WO2009045476A1 - Pyrimidinedione derivatives - Google Patents

Pyrimidinedione derivatives Download PDF

Info

Publication number
WO2009045476A1
WO2009045476A1 PCT/US2008/011417 US2008011417W WO2009045476A1 WO 2009045476 A1 WO2009045476 A1 WO 2009045476A1 US 2008011417 W US2008011417 W US 2008011417W WO 2009045476 A1 WO2009045476 A1 WO 2009045476A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
deuterium
ring
therapeutic agent
composition
Prior art date
Application number
PCT/US2008/011417
Other languages
French (fr)
Inventor
Scott L. Harbeson
Original Assignee
Concert Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Concert Pharmaceuticals, Inc. filed Critical Concert Pharmaceuticals, Inc.
Priority to JP2010527991A priority Critical patent/JP2010540635A/en
Priority to EP08835241A priority patent/EP2209774A1/en
Publication of WO2009045476A1 publication Critical patent/WO2009045476A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • Diabetes is a disease marked by high levels of blood glucose that results from the inability to properly produce or use insulin. According to the Centers for Disease Control and Prevention, there are an estimated 20.8 million people who have diabetes in the United States, a third of whom are unaware they have the disease. Diabetes is believed to have contributed to almost 225,000 deaths in 2002.
  • Alogliptin known as 2-[6-[3(R)-amino-l-piperidinyl]-3,4-dihydro-3-methyl-2,4- dioxo-l(2H)-pyrimidinyl]methyl]-benzonitrile is preregistered as the benzoate salt.
  • Alogliptin inhibits DPP4, thus blocking the hydrolysis of GLP-I (glucagon-like peptide- 1 ) and maintaining a concentration of GLP-I in the blood.
  • the actions of GLP-I include stimulation of pancreatic beta cells to increase production of insulin and inhibition of the secretion of glucagon from pancreatic alpha cells.
  • Alogliptin is currently preregistered for the treatment of type 2 diabetes. Phase I and II clinical trials have shown the drug to be generally well tolerated
  • This invention relates to novel compounds that are pyrimidinedione derivatives and pharmaceutically acceptable salts thereof. More specifically, this invention relates to novel pyrimidinedione derivatives that are derivatives of alogliptin.
  • This invention also provides compositions comprising one or more compounds of this invention and a carrier, and the use of the disclosed compound and compositions in methods of treating diseases and conditions that are beneficially treated by administering a dipeptidyl peptidase IV (DPP4) inhibitor.
  • DPP4 dipeptidyl peptidase IV
  • ameliorate and “treat” are used interchangeably and include both therapeutic and prophylactic treatment. Both terms mean decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.
  • a disease e.g., a disease or disorder delineated herein
  • Disease means any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.
  • a position designated as having deuterium when a particular position is designated as having deuterium, it is understood that the abundance of deuterium at that position is substantially greater than the natural abundance of deuterium, which is 0.015%.
  • a position designated as having deuterium typically has a minimum isotopic enrichment factor of at least 3340 (50.1% deuterium incorporation) at each atom designated as deuterium in said compound.
  • isotopic enrichment factor means the ratio between the isotopic abundance and the natural abundance of a specified isotope.
  • a compound of this invention has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
  • any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom.
  • a position is designated specifically as “H” or “hydrogen”
  • the position is understood to have hydrogen at its natural abundance isotopic composition.
  • a position is designated specifically as “D” or “deuterium”
  • the position is understood to have deuterium at an abundance that is at least 3340 times greater than the natural abundance of deuterium, which is 0.015% (i.e., at least 50.1% incorporation of deuterium).
  • isotopologue refers to a species that differs from a specific compound of this invention only in the isotopic composition thereof.
  • a compound represented by a particular chemical structure containing indicated deuterium atoms will also contain lesser amounts of isotopologues having hydrogen atoms at one or more of the designated deuterium positions in that structure.
  • the relative amount of such isotopologues in a compound of this invention will depend upon a number of factors including the isotopic purity of deuterated reagents used to make the compound and the efficiency of incorporation of deuterium in the various synthesis steps used to prepare the compound.
  • the invention also provides salts of the compounds of the invention.
  • a salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group.
  • the compound is a pharmaceutically acceptable acid addition salt.
  • pharmaceutically acceptable refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • a “pharmaceutically acceptable salt” means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention.
  • a “pharmaceutically acceptable counterion” is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.
  • Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as para-toluenesulfonic acid, salicylic acid, tartaric acid, bitartaric acid, ascorbic acid, maleic acid, besylic acid, fumaric acid, gluconic acid, glucuronic acid, formic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, lactic acid, oxalic acid, para- bromophenyl sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid, as well as related inorganic and organic acids.
  • inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric
  • Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-l,4-dioate, hexyne-l,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephathalate, sulfonate, xylene sulfonate, phenylacetate, phenyl
  • the invention also includes solvates and hydrates of the compounds of the invention.
  • hydrate means a compound which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.
  • solvate means a compound which further includes a stoichiometric or non-stoichiometric amount of solvent such as water, acetone, ethanol, methanol, dichloromethane, 2-propanol, or the like, bound by non-covalent intermolecular forces.
  • the compounds of the present invention e.g., compounds of Formula I
  • compounds of this invention can exist as either individual enantiomers, or mixtures of the two enantiomers. Accordingly, a compound of the present invention may exist as either a racemic mixture or a scalemic mixture, or as individual respective stereoisomers that are substantially free from another possible stereoisomer.
  • substantially free of other stereoisomers means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers, or less than "X"% of other stereoisomers (wherein X is a number between 0 and 100, inclusive) are present.
  • stable compounds refers to compounds which possess stability sufficient to allow for their manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to therapeutic agents).
  • variable may be referred to generally (e.g., "each R") or may be referred to specifically (e.g., R 1 , R 2 , R 3 , etc.). Unless otherwise indicated, when a variable is referred to generally, it is meant to include all specific embodiments of that particular variable.
  • the present invention provides a compound of Formula I:
  • R 1 is -CH 3 , -CH 2 D, -CHD 2 , or -CD 3 ;
  • L is -CH 2 -, -CHD-, or -CD 2 -;
  • Ring A optionally has 1-4 of the ring hydrogens replaced with deuterium; and Ring B optionally has 1-9 of the ring hydrogens replaced with deuterium; provided that when R 1 is -CH 3 and L is -CH 2 -, then there is at least one deuterium on Ring A or Ring B.
  • One embodiment of this invention provides a compound of Formula wherein R is - CH 3 or -CD 3 .
  • L is -CH 2 - or -CD 2 -.
  • Z la is the same as Z Ib
  • Z 2a is the same as Z 2
  • Z 3a is the same as Z 3b
  • Z 4a is the same as Z 4b
  • R 1 is -CH 3 or -CD 3
  • R 1 is -CH 3 or -CD 3 and L is -CH 2 - or -CD 2 -.
  • each of Z la , Z lb , Z 2a , Z 2b , Z 3a , Z 3b , Z 4a and Z 4b is deuterium
  • R 1 is -CH 3 or -CD 3 and L is -CH 2 - or -CD 2 -.
  • each of Z la , Z lb , Z 2a , Z 2b , Z 3a , Z 3b , Z 4a , Z 4b , and Z 5 is deuterium
  • R 1 is -CH 3 or -CD 3
  • L is -CH 2 - or -CD 2 -.
  • R 1 is -CH 3 or -CD 3
  • L is -CH 2 - or -CD 2 -
  • Ring A has zero or four deuterium.
  • R 1 is -CH 3 or -CD 3
  • L is - CH 2 - or -CD 2 -
  • Ring A has zero or four deuterium
  • each of Z la , Z lb , Z 2a , Z 2b , Z 3a , Z 3b , Z 4a and Z 4b is deuterium.
  • R 1 is -CH 3 or -CD 3
  • L is -CH 2 - or -CD 2 -
  • Ring A has zero or four deuterium
  • each of Z la , Z lb , Z 2a , Z 2b , Z 3a , Z 3b , Z 4a , Z 4b , and Z 5 is deuterium.
  • the compound is selected from any one of the compounds below:
  • any atom not designated as deuterium in any of the embodiments set forth above is present at its natural isotopic abundance.
  • the synthetic schemes shown below illustrate routes for preparing compounds of
  • Scheme 1 above shows a general route for making compounds of Formula I.
  • Chlorouracil X is treated with a benzyl bromide wherein L and Ring A are as defined for a compound of Formula I to provide XI, which is then alkylated with alkyl iodide R 1 -I to provide XII.
  • Reaction with a chiral 3-aminopiperidine provides a compound of Formula I.
  • Scheme 2 above shows a route for making a deuterated benzyl bromide intermediate that can be used in the first step of Scheme 1.
  • the deuterated benzyl bromide XVa can be prepared from commercially available phenol XIII via the triflate and subsequent displacement with cyanide as described by Takagi, K et al., Chem Lett, 1989, 11 :1957-1958.
  • the resulting nitrile XIV can then be reacted with N-Bromosuccinimide in carbon tetrachloride to provide benzyl bromide XVa as described by Orita, A et al., Chemistry - A European Journal, 2002, 8:2000-2004.
  • Scheme 2b above shows a route for making another deuterated benzyl bromide intermediate (XVc) that also can be used in the first step of Scheme 1.
  • XVc deuterated benzyl bromide intermediate
  • Commercially- available salicylic acid XIX is converted to deuterated o-cresol XIIIa following the methods of Mazzini, F., et al. Synthesis (2005), (15), 2479-2481.
  • XIIIa is then converted to XVc following the route depicted in Scheme 2, above.
  • Scheme 3 above shows a route for making a deuterated 3-aminopiperidine intermediate that is useful in Scheme 1.
  • the commercially available cLt-3-aminopyridine XVI may be reduced with deuterium gas using the Nishimura catalyst as described for hydrogenation by Pfrengle, W et al., Ger. Offen. (2006) DE 102004054054.
  • the racemic diamine XVII may be resolved as described by Samuel, HJ et al., WO 2007075630.
  • the specific approaches and compounds shown above are not intended to be limiting.
  • reaction schemes and protocols may be determined by the skilled artisan by use of commercially available structure-searchable database software, for instance, SciFinder® (CAS division of the American Chemical Society), STN® (CAS division of the American Chemical Society), CrossFire Beilstein® (Elsevier MDL), or internet search engines such as Google® or keyword databases such as the US Patent and Trademark Office text database.
  • SciFinder® CAS division of the American Chemical Society
  • STN® CAS division of the American Chemical Society
  • CrossFire Beilstein® Elsevier MDL
  • internet search engines such as Google®
  • keyword databases such as the US Patent and Trademark Office text database.
  • the methods described herein may also additionally include steps, either before or after the steps described specifically herein, to add or remove suitable protecting groups in order to ultimately allow synthesis of the compounds herein.
  • various synthetic steps may be performed in an alternate sequence or order to give the desired compounds.
  • Synthetic chemistry transformations and protecting group methodologies protecting group methodologies (protection and deprotection) useful in synthesizing the applicable compounds are known in the art and include, for example, those described in Larock R, Comprehensive Organic Transformations, VCH Publishers (1989); Greene TW et al., Protective Groups in Organic Synthesis, 3 rd Ed., John Wiley and Sons (1999); Fieser L et al., Fieser and Fieser 's Reagents for Organic
  • the invention also provides pyrogen-free compositions comprising an effective amount of a compound of Formula I (e.g., including any of the formulae herein), or a pharmaceutically acceptable salt of said compound; and an acceptable carrier.
  • a composition of this invention is formulated for pharmaceutical use ("a pharmaceutical composition"), wherein the carrier is a pharmaceutically acceptable carrier.
  • the carrier(s) are "acceptable” in the sense of being compatible with the other ingredients of the formulation and, in the case of a pharmaceutically acceptable carrier, not deleterious to the recipient thereof in an amount used in the medicament.
  • Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
  • ion exchangers alumina, aluminum stearate, lecithin
  • serum proteins such as human serum albumin
  • buffer substances such as phosphat
  • solubility and bioavailability of the compounds of the present invention in pharmaceutical compositions may be enhanced by methods well-known in the art.
  • One method includes the use of lipid excipients in the formulation. See “Oral Lipid- Based Formulations: Enhancing the Bioavailability of Poorly Water-Soluble Drugs (Drugs and the Pharmaceutical Sciences),” David J. Hauss, ed. Informa Healthcare, 2007; and “Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery: Basic Principles and Biological Examples," Kishor M. Wasan, ed. Wiley-Interscience, 2006.
  • Another known method of enhancing bioavailability is the use of an amorphous form of a compound of this invention optionally formulated with a poloxamer, such as LUTROLTM and PLURONICTM (BASF Corporation), or block copolymers of ethylene oxide and propylene oxide. See United States patent 7,014,866; and United States patent publications 20060094744 and 20060079502.
  • compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration.
  • the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques).
  • Other formulations may conveniently be presented in unit dosage form, e.g., tablets, sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, PA (17th ed. 1985).
  • Such preparative methods include the step of bringing into association with the molecule to be administered ingredients such as the carrier that constitutes one or more accessory ingredients.
  • ingredients such as the carrier that constitutes one or more accessory ingredients.
  • the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets, or tablets each containing a predetermined amount of the active ingredient; a powder or granules; a solution or a suspension in an aqueous liquid or a non-aqueous liquid; an oil-in-water liquid emulsion; a water-in-oil liquid emulsion; packed in liposomes; or as a bolus, etc.
  • Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.
  • carriers that are commonly used include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried cornstarch.
  • the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
  • compositions suitable for oral administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.
  • Compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
  • sterile liquid carrier for example water for injections
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets. Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension.
  • This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • a non-toxic parenterally-acceptable diluent or solvent for example, as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • Fatty acids such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • oils such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
  • compositions of this invention may be administered in the form of suppositories for rectal administration.
  • These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components.
  • suitable non-irritating excipient include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
  • the pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation.
  • compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, e.g.: Rabinowitz JD and Zaffaroni AC, US Patent 6,803,031 , assigned to Alexza Molecular Delivery Corporation.
  • Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application.
  • the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier.
  • Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax, and water.
  • the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier.
  • Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol, and water.
  • the pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.
  • Application of the subject therapeutics may be local, so as to be administered at the site of interest.
  • Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
  • the compounds of this invention may be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters.
  • an implantable medical device such as prostheses, artificial valves, vascular grafts, stents, or catheters.
  • Suitable coatings and the general preparation of coated implantable devices are known in the art and are exemplified in US Patents 6,099,562; 5,886,026; and 5,304,121.
  • the coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof.
  • the coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition.
  • Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.
  • the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.
  • the invention provides a method of impregnating an implantable drug release device comprising the step of contacting said drug release device with a compound or composition of this invention.
  • Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers.
  • the invention provides an implantable medical device coated with a compound or a composition comprising a compound of this invention, such that said compound is therapeutically active.
  • the invention provides an implantable drug release device impregnated with or containing a compound or a composition comprising a compound of this invention, such that said compound is released from said device and is therapeutically active.
  • composition of this invention may be painted onto the organ, or a composition of this invention may be applied in any other convenient way.
  • a composition of this invention further comprises a second therapeutic agent.
  • the second therapeutic agent may be selected from any compound or therapeutic agent known to have or that demonstrates advantageous properties when administered with a compound having the same mechanism of action as alogliptin.
  • Such agents include those indicated as being useful in combination with alogliptin, including but not limited to, those described in WO 2007074884.
  • the second therapeutic agent is an agent useful in the treatment or prevention of a disease or condition selected from diabetes, more particular type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity, immunosuppressants or cytokine release regulation, autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, AIDS, cancers (prevention of metastases, for example, breast and prostate tumors to the lungs), dermatological diseases such as psoriasis and lichen planus, treatment of female infertility, osteoporosis, male contraception and neurological disorders .
  • a disease or condition selected from diabetes, more particular type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity, immunosuppressants or cytokine release regulation,
  • the second therapeutic agent is selected from pioglitazone, insulin, metformin, and sulfonylurea.
  • the invention provides separate dosage forms of a compound of this invention and one or more of any of the above-described second therapeutic agents, wherein the compound and second therapeutic agent are associated with one another.
  • association with one another means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).
  • the compound of the present invention is present in an effective amount.
  • effective amount refers to an amount which, when administered in a proper dosing regimen, is sufficient to treat (therapeutically or prophylactically) the target disorder. For example, and effective amount is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect(s) of another therapy.
  • an effective amount of a compound of this invention can range from about 0.25 mg to about 8000 mg per treatment. In more specific embodiments the range is from about 2.5 to 4000 mg, or from 5 to 1600 mg, or most specifically from 25 to 800 mg per treatment. Treatment typically is administered once daily.
  • Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the sex, age and general health condition of the patient, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician. For example, guidance for selecting an effective dose can be determined by reference to the prescribing information for alogliptin.
  • an effective amount of the second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that agent.
  • an effective amount is between about 70% and 100% of the normal monotherapeutic dose.
  • the normal monotherapeutic dosages of these second therapeutic agents are well known in the art.
  • the invention provides a method of inhibiting the activity of
  • DPP4 in a cell on which DPP4 is expressed comprising contacting the cell with one or more compounds of Formula I herein.
  • the invention provides a method of treating a disease that is beneficially treated by alogliptin in a patient in need thereof comprising the step of administering to said patient an effective amount of a compound or a composition of this invention.
  • diseases are well known in the art and are disclosed in, but not limited to the following patents and published applications: WO 2005095381.
  • Such diseases include, but are not limited to, diabetes, more particular type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity, immunosuppressants or cytokine release regulation, autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, AIDS, cancers (prevention of metastases, for example, breast and prostate tumors to the lungs), dermatological diseases such as psoriasis and lichen planus, treatment of female infertility, osteoporosis, male contraception and neurological disorders .
  • diabetes more particular type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity, immunosuppressants or cytokine release regulation
  • autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and r
  • the method of this invention is used to treat type 2 diabetes mellitus.
  • Methods delineated herein also include those wherein the patient is identified as in need of a particular stated treatment. Identifying a patient in need of such treatment can be in the judgment of a patient or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
  • any of the above methods of treatment comprises the further step of co-administering to said patient one or more second therapeutic agents.
  • the choice of second therapeutic agent may be made from any second therapeutic agent known to be useful for co-administration with alogliptin.
  • the choice of second therapeutic agent is also dependent upon the particular disease or condition to be treated. Examples of second therapeutic agents that may be employed in the methods of this invention are those set forth above for use in combination compositions comprising a compound of this invention and a second therapeutic agent.
  • the combination therapies of this invention include co-administering a compound of Formula I and a second therapeutic agent for treatment of the following condition: diabetes type 2 (pioglitazone, insulin, metformin, and sulfonylurea).
  • co-administered means that the second therapeutic agent may be administered together with a compound of this invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms.
  • the additional agent may be administered prior to, consecutively with, or following the administration of a compound of this invention.
  • both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods.
  • composition of this invention comprising both a compound of the invention and a second therapeutic agent, to a patient does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said patient at another time during a course of treatment.
  • Effective amounts of these second therapeutic agents are well known to those skilled in the art and guidance for dosing may be found in patents and published patent applications referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), and other medical texts. However, it is well within the skilled artisan's purview to determine the second therapeutic agent's optimal effective-amount range.
  • the effective amount of the compound of this invention is less than its effective amount would be where the second therapeutic agent is not administered. In another embodiment, the effective amount of the second therapeutic agent is less than its effective amount would be where the compound of this invention is not administered. In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.
  • the invention provides the use of a compound of Formula I alone or together with one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment or prevention in a patient of a disease, disorder or symptom set forth above.
  • Another aspect of the invention is a compound of Formula I for use in the treatment or prevention in a patient of a disease, disorder or symptom thereof delineated herein.
  • the compounds and compositions of this invention are also useful as reagents in methods for determining the concentration of alogliptin in solution or biological sample such as plasma, examining the metabolism of alogliptin and other analytical studies.
  • the invention provides a method of determining the concentration, in a solution or a biological sample, of alogliptin, comprising the steps of: a) adding a known concentration of a compound of Formula I to the solution of biological sample; b) subjecting the solution or biological sample to a measuring device that distinguishes alogliptin from a compound of Formula I; c) calibrating the measuring device to correlate the detected quantity of the compound of Formula I with the known concentration of the compound of Formula I added to the biological sample or solution; and d) measuring the quantity of alogliptin in the biological sample with said calibrated measuring device; and e) determining the concentration of alogliptin in the solution of sample using the correlation between detected quantity and concentration obtained for a compound of Formula
  • Measuring devices that can distinguish alogliptin from the corresponding compound of Formula I include any measuring device that can distinguish between two compounds that differ from one another only in isotopic abundance.
  • Exemplary measuring devices include a mass spectrometer, NMR spectrometer, or IR spectrometer.
  • the invention provides a method of evaluating the metabolic stability of a compound of Formula I comprising the steps of contacting the compound of
  • Formula I with a metabolizing enzyme source for a period of time and comparing the amount of the compound of Formula I with the metabolic products of the compound of Formula I after the period of time.
  • the invention provides a method of evaluating the metabolic stability of a compound of Formula I in a patient following administration of the compound of Formula I.
  • This method comprises the steps of obtaining a serum, urine or feces sample from the patient at a period of time following the administration of the compound of Formula I to the subject; and comparing the amount of the compound of Formula I with the metabolic products of the compound of Formula I in the serum, urine or feces sample.
  • kits for use to treat type 2 diabetes mellitus comprise (a) a pharmaceutical composition comprising a compound of Formula I or a salt thereof, wherein said pharmaceutical composition is in a container; and (b) instructions describing a method of using the pharmaceutical composition to treat type 2 diabetes mellitus .
  • the container may be any vessel or other sealed or sealable apparatus that can hold said pharmaceutical composition.
  • Examples include bottles, ampules, divided or multi- chambered holders bottles, wherein each division or chamber comprises a single dose of said composition, a divided foil packet wherein each division comprises a single dose of said composition, or a dispenser that dispenses single doses of said composition.
  • the container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule.
  • the container employed can depend on the exact dosage form involved, for example a conventional cardboard box would not generally be used to hold a liquid suspension. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle, which is in turn contained within a box. In one embodiment, the container is a blister pack.
  • kits of this invention may also comprise a device to administer or to measure out a unit dose of the pharmaceutical composition.
  • a device to administer or to measure out a unit dose of the pharmaceutical composition may include an inhaler if said composition is an inhalable composition; a syringe and needle if said composition is an injectable composition; a syringe, spoon, pump, or a vessel with or without volume markings if said composition is an oral liquid composition; or any other measuring or delivery device appropriate to the dosage formulation of the composition present in the kit.
  • the kits of this invention may comprise in a separate vessel of container a pharmaceutical composition comprising a second therapeutic agent, such as one of those listed above for use for co-administration with a compound of this invention.
  • Microsomal Assay Human liver microsomes (20 mg/mL) are obtained from Xenotech, LLC (Lenexa, KS). ⁇ -nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), magnesium chloride (MgCl 2 ), and dimethyl sulfoxide (DMSO) are purchased from Sigma- Aldrich. The incubation mixtures are prepared according to Table 2: Table 1. Reaction Mixture Composition for Human Liver Microsome Study
  • in vitro ti # s for test compounds are calculated from the slopes of the linear regression of % parent remaining (In) vs incubation time relationship.
  • CD 3 I (Cambridge Isotopes, 99 atom% D, 1.9 mL, 30 mmol) was added and the mixture was allowed to warm to rt and stir for 1.5 h. The mixture was then heated to approximately 32 0 C and stirred overnight. The reaction mixture was concentrated under reduced pressure to a volume of approximately 20 mL and diluted with CHCl 3 (300 mL). The solution was washed with water (3 x 80 mL), brine, dried over Na 2 SO 4 , filtered and the solvent removed under reduced pressure. The crude product was purified on an Analogix chromatography system eluting with a gradient of 10- 25% EtO Ac/heptanes to afford 3 g (78%) of 13 as an off-white solid.
  • the TFA salt of 107 was prepared for further analysis. Approximately 1/3 of the filtrate solution containing crude 107 (above) was concentrated to approximately 2 mL and TFA (4 drops) was added. The mixture was stirred at rt for 2 h and then concentrated under reduced pressure. The residual sticky oil was dissolved in a few drops of MeOH and MTBE was added to saturate the solution. The solution was refrigerated overnight. The resulting crystals were collected and dried to give approximately 20 mg of 107 as the trifluoroacetate salt. MS (M+H for free base): 349.2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Reproductive Health (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Emergency Medicine (AREA)
  • Pregnancy & Childbirth (AREA)
  • Gynecology & Obstetrics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

This invention relates to novel compounds that are pyrimidinedione derivatives and pharmaceutically acceptable salts thereof. More specifically, this invention relates to novel pyrimidinedione derivatives that are derivatives of alogliptin. This invention also provides compositions comprising one or more compounds of this invention and a carrier, and the use of the disclosed compound and compositions in methods of treating diseases and conditions that are beneficially treated by administering a dipeptidyl peptidase IV (DPP4) inhibitor.

Description

PYRIMIDINEDIONE DERIVATIVES
RELATED APPLICATION This application claims the benefit of U.S. Provisional Application No. 60/997,265, filed on October 2, 2007, the entire teachings of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
Diabetes is a disease marked by high levels of blood glucose that results from the inability to properly produce or use insulin. According to the Centers for Disease Control and Prevention, there are an estimated 20.8 million people who have diabetes in the United States, a third of whom are unaware they have the disease. Diabetes is believed to have contributed to almost 225,000 deaths in 2002.
Alogliptin, known as 2-[6-[3(R)-amino-l-piperidinyl]-3,4-dihydro-3-methyl-2,4- dioxo-l(2H)-pyrimidinyl]methyl]-benzonitrile is preregistered as the benzoate salt. Alogliptin inhibits DPP4, thus blocking the hydrolysis of GLP-I (glucagon-like peptide- 1 ) and maintaining a concentration of GLP-I in the blood. The actions of GLP-I include stimulation of pancreatic beta cells to increase production of insulin and inhibition of the secretion of glucagon from pancreatic alpha cells.
Alogliptin is currently preregistered for the treatment of type 2 diabetes. Phase I and II clinical trials have shown the drug to be generally well tolerated
(Christopher R et al., Annual Meeting and Scientific Sessions of the American Diabetes Association, 2007, 67th:June 22 (Abs 0495-P)).
Despite the beneficial activities of alogliptin, there is a continuing need for new compounds to treat diabetes.
SUMMARY OF THE INVENTION
This invention relates to novel compounds that are pyrimidinedione derivatives and pharmaceutically acceptable salts thereof. More specifically, this invention relates to novel pyrimidinedione derivatives that are derivatives of alogliptin. This invention also provides compositions comprising one or more compounds of this invention and a carrier, and the use of the disclosed compound and compositions in methods of treating diseases and conditions that are beneficially treated by administering a dipeptidyl peptidase IV (DPP4) inhibitor.
DETAILED DESCRIPTION OF THE INVENTION
The terms "ameliorate" and "treat" are used interchangeably and include both therapeutic and prophylactic treatment. Both terms mean decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.
"Disease" means any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.
It will be recognized that some variation of natural isotopic abundance occurs in a synthesized compound depending upon the origin of chemical materials used in the synthesis. Thus, a preparation of alogliptin will inherently contain small amounts of deuterated isotopologues. The concentration of naturally abundant stable hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial as compared to the degree of stable isotopic substitution of compounds of this invention. See, for instance, Wada E et al., Seikagaku 1994, 66:15; Ganes LZ et al., Comp Biochem Physiol MoI Integr Physiol 1998, 1 19:725. In a compound of this invention, when a particular position is designated as having deuterium, it is understood that the abundance of deuterium at that position is substantially greater than the natural abundance of deuterium, which is 0.015%. A position designated as having deuterium typically has a minimum isotopic enrichment factor of at least 3340 (50.1% deuterium incorporation) at each atom designated as deuterium in said compound.
The term "isotopic enrichment factor" as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope. In other embodiments, a compound of this invention has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).
In the compounds of this invention any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom. Unless otherwise stated, when a position is designated specifically as "H" or "hydrogen", the position is understood to have hydrogen at its natural abundance isotopic composition. Also unless otherwise stated, when a position is designated specifically as "D" or "deuterium", the position is understood to have deuterium at an abundance that is at least 3340 times greater than the natural abundance of deuterium, which is 0.015% (i.e., at least 50.1% incorporation of deuterium).
The term "isotopologue" refers to a species that differs from a specific compound of this invention only in the isotopic composition thereof.
The term "compound," when referring to a compound of this invention, refers to a collection of molecules having an identical chemical structure, except that there may be isotopic variation among the constituent atoms of the molecules. Thus, it will be clear to those of skill in the art that a compound represented by a particular chemical structure containing indicated deuterium atoms, will also contain lesser amounts of isotopologues having hydrogen atoms at one or more of the designated deuterium positions in that structure. The relative amount of such isotopologues in a compound of this invention will depend upon a number of factors including the isotopic purity of deuterated reagents used to make the compound and the efficiency of incorporation of deuterium in the various synthesis steps used to prepare the compound. However, as set forth above the relative amount of such isotopologues in toto will be less than 49.9% of the compound. The invention also provides salts of the compounds of the invention. A salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group. According to another embodiment, the compound is a pharmaceutically acceptable acid addition salt. The term "pharmaceutically acceptable," as used herein, refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A "pharmaceutically acceptable salt" means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound of this invention. A "pharmaceutically acceptable counterion" is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.
Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as para-toluenesulfonic acid, salicylic acid, tartaric acid, bitartaric acid, ascorbic acid, maleic acid, besylic acid, fumaric acid, gluconic acid, glucuronic acid, formic acid, glutamic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, lactic acid, oxalic acid, para- bromophenyl sulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid and acetic acid, as well as related inorganic and organic acids. Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-l,4-dioate, hexyne-l,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, phthalate, terephathalate, sulfonate, xylene sulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β- hydroxybutyrate, glycolate, maleate, tartrate, methanesulfonate, propanesulfonate, naphthalene- 1 -sulfonate, naphthalene-2- sulfonate, mandelate and other salts. In one embodiment, pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid.
The invention also includes solvates and hydrates of the compounds of the invention. As used herein, the term "hydrate" means a compound which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces. The term "solvate" means a compound which further includes a stoichiometric or non-stoichiometric amount of solvent such as water, acetone, ethanol, methanol, dichloromethane, 2-propanol, or the like, bound by non-covalent intermolecular forces. The compounds of the present invention (e.g., compounds of Formula I), may contain an asymmetric carbon atom, for example, as the result of deuterium substitution or otherwise. As such, compounds of this invention can exist as either individual enantiomers, or mixtures of the two enantiomers. Accordingly, a compound of the present invention may exist as either a racemic mixture or a scalemic mixture, or as individual respective stereoisomers that are substantially free from another possible stereoisomer. The term "substantially free of other stereoisomers" as used herein means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers, or less than "X"% of other stereoisomers (wherein X is a number between 0 and 100, inclusive) are present. Methods of obtaining or synthesizing an individual enantiomer for a given compound are known in the art and may be applied as practicable to final compounds or to starting material or intermediates.
Unless otherwise indicated, when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.
The term "stable compounds," as used herein, refers to compounds which possess stability sufficient to allow for their manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to therapeutic agents).
"D" refers to deuterium. "Stereoisomer" refers to both enantiomers and diastereomers. "Tert", " l ", and "t-" each refer to tertiary. "US" refers to the United States of America.
Throughout this specification, a variable may be referred to generally (e.g., "each R") or may be referred to specifically (e.g., R1, R2, R3, etc.). Unless otherwise indicated, when a variable is referred to generally, it is meant to include all specific embodiments of that particular variable.
THERAPEUTIC COMPOUNDS
The present invention provides a compound of Formula I:
Figure imgf000006_0001
or a pharmaceutically acceptable salt thereof, wherein:
R1 is -CH3, -CH2D, -CHD2, or -CD3;
L is -CH2-, -CHD-, or -CD2-;
Ring A optionally has 1-4 of the ring hydrogens replaced with deuterium; and Ring B optionally has 1-9 of the ring hydrogens replaced with deuterium; provided that when R1 is -CH3 and L is -CH2-, then there is at least one deuterium on Ring A or Ring B.
One embodiment of this invention provides a compound of Formula wherein R is - CH3 or -CD3. In one aspect of this embodiment, L is -CH2- or -CD2-.
Another embodiment provides a compound of Formula I wherein Ring B is:
Figure imgf000007_0001
z2b wherein Zla is the same as ZIb, Z2a is the same as Z2 , Z3a is the same as Z3b, and Z4a is the same as Z4b. In one aspect of this embodiment, R1 is -CH3 or -CD3. In another aspect of this embodiment, R1 is -CH3 or -CD3 and L is -CH2- or -CD2-. In yet another aspect of this embodiment, each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a and Z4b is deuterium, R1 is -CH3 or -CD3 and L is -CH2- or -CD2-. In a further aspect of this embodiment, each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a, Z4b, and Z5 is deuterium, R1 is -CH3 or -CD3 and L is -CH2- or -CD2-. In yet another aspect of this embodiment, R1 is -CH3 or -CD3, L is -CH2- or -CD2-, and Ring A has zero or four deuterium. In yet another aspect of this embodiment, R1 is -CH3 or -CD3, L is - CH2- or -CD2-, Ring A has zero or four deuterium, and each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a and Z4b is deuterium. In a further aspect of this embodiment, R1 is -CH3 or -CD3, L is -CH2- or -CD2-, Ring A has zero or four deuterium, and each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a, Z4b, and Z5 is deuterium. In yet another embodiment, the compound is selected from any one of the compounds below:
Figure imgf000007_0002
101
Figure imgf000008_0001
Figure imgf000008_0002
Figure imgf000008_0003
or a pharmaceutically acceptable salt of any of the foregoing.
In another set of embodiments, any atom not designated as deuterium in any of the embodiments set forth above is present at its natural isotopic abundance. The synthetic schemes shown below illustrate routes for preparing compounds of
Formula I. Procedures for making compounds that otherwise correspond to Formula I but are non-deuterated have been disclosed in WO 2005/095381 and WO 2007/035629. These procedures may be adapted using appropriately deuterated to prepare the present compounds. Such methods can be carried out utilizing corresponding deuterated and optionally, other isotope-containing reagents and/or intermediates to synthesize the compounds delineated herein, or invoking standard synthetic protocols known in the art for introducing isotopic atoms to a chemical structure. Certain intermediates can be used with or without purification (e.g., filtration, distillation, sublimation, crystallization, trituration, solid phase extraction, and chromatography).
EXEMPLARY SYNTHESIS
Scheme 1. General Route to Compounds of Formula I.
Figure imgf000009_0001
XI XII
Figure imgf000009_0002
NaHCO3, MeOH
Figure imgf000009_0003
Scheme 1 above shows a general route for making compounds of Formula I. Chlorouracil X is treated with a benzyl bromide wherein L and Ring A are as defined for a compound of Formula I to provide XI, which is then alkylated with alkyl iodide R1 -I to provide XII. Reaction with a chiral 3-aminopiperidine provides a compound of Formula I.
Scheme 2. Preparation of a Deuterated Benzyl Bromide Intermediate XVa.
Figure imgf000009_0004
sail XIV XVa
Scheme 2 above shows a route for making a deuterated benzyl bromide intermediate that can be used in the first step of Scheme 1. The deuterated benzyl bromide XVa can be prepared from commercially available phenol XIII via the triflate and subsequent displacement with cyanide as described by Takagi, K et al., Chem Lett, 1989, 11 :1957-1958. The resulting nitrile XIV can then be reacted with N-Bromosuccinimide in carbon tetrachloride to provide benzyl bromide XVa as described by Orita, A et al., Chemistry - A European Journal, 2002, 8:2000-2004.
In a similar manner, commercially-available o-cresol-3,4,5,6-d4,OD,
Figure imgf000010_0001
5 may be used in Scheme 2 to afford a deuterated benzyl bromide XVb wherein L is -CH2- and Ring A bears four deuterium atoms.
Scheme 2b. Preparation of another Deuterated Benzyl Bromide Intermediate XVc. as in Sch 2
Figure imgf000010_0002
XIX XIIIa
Figure imgf000010_0003
Scheme 2b above shows a route for making another deuterated benzyl bromide intermediate (XVc) that also can be used in the first step of Scheme 1. Commercially- available salicylic acid XIX is converted to deuterated o-cresol XIIIa following the methods of Mazzini, F., et al. Synthesis (2005), (15), 2479-2481. XIIIa is then converted to XVc following the route depicted in Scheme 2, above.
Scheme 3. Preparation of Deuterated 3-Aminopiperidine Intermediate XVIII.
Resolution
Figure imgf000010_0004
Figure imgf000010_0005
XVIII
Scheme 3 above shows a route for making a deuterated 3-aminopiperidine intermediate that is useful in Scheme 1. The commercially available cLt-3-aminopyridine XVI may be reduced with deuterium gas using the Nishimura catalyst as described for hydrogenation by Pfrengle, W et al., Ger. Offen. (2006) DE 102004054054. The racemic diamine XVII may be resolved as described by Samuel, HJ et al., WO 2007075630. The specific approaches and compounds shown above are not intended to be limiting. The chemical structures in the schemes herein depict variables that are hereby defined commensurately with chemical group definitions (moieties, atoms, etc.) of the corresponding position in the compound formulae herein, whether identified by the same variable name (i.e., R , R , R , etc.) or not. The suitability of a chemical group in a compound structure for use in the synthesis of another compound is within the knowledge of one of ordinary skill in the art. Additional methods of synthesizing compounds of Formula I and their synthetic precursors, including those within routes not explicitly shown in schemes herein, are within the means of chemists of ordinary skill in the art. Methods for optimizing reaction conditions and, if necessary, minimizing competing by-products, are known in the art. In addition to the synthetic references cited herein, reaction schemes and protocols may be determined by the skilled artisan by use of commercially available structure-searchable database software, for instance, SciFinder® (CAS division of the American Chemical Society), STN® (CAS division of the American Chemical Society), CrossFire Beilstein® (Elsevier MDL), or internet search engines such as Google® or keyword databases such as the US Patent and Trademark Office text database.
The methods described herein may also additionally include steps, either before or after the steps described specifically herein, to add or remove suitable protecting groups in order to ultimately allow synthesis of the compounds herein. In addition, various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the applicable compounds are known in the art and include, for example, those described in Larock R, Comprehensive Organic Transformations, VCH Publishers (1989); Greene TW et al., Protective Groups in Organic Synthesis, 3rd Ed., John Wiley and Sons (1999); Fieser L et al., Fieser and Fieser 's Reagents for Organic
Synthesis, John Wiley and Sons (1994); and Paquette L, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995) and subsequent editions thereof.
Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds.
COMPOSITIONS
The invention also provides pyrogen-free compositions comprising an effective amount of a compound of Formula I (e.g., including any of the formulae herein), or a pharmaceutically acceptable salt of said compound; and an acceptable carrier. Preferably, a composition of this invention is formulated for pharmaceutical use ("a pharmaceutical composition"), wherein the carrier is a pharmaceutically acceptable carrier. The carrier(s) are "acceptable" in the sense of being compatible with the other ingredients of the formulation and, in the case of a pharmaceutically acceptable carrier, not deleterious to the recipient thereof in an amount used in the medicament.
Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. If required, the solubility and bioavailability of the compounds of the present invention in pharmaceutical compositions may be enhanced by methods well-known in the art. One method includes the use of lipid excipients in the formulation. See "Oral Lipid- Based Formulations: Enhancing the Bioavailability of Poorly Water-Soluble Drugs (Drugs and the Pharmaceutical Sciences)," David J. Hauss, ed. Informa Healthcare, 2007; and "Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery: Basic Principles and Biological Examples," Kishor M. Wasan, ed. Wiley-Interscience, 2006.
Another known method of enhancing bioavailability is the use of an amorphous form of a compound of this invention optionally formulated with a poloxamer, such as LUTROL™ and PLURONIC™ (BASF Corporation), or block copolymers of ethylene oxide and propylene oxide. See United States patent 7,014,866; and United States patent publications 20060094744 and 20060079502.
The pharmaceutical compositions of the invention include those suitable for oral, rectal, nasal, topical (including buccal and sublingual), vaginal or parenteral (including subcutaneous, intramuscular, intravenous and intradermal) administration. In certain embodiments, the compound of the formulae herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques). Other formulations may conveniently be presented in unit dosage form, e.g., tablets, sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Philadelphia, PA (17th ed. 1985).
Such preparative methods include the step of bringing into association with the molecule to be administered ingredients such as the carrier that constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers, or both, and then, if necessary, shaping the product.
In certain embodiments, the compound is administered orally. Compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets, or tablets each containing a predetermined amount of the active ingredient; a powder or granules; a solution or a suspension in an aqueous liquid or a non-aqueous liquid; an oil-in-water liquid emulsion; a water-in-oil liquid emulsion; packed in liposomes; or as a bolus, etc. Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption. In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
Compositions suitable for oral administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia. Compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets. Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
The pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols. The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, e.g.: Rabinowitz JD and Zaffaroni AC, US Patent 6,803,031 , assigned to Alexza Molecular Delivery Corporation.
Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application. For topical application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax, and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol, and water. The pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.
Application of the subject therapeutics may be local, so as to be administered at the site of interest. Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pluronic gel, stents, sustained drug release polymers or other device which provides for internal access.
Thus, according to yet another embodiment, the compounds of this invention may be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters. Suitable coatings and the general preparation of coated implantable devices are known in the art and are exemplified in US Patents 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polymethyldisiloxane, polycaprolactone, polyethylene glycol, polylactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics in the composition. Coatings for invasive devices are to be included within the definition of pharmaceutically acceptable carrier, adjuvant or vehicle, as those terms are used herein.
According to another embodiment, the invention provides a method of coating an implantable medical device comprising the step of contacting said device with the coating composition described above. It will be obvious to those skilled in the art that the coating of the device will occur prior to implantation into a mammal.
According to another embodiment, the invention provides a method of impregnating an implantable drug release device comprising the step of contacting said drug release device with a compound or composition of this invention. Implantable drug release devices include, but are not limited to, biodegradable polymer capsules or bullets, non-degradable, diffusible polymer capsules and biodegradable polymer wafers. According to another embodiment, the invention provides an implantable medical device coated with a compound or a composition comprising a compound of this invention, such that said compound is therapeutically active.
According to another embodiment, the invention provides an implantable drug release device impregnated with or containing a compound or a composition comprising a compound of this invention, such that said compound is released from said device and is therapeutically active.
Where an organ or tissue is accessible because of removal from the patient, such organ or tissue may be bathed in a medium containing a composition of this invention, a composition of this invention may be painted onto the organ, or a composition of this invention may be applied in any other convenient way.
In another embodiment, a composition of this invention further comprises a second therapeutic agent. The second therapeutic agent may be selected from any compound or therapeutic agent known to have or that demonstrates advantageous properties when administered with a compound having the same mechanism of action as alogliptin. Such agents include those indicated as being useful in combination with alogliptin, including but not limited to, those described in WO 2007074884.
Preferably, the second therapeutic agent is an agent useful in the treatment or prevention of a disease or condition selected from diabetes, more particular type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity, immunosuppressants or cytokine release regulation, autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, AIDS, cancers (prevention of metastases, for example, breast and prostate tumors to the lungs), dermatological diseases such as psoriasis and lichen planus, treatment of female infertility, osteoporosis, male contraception and neurological disorders .
In one embodiment, the second therapeutic agent is selected from pioglitazone, insulin, metformin, and sulfonylurea.
In another embodiment, the invention provides separate dosage forms of a compound of this invention and one or more of any of the above-described second therapeutic agents, wherein the compound and second therapeutic agent are associated with one another. The term "associated with one another" as used herein means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).
In the pharmaceutical compositions of the invention, the compound of the present invention is present in an effective amount. As used herein, the term "effective amount" refers to an amount which, when administered in a proper dosing regimen, is sufficient to treat (therapeutically or prophylactically) the target disorder. For example, and effective amount is sufficient to reduce or ameliorate the severity, duration or progression of the disorder being treated, prevent the advancement of the disorder being treated, cause the regression of the disorder being treated, or enhance or improve the prophylactic or therapeutic effect(s) of another therapy.
The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described in Freireich et al., (1966) Cancer Chemother. Rep 50:219. Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, N. Y., 1970, 537. In one embodiment, an effective amount of a compound of this invention can range from about 0.25 mg to about 8000 mg per treatment. In more specific embodiments the range is from about 2.5 to 4000 mg, or from 5 to 1600 mg, or most specifically from 25 to 800 mg per treatment. Treatment typically is administered once daily.
Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the sex, age and general health condition of the patient, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician. For example, guidance for selecting an effective dose can be determined by reference to the prescribing information for alogliptin. For pharmaceutical compositions that comprise a second therapeutic agent, an effective amount of the second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that agent. Preferably, an effective amount is between about 70% and 100% of the normal monotherapeutic dose. The normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), each of which references are incorporated herein by reference in their entirety. It is expected that some of the second therapeutic agents referenced above will act synergistically with the compounds of this invention. When this occurs, it will allow the effective dosage of the second therapeutic agent and/or the compound of this invention to be reduced from that required in a monotherapy. This has the advantage of minimizing toxic side effects of either the second therapeutic agent of a compound of this invention, synergistic improvements in efficacy, improved ease of administration or use and/or reduced overall expense of compound preparation or formulation.
METHODS OF TREATMENT In another embodiment, the invention provides a method of inhibiting the activity of
DPP4 in a cell on which DPP4 is expressed, comprising contacting the cell with one or more compounds of Formula I herein.
According to another embodiment, the invention provides a method of treating a disease that is beneficially treated by alogliptin in a patient in need thereof comprising the step of administering to said patient an effective amount of a compound or a composition of this invention. Such diseases are well known in the art and are disclosed in, but not limited to the following patents and published applications: WO 2005095381. Such diseases include, but are not limited to, diabetes, more particular type 2 diabetes mellitus, diabetic dislipidemia, conditions of impaired glucose tolerance (IGT), conditions of impaired fasting plasma glucose (IFG), metabolic acidosis, ketosis, appetite regulation, obesity, immunosuppressants or cytokine release regulation, autoimmune diseases such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, AIDS, cancers (prevention of metastases, for example, breast and prostate tumors to the lungs), dermatological diseases such as psoriasis and lichen planus, treatment of female infertility, osteoporosis, male contraception and neurological disorders .
In one particular embodiment, the method of this invention is used to treat type 2 diabetes mellitus.
Methods delineated herein also include those wherein the patient is identified as in need of a particular stated treatment. Identifying a patient in need of such treatment can be in the judgment of a patient or a health care professional and can be subjective (e.g. opinion) or objective (e.g. measurable by a test or diagnostic method).
In another embodiment, any of the above methods of treatment comprises the further step of co-administering to said patient one or more second therapeutic agents. The choice of second therapeutic agent may be made from any second therapeutic agent known to be useful for co-administration with alogliptin. The choice of second therapeutic agent is also dependent upon the particular disease or condition to be treated. Examples of second therapeutic agents that may be employed in the methods of this invention are those set forth above for use in combination compositions comprising a compound of this invention and a second therapeutic agent.
In particular, the combination therapies of this invention include co-administering a compound of Formula I and a second therapeutic agent for treatment of the following condition: diabetes type 2 (pioglitazone, insulin, metformin, and sulfonylurea).
The term "co-administered" as used herein means that the second therapeutic agent may be administered together with a compound of this invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and an second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional agent may be administered prior to, consecutively with, or following the administration of a compound of this invention. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of a composition of this invention, comprising both a compound of the invention and a second therapeutic agent, to a patient does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said patient at another time during a course of treatment.
Effective amounts of these second therapeutic agents are well known to those skilled in the art and guidance for dosing may be found in patents and published patent applications referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000), and other medical texts. However, it is well within the skilled artisan's purview to determine the second therapeutic agent's optimal effective-amount range.
In one embodiment of the invention, where a second therapeutic agent is administered to a subject, the effective amount of the compound of this invention is less than its effective amount would be where the second therapeutic agent is not administered. In another embodiment, the effective amount of the second therapeutic agent is less than its effective amount would be where the compound of this invention is not administered. In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.
In yet another aspect, the invention provides the use of a compound of Formula I alone or together with one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment or prevention in a patient of a disease, disorder or symptom set forth above. Another aspect of the invention is a compound of Formula I for use in the treatment or prevention in a patient of a disease, disorder or symptom thereof delineated herein.
DIAGNOSTIC METHODS AND KITS
The compounds and compositions of this invention are also useful as reagents in methods for determining the concentration of alogliptin in solution or biological sample such as plasma, examining the metabolism of alogliptin and other analytical studies.
According to one embodiment, the invention provides a method of determining the concentration, in a solution or a biological sample, of alogliptin, comprising the steps of: a) adding a known concentration of a compound of Formula I to the solution of biological sample; b) subjecting the solution or biological sample to a measuring device that distinguishes alogliptin from a compound of Formula I; c) calibrating the measuring device to correlate the detected quantity of the compound of Formula I with the known concentration of the compound of Formula I added to the biological sample or solution; and d) measuring the quantity of alogliptin in the biological sample with said calibrated measuring device; and e) determining the concentration of alogliptin in the solution of sample using the correlation between detected quantity and concentration obtained for a compound of Formula
I.
Measuring devices that can distinguish alogliptin from the corresponding compound of Formula I include any measuring device that can distinguish between two compounds that differ from one another only in isotopic abundance. Exemplary measuring devices include a mass spectrometer, NMR spectrometer, or IR spectrometer.
In another embodiment, the invention provides a method of evaluating the metabolic stability of a compound of Formula I comprising the steps of contacting the compound of
Formula I with a metabolizing enzyme source for a period of time and comparing the amount of the compound of Formula I with the metabolic products of the compound of Formula I after the period of time.
In a related embodiment, the invention provides a method of evaluating the metabolic stability of a compound of Formula I in a patient following administration of the compound of Formula I. This method comprises the steps of obtaining a serum, urine or feces sample from the patient at a period of time following the administration of the compound of Formula I to the subject; and comparing the amount of the compound of Formula I with the metabolic products of the compound of Formula I in the serum, urine or feces sample.
The present invention also provides kits for use to treat type 2 diabetes mellitus . These kits comprise (a) a pharmaceutical composition comprising a compound of Formula I or a salt thereof, wherein said pharmaceutical composition is in a container; and (b) instructions describing a method of using the pharmaceutical composition to treat type 2 diabetes mellitus .
The container may be any vessel or other sealed or sealable apparatus that can hold said pharmaceutical composition. Examples include bottles, ampules, divided or multi- chambered holders bottles, wherein each division or chamber comprises a single dose of said composition, a divided foil packet wherein each division comprises a single dose of said composition, or a dispenser that dispenses single doses of said composition. The container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. The container employed can depend on the exact dosage form involved, for example a conventional cardboard box would not generally be used to hold a liquid suspension. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle, which is in turn contained within a box. In one embodiment, the container is a blister pack.
The kits of this invention may also comprise a device to administer or to measure out a unit dose of the pharmaceutical composition. Such device may include an inhaler if said composition is an inhalable composition; a syringe and needle if said composition is an injectable composition; a syringe, spoon, pump, or a vessel with or without volume markings if said composition is an oral liquid composition; or any other measuring or delivery device appropriate to the dosage formulation of the composition present in the kit. In certain embodiment, the kits of this invention may comprise in a separate vessel of container a pharmaceutical composition comprising a second therapeutic agent, such as one of those listed above for use for co-administration with a compound of this invention.
EVALUATION OF METABOLIC STABILITY
Certain in vitro liver metabolism studies have been described previously in the following references, each of which is incorporated herein in their entirety: Obach, RS, Drug Metab Disp, 1999, 27:1350; Houston, JB et al., Drug Metab Rev, 1997, 29:891 ; Houston, JB, Biochem Pharmacol, 1994, 47:1469; Iwatsubo, T et al., Pharmacol Ther, 1997, 73:147; and Lave, T, et al., Pharm Res, 1997, 14: 152.
Microsomal Assay: Human liver microsomes (20 mg/mL) are obtained from Xenotech, LLC (Lenexa, KS). β -nicotinamide adenine dinucleotide phosphate, reduced form (NADPH), magnesium chloride (MgCl2), and dimethyl sulfoxide (DMSO) are purchased from Sigma- Aldrich. The incubation mixtures are prepared according to Table 2: Table 1. Reaction Mixture Composition for Human Liver Microsome Study
Figure imgf000022_0001
Determination of Metabolic Stability: Two aliquots of this reaction mixture are used for a compound of this invention. The aliquots are incubated in a shaking water bath at 37 °C for 3 minutes. The test compound is then added into each aliquot at a final concentration of 0.5 μM. The reaction is initiated by the addition of cofactor (NADPH) into one aliquot (the other aliquot lacking NADPH serves as the negative control). Both aliquots are then incubated in a shaking water bath at 37 0C. Fifty microliters (50 μL) of the incubation mixtures are withdrawn in triplicate from each aliquot at 0, 5, 10, 20, and 30 minutes and combined with 50 μL of ice-cold acetonitrile to terminate the reaction. The same procedure is followed for alogliption and ethoxycoumarin as a positive control. Testing is done in triplicate.
Data analysis: The in vitro ti#s for test compounds are calculated from the slopes of the linear regression of % parent remaining (In) vs incubation time relationship. in vitro t ./2 = 0.693/k k = -[slope of linear regression of % parent remaining(ln) vs incubation time]
Data analysis is performed using Microsoft Excel Software. The metabolic stability of compounds of Formula I is tested using pooled liver microsomal incubations. Full scan LC-MS analysis is then performed to detect major metabolites. Samples of the test compounds, exposed to pooled human liver microsomes, are analyzed using HPLC-MS (or MS/MS) detection. For determining metabolic stability, multiple reaction monitoring (MRM) is used to measure the disappearance of the test compounds. For metabolite detection, Ql full scans are used as survey scans to detect the major metabolites.
EXAMPLES Example 1. Synthesis of 2-(Bromomethyl-d?)-3A5,6-d4-benzonitrile (XVa*). Intermediate IVa was prepared as outlined in Scheme 4 below. Details of the synthesis are set forth below.
Scheme 4. Preparation of Intermediate 13.
Figure imgf000023_0001
XIV XVa
Synthesis of ø-Tolyl trifluoromethanesulfonate-d? (11). A solution of o-Cresol-d8 10 (CDN Isotopes, 99.3 atom% D, 10 g) in pyridine (50 mL) was cooled in an ice-water bath. Trifluoromethanesulfonic anhydride ("Tf2O", 18.5 mL) was added slowly over 10 minutes (min) and the reaction mixture was allowed to warm slowly to room temperature (rt) then stirred for 18 hours (h). To the resulting mixture was added ice followed by MTBE (500 mL). The phases were separated and the organic phase was washed with IN HCl (3 x 80 mL), saturated NaHCO3 solution (50 mL), and brine, then dried over Na2SO4, filtered, and the solvent removed under reduced pressure. The crude product was purified by chromatography on silica gel eluting with MTBE/hexanes (1 :10) to give 22.1 g (100%) of 11 as a colorless oil. Synthesis of 2-(Methyl-d3)-3,4,5,6-d4-benzonitrile (XIV). To a solution of o-Tolyl- d7 trifluoromethanesulfonate 11 (10 g, 40 mmol) in N,N-dimethyl-acetamide ("DMAc", 60 mL) and water (5 mL) was added Zn(CN)2 (4.7 g, 40 mmol), Zn (0.52 g, 8 mmol) and Pd(dppf)Cl2-CH2Cl2 (0.98 g, 1.2 mmol). The reaction mixture atmosphere was twice evacuated and replaced with N2. The mixture was heated to 120-130 0C over 1 h, held at this temperature for 3 h, cooled to rt and then placed in an ice-water bath. A mixture of concentrated ammonia (10 mL), saturated NH4Cl solution (20 mL) and water (20 mL) was added and the resultant mixture was stirred for approximately 30 min at rt. The mixture was filtered through a pad of Celite and the pad washed with MTBE (100 mL). The filtrate was further diluted with MTBE (500 mL) and the solution washed with water (3 x 100 mL) and brine, dried over Na2SO4, filtered and the solvent removed under reduced pressure. (The rotary evaporator's water-bath was maintained at room temperature to minimize loss of product due to volatility). The crude product was purified by chromatography on silica gel eluting with MTBE/hexanes (1 :6) to afford 4.1 g (81%) of XIV as an orange oil. 2-(Bromomethyl-d2)-3,4,5,6-d4-benzoiiitrile (XVa). A mixture of XIV (6.8 g, 55 mmol), N-bromosuccinimide ("NBS", 12.5 g, 70 mmol) and benzoyl peroxide (1.45 g, 6 mmol) in CCl4 (100 mL) was heated to gentle reflux and stirred overnight (approximately 18 h). Saturated Na2S2O5 solution (5OmL) was added to the resulting mixture followed by extraction with CH2Cl2 (3 x 100 mL). The combined organic solution was dried over Na2SO4, filtered and the solvent removed under reduced pressure. The crude product was purified by chromatography on silica gel eluting with EtOAc/heptanes (1 :5). Mixed fractions were concentrated and the solid triturated with MTBE/heptanes (1 : 1). Material obtained from trituration was combined with that obtained from concentration of pure fractions to give a total of 5.8 g (52%) of XVa as an off-white solid.
Example 2. Synthesis of (^-2-((6-(3-Aminopiperidin-l-vn-3-(methyl-dV)-2.4-dioxo-3.4- dihvdropyrimidin-l(2H)-y0methyl-d?V3A5,6-d4-benzonitrile (107). Compound 107 was prepared as outlined in Scheme 5 below. Details of the synthesis are set forth below. Scheme 5. Preparation of Compound 107.
Figure imgf000025_0001
Figure imgf000025_0002
Synthesis of 2-((6-Chloro-2,4-dioxo-3,4-dihydropyrimidin-l(2H)-yl)methyI-d2)- 3,4,5,6-d4-benzonitrile (12). A solution of chlorouracil X (4.5 g, 30 mmol) in a mixture of DMF (90 mL) and DMSO (15 mL) was cooled in an ice-water bath. NaH (60% in oil, 1.32 g, 33 mmol) was added in two portions and the mixture was stirred for 0.5 h in the ice- water bath. LiBr (2.87 g, 33 mmol) was added and the mixture was stirred for 20 min. A solution of XVa (5.5 g, 27.2 mmol) in DMF (15 mL) was added dropwise to the reaction mixture. The mixture was allowed to warm slowly to rt and was stirred overnight. Water (approximately 200 mL) was added to the reaction mixture and the mixture was concentrated under reduced pressure to a volume of approximately 20-30 mL. Cold water (approximately 100 mL) was added to the mixture, the mixture was filtered and the solid was washed with water and ethyl acetate (200 mL). The filtered solid contained the desired product 12 as the major product by TLC (EtO Ac/heptanes, 1 :1). The biphasic filtrate was separated and the organic phase was concentrated under reduced pressure. The residue was combined with the original filtered solid and purified by chromatography on silica gel eluting with heptanes/EtOAc (1 :2 to 2: 1) to yield 3.7 g (48%) of 12 with a purity of 85%.
Synthesis of 2-((6-Chloro-3-(methyl-d3)-2,4-dioxo-3,4-dihydropyrimidin-l(2H)- yl)-methyl-d2)-3,4,5,6-d4-benzonitrile (13). A solution of 12 (3.6 g, 13.5 mmol) in DMF (50 ml) and THF (50 mL) was cooled in an ice-water bath and NaH (60% in oil, 0.6 g, 15 mmol) was added in two portions, followed by LiBr (1.3 g, 15 mmol). The mixture was stirred at rt for 30 min then cooled in an ice-water bath. CD3I (Cambridge Isotopes, 99 atom% D, 1.9 mL, 30 mmol) was added and the mixture was allowed to warm to rt and stir for 1.5 h. The mixture was then heated to approximately 32 0C and stirred overnight. The reaction mixture was concentrated under reduced pressure to a volume of approximately 20 mL and diluted with CHCl3 (300 mL). The solution was washed with water (3 x 80 mL), brine, dried over Na2SO4, filtered and the solvent removed under reduced pressure. The crude product was purified on an Analogix chromatography system eluting with a gradient of 10- 25% EtO Ac/heptanes to afford 3 g (78%) of 13 as an off-white solid.
Synthesis of (/?)-2-((6-(3-Aminopiperidin-l-yl)-3-(methyl-d3)-2,4-dioxo-3,4- dihydropyrimidin-l(2H)-yl)methyl-d2)-3,4,5,6-d4-benzonitrile (107). Compound 13 (280 mg, 1 mmol) was mixed with (7?)-piperidin-3 -amine dihydrochloride 14 (192 mg, 1.1 mmol), NaHCO3 (420 mg, 5 eq), 4A molecular sieves (200 mg) and dry MeOH (5 mL) in a sealed tube. The mixture was heated at 110 0C for 4 h until LCMS showed no remaining 13. The mixture was cooled to rt and filtered through a pad of Celite, washing the pad with MeOH (20 mL). The filtrate was concentrated to a volume of approximately 2 mL, diluted with CHCl3 (200 mL) and the resultant solution was washed with water (3 x 30 mL) and brine, dried over Na2SO4 and filtered. HPLC of crude 107 (method: 20 mm C18-RP column - gradient method 2-95% ACN + 0.1% formic acid in 3.3 min with 7 min hold at 95% ACN; Wavelength: 254 nm): retention time: 2.23 min.
The TFA salt of 107 was prepared for further analysis. Approximately 1/3 of the filtrate solution containing crude 107 (above) was concentrated to approximately 2 mL and TFA (4 drops) was added. The mixture was stirred at rt for 2 h and then concentrated under reduced pressure. The residual sticky oil was dissolved in a few drops of MeOH and MTBE was added to saturate the solution. The solution was refrigerated overnight. The resulting crystals were collected and dried to give approximately 20 mg of 107 as the trifluoroacetate salt. MS (M+H for free base): 349.2.
Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. It should be understood that the foregoing discussion and examples merely present a detailed description of certain preferred embodiments. It will be apparent to those of ordinary skill in the art that various modifications and equivalents can be made without departing from the spirit and scope of the invention. All the patents, journal articles and other documents discussed or cited above are herein incorporated by reference.

Claims

CLAIMSWhat is claimed is:
1. A compound of Formula I:
Figure imgf000028_0001
or a pharmaceutically acceptable salt thereof, wherein:
R1 is -CH3, -CH2D, -CHD2, or -CD3;
L is -CH2-, -CHD-, or -CD2-;
Ring A optionally has 1-4 of the ring hydrogens replaced with deuterium; and
Ring B optionally has 1-9 of the ring hydrogens replaced with deuterium; provided that when R1 is -CH3 and L is -CH2-, then there is at least one deuterium on Ring A or Ring B.
2. The compound of claim 1 wherein R1 is -CH3 or -CD3, and L is -CH2- or -CD2-.
3. The compound of claim 2 wherein Ring B is:
Figure imgf000028_0002
wherein Zla is the same as Zlb, Z2a is the same as Z2b, Z3a is the same as Z3b, and Z4a is the same as Z4b.
The compound of claim 3, wherein each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a and Z H"b° is deuterium.
5. The compound of claim 3 wherein each
Figure imgf000029_0001
Z 7T4b0, and Z3 is deuterium.
6. The compound of claim 3 wherein Ring A has zero or four deuterium.
7. The compound of claim 6 wherein each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a and Z4b is deuterium.
8. The compound of claim 6 wherein each of Zla, Zlb, Z2a, Z2b, Z3a, Z3b, Z4a, Z4b, and Z5 is deuterium.
The compound of claim 1 selected from the group consisting of:
Figure imgf000029_0002
101 102
Figure imgf000029_0003
Figure imgf000029_0004
Figure imgf000030_0001
or a pharmaceutically acceptable salt of any of the foregoing.
10. A compound represented by the following structural formula
Figure imgf000030_0002
or a pharmaceutically acceptable salt thereof.
11. The compound of any one of claims 1 to 10, wherein any atom not designated as deuterium is present at its natural isotopic abundance.
12. A pyrogen- free pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
13. The composition of claim 12 additionally comprising a second therapeutic agent useful in the treatment or prevention of a disease or condition selected from: diabetes; diabetic dislipidemia; conditions of impaired glucose tolerance (IGT); conditions of impaired fasting plasma glucose (IFG); metabolic acidosis; ketosis; appetite regulation; obesity; immunosuppressants or cytokine release regulation; autoimmune diseases; AIDS; cancer; dermatological diseases; female infertility; osteoporosis; and neurological disorders.
14. The composition of claim 13, wherein the second therapeutic agent is selected from pioglitazone, insulin, metformin, and sulfonylurea.
15. A method of inhibiting the activity of one or more of DPP4 in a cell, comprising contacting the cell with a compound of claim 1.
16. A method of treating a disease or condition selected from diabetes; diabetic dislipidemia; conditions of impaired glucose tolerance (IGT); conditions of impaired fasting plasma glucose (IFG); metabolic acidosis; ketosis; appetite regulation; obesity; immunosuppressants or cytokine release regulation; autoimmune diseases; AIDS; cancer; dermatological diseases; female infertility; osteoporosis; and neurological disorders in a patient in need thereof comprising the step of administering to the patient an effective amount of a compound of claim 1 or a composition of claim 12.
17. The method of claim 16 wherein the disease or condition is type 2 diabetes mellitus.
18. The method of claim 17, comprising the additional step of co-administering to the patient in need thereof a second therapeutic agent useful in the treatment of diabetes; diabetic dislipidemia; conditions of impaired glucose tolerance (IGT); conditions of impaired fasting plasma glucose (IFG); metabolic acidosis; ketosis; appetite regulation; obesity; immunosuppressants or cytokine release regulation; autoimmune diseases; AIDS; cancer; dermatological diseases; female infertility; osteoporosis; and neurological disorders.
19. The method of claim 18, wherein the disease is type 2 diabetes and the second therapeutic agent is selected from pioglitazone, insulin, metformin, and sulfonylurea.
PCT/US2008/011417 2007-10-02 2008-10-02 Pyrimidinedione derivatives WO2009045476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010527991A JP2010540635A (en) 2007-10-02 2008-10-02 Pyrimidinedione derivatives
EP08835241A EP2209774A1 (en) 2007-10-02 2008-10-02 Pyrimidinedione derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US99726507P 2007-10-02 2007-10-02
US60/997,265 2007-10-02

Publications (1)

Publication Number Publication Date
WO2009045476A1 true WO2009045476A1 (en) 2009-04-09

Family

ID=40194304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/011417 WO2009045476A1 (en) 2007-10-02 2008-10-02 Pyrimidinedione derivatives

Country Status (4)

Country Link
US (1) US20090137457A1 (en)
EP (1) EP2209774A1 (en)
JP (1) JP2010540635A (en)
WO (1) WO2009045476A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659813A (en) * 2012-05-23 2012-09-12 中国科学院上海药物研究所 2-((2-(3-aminopiperidine-1)-4-oxythiophene (3, 2-d) pyrimidine-3(4H)-methyl) polymorphic benzonitrile, and preparation method and pharmacological applications thereof
WO2013117299A1 (en) * 2012-02-08 2013-08-15 Merck Patent Gmbh Deuterated thiazolidinone analogues as agonists for follicle stimulating hormone receptor
WO2017092413A1 (en) * 2015-12-02 2017-06-08 深圳市塔吉瑞生物医药有限公司 Diaminopyrimidine compounds and composition comprising same
CN108368085A (en) * 2016-04-20 2018-08-03 深圳市塔吉瑞生物医药有限公司 A kind of substituted hybar X compound and its pharmaceutical composition
WO2019134573A1 (en) * 2018-01-04 2019-07-11 深圳市塔吉瑞生物医药有限公司 Method for preparing deuterated diphenylaminopyrimidine compound and crystal form thereof

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841334B2 (en) * 2006-05-31 2014-09-23 Abbvie Inc. Compounds as cannabinoid receptor ligands and uses thereof
CA2647598A1 (en) * 2006-05-31 2007-12-06 Abbott Laboratories Compounds as cannabinoid receptor ligands and uses thereof
AU2007266535A1 (en) * 2006-05-31 2007-12-06 Abbott Laboratories Thiazole compounds as cannabinoid receptor ligands and uses thereof
CN101765594A (en) 2007-03-28 2010-06-30 雅培制药有限公司 1,3-thiazoles-2 (3H)-ylidene compounds as cannabinoid receptor ligand
US7872033B2 (en) * 2007-04-17 2011-01-18 Abbott Laboratories Compounds as cannabinoid receptor ligands
US8501794B2 (en) * 2007-04-17 2013-08-06 Abbvie Inc. Compounds as cannabinoid receptor ligands
US8735434B2 (en) * 2007-05-18 2014-05-27 Abbvie Inc. Compounds as cannabinoid receptor ligands
US9193713B2 (en) * 2007-10-12 2015-11-24 Abbvie Inc. Compounds as cannabinoid receptor ligands
JP2011513495A (en) 2008-03-11 2011-04-28 アボット・ラボラトリーズ Novel compounds as cannabinoid receptor ligands
MX2010010773A (en) 2008-04-01 2011-04-11 Abbott Gmbh & Co Kg Tetrahydroisoquinolines, pharmaceutical compositions containing them, and their use in therapy.
US20100035919A1 (en) * 2008-08-05 2010-02-11 Abbott Laboratories Compounds useful as inhibitors of protein kinases
JP2012500198A (en) * 2008-08-15 2012-01-05 アボット・ラボラトリーズ Imine derivatives as cannabinoid receptor ligands
US8846730B2 (en) 2008-09-08 2014-09-30 Abbvie Inc. Compounds as cannabinoid receptor ligands
US8188135B2 (en) * 2008-09-16 2012-05-29 Abbott Laboratories Compounds as cannabinoid receptor ligands
CA2737768A1 (en) * 2008-10-17 2010-04-22 Abbott Laboratories Trpv1 antagonists
MX2011004090A (en) * 2008-10-17 2011-05-31 Abbott Lab Trpv1 antagonists.
UA108193C2 (en) 2008-12-04 2015-04-10 APOPTOZINDUCE FOR THE TREATMENT OF CANCER AND IMMUNE AND AUTO-IMMUNE DISEASES
US8557983B2 (en) 2008-12-04 2013-10-15 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US20100160322A1 (en) 2008-12-04 2010-06-24 Abbott Laboratories Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8586754B2 (en) 2008-12-05 2013-11-19 Abbvie Inc. BCL-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
US8563735B2 (en) 2008-12-05 2013-10-22 Abbvie Inc. Bcl-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
HUE029289T2 (en) 2008-12-05 2017-02-28 Abbvie Inc Sulfonamide derivatives as bcl-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
PA8854001A1 (en) * 2008-12-16 2010-07-27 Abbott Lab NEW COMPOUNDS AS CANABINOID RECEIVERS LIGANDS
NZ593593A (en) * 2009-01-19 2013-11-29 Abbvie Inc Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
RU2538965C2 (en) 2009-01-19 2015-01-10 Эббви Инк. Apoptosis inducing agents for treating cancer and immune and autoimmune diseases
AR075442A1 (en) 2009-02-16 2011-03-30 Abbott Gmbh & Co Kg AMINOTETRALINE DERIVATIVES, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND THEIR USES IN THERAPY
TW201038569A (en) 2009-02-16 2010-11-01 Abbott Gmbh & Co Kg Heterocyclic compounds, pharmaceutical compositions containing them, and their use in therapy
TWI519530B (en) * 2009-02-20 2016-02-01 艾伯維德國有限及兩合公司 Carboxamide compounds and their use as calpain inhibitors
EP2411370B1 (en) * 2009-03-27 2015-04-22 AbbVie Inc. Compounds as cannabinoid receptor ligands
US8236822B2 (en) * 2009-03-27 2012-08-07 Abbott Laboratories Compounds as cannabinoid receptor ligands
EP2411382A1 (en) * 2009-03-27 2012-02-01 Abbott Laboratories Compounds as cannabinoid receptor ligands
EP2243479A3 (en) 2009-04-20 2011-01-19 Abbott Laboratories Novel amide and amidine derivates and uses thereof
US8236798B2 (en) 2009-05-07 2012-08-07 Abbott Gmbh & Co. Kg Carboxamide compounds and their use as calpain inhibitors
HUE027698T2 (en) 2009-05-26 2016-10-28 Abbvie Bahamas Ltd Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8546399B2 (en) 2009-05-26 2013-10-01 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
US20220315555A1 (en) 2009-05-26 2022-10-06 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
US9034875B2 (en) 2009-05-26 2015-05-19 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8962639B2 (en) * 2009-05-29 2015-02-24 Abbvie Inc. Potassium channel modulators
WO2011053740A1 (en) 2009-10-28 2011-05-05 Belkin International, Inc. Portable multi-media communication device protective carrier and method of manufacture therefor
CN102666495A (en) 2009-11-25 2012-09-12 雅培制药有限公司 Potassium channel modulators
TW201130855A (en) * 2009-12-16 2011-09-16 Abbott Lab Prodrug compounds useful as cannabinoid ligands
US20110178180A1 (en) * 2010-01-18 2011-07-21 Kurt Nielsen Deuterium-enriched colchicine, thiocolchicine, and derivatives thereof; methods of preparation; and use thereof
EP2550258B1 (en) * 2010-03-25 2015-08-19 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
WO2011125011A1 (en) * 2010-04-05 2011-10-13 Cadila Pharmaceuticals Limited Novel hypoglycemic compounds
TWI520960B (en) 2010-05-26 2016-02-11 艾伯維有限公司 Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
WO2011159785A1 (en) 2010-06-15 2011-12-22 Abbott Laboratories Novel compounds as cannabinoid receptor ligands
CN103140476A (en) 2010-08-10 2013-06-05 Abbvie公司 Novel trpv3 modulators
US9051280B2 (en) 2010-08-13 2015-06-09 AbbVie Deutschland GmbH & Co. KG Tetraline and indane derivatives, pharmaceutical compositions containing them, and their use in therapy
US8883839B2 (en) 2010-08-13 2014-11-11 Abbott Laboratories Tetraline and indane derivatives, pharmaceutical compositions containing them, and their use in therapy
US8846743B2 (en) 2010-08-13 2014-09-30 Abbott Laboratories Aminoindane derivatives, pharmaceutical compositions containing them, and their use in therapy
US9045459B2 (en) 2010-08-13 2015-06-02 AbbVie Deutschland GmbH & Co. KG Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US8877794B2 (en) 2010-08-13 2014-11-04 Abbott Laboratories Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9266855B2 (en) 2010-09-27 2016-02-23 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
UA113500C2 (en) 2010-10-29 2017-02-10 MEL EXTRUSION SOLID DISPERSIONS CONTAINING AN APOPTOSIS-INDUCING AGENT
CA3152557A1 (en) 2010-10-29 2012-05-03 Abbvie Inc. Solid dispersions containing an apoptosis-inducing agent
WO2012059432A1 (en) 2010-11-01 2012-05-10 Abbott Gmbh & Co. Kg N-phenyl-(homo)piperazinyl-benzenesulfonyl or benzenesulfonamide compounds suitable for treating disorders that respond to the modulation of the 5-ht6 receptor
WO2012059431A1 (en) 2010-11-01 2012-05-10 Abbott Gmbh & Co. Kg Benzenesulfonyl or sulfonamide compounds suitable for treating disorders that respond to the modulation of the serotonin 5-ht6 receptor
WO2012067963A1 (en) 2010-11-15 2012-05-24 Abbott Laboratories Nampt inhibitors
US9302989B2 (en) 2010-11-15 2016-04-05 Abbvie Inc. NAMPT and rock inhibitors
US8609669B2 (en) 2010-11-16 2013-12-17 Abbvie Inc. Potassium channel modulators
WO2012067824A1 (en) 2010-11-16 2012-05-24 Abbott Laboratories Potassium channel modulators
MY191300A (en) 2010-11-23 2022-06-14 Abbvie Ireland Unlimited Co Methods of treatment using selective bcl-2 inhibitors
JP6141188B2 (en) 2010-11-23 2017-06-07 アッヴィ・インコーポレイテッド Salt and crystal forms of apoptosis inducers
US9090592B2 (en) 2010-12-30 2015-07-28 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
US8802693B1 (en) 2011-03-09 2014-08-12 Abbvie Inc. Azaadamantane derivatives and methods of use
US9012651B2 (en) 2011-03-24 2015-04-21 Abbvie Inc. TRPV3 modulators
US8802711B2 (en) 2011-03-25 2014-08-12 Abbvie Inc. TRPV1 antagonists
US9309200B2 (en) 2011-05-12 2016-04-12 AbbVie Deutschland GmbH & Co. KG Benzazepine derivatives, pharmaceutical compositions containing them, and their use in therapy
US8859549B2 (en) 2011-05-13 2014-10-14 Abbvie, Inc. Potassium channel modulators
TW201319049A (en) 2011-08-05 2013-05-16 Abbott Gmbh & Co Kg Aminochromane, aminothiochromane and amino-1,2,3,4-tetrahydroquinoline derivatives, pharmaceutical compositions containing them, and their use in therapy
TWI561521B (en) 2011-10-14 2016-12-11 Abbvie Inc Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
TWI571466B (en) 2011-10-14 2017-02-21 艾伯維有限公司 Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8772500B2 (en) 2011-10-24 2014-07-08 Abbvie Inc. TRPV3 modulators
US20130116241A1 (en) 2011-11-09 2013-05-09 Abbvie Inc. Novel inhibitor compounds of phosphodiesterase type 10a
CA2853254A1 (en) 2011-11-18 2013-05-23 Abbvie Inc. N-substituted aminobenzocycloheptene, aminotetraline, aminoindane and phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US8859584B2 (en) 2011-12-19 2014-10-14 Abbvie, Inc. TRPV1 antagonists
WO2013096226A1 (en) 2011-12-19 2013-06-27 Abbvie Inc. Trpv1 antagonists
US9365512B2 (en) 2012-02-13 2016-06-14 AbbVie Deutschland GmbH & Co. KG Isoindoline derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2013149376A1 (en) 2012-04-02 2013-10-10 Abbott Laboratories Chemokine receptor antagonists
EP2838881B1 (en) 2012-04-20 2018-08-08 AbbVie Inc. Isoindolone derivatives
JP2015516436A (en) 2012-05-11 2015-06-11 アッヴィ・インコーポレイテッド NAMPT inhibitor
RU2014150049A (en) 2012-05-11 2016-07-10 Эббви Инк. NAMPT INHIBITORS
CN104583194A (en) 2012-05-11 2015-04-29 艾伯维公司 Pyridazine and pyridine derivatives as NAMPT inhibitors
US9334264B2 (en) 2012-05-11 2016-05-10 Abbvie Inc. NAMPT inhibitors
US20130317054A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Neuronal nicotinic agonist and methods of use
US20130317055A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Neuronal nicotinic agonist and methods of use
KR20150023722A (en) 2012-06-12 2015-03-05 애브비 인코포레이티드 Pyridinone and pyridazinone derivatives
US8796328B2 (en) 2012-06-20 2014-08-05 Abbvie Inc. TRPV1 antagonists
US20140080813A1 (en) 2012-09-14 2014-03-20 AbbVie Deutschland GmbH & Co. KG Tricyclic quinoline and quinoxaline derivatives
AR092568A1 (en) 2012-09-14 2015-04-22 Abbvie Deutschland TRICYCLE DERIVATIVES OF QUINOLINAS AND QUINOXALINAS
AU2014244183A1 (en) 2013-03-13 2015-08-13 Abbvie Inc. Pyridine CDK9 kinase inhibitors
AU2014244263A1 (en) 2013-03-13 2015-08-13 Abbvie Inc. CDK9 kinase inhibitors
US20140275082A1 (en) 2013-03-14 2014-09-18 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
EP2970258B1 (en) 2013-03-14 2018-04-18 AbbVie Deutschland GmbH & Co KG Novel inhibitor compounds of phosphodiesterase type 10a
AR101528A1 (en) 2013-03-14 2016-12-28 Abbvie Inc CDK9 QUINASE INHIBITORS OF PIRROLO [2,3-B] PIRIDINA
US9346813B2 (en) 2013-03-14 2016-05-24 Abbvie Inc. Substituted pyrrolo[2,3-d]pyrimindines as CDK9 kinase inhibitors
AU2014230747A1 (en) 2013-03-14 2015-09-10 AbbVie Deutschland GmbH & Co. KG Oxindole derivatives carrying an oxetane substituent and use thereof for treating vasopressine-related diseases
TW201444836A (en) 2013-03-14 2014-12-01 Abbvie Inc Pyrrolo[2,3-B]pyridine CDK9 kinase inhibitors
US9656955B2 (en) 2013-03-15 2017-05-23 Abbvie Inc. Pyrrolidine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9650334B2 (en) 2013-03-15 2017-05-16 Abbvie Inc. Pyrrolidine derivatives, pharmaceutical compositions containing them, and their use in therapy
AU2014336154A1 (en) 2013-10-17 2016-04-28 AbbVie Deutschland GmbH & Co. KG Aminotetraline and aminoindane derivatives, pharmaceutical compositions containing them, and their use in therapy
AU2014336153A1 (en) 2013-10-17 2016-04-28 AbbVie Deutschland GmbH & Co. KG Aminochromane, aminothiochromane and amino-1,2,3,4-tetrahydroquinoline derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2015091931A1 (en) 2013-12-20 2015-06-25 AbbVie Deutschland GmbH & Co. KG Oxindole derivatives carrying a piperidyl-substituted azetidinyl substituent and use thereof for treating vasopressine-related diseases
WO2015119712A1 (en) 2014-02-06 2015-08-13 Abbvie Inc. Tetracyclic cdk9 kinase inhibitors
EP3143023B1 (en) 2014-05-15 2018-04-11 AbbVie Deutschland GmbH & Co. KG Oxindole compounds carrying a co-bound spiro substituent and use thereof for treating vasopressin-related diseases
US9617226B2 (en) 2014-09-05 2017-04-11 AbbVie Deutschland GmbH & Co. KG Fused heterocyclic or carbocyclic compounds carrying a substituted cycloaliphatic radical and use thereof for treating vasopressin-related diseases
US9550754B2 (en) 2014-09-11 2017-01-24 AbbVie Deutschland GmbH & Co. KG 4,5-dihydropyrazole derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2016160938A1 (en) 2015-04-02 2016-10-06 Abbvie Inc. N-(1,3-thiazol-2-yl)pyrimidine-5-carboxamides as trpv3 modulators
EP3380483A1 (en) 2015-11-25 2018-10-03 Abbvie Deutschland GmbH & Co. KG Hexahydropyrazinobenz- or -pyrido-oxazepines carrying an oxygen-containing substituent and use thereof in the treatment of 5-ht2c-dependent disorders
WO2017193872A1 (en) 2016-05-07 2017-11-16 Shanghai Fochon Pharmaceutical Co., Ltd. Certain protein kinase inhibitors
CN110139857B (en) 2016-11-28 2023-07-21 重庆复尚源创医药技术有限公司 Sulfoximine, sulfoximinamide, sulfodiimine, and diimine sulfonamide compounds as indoleamine 2,3-dioxygenase inhibitors
EP3601255A1 (en) 2017-03-21 2020-02-05 AbbVie Deutschland GmbH & Co. KG Proline amide compounds and their azetidine analogues carrying a specifically substituted benzyl radical
CN110546151B (en) 2017-04-18 2023-04-28 重庆复创医药研究有限公司 Apoptosis inducer
JP7294677B2 (en) 2018-03-14 2023-06-20 フォチョン・ファーマシューティカルズ・リミテッド Substituted (2-azabicyclo[3.1.0]hexane-2-yl)pyrazolo[1,5-a]pyrimidine compounds and substituted (2-azabicyclo[3.1.0]hexane-2 as TRK kinase inhibitors -yl)imidazo[1,2-b]pyridazine compounds
US11485707B2 (en) 2018-03-23 2022-11-01 Fochon Pharmaceuticals, Ltd. Deuterated compounds as rock inhibitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586571A1 (en) * 2004-03-15 2005-10-19 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586571A1 (en) * 2004-03-15 2005-10-19 Takeda San Diego, Inc. Dipeptidyl peptidase inhibitors

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013117299A1 (en) * 2012-02-08 2013-08-15 Merck Patent Gmbh Deuterated thiazolidinone analogues as agonists for follicle stimulating hormone receptor
CN104114544A (en) * 2012-02-08 2014-10-22 默克专利有限公司 Deuterated thiazolidinone analogues as agonists for follicle stimulating hormone receptor
CN102659813A (en) * 2012-05-23 2012-09-12 中国科学院上海药物研究所 2-((2-(3-aminopiperidine-1)-4-oxythiophene (3, 2-d) pyrimidine-3(4H)-methyl) polymorphic benzonitrile, and preparation method and pharmacological applications thereof
CN102659813B (en) * 2012-05-23 2015-01-07 中国科学院上海药物研究所 2-((2-(3-aminopiperidine-1)-4-oxythiophene (3, 2-d) pyrimidine-3(4H)-methyl) polymorphic benzonitrile, and preparation method and pharmacological applications thereof
WO2017092413A1 (en) * 2015-12-02 2017-06-08 深圳市塔吉瑞生物医药有限公司 Diaminopyrimidine compounds and composition comprising same
CN108948082A (en) * 2015-12-02 2018-12-07 深圳市塔吉瑞生物医药有限公司 A kind of diaminopyrimidine compounds and the composition comprising the compound
CN108368085A (en) * 2016-04-20 2018-08-03 深圳市塔吉瑞生物医药有限公司 A kind of substituted hybar X compound and its pharmaceutical composition
WO2019134573A1 (en) * 2018-01-04 2019-07-11 深圳市塔吉瑞生物医药有限公司 Method for preparing deuterated diphenylaminopyrimidine compound and crystal form thereof

Also Published As

Publication number Publication date
US20090137457A1 (en) 2009-05-28
EP2209774A1 (en) 2010-07-28
JP2010540635A (en) 2010-12-24

Similar Documents

Publication Publication Date Title
US20090137457A1 (en) Pyrimidinedione derivatives
US8410124B2 (en) Deuterated etravirine
US8399467B2 (en) Substituted triazolo-pyridazine derivatives
US8552008B2 (en) Deuterated 3-(dihydro-1H-pyrazolo[4,3-D]pyrimidin-5-yl)-4-propoxybenzenesulfonamide derivatives and methods of use
US7820666B2 (en) Tetrahydrotriazolopyrazine derivatives and uses thereof
US8071596B2 (en) Endothelin receptor antagonists
US20110313004A1 (en) Deuterated pyridinones
US8367674B2 (en) Piperazine derivatives
EP2118073A2 (en) Selective endothelin type-a antagonists
EP2197847B1 (en) Deuterated 4 -oxoquinoline derivative for the treatment of hiv infection
US20090270425A1 (en) 3-(dihydro-1h-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide derivatives and methods of use
WO2009117144A1 (en) Benzazepine compounds
US20100120786A1 (en) Piperazine Derivatives
US20090197899A1 (en) 3-(Dihydro-1H-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide Derivatives and Methods of Use
WO2009099620A1 (en) 3-(dihydro-1h-pyrazolo[4,3-d]pyrimidin-5-yl)-4-propoxybenzenesulfonamide derivatives and methods of use
WO2009137082A1 (en) 4-isopropylcyclohexylcarbonyl amino acid derivatives
WO2010002451A1 (en) Naphthyridin derivatives
WO2009151613A1 (en) Oxybutynin derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08835241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527991

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008835241

Country of ref document: EP