WO2009053395A2 - Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures - Google Patents

Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures Download PDF

Info

Publication number
WO2009053395A2
WO2009053395A2 PCT/EP2008/064295 EP2008064295W WO2009053395A2 WO 2009053395 A2 WO2009053395 A2 WO 2009053395A2 EP 2008064295 W EP2008064295 W EP 2008064295W WO 2009053395 A2 WO2009053395 A2 WO 2009053395A2
Authority
WO
WIPO (PCT)
Prior art keywords
probe
measurement
target
measuring
tacheometer
Prior art date
Application number
PCT/EP2008/064295
Other languages
English (en)
Other versions
WO2009053395A3 (fr
Inventor
Bernard Levaufre
Jean-Michel Barbut
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to US12/739,634 priority Critical patent/US20110037966A1/en
Priority to EP08841418A priority patent/EP2203751A2/fr
Publication of WO2009053395A2 publication Critical patent/WO2009053395A2/fr
Publication of WO2009053395A3 publication Critical patent/WO2009053395A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics

Definitions

  • the present invention relates to a system for measuring a physical quantity and cartographic representation of these measurements.
  • the invention applies in particular to the mapping of electromagnetic fields.
  • a measurement probe is moved, the location of the probe being carefully recorded at each measurement.
  • Each n-tuple coordinates, respectively corresponding to each location successively taken by the probe is associated with each of the measurement values provided by the probe.
  • the obtaining of the couples proves to be a laborious and long operation, the position of the probe to be raised with each measurement.
  • the problem also arises for taking measurements and mapping relating to other physical quantities such as, for example, temperature, light intensity or humidity.
  • a satellite positioning system such as a GPS terminal, acronym for "Global Positioning System”
  • a satellite positioning system such as a GPS terminal, acronym for "Global Positioning System”
  • this solution has several disadvantages.
  • the location obtained is relatively coarse, especially for the coordinate indicating the height of the probe.
  • this solution is inapplicable in a confined environment, especially in the basement or inside buildings, the receiver of the terminal being, in this case, unable to capture the satellite signals.
  • An object of the invention is to provide a system for taking precise and spatially localized measurements of a physical quantity, especially in a confined environment.
  • the subject of the invention is a system for measuring a physical quantity at different points of an area to be examined, each measurement being spatially localized, the system comprising a probe for measuring said physical quantity, the system being characterized in that it comprises a tacheometer associated with a target, said target being fixed to the probe, the tacheometer determining the location of the target, therefore the probe, at each measurement, in order to obtain concomitantly the value of the measurement and the position of the measurement, the probe being a probe for measuring the intensity of electromagnetic radiation, the material or materials constituting the target being substantially electromagnetically neutral, the magnetic permeability of said materials being close to that of the vacuum and the relative dielectric permittivity being, for example, of the order of 4 to 8 for electromagnetic waves whose frequency varies between 1 MHz and 1 GHz.
  • electromagnetic insulating materials ie non-metallic, and non-emitters of electromagnetic radiation, makes it possible not to disturb the electromagnetic field measurement in the near field.
  • the tacheometer comprises a robotic head associated with automatic tracking means of a target, said means following the target during its movement.
  • a computer is connected to the probe and the tacheometer, the computer coupling, for each measurement made, the value of the measurement with the position of the probe determined at the time of measurement.
  • a control box can be connected to the computer, the control box emitting a control signal to the computer to trigger a measurement.
  • the probe when the probe is moved by an operator, the probe is fixed on a support in order to isolate the operator of the probe.
  • FIG. 1 an exemplary embodiment of the measuring system according to the invention.
  • FIG. 1 shows an exemplary embodiment of a measuring system according to the invention.
  • the system 100 comprises a tacheometer 101, a calculator
  • a target 106 is fixed to the measurement probe 103 and a control box 107 accessible to the operator 105 is placed on the insulating pole 104.
  • the description of the system 100 of Figure 1 relates to the measurement of electromagnetic radiation; also, the probe 103 makes it possible to measure the intensity of said radiations. Nevertheless, the system according to the invention can be applied to measurements of all types of physical quantities, the measurement probe to be used then being naturally chosen as a function of the type of physical quantity to be studied.
  • the tacheometer 101 makes it possible to know precisely the location of the target 106 relative to its own position.
  • the tacheometer 101 is preferably provided with a movable head comprising means for automatically tracking a target. In this way, if the target 106 is moved by the operator 105, the tacheometer 101 is able to follow the target 106 during its movement.
  • These automatic tracking means may in particular comprise an infrared camera connected to a processor dedicated to pattern recognition.
  • the tacheometer 101 comprises a head whose position is manually adjusted to target the target 106, which is, for example, a catoptric reflecting prism.
  • the target 106 is fixed to the probe 103, so that the knowledge of the position of the probe 103 is deduced from the measurement of the position of the target 106 performed by the tacheometer 101.
  • the target 106 is electromagnetically neutral because it consists of a material that does not disturb the electromagnetic fields measured.
  • the probe 103 is connected, for example via an optical link, to the computer 102.
  • the computer 102 is connected to the tacheometer 101, for example via an RS 232 serial link, so that the tacheometer 101 can transmit the measured coordinates of the target 106 to the computer 102.
  • the computer 102 is a compact device such as a laptop, which allows the operator 105 to move with him during measurements.
  • the computer 102 is connected to the control unit 107, for example via a wired or optical serial link or via a USB link. This control box 107 is actuated by the operator 105 whenever the latter wishes to make a measurement. A control signal is then transmitted to the computer 102 by the control unit 107.
  • the computer 102 is equipped with a specific software module for processing this control signal.
  • This software module triggers the emission of two quasi-simultaneous signals.
  • a first signal is transmitted by the computer 102 to the probe 103 in order to trigger a measurement, and a second signal is transmitted to the tachometer 101 in order to determine the location of the target 106, therefore of the probe 103.
  • the measurement value of the probe 103 and the coordinates of the target 106 determined by the tacheometer 101 are then transmitted to the computer 102.
  • the computer 102 receives a pair of values ( measurement, coordinates of the measuring point).
  • a software module executed by the computer 102 makes it possible to display 2D and / or 3D mapping of the measurement zones on the screen.
  • the measurement points can be represented by a symbolic code, and the intensity of the measurement values can be associated with a color code.
  • the operator 105 then has a synoptic representation of the measurements made and is able to fill any omissions in the coverage of the sector to be studied.
  • the attachment mode chosen to add the target 106 to the probe 103 imposes a difference in distance D between the target 106 and the probe 103.
  • This difference is materialized, in the example, by the presence of a vertical rigid arm whose upper end is contiguous to the probe 103 and whose lower end is contiguous to the target 106.
  • each location measurement value of the target 106 must be rectified to take consider this difference between the target 106 and the probe 103, in this example, add the distance D to the measured height of the target 106 to know the actual height of the probe 103.
  • the calculator 102 can be configured to systematically apply this correction to the position measurement values transmitted by the tachometer 101.
  • the measurement probe 103 is fixed on the insulating pole 104 in order to impose a minimum distance between the probe 103 and the operator 105. Indeed, on the one hand, the presence of the operator 105 to proximity to the probe 103 may alter the measurements. On the other hand, areas are potentially exposed to significant radiation, which can be a danger for an operator 105 operating within these areas. Other means for moving the probe 103 and / or keeping the probe 103 away from the operator 105 are conceivable, for example, the probe 103 can be placed on a vehicle or directed to the operator. using a crane.
  • the insulating pole 104 is provided with a balancing mass 104a and is held by means of a harness 104b to relieve the operator 105. According to a simplified implementation of the system according to the invention , the probe 103 is held directly by the operator 105.
  • Measurements can be made as long as the target 106 attached to the probe 103 remains in the field of view of the tacheometer 101.
  • a judicious implementation of the tacheometer 101 is therefore recommended, in order to maximize the spatial extent covered by the means of detection of the tacheometer.
  • the sector to be studied can not be covered by a single position of the tachometer 101, several series of measurements are necessary, each series being carried out from a different location of the tacheometer 101.
  • a position of reference tachometer 101 is chosen, said position being common to all series of measurements.
  • the location and orientation difference between the new position of the tachometer 101 and the reference position is entered. , for example in the computer 102. This difference is taken into account by the computer 102 to replace the measurements in the same spatial reference.
  • the system according to the invention can, for example, be used at a work site to identify the danger zones vis-à-vis the staff and to facilitate the compliance of the site vis-à-vis safety standards. It can also be implemented to determine the areas capable of receiving material sensitive to significant electromagnetic fields, or allow to establish antenna radiation patterns.
  • An advantage of the system according to the invention is its simplicity and the speed with which it can be implemented. It only requires one operator. In addition, the accuracy of the location measurement obtained is generally very satisfactory compared to the applications requested, of the order of one centimeter for a distance tacheometer-target of 300m. Finally, the system can operate under conditions that are a priori unfavorable, for example in complete darkness and in the rain.
  • system according to the invention is easily transportable and can be deployed on an external measurement site having any relief or in a confined medium of any size.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

La présente invention concerne un système de mesure d'une grandeur physique et de représentation cartographique de ces mesures. Le système de mesure d'une grandeur physique en différents points d'une zone à examiner, chaque prise de mesure étant localisée spatialement, le système comprenant une sonde de mesure de ladite grandeur physique, le système comportant un tachéomètre associé à une cible, ladite cible étant fixée à la sonde, le tachéomètre déterminant la localisation de la cible lors de chaque prise de mesure pour connaître la position de la sonde au moment de la prise de mesure. L'invention s'applique notamment à la cartographie des champs électromagnétiques.

Description

Système de mesure d'une grandeur physique et de représentation cartographique de ces mesures
La présente invention concerne un système de mesure d'une grandeur physique et de représentation cartographique de ces mesures.
L'invention s'applique notamment à la cartographie des champs électromagnétiques.
Avec la recrudescence des implantations d'appareils émetteurs d'ondes électromagnétiques, les problèmes concernant la sécurité des personnes et la fiabilité du matériel électronique deviennent de plus en plus prégnants. En effet, certaines zones sont soumises à des rayonnements électromagnétiques puissants pouvant provoquer des dysfonctionnements des matériels électroniques environnants, voire dépassant les limites admises par les normes de santé publique en vigueur. Aussi, afin d'identifier les zones problématiques dans un secteur donné, l'intensité des rayonnements électromagnétiques est cartographiée à l'aide de mesures effectuées en différents points dudit secteur.
Pour établir ce type de cartographie, une sonde de mesure est déplacée, la localisation de la sonde étant soigneusement enregistrée à chaque prise de mesure. Chaque n-uplet de coordonnées, correspondant respectivement à chacune des localisations successivement prises par la sonde, est associé à chacune des valeurs de mesure fournies par la sonde. L'obtention des couples (coordonnées, mesure de sonde) s'avère être une opération laborieuse et longue, la position de la sonde devant être relevée à chaque mesure. Le problème se pose également pour la prise de mesures et la cartographie relatives à d'autres grandeurs physiques telles que, par exemple, la température, l'intensité lumineuse ou l'humidité.
Pour faciliter l'obtention des coordonnées de la sonde, un système de localisation par satellite, tel qu'un terminal GPS, acronyme anglo-saxon pour « Global Positionning System », peut être utilisé. Cependant, cette solution comporte plusieurs inconvénients. D'une part, la localisation obtenue est relativement grossière, notamment pour la coordonnée indiquant la hauteur de la sonde. D'autre part, cette solution est inapplicable en milieu confiné, notamment en sous-sol ou à l'intérieur de bâtiments, le récepteur du terminal étant, dans ce cas, inapte à capter les signaux satellitaires. Un but de l'invention est de proposer un système permettant de prendre des mesures précises et spatialement localisées d'une grandeur physique, notamment en milieu confiné. A cet effet, l'invention a pour objet un système de mesure d'une grandeur physique en différents points d'une zone à examiner, chaque prise de mesure étant spatialement localisée, le système comprenant une sonde de mesure de ladite grandeur physique, le système étant caractérisé en ce qu'il comporte un tachéomètre associé à une cible, ladite cible étant fixée à la sonde, le tachéomètre déterminant la localisation de la cible, donc de la sonde, lors de chaque prise de mesure, afin d'obtenir concomitamment la valeur de la mesure et la position de la mesure, la sonde étant une sonde de mesure de l'intensité des rayonnements électromagnétiques, le ou les matériaux constituant la cible étant sensiblement neutres sur le plan électromagnétique, la perméabilité magnétique desdits matériaux étant proche de celle du vide et la permittivité diélectrique relative étant, par exemple, de l'ordre de 4 à 8 pour des ondes électromagnétiques dont la fréquence varient entre 1 MHz et 1 GHz.
L'utilisation de matériaux isolants du point de vue électromagnétique, c'est à dire non métalliques, et non émetteurs de rayonnement électromagnétique, permet de ne pas perturber la mesure de champ électromagnétique en champ proche.
Selon un mode de réalisation, le tachéomètre comporte une tête robotisée associée à des moyens de suivi automatique d'une cible, lesdits moyens suivant la cible lors de son déplacement. Selon un mode de réalisation, un calculateur est connecté à la sonde et au tachéomètre, le calculateur couplant, pour chaque mesure effectuée, la valeur de la mesure avec la position de la sonde déterminée au moment de la prise de mesure. Un boîtier de commande peut être connecté au calculateur, le boîtier de commande émettant un signal de commande vers le calculateur pour déclencher une prise de mesure.
Selon un mode de réalisation, lorsque la sonde est déplacée par un opérateur, la sonde est fixée sur un support afin d'isoler l'opérateur de la sonde.
Avantageusement, le calculateur est pourvu d'un logiciel de représentation cartographique des mesures effectuées. D'autres caractéristiques apparaîtront à la lecture de la description détaillée donnée à titre d'exemple et non limitative qui suit faite en regard de dessins annexés qui représentent : - l'unique figure 1 , un exemple de mode de réalisation du système de mesure selon l'invention.
La figure 1 présente un exemple de mode de réalisation d'un système de mesure selon l'invention. Le système 100 comporte un tachéomètre 101 , un calculateur
102, une sonde de mesure 103 fixée sur une perche isolante 104 manipulée par un opérateur 105. Une cible 106 est fixée à la sonde de mesure 103 et un boîtier de commande 107 accessible à l'opérateur 105 est placé sur la perche isolante 104. La description du système 100 de la figure 1 concerne la mesure de rayonnements électromagnétiques ; aussi, la sonde 103 permet de mesurer l'intensité desdits rayonnements. Néanmoins, le système selon l'invention peut s'appliquer aux mesures de tous types de grandeurs physiques, la sonde de mesure à utiliser étant alors naturellement choisie en fonction du type de grandeur physique à étudier.
Grâce à ses moyens de détection, le tachéomètre 101 permet de connaître précisément la localisation de la cible 106 relativement à sa propre position. Le tachéomètre 101 est, de préférence, pourvu d'une tête mobile comprenant des moyens de suivi automatique d'une cible. De cette manière, si la cible 106 est déplacée par l'opérateur 105, le tachéomètre 101 est apte à suivre cette cible 106 au cours de son déplacement. Ces moyens de suivi automatique peuvent notamment comporter une caméra infrarouge reliée à un processeur dédié à la reconnaissance de forme. Selon un mode de mise en oeuvre plus simple du système 100, le tachéomètre 101 comporte une tête dont la position est ajustée manuellement pour viser la cible 106, laquelle est, par exemple, un prisme réflecteur catoptrique.
La cible 106 est fixée à la sonde 103, de sorte que la connaissance de la position de la sonde 103 soit déduite de la mesure de position de la cible 106 effectuée par le tachéomètre 101. De préférence, la cible 106 est neutre sur le plan électromagnétique, car constituée d'une matière ne perturbant pas les champs électromagnétiques mesurés.
La sonde 103 est connectée, par exemple via une liaison optique, au calculateur 102, Par ailleurs, le calculateur 102 est connecté au tachéomètre 101 , par exemple via une liaison série RS 232, de sorte que le tachéomètre 101 peut transmettre les coordonnées mesurées de la cible 106 au calculateur 102. Avantageusement, le calculateur 102 est un appareil à faible encombrement tel qu'un ordinateur portable, ce qui permet à l'opérateur 105 de le déplacer avec lui pendant les prises de mesures. Dans l'exemple, le calculateur 102 est connecté au boîtier de commande 107, par exemple par l'intermédiaire d'une liaison série filaire ou optique ou encore via une liaison USB. Ce boîtier de commande 107 est actionné par l'opérateur 105 chaque fois que celui-ci souhaite effectuer une mesure. Un signal de commande est alors transmis au calculateur 102 par le boîtier de commande 107. Le calculateur 102 est équipé d'un module logiciel spécifique permettant de traiter ce signal de commande. Ce module logiciel déclenche l'émission de deux signaux quasi-simultanés. Un premier signal est transmis par le calculateur 102 à la sonde 103 afin de déclencher une mesure, et un second signal est transmis au tachéomètre 101 en vue de déterminer la localisation de la cible 106, donc de la sonde 103. La valeur de mesure issue de la sonde 103 et les coordonnées de la cible 106 déterminées par le tachéomètre 101 sont ensuite transmises au calculateur 102. Ainsi, pour une commande de l'opérateur 105 déclenchée via le boîtier de commande 107, le calculateur 102 reçoit un couple de valeurs (mesure, coordonnées du point de mesure). Ces couples de valeurs peuvent être simplement enregistrés sur un support de mémoire et/ou affichés sous forme de texte par un écran associé au calculateur 102. Selon un mode de réalisation plus évolué du système, un module logiciel exécuté par le calculateur 102 permet de visualiser une cartographie 2D et/ou 3D des zones de mesure sur l'écran. Les points de mesures peuvent être représentés par un code symbolique, et l'intensité des valeurs de mesures peut être associée à un code de couleurs. L'opérateur 105 dispose alors d'une représentation synoptique des mesures effectuées et est en mesure de combler ses oublis éventuels dans la couverture du secteur à étudier. Selon certains modes de réalisation du système 100, le mode de fixation choisi pour adjoindre la cible 106 à la sonde 103 impose un écart de distance D entre la cible 106 et la sonde 103. Cet écart est matérialisé, dans l'exemple, par la présence d'un bras rigide vertical dont l'extrémité haute est accolée à la sonde 103 et dont l'extrémité basse est accolée à la cible 106. Dans ce cas, chaque valeur de mesure de localisation de la cible 106 doit être rectifiée pour prendre en compte cet écart entre la cible 106 et la sonde 103, soit dans cet l'exemple, ajouter la distance D à la hauteur mesurée de la cible 106 pour connaître la hauteur réelle de la sonde 103. Par exemple, le calculateur 102 peut être configuré pour appliquer systématiquement cette rectification sur les valeurs de mesures de positions transmises par le tachéomètre 101.
Dans l'exemple, la sonde de mesure 103 est fixée sur la perche isolante 104 afin d'imposer une distance minimale entre la sonde 103 et l'opérateur 105. En effet, d'une part, la présence de l'opérateur 105 à proximité de la sonde 103 peut altérer les mesures. D'autre part, des zones sont potentiellement exposées à des rayonnements importants, ce qui peut constituer un danger pour un opérateur 105 évoluant à l'intérieur de ces zones. D'autres moyens de déplacement de la sonde 103 et/ou de mise à distance de la sonde 103 vis-à-vis de l'opérateur 105 sont envisageables, par exemple, la sonde 103 peut être placée sur un véhicule ou dirigée à l'aide d'une grue. Dans l'exemple, la perche isolante 104 est pourvue d'une masse d'équilibrage 104a et est maintenue à l'aide d'un harnais 104b pour soulager l'opérateur 105. Selon une mise en œuvre simplifiée du système selon l'invention, la sonde 103 est tenue directement par l'opérateur 105.
Des mesures peuvent être effectuées tant que la cible 106 adjointe à la sonde 103 demeure dans le champ de visée du tachéomètre 101. Une mise en place judicieuse du tachéomètre 101 est donc préconisée, en vue de maximiser l'étendue spatiale couverte par les moyens de détection du tachéomètre. Lorsque le secteur à étudier ne peut pas être couvert par une seule position du tachéomètre 101 , plusieurs séries de mesures sont nécessaires, chaque série étant effectuée à partir d'une localisation différente du tachéomètre 101. De préférence, dans le but d'obtenir une cartographie unique pour l'ensemble du secteur à étudier, autrement dit de produire des mesures dans un même référentiel spatial, une position de référence du tachéomètre 101 est choisie, ladite position étant commune à toutes les séries de mesures. Aussi, lors d'une nouvelle mise en place du tachéomètre 101 liée à un passage d'une série de mesures à la suivante, l'écart de localisation et d'orientation entre la nouvelle position du tachéomètre 101 et la position de référence est entré, par exemple dans le calculateur 102. Cet écart est pris en compte par le calculateur 102 pour replacer les mesures dans le même référentiel spatial.
Le système selon l'invention peut, par exemple, être utilisé sur un site de travail pour identifier les zones dangereuses vis-à-vis du personnel et pour faciliter la mise en conformité du site vis-à-vis des normes de sécurité. Il peut également être mis en œuvre pour déterminer les zones aptes à recevoir du matériel sensible à des champs électromagnétiques importants, ou encore permettre d'établir des diagrammes de rayonnement d'antennes. Un avantage du système selon l'invention est sa simplicité et la rapidité avec laquelle il peut être mis en œuvre. Il ne nécessite qu'un seul opérateur. En outre, la précision de mesure de localisation obtenue est généralement très satisfaisante en regard des applications demandées, de l'ordre d'un centimètre pour une distance tachéomètre-cible de 300m. Enfin, le système peut fonctionner dans des conditions a priori défavorables, par exemple dans le noir complet et sous la pluie.
Par ailleurs, le système selon l'invention est aisément transportable et peut être déployé sur un site de mesure extérieur présentant un relief quelconque ou dans un milieu confiné de dimensions quelconques.

Claims

REVENDICATIONS
1. Système (100) de mesure d'une grandeur physique en différents points d'une zone à examiner, chaque prise de mesure étant spatialement localisée, le système (100) comprenant une sonde (103) de mesure de ladite grandeur physique, le système (100) étant caractérisé en ce qu'il comporte un tachéomètre (101 ) associé à une cible (106), ladite cible étant fixée à la sonde (103), le tachéomètre (101 ) déterminant la localisation de la cible (106), donc de la sonde (103), lors de chaque prise de mesure, afin d'obtenir concomitamment la valeur de la mesure et la position de la mesure, la sonde (103) étant une sonde de mesure de l'intensité des rayonnements électromagnétiques, le ou les matériaux constituant la cible (106) étant sensiblement neutres sur le plan électromagnétique, la perméabilité magnétique desdits matériaux étant proche de celle du vide.
2. Système selon la revendication 1 , caractérisé en ce que le tachéomètre (101 ) comporte une tête robotisée associée à des moyens de suivi automatique d'une cible, lesdits moyens suivant la cible (106) lors de son déplacement.
3. Système selon l'une des revendications 1 et 2, caractérisé en ce qu'un calculateur (102) est connecté à la sonde (103) et au tachéomètre (101 ), le calculateur (102) couplant, pour chaque mesure effectuée, la valeur de la mesure avec la position de la sonde (103) déterminée au moment de la prise de mesure.
4. Système selon la revendication 3, caractérisé en ce qu'il comporte un boîtier de commande (107) connecté au calculateur (102), le boîtier de commande (107) émettant un signal de commande vers le calculateur (102) pour déclencher une prise de mesure.
5. Système selon l'une des revendications précédentes, la sonde (103) étant déplacée par un opérateur (105), caractérisé en ce que la sonde (103) est fixée sur un support (104) afin d'isoler l'opérateur (105) de la sonde (103).
6. Système selon l'une des revendications 3 à 5, caractérisé en ce que le i calculateur (102) est pourvu d'un logiciel de représentation cartographique des mesures effectuées.
PCT/EP2008/064295 2007-10-23 2008-10-22 Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures WO2009053395A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/739,634 US20110037966A1 (en) 2007-10-23 2008-10-22 System for Measuring a Physical Quantity and for the Map Representation of Said Measures
EP08841418A EP2203751A2 (fr) 2007-10-23 2008-10-22 Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0707419A FR2922655B1 (fr) 2007-10-23 2007-10-23 Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures.
FR0707419 2007-10-23

Publications (2)

Publication Number Publication Date
WO2009053395A2 true WO2009053395A2 (fr) 2009-04-30
WO2009053395A3 WO2009053395A3 (fr) 2009-07-16

Family

ID=39345556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/064295 WO2009053395A2 (fr) 2007-10-23 2008-10-22 Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures

Country Status (4)

Country Link
US (1) US20110037966A1 (fr)
EP (1) EP2203751A2 (fr)
FR (1) FR2922655B1 (fr)
WO (1) WO2009053395A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680599A (zh) * 2017-03-28 2017-05-17 上海市共进通信技术有限公司 基于云服务平台的电磁辐射监测报警管理系统及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2632613B1 (fr) 2010-10-28 2017-08-30 3M Innovative Properties Company Surfaces modifiées pour la réduction de l'adhésion bactérienne
CN109799394B (zh) * 2018-12-20 2022-04-05 上海玄彩美科网络科技有限公司 一种场分布数据采集方法和设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683379A1 (fr) * 1994-05-19 1995-11-22 SOLLAC (Société Anonyme) Mesure tridimensionnelle de la surface d'un objet de grande dimension
EP0789289A2 (fr) * 1996-02-09 1997-08-13 Faro Technologies Inc. Méthode pour concevoir ou produire des tubes coudés
EP0895096A2 (fr) * 1997-07-31 1999-02-03 The Boeing Company Système portable numériseur à laser pour grands objets
US6529852B2 (en) * 1998-11-12 2003-03-04 Alois Knoll Method and device for the improvement of the pose accuracy of effectors on mechanisms and for the measurement of objects in a workspace
EP1288754A2 (fr) * 2001-08-13 2003-03-05 The Boeing Company Système et procédé de production d'un assemblage en mettant en oeuvre directement des définitions de composants tridimensionnels de conception assistée par ordinateur

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416321A (en) * 1993-04-08 1995-05-16 Coleman Research Corporation Integrated apparatus for mapping and characterizing the chemical composition of surfaces
WO2006099059A2 (fr) * 2005-03-10 2006-09-21 Witten Technologies, Inc. Procede pour corriger une position 3d mesuree par un systeme de poursuite presentant un decalage vertical
US7285793B2 (en) * 2005-07-15 2007-10-23 Verisurf Software, Inc. Coordinate tracking system, apparatus and method of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0683379A1 (fr) * 1994-05-19 1995-11-22 SOLLAC (Société Anonyme) Mesure tridimensionnelle de la surface d'un objet de grande dimension
EP0789289A2 (fr) * 1996-02-09 1997-08-13 Faro Technologies Inc. Méthode pour concevoir ou produire des tubes coudés
EP0895096A2 (fr) * 1997-07-31 1999-02-03 The Boeing Company Système portable numériseur à laser pour grands objets
US6529852B2 (en) * 1998-11-12 2003-03-04 Alois Knoll Method and device for the improvement of the pose accuracy of effectors on mechanisms and for the measurement of objects in a workspace
EP1288754A2 (fr) * 2001-08-13 2003-03-05 The Boeing Company Système et procédé de production d'un assemblage en mettant en oeuvre directement des définitions de composants tridimensionnels de conception assistée par ordinateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BULUT F ET AL: "Determination of discontinuity traces on inaccessible rock slopes using electronic tacheometer: an example from the Ikizdere (Rize) Region, Turkey" ENGINEERING GEOLOGY, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 44, no. 1-4, 1 octobre 1996 (1996-10-01), pages 229-233, XP004071285 ISSN: 0013-7952 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680599A (zh) * 2017-03-28 2017-05-17 上海市共进通信技术有限公司 基于云服务平台的电磁辐射监测报警管理系统及其方法

Also Published As

Publication number Publication date
FR2922655B1 (fr) 2015-04-03
EP2203751A2 (fr) 2010-07-07
FR2922655A1 (fr) 2009-04-24
US20110037966A1 (en) 2011-02-17
WO2009053395A3 (fr) 2009-07-16

Similar Documents

Publication Publication Date Title
US9841503B2 (en) Optical ground tracking apparatus, systems, and methods
US10480929B2 (en) Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
RU2459217C2 (ru) Радиочастотная навигация с использованием сопоставления частотных характеристик
EP2972471B1 (fr) Scanner lidar
US9377885B2 (en) Method and apparatus for locking onto a retroreflector with a laser tracker
JP4350385B2 (ja) ターゲットマークを自動検索する方法、ターゲットマークを自動検索する装置、受信ユニット、測地計および測地システム
JP5461470B2 (ja) 近接度検出器
CN106291574B (zh) 一种小型红外测距装置
US20170123052A1 (en) Optoelectronic surveying device
US20130002854A1 (en) Marking methods, apparatus and systems including optical flow-based dead reckoning features
CA2770597A1 (fr) Jauge de deformation et systeme de localisation spatiale de telles jauges
EP0485253A1 (fr) Système radar en ondes millimétriques pour le guidage d'un robot mobile au sol
CN205091463U (zh) 一种激光雷达扫描探测装置
FR2978240A1 (fr) Dispositif et procede de localisation et de positionnement d'un corps en mouvement dans un environnement ferme
CN207231962U (zh) 一种散货煤炭堆场粉尘颗粒物自动监测装置
CN104101580A (zh) 一种基于半球阵列探测的brdf快速测量装置
CA2838328A1 (fr) Procedes, appareil et systemes de marquage comprenant des caracteristiques estimees en fonction de flux optique
US7528356B2 (en) Method and system for optical distance and angle measurement
CN107340211A (zh) 一种散货煤炭堆场粉尘颗粒物自动监测装置
EP2203751A2 (fr) Systeme de mesure d'une grandeur physique et de representation cartographique de ces mesures
CN205720649U (zh) 一种直驱小型旋转扫描测距装置
EP0539264B1 (fr) Procédé et dispositif de détermination de l'orientation d'un solide
Dulik et al. Surface detection and recognition using infrared light
MXPA02009278A (es) Metodo y sistema para la identificacion de objetos subterraneos.
Zong et al. Characterization of the sick lms511-20100pro laser range finder for simultaneous localization and mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841418

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2008841418

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008841418

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12739634

Country of ref document: US