电源需求。 同 时, 识别信号的传输和功能电源的提供可兼容现有标准接口的定义进行设计, 对现有设备改动小, 容易实现。
为更好的理解实施例二,下面分别就接口一与接口二不是同一插接口和是 同一插接口的情况给出实际应用的例子。 在应用例中, 假定功能 AMC的功能 电源需求为 +48 V的 POE电源。
示例一、 适用于双宽规格的功能 AMC的 MTCA系统, 系统逻辑结构示意 图如图 14所示。
该 MTCA系统的背板具有双层结构,上下两层相邻的插接口作为接口一和 接口二, 以上层 Tier2的插接口作为接口二, 以下层 Tierl的插接口作为接口一, 所有插接口均兼容标准接口设计。 相应的功能 AMC的连接器包括一个标准连 接器和一个兼容标准连接器设计的辅助连接器,辅助连接器位于标准连接器的 AMC ZONE 3连接器区, 提供 POE电源通道和硬件控制信号的连接, 对于功能 AMC内部如何支持 POE功能可参照电气和电子工程师协会的 802.3af标准来设 计, 本示例不做限定。 由于辅助连接器不需要支持 IPMB-L, 因此图 14中没有 画出 Tier 2连接辅助连接器的插接口上的 IPMB-L总线。 由于本示例分析过程中 不涉及 Tier 1的 PS1信号和供电方式, 因此图 14中也没有画出 Tier 1的硬件信号 通道和电源模块。
下面参照图 14对本示例系统的管理和控制过程进行详细描述:
图 14中给出了一个位于 Tier 2的普通单宽 AMC的连接情况、 一个双宽功能 AMC的连接情况和分别位于 Tier 1和 Tier 2的两个空插接口的连接情况。
传输 PS1信号的硬件通道(以下简称 PS1通道)分别连接位于 Tier 2的各插 接口和电源模块, PS1在电源模块内部被上拉, 当某一插接口插入普通单宽 AMC时, 普通单宽 AMC内部会把该 PS1信号线拉为低电平, 因此当电源模块 的 EMMC检测到某根 PS1线为低时, 可以判断该插接口有普通单宽 AMC插入, 从而控制为其提供负载电源输出。
本示例中, 利用 PS1的不同电平来判断双宽功能 AMC的插入, 即, 在双宽 功能 AMC内部把 PS1上拉到高电平。 当电源模块的 EMMC检测到某一 PS1为高 电平时, 该插接口可能插入了双宽功能 AMC或该插接口为空, 此时, 需要利 用双宽功能 AMC位于 Tier 1的连接,如 IPMB-L总线连接,来区分这两种可能情 况。 MCH可以通过 IPMB-L总线读取 Tier 1的槽位应用信息, 对于双宽功能 AMC , 在 FRU信息中会保存与 POE相关的电源配置信息, 双宽功能 AMC的 MMC可以读取到这些电源配置信息, 并且通过 IPMB-L总线与 MCH的 MCMC 进行通信, 反馈电源配置信息给 MCH , 因此 MCH可以获知该插接口插入了双 宽 POE模块。 MCH的 MCMC可以通过 IPMB-0总线把电源配置信息反馈给电源 模块的 EMMC , EMMC综合 PS1的电平以及利用 IPMB总线进行通信获得的电 源配置信息, 即可准确的判断某一插接口是否插入双宽功能 AMC。
在 Tier 2空插接口的情况下, 虽然 PS1也是高电平, 但 MCH无法通过 IPMB-L总线从对应的 Tier 1的插接口读取到电源配置信息 ,因此 MCH可以获知 该插接口没有插入双宽功能 AMC , MCH的 MCMC可以通过 IPMB-0总线把该信 息通知给电源模块的 EMMC,电源模块通过对 PS1信号和 IPMB交互信息的综合 分析, 可以判断某 Tier 2槽位是否为空槽位。
本示例中, PS1信号除了输入到 EMMC用于进行插入 AMC类型的判断外, 还作为硬件控制信号, 分别连接到各路电源的控制电路上 (控制电路中包括 POE电源控制部分和负载电源控制部分), PS1为高电平是打开 POE电源的硬件 控制条件, PS1为低电平是打开负载电源的硬件控制条件。 另外, EMMC还根 据 PS 1信号的状态和通过 IPMB总线通信获得的信息, 在作出插入 AMC类型判 断后, 输出软件控制信号, 控制 POE电源和负载电源的开关(软件控制信号可 使用 POE使能信号 POE— EN和负载电源使能信号 POW— EN , POE— EN为高电平 是打开 POE电源的软件控制条件, POW— EN为高电平是打开负载电源的软件控 制条件)。 软 /硬件控制信号与电源输出的关系如表 1所示, 其中 0表示低电平, 1表示高电平。
Figure imgf000016_0001
Figure imgf000016_0002
综上所述, 本示例 MTCA系统对 Tier 2的 POE电源输出的管理和控制步骤 下:
1、 电源模块检测 PS1信号, 获取 PS1的电平状态; 当 PS1为低电平时, 判 断插入了普通单宽 AMC; 当 PS1为高电平时, 判断插入了双宽功能 AMC或没 有插入 AMC, 此时:
a ) 电源模块要求 MCH提供读取相应的 Tier 1插接口的模块信息, MCH通 过相应的 Tier 1插接口的 IPMB-L总线与位于 Tier 1的模块进行通信, 并通过 IPMB-0总线把信息反馈给电源模块。
b ) 电源模块根据 MCH反馈的信息, 例如是否有 POE电源配置信息, 判断 该 Tier 2插接口插入了双宽功能 AMC还是空插接口。
2、 电源模块根据对插入 AMC类型的判断, 输出相应的软件控制信号, 结 合硬件控制信号, 共同控制电源控制电路, 输出 AMC需要的电源到共享电源 通道上。
本示例中利用 AMC ZONE 3辅助连接器区实现 POE供电, 实际应用中, 也 可以利用 AMC ZONE 2辅助连接器区来实现 POE供电, 这种情况下, 接口一与 接口二是位于同一层中的两个相邻插接口, 对应的功能 AMC釆用全高规格, 连接和控制方式可参照本示例设计, 不再赘述。
示例二、 适用于使用单个标准连接器的功能 AMC的 MTCA系统, 系统逻 辑结构示意图如图 15所示。
该 MTCA系统的背板的插接口与对应的功能 AMC的连接器均兼容标准 AMC连接器区定义。 下面参照图 15对本示例系统的管理和控制过程进行详细 描述:
图 15中给出了一个普通单宽 AMC的连接情况、 一个单宽功能 AMC的连接 情况和一个空插接口的连接情况。
PS1通道分别连接各插接口和电源模块, PS1在电源模块内部被上拉, 普 通单宽 AMC内部把 PS 1信号线拉为低电平, 单宽功能 AMC内部也把 PS 1下拉到 低电平, 因此当电源模块的 EMMC检测到某一 PS1为低电平的时候, 该插接口 可能插入了普通单宽 AMC或单宽功能 AMC。
此时,对于单宽功能 AMC,在 FRU信息中还应该保存了与 POE相关的电源 配置信息, 单宽功能 AMC的 MMC可以读取到这些电源配置信息, 并且通过 IPMB-L总线与 MCH的 MCMC进行通信,反馈电源配置信息给 MCH,因此 MCH 可以获知该插接口插入了单宽功能 AMC。 MCH的 MCMC可以通过 IPMB-0总线 把电源配置信息反馈给电源模块的 EMMC, EMMC综合 PS1的电平以及利用 IPMB总线进行通信获得的电源配置信息, 即可准确的判断某一插接口是插入 普通单宽 AMC还是单宽功能 AMC。
本示例中,电源模块内部对输出电源的控制方式与示例一相同,不再赘述。 本示例中软 /硬件控制信号与电源输出的关系如表 2所示, 其中 0表示低电平, 1 表示高电平。 PS1 POE— EN POW— EN 电源输出 描述
0 0 0 所有电源关 正常状态
断, 无输出
0 0 1 输出 12V的 正常状态, 插入普通单宽 负载电源 AMC
0 1 0 输出 48V的 正常状态, 插入单宽功能
POE电源 AMC
0 1 1 非正常状态, 不允许出现
1 所有电源关 正常状态
断, 无输出
显然, 当插入单宽功能 AMC时, 单宽功能 AMC只能从共享电源通道上获 取 48V的 POE电源, 因此,单宽功能 AMC需要设计电源转换电路,从 48V的 POE 电源上转换得到内部需要的负载电源。
综上所述, 本示例 MTCA系统对 POE电源输出的管理和控制步骤如下:
1、 电源模块检测 PS1信号, 获取 PS1的电平状态, 当 PS1为低电平时, 判 断插入了普通单宽 AMC或单宽功能 AMC, 当 PS1为高电平时, 判断没有插入 AMC„
2、 当 PS1为低电平时, 电源模块要求 MCH读取相应插接口的模块信息, MCH通过相应插接口的 IPMB-L总线与模块进行通信,并通过 IPMB-0总线把模 块信息反馈给电源模块。
3、 电源模块根据 MCH反馈的模块信息, 例如是否有 POE电源配置信息, 判断该插接口是插入了普通单宽 AMC还是单宽功能 AMC。
4、 电源模块根据对插入 AMC类型的判断, 输出相应的软件控制信号, 结 合硬件控制信号, 共同控制电源控制电路, 输出 AMC需要的电源到共享电源 通道上。
通过上述实施例可以看出,本发明实施例通过平台管理服务系统对背板上 连接的先进夹层卡的供电需求信息进行识别 ,从而根据先进夹层卡的需求向其 提供所需要的功能电源。本发明实施例的通用硬件平台由于釆用了基于信息识 别的电源提供方式, 能够灵活的选择输出功能电源, 充分满足先进夹层卡可能 出现的多样化功能电源需求。 进一步的, 软 /硬件识别信号的传输和功能电源 的提供可兼容现有标准接口的定义进行设计, 对现有设备改动小, 容易实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程 , 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上对本发明所提供的通用硬件平台和通用硬件平台架构系统进行了详 实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本领 域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有 改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种通用硬件平台, 其特征在于, 包括:
背板, 用于提供负载电源通道和信号通道;
平台管理服务系统,用于通过所述信号通道获取插接在背板上的先进夹层 卡的供电需求信息;根据所述供电需求信息确定所述先进夹层卡的功能电源需 求; 按照确定的功能电源需求通过与所述先进夹层卡连接的负载电源通道, 向 所述先进夹层卡提供功能电源。
2、 根据权利要求 1所述的通用硬件平台, 其特征在于:
所述平台管理服务系统还用于提供负载电源;
所述平台管理服务系统按照确定的功能电源需求通过负载电源通道向先 进夹层卡提供相应的功能电源具体是: 按照确定的功能电源需求,在与所述先 进夹层卡连接的负载电源通道上选择输出负载电源或者一种功能电源。
3、 根据权利要求 1或 2所述的通用硬件平台, 其特征在于: 所述平台管理 服务系统包括交换控制模块和电源模块;所述背板提供的信号通道包括第一管 理总线和第二管理总线, 所述第一管理总线与所述先进夹层卡连接; 所述第二 管理总线连接所述交换控制模块和电源模块;所述供电需求信息包括先进夹层 卡上存储的电源配置信息;
所述交换控制模块,用于通过所述第一管理总线获取所述先进夹层卡的电 源配置信息,并通过所述第二管理总线将所述电源配置信息反馈到所述电源模 块;
所述电源模块,用于才艮据所述先进夹层卡的电源配置信息确定所述先进夹 层卡的功能电源需求 ,按照确定的功能电源需求通过与所述先进夹层卡连接的 负载电源通道, 向所述先进夹层卡提供功能电源。
4、根据权利要求 3所述的通用硬件平台,其特征在于,所述电源模块包括: 电源电路, 用于对输入电源进行转换, 转换后的电源包括一种或一种以上 的功能电源;
增强模块管理控制器,用于通过所述第二管理总线获取所述先进夹层卡的 电源配置信息, 才艮据所述电源配置信息确定所述先进夹层卡的功能电源需求 , 按照确定的功能电源需求生成软件控制信号; 控制电路, 用于根据所述软件控制信号,将所述电源电路转换后的一种电 源提供给所述负载电源通道。
5、 根据权利要求 3所述的通用硬件平台, 其特征在于: 所述背板提供的信 号通道还包括硬件信号通道;所述供电需求信息还包括所述先进夹层卡的在位 检测信号; 所述先进夹层卡通过一个或一个以上的插接口与背板插接;
所述电源模块,还用于通过与所述先进夹层卡连接的硬件信号通道获取所 述在位检测信号;
所述电源模块根据电源配置信息确定先进夹层卡的功能电源需求具体是: 根据所述电源配置信息以及所述在位检测信号,确定需要在与提供所述在位检 测信号的硬件信号通道属于同一插接口的负载电源通道上提供功能电源。
6、根据权利要求 5所述的通用硬件平台,其特征在于,所述电源模块包括: 电源电路, 用于对输入电源进行转换, 转换后的电源包括一种或一种以上 的功能电源;
增强模块管理控制器,用于通过所述第二管理总线获取所述先进夹层卡的 电源配置信息, 才艮据所述电源配置信息确定所述先进夹层卡的功能电源需求, 按照确定的功能电源需求生成软件控制信号;
控制电路,用于通过与所述先进夹层卡连接的硬件信号通道获取所述在位 检测信号,根据所述软件控制信号和在位检测信号,将所述电源电路转换后的 一种电源提供给与提供所述在位检测信号的硬件信号通道属于同一插接口的 负载电源通道。
7、 根据权利要求 6所述的通用硬件平台, 其特征在于:
所述增强模块管理控制器,还用于通过所述硬件信号通道获取所述在位检 测信号;
所述增强模块管理控制器根据电源配置信息确定先进夹层卡的功能电源 需求具体是:根据所述电源配置信息以及所述在位检测信号确定所述先进夹层 卡的功能电源需求。
8、 根据权利要求 6所述的通用硬件平台, 其特征在于:
所述电源电路转换后的电源还包括负载电源;
所述增强模块管理控制器, 还用于生成控制负载电源输出的软件控制信 号;
所述控制电路根据软件控制信号和在位检测信号将所述电源电路转换后 的一种电源提供给与提供所述在位检测信号的硬件信号通道属于同一插接口 的负载电源通道具体是: 根据所述软件控制信号和在位检测信号,选择在所述 负载电源通道上输出负载电源或者一种功能电源。
9、 根据权利要求 8所述的通用硬件平台, 其特征在于: 所述提供在位检测 信号的硬件信号通道与所述获取电源配置信息的第一管理总线属于背板的同 一插接口, 该插接口与标准先进夹层卡连接器适配。
10、 根据权利要求 8所述的通用硬件平台, 其特征在于: 所述提供在位检 测信号的硬件信号通道与所述获取电源配置信息的第一管理总线属于背板的 两个不同插接口,其中一个插接口位于另一个插接口的辅助连接器区二或者辅 助连接器区三; 该两个插接口与标准先进夹层卡连接器适配。
11、 一种通用硬件平台架构系统, 其特征在于, 包括通用硬件平台和先进 夹层卡; 所述先进夹层卡包括连接器和模块管理控制器; 所述通用硬件平台包 括背板、 交换控制模块和电源模块;
所述背板, 用于提供负载电源通道和第一管理总线, 以及连接所述交换控 制模块和电源模块的第二管理总线;
所述连接器, 用于通过所述背板提供的一个或一个以上插接口, 插接在所 述背板上;
所述模块管理控制器,用于通过所述连接器向所述交换控制模块提供电源 配置信息;
所述交换控制模块,用于通过与所述连接器连接的第一管理总线获取所述 模块管理控制器提供的电源配置信息,并通过所述第二管理总线将所述电源配 置信息反馈到所述电源模块;
所述电源模块,用于根据所述电源配置信息确定所述先进夹层卡的功能电 源需求,按照确定的功能电源需求通过所述电源通道,在与所述连接器连接的 负载电源通道上提供功能电源。
12、 根据权利要求 11所述的通用硬件平台架构系统, 其特征在于: 所述背板, 还用于提供硬件信号通道; 所述电源模块,还用于通过与所述连接器连接的硬件信号通道获取所述先 进夹层卡的在位检测信号;
所述电源模块根据电源配置信息确定先进夹层卡的功能电源需求具体是: 根据所述电源配置信息以及所述在位检测信号,确定需要在与提供所述在位检 测信号的硬件信号通道属于同一插接口的负载电源通道上提供相应的功能电 源。
13、 根据权利要求 12所述的通用硬件平台架构系统, 其特征在于: 所述提 供在位检测信号的硬件信号通道与所述获取电源配置信息的第一管理总线属 于背板的两个不同插接口;
所述连接器包括一个标准连接器和一个辅助连接器,所述辅助连接器位于 标准连接器的辅助连接器区二或者辅助连接器区三;所述标准连接器用于连接 获取电源配置信息的第一管理总线所属的插接口 ,所述辅助连接器用于连接提 供在位检测信号的硬件信号通道所属的插接口。
14、 根据权利要求 12所述的通用硬件平台架构系统, 其特征在于: 所述提 供在位检测信号的硬件信号通道与所述获取电源配置信息的第一管理总线属 于背板的同一插接口;
所述先进夹层卡还包括:
电源转换模块, 用于对从所述连接器输入的功能电源进行转换, 转换后的 电源包括负载电源和功能电源。
15、 一种先进夹层卡供电方法, 其特征在于, 包括:
通过背板提供的信号通道获取插接在背板上的先进夹层卡的供电需求信 息;
根据所述供电需求信息确定所述先进夹层卡的功能电源需求;
按照确定的功能电源需求通过背板提供的与所述先进夹层卡连接的负载 电源通道, 向所述先进夹层卡提供相应的功能电源。
16、 根据权利要求 15所述的先进夹层卡供电方法, 其特征在于, 所述按 照确定的功能电源需求通过背板提供的与所述先进夹层卡连接的负载电源通 道, 向先进夹层卡提供相应的功能电源包括: 按照确定的功能电源需求, 在所 述负载电源通道上选择输出负载电源或者一种功能电源。
17、 根据权利要求 15或 16所述的先进夹层卡供电方法, 其特征在于, 所 述信号通道包括第一管理总线和第二管理总线;所述供电需求信息包括先进夹 层卡上存储的电源配置信息;所述通过信号通道获取插接在背板上的先进夹层 卡的供电需求信息包括:
通过所述第一管理总线获取所述先进夹层卡的电源配置信息。
18、 根据权利要求 17所述的先进夹层卡供电方法, 其特征在于, 所述方法 还包括:对输入电源进行转换,转换后的电源包括一种或一种以上的功能电源; 所述根据所述供电需求信息确定所述先进夹层卡的功能电源需求包括: 通过所述第二管理总线从所述第一管理总线上获取所述先进夹层卡的电 源配置信息, 根据所述电源配置信息确定所述先进夹层卡的功能电源需求; 所述按照确定的功能电源需求通过所述负载电源通道,向所述先进夹层卡 提供相应的功能电源包括:
按照确定的功能电源需求生成软件控制信号;
根据所述软件控制信号,将所述转换后的一种电源提供给所述负载电源通 道。
PCT/CN2008/072130 2007-10-30 2008-08-25 General hardware platform, corresponding architecture system, and power supply method for advanced mezzanine card WO2009056020A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08784120A EP2207304A4 (en) 2007-10-30 2008-08-25 GENERAL HARDWARE PLATFORM, CORRESPONDING ARCHITECTURAL SYSTEM AND POWER SUPPLY PROCESS FOR AN ADVANCED MEZZANINE CARD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710164395.9 2007-10-30
CN2007101643959A CN101425907B (zh) 2007-10-30 2007-10-30 通用硬件平台及相应的架构系统

Publications (1)

Publication Number Publication Date
WO2009056020A1 true WO2009056020A1 (en) 2009-05-07

Family

ID=40590535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/072130 WO2009056020A1 (en) 2007-10-30 2008-08-25 General hardware platform, corresponding architecture system, and power supply method for advanced mezzanine card

Country Status (3)

Country Link
EP (1) EP2207304A4 (zh)
CN (1) CN101425907B (zh)
WO (1) WO2009056020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290497A1 (en) * 2009-08-31 2011-03-02 GE Intelligent Platforms Embedded Systems, Inc. Computer including a carrier board and methods of assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103712B (zh) * 2009-12-18 2013-03-27 中兴通讯股份有限公司 供电配置方法及装置
CN102299549A (zh) * 2010-06-25 2011-12-28 深圳市邦彦信息技术有限公司 一种基于MicroTCA的电源管理方法及模块设计
CN103019359B (zh) * 2011-09-23 2015-12-02 中国科学院声学研究所 一种为amc卡动态分配功率的方法、装置和atca载板
CN104238638A (zh) * 2013-06-17 2014-12-24 中兴通讯股份有限公司 一种小型化的计算存储融合系统
CN103634237B (zh) * 2013-10-31 2017-08-08 中国船舶重工集团公司第七二二研究所 微型电信计算架构机架管理控制器
WO2016039776A1 (en) * 2014-09-12 2016-03-17 Hewlett Packard Enterprise Development Lp Isolation of a faulty mezzanine card of a server
CN106658239A (zh) * 2016-12-06 2017-05-10 天津光电通信技术有限公司 一种基于sdn思想的多芯片组搭建统一接入处理平台
WO2020124575A1 (zh) * 2018-12-21 2020-06-25 海能达通信股份有限公司 一种通信设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2785234Y (zh) * 2004-11-05 2006-05-31 中兴通讯股份有限公司 一种机架电源控制的双备份结构
US20070121306A1 (en) * 2005-11-28 2007-05-31 Moakes Paul A Monolithic backplane having a first and second portion

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448672B1 (en) * 2000-02-29 2002-09-10 3Com Corporation Intelligent power supply control for electronic systems requiring multiple voltages
US6661671B1 (en) * 2002-11-27 2003-12-09 International Business Machines Corporation Apparatus, method and article of manufacture for determining power permission for a blade spanning power back planes
CN100433590C (zh) * 2004-07-22 2008-11-12 烽火通信科技股份有限公司 一种用于通信系统工作模块监控单元的配电方法和装置
US7307837B2 (en) * 2005-08-23 2007-12-11 International Business Machines Corporation Method and apparatus for enforcing of power control in a blade center chassis
US7350090B2 (en) * 2005-10-11 2008-03-25 Dell Products L.P. Ensuring power availability to a blade server when blade management controller is corrupted

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2785234Y (zh) * 2004-11-05 2006-05-31 中兴通讯股份有限公司 一种机架电源控制的双备份结构
US20070121306A1 (en) * 2005-11-28 2007-05-31 Moakes Paul A Monolithic backplane having a first and second portion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Advanced Mezzanine Card Short Form Specification Version D0.9a", PICMG AMC.0, 15 June 2004 (2004-06-15), XP002377540 *
"Micro Telecommunications Computing Architecture Short Form Specification", PICMG MTCA.0R1.0, 21 September 2006 (2006-09-21), XP002609952 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290497A1 (en) * 2009-08-31 2011-03-02 GE Intelligent Platforms Embedded Systems, Inc. Computer including a carrier board and methods of assembly
CN102004525A (zh) * 2009-08-31 2011-04-06 通用电气智能平台嵌入系统公司 包括载板的计算机和组装方法
US8286009B2 (en) 2009-08-31 2012-10-09 GE Intelligent Platforms Embedded Systems, Inc. Computer including a carrier board and methods of assembly

Also Published As

Publication number Publication date
EP2207304A1 (en) 2010-07-14
CN101425907A (zh) 2009-05-06
EP2207304A4 (en) 2010-12-29
CN101425907B (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
WO2009056020A1 (en) General hardware platform, corresponding architecture system, and power supply method for advanced mezzanine card
EP1871040B1 (en) Management system and method based on intelligent platform management interface
CN102033581B (zh) 一种基于多核网络处理器的高可扩展性atca板
US20100077126A1 (en) USB Matrix Switch System
WO2013075511A1 (zh) 机柜服务器系统
CN101707380A (zh) 供电系统配置方法、装置及系统
US20150370749A1 (en) Server system
CN101202933B (zh) 一种通信设备、先进夹层卡及其电源供应方法
CN201926952U (zh) 一种基于多核网络处理器的高可扩展性atca板
US7917728B2 (en) Integrated circuit and method for transaction retraction
CN101163308B (zh) 智能平台管理控制器
CN109634879A (zh) 一种pcie转接板和服务器监控系统
CN101894055A (zh) 一种具有冗余功能的刀片主板接口的实现方法
CN101453337A (zh) 小型电信和计算通用硬件平台架构系统及其电源控制方法
CN211124042U (zh) 一种具有强大数据处理能力的amc信号处理板卡
CN113220614A (zh) 一种自适应管理i2c和i3c设备的方法、系统及介质
CN2790078Y (zh) 一种通信设备背板
CN101166098A (zh) 双宽先进夹层卡、先进夹层卡混合配置的通信系统和单元
CN1435029A (zh) 桥接口电路
CN216772401U (zh) 一种主设备主控功能实现系统
CN101605188B (zh) 支持热插拔的方法、系统和前插板
WO2021031969A1 (zh) 复用业务单板、通信装置及其时钟同步方法
CN115268581A (zh) 一种高性能计算力的ai边缘服务器系统架构
CN100484049C (zh) 一种xDSL测试终端
CN101198076B (zh) 一种电信计算结构系统及在其中实现业务保护的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08784120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008784120

Country of ref document: EP