WO2009049895A1 - Audio coding using downmix - Google Patents
Audio coding using downmix Download PDFInfo
- Publication number
- WO2009049895A1 WO2009049895A1 PCT/EP2008/008799 EP2008008799W WO2009049895A1 WO 2009049895 A1 WO2009049895 A1 WO 2009049895A1 EP 2008008799 W EP2008008799 W EP 2008008799W WO 2009049895 A1 WO2009049895 A1 WO 2009049895A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- audio
- type
- audio signal
- downmix
- Prior art date
Links
- 230000005236 sound signal Effects 0.000 claims abstract description 162
- 239000011159 matrix material Substances 0.000 claims description 39
- 230000003595 spectral effect Effects 0.000 claims description 24
- 238000009877 rendering Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 241000610375 Sparisoma viride Species 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims 2
- 238000012545 processing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 230000006870 function Effects 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 238000011524 similarity measure Methods 0.000 description 5
- 230000001755 vocal effect Effects 0.000 description 5
- 230000004075 alteration Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004091 panning Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000011664 signaling Effects 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/008—Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/06—Determination or coding of the spectral characteristics, e.g. of the short-term prediction coefficients
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/002—Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/16—Vocoder architecture
- G10L19/18—Vocoders using multiple modes
- G10L19/20—Vocoders using multiple modes using sound class specific coding, hybrid encoders or object based coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/03—Application of parametric coding in stereophonic audio systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/07—Synergistic effects of band splitting and sub-band processing
Definitions
- the present application is concerned with audio coding using down-mixing of signals.
- Audio encoding algorithms have been proposed in order to effectively encode or compress audio data of one channel, i.e., mono audio signals.
- audio samples are appropriately scaled, quantized or even set to zero in order to remove irrelevancy from, for example, the PCM coded audio signal. Redundancy removal is also performed.
- audio codecs which downmix the multiple input audio signals into a downmix signal, such as a stereo or even mono downmix signal.
- a downmix signal such as a stereo or even mono downmix signal.
- the MPEG Surround standard downmixes the input channels into the downmix signal in a manner prescribed by the standard. The downmixing is performed by use of so-called OTT "1 and TTT "1 boxes for downmixing two signals into one and three signals into two, respectively.
- each OTT "1 box outputs, besides the mono downmix signal, channel level differences between the two input channels, as well as inter-channel coherence/cross-correlation parameters representing the coherence or cross-correlation between the two input channels.
- the parameters are output along with the downmix signal of the MPEG Surround coder within the MPEG Surround data stream.
- each TTT "1 box transmits channel prediction coefficients enabling recovering the three input channels from the resulting stereo downmix signal.
- the channel prediction coefficients are also transmitted as side information within the MPEG Surround data stream.
- the MPEG Surround decoder upmixes the downmix signal by use of the transmitted side information and recovers, the original channels input into the MPEG Surround encoder.
- MPEG Surround does not fulfill all requirements posed by many applications.
- the MPEG Surround decoder is dedicated for upmixing the downmix signal of the MPEG Surround encoder such that the input channels of the MPEG Surround encoder are recovered as they are.
- the MPEG Surround data stream is dedicated to be played back by use of the loudspeaker configuration having been used for encoding.
- SAOC spatial audio object coding
- the SAOC decoder/transcoder is provided with information revealing how the individual objects have been downmixed into the downmix signal.
- the decoder's side it is possible to recover the individual SAOC channels and to render these signals onto any loudspeaker configuration by utilizing user-controlled rendering information.
- an audio decoder according to claim 1
- an audio encoder according to claim 18
- a decoding method according to claim 20
- an encoding method according to claim 21
- a multi-audio-object signal according to claim 23.
- Fig. 1 shows a block diagram of an SAOC encoder/decoder arrangement in which the embodiments of the present invention may be implemented;
- Fig. 2 shows a schematic and illustrative diagram of a spectral representation of a mono audio signal
- Fig. 3 shows a block diagram of an audio decoder according to an embodiment of the present invention
- Fig. 4 shows a block diagram of an audio encoder according to an embodiment of the present invention
- Fig. 5 shows a block diagram of an audio encoder/decoder arrangement for Karaoke/Solo mode application, as a comparison embodiment
- Fig. 6 shows a block diagram of an audio encoder/decoder arrangement for Karaoke/Solo mode application according to an embodiment
- Fig. 7a shows a block diagram of an audio encoder for a Karaoke/Solo mode application, according to a comparison embodiment
- Fig. 7b shows a block diagram of an audio encoder for a Karaoke/Solo mode application, according to an embodiment
- Fig. 8a and b show plots of quality measurement results
- Fig. 9 shows a block diagram of an audio encoder/decoder arrangement for Karaoke/Solo mode application, for comparison purposes;
- Fig. 10 shows a block diagram of an audio encoder/decoder arrangement for Karaoke/Solo mode application according to an embodiment;
- Fig. 11 shows a block diagram of an audio encoder/decoder arrangement for Karaoke/Solo mode application according to a further embodiment
- Fig. 12 shows a block diagram of an audio encoder/decoder arrangement for Karaoke/Solo mode application according to a further embodiment
- Fig. 13a to h show tables reflecting a possible syntax for the SOAC bitstream according to an embodiment of the present invention
- Fig. 14 shows a block diagram of an audio decoder for a Karaoke/Solo mode application, according to an embodiment
- Fig. 15 show a table reflecting a possible syntax for signaling the amount of data spent for transferring the residual signal.
- Fig. 1 shows a general arrangement of an SAOC encoder 10 and an SAOC decoder 12.
- the SAOC encoder 10 receives as an input N objects, i.e., audio signals 14i to 14 N .
- the encoder 10 comprises a downmixer 16 which receives the audio signals 14 ⁇ to 14 N and downmixes same to a downmix signal 18.
- the downmix signal is exemplarily shown as a stereo downmix signal.
- a mono downmix signal is possible as well.
- the channels of the stereo downmix signal 18 are denoted LO and RO, in case of a mono downmix same is simply denoted LO.
- downmixer 16 provides the SAOC decoder 12 with side information including SAOC-parameters including object level differences (OLD) , inter-object cross correlation parameters (IOC) , downmix gain values (DMG) and downmix channel level differences (DCLD) .
- SAOC-parameters including object level differences (OLD) , inter-object cross correlation parameters (IOC) , downmix gain values (DMG) and downmix channel level differences (DCLD) .
- the SAOC decoder 12 comprises an upmixer 22 which receives the downmix signal 18 as well as the side information 20 in order to recover and render the audio signals 14i and 14 N onto any user-selected set of channels 24i to 24 M , with the rendering being prescribed by rendering information 26 input into SAOC decoder 12.
- the audio signals 14 X to 14 N may be input into the downmixer 16 in any coding domain, such as, for example, in time or spectral domain.
- the audio signals 14 ⁇ to 14 N are fed into the downmixer 16 in the time domain, such as PCM coded
- downmixer 16 uses a filter bank, such as a hybrid QMF bank, i.e., a bank of complex exponentially modulated filters with a Nyquist filter extension for the lowest frequency bands to increase the frequency resolution therein, in order to transfer the signals into spectral domain in which the audio signals are represented in several subbands associated with different spectral portions, at a specific filter bank resolution. If the audio signals 14i to 14 N are already in the representation expected by downmixer 16, same does not have to perform the spectral decomposition.
- Fig. 2 shows an audio signal in the just-mentioned spectral domain.
- the audio signal is represented as a plurality of subband signals.
- Each subband signal 3Oi to 30 P consists of a sequence of subband values indicated by the small boxes 32.
- the subband values 32 of the subband signals 3Oi to 30 P are synchronized to each other in time so that for each of consecutive filter bank time slots 34 each subband 3Oi to 30 P comprises exact one subband value 32.
- the subband signals 3Oi to 30 P are associated with different frequency regions, and as illustrated by the time axis 38, the filter bank time slots 34 are consecutively arranged in time.
- downmixer 16 computes SAOC-parameters from the input audio signals 14i to 14 N .
- Downmixer 16 performs this computation in a time/frequency resolution which may be decreased relative to the original time/frequency resolution as determined by the filter bank time slots 34 and subband decomposition, by a certain amount, with this certain amount being signaled to the decoder side within the side information 20 by respective syntax elements bsFrameLength and bsFreqRes.
- groups of consecutive filter bank time slots 34 may form a frame 40.
- the audio signal may be divided- up into frames overlapping in time or being immediately adjacent in time, for example.
- bsFrameLength may define the number of parameter time slots 41, i.e. the time unit at which the SAOC parameters such as OLD and IOC, are computed in an SAOC frame 40 and bsFreqRes may define the number of processing frequency bands for which SAOC parameters are computed.
- each frame is divided-up into time/frequency tiles exemplified in Fig. 2 by dashed lines 42.
- the downmixer 16 calculates SAOC parameters according to the following formulas. In particular, downmixer 16 computes object level differences for each object i as
- the SAOC downmixer 16 is able to compute a similarity measure of the corresponding time/frequency tiles of pairs of different input objects 14 ⁇ to 14 N .
- the SAOC downmixer 16 may compute the similarity measure between all the pairs of input objects 14i to 14 N
- downmixer 16 may also suppress the signaling of the similarity measures or restrict the computation of the similarity measures to audio objects 14 ⁇ to 14 N which form left or right channels of a common stereo channel.
- the similarity measure is called the inter-object cross-correlation parameter IOCj . , j .
- the computation is as follows
- the downmixer 16 downmixes the objects 14i to 14 N by use of gain factors applied to each object 14i to 14 N . That is, a gain factor Di is applied to object i and then all thus weighted objects 14i to 14 N are summed up to obtain a mono downmix signal.
- a gain factor Di i is applied to object i and then all such gain amplified objects are summed-up in order to obtain the left downmix channel LO
- gain factors D 2 ,i are applied to object i and then the thus gain-amplified objects are summed-up in order to obtain the right downmix channel RO.
- This downmix prescription is signaled to the decoder side by means of down mix gains DMGi and, in case of a stereo downmix signal, downmix channel level differences DCLDi.
- the downmix gains are calculated according to:
- DMG 1 201og 10 (Z), +£ ⁇ ) , (mono downmix) ,
- DMG 1 101og 10 (/j£ + Z) 2 2 , + f) , (stereo downmix) ,
- ⁇ is a small number such as 10 "9 .
- downmixer 16 In the normal mode, downmixer 16 generates the downmix signal according to:
- parameters OLD and IOC are a function of the audio signals and parameters DMG and DCLD are a function of D.
- D may be varying in time.
- downmixer 16 mixes all objects 14i to 14 N with no preferences, i.e., with handling all objects 14i to 14 N equally.
- the upmixer 22 performs the inversion of the downmix procedure and the implementation of the "rendering information" represented by matrix A in one computation step, namely
- matrix E is a function of the parameters OLD and IOC.
- Figs. 3 and 4 describe an embodiment of the present invention which overcomes the deficiency just described.
- the decoder and encoder described in these Figs, and their associated functionality may represent an additional mode such as an "enhanced mode" into which the SAOC codec of Fig. 1 could be switchable. Examples for the latter possibility will be presented thereinafter.
- Fig. 3 shows a decoder 50.
- the decoder 50 comprises means 52 for computing prediction coefficients and means 54 for upmixing a downmix signal.
- the audio decoder 50 of Fig. 3 is dedicated for decoding a multi-audio-object signal having an audio signal of a first type and an audio signal of a second type encoded therein.
- the audio signal of the first type and the audio signal of the second type may be a mono or stereo audio signal, respectively.
- the audio signal of the first type is, for example, a background object whereas the audio signal of the second type is a foreground object. That is, the embodiment of Fig. 3 and Fig. 4 is not necessarily restricted to Karaoke/Solo mode applications. Rather, the decoder of Fig. 3 and the encoder of Fig. 4 may be advantageously used elsewhere.
- the multi-audio-object signal consists of a downmix signal 56 and side information 58.
- the side information 58 comprises level information 60 describing, for example, spectral energies of the audio signal of the first type and the audio signal of the second type in a first predetermined time/frequency resolution such as, for example, the time/frequency resolution 42.
- the level information 60 may comprise a normalized spectral energy scalar value per object and time/frequency tile.
- the normalization may be related to the highest spectral energy value among the audio signals of the first and second type at the respective time/frequency tile.
- OLDs for representing the level information, also called level difference information herein.
- the side information 58 comprises also a residual signal 62 specifying residual level values in a second predetermined time/frequency resolution which may be equal to or different to the first predetermined time/frequency resolution.
- the means 52 for computing prediction coefficients is configured to compute prediction coefficients based on the level information 60. Additionally, means 52 may compute the prediction coefficients further based on inter- correlation information also comprised by side information 58. Even further, means 52 may use time varying downmix prescription information comprised by side information 58 to compute the prediction coefficients. The prediction coefficients computed by means 52 are necessary for retrieving or upmixing the original audio objects or audio signals from the downmix signal 56.
- means 54 for upmixing is configured to upmix the downmix signal 56 based on the prediction coefficients 64 received from means 52 and the residual signal 62.
- decoder 50 is able to better suppress cross talks from the audio signal of one type to the audio signal of the other type.
- means 54 may use the time varying downmix prescription to upmix the downmix signal.
- means 54 for upmixing may use user input 66 in order to decide which of the audio signals recovered from the downmix signal 56 to be actually output at output 68 or to what extent.
- the user input 66 may instruct means 54 to merely output the first up-mix signal approximating the audio signal of the first type.
- the opposite is true for the second extreme according to which means 54 is to output merely the second up-mix signal approximating the audio signal of the second type.
- Intermediate options are possible as well according to which a mixture of both up-mix signals is rendered an output at output 68.
- Fig. 4 shows an embodiment for an audio encoder suitable for generating a multi-audio object signal decoded by the decoder of Fig. 3.
- the encoder of Fig. 4 which is indicated by reference sign 80, may comprise means 82 for spectrally decomposing in case the audio signals 84 to be encoded are not within the spectral domain.
- the audio signals 84 there is at least one audio signal of a first type and at least one audio signal of a second type.
- the means 82 for spectrally decomposing is configured to spectrally decompose each of these signals 84 into a representation as shown in Fig. 2, for example. That is, the means 82 for spectrally decomposing spectrally decomposes the audio signals 84 at a predetermined time/frequency resolution.
- Means 82 may comprise a filter bank, such as a hybrid QMF bank.
- the audio encoder 80 further comprises means 86 for computing level information, means 88 for downmixing, means 90 for computing prediction coefficients and means 92 for setting a residual signal. Additionally, audio encoder 80 may comprise means for computing inter-correlation information, namely means 94. Means 86 computes level information describing the level of the audio signal of the first type and the audio signal of the second type in the first predetermined time/frequency resolution from the audio signal as optionally output by means 82. Similarly, means 88 downmixes the audio signals. Means 88 thus outputs the downmix signal 56. Means 86 also outputs the level information 60. Means 90 for computing prediction coefficients acts similarly to means 52.
- means 90 computes prediction coefficients from the level information 60 and outputs the prediction coefficients 64 to means 92.
- Means 92 sets the residual signal 62 based on the downmix signal 56, the predication coefficients 64 and the original audio signals at a second predetermined time/frequency resolution such that up-mixing the downmix signal 56 based on both the prediction coefficients 64 and the residual signal 62 results in a first up-mix audio signal approximating the audio signal of the first type and the second up-mix audio signal approximating the audio signal of the second type, the approximation being approved compared to the absence of the residual signal 62.
- the residual signal 62 and the level information 60 are comprised by the side information 58 which forms, along with the downmix signal 56, the multi-audio-object signal to be decoded by decoder Fig. 3.
- means 90 may additionally use the inter-correlation information output by means 94 and/or time varying downmix prescription output by means 88 to compute the prediction coefficient 64. Further, by means 92 for setting the residual signal 62 may additionally use the time varying downmix prescription output by means 88 in order to appropriately set the residual signal 62.
- the audio signal of the first type may be a mono or stereo audio signal.
- the residual signal 62 may be signaled within the side information in the same time/frequency resolution as the parameter time/frequency resolution used to compute, for example, the level information, or a different time/frequency resolution may be used. Further, it may be possible that the signaling of the residual signal is restricted to a sub-portion of the spectral range occupied by the time/frequency tiles 42 for which level information is signaled.
- the time/frequency resolution at which the residual signal is signaled may be indicated within the side information 58 by use of syntax elements bsResidualBands and bsResidualFramesPerSAOCFrame. These two syntax elements may define another sub-division of a frame into time/frequency tiles than the sub-division leading to tiles 42.
- the residual signal 62 may or may not reflect information loss resulting from a potentially used core encoder 96 optionally used to encode the downmix signal 56 by audio encoder 80.
- means 92 may perform the setting of the residual signal 62 based on the version of the downmix signal re- constructible from the output of core coder 96 or from the version input into core encoder 96' .
- the audio decoder 50 may comprise a core decoder 98 to decode or decompress downmix signal 56.
- the ability to set, within the multiple-audio-object signal, the time/frequency resolution used for the residual signal 62 different from the time/frequency resolution used for computing the level information 60 enables to achieve a good compromise between audio quality on the one hand and compression ratio of the multiple-audio-object signal on the other hand.
- the residual signal 62 enables to better suppress cross-talk from one audio signal to the other within the first and second up-mix signals to be output at output 68 according to the user input 66.
- more than one residual signal 62 may be transmitted within the side information in case more than one foreground object or audio signal of the second type is encoded.
- the side information may allow for an individual decision as to whether a residual signal 62 is transmitted for a specific audio signal of a second type or not.
- the number of residual signals 62 may vary from one up to the number of audio signals of the second type.
- the means 54 for computing may be configured to compute a prediction coefficient matrix C consisting of the prediction coefficients based on the level information (OLD) and means 56 may be configured to yield the first up-mix signal Si and/or the second up- mix signal S 2 from the downmix signal d according to a computation representable by
- the "1" denotes - depending on the number of channels of d - a scalar, or an identity matrix
- D "1 is a matrix uniquely determined by a downmix prescription according to which the audio signal of the first type and the audio signal of the second type are downmixed into the downmix signal, and which is also comprised by the side information
- H is a term being independent from d but dependent from the residual signal.
- the downmix prescription may vary in time and/or may spectrally vary within the side information.
- the audio signal of the first type is a stereo audio signal having a first (L) and a second input channel (R)
- the level information for example, describes normalized spectral energies of the first input channel (L) , the second input channel (R) and the audio signal of the second type, respectively, at the time/frequency resolution 42.
- L is a first channel of the first up-mix signal
- R is a second channel of the first up- mix signal, approximating R
- the "1" is a scalar in case d is mono, and a 2x2 identity matrix in case d is stereo.
- the downmix signal 56 is a stereo audio signal having a first (LO) and second output channel (RO) , and the computation according to which the means 56 for up-mixing performs the up-mixing may be representable by
- the computation according to which the means 56 for up-mixing performs the up-mixing may be representable by
- the multi-audio-object signal may even comprise a plurality of audio signals of the second type and the side information may comprise one residual signal per audio signal of the second type.
- a residual resolution parameter may be present in the side information defining a spectral range over which the residual signal is transmitted within the side information. It may even define a lower and an upper limit of the spectral range.
- the multi-audio-object signal may also comprise spatial rendering information for spatially rendering the audio signal of the first type onto a predetermined loudspeaker configuration.
- the audio signal of the first type may be a multi channel (more than two channels) MPEG Surround signal downmixed down to stereo.
- an object is often used in a double sense.
- an object denotes an individual mono audio signal.
- a stereo object may have a mono audio signal forming one channel of a stereo signal.
- a stereo object may denote, in fact, two objects, namely an object concerning the right channel and a further object concerning the left channel of the stereo object. The actual sense will become apparent from the context.
- RMO reference model 0
- BGO Background Object
- Foreground Object FGO typically the lead vocal
- the FGO is typically positioned in the middle of the sound stage and can be muted, i.e. attenuated heavily to allow sing-along
- the dual usage case is the ability to reproduce only the FGO without the background/MBO, and is referred to in the following as the solo mode.
- MBO Multi-Channel Background Object
- the MBO is encoded using a regular 5-2-5 MPEG Surround tree 102. This results in a stereo MBO downmix signal 104, and an MBO MPS side information stream 106.
- the MBO downmix is then encoded by a subsequent SAOC encoder 108 as a stereo object, (i.e. two object level differences, plus an inter-channel correlation) , together with the (or several) FGO 110. This results in a common downmix signal 112, and a SAOC side information stream 114.
- the downmix signal 112 is preprocessed and the SAOC and MPS side information streams 106, 114 are transcoded into a single MPS output side information stream 118.
- the resulting downmix 120 and MPS side information 118 are rendered by an MPEG Surround decoder 122.
- both the MBO downmix 104 and the controllable object signal (s) 110 are combined into a single stereo downmix 112.
- This "pollution" of the downmix by the controllable object 110 is the reason for the difficulty of recovering a Karaoke version with the controllable object
- the SAOC downmix signal is a combination of the BGO and the FGO signal, i.e. three audio signals are downmixed and transmitted via 2 downmix channels.
- these signals should be separated again in the transcoder in order to produce a clean Karaoke signal (i.e. to remove the FGO signal), or to produce a clean solo signal (i.e. to remove the BGO signal). This is achieved, in accordance with the embodiment of Fig.
- TTT two-to-three
- TTT two-to-three
- the transcoder 116 can then produce approximations of the BGO 104 by using a TTT decoder element 126 (TTT as it is known from MPEG Surround), i.e. the "left/right” TTT outputs L, R carry an approximation of the BGO, whereas the "center” TTT output C carries an approximation of the FGO 110.
- reference sign 104 corresponds to the audio signal of the first type among audio signals 84
- means 82 is comprised by MPS encoder 102
- reference sign 110 corresponds to the audio signals of the second type among audio signal 84
- TTT "1 box 124 assumes the responsibility for the functionalities of means 88 to 92, with the functionalities of means 86 and 94 being implemented in SAOC encoder 108
- reference sign 112 corresponds to reference sign 56
- reference sign 114 corresponds to side information 58 less the residual signal 62
- TTT box 126 assumes responsibility for the functionality of means 52 and 54 with the functionality of the mixing box 128 also being comprised by means 54.
- Fig. 6 also shows a core coder/decoder path 131 for the transport of the down mix 112 from SAOC encoder 108 to SAOC transcoder 116.
- This core coder/decoder path 131 corresponds to the optional core coder 96 and core decoder 98. As indicated in Fig. 6, this core coder/ decoder path 131 may also encode/compress the side information transported signal from encoder 108 to transcoder 116.
- Fig. 6 The processing structure of Fig. 6 provides a number of distinct advantages over Fig. 5:
- the structure of the TTT element 126 attempts a best possible reconstruction of the three signals L. R. C. on a waveform basis.
- the final MPS output signals 130 are not only formed by energy weighting (and decorrelation) of the downmix signals, but also are closer in terms of waveforms due to the TTT processing.
- TTT box 126 Along with the MPEG Surround TTT box 126 comes the possibility to enhance the reconstruction precision by using residual coding. In this way, a significant enhancement in reconstruction quality can be achieved as the residual bandwidth and residual bitrate for the residual signal 132 output by TTT "1 124 and used by TTT box for upmixing are increased. Ideally (i.e. for infinitely fine quantization in the residual coding and the coding of the downmix signal) , the interference between the background (MBO) and the FGO signal is cancelled.
- MBO background
- the processing structure of Fig. 6 possesses a number of characteristics :
- Duality Karaoke/Solo mode The approach of Fig. 6 offers both Karaoke and Solo functionality by using the same technical means. That is, SAOC parameters are reused, for example.
- Refineability The quality of the Karaoke/Solo signal can be refined as needed by controlling the amount of residual coding information used in the TTT boxes. For example, parameters bsResidualSamplingFrequencylndex, bsResidualBands and bsResidualFramesPerSAOCFrame may be used.
- FGOs can be independently positioned/controlled in the multi-channel output signal 130 (maximum quality advantage is achieved, however, when they are scaled & positioned in the same way) . They share a common position in the stereo downmix signal 112, and there is only one residual signal
- SAOC side information In MPEG Surround, the side information associated to a TTT box is a pair of Channel Prediction Coefficients (CPCs) .
- CPCs Channel Prediction Coefficients
- the SAOC parametrization and the MBO/Karaoke scenario transmit object energies for each object signal, and an inter-signal correlation between the two channels of the MBO downmix (i.e. the parametrization for a "stereo object").
- the CPCs can be calculated from the energies of the downmixed signals (MBO downmix and FGOs) and the inter-signal correlation of the MBO downmix stereo object.
- Fig. 6 aims at an enhanced reproduction of certain selected objects (or the scene without those objects) and extends the current SAOC encoding approach using a stereo downmix in the following way:
- each object signal is weighted by its entries in the downmix matrix (for its contribution to the left and to the right downmix channel, respectively) . Then, all weighted contributions to the left and right downmix channel are summed to form the left and right downmix channels.
- TTT summation (which can be cascaded when desired)
- Figs. 7a and 7b In order to emphasize the just-mentioned difference between the normal mode of the SAOC encoder and the enhanced mode, reference is made to Figs. 7a and 7b, where Fig. 7a concerns the normal mode, whereas Fig. 7b concerns the enhanced mode.
- the SAOC encoder 108 uses the afore-mentioned DMX parameters Di j for weighting objects j and adding the thus weighed object j to SAOC channel i, i.e. LO or RO.
- DMX-parameters Di indicating how to form a weighted sum of the FGOs 110, thereby obtaining the center channel C for the TTT "1 box 124, and DMX-parameters Di, instructing the TTT "1 box how to distribute the center signal C to the left MBO channel and the right MBO channel respectively, thereby obtaining the L D MX or R DMX respectively.
- HE- AAC / SBR non-waveform preserving codecs
- a possible bitstream format for the one with cascaded TTTs could be as follows:
- the enhanced Karaoke/Solo mode of Fig. 6 is implemented by adding stages of one conceptual element in the encoder and decoder/transcoder each, i.e. the generalized TTT-I / TTT encoder element. Both elements are identical in their complexity to the regular "centered" TTT counterparts (the change in coefficient values does not influence complexity) . For the envisaged main application (one FGO as lead vocals), a single TTT is sufficient.
- Fig. 6 of the MPEG SAOC reference model provides an audio quality improvement for special solo or mute/Karaoke type of applications.
- description corresponding to Figs. 5, 6 and 7 refer to a MBO as background scene or BGO, which in general is not limited to this type of object and can rather be a mono or stereo object, too.
- a subjective evaluation procedure reaveals the improvement in terms of audio quality of the output signal for a Karaoke or solo application.
- the conditions evaluated are:
- the bitrate for the proposed enhanced mode is similar to RMO if used without residual coding. All other enhanced modes require about 10 kbit/s for every 6 bands of residual coding.
- Figure 8a shows the results for the mute/Karaoke test with 10 listening subjects.
- the proposed solution has an average MUSHRA score which is always higher than RMO and increases with each step of additional residual coding. A statistically significant improvement over the performance of RMO can be clearly observed for modes with 6 and more bands of residual coding.
- the input objects are classified into a stereo background object (BGO) 104 and foreground objects (FGO) 110.
- BGO stereo background object
- FGO foreground objects
- the enhancement of Fig. 6 additionally exploits an elementary building block of the MPEG Surround structure. Incorporating the three-to-two (TTT "1 ) block at the encoder and the corresponding two-to-three (TTT) complement at the transcoder improves the performance when strong boost/attenuation of the particular audio object is required.
- TTT three-to-two
- TTT two-to-three
- Fig. 6 was focused on the processing of FGOs as a (downmixed) mono signal as depicted in Figure 10.
- the treatment of multi-channel FGO signals has been stated, too, but will be explained in more detail in the subsequent chapter.
- the configuration of the TTT "1 box at the encoder comprises the FGO that is fed to the center input and the BGO providing the left and right input.
- the underlying symmetric matrix is given by:
- the 3 rd signal obtained through this linear system is discarded, but can be reconstructed at transcoder side incorporating two prediction coefficients Ci and C 2 (CPC) according to: .
- the prediction coefficients ci and C 2 required by the TTT upmix unit at transcoder side can be estimated using the transmitted SAOC parameters, i.e. the object level differences (OLDs) for all input audio objects and inter-object correlation (IOC) for BGO downmix (MBO) signals. Assuming statistical independence of FGO and BGO signals the following relationship holds for the CPC estimation:
- the variables P 1x , P Ro , P 1080 , P 1 ⁇ 0 and P RoFo can be estimated as follows , where the parameters OLD L , OLD R and I0C LR correspond to the BGO, and OLD F is an FGO parameter :
- the error introduced by the implication of the CPCs is represented by the residual signal 132 that can be transmitted within the bitstream, such that:
- the restriction of a single mono downmix of all FGOs is inappropriate, hence needs to be overcome.
- the FGOs can be divided into two or more independent groups with different positions in the transmitted stereo downmix and/or individual attenuation. Therefore, the cascaded structure shown in Fig. 11 implies two or more consecutive TTT 1 elements 124a, 124b, yielding a step-by-step downmixing of all FGO groups Fi, F 2 at encoder side until the desired stereo downmix 112 is obtained.
- Each - or at least some - of the TTT "1 boxes 124a, b sets a residual signal 132a, 132b corresponding to the respective stage or TTT "1 box 124a, b respectively.
- the transcoder performs sequential upmixing by use of respective sequentially applied TTT boxes 126a, b, incorporating the corresponding CPCs and residual signals, where available.
- the order of the FGO processing is encoder-specified and must be considered at transcoder side.
- A -W 12 W 22 + C 21 W 22 l + w 12 + C 22 W 22
- a special case of the two-stage cascade comprises one stereo FGO with its left and right channel being summed properly to the corresponding channels of the BGO, yielding ⁇
- the general N-stage cascade case refers to a multi-channel FGO downmix according to:
- the cascaded structure can easily be converted into an equivalent parallel by rearranging the N matrices into one single symmetric TTN matrix, thus yielding a general TTN style:
- TTN - two-to-N - refers to the upmixing process at transcoder side .
- this unit can be termed two-to-four element or TTF. It is also possible to yield a TTF structure reusing the SAOC stereo preprocessor module.
- the SAOC standard text describes the stereo downmix preprocessing for the "stereo-to-stereo transcoding mode". Precisely the output stereo signal Y is calculated from the input stereo signal X together with a decorrelated signal Xd as follows :
- the decorrelated component X d is a synthetic representation of parts of the original rendered signal which have already been discarded in the encoding process. According to Fig. 12, the decorrelated signal is replaced with a suitable encoder generated residual signal 132 for a certain frequency range.
- the nomenclature is defined as:
- A is a 2 x N rendering matrix
- GrMod (corresponding to G in Figure 12) is the predictive 2 x 2 upmix matrix
- G Mod is a function of D, A and E.
- the reconstructed background object is subtracted from the downmix signal X. This and the final rendering is performed in the "Mix" processing block. Details are presented in the following.
- the rendering matrix A is set to
- first 2 columns represent the 2 channels of the FGO and the second 2 columns represent the 2 channels of the BGO.
- the BGO and FGO stereo output is calculated according to the following formulas.
- the FGO object can be set to
- X Res are the residual signals obtained as described above. Please note that no decorrelated signals are added.
- the final output Y is given by
- the rendering matrix A is set to
- the BGO and FGO stereo output is calculated according to the following formulas.
- the BGO obj ect can be set to
- X Res are the residual signals obtained as described above. Please note that no decorrelated signals are added.
- the final output Y is given by
- the above embodiments can be extended by assembling parallel stages of the processing steps just described.
- the above just-described embodiments provided the detailed description of the enhanced Karaoke/solo mode for the cases of multi-channel FGO audio scene.
- This generalization aims to enlarge the class of Karaoke application scenarios, for which the sound quality of the MPEG SAOC reference model can be further improved by application of the enhanced Karaoke/solo mode.
- the improvement is achieved by introducing a general NTT structure into the downmix part of the SAOC encoder and the corresponding counterparts into the SAOCtoMPS transcoder.
- the use of residual signals enhanced the quality result.
- Figs. 13a to 13h show a possible syntax of the SAOC side information bit stream according to an embodiment of the present invention.
- the MPEG Surround encoder is thought of being incorporated into the SAOC encoder as indicated by the dotted line surrounding SAOC encoder 108 and MPS encoder 100.
- the resulting downmix 104 serves as a stereo input object to the SAOC encoder 108 together with a controllable SAOC object 110 producing a combined stereo downmix 112 transmitted to the transcoder side.
- both the MPS bit stream 106 and the SAOC bit stream 114 are fed into the SAOC transcoder 116 which, depending on the particular MBO applications scenario, provides the appropriate MPS bit stream 118 for the MPEG Surround decoder 122.
- This task is performed using the rendering information or rendering matrix and employing some downmix pre-processing in order to transform the downmix signal 112 into a downmix signal 120 for the MPS decoder 122.
- a further embodiment for an enhanced Karaoke/Solo mode is described below. It allows the individual manipulation of a number of audio objects in terms of their level amplification/attenuation without significant decrease in the resulting sound quality.
- a special "Karaoke-type" application scenario requires a total suppression of the specific objects, typically the lead vocal, (in the following called ForeGround Object FGO) keeping the perceptual quality of the background sound scene unharmed. It also entails the ability to reproduce the specific FGO signals individually without the static background audio scene (in the following called BackGround Object BGO), which does not require user controllability in terms of panning.
- This scenario is referred to as a "Solo" mode.
- a typical application case contains a stereo BGO and up to four FGO signals, which can, for example, represent two independent stereo objects.
- the enhanced Karaoke/Solo transcoder 150 incorporates either a "two-to- N" (TTN) or "one-to-N” (OTN) element 152, both representing a generalized and enhanced modification of the TTT box known from the MPEG Surround specification.
- TTN two-to- N
- OTN one-to-N
- the choice of the appropriate element depends on the number of downmix channels transmitted, i.e. the TTN box is dedicated to the stereo downmix signal while for a mono downmix signal the OTN box is applied.
- the corresponding TTN "1 or OTN "1 box in the SAOC encoder combines the BGO and FGO signals into a common SAOC stereo or mono downmix 112 and generates the bitstream 114.
- the arbitrary pre-defined positioning of all individual FGOs in the downmix signal 112 is supported by either element, i.e. TTN or OTN 152.
- TTN or OTN box 152 (depending on the operating mode 158 externally applied) is recovered from the downmix 112 by the TTN or OTN box 152 using only the SAOC side information 114 and optionally incorporated residual signals.
- the recovered audio objects 154/156 and rendering information 160 are used to produce the MPEG Surround bitstream 162 and the corresponding preprocessed downmix signal 164.
- Mixing unit 166 performs the processing of the downmix signal 112 to obtain the MPS input downmix 164, and MPS transcoder 168 is responsible for the transcoding of the SAOC parameters 114 to MPS parameters 162.
- TTN/OTN box 152 and mixing unit 166 together perform the enhanced Karaoke/solo mode processing 170 corresponding to means 52 and 54 in Fig. 3 with the function of the mixing unit being comprised by means 54.
- An MBO can be treated the same way as explained above, i.e. it is preprocessed by an MPEG Surround encoder yielding a mono or stereo downmix signal that serves as BGO to be input to the subsequent enhanced SAOC encoder.
- the transcoder has to be provided with an additional MPEG Surround bitstream next to the SAOC bitstream.
- the TTN/OTN matrix expressed in a first predetermined time/frequency resolution 42, M is the product of two matrices
- D ' comprises the downmix information and C implies the channel prediction coefficients (CPCs) for each FGO channel.
- C is computed by means 52 and box 152, respectively, and D ⁇ x is computed and applied, along with C, to the SAOC downmix by means 54 and box 152, respectively. The computation is performed according to
- TTN element i.e. a stereo downmix
- the OTN element i.e. a mono downmix.
- the CPCs are derived from the transmitted SAOC parameters, i.e. the OLDs, IOCs, DMGs and DCLDs.
- the CPCs can be estimated by
- the parameters OLD 1 , OLD R and IOC LR correspond to the BGO, the remainder are FGO values .
- the coefficients m J and n ⁇ denote the downmix values for every FGO j for the right and left downmix channel, and are derived from the downmix gains DMG and downmix channel level differences DCLD
- the downmix information is exploited by the inverse of the downmix matrix D that is extended to further prescribe the linear combination for signals FOi to FO N , i.e.
- the downmix at encoder's side is recited: Within the TTN "1 element, the extended downmix matrix is for a stereo BGO,
- the residual signal res x corresponds to the FGO object i and if not transferred by SAOC stream - because, for example, it lies outside the residual frequency range, or it is signalled that for FGO object i no residual signal is transferred at all - res x is inferred to be zero.
- F 1 is the reconstructed/up-mixed signal approximating FGO object i. After computation, it may be passed through an synthesis filter bank to obtain the time domain such as PCM coded version of FGO object i. It is recalled that LO and RO denote the channels of the SAOC downmix signal and are available/signalled in an increased time/frequency resolution compared to the parameter resolution underlying indices (n,k) . L and R are the reconstructed/up-mixed signals approximating the left and right channels of the BGO object. Along with the MPS side bitstream, it may be rendered onto the original number of channels.
- the following TTN matrix is used in an energy mode.
- the energy based encoding/decoding procedure is designed for non-waveform preserving coding of the downmix signal.
- TTN upmix matrix for the corresponding energy mode does not rely on specific waveforms, but only describe the relative energy distribution of the input audio objects.
- the FGO is done at encoder's side.
- the BGO may be a mono (Z) or stereo object.
- the downmix of the BGO into the downmix signal is fixed. As far as the FGOs are concerned, the number thereof is theoretically not limited. However, for most applications a total of four FGO objects seems adequate. Any combinations of mono and stereo objects are feasible.
- m t weighting in left / mono downmix signal
- n weighting in right downmix signal
- the FGO downmix is variable both in time and frequency.
- the downmix signal may be mono .
- the signals (EO 1 ... FO N ) are not transmitted to the decoder/transcoder . Rather, same are predicted at decoder's side by means of the aforementioned CPCs.
- a decoder - means 52 for example - predicts the virtual signals merely based in the CPCs, according to:
- BGO and/or FGO are obtained by - by, for example, means 54 - inversion of one of the four possible linear combinations of the encoder, for example,
- D "1 is a function of the parameters DMG and DCLD.
- the inverse of D can be obtained straightforwardly in case D is quadratic.
- the inverse of D shall be the pseudo- inverse, i.e. . In either case, an inverse for D exists.
- Fig. 15 shows a further possibility how to set, within the side information, the amount of data spent for transferring residual data.
- the side information comprises bsResidualSamplingFrequencylndex, i.e. an index to a table associating, for example, a frequency resolution to the index.
- the resolution may be inferred to be a predetermined resolution such as the resolution of the filter bank or the parameter resolution.
- the side information comprises bsResidualFramesPerSAOCFrame defining the time resolution at which the residual signal is transferred.
- BsNumGroupsFGO also comprised by the side information, indicates the number of FGOs.
- bsResidualPresent For each FGO, a syntax element bsResidualPresent is transmitted, indicating as to whether for the respective FGO a residual signal is transmitted or not. If present, bsResidualBands indicates the number of spectral bands for which residual values are transmitted.
- the inventive encoding/decoding methods can be implemented in hardware or in software. Therefore, the present invention also relates to a computer program, which can be stored on a computer- readable medium such as a CD, a disk or any other data carrier.
- the present invention is, therefore, also a computer program having a program code which, when executed on a computer, performs the inventive method of encoding or the inventive method of decoding described in connection with the above figures.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Computational Linguistics (AREA)
- Multimedia (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Stereophonic System (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
Claims
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008314029A AU2008314029B2 (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
KR1020117028846A KR101290394B1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
MX2010004220A MX2010004220A (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix. |
JP2010529292A JP5260665B2 (en) | 2007-10-17 | 2008-10-17 | Audio coding with downmix |
CA2702986A CA2702986C (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
KR1020117028843A KR101303441B1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
BRPI0816556A BRPI0816556A2 (en) | 2007-10-17 | 2008-10-17 | audio coding using downmix |
MX2011011399A MX2011011399A (en) | 2008-10-17 | 2008-10-17 | Audio coding using downmix. |
CN200880111872.8A CN101849257B (en) | 2007-10-17 | 2008-10-17 | Use the audio coding of lower mixing |
KR1020107008183A KR101244545B1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
EP08840635A EP2082396A1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US98057107P | 2007-10-17 | 2007-10-17 | |
US60/980,571 | 2007-10-17 | ||
US99133507P | 2007-11-30 | 2007-11-30 | |
US60/991,335 | 2007-11-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009049895A1 true WO2009049895A1 (en) | 2009-04-23 |
WO2009049895A9 WO2009049895A9 (en) | 2009-10-29 |
Family
ID=40149576
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/008799 WO2009049895A1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using downmix |
PCT/EP2008/008800 WO2009049896A1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using upmix |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/008800 WO2009049896A1 (en) | 2007-10-17 | 2008-10-17 | Audio coding using upmix |
Country Status (12)
Country | Link |
---|---|
US (4) | US8280744B2 (en) |
EP (2) | EP2076900A1 (en) |
JP (2) | JP5883561B2 (en) |
KR (4) | KR101303441B1 (en) |
CN (2) | CN101849257B (en) |
AU (2) | AU2008314029B2 (en) |
BR (2) | BRPI0816556A2 (en) |
CA (2) | CA2702986C (en) |
MX (2) | MX2010004220A (en) |
RU (2) | RU2452043C2 (en) |
TW (2) | TWI395204B (en) |
WO (2) | WO2009049895A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2194526A1 (en) * | 2008-12-05 | 2010-06-09 | Lg Electronics Inc. | A method and apparatus for processing an audio signal |
WO2010125104A1 (en) * | 2009-04-28 | 2010-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus for providing one or more adjusted parameters for a provision of an upmix signal representation on the basis of a downmix signal representation, audio signal decoder, audio signal transcoder, audio signal encoder, audio bitstream, method and computer program using an object-related parametric information |
WO2010143907A3 (en) * | 2009-06-10 | 2011-03-03 | 한국전자통신연구원 | Encoding method and encoding device, decoding method and decoding device and transcoding method and transcoder for multi-object audio signals |
EP2511903A3 (en) * | 2007-10-22 | 2012-11-28 | Electronics and Telecommunications Research Institute | Multi-object audio decoding method and apparatus thereof |
JP2012530952A (en) * | 2009-06-24 | 2012-12-06 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Audio signal decoder using cascaded audio object processing stages, method for decoding audio signal, and computer program |
US8620008B2 (en) | 2009-01-20 | 2013-12-31 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
JP2014026007A (en) * | 2012-07-24 | 2014-02-06 | Fujitsu Ltd | Audio decryption device, audio decryption method and audio decryption computer program |
EP2804176A1 (en) * | 2013-05-13 | 2014-11-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio object separation from mixture signal using object-specific time/frequency resolutions |
EP2686654A4 (en) * | 2011-03-16 | 2015-03-11 | Dts Inc | Encoding and reproduction of three dimensional audio soundtracks |
US20150213806A1 (en) * | 2012-10-05 | 2015-07-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Encoder, decoder and methods for backward compatible multi-resolution spatial-audio-object-coding |
CN105323632A (en) * | 2009-10-23 | 2016-02-10 | 三星电子株式会社 | Apparatus and method of coding and decoding with phase information and residual information |
RU2608847C1 (en) * | 2013-05-24 | 2017-01-25 | Долби Интернешнл Аб | Audio scenes encoding |
US9786286B2 (en) | 2013-03-29 | 2017-10-10 | Dolby Laboratories Licensing Corporation | Methods and apparatuses for generating and using low-resolution preview tracks with high-quality encoded object and multichannel audio signals |
US9913036B2 (en) | 2011-05-13 | 2018-03-06 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method and computer program for generating a stereo output signal for providing additional output channels |
RU2648588C2 (en) * | 2013-10-22 | 2018-03-26 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audiodecoder |
US10021501B2 (en) | 2013-09-27 | 2018-07-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Concept for generating a downmix signal |
US10249311B2 (en) | 2013-07-22 | 2019-04-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Concept for audio encoding and decoding for audio channels and audio objects |
US10277998B2 (en) | 2013-07-22 | 2019-04-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for low delay object metadata coding |
US10586545B2 (en) | 2010-04-09 | 2020-03-10 | Dolby International Ab | MDCT-based complex prediction stereo coding |
US10701504B2 (en) | 2013-07-22 | 2020-06-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for realizing a SAOC downmix of 3D audio content |
US10971163B2 (en) | 2013-05-24 | 2021-04-06 | Dolby International Ab | Reconstruction of audio scenes from a downmix |
Families Citing this family (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0400998D0 (en) | 2004-04-16 | 2004-04-16 | Cooding Technologies Sweden Ab | Method for representing multi-channel audio signals |
KR100878816B1 (en) * | 2006-02-07 | 2009-01-14 | 엘지전자 주식회사 | Apparatus and method for encoding/decoding signal |
US8571875B2 (en) | 2006-10-18 | 2013-10-29 | Samsung Electronics Co., Ltd. | Method, medium, and apparatus encoding and/or decoding multichannel audio signals |
JP5394931B2 (en) * | 2006-11-24 | 2014-01-22 | エルジー エレクトロニクス インコーポレイティド | Object-based audio signal decoding method and apparatus |
JP5254983B2 (en) * | 2007-02-14 | 2013-08-07 | エルジー エレクトロニクス インコーポレイティド | Method and apparatus for encoding and decoding object-based audio signal |
KR101100213B1 (en) * | 2007-03-16 | 2011-12-28 | 엘지전자 주식회사 | A method and an apparatus for processing an audio signal |
JP5220840B2 (en) * | 2007-03-30 | 2013-06-26 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュート | Multi-object audio signal encoding and decoding apparatus and method for multi-channel |
WO2009049895A1 (en) * | 2007-10-17 | 2009-04-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio coding using downmix |
KR101461685B1 (en) * | 2008-03-31 | 2014-11-19 | 한국전자통신연구원 | Method and apparatus for generating side information bitstream of multi object audio signal |
KR101614160B1 (en) | 2008-07-16 | 2016-04-20 | 한국전자통신연구원 | Apparatus for encoding and decoding multi-object audio supporting post downmix signal |
WO2010042024A1 (en) * | 2008-10-10 | 2010-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Energy conservative multi-channel audio coding |
US8255821B2 (en) * | 2009-01-28 | 2012-08-28 | Lg Electronics Inc. | Method and an apparatus for decoding an audio signal |
JP5163545B2 (en) * | 2009-03-05 | 2013-03-13 | 富士通株式会社 | Audio decoding apparatus and audio decoding method |
CN101930738B (en) * | 2009-06-18 | 2012-05-23 | 晨星软件研发(深圳)有限公司 | Multi-track audio signal decoding method and device |
KR101283783B1 (en) * | 2009-06-23 | 2013-07-08 | 한국전자통신연구원 | Apparatus for high quality multichannel audio coding and decoding |
US20100324915A1 (en) * | 2009-06-23 | 2010-12-23 | Electronic And Telecommunications Research Institute | Encoding and decoding apparatuses for high quality multi-channel audio codec |
KR20110018107A (en) * | 2009-08-17 | 2011-02-23 | 삼성전자주식회사 | Residual signal encoding and decoding method and apparatus |
RU2576476C2 (en) | 2009-09-29 | 2016-03-10 | Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф., | Audio signal decoder, audio signal encoder, method of generating upmix signal representation, method of generating downmix signal representation, computer programme and bitstream using common inter-object correlation parameter value |
KR20110049068A (en) * | 2009-11-04 | 2011-05-12 | 삼성전자주식회사 | Method and apparatus for encoding/decoding multichannel audio signal |
AU2010321013B2 (en) * | 2009-11-20 | 2014-05-29 | Dolby International Ab | Apparatus for providing an upmix signal representation on the basis of the downmix signal representation, apparatus for providing a bitstream representing a multi-channel audio signal, methods, computer programs and bitstream representing a multi-channel audio signal using a linear combination parameter |
WO2011073201A2 (en) | 2009-12-16 | 2011-06-23 | Dolby International Ab | Sbr bitstream parameter downmix |
US9536529B2 (en) * | 2010-01-06 | 2017-01-03 | Lg Electronics Inc. | Apparatus for processing an audio signal and method thereof |
EP2372704A1 (en) * | 2010-03-11 | 2011-10-05 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Signal processor and method for processing a signal |
US8948403B2 (en) * | 2010-08-06 | 2015-02-03 | Samsung Electronics Co., Ltd. | Method of processing signal, encoding apparatus thereof, decoding apparatus thereof, and signal processing system |
KR101756838B1 (en) * | 2010-10-13 | 2017-07-11 | 삼성전자주식회사 | Method and apparatus for down-mixing multi channel audio signals |
US20120095729A1 (en) * | 2010-10-14 | 2012-04-19 | Electronics And Telecommunications Research Institute | Known information compression apparatus and method for separating sound source |
EP2975611B1 (en) * | 2011-03-10 | 2018-01-10 | Telefonaktiebolaget LM Ericsson (publ) | Filling of non-coded sub-vectors in transform coded audio signals |
KR102053900B1 (en) | 2011-05-13 | 2019-12-09 | 삼성전자주식회사 | Noise filling Method, audio decoding method and apparatus, recoding medium and multimedia device employing the same |
US9311923B2 (en) * | 2011-05-19 | 2016-04-12 | Dolby Laboratories Licensing Corporation | Adaptive audio processing based on forensic detection of media processing history |
JP5715514B2 (en) * | 2011-07-04 | 2015-05-07 | 日本放送協会 | Audio signal mixing apparatus and program thereof, and audio signal restoration apparatus and program thereof |
EP2560161A1 (en) | 2011-08-17 | 2013-02-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Optimal mixing matrices and usage of decorrelators in spatial audio processing |
CN103050124B (en) | 2011-10-13 | 2016-03-30 | 华为终端有限公司 | Sound mixing method, Apparatus and system |
RU2618383C2 (en) | 2011-11-01 | 2017-05-03 | Конинклейке Филипс Н.В. | Encoding and decoding of audio objects |
SG194706A1 (en) * | 2012-01-20 | 2013-12-30 | Fraunhofer Ges Forschung | Apparatus and method for audio encoding and decoding employing sinusoidalsubstitution |
CA2843223A1 (en) * | 2012-07-02 | 2014-01-09 | Sony Corporation | Decoding device, decoding method, encoding device, encoding method, and program |
MX342150B (en) * | 2012-07-09 | 2016-09-15 | Koninklijke Philips Nv | Encoding and decoding of audio signals. |
US9190065B2 (en) | 2012-07-15 | 2015-11-17 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for three-dimensional audio coding using basis function coefficients |
US9516446B2 (en) | 2012-07-20 | 2016-12-06 | Qualcomm Incorporated | Scalable downmix design for object-based surround codec with cluster analysis by synthesis |
US9761229B2 (en) | 2012-07-20 | 2017-09-12 | Qualcomm Incorporated | Systems, methods, apparatus, and computer-readable media for audio object clustering |
CN104541524B (en) | 2012-07-31 | 2017-03-08 | 英迪股份有限公司 | A kind of method and apparatus for processing audio signal |
JP6186435B2 (en) * | 2012-08-07 | 2017-08-23 | ドルビー ラボラトリーズ ライセンシング コーポレイション | Encoding and rendering object-based audio representing game audio content |
US9489954B2 (en) | 2012-08-07 | 2016-11-08 | Dolby Laboratories Licensing Corporation | Encoding and rendering of object based audio indicative of game audio content |
AR090703A1 (en) * | 2012-08-10 | 2014-12-03 | Fraunhofer Ges Forschung | CODE, DECODER, SYSTEM AND METHOD THAT USE A RESIDUAL CONCEPT TO CODIFY PARAMETRIC AUDIO OBJECTS |
KR20140027831A (en) * | 2012-08-27 | 2014-03-07 | 삼성전자주식회사 | Audio signal transmitting apparatus and method for transmitting audio signal, and audio signal receiving apparatus and method for extracting audio source thereof |
KR20140046980A (en) | 2012-10-11 | 2014-04-21 | 한국전자통신연구원 | Apparatus and method for generating audio data, apparatus and method for playing audio data |
US9805725B2 (en) | 2012-12-21 | 2017-10-31 | Dolby Laboratories Licensing Corporation | Object clustering for rendering object-based audio content based on perceptual criteria |
CA3076775C (en) | 2013-01-08 | 2020-10-27 | Dolby International Ab | Model based prediction in a critically sampled filterbank |
EP2757559A1 (en) * | 2013-01-22 | 2014-07-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for spatial audio object coding employing hidden objects for signal mixture manipulation |
ES2640815T3 (en) | 2013-05-24 | 2017-11-06 | Dolby International Ab | Efficient coding of audio scenes comprising audio objects |
US9818412B2 (en) | 2013-05-24 | 2017-11-14 | Dolby International Ab | Methods for audio encoding and decoding, corresponding computer-readable media and corresponding audio encoder and decoder |
KR102033304B1 (en) * | 2013-05-24 | 2019-10-17 | 돌비 인터네셔널 에이비 | Efficient coding of audio scenes comprising audio objects |
ES2653975T3 (en) | 2013-07-22 | 2018-02-09 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Multichannel audio decoder, multichannel audio encoder, procedures, computer program and encoded audio representation by using a decorrelation of rendered audio signals |
EP2830053A1 (en) * | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Multi-channel audio decoder, multi-channel audio encoder, methods and computer program using a residual-signal-based adjustment of a contribution of a decorrelated signal |
EP2830051A3 (en) * | 2013-07-22 | 2015-03-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio encoder, audio decoder, methods and computer program using jointly encoded residual signals |
EP2830334A1 (en) | 2013-07-22 | 2015-01-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Multi-channel audio decoder, multi-channel audio encoder, methods, computer program and encoded audio representation using a decorrelation of rendered audio signals |
US9812150B2 (en) | 2013-08-28 | 2017-11-07 | Accusonus, Inc. | Methods and systems for improved signal decomposition |
WO2015036352A1 (en) | 2013-09-12 | 2015-03-19 | Dolby International Ab | Coding of multichannel audio content |
TWI634547B (en) | 2013-09-12 | 2018-09-01 | 瑞典商杜比國際公司 | Decoding method, decoding device, encoding method, and encoding device in multichannel audio system comprising at least four audio channels, and computer program product comprising computer-readable medium |
JP6212645B2 (en) * | 2013-09-12 | 2017-10-11 | ドルビー・インターナショナル・アーベー | Audio decoding system and audio encoding system |
KR20160072130A (en) * | 2013-10-02 | 2016-06-22 | 슈트로밍스위스 게엠베하 | Derivation of multichannel signals from two or more basic signals |
KR102268836B1 (en) * | 2013-10-09 | 2021-06-25 | 소니그룹주식회사 | Encoding device and method, decoding device and method, and program |
KR102244379B1 (en) * | 2013-10-21 | 2021-04-26 | 돌비 인터네셔널 에이비 | Parametric reconstruction of audio signals |
US10492014B2 (en) | 2014-01-09 | 2019-11-26 | Dolby Laboratories Licensing Corporation | Spatial error metrics of audio content |
US20150264505A1 (en) | 2014-03-13 | 2015-09-17 | Accusonus S.A. | Wireless exchange of data between devices in live events |
US10468036B2 (en) | 2014-04-30 | 2019-11-05 | Accusonus, Inc. | Methods and systems for processing and mixing signals using signal decomposition |
US9756448B2 (en) | 2014-04-01 | 2017-09-05 | Dolby International Ab | Efficient coding of audio scenes comprising audio objects |
CN106471575B (en) * | 2014-07-01 | 2019-12-10 | 韩国电子通信研究院 | Multi-channel audio signal processing method and device |
WO2016004225A1 (en) * | 2014-07-03 | 2016-01-07 | Dolby Laboratories Licensing Corporation | Auxiliary augmentation of soundfields |
US9774974B2 (en) * | 2014-09-24 | 2017-09-26 | Electronics And Telecommunications Research Institute | Audio metadata providing apparatus and method, and multichannel audio data playback apparatus and method to support dynamic format conversion |
AU2015326856B2 (en) * | 2014-10-02 | 2021-04-08 | Dolby International Ab | Decoding method and decoder for dialog enhancement |
EP3540732B1 (en) * | 2014-10-31 | 2023-07-26 | Dolby International AB | Parametric decoding of multichannel audio signals |
TWI587286B (en) * | 2014-10-31 | 2017-06-11 | 杜比國際公司 | Method and system for decoding and encoding of audio signals, computer program product, and computer-readable medium |
CN105989851B (en) | 2015-02-15 | 2021-05-07 | 杜比实验室特许公司 | Audio source separation |
EP3067885A1 (en) * | 2015-03-09 | 2016-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for encoding or decoding a multi-channel signal |
US10176813B2 (en) | 2015-04-17 | 2019-01-08 | Dolby Laboratories Licensing Corporation | Audio encoding and rendering with discontinuity compensation |
ES2809677T3 (en) * | 2015-09-25 | 2021-03-05 | Voiceage Corp | Method and system for encoding a stereo sound signal using encoding parameters from a primary channel to encode a secondary channel |
PT3539127T (en) * | 2016-11-08 | 2020-12-04 | Fraunhofer Ges Forschung | Downmixer and method for downmixing at least two channels and multichannel encoder and multichannel decoder |
EP3324406A1 (en) * | 2016-11-17 | 2018-05-23 | Fraunhofer Gesellschaft zur Förderung der Angewand | Apparatus and method for decomposing an audio signal using a variable threshold |
EP3324407A1 (en) | 2016-11-17 | 2018-05-23 | Fraunhofer Gesellschaft zur Förderung der Angewand | Apparatus and method for decomposing an audio signal using a ratio as a separation characteristic |
US11595774B2 (en) * | 2017-05-12 | 2023-02-28 | Microsoft Technology Licensing, Llc | Spatializing audio data based on analysis of incoming audio data |
KR102550424B1 (en) | 2018-04-05 | 2023-07-04 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | Apparatus, method or computer program for estimating time differences between channels |
CN109451194B (en) * | 2018-09-28 | 2020-11-24 | 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) | Conference sound mixing method and device |
EP3874491B1 (en) | 2018-11-02 | 2024-05-01 | Dolby International AB | Audio encoder and audio decoder |
JP7092047B2 (en) * | 2019-01-17 | 2022-06-28 | 日本電信電話株式会社 | Coding / decoding method, decoding method, these devices and programs |
US10779105B1 (en) | 2019-05-31 | 2020-09-15 | Apple Inc. | Sending notification and multi-channel audio over channel limited link for independent gain control |
BR112021025265A2 (en) | 2019-06-14 | 2022-03-15 | Fraunhofer Ges Forschung | Audio synthesizer, audio encoder, system, method and non-transient storage unit |
GB2587614A (en) * | 2019-09-26 | 2021-04-07 | Nokia Technologies Oy | Audio encoding and audio decoding |
CN110739000B (en) * | 2019-10-14 | 2022-02-01 | 武汉大学 | Audio object coding method suitable for personalized interactive system |
WO2021232376A1 (en) * | 2020-05-21 | 2021-11-25 | 华为技术有限公司 | Audio data transmission method, and related device |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19537338C2 (en) | 1995-10-06 | 2003-05-22 | Fraunhofer Ges Forschung | Method and device for encoding audio signals |
US5912976A (en) * | 1996-11-07 | 1999-06-15 | Srs Labs, Inc. | Multi-channel audio enhancement system for use in recording and playback and methods for providing same |
US6356639B1 (en) | 1997-04-11 | 2002-03-12 | Matsushita Electric Industrial Co., Ltd. | Audio decoding apparatus, signal processing device, sound image localization device, sound image control method, audio signal processing device, and audio signal high-rate reproduction method used for audio visual equipment |
US6016473A (en) * | 1998-04-07 | 2000-01-18 | Dolby; Ray M. | Low bit-rate spatial coding method and system |
DK1173925T3 (en) | 1999-04-07 | 2004-03-29 | Dolby Lab Licensing Corp | Matrix enhancements for lossless encoding and decoding |
WO2002079335A1 (en) * | 2001-03-28 | 2002-10-10 | Mitsubishi Chemical Corporation | Process for coating with radiation-curable resin composition and laminates |
DE10163827A1 (en) * | 2001-12-22 | 2003-07-03 | Degussa | Radiation curable powder coating compositions and their use |
EP1500084B1 (en) * | 2002-04-22 | 2008-01-23 | Koninklijke Philips Electronics N.V. | Parametric representation of spatial audio |
US7395210B2 (en) * | 2002-11-21 | 2008-07-01 | Microsoft Corporation | Progressive to lossless embedded audio coder (PLEAC) with multiple factorization reversible transform |
EP1576602A4 (en) | 2002-12-28 | 2008-05-28 | Samsung Electronics Co Ltd | Method and apparatus for mixing audio stream and information storage medium |
DE10328777A1 (en) * | 2003-06-25 | 2005-01-27 | Coding Technologies Ab | Apparatus and method for encoding an audio signal and apparatus and method for decoding an encoded audio signal |
US20050058307A1 (en) * | 2003-07-12 | 2005-03-17 | Samsung Electronics Co., Ltd. | Method and apparatus for constructing audio stream for mixing, and information storage medium |
CA2992097C (en) | 2004-03-01 | 2018-09-11 | Dolby Laboratories Licensing Corporation | Reconstructing audio signals with multiple decorrelation techniques and differentially coded parameters |
JP2005352396A (en) * | 2004-06-14 | 2005-12-22 | Matsushita Electric Ind Co Ltd | Sound signal encoding device and sound signal decoding device |
US7317601B2 (en) * | 2004-07-29 | 2008-01-08 | United Microelectronics Corp. | Electrostatic discharge protection device and circuit thereof |
SE0402652D0 (en) * | 2004-11-02 | 2004-11-02 | Coding Tech Ab | Methods for improved performance of prediction based multi-channel reconstruction |
SE0402651D0 (en) * | 2004-11-02 | 2004-11-02 | Coding Tech Ab | Advanced methods for interpolation and parameter signaling |
KR100682904B1 (en) * | 2004-12-01 | 2007-02-15 | 삼성전자주식회사 | Apparatus and method for processing multichannel audio signal using space information |
JP2006197391A (en) * | 2005-01-14 | 2006-07-27 | Toshiba Corp | Voice mixing processing device and method |
US7573912B2 (en) * | 2005-02-22 | 2009-08-11 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschunng E.V. | Near-transparent or transparent multi-channel encoder/decoder scheme |
BRPI0608753B1 (en) * | 2005-03-30 | 2019-12-24 | Koninl Philips Electronics Nv | audio encoder, audio decoder, method for encoding a multichannel audio signal, method for generating a multichannel audio signal, encoded multichannel audio signal, and storage medium |
US7751572B2 (en) | 2005-04-15 | 2010-07-06 | Dolby International Ab | Adaptive residual audio coding |
JP4988717B2 (en) * | 2005-05-26 | 2012-08-01 | エルジー エレクトロニクス インコーポレイティド | Audio signal decoding method and apparatus |
US7539612B2 (en) * | 2005-07-15 | 2009-05-26 | Microsoft Corporation | Coding and decoding scale factor information |
KR20080010980A (en) * | 2006-07-28 | 2008-01-31 | 엘지전자 주식회사 | Method and apparatus for encoding/decoding |
US9426596B2 (en) | 2006-02-03 | 2016-08-23 | Electronics And Telecommunications Research Institute | Method and apparatus for control of randering multiobject or multichannel audio signal using spatial cue |
ATE527833T1 (en) * | 2006-05-04 | 2011-10-15 | Lg Electronics Inc | IMPROVE STEREO AUDIO SIGNALS WITH REMIXING |
WO2008039043A1 (en) * | 2006-09-29 | 2008-04-03 | Lg Electronics Inc. | Methods and apparatuses for encoding and decoding object-based audio signals |
SG175632A1 (en) * | 2006-10-16 | 2011-11-28 | Dolby Sweden Ab | Enhanced coding and parameter representation of multichannel downmixed object coding |
JP5337941B2 (en) * | 2006-10-16 | 2013-11-06 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Apparatus and method for multi-channel parameter conversion |
WO2009049895A1 (en) * | 2007-10-17 | 2009-04-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio coding using downmix |
-
2008
- 2008-10-17 WO PCT/EP2008/008799 patent/WO2009049895A1/en active Application Filing
- 2008-10-17 CA CA2702986A patent/CA2702986C/en active Active
- 2008-10-17 KR KR1020117028843A patent/KR101303441B1/en active IP Right Grant
- 2008-10-17 RU RU2010114875/08A patent/RU2452043C2/en active
- 2008-10-17 MX MX2010004220A patent/MX2010004220A/en active IP Right Grant
- 2008-10-17 TW TW097140089A patent/TWI395204B/en active
- 2008-10-17 US US12/253,515 patent/US8280744B2/en active Active
- 2008-10-17 MX MX2010004138A patent/MX2010004138A/en active IP Right Grant
- 2008-10-17 BR BRPI0816556A patent/BRPI0816556A2/en not_active Application Discontinuation
- 2008-10-17 AU AU2008314029A patent/AU2008314029B2/en active Active
- 2008-10-17 BR BRPI0816557-2A patent/BRPI0816557B1/en active IP Right Grant
- 2008-10-17 KR KR1020107008133A patent/KR101244515B1/en active IP Right Grant
- 2008-10-17 CN CN200880111872.8A patent/CN101849257B/en active Active
- 2008-10-17 EP EP08839058A patent/EP2076900A1/en not_active Ceased
- 2008-10-17 KR KR1020117028846A patent/KR101290394B1/en active IP Right Grant
- 2008-10-17 CA CA2701457A patent/CA2701457C/en active Active
- 2008-10-17 CN CN2008801113955A patent/CN101821799B/en active Active
- 2008-10-17 JP JP2010529293A patent/JP5883561B2/en active Active
- 2008-10-17 EP EP08840635A patent/EP2082396A1/en not_active Ceased
- 2008-10-17 AU AU2008314030A patent/AU2008314030B2/en active Active
- 2008-10-17 JP JP2010529292A patent/JP5260665B2/en active Active
- 2008-10-17 RU RU2010112889/08A patent/RU2474887C2/en active
- 2008-10-17 KR KR1020107008183A patent/KR101244545B1/en active IP Right Grant
- 2008-10-17 TW TW097140088A patent/TWI406267B/en active
- 2008-10-17 US US12/253,442 patent/US8155971B2/en active Active
- 2008-10-17 WO PCT/EP2008/008800 patent/WO2009049896A1/en active Application Filing
-
2012
- 2012-04-20 US US13/451,649 patent/US8407060B2/en active Active
-
2013
- 2013-01-23 US US13/747,502 patent/US8538766B2/en active Active
Non-Patent Citations (2)
Title |
---|
ENGDEGARD J ET AL: "Spatial Audio Object Coding (SAOC) - The Upcoming MPEG Standard on Parametric Object Based Audio Coding", 124TH AES CONVENTION, AUDIO ENGINEERING SOCIETY, PAPER 7377, 17 May 2008 (2008-05-17) - 20 May 2008 (2008-05-20), pages 1 - 15, XP002541458 * |
JURGEN HERRE ET AL: "New Concepts in Parametric Coding of Spatial Audio: From SAC to SAOC", MULTIMEDIA AND EXPO, 2007 IEEE INTERNATIONAL CONFERENCE ON, IEEE, PI, 1 July 2007 (2007-07-01), pages 1894 - 1897, XP031124020, ISBN: 978-1-4244-1016-3 * |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2624253A3 (en) * | 2007-10-22 | 2013-11-06 | Electronics and Telecommunications Research Institute | Multi-object audio encoding and decoding method and apparatus thereof |
EP2511903A3 (en) * | 2007-10-22 | 2012-11-28 | Electronics and Telecommunications Research Institute | Multi-object audio decoding method and apparatus thereof |
EP2194526A1 (en) * | 2008-12-05 | 2010-06-09 | Lg Electronics Inc. | A method and apparatus for processing an audio signal |
US9502043B2 (en) | 2008-12-05 | 2016-11-22 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
US8670575B2 (en) | 2008-12-05 | 2014-03-11 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
US9542951B2 (en) | 2009-01-20 | 2017-01-10 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
US9484039B2 (en) | 2009-01-20 | 2016-11-01 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
US8620008B2 (en) | 2009-01-20 | 2013-12-31 | Lg Electronics Inc. | Method and an apparatus for processing an audio signal |
RU2573738C2 (en) * | 2009-04-28 | 2016-01-27 | Фраунхофер-Гезелльшафт цур Фёрдерунг дер ангевандтен Форшунг Е.Ф. | Device for optimising one or more upmixing signal presentation parameters based on downmixing signal presentation, audio signal decoder, audio signal transcoder, audio signal encoder, audio bitstream, method and computer program using object-oriented parametric information |
US8731950B2 (en) | 2009-04-28 | 2014-05-20 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus for providing one or more adjusted parameters for a provision of an upmix signal representation on the basis of a downmix signal representation, audio signal decoder, audio signal transcoder, audio signal encoder, audio bitstream, method and computer program using an object-related parametric information |
US9786285B2 (en) | 2009-04-28 | 2017-10-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus for providing one or more adjusted parameters for a provision of an upmix signal representation on the basis of a downmix signal representation, audio signal decoder, audio signal transcoder, audio signal encoder, audio bitstream, method and computer program using an object-related parametric information |
WO2010125104A1 (en) * | 2009-04-28 | 2010-11-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus for providing one or more adjusted parameters for a provision of an upmix signal representation on the basis of a downmix signal representation, audio signal decoder, audio signal transcoder, audio signal encoder, audio bitstream, method and computer program using an object-related parametric information |
CN102576532A (en) * | 2009-04-28 | 2012-07-11 | 弗兰霍菲尔运输应用研究公司 | Apparatus for providing one or more adjusted parameters for a provision of an upmix signal representation on the basis of a downmix signal representation, audio signal decoder, audio signal transcoder, audio signal encoder, audio bitstream, method and computer program using an object-related parametric information |
KR101387902B1 (en) | 2009-06-10 | 2014-04-22 | 한국전자통신연구원 | Encoder and method for encoding multi audio object, decoder and method for decoding and transcoder and method transcoding |
US8712784B2 (en) | 2009-06-10 | 2014-04-29 | Electronics And Telecommunications Research Institute | Encoding method and encoding device, decoding method and decoding device and transcoding method and transcoder for multi-object audio signals |
CN102460571A (en) * | 2009-06-10 | 2012-05-16 | 韩国电子通信研究院 | Encoding method and encoding device, decoding method and decoding device and transcoding method and transcoder for multi-object audio signals |
EP2442303A4 (en) * | 2009-06-10 | 2012-11-28 | Korea Electronics Telecomm | Encoding method and encoding device, decoding method and decoding device and transcoding method and transcoder for multi-object audio signals |
WO2010143907A3 (en) * | 2009-06-10 | 2011-03-03 | 한국전자통신연구원 | Encoding method and encoding device, decoding method and decoding device and transcoding method and transcoder for multi-object audio signals |
EP2442303A2 (en) * | 2009-06-10 | 2012-04-18 | Electronics and Telecommunications Research Institute | Encoding method and encoding device, decoding method and decoding device and transcoding method and transcoder for multi-object audio signals |
JP2012530952A (en) * | 2009-06-24 | 2012-12-06 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Audio signal decoder using cascaded audio object processing stages, method for decoding audio signal, and computer program |
US10163445B2 (en) | 2009-10-23 | 2018-12-25 | Samsung Electronics Co., Ltd. | Apparatus and method encoding/decoding with phase information and residual information |
CN105323632A (en) * | 2009-10-23 | 2016-02-10 | 三星电子株式会社 | Apparatus and method of coding and decoding with phase information and residual information |
US11264038B2 (en) | 2010-04-09 | 2022-03-01 | Dolby International Ab | MDCT-based complex prediction stereo coding |
US10586545B2 (en) | 2010-04-09 | 2020-03-10 | Dolby International Ab | MDCT-based complex prediction stereo coding |
US10734002B2 (en) | 2010-04-09 | 2020-08-04 | Dolby International Ab | Audio upmixer operable in prediction or non-prediction mode |
US11810582B2 (en) | 2010-04-09 | 2023-11-07 | Dolby International Ab | MDCT-based complex prediction stereo coding |
US11217259B2 (en) | 2010-04-09 | 2022-01-04 | Dolby International Ab | Audio upmixer operable in prediction or non-prediction mode |
KR20200014428A (en) * | 2011-03-16 | 2020-02-10 | 디티에스, 인코포레이티드 | Encoding and reproduction of three dimensional audio soundtracks |
US9530421B2 (en) | 2011-03-16 | 2016-12-27 | Dts, Inc. | Encoding and reproduction of three dimensional audio soundtracks |
KR102374897B1 (en) * | 2011-03-16 | 2022-03-17 | 디티에스, 인코포레이티드 | Encoding and reproduction of three dimensional audio soundtracks |
EP2686654A4 (en) * | 2011-03-16 | 2015-03-11 | Dts Inc | Encoding and reproduction of three dimensional audio soundtracks |
US9913036B2 (en) | 2011-05-13 | 2018-03-06 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method and computer program for generating a stereo output signal for providing additional output channels |
JP2014026007A (en) * | 2012-07-24 | 2014-02-06 | Fujitsu Ltd | Audio decryption device, audio decryption method and audio decryption computer program |
US11074920B2 (en) * | 2012-10-05 | 2021-07-27 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Encoder, decoder and methods for backward compatible multi-resolution spatial-audio-object-coding |
US20150213806A1 (en) * | 2012-10-05 | 2015-07-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Encoder, decoder and methods for backward compatible multi-resolution spatial-audio-object-coding |
US9786286B2 (en) | 2013-03-29 | 2017-10-10 | Dolby Laboratories Licensing Corporation | Methods and apparatuses for generating and using low-resolution preview tracks with high-quality encoded object and multichannel audio signals |
WO2014184115A1 (en) * | 2013-05-13 | 2014-11-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio object separation from mixture signal using object-specific time/frequency resolutions |
AU2014267408B2 (en) * | 2013-05-13 | 2017-08-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio object separation from mixture signal using object-specific time/frequency resolutions |
TWI566237B (en) * | 2013-05-13 | 2017-01-11 | 弗勞恩霍夫爾協會 | Audio object separation from mixture signal using object-specific time/frequency resolutions |
US10089990B2 (en) | 2013-05-13 | 2018-10-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Audio object separation from mixture signal using object-specific time/frequency resolutions |
EP2804176A1 (en) * | 2013-05-13 | 2014-11-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Audio object separation from mixture signal using object-specific time/frequency resolutions |
US10726853B2 (en) | 2013-05-24 | 2020-07-28 | Dolby International Ab | Decoding of audio scenes |
US10971163B2 (en) | 2013-05-24 | 2021-04-06 | Dolby International Ab | Reconstruction of audio scenes from a downmix |
US10468041B2 (en) | 2013-05-24 | 2019-11-05 | Dolby International Ab | Decoding of audio scenes |
US11894003B2 (en) | 2013-05-24 | 2024-02-06 | Dolby International Ab | Reconstruction of audio scenes from a downmix |
US10468040B2 (en) | 2013-05-24 | 2019-11-05 | Dolby International Ab | Decoding of audio scenes |
US10347261B2 (en) | 2013-05-24 | 2019-07-09 | Dolby International Ab | Decoding of audio scenes |
RU2608847C1 (en) * | 2013-05-24 | 2017-01-25 | Долби Интернешнл Аб | Audio scenes encoding |
US11682403B2 (en) | 2013-05-24 | 2023-06-20 | Dolby International Ab | Decoding of audio scenes |
US11580995B2 (en) | 2013-05-24 | 2023-02-14 | Dolby International Ab | Reconstruction of audio scenes from a downmix |
US11315577B2 (en) | 2013-05-24 | 2022-04-26 | Dolby International Ab | Decoding of audio scenes |
US10468039B2 (en) | 2013-05-24 | 2019-11-05 | Dolby International Ab | Decoding of audio scenes |
US10026408B2 (en) | 2013-05-24 | 2018-07-17 | Dolby International Ab | Coding of audio scenes |
US11227616B2 (en) | 2013-07-22 | 2022-01-18 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Concept for audio encoding and decoding for audio channels and audio objects |
US10277998B2 (en) | 2013-07-22 | 2019-04-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for low delay object metadata coding |
US10249311B2 (en) | 2013-07-22 | 2019-04-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Concept for audio encoding and decoding for audio channels and audio objects |
US11984131B2 (en) | 2013-07-22 | 2024-05-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Concept for audio encoding and decoding for audio channels and audio objects |
US10715943B2 (en) | 2013-07-22 | 2020-07-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for efficient object metadata coding |
US11330386B2 (en) | 2013-07-22 | 2022-05-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for realizing a SAOC downmix of 3D audio content |
US11337019B2 (en) | 2013-07-22 | 2022-05-17 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for low delay object metadata coding |
US11910176B2 (en) | 2013-07-22 | 2024-02-20 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for low delay object metadata coding |
US11463831B2 (en) | 2013-07-22 | 2022-10-04 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for efficient object metadata coding |
US10701504B2 (en) | 2013-07-22 | 2020-06-30 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for realizing a SAOC downmix of 3D audio content |
US10659900B2 (en) | 2013-07-22 | 2020-05-19 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Apparatus and method for low delay object metadata coding |
US10021501B2 (en) | 2013-09-27 | 2018-07-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Concept for generating a downmix signal |
RU2661310C2 (en) * | 2013-09-27 | 2018-07-13 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Concept of generation of reducing mixing signal |
RU2648588C2 (en) * | 2013-10-22 | 2018-03-26 | Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audiodecoder |
US10468038B2 (en) | 2013-10-22 | 2019-11-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder |
US11393481B2 (en) | 2013-10-22 | 2022-07-19 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder |
US11922957B2 (en) | 2013-10-22 | 2024-03-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder |
US9947326B2 (en) | 2013-10-22 | 2018-04-17 | Fraunhofer-Gesellschaft zur Föderung der angewandten Forschung e.V. | Method for decoding and encoding a downmix matrix, method for presenting audio content, encoder and decoder for a downmix matrix, audio encoder and audio decoder |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8407060B2 (en) | Audio decoder, audio object encoder, method for decoding a multi-audio-object signal, multi-audio-object encoding method, and non-transitory computer-readable medium therefor | |
AU2007312598B2 (en) | Enhanced coding and parameter representation of multichannel downmixed object coding | |
JP4685925B2 (en) | Adaptive residual audio coding | |
EP2535892B1 (en) | Audio signal decoder, method for decoding an audio signal and computer program using cascaded audio object processing stages | |
WO2011013381A1 (en) | Coding device and decoding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880111872.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008840635 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08840635 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2008314029 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 20107008183 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010529292 Country of ref document: JP Ref document number: 2702986 Country of ref document: CA Ref document number: 1355/KOLNP/2010 Country of ref document: IN Ref document number: MX/A/2010/004220 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2008314029 Country of ref document: AU Date of ref document: 20081017 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010114875 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0816556 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100416 |