TWO WIRE DIGITAL ULTRASONIC SENSOR USING BI-DIRECTIONAL POWER LINE COMMUNICATION
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a PCT International Application of United States
Patent Application No. 61/000,091 filed on October 23, 2007. The disclosure of the above application is incorporated herein by reference. This application claims the benefit of U.S. Provisional Application No. 60/000,091 , filed October 23, 2007.
FIELD OF THE INVENTION
The present invention relates to sensor control circuits having two input wires.
BACKGROUND OF THE INVENTION
Sensor circuits have been utilized in automotive applications for providing a measure of data for a given parameter that is being monitored. For example, sensors are used in engine components for the purpose of determining the position of various valves or actuators during normal operation. Additionally, sensors have also been incorporated to measure environmental factors such as temperature, light, and objects external to the vehicle. Most sensor circuitry utilizes three wires for communicating between the sensor, microcontroller, and power source. For example, two wires will be used for supplying power to the microcontroller and sensor unit. A third wire is used for communicating with the sensor unit. Reducing the number of wires and connections is desirable from the stand point of saving manufacturing time, equipment, as well as reducing the possibility of equipment failure by virtue of the fact that a lesser number of wires are being used. Thus, it is desirable to develop sensor circuits that need fewer than 3 wires between the microcontroller and the sensor.
SUMMARY OF THE INVENTION
The present invention is directed to a circuit arrangement having a master microcontroller operably connected to a sensor for detecting a parameter. The sensor and microcontroller are connected to a power source where a microcontroller power line is connected between the power source and the master microcontroller. A power communications line is connected between the power source, master microcontroller, and sensor, wherein the power communications line carries power to the sensor as well as communication signals between the sensor and the master microcontroller.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein: Fig. 1 is a schematic of the two wire sensor circuitry; Fig. 2a is a graph showing voltage versus time when the logic signal value is 1 ;
Fig. 2b is a graph showing voltage versus time when the logic signal value is 0;
Fig. 3 depicts graphical examples of a communications scheme for the circuit arrangement;
Fig. 4 is a perspective view of the sensor circuit as incorporated in a two wire ultrasonic sensor arrangement; and Fig. 5 depicts a perspective view of the vehicle having a plurality of ultrasonic sensors connected to the vehicle.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. Fig. 1 is a schematic view of a circuit arrangement 10 having a master microcontroller 12, a power source 14, and a sensor 16. The circuit arrangement 10 in one embodiment of the invention is a two wire digital or active environmental sensor used to sense objects in the external vehicle environment. The sensor 16 can be, but is not limited to a traffic environment sensor, weather sensor and an object sensor. However, the scope of this invention is not limited to environmental sensors or digital technology. The sensor 16 is an ultrasonic type sensor that utilizes sonar or sound waves to detect the presence or absence of an object as well as the distance from the object. One particular embodiment of the invention shown in Fig. 5 depicts the sensor as being used as an active ultrasonic park assist sensor. However, it is within the scope of this invention for the sensor 16 to be any type of sensor for detecting a given parameter while being able to operate using the two wire technology. Both the sensor 16 and the microcontroller 12 are connected to the power source 14. The power source 14 in this particular circuit arrangement 10 has a power source level that is a 5 volt direct current power source such as a battery. The use of a 5 volt power source with this circuit arrangement 10 provides a significant advantage over other arrangements that typically use a 12 volt power source. Using a 5 volt power source allows the circuit arrangement to be connectable to the same power source as the vehicle electronic control unit which also uses a 5V power source. However, it is possible to have a different type of power source having a different voltage depending upon the particular needs of an application. For example any types of voltage power source can be used, however, it is contemplated that 6 volts and 12 volt power sources are within the scope of this invention.
The power source 14 is connected to the microcontroller 12 through a microcontroller power line 18. The sensor 16 receives power through a
sensor power line 20 which is connected to a power communications line 22 that is connected to both the power source 14 and the microcontroller 12. The power communications line 22 transmits both power as well as bit line encoding that is both received by the sensor and sent to the microcontroller 12.
The sensor power line 20 has a capacitor 24 disposed on the sensor power line 20 and a diode 26 that separates the capacitor 24 and sensor power line 20 from the power communications line 22. The diode 26 allows power flow from the power source 14 to the capacitor 24, but does not allow power to flow in the direction from the capacitor 24 past the diode 26. The capacitor 24 is configured to supply power to sensor 16 during voltage drops. While this particular embodiment of the invention describes a capacitor 24 being used, it is possible for another suitable energy storage device to be used, such as a battery, switch capacitor or an inductor. Connected between the power source 14 and the power communications line 22 is a high impedance line 28, which is an energy line having a high impedance resistor 30. A low impedance line 32 having a low impedance resistor is also connected to the power source 14. The low impedance resistor 34 has a resistivity that is lower than the high impedance resistor 30. The low impedance line 32 and high impedance line 28 run in parallel. However, the low impedance line 32 has an impedance switch 36 that is controlled by the master microcontroller 12. When the impedance switch 36 is open, higher current passes through the power communications line 22 and onto the capacitor 24. When the impedance switch 36 is closed, a lower current will pass through the power communications line 22. It is during this period of lower current in the power communications line 22 that the line can be used for carrying a communications signal between the master microcontroller 12 and the sensor 16.
The master microcontroller 12 has a microcontroller communications line 38 that is connected to the power communications line 22. The microcontroller communications line 38 is also connected to ground. A master microcontroller output 40 is connected to the microcontroller
communications line 38 through a master microcontroller output switch 42. When the master microcontroller switch 42 is closed, signals are sent from the microcontroller 12 through the master microcontroller output 40 and onto the power communications line 22. The master microcontroller 12 also has connected to it a master microcontroller input 44 that is also connected to the microcontroller communications line 38 and receives signals from the sensor 16 via the power communications line 22.
The sensor 16 has a sensor communications line 46 that is connected to the power communications line 22 and ground. The sensor 16 has a slave sensor input 48 that selectively receives signals from the microcontroller 12 that are outputted through the master microcontroller output 40. The slave sensor input 48 introduces command signals to the sensor 16 that can cause the sensor to carry out a function such as sending and receiving ultrasonic sound waves. The sensor 16 in carrying out its functions will receive signals that are indicative of its function. For example, an ultrasonic sensor will receive signals that indicate the presence of an object in the path of the sensor 16. The signals received by the sensor 16 are transmitted to the microcontroller 12 through a slave sensor output 50. The slave sensor output 50 is controlled by a slave sensor switch 52 that will allow for signals to be transmitted from the slave sensor output 50 when the slave sensor switch 52 is in the closed position. When the slave sensor output switch 52 is in the open position the sensor communications line 46 will go to ground.
The operation of the circuit arrangement 10 is controlled by signals generated from the master microcontroller 12. During initial start up of the sensor 16 the master microcontroller 12 will cause the impedance switch 36 to be open which allows more power to flow through the power communications line 22 to charge the capacitor 24. During periods that communications signals are transmitted to the sensor 16 the impedance switch 36 is closed in order to impede the power supply and allow the power communications line 22 to carry a communications signal. The communications signals are generated between the master microcontroller 12 and the sensor 16 through the input and output ports connected to the
microcontroller communications line 38 and the sensor communications lines 46. However, the sensor 16 can encounter power fluctuation or voltage drops due to communication that can impair or disrupt sensor functions. The present invention solves this problem by using the capacitor 24 to supply voltage during the period of power loss or fluctuation.
Figs. 2a and 2b depict two graphs, which both exemplify the data line bit encoding for the circuit arrangement 10. Fig. 2a depicts the bit encoding when the logic value is set at 1 and Fig. 2b depicts the bit encoding when the logic value is set at 0. The data line bit encoding depicted in Figs. 2a and 2b is distinct from other circuit arrangements for ultrasonic sensors because when the logic value is at 0, there is a pulse of 5 volts for 50 microseconds instead of the voltage being 0. When the logic value is 1 , there is a pulse of 5 volts for 100 microseconds. This permits the capacitor to be receiving a voltage charge even when the logic value is at 0 when compared to other system where the voltage value would be 0 when the logic value is 0. It also allows for communications data to be constantly transmitted through the power communications line 22, even when the logic value is 0.
Fig. 3 depicts an example of a communications scheme signals between the microcontroller 12 and the sensor 16 during various phases of sensor operation.
Fig. 4 is a perspective view of the sensor circuit as incorporated in a two wire ultrasonic sensor arrangement 100. An ultrasonic sensor 102 has a power communications line 104 that extends to a circuit box 106 that contains the circuit arrangement 10 shown in Fig. 1. The power source connector 108 has two wires extending from the connector into the circuit box 106. One of the wires provides power to the master microcontroller and the other wire provides power to the circuit arrangement 10 that leads to the power communications line 104.
Fig. 5 depicts a vehicle 200 having a plurality of ultrasonic or traffic environment sensors 202 connected to a bumper 204 of the vehicle 200. In this embodiment, the plurality of ultrasonic sensors 202 are used as proximity sensors for alerting a driver of the vehicle 200 when objects are in the path of
the vehicle 200 as the vehicle is backing up. The traffic environment sensors depicted on the vehicle 200 are used primarily for determining the presence or absence of an object in the path of the vehicle 200 while backing up. It is possible for the traffic environment sensors 202 to be used in other areas of the vehicle for providing proximity detection. For example, such sensors can be used for collision avoidance, parking assist, security, and other suitable uses where the detection of objects on the outside environment of the vehicle are desired.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.