WO2009055984A1 - Système reseau a acces multiple à répartition en longueur d'onde et procédé associé - Google Patents

Système reseau a acces multiple à répartition en longueur d'onde et procédé associé Download PDF

Info

Publication number
WO2009055984A1
WO2009055984A1 PCT/CN2007/003746 CN2007003746W WO2009055984A1 WO 2009055984 A1 WO2009055984 A1 WO 2009055984A1 CN 2007003746 W CN2007003746 W CN 2007003746W WO 2009055984 A1 WO2009055984 A1 WO 2009055984A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
remote node
node device
access network
xpon
Prior art date
Application number
PCT/CN2007/003746
Other languages
English (en)
French (fr)
Inventor
Lairong Luo
Taili Wang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2009055984A1 publication Critical patent/WO2009055984A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present invention relates to a novel WDM (Wavelength Division Multiplexing) access network system in the field of communication technology.
  • WDM Widelength Division Multiplexing
  • the access network is the basic platform for the landing and development of various services. Broadband and continuous eliminability will be the key to the construction of access networks. The downward movement of network optical nodes and the retreat of optical access are a gradual and unresolved trend. Also appeared for this? Ding down series concept Ding Ding refers to fiber to exchange? 3 ⁇ 461* ⁇ 0 111 ⁇ 2 Cabinet; FTTCab, fiber to the roadside Fiber To The Curb; FTTC, fiber to the building Fiber To The Building; FTTB and fiber to the home Fiber To The Home; FTTH).
  • PON Passive Optical Network
  • PON Passive Optical Network
  • ATM-PON abbreviation for ATM-PON
  • EPON Ethernet passive light
  • GPON Gigabit Passive Optical Network
  • the existing xPON system structure in the access network consists of the optical path terminal (OLT) of the central office, the passive splitter (splitter) close to the user side, and the optical network unit (ONU) of the user. composition.
  • the branch ratio of the passive splitter splitter is inversely proportional to the distance between the ONU and the OLT.
  • the maximum branch ratio is 128, and the common branch ratio is 16 and 32.
  • the existing PON access system has some shortcomings, mainly reflected in:
  • the number of customer access is limited, and the bandwidth resources of the fiber are not fully utilized, and it is not suitable for the area where the user is dense (the number of users exceeds 128).
  • OLT optical transmission network
  • client ONU transmission distance 100km
  • OLT maximum use More than 1000 users, each user bandwidth peak value of 100Mb / s, support downlink rate up to 10Gb / s, up to 2.5Gb / s.
  • the existing optical broadband access network cannot meet customer needs and, therefore, needs to be improved.
  • the technical problem to be solved by the present invention is to provide a novel WDM access network system, which overcomes the shortcomings of the existing FTTX network access capacity and limited transmission distance, and enables the system structure to extend the transmission distance of the system and expand the OLT access. Number of ONU users.
  • the present invention provides a wavelength division multiplexing access network system, including a user optical network unit xPON ONU of a plurality of passive optical networks, and at least one passive splitter connected to a plurality of xPON ONUs,
  • the method further includes: a central device, and a remote node device, wherein the central device is connected to the remote node device by using a transmission fiber;
  • the central device includes a central optical path terminal xPON OLT of a plurality of passive optical networks, and a first combining/demultiplexing module connected to the plurality of xPON OLTs;
  • the remote node device includes a second multiplexer/demultiplexer module, and the multiple outputs of the second multiplexer module are connected to the passive splitters through optical fibers.
  • the wavelength division multiplexing access network system of the present invention wherein the central device further includes a first bidirectional optical amplifier, one end of which is connected to the first combining/demultiplexing module, and the other end is connected to the optical fiber and the optical fiber.
  • the remote node device is connected.
  • the wavelength division multiplexing access network system of the present invention wherein the central device further comprises a bidirectional optical amplification and dispersion compensation function module, one end of which is connected to the first combining/demultiplexing module, and the other end is transmitted through The optical fiber is connected to the remote node device.
  • the remote node device further includes a bidirectional optical amplification and dispersion compensation function module, one end of which is connected to the second multiplexer/demultiplexer module, and the other end is connected to the central device through a transmission optical fiber.
  • the remote node device further includes a second bidirectional optical amplifier, one end of which is connected to the second multiplexer/demultiplexer module, and the other end of which is connected to the central device through a transmission optical fiber.
  • the wavelength division multiplexing access network system wherein the xPON ONU in the system
  • the user is an optical network unit GPON ONU of a gigabit passive optical network
  • the central device includes a plurality of GPON OLTs, a first combining/demultiplexing module connected to the plurality of GPON OLTs, and a bidirectional optical amplification and dispersion compensation function module, one end of which is coupled to the first combining/demultiplexing module Connected to the other end and connected to the remote node device through a transmission fiber;
  • the remote node device includes a second multiplexer/demultiplexer module, and the multiple outputs of the second multiplexer/split module are connected to the passive splitters through optical fibers.
  • the remote node device further includes a second bidirectional optical amplifier, one end of which is connected to the second multiplexer/demultiplexer module, and the other end of which is connected to the central device through a transmission optical fiber.
  • the first multiplexer/demultiplexer module employs a heating type periodic arrayed waveguide grating block
  • the second multiplexer/demultiplexer module employs a heating type periodic arrayed waveguide grating module.
  • the wavelength division multiplexing access network system wherein when the xPON ONU in the system is the user optical network unit EPON ONU of the Ethernet passive optical network,
  • the central device includes a plurality of EPON OLTs, a first combining/demultiplexing module connected to the plurality of EPON OLTs, and a bidirectional optical amplifier, one end of which is connected to the first combining/dividing module, and the other end is passed
  • the transmission fiber is connected to the remote node device;
  • the remote node device includes a second multiplexer/demultiplexer module, and the multiple outputs of the second multiplexer/split module are connected to the passive splitters through optical fibers.
  • the first multiplexer/demultiplexer module uses a heating type periodic arrayed waveguide grating module
  • the second multiplexer/demultiplexer module uses a non-heated periodic arrayed waveguide grating module.
  • the invention has the beneficial effects that: by adopting technologies such as WDM, bidirectional optical amplifier, dispersion compensation, etc., the access system according to the present invention can smoothly upgrade the system capacity, increase the transmission distance of the original xPON system, and transmit the single wavelength.
  • the downlink can reach 10Gb/s and the uplink can reach 2.5Gb/s, which can solve the growing customer demand.
  • the WDM access network system of the present invention can completely adopt the xPON OLT and the xPON ONU in the original xPON system structure, and the cost of implementing the system transformation is low.
  • FIG. 1 is a schematic structural view of a prior art xPON system
  • FIG. 2 is a schematic structural diagram of a WDM (Wavelength Division Multiplexing) access network system according to the present invention
  • 3 is a schematic structural diagram of a first embodiment of a WDM (Wavelength Division Multiple Access) access network system according to the present invention
  • FIG. 4 is a schematic structural diagram of a second embodiment of a WDM (Wavelength Division Multiple Access) access network system according to the present invention.
  • the present invention will be WDM
  • PON passive optical network
  • the WDM access network system of the present invention is shown in FIG. 2.
  • the entire WDM access network system structure comprises four parts: a central device (Central Office device), a remote node device (Remote Node device), and multiple Spilter on the client side. And multiple users xPON ONU.
  • the Central Office device is composed of a plurality of xPON OLT function modules, a first multiplexer/demultiplexer module (MUX/DEMUX module 1), a bidirectional optical amplification and a dispersion compensation function module, wherein the first multiplex wave/minute One end of the wave module is connected to the plurality of xPON OLT function modules, and the other end is connected to the first bidirectional optical amplification and dispersion compensation function module;
  • the remote node (Remote Node) is composed of a second bidirectional optical amplifier and a dispersion compensation function module and a second a multiplexer/demultiplexer module (MUX/DEMUX module 2), and the first optical amplification and dispersion compensation function module in the central device is connected to the second bidirectional optical amplifier in the remote node device through an X km transmission fiber
  • the dispersion compensation function module the multi-output of the MUX/DEMUX module 2 in the remote node device is connected to each passive branch through the y km
  • the working principle of the entire WDM access network system is as follows: the downlink service of the central office enters the MUX/DEMUX module 1 through the output of n xPON OLT function modules, and the MUX/DEMUX module 1 combines the n wavelength signals output by the n xPON OLTs/ After splitting, the output enters the bidirectional optical amplifier and dispersion compensation module 1. After amplification and dispersion compensation, it enters the X km transmission fiber; after the x km fiber transmission, it is carried out at the remote node Remote Node bidirectional optical amplifier and dispersion compensation module 2.
  • the MUX/DEMUX module 2 splits into n wavelength signals and then transmits the y km fiber to the passive branch splitter near the client side into m paths and then enters the ONUs of m users. Assuming that the split ratio of each splitter is m, the number of users that can be accessed by each xPON OLT It is m, so the total capacity of the system is mn users. The corresponding uplink signal is similarly reversed. Since the uplink and downlink services of each ONU are transmitted on the same fiber, each ONU and OLT need to couple their uplink and downlink services into the same fiber.
  • the MUX/DEMUX module 1 in the device and the MUX/DEMUX module 2 of the Remote Node device need to have bidirectional multiplexed wave processing.
  • the bidirectional optical amplification and dispersion compensation function module 2 of the remote node device may select a joyous direction.
  • the optical amplifier is replaced or the bidirectional optical amplifier function module is not used.
  • the remote node device only includes the MUX/DEMUX module 2.
  • the present invention adopts the MUX/DEMUX function module and the bidirectional optical amplification and dispersion compensation module, the key technologies used in the xPON system are burst transmission and reception mode and bandwidth allocation DBA due to optical domain transparency.
  • Technology, ranging technology, security encryption technology, protection technology, PLOAM information technology and GEM-GPON Encapsulation Method are not changed.
  • the WDM access network system structure proposed by the present invention can almost completely adopt the xPON OLT and the xPON ONU in the original xPON system structure.
  • a first embodiment of the present invention uses a GPON OLT function module on the central office side (central device), and the functional module is functionally divided into a downlink transmission processing portion and an uplink reception processing portion, and a downlink transmission wavelength and uplink reception.
  • the wavelength uses a coupler to couple the signals together into a 32ch cyclic AWG (periodic arrayed waveguide grating).
  • the central office also uses a bidirectional optical amplification and dispersion compensation function module.
  • the circulator separates the Han direction signals, and the downlink signal and the uplink signal are subjected to dispersion pre-compensation and then amplified, and then the bidirectional signals are combined by the circulator.
  • the Remote Node node requires a bidirectional optical amplifier due to its high receiving sensitivity of 10Gb/s, so that a low-cost heated Cyclic AWG can be used, but if the central office (central device) is far to the far end When the node distance is short, the bidirectional optical amplifier of the remote node may not be needed, so that the remote node can only use Athermal Cyclic AWG (unheated periodic arrayed waveguide grating), which can reduce the environmental requirements.
  • Athermal Cyclic AWG unheated periodic arrayed waveguide grating
  • the ONU on the user side performs almost the opposite function to the OLT.
  • the splitter adopts a 32-branch ratio
  • the highest support The downstream single wavelength rate will reach 10Gb/s.
  • the second embodiment of the present invention is as shown in FIG. 4, and the EPON OLT function module is used on the central office side. Since the current maximum signal rate of the EPON is 2.5 Gb/s, the central office only uses the bidirectional optical amplifier function module, and the dispersion compensation module may not be needed. . Due to the low sensitivity of the 2.5Gb/s optical receiver, the remote node device does not need to use an optical amplifier for most transmission distance applications.
  • the invention adopts WDM, bidirectional optical amplifier, dispersion compensation and other technologies, can smoothly upgrade the system capacity, increase the transmission distance of the original xPON system, and the single wavelength transmission rate can reach 10Gb/s down, and the uplink can reach 2.5Gb/ s, to address growing customer demand.
  • the WDM access network system of the present invention can completely adopt the xPON OLT and the xPON ONU in the original xPON system structure, and the cost of system transformation is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

一种波分复用接入网系统方法
技术领域
本发明涉及通信技术领域中一种新型 WDM (波分复用)接入网系统。
背景技术
接入网是各种业务的落地与开展的基础平台,宽带化与持续可演进能力 将是接入网络建设的关键,网络光节点下移和光进铜退是一个逐渐与确定不 移的趋势,也为此出现了?丁下 系列概念 丁丁 指光纤到交换?¾61*丁0 11½ Cabinet; FTTCab、光纤到路边 Fiber To The Curb; FTTC、光纤到大楼 Fiber To The Building; FTTB及光纤到户 Fiber To The Home; FTTH)。业界普遍认为无 源光网络 PON ( Passive Optical Network, 无源光网络)是经济的、 面向未来 多业务的用户光接入技术。 它打破了传统的点到点解决方法, 随着技术和市 场的发展, 各厂家先后推出了 APON ( ATM— PON的简称, ATM是一种基 于信元的传输协议) 、 EPON (以太无源光网络)及 GPON (千兆位无源光 网络)产品 (统称 xPON ) 满足客户的需求。
如图 1所示 xPON系统结构示意图,处于接入网的现有 xPON系统结构 由局端的光通路终端 (OLT ) 、 靠近用户侧的无源分支器 (splitter ) 及用 户的光网络单元(ONU )组成。 在 xPON系统中无源分支器 splitter的分支 比和 ONU与 OLT之间距离是成反比的关系, 一般最大分支比为 128, 常用 的分支比为 16和 32。 从对图 1的分析可见, 现有的 PON接入系统存在一 定不足, 主要体现在:
1.客户接入数量有限, 没有充分利用光纤的带宽资源, 无法适合用户密 集(用户数超过 128 ) 的区域。
2.传输距离有限,无法应对用户集中在某地,但离局端较远的应用场合, 而这种应用场合在欧美还是很常见。
实际上, 针对某些应用场合, 有不少发达地区客户如英国电信、 德国电信 要求光接入网局端 OLT到客户端 ONU的传输距离达 100km; OLT最高用 户超过 1000个,每个用户带宽峰值达 100Mb/s,支持下行速率最高达 10Gb/s, 上行达 2.5Gb/s。
从技术上分析, 现有的光宽带接入网络无法满足客户需求, 因此, 需 要改进。
发明内容
本发明所要解决的技术问题在于提供一种新型的 WDM接入网系统,克 服现有 FTTX网络接入容量及传输距离有限的缺点,能够使系统结构可以延 长系统的传输距离, 扩大 OLT接入的 ONU用户数量。
为了解决上述问题, 本发明提出一种波分复用接入网系统, 包括多个无 源光网络的用户光网络单元 xPON ONU, 以及与多个 xPON ONU相连的至 少一个无源分支器, 其特征在于, 还包括: 一中央设备, 以及一远端节点设 备, 所述中央设备通过传输光纤连接所述远端节点设备; 其中,
所述中央设备包括多个无源光网络的局端光通路终端 xPON OLT, 与多 个 xPON OLT相连的第一合波 /分波模块;
所述远端节点设备包括第二合波 /分波模块, 且所述第二合 ^分波模块 的多路输出通过光纤连接所述各无源分支器。
本发明所述的波分复用接入网系统, 其中, 所述中央设备还包括第一双 向光放大器, 其一端与所述第一合波 /分波模块相连, 另一端通过传输光纤 与所述远端节点设备相连。
本发明所述的波分复用接入网系统, 其中, 所述中央设备还包括双向光 放大及色散补偿功能模块, 其一端与所述第一合波 /分波模块相连, 另一端 通过传输光纤与所述远端节点设备相连。
其中, 所述远端节点设备还包括双向光放大及色散补偿功能模块, 其一 端与所述第二合波 /分波模块相连, 另一端通过传输光纤与所述中央设备相 连。
其中, 所述远端节点设备还包括第二双向光放大器, 其一端与所述第二 合波 /分波模块相连, 另一端通过传输光纤与所述中央设备相连。
本发明所述的波分复用接入网系统, 其中, 所述系统中的 xPON ONU 为千兆位无源光网络的用户光网络单元 GPON ONU时,
所述中央设备包括多个 GPON OLT, 与多个 GPON OLT相连的第一合 波 /分波模块, 以及一双向光放大及色散补偿功能模块, 其一端与所述第一 合波 /分波模块相连, 另一端通过传输光纤与所述远端节点设备相连;
所述远端节点设备包括第二合波 /分波模块, 且所述第二合波 /分波模块 的多路输出通过光纤连接所述各无源分支器。
其中, 所述远端节点设备还包括第二双向光放大器, 其一端与所述第二 合波 /分波模块相连, 另一端通过传输光纤与所述中央设备相连。 这时, 所 述第一合波 /分波模块采用加热型周期性阵列波导光栅莫块, 所述第二合波 / 分波模块采用加热型周期阵列波导光栅模块。
本发明所述的波分复用接入网系统, 其中, 所述系统中的 xPON ONU 为以太无源光网络的用户光网络单元 EPON ONU时,
所述中央设备包括多个 EPON OLT, 与多个 EPON OLT相连的第一合 波 /分波模块, 以及一双向光放大器,其一端与所述笫一合 ^/分波模块相连, 另一端通过传输光纤与所述远端节点设备相连;
所述远端节点设备包括第二合波 /分波模块, 且所述第二合波 /分波模块 的多路输出通过光纤连接所述各无源分支器。
其中, 所述第一合波 /分波模块采用加热型周期性阵列波导光栅模块, 所述第二合波 /分波模块采用非加热型周期阵列波导光栅模块。
本发明的有益效果为: 由于采用 WDM、 双向光放大器、 色散补偿等技 术, 采用本发明所述的接入系统可以平滑地升级系统容量, 增长原有 xPON 系统的传输距离,并且单波长传输速率下行可以达到 10Gb/s、上行最大可以 达到 2.5Gb/s, 解决日益增长的客户需求。 并且本发明的 WDM接入网系统 可以完全采用原有的 xPON系统结构中的 xPON OLT及 xPON ONU, 实现 系统改造的成本低。
附图概述 图 1为现有技术 xPON系统结构示意图;
图 2为本发明 WDM (波分复用)接入网系统结构示意图; 图 3为本发明 WDM (波分复用)接入网系统第一实施例结构示意图; 图 4为本发明 WDM (波分复用)接入网系统第二实施例结构示意图。 本发明的较佳实施方式
下面根据附图和实施例对本发明作进一步详细说明:
为了解决现有无源光网络 EPON (以太无源光网络)及 GPON (千兆位 无源光网络)光接入系统存在的不足, 突破光接入网络的无源思维瓶颈, 本 发明将 WDM技术引入 PON (无源光网络) 系统结构, 使新型的 WDM接 入网系统结合了现有 PON技术和 WDM技术的优点。
本发明的 WDM接入网系统如图 2所示,整个 WDM接入网系统结构包 括 4部分组成: 中央设备 ( Central Office设备)、远端节点设备( Remote Node 设备)、客户侧的多个 Spilter及多个用户 xPON ONU组成。其中 Central Office 设备由多个 xPON OLT功能模块、 第一合波 /分波模块( MUX/DEMUX模块 1 )、 笫一双向光放大及色散补偿功能模块组成, 其中, 所述第一合波 /分波 模块一端与所述多个 xPON OLT功能模块相连,另一端与第一双向光放大及 色散补偿功能模块相连; 远端节点 (Remote Node ) 由第二双向光放大器及 色散补偿功能模块及第二合波 /分波模块( MUX/DEMUX模块 2 )组成, 并 且中央设备中的第一 向光放大及色散补偿功能模块通过一 X km传输光纤 连接所述远端节点设备中的第二双向光放大器及色散补偿功能模块,远端节 点设备中 MUX/DEMUX模块 2的多路输出通过 y km光纤连接各无源分支 器。
整个 WDM接入网系统的工作原理如下:局端下行的业务通过 n个 xPON OLT功能模块输出进入 MUX/DEMUX模块 1 , MUX/DEMUX模块 1将 n 个 xPON OLT输出的 n个波长信号合波 /分波处理后输出, 进入双向光放大 器及色散补偿模块 1 ,经过放大和色散补偿后进入 X km传输光纤;经过 x km 光纤传输后在远端节点 Remote Node的双向光放大器及色散补偿模块 2进行 放大, 并由 MUX/DEMUX模块 2分波成 n个波长信号后再经过 y km光纤 传输到靠近客户侧的各无源分支器 spilter分成 m路后进入 m个用户的 ONU。 假设每个 splitter的分支比为 m, 则对应每个 xPON OLT可以接入的用户数 为 m, 因此系统的总容量数为 mn个用户。 对应的上行信号进行类似的反向 处理, 由于每个 ONU的上行业务和下行业务在同一根光纤传输,每个 ONU 和 OLT需要将各自上下行的业务进行耦合进同一根光纤中, 对应的中央设 备中的 MUX/DEMUX模块 1及 Remote Node设备的 MUX/DEMUX模块 2 需要具备双向合分波处理功能。 在实际应用中, 当局端节点(中央设备)到 远端节点(远端节点设备)的传输光纤距离 X较短时, 远端节点设备的双向 光放大及色散补偿功能模块 2可选择由欢向光放大器替代,或者连双向光放 大器功能模块也不用, 远端节点设备仅包括 MUX/DEMUX模块 2。
相比较于现有 xPON系统结构, 虽然本发明采用了 MUX/DEMUX功能 模块及双向光放大及色散补偿模块, 由于光域透明, xPON系统中所用的关 键技术如突发发送接收模式、 带宽分配 DBA技术、 测距技术, 安全加密技 术、保护技术、 PLOAM信息技术及各传输汇聚层协议 GEM ( GEM— GPON Encapsulation Method, 类似于通用成帧规程 GFP, 是 GPON特有的封装方 式)等均不用改动。 本发明提出的 WDM接入网系统结构几乎可以完全采用 原有的 xPON系统结构中的 xPON OLT及 xPON ONU。
本发明的第一实施例如图 3所示,在局端侧(中央设备)采用 GPON OLT 功能模块, 该功能模块从功能上分为下行发送处理部分和上行接收处理部 分, 下行发送波长和上行接收波长采用耦合器将信号耦合在一起进入 32ch cyclic AWG (周期性阵列波导光栅); 考虑将来 10Gb/s速率应用场合, 局端 还采用双向光放大及色散补偿功能模块, 该功能模块具体实现方式见图 3, 环行器将汉向信号进行分开,下行的信号和上行的信号经过色散预补偿后再 放大, 之后再经过环行器将双方向信号合在一起。 考虑到 10Gb/s应用场合, 在 Remote Node节点由于 10Gb/s接收灵敏度较大, 需要采用双向光放大器, 这样就可以采用低成本的加热型 Cyclic AWG, 但若局端 (中央设备)到远 端节点距离较短时, 远端节点的双向光放大器可以不需要, 这样远端节点可 以只采用 Athermal Cyclic AWG (非加热周期性阵列波导光栅) , 这样可以 降低对环境的要求。在用户侧 ONU完成与 OLT几乎相反的功能。本实施例中 splitter采用 32分支比, MUX/DEMUX采用 32ch Cyclic AWG, 这样总接入的 ONU用户数可以是 32*32 = 1024个。 随着突发发送及接收的发展, 最高支持 的下行单波长速率将达到 10Gb/s。
本发明的第二实施例如图 4所示, 在局端侧采用 EPON OLT功能模块, 由于 EPON目前信号最大速率为 2.5Gb/s, 局端只采用双向光放大器功能模 块, 可以不需要色散补偿模块。 由于 2.5Gb/s的光接收机灵敏度较低, 大部 分传输距离的应用场合下, 远端节点设备 Remote Node不需要采用光放大 器。
可以理解的是, 对本领域普通技术人员来说, 可以根据本发明的技术方 案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发 明所附的权利要求的保护范围。
工业实用性
本发明由于采用 WDM、 双向光放大器、 色散补偿等技术, 可以平滑地 升级系统容量, 增长原有 xPON系统的传输距离, 并且单波长传输速率下行 可以达到 10Gb/s、 上行最大可以达到 2.5Gb/s, 解决日益增长的客户需求。 并且本发明的 WDM接入网系统可以完全采用原有的 xPON 系统结构中的 xPON OLT及 xPON ONU, 实现系统改造的成本低。

Claims

权 利 要 求 书
1、 一种波分复用接入网系统, 包括多个无源光网络的用户光网络单元 xPON ONU, 以及与多个 xPON ONU相连的至少一个无源分支器, 其特征 在于, 还包括: 一中央设备, 以及一远端节点设备, 所述中央设备通过传输 光纤连接所述远端节点设备; 其中,
所述中央设备包括多个无源光网络的局端光通路终端 xPON OLT, 与多 个 xPON OLT相连的第一合波 /分波模块;
所述远端节点设备包括第二合波 /分波模块, 且所述第二合波 /分波模块 的多路输出通过光纤连接所述各无源分支器。
2、 如权利要求 1所述的波分复用接入网系统, 其特征在于, 所述中央 设备还包括第一双向光放大器, 其一端与所述第一合波 /分波模块相连, 另 一端通过传输光纤与所述远端节点设备相连。
3、 如权利要求 1所述的波分复用接入网系统, 其特征在于, 所述中央 设备还包括双向光放大及色散补偿功能模块, 其一端与所述第一合波 /分波 模块相连, 另一端通过传输光纤与所述远端节点设备相连。
4、 如权利要求 1、 2或 3所迷的波分复用接入网系统, 其特征在于, 所 述远端节点设备还包括双向光放大及色散补偿功能模块,其一端与所述第二 合波 /分波模块相连, 另一端通过传输光纤与所述中央设备相连。
5、 如权利要求 1、 2或 3所迷的波分复用接入网系统, 其特征在于, 所 述远端节点设备还包括第二双向光放大器, 其一端与所述第二合波 /分波模 块相连, 另一端通过传输光纤与所述中央设备相连。
6、 如权利要求 1所述的波分复用接入网系统, 其特征在于, 所述系统 中的 xPON ONU为千兆位无源光网络的用户光网络单元 GPON ONU时, 所述中央设备包括多个 GPON OLT, 与多个 GPON OLT相连的第一合 波 /分波模块, 以及一双向光放大及色散补偿功能模块, 其一端与所述第一 合波 /分波模块相连, 另一端通过传输光纤与所述远端节点设备相连;
所述远端节点设备包括第二合波 /分波模块, 且所述第二合波 /分波模块 的多路输出通过光纤连接所迷各无源分支器。
7、 如权利要求 6所述的波分复用接入网系统, 其特征在于, 所述远端 节点设备还包括第二双向光放大器, 其一端与所述第二合 ^分波模块相连, 另一端通过传输光纤与所述中央设备相连。
8、 如权利要求 1所述的波分复用接入网系统, 其特征在于, 所述系统 中的 xPON ONU为以太无源光网络的用户光网络单元 EPON ONU时,
所述中央设备包括多个 EPON OLT, 与多个 EPON OLT相连的第一合 波 /分波模块, 以及一双向光放大器,其一端与所述第一合波 /分波模块相连, 另一端通过传输光纤与所述远端节点设备相连;
所述远端节点设备包括第二合波 /分波模块, 且所述第二合波 /分波模块 的多路输出通过光纤连接所述各无源分支器。
9、 如权利要求 6或 8所述的波分复用接入网系统, 其特征在于, 所述 第一合波 /分波模块采用加热型周期性阵列波导光栅模块, 所述第二合波 /分 波模块采用非加热型周期阵列波导光栅模块。
10、 如权利要求 7所述的波分复用接入网系统, 其特征在于, 所述第一 合波 /分波模块采用加热型周期性阵列波导光栅模块, 所述第二合波 /分波模 块采用加热型周期阵列波导光.柵模块。
PCT/CN2007/003746 2007-10-31 2007-12-24 Système reseau a acces multiple à répartition en longueur d'onde et procédé associé WO2009055984A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200710124353 CN101425867B (zh) 2007-10-31 2007-10-31 一种wdm接入网系统
CN200710124353.2 2007-10-31

Publications (1)

Publication Number Publication Date
WO2009055984A1 true WO2009055984A1 (fr) 2009-05-07

Family

ID=40590522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003746 WO2009055984A1 (fr) 2007-10-31 2007-12-24 Système reseau a acces multiple à répartition en longueur d'onde et procédé associé

Country Status (2)

Country Link
CN (1) CN101425867B (zh)
WO (1) WO2009055984A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333991A1 (en) * 2009-12-11 2011-06-15 Alcatel Lucent Bidirectional optical amplifier

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101959091B (zh) * 2009-07-15 2013-12-18 华为技术有限公司 一种数据传输方法、系统以及运营商边缘节点
CN102480651B (zh) * 2010-11-23 2015-07-22 中兴通讯股份有限公司 多速率光信号传输方法、系统及光网络单元
CN103220044B (zh) * 2012-01-19 2015-12-16 中兴通讯股份有限公司 一种光接入网络系统、设备及方法
CN103178904B (zh) * 2013-03-26 2016-12-28 华中科技大学 全双工高速单纤双向波分复用无源光接入网络
CN104980369A (zh) * 2014-04-08 2015-10-14 国家电网公司 智能变电站过程层多波长隔离光交换机设备及其实现方法
CN104735556B (zh) * 2015-03-27 2019-07-05 上海欣诺通信技术有限公司 一种g/epon双模链路放大器及其控制方法
CN109982171B (zh) * 2019-03-20 2021-11-02 东南大学 一种可拉远多跳光接入网及智能管理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741433A (zh) * 2004-08-28 2006-03-01 三星电子株式会社 使用波分方法的光接入网络及无源光网络
CN1805321A (zh) * 2005-01-12 2006-07-19 三星电子株式会社 波分复用无源光网络
US20070058973A1 (en) * 2005-07-29 2007-03-15 Keiji Tanaka Optical termination system
CN1980109A (zh) * 2005-12-02 2007-06-13 北京邮电大学 全业务接入方法及wdm无源光网络系统
CN200983593Y (zh) * 2006-12-13 2007-11-28 上海未来宽带技术及应用工程研究中心有限公司 基于波分复用技术的无源光网络系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489922B1 (ko) * 2002-10-01 2005-05-17 최준국 페브리-페롯 레이저 다이오드의 셀프 인젝션 락킹을이용한 고밀도 파장분할 다중방식 수동형 광가입자망 시스템
CN1866790A (zh) * 2005-11-16 2006-11-22 华为技术有限公司 一种使用otdr检测光路的pon网络设计方法
KR100784115B1 (ko) * 2006-04-05 2007-12-12 충남대학교산학협력단 원격 펌핑 광증폭기를 이용하는 수동형 광가입자망 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741433A (zh) * 2004-08-28 2006-03-01 三星电子株式会社 使用波分方法的光接入网络及无源光网络
CN1805321A (zh) * 2005-01-12 2006-07-19 三星电子株式会社 波分复用无源光网络
US20070058973A1 (en) * 2005-07-29 2007-03-15 Keiji Tanaka Optical termination system
CN1980109A (zh) * 2005-12-02 2007-06-13 北京邮电大学 全业务接入方法及wdm无源光网络系统
CN200983593Y (zh) * 2006-12-13 2007-11-28 上海未来宽带技术及应用工程研究中心有限公司 基于波分复用技术的无源光网络系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333991A1 (en) * 2009-12-11 2011-06-15 Alcatel Lucent Bidirectional optical amplifier
WO2011070163A1 (en) * 2009-12-11 2011-06-16 Alcatel Lucent Bidirectional optical amplifier
US8848284B2 (en) 2009-12-11 2014-09-30 Alcatel Lucent Bidirectional optical amplifier

Also Published As

Publication number Publication date
CN101425867B (zh) 2012-12-05
CN101425867A (zh) 2009-05-06

Similar Documents

Publication Publication Date Title
WO2009055984A1 (fr) Système reseau a acces multiple à répartition en longueur d'onde et procédé associé
EP2137849A1 (en) A system and method for long backhaul link extension in a passive optical network
US8050561B2 (en) Asymmetrical PON with multiple return channels
JP2010520680A (ja) 下位互換性を有するpon共存
WO2013087006A1 (zh) 无源光网络系统、光线路终端和光传输方法
KR101727779B1 (ko) 파장 가변 광 모듈 기반 수동형 광 망 거리 확장장치 및 그 방법
WO2013075662A1 (zh) 共存无源光网络系统及上、下行光信号发送方法
CN101471730B (zh) 基于波分复用结构的光纤宽带接入系统及光网络单元
Kim et al. Design of a hybrid PON system for GPON reach extension on the basis of colorless DWDM-PON and 3R regenerator
CN103281605A (zh) 多波长无源光网络系统
KR100972035B1 (ko) 광학 필터링 장치 및 광 통신 시스템
KR200386964Y1 (ko) 단일 파장다중화기를 사용한 광가입자망 구성방식
CN103313153A (zh) 多波长无源光网络系统
CN103281626A (zh) 多波长无源光网络系统
CN103281603A (zh) 多波长无源光网络系统
Hornung et al. Evolution to next generation optical access networks
CN103281618A (zh) 多波长无源光网络系统
CN103281622A (zh) 多波长无源光网络系统
Feng et al. Flexible, low-latency peer-to-peer networking over long-reach WDM/TDM PON systems
CN103297874A (zh) 多波长无源光网络系统
CN103281624A (zh) 多波长无源光网络系统
CN103297168A (zh) 多波长无源光网络系统
CN103281623A (zh) 多波长无源光网络系统
CN103281620A (zh) 多波长无源光网络系统
CN103281625A (zh) 多波长无源光网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07846008

Country of ref document: EP

Kind code of ref document: A1