WO2009043943A1 - Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento - Google Patents

Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento Download PDF

Info

Publication number
WO2009043943A1
WO2009043943A1 PCT/ES2007/000550 ES2007000550W WO2009043943A1 WO 2009043943 A1 WO2009043943 A1 WO 2009043943A1 ES 2007000550 W ES2007000550 W ES 2007000550W WO 2009043943 A1 WO2009043943 A1 WO 2009043943A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
active power
power
stator
consumption
Prior art date
Application number
PCT/ES2007/000550
Other languages
English (en)
French (fr)
Inventor
Iker Garmendia Olarreaga
Josu Elorriaga Llanos
Adolfo Rebollo Gómez
Xabier Calvo Madariaga
Jorge ACEDO SÁNCHEZ
Jesús MAYOR LUSARRETA
David SOLÉ LÓPEZ
Ainhoa CÁRCAR MAYOR
Javier PÉREZ BARBÁCHANO
Susana SIMÓN SEGURA
Original Assignee
Ingeteam Energy, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingeteam Energy, S.A. filed Critical Ingeteam Energy, S.A.
Priority to PCT/ES2007/000550 priority Critical patent/WO2009043943A1/es
Publication of WO2009043943A1 publication Critical patent/WO2009043943A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/1016Purpose of the control system in variable speed operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention describes the operation of a wind turbine equipped with at least one doubly fed type generator with the stator connected to the network, capable of remaining coupled in those wind conditions in which it is not possible to deliver active power to the network, being able to collaborate in the regulation of voltage of the electrical network through the generation or consumption of reactive power by the generator stator.
  • Figure 1 shows the scheme of a turbine with a DFIG topology in which the main elements are the blades (101), multiplier (102), converter (103) and electrical network (104).
  • an optional device has also been added (for example a clutch) that allows decoupling part of the elements of the kinematic chain to which the generator belongs (106).
  • Patent application US2007 / 0216164A1 describes a basic scheme of an xDFM machine that is used in the present invention. This topology is applicable to wind turbines of variable speed and is characterized by having a double-fed asynchronous induction generator on whose axis a permanent magnet generator is coupled which, among other inventive features, makes it possible to isolate the power converter from the network .
  • the present invention describes solutions to keep the generator stator coupled to the network in those wind conditions in which it is not possible to deliver active power to the network, being able to collaborate in the voltage regulation of the electric network through the generation or consumption of reactive power by the generator stator.
  • the rotor-stator turns ratio allows multiplying the current capacity.
  • the dimensioning of the converter connected to the generator rotor is generally higher than the one used to design the grid connected converter. Note that the network side converter must withstand the power excursions derived from the speed excursions, but its nominal intensity is low, while the rotor side converter must be designed to continuously give a higher nominal intensity.
  • n Rmm minimum generator operating speed
  • This n Rmm must be calculated, in each design, taking into account the blocked rotor voltage of the generator and the maximum voltage that the converter is able to regulate, depending on the voltage and topology of the continuous bus (107 and 203). It may be the case that this n Rmm is zero if the blocked rotor voltage is a voltage controllable by the grid side converter.
  • One aspect of the present invention refers to different techniques so that the rotational tension is always within the regulation range of the converter in any wind condition.
  • the generation or consumption of reactive power in low or zero wind conditions will be: - Case 1. Consuming a certain amount (low) of active power to maintain the generator at a speed equal to or greater than the n Rm ⁇ n .
  • FIGURES Figure 1 Shows a basic scheme of a DFIG topology
  • Figure 2. Shows a basic scheme of an xDFM machine according to topology described in US2007 / 0216164A1 (to which block 106 has been added).
  • Figure 3. Shows a basic scheme of the contactors required for the invention described in Case 2 - situation 2.a.
  • Figures 4a, 4b, 4c and 4d show different embodiments to ensure the power supply to the DC bus (107 and 203) of the power converter for an xDFM topology.
  • An arrow indicating the flow of energy necessary to drag the kinematic chain to which it belongs is included in each of the figures
  • Figure 5 Shows any wind profile over time during which a sudden situation of wind speed decrease occurs. It also includes what would be the speed of the generator with the current solutions and the speed of the generator (not less than Ia n Rm j n ) with the invention described herein.
  • FIGS. 6a, 6b, 6c and 6d show different configurations of the generator windings from the modification of the serial-parallel connections for the adaptation of n Rm ⁇ n modifying the rotational voltage V r .
  • Figure 7 Block diagram of the proposed method for a preferred embodiment of Case 1.
  • Figure 8 Block diagram of the proposed method for a preferred embodiment of Case 2 - situation 2.a.
  • Figure 9. Block diagram of the proposed method for a preferred embodiment of Case 2 - situation 2.b.
  • Figure 10. Block diagram of the proposed method for a preferred embodiment of Case 3.
  • Figure 7 shows the block diagram of the proposed method according to a preferred embodiment of the invention.
  • n R falls below the n Rm ⁇ n , thus avoiding maneuvers in the contactors or, among others , stop and start maneuvers, so that energy production is maximized.
  • Case 2 A certain amount (low) of active power is consumed to bring the generator at a speed equal to or greater than the n Rmin .
  • Case 2 describes those situations in which a certain (low) amount of active power consumed to move the generator at a rate equal to or greater than n Ia Rm n.
  • the DFIG topology is represented in Figure 1.
  • the xDFM topology is described in the patent application
  • Figure 2 includes a graphic representation of this topology in which the blades (101), multiplier (102), converter (201), exciter machine (202), power grid (104) stand out as main elements.
  • an optional device has also been added that allows decoupling part of the elements of the kinematic chain to which the generator (106) is coupled.
  • this device can Be a clutch.
  • the converter connected to the generator rotor is not able to operate the electric machine, since it would have to feed the generator rotor with a three-phase 50/60 Hz wavelength of an amplitude greater than the maximum and next maximum operating voltage to the blocked rotor.
  • the maximum rotor tension (blocked rotor voltage) is necessary.
  • Ia invention act on the angle ⁇ (pitch angle of the blades) to reduce the consumption of active power necessary to drag the kinematic chain and bring the generator rotor to the n Rm ⁇ n .
  • Kinematic chain is understood as all the elements that are mechanically coupled to the generator and that, in case there is no decoupling element, transmit the torque from the wind rotor (including the blades) to the axis of the generator or generators.
  • the proposed method contemplates acting by modifying the yaw angle to reduce the consumption of active power necessary to drag the kinematic chain and bring the generator rotor to Ia n Rm ⁇ ⁇ .
  • some device for example a clutch
  • elements with the capacity to limit torque transmission may exist in the kinematic chain. From the point of view of the present invention, these elements are equivalent to the decoupling devices mentioned above.
  • ASCB Additional Short Circuit Breaker (301)
  • ASCB Additional Short Circuit Breaker
  • the ASCB must be interlocked with the main contactor (MCB - Main Circuit Breaker (105)) of network connection, so that their joint action is impossible.
  • MCB - Main Circuit Breaker (105) main contactor
  • the wind turbine is arranged in the most desirable situation from the point of view of power consumption (normally the lowest possible) necessary to overcome the resistant pairs (804).
  • stator ASCB that would short-circuit the stator phases of the DFIG (806) is closed.
  • the electric machine would thus become a squirrel cage machine, although unlike a conventional cage machine, it would have the cage in the stator.
  • the generator is released from any element that can limit its rotation (for example brake) and maneuver any other device that allows decoupling part of the elements of the kinematic chain to which the generator belongs (for example clutch) (805).
  • any element that can limit its rotation for example brake
  • any other device that allows decoupling part of the elements of the kinematic chain to which the generator belongs for example clutch
  • a regulation is initiated from the rotor converter by executing a control of the currents and voltages of the same, passing the generator to work as a motor, to launch it up to a speed greater than or equal to the rIGRmm of the DFIG, called coupling speed (n Rc ) (807).
  • the MCB is closed by executing a smooth coupling to the power grid (809).
  • the topology based on the xDFM technology avoids the connection to the power electronics network, being only the main generator stator that is coupled to the network.
  • Figure 9 shows the block diagram of the proposed method for a preferred embodiment of the invention for an xDFM Case 2 topology.
  • This additional equipment may consist of maneuvering elements or a motor-generator group and an active rectifier (ANB - Auxiliary Network Builder (403)).
  • maneuvering elements are used which can be located on the generator rotor side (figure 4a) or on the exciter side (figure 4d). If an ANB is used, it must supply the converter's DC bus (figures 4b and 4c).
  • the wind turbine is arranged in the most desirable situation from the point of view of power consumption (normally the lowest possible) necessary to overcome the resistant pairs (904).
  • the power supply to the DC bus of the power converter is assured, for example, from any of the above-mentioned topologies (905).
  • the generator is released from any element that can limit its rotation (for example, brake) and any other device that allows part of the elements of the kinematic chain to which the generator belongs (for example clutch) belongs (906).
  • the generator-exciter assembly is operated as an engine with any of the topologies mentioned above
  • the MCB (105) is closed by executing a smooth coupling to the power grid (908).
  • the generator is operated in the same way as described in Case 1.
  • the active power consumption of the network is allowed, passing, if necessary, the generator to operate as a motor to prevent the speed from falling below the n Rm ! n (909).
  • Figure 4a shows a non-limiting example of the method just described.
  • an additional contactor is available for direct coupling of the rotor side converter (ARCCB - Auxiliary Rotor Converter Circuit Breaker (401)) to the power grid (104).
  • the ARCCB must necessarily be interlocked with the main contactor of the rotor side converter (MRCCB - Main Rotor Converter Circuit Breaker (402)) and with the MCB (105).
  • Figure 4c shows a non-limiting example of the previous method.
  • power is supplied to the DC link through the ANB (403), short-circuiting the main generator stator through an ASCB (301) (similar to that described in Case 2 - situation 2.a), and feed the main generator rotor by the rotor side converter.
  • Figure 4d shows a non-limiting example of the previous method. This example is similar to that described in Figure 4b with the difference that the power supply to the DC link is made through an AXCB (405) (Auxiliary Exciter Circuit Breaker), instead of through the ANB (403).
  • AXCB Integrated Circuit Breaker
  • This case describes the method to intervene in the configuration of the windings of the generator stator in order to reduce the Rm n n and be able to couple the generator to the network.
  • Figure 10 shows the block diagram of the method proposed for a preferred embodiment of the invention of Case 3.
  • the objective of this intervention is to ensure that the rotational voltage is always within the regulation range of the converter in any wind condition. It is a necessary condition to be able to apply the present method to have the possibility of modifying the configuration of the "serial-parallel" connections of the windings of the generator stator (1004).
  • stator connection boxes have 6 sockets that correspond to the start and end of each of the three phases. This makes it possible to change the star to delta connection to be able to couple the generator with n Rm ⁇ n 1.73 times lower and also obtain a greater range of speed variation.
  • the previous connections can be connected in series allowing parallel reduce by half the voltage reflected in each phase of the rotor that we would obtain with the method described above, and also obtain a greater range of speed variation (from Rrn ⁇ n 1.74 to 3,464 times lower). Because the reflected rotational voltage is controllable by the converter, the generator stator can be coupled to the grid and the control from the converter (1005) active.
  • V r output voltage of the rotor side converter.
  • the converter has to be able to regulate this voltage.
  • the n Rm ⁇ n can become null. This possibility is of extreme interest since it allows the generator to be coupled to the network and permanently regulated without active power consumption since the machine does not rotate and there are no mechanical losses.
  • the invention also relates to a wind farm for generating electricity, in which the method described above is implemented.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

La presente invención describe la operación de una turbina eólica equipada con al menos un generador del tipo doblemente alimentado con el estátor conectado a la red, capaz de permanecer acoplado en aquellas condiciones de viento en las que no es posible entregar potencia activa a la red, pudiendo colaborar en la regulación de tensión de la red eléctrica mediante la generación o consumo de potencia reactiva por el estátor del generador.

Description

MÉTODO DE ACOPLAMIENTO Y REGULACIÓN DE POTENCIA
REACTIVA POR ESTATOR PARA GENERADORES EÓLICOS
DOBLEMENTE ALIMENTADOS EN CUALQUIER CONDICIÓN DE VIENTO
DESCRIPCIÓN
OBJETO DE LA INVENCIÓN
La presente invención describe Ia operación de una turbina eólica equipada con al menos un generador del tipo doblemente alimentado con el estator conectado a Ia red, capaz de permanecer acoplado en aquellas condiciones de viento en las que no es posible entregar potencia activa a Ia red, pudiendo colaborar en Ia regulación de tensión de Ia red eléctrica mediante Ia generación o consumo de potencia reactiva por el estator del generador.
ANTECEDENTES DE LA INVENCIÓN
Históricamente, en turbinas eólicas con generador del tipo doblemente alimentado con el estator conectado a Ia red, Ia regulación de potencia reactiva (tanto su aporte como su consumo) ha estado ligada a Ia capacidad de producción de potencia activa, siendo en todos los casos una potencia de acompañamiento a ésta.
Así mismo, en condiciones de bajo viento Ia turbina desacopla, bien porque no hay energía suficiente para mantener Ia velocidad mínima necesaria para que el generador esté acoplado, o bien porque Ia potencia activa neta entregada a Ia red es negativa.
Actualmente, se demanda capacidad de regular potencia reactiva permanentemente con independencia de que Ia turbina eólica esté entregando a Ia red potencia activa o no. Por ello, existe Ia necesidad de desarrollar nuevos métodos que permitan el aporte y el consumo de potencia reactiva en toda condición de viento. Las posibilidades de regulación de potencia reactiva en un generador DFIG (generador asincrono de inducción doblemente alimentado) sin viento o, con viento bajo, se circunscribían a Ia capacidad de regulación de reactiva del convertidor de potencia de Ia máquina conectado a red. Esta capacidad de regulación de reactiva se ve limitada por las características del propio convertidor.
En Ia Figura 1 se presenta el esquema de una turbina con una topología DFIG en Ia que destacan como elementos principales las palas (101 ), multiplicadora (102), convertidor (103) y red eléctrica (104). En esta figura además se ha añadido un dispositivo opcional (por ejemplo un embrague) que permite desacoplar parte de los elementos de Ia cadena cinemática a Ia que pertenece el generador (106).
La solicitud de patente US2007/0216164A1 describe un esquema básico de una máquina xDFM que es empleada en Ia presente invención. Esta topología es aplicable a turbinas eólicas de velocidad variable y se caracteriza por disponer de un generador de inducción asincrono doblemente alimentado en cuyo eje está acoplado un generador de imanes permanentes que, entre otras características inventivas, hace posible aislar el convertidor de potencia de Ia red.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención describe soluciones para mantener el estator del generador acoplado a Ia red en aquellas condiciones de viento en las que no es posible entregar potencia activa a Ia red, pudiendo colaborar en Ia regulación de tensión de Ia red eléctrica mediante Ia generación o consumo de potencia reactiva por el estator del generador.
En Ia presente invención se ha encontrado que manteniendo el estator de Ia máquina conectado a Ia red y Ia capacidad de regulación del convertidor lado máquina activa, es posible regular Ia potencia reactiva con el estator del generador. Esto es importante ya que Ia capacidad de aporte o consumo de reactiva a través de Ia máquina es mayor que Ia del convertidor lado red por dos motivos:
La relación de espiras rotor - estator permite multiplicar Ia capacidad de corriente.
El dimensionamiento del convertidor conectado al rotor del generador, generalmente, es superior al utilizado para diseñar el convertidor conectado a red. Téngase en cuenta que el convertidor lado red debe soportar las excursiones de potencia derivadas de las excursiones de velocidad, pero su intensidad nominal es baja, mientras que el convertidor lado rotor debe estar diseñado para dar de continuo una intensidad nominal superior.
Para mantener el estator conectado a red es necesario que Ia tensión que aparece en el rotor del generador sea una tensión controlable con el convertidor conectado a él. Para ello, es suficiente superar una velocidad mínima de operación del generador (nRmm). Esta nRmm se debe calcular, en cada diseño, teniendo en cuenta Ia tensión de rotor bloqueado del generador y Ia máxima tensión que el convertidor es capaz de regular, en función de Ia tensión y topología del bus de continua (107 y 203). Puede darse el caso de que esta nRmm sea cero si Ia tensión de rotor bloqueado es una tensión controlable por el convertidor lado red. Un aspecto de Ia presente invención se refiere a diferentes técnicas para que Ia tensión rotórica siempre esté dentro de los márgenes de regulación del convertidor en cualquier condición de viento. La generación o consumo de potencia reactiva en condiciones de viento bajo o nulo se hará: - Caso 1. Consumiendo una cierta cantidad (baja) de potencia activa para mantener el generador a una velocidad igual o superior a Ia nRmιn.
Caso 2. Consumiendo una cierta cantidad (baja) de potencia activa para llevar el generador a una velocidad igual o superior a Ia nRmιn.
Caso 3. Interviniendo en Ia configuración de los devanados del generador para reducir Ia nRm¡n y poder acoplar el generador a Ia red.
DESCRIPCIÓN DE LAS FIGURAS Figura 1. Muestra un esquema básico de una topología DFIG
(generador asincrono de inducción doblemente alimentado).
Figura 2. Muestra un esquema básico de una máquina xDFM según topología descrita en Ia US2007/0216164A1 (al que se Ie ha añadido el bloque 106). Figura 3. Muestra un esquema básico de los contactores requeridos para Ia invención descrita en el Caso 2 - situación 2.a.
Figuras 4a, 4b, 4c y 4d. Muestran diferentes realizaciones para asegurar el suministro de potencia al bus de continua (107 y 203) del convertidor de potencia para una toplogía xDFM. Se ha incluido en cada una de las figuras, a modo únicamente ilustrativo, una flecha que indica el flujo de energía necesario para arrastrar Ia cadena cinemática a Ia que pertenece
' el generador.
Figura 5. Muestra un perfil de viento cualquiera a Io largo del tiempo en el que ocurre una situación brusca de descenso de Ia velocidad del viento. También se incluye cuál sería Ia velocidad del generador con las soluciones actuales y Ia velocidad del generador (no inferior a Ia nRmjn) con Ia invención aquí descrita.
Figuras 6a, 6b, 6c y 6d. Muestran distintas configuraciones de los devanados del generador a partir de Ia modificación de las conexiones serie- paralelo para Ia adecuación de nRm¡n modificando Ia tensión rotórica Vr .
Figura 7. Diagrama de bloques del método propuesto para una realización preferida del Caso 1.
Figura 8. Diagrama de bloques del método propuesto para una realización preferida del Caso 2 - situación 2.a. Figura 9. Diagrama de bloques del método propuesto para una realización preferida del Caso 2 - situación 2.b. Figura 10. Diagrama de bloques del método propuesto para una realización preferida del Caso 3.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN Caso 1 Se consume una cierta cantidad (baja) de potencia activa para mantener el generador a una velocidad igual o superior a Ia nRmin.
En Ia Figura 7 se representa el diagrama de bloques del método propuesto según una realización preferida de Ia invención.
Este caso describe aquellas situaciones en las que el generador ha superado Ia nRmm (701 ) y está acoplado a Ia red (702). En estas circunstancias si el viento es insuficiente para mantener Ia nRm¡n (703), se permite el consumo de potencia activa de Ia red, pasando el generador a funcionar como motor (704) para impedir que Ia velocidad caiga por debajo de Ia nRm¡n. En Ia Figura 5 se representa una situación de bajada súbita de Ia velocidad del viento y de cómo afecta a Ia velocidad del generador. Como puede observarse, ante una caída de Ia velocidad del viento y gracias al método descrito en Ia presente invención, se impide que Ia nR caiga por debajo de Ia nRm¡n, evitando de esta forma maniobras en los contactores o, entre otras, maniobras de parada y arranque, de forma que se maximiza Ia producción energética.
En un ejemplo no limitante sólo sería necesario cambiar el límite inferior del regulador de par resistente - velocidad, permitiendo que Ia consigna de potencia en el estator pase de estar limitada a cero a estarlo a un valor negativo tal que nos permita seguir acoplados a Ia red a Ia nRmιn. Ejemplos de estas situaciones pueden ser: aquellas en las que no hay viento suficiente para generar potencia activa neta positiva, pero hay viento suficiente para vencer los pares resistentes del sistema y disponer el rotor del generador a Ia nRm¡n o, - aquellas en las que Ia turbina eólica ya está acoplada a red porque ha habido una situación anterior de generación de potencia activa neta positiva y, por tanto, el generador está girando por encima de Ia nRmιn.
En estas circunstancias no es necesario disponer de ningún hardware adicional en el equipo de control ni en el generador. El mismo equipamiento que permite Ia generación de potencia reactiva acompañando a Ia potencia activa es capaz de operar Ia turbina eólica en el modo de operación objeto de Ia invención.
Caso 2 Se consume una cierta cantidad (baja) de potencia activa para llevar el generador a una velocidad igual o superior a Ia nRmin.
El Caso 2 describe aquellas situaciones en las que se consume una cierta cantidad (baja) de potencia activa para llevar el generador a una velocidad igual o superior a Ia nRm¡n.
Se parte de una situación con el generador desacoplado de Ia red y a una velocidad inferior a Ia nRmin puesto que no hay viento suficiente para vencer los pares resistentes y disponer el rotor del generador a Ia mínima velocidad de operación nRmm.
Para esta situación distinguiremos si estamos trabajando con una topología DFIG o xDFM. La topología DFIG está representada en Ia Figura 1. La topología xDFM está descrita en Ia solicitud de patente
US2007/0216164A1. Esta topología es aplicable a turbinas eólicas de velocidad variable y se caracteriza por disponer de un generador de inducción asincrono doblemente alimentado en cuyo eje está acoplado un generador de imanes permanentes que, entre otras características inventivas, hace posible aislar el convertidor de potencia de Ia red. En Ia
Figura 2 se incluye una representación gráfica de esta topología en Ia cual destacan como elementos principales las palas (101 ), multiplicadora (102), convertidor (201 ), máquina exciter (202), red eléctrica (104).
En esta figura además se ha añadido un dispositivo opcional que permite desacoplar parte de los elementos de Ia cadena cinemática a Ia que está acoplado el generador (106). A modo de ejemplo este dispositivo puede ser un embrague.
Situación 2.a - Topología DFIG:
En este caso, el convertidor conectado al rotor del generador no es capaz de operar Ia máquina eléctrica, puesto que tendría que alimentar al rotor del generador con una onda trifásica de 50/60 Hz de una amplitud superior a Ia tensión máxima de funcionamiento y próxima a Ia de rotor bloqueado. En concreto, con el generador parado, es necesaria Ia máxima tensión de rotor (tensión de rotor bloqueado). El método propuesto contempla, en una realización preferida de
Ia invención, actuar sobre el ángulo β (ángulo de pitch de las palas) para reducir el consumo de potencia activa necesaria para arrastrar Ia cadena cinemática y llevar el rotor del generador hasta Ia nRmιn. Se entiende como cadena cinemática todos los elementos que estén acoplados mecánicamente al generador y que, en caso de que no exista un elemento de desacople, transmiten el par desde el rotor eólico (incluyendo las palas) hasta el eje del generador o generadores.
En otra realización preferida de Ia invención, el método propuesto contempla actuar modificando el ángulo de yaw para reducir el consumo de potencia activa necesaria para arrastrar Ia cadena cinemática y llevar el rotor del generador hasta Ia nRm¡π.
Otra posibilidad, en una realización preferida de Ia invención, es introducir algún dispositivo (por ejemplo un embrague) (106) que permita desacoplar parte de los elementos de Ia cadena cinemática para reducir el consumo de potencia activa necesario para arrastrar Ia cadena cinemática y llevar el rotor del generador hasta Ia nRm,n., En otras situaciones pueden existir, en Ia cadena cinemática, elementos con capacidad para limitar Ia transmisión de par. Desde el punto de vista de Ia presente invención, estos elementos son equivalentes a los dispositivos de desacoplamiento mencionados anteriormente.
Para conseguir llevar el generador hasta Ia nRmιn necesaria se dispone de un contactor de cortocircuito adicional en estator (ASCB - Additional Short Circuit Breaker (301 )) tal y como se ha representado en Ia Figura 3. De esta forma es posible cortocircuitar el estator y regular el DFIG con el convertidor de rotor desde ΠR nula. Los elementos de maniobra empleados pueden ser del tipo contactor, switch o Ia combinación de ambos, no es requisito que sea un automático (circuit breaker).
El ASCB debe estar enclavado con el contactor principal (MCB - Main Circuit Breaker (105)) de conexión a red, de forma que su actuación conjunta sea imposible. En una realización preferida de Ia invención el método a seguir es el siguiente, como se muestra en Ia Figura 8:
Se dispone Ia turbina eólica en Ia situación más deseable desde el punto de vista de consumo de potencia (normalmente Ia más baja posible) necesaria para vencer los pares resistentes (804).
Se cierra el ASCB de estator que cortocircuitaría las fases del estator del DFIG (806). La máquina eléctrica se convertiría así en una máquina de jaula de ardilla, aunque a diferencia de una máquina de jaula convencional, contaría con Ia jaula en el estator.
Se libera al generador de cualquier elemento que pueda limitar su giro (por ejemplo freno) y maniobrar cualquier otro dispositivo que permita desacoplar parte de los elementos de Ia cadena cinemática a Ia que pertenece el generador (por ejemplo embrague) (805).
Se inicia una regulación desde el convertidor del rotor ejecutando un control de las corrientes y tensiones del mismo, pasando el generador a funcionar como motor, para lanzarlo hasta una velocidad mayor o igual a Ia rϊRmm del DFIG, llamada velocidad de acople (nRc) (807).
Una vez alcanzada esta nRc se abre el ASCB que estaba cortocircuitando el estator (808).
Se cierra el MCB ejecutando un acople suave a Ia red eléctrica (809).
Se opera el generador del mismo modo que se describe en el Caso 1. Se permite el consumo de potencia activa de Ia red pasando el generador a funcionar como motor para impedir que Ia velocidad caiga por debajo de Ia nRm¡n (810). En otras realizaciones el orden de las operaciones anteriores puede ser alterado dependiendo de las características particulares de Ia turbina eólica.
Situación 2.b - Topología xDFM
La topología basada en Ia tecnología xDFM evita Ia conexión a Ia red de electrónica de potencia, siendo únicamente el estator del generador principal el que está acoplado a Ia red.
En Ia Figura 9 se representa el diagrama de bloques del método propuesto para una realización preferida de Ia invención para una topología xDFM Caso 2.
En esta realización práctica es necesario incorporar un equipo adicional que permita el intercambio de potencia activa de Ia red eléctrica cuando sea necesario (905). Este equipo adicional puede consistir en elementos de maniobra o en un grupo motor - generador y un rectificador activo (ANB - Auxiliary Network Builder (403)).
En otra realización práctica, se recurre a elementos de maniobra que pueden estar ubicados en lado del rotor del generador (figura 4a) o en el lado del exciter (figura 4d). En caso de emplear un ANB, éste debe alimentar el bus de continua del convertidor (figuras 4b y 4c).
Por otra parte, existen dos métodos distintos de arrastrar Ia cadena cinemática acoplada al generador. Uno de ellos consiste en emplear el exciter como motor (figuras 4a y 4c). El segundo método, similar al descrito en el Caso 2 - situación 2a, consiste en cortocircuitar el estator del generador y alimentar el rotor del generador.
La combinación de estos dos métodos con las realizaciones prácticas anteriores, lleva a cuatro posibles topologías no limitantes que se muestran en las figuras 4a, 4b, 4c y 4d. En una realización preferida de Ia invención el método a seguir es el siguiente:
Se dispone Ia turbina eólica en Ia situación más deseable desde el punto de vista de consumo de potencia (normalmente Ia más baja posible) necesaria para vencer los pares resistentes (904).
Se asegura el suministro de potencia al bus de continua del convertidor de potencia por ejemplo a partir de cualquier de las topologías mencionadas anteriormente (905). Se libera al generador de cualquier elemento que pueda limitar su giro (por ejemplo freno) y se maniobra cualquier otro dispositivo que permita desacoplar parte de los elementos de Ia cadena cinemática a Ia que pertenece el generador (por ejemplo embrague) (906).
Se hace funcionar el conjunto generador - exciter como motor con cualquiera de las topologías mencionadas anteriormente
(907).
Una vez alcanzada esta nRc se cierra el MCB (105) ejecutando un acople suave a Ia red eléctrica (908). Se opera el generador del mismo modo que se describe en el Caso 1. Se permite el consumo de potencia activa de Ia red pasando, si es necesario, el generador a funcionar como motor para impedir que Ia velocidad caiga por debajo de Ia nRm¡n (909).
En Ia figura 4a se muestra un ejemplo no limitante del método que se acaba de describir. En este caso se dispone de un contactor adicional para acoplamiento directo del convertidor lado rotor (ARCCB - Auxiliary Rotor Converter Circuit Breaker (401 )) a Ia red eléctrica (104). El ARCCB necesariamente debe estar enclavado con el contactor principal del convertidor lado rotor (MRCCB - Main Rotor Converter Circuit Breaker (402)) y con el MCB (105). En este ejemplo al operar el conjunto generador - exciter como motor se inicia una regulación desde el convertidor lado exciter ejecutando un control de las corrientes y tensiones del exciter, regulando velocidad o par, para lanzar el generador hasta una velocidad mayor o igual a Ia nRm¡n del xDFM, llamada velocidad de acople (ΠRC). En Ia figura 4b se muestra un ejemplo no limitante del método anterior. Para ello es necesario disponer de un contactor adicional AXCCB (Auxiliary Exciter Converter Circuit Breaker (404)) para acoplamiento directo del ANB (403) a Ia red eléctrica. En este ejemplo al operar el conjunto generador - exciter como motor se opera igual que en Ia situación descrita en Ia figura 4a.
En Ia figura 4c se muestra un ejemplo no limitante del método anterior. Para ello se suministra energía al DC link a través del ANB (403), cortocircuitando el estator del generador principal a través de un ASCB (301 ) (de modo similar al que se describe en el Caso 2 - situación 2.a), y alimentar al rotor del generador principal por el convertidor lado rotor.
En Ia figura 4d se muestra un ejemplo no limitante del método anterior. Este ejemplo es similar al descrito en Ia figura 4b con Ia diferencia de que el suministro de energía al DC link se realiza a través de un AXCB (405) (Auxiliary Exciter Circuit Breaker), en vez de a través del ANB (403).
Caso 3. Se intervine en Ia configuración de los devanados del generador para reducir Ia nRmin y poder acoplar el generador a Ia red.
Este caso describe el método para intervenir en Ia configuración de los devanados del estator del generador con el objetivo de reducir Ia nRm¡n y poder acoplar el generador a Ia red.
En Ia Figura 10 se representa el diagrama de bloques del método propuesto para una realización preferida de Ia invención del Caso 3.
El objetivo de esta intervención es conseguir que Ia tensión rotórica siempre esté dentro de los márgenes de regulación del convertidor en cualquier condición de viento. Es condición necesaria para poder aplicar el presente método tener posibilidad de modificar Ia configuración de las conexiones "serie - paralelo" de los devanados del estator del generador (1004).
Habitualmente las cajas de conexión de estator cuentan con 6 bomas que se corresponden con el inicio y final de cada una de las tres fases. Esto posibilita el cambio de conexión estrella a triángulo para conseguir acoplar el generador con nRm¡n 1.73 veces menor y obtener así mismo mayor rango de variación de velocidad.
En el presente método se pretende acceder a las conexiones de todas las bobinas de cada de una de las fases del generador. Esto posibilita unos ratios de reducción mucho mayores que en el caso anterior.
A modo de ejemplo en un generador de 4 polos, accediendo a todas las conexiones de las bobinas del estator (pasando de 6 a 12 bomas, teniendo 12 conexiones accesibles en Ia caja de conexiones) se pueden conectar en serie las anteriores conexiones en paralelo permitiendo reducir a Ia mitad Ia tensión reflejada en cada fase del rotor que obtendríamos con el método arriba descrito, y obtener así mismo mayor rango de variación de velocidad (se pasa de nRrn¡n 1.74 a 3.464 veces menor). Debido a que Ia tensión rotórica reflejada es controlable por el convertidor, se puede acoplar el estator del generador a Ia red y mantener activo el control desde el convertidor (1005).
En las Figuras 6a, 6b, 6c y 6d se muestran distintas configuraciones de los devanados del generador a partir de Ia modificación de las conexiones serie-paralelo para Ia adecuación de nRmin modificando Ia tensión rotórica Vrde acuerdo a las ecuaciones asociadas a cada figura: - Figura 6.a. vr = v;b om *s Figura 6.b.
Figure imgf000015_0001
Figura 6.c.
Fr = C" * (|)
Figura 6.d.
Figure imgf000015_0002
S¡ Vr ≤ VZ => nRmin = 0 Listado de variables empleadas: KZ = máxima tensión de rotor que puede regular el convertidor lado rotor. ynom _ tens¡on (je ro^or bloqueado cuando el estator el generador está en Ia configuración que permite dar Ia potencia nominal a Ia tensión nominal (normalmente triángulo y todos los grupos en paralelo como en Ia Figura 6.a.)
S = deslizamiento.
Vr = tensión de salida del convertidor lado rotor. El convertidor tiene que ser capaz de regular esta tensión.
A diferencia de los casos anteriores, con este método, Ia nRm¡n puede llegar a ser nula. Esta posibilidad es de extremo interés ya que permite tener el generador acoplado a Ia red y regulado permanentemente sin consumo de potencia activa dado que Ia máquina no gira y no existen pérdidas mecánicas.
Si Ia velocidad del viento aumenta y, consecuentemente, el rotor del generador comienza a girar, para tener Ia máxima potencia posible en cada momentONse pueden ir modificando las conexiones serie - paralelo y estrella - triángulo según se vayan alcanzado -velocidades crecientes de giro. La invención también se refiere a un parque eólico para Ia generación de energía eléctrica, en el que se implementa el método anteriormente descrito.
Diversas realizaciones prácticas de Ia invención se describen en las adjuntas reivindicaciones dependientes.

Claims

REIVINDICACIONES
1.- Un método para operar un generador eólico doblemente alimentado en condiciones de viento en las que no es posible entregar potencia activa a Ia red eléctrica caracterizado por,
- mantener el estator del generador conectado a Ia red eléctrica,
- permitir el consumo de potencia activa de Ia red a través del estator del generador para mantener Ia velocidad del generador por encima de Ia velocidad mínima de operación nRmιn;
2.- El método de Ia reivindicación 1 donde se regula Ia potencia reactiva que se transfiere entre el estator del generador y Ia red eléctrica.
3.- Un método para operar un generador eólico doblemente alimentado en condiciones de viento en las que no es posible entregar potencia activa a Ia red eléctrica caracterizado por,
- cortocircuitar las fases del estator del generador mediante elementos de maniobra;
- activar el generador como motor desde el convertidor lado rotor hasta alcanzar Ia velocidad nRc (velocidad de acoplamiento);
- abrir los elementos de maniobra que cortocircuitan las fases del estator del generador;
- conectar el estator del generador a Ia red eléctrica;
- permitir el consumo de potencia activa por parte del generador manteniendo su velocidad por encima de nRmιn (velocidad mínima de operación );
- mantener el estator del generador conectado a Ia red eléctrica.
4.- El método de Ia reivindicación 3 caracterizado por regular Ia potencia reactiva que se transfiere entre el estator del generador y Ia red eléctrica.
5.- El método de Ia reivindicación 3 caracterizado por reducir el consumo de potencia activa necesario para arrastrar Ia cadena cinemática a Ia que pertenece el generador.
6.- El método de Ia reivindicación 5 caracterizado porque Ia reducción del consumo de potencia activa se efectúa modificando el ángulo de pitch.
7.- El método de Ia reivindicación 5 caracterizado porque Ia reducción del consumo de potencia activa se efectúa desacoplando al menos uno de los elementos de Ia cadena cinemática a Ia que pertenece el generador.
8.- El método de Ia reivindicación 5 caracterizado porque Ia reducción del consumo de potencia activa utiliza al menos un elemento con capacidad de reducir Ia transmisión de par del generador hacia el resto de Ia cadena cinemática.
9.- El método de Ia reivindicación 5 caracterizado porque Ia reducción del consumo de potencia activa se efectúa modificando el ángulo de yaw.
10.- Un método para operar un generador eólico doblemente alimentado xDFM en condiciones de viento en las que no es posible entregar potencia activa a Ia red eléctrica caracterizado por,
- incorporar un sistema adicional que permita el intercambio, temporal o permanente, de potencia activa entre Ia red eléctrica y el convertidor de potencia;
- permitir un consumo de potencia activa tal que permita al rotor del generador alcanzar Ia velocidad nrc,
- conectar el estator del generador a Ia red eléctrica; - permitir el consumo de potencia activa por parte del generador manteniendo su velocidad por encima de Ia nRmm (velocidad mínima de operación);
- mantener el estator del generador conectado a Ia red eléctrica.
11.- El método de Ia reivindicación 10 caracterizado por regular Ia potencia reactiva que se transfiere entre el estator del generador y Ia red eléctrica.
12.- El método de Ia reivindicación 10 caracterizado por reducir el consumo de potencia activa necesario para arrastrar Ia cadena cinemática a Ia que pertenece el generador.
13.- El método de Ia reivindicación 12 caracterizado porque Ia reducción del consumo de potencia activa se efectúa modificando el ángulo de pitch.
14.- El método de Ia reivindicación 12 caracterizado porque Ia reducción del consumo de potencia activa se efectúa desacoplando al menos uno de los elementos de Ia cadena cinemática a Ia que pertenece el generador.
15.- El método de Ia reivindicación 12 caracterizado porque Ia reducción del consumo de potencia activa se efectúa modificando el ángulo de yaw.
16.- El método de Ia reivindicación 10 caracterizado porque el sistema adicional permite el intercambio de potencia activa entre Ia red eléctrica y el convertidor de potencia que se realiza conectando a Ia red al menos una máquina eléctrica rotativa.
17.- El método de Ia reivindicación 16 caracterizado porque Ia potencia activa obtenida de Ia red eléctrica sirve alimenta un exciter desde el convertidor para utilizarlo como motor.
18.- El método de Ia reivindicación 10 caracterizado porque el sistema adicional permite el intercambio de potencia activa entre Ia red eléctrica y el convertidor de potencia se realiza mediante elementos de maniobra.
19.- El método de Ia reivindicación 18 caracterizado porque Ia potencia activa obtenida de Ia red eléctrica sirve para alimentar un exciter desde el convertidor para utilizarlo como motor.
20.- El método de Ia reivindicación 16 caracterizado porque Ia potencia activa obtenida de Ia red eléctrica alimenta el rotor del generador desde el convertidor, cortocircuitando las fases del estator del generador mediante elementos de maniobra y utilizando el generador como motor.
21.- El método de Ia reivindicación 18 caracterizado porque Ia potencia activa obtenida de Ia red eléctrica sirve para alimentar el rotor del generador desde el convertidor, cortocircuitando las fases del estator del generador mediante elementos de maniobra y utilizando el generador como motor.
22.- Una turbina eólica equipada con al menos un generador doblemente alimentado caracterizado por permitir modificar Ia configuración serie - paralelo de los devanados del estator del generador mediante elementos de maniobra., y permitir con ello permanecer acoplado a red en cualquier condición de viento permitiendo con el estator contribuir a Ia regulación de reactiva.
23.- La turbina eólica de Ia reivindicación 22 en Ia que los elementos de maniobra acceden al menos a los extremos de dos bobinas del devanado de cada fase.
24.- La turbina eólica de Ia reivindicación 22 caracterizada por incorporar los elementos de maniobra para Ia modificación del devanado estatórico en Ia propia caja de conexiones del generador.
25.- La turbina eólica de Ia reivindicación 22 caracterizada por incorporar los elementos de maniobra para Ia modificación del devanado estatórico en el convertidor o cualquier otro armario o cubículo fuera del generador.
26.- Un método para operar un generador eólico doblemente alimentado en condiciones de viento en las que no es posible entregar potencia activa a Ia red eléctrica caracterizado por,
- modificar Ia configuración de las conexiones serie - paralelo de los devanados del estator de Ia máquina para reducir Ia velocidad mínima del generador y poder conectar el generador a Ia red; - conectar el estator del generador a Ia red eléctrica;
- permitir el consumo de potencia activa manteniendo velocidad del generador por encima de Ia nRm¡n (velocidad mínima de operación );
- mantener el estator del generador conectado a Ia red eléctrica.
27.- El método de Ia reivindicación 26 en el que Ia modificación de Ia configuración del devanado se modifica conforme se alcanzan velocidades crecientes de giro del generador.
28.- El método de Ia reivindicación 26 caracterizado porque Ia nRm¡n es nula.
29.- El método de Ia reivindicación 26 caracterizado por regular Ia potencia reactiva que se transfiere entre el estator del generador y Ia red eléctrica.
30.- El método de Ia reivindicación 26 caracterizado por reducir el consumo de potencia activa necesario para arrastrar Ia cadena cinemática a Ia que pertenece el generador.
31.- El método de Ia reivindicación 30 caracterizado porque Ia reducción del consumo de potencia activa se efectúa modificando el ángulo de pitch.
32.- El método de Ia reivindicación 30 caracterizado porque Ia reducción del consumo de potencia activa se efectúa desacoplando al menos uno de los elementos de Ia cadena cinemática a Ia que pertenece el generador.
33.- El método de Ia reivindicación 30 caracterizado porque Ia reducción del consumo de potencia activa se efectúa modificando el ángulo de yaw.
PCT/ES2007/000550 2007-10-01 2007-10-01 Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento WO2009043943A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2007/000550 WO2009043943A1 (es) 2007-10-01 2007-10-01 Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2007/000550 WO2009043943A1 (es) 2007-10-01 2007-10-01 Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento

Publications (1)

Publication Number Publication Date
WO2009043943A1 true WO2009043943A1 (es) 2009-04-09

Family

ID=40525841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000550 WO2009043943A1 (es) 2007-10-01 2007-10-01 Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento

Country Status (1)

Country Link
WO (1) WO2009043943A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
ES2200134T3 (es) * 1996-07-26 2004-03-01 Cegelec Procedimiento de control de una maquina electrica giratoria de doble alimentacion y maquina que utiliza este procedimiento.
EP1499009A1 (en) * 2003-07-15 2005-01-19 Gamesa Eolica, S.A. (Sociedad Unipersonal) Control and protection of a doubly-fed induction generator system
US20070024059A1 (en) * 2005-07-29 2007-02-01 General Electric Company System and method for power control in wind turbines
US20080054642A1 (en) * 2006-08-31 2008-03-06 Joachim Nitzpon Method for the operation of a wind energy plant with a synchronous generator and a superimposition gearbox

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
ES2200134T3 (es) * 1996-07-26 2004-03-01 Cegelec Procedimiento de control de una maquina electrica giratoria de doble alimentacion y maquina que utiliza este procedimiento.
EP1499009A1 (en) * 2003-07-15 2005-01-19 Gamesa Eolica, S.A. (Sociedad Unipersonal) Control and protection of a doubly-fed induction generator system
US20070024059A1 (en) * 2005-07-29 2007-02-01 General Electric Company System and method for power control in wind turbines
US20080054642A1 (en) * 2006-08-31 2008-03-06 Joachim Nitzpon Method for the operation of a wind energy plant with a synchronous generator and a superimposition gearbox

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANDREAS PETERSSON: "Analysis, Modeling and Control of Doubly-Fed Induction Generators for Wind Turbines.", TESIS DOCTORAL. - SCHOOL OF ELECTRICAL ENGINEERING, CHALMERS UNIVERSITY OF TECHNOLOGY *
CHUNTING MI ET AL.: "Modeling and Control of a Variable-Speed Constant-Frequency Synchronous Generator with Brushless Exciter", ARTICULO IN IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, vol. 40, no. 2, March 2004 (2004-03-01) - April 2004 (2004-04-01), pages 565 - 573 *
SANDY SMITH ET AL.: "Improved Energy Conversion for Doubly-Fed Wind Generators", INDUSTRY APPLICATIONS CONFERENCE, 2005. FOURTIETH IAS ANNUAL MEETING. CONFERENCE RECORD OF THE 2005, vol. 4, 2 October 2005 (2005-10-02) - 6 October 2005 (2005-10-06), pages 2288 - 2295 *

Similar Documents

Publication Publication Date Title
ES2950986T3 (es) Procedimiento para hacer funcionar una instalación de energía eólica
EP2451073B1 (en) Variable-speed power generation device and control method therefor
KR102018967B1 (ko) 풍력 발전 단지의 운전 방법
ES2349702T3 (es) Procedimiento y dispositivo de regulación de una central eléctrica eólica.
ES2643238T3 (es) Turbina eólica con un generador principal y uno secundario, y método de operación de dicha turbina eólica
ES2860601T3 (es) Sistemas y procedimientos para aumentar la producción de energía de las turbinas eólicas
CN102297082A (zh) 超速保护系统和方法
MX2013010822A (es) Sistema generador de turbina eolica y metodo para operar un sistema generador de turbina eolica.
US20120061960A1 (en) Wind turbine generator system and wind turbine generator
ES2755033T3 (es) Instalación de obtención de energía, en particular aerogenerador
CN106130075A (zh) 一种自封闭型电磁耦合调速风电机组及其控制方法
EP2594786B1 (en) Method of operating a wind turbine
JP6310079B2 (ja) 風力発電装置の制御方法
JP2016133002A (ja) アシスト機能を備えた風力発電装置およびその制御方法
WO2009043943A1 (es) Método de acoplamiento y regulación de potencia reactiva por estátor para generadores eólicos doblemente alimentados en cualquier condición de viento
CN106130076B (zh) 一种用于自封闭型电磁耦合调速风电机组的低电压穿越控制方法
CN106505609A (zh) 风力涡轮机及风力涡轮机的保护系统
WO2016059263A1 (es) Kit para una estación eólica, y método
ES2748296T3 (es) Método de control de una turbina eólica
CN218569837U (zh) 用于双馈风力发电机组的储能式机侧卸荷电路及发电机组
KR20160064882A (ko) 풍력 발전기 및 그의 발전 제어방법
US11557901B2 (en) Method for feeding electrical power into an electrical supply grid
EP4239188A1 (en) Methods for operating wind turbines and feeding auxiliary systems
CN115588985A (zh) 用于双馈风力发电机组的储能式机侧卸荷电路及发电机组
ES2386436B1 (es) Metodo de control para una instalacion eolica de generacion electrica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07822957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07822957

Country of ref document: EP

Kind code of ref document: A1