WO2009042184A2 - Modules photovoltaïques ayant un matériau de remplissage - Google Patents
Modules photovoltaïques ayant un matériau de remplissage Download PDFInfo
- Publication number
- WO2009042184A2 WO2009042184A2 PCT/US2008/011133 US2008011133W WO2009042184A2 WO 2009042184 A2 WO2009042184 A2 WO 2009042184A2 US 2008011133 W US2008011133 W US 2008011133W WO 2009042184 A2 WO2009042184 A2 WO 2009042184A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photovoltaic module
- layer
- elongated substrate
- refractive index
- glass
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 354
- 239000000758 substrate Substances 0.000 claims abstract description 200
- 239000004065 semiconductor Substances 0.000 claims abstract description 190
- 239000000945 filler Substances 0.000 claims abstract description 144
- 238000007789 sealing Methods 0.000 claims abstract description 9
- 239000006096 absorbing agent Substances 0.000 claims description 154
- 239000011521 glass Substances 0.000 claims description 128
- 239000000565 sealant Substances 0.000 claims description 119
- -1 polydimethylsiloxane Polymers 0.000 claims description 69
- 229920001296 polysiloxane Polymers 0.000 claims description 61
- 229920000642 polymer Polymers 0.000 claims description 52
- 229910052751 metal Inorganic materials 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 48
- 239000000203 mixture Substances 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 45
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 41
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 41
- 239000007787 solid Substances 0.000 claims description 38
- 239000007788 liquid Substances 0.000 claims description 37
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 32
- 229920002379 silicone rubber Polymers 0.000 claims description 30
- 230000003287 optical effect Effects 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 24
- 239000006117 anti-reflective coating Substances 0.000 claims description 20
- 238000010521 absorption reaction Methods 0.000 claims description 19
- 239000003921 oil Substances 0.000 claims description 18
- 239000005388 borosilicate glass Substances 0.000 claims description 17
- 239000004593 Epoxy Substances 0.000 claims description 15
- 230000005540 biological transmission Effects 0.000 claims description 14
- 239000004417 polycarbonate Substances 0.000 claims description 13
- 229920000515 polycarbonate Polymers 0.000 claims description 13
- 239000005361 soda-lime glass Substances 0.000 claims description 13
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 12
- 229920002545 silicone oil Polymers 0.000 claims description 12
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 11
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 10
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 10
- 239000004433 Thermoplastic polyurethane Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 9
- 229920002313 fluoropolymer Polymers 0.000 claims description 9
- 239000004811 fluoropolymer Substances 0.000 claims description 9
- 239000005350 fused silica glass Substances 0.000 claims description 9
- 229920002803 thermoplastic polyurethane Polymers 0.000 claims description 9
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 8
- 238000004891 communication Methods 0.000 claims description 8
- 239000005297 pyrex Substances 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000004945 silicone rubber Substances 0.000 claims description 7
- 229910007161 Si(CH3)3 Inorganic materials 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 5
- 239000005383 fluoride glass Substances 0.000 claims description 5
- 229910052732 germanium Inorganic materials 0.000 claims description 5
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 5
- 239000002241 glass-ceramic Substances 0.000 claims description 5
- 229920002631 room-temperature vulcanizate silicone Polymers 0.000 claims description 5
- 239000005308 flint glass Substances 0.000 claims description 4
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 239000005354 aluminosilicate glass Substances 0.000 claims description 3
- 239000004568 cement Substances 0.000 claims description 3
- 239000005318 dichroic glass Substances 0.000 claims description 3
- 239000005368 silicate glass Substances 0.000 claims description 3
- 239000002203 sulfidic glass Substances 0.000 claims description 3
- 239000013256 coordination polymer Substances 0.000 claims 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims 1
- 239000012212 insulator Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 529
- 210000004027 cell Anatomy 0.000 description 217
- 238000000034 method Methods 0.000 description 72
- 229920003023 plastic Polymers 0.000 description 70
- 239000004033 plastic Substances 0.000 description 70
- 239000000499 gel Substances 0.000 description 54
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 50
- 238000004519 manufacturing process Methods 0.000 description 32
- 238000000151 deposition Methods 0.000 description 27
- 239000004020 conductor Substances 0.000 description 26
- 239000011787 zinc oxide Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 24
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 24
- 239000013078 crystal Substances 0.000 description 21
- 239000011888 foil Substances 0.000 description 21
- 230000006870 function Effects 0.000 description 21
- 229920005989 resin Polymers 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- 239000003570 air Substances 0.000 description 18
- 238000000071 blow moulding Methods 0.000 description 18
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 17
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 17
- 230000000712 assembly Effects 0.000 description 17
- 238000000429 assembly Methods 0.000 description 17
- 239000010408 film Substances 0.000 description 17
- 229910052750 molybdenum Inorganic materials 0.000 description 17
- 239000011733 molybdenum Substances 0.000 description 17
- 230000005855 radiation Effects 0.000 description 17
- 239000010409 thin film Substances 0.000 description 17
- 229910052984 zinc sulfide Inorganic materials 0.000 description 17
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 16
- 239000010949 copper Substances 0.000 description 15
- 230000008021 deposition Effects 0.000 description 15
- 239000011669 selenium Substances 0.000 description 15
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000001723 curing Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 229910021417 amorphous silicon Inorganic materials 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 12
- 230000003068 static effect Effects 0.000 description 12
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 11
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000000976 ink Substances 0.000 description 10
- 229920001721 polyimide Polymers 0.000 description 10
- 229920001155 polypropylene Polymers 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 9
- 239000004793 Polystyrene Substances 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000011068 loading method Methods 0.000 description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 229920002223 polystyrene Polymers 0.000 description 9
- 229910004613 CdTe Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229920005549 butyl rubber Polymers 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 8
- 238000010101 extrusion blow moulding Methods 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 229940058401 polytetrafluoroethylene Drugs 0.000 description 8
- 239000004800 polyvinyl chloride Substances 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 8
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 238000013461 design Methods 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229920002635 polyurethane Polymers 0.000 description 7
- 239000004814 polyurethane Substances 0.000 description 7
- 235000012239 silicon dioxide Nutrition 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 240000002329 Inga feuillei Species 0.000 description 6
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 6
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 6
- 229910010293 ceramic material Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 229910021419 crystalline silicon Inorganic materials 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 229920001903 high density polyethylene Polymers 0.000 description 6
- 239000004700 high-density polyethylene Substances 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 230000037230 mobility Effects 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 229920000915 polyvinyl chloride Polymers 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 239000005060 rubber Substances 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 5
- XXXSILNSXNPGKG-ZHACJKMWSA-N Crotoxyphos Chemical compound COP(=O)(OC)O\C(C)=C\C(=O)OC(C)C1=CC=CC=C1 XXXSILNSXNPGKG-ZHACJKMWSA-N 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229920006397 acrylic thermoplastic Polymers 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 5
- 239000005293 duran Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 5
- 238000010102 injection blow moulding Methods 0.000 description 5
- 229920001684 low density polyethylene Polymers 0.000 description 5
- 239000004702 low-density polyethylene Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 239000005364 simax Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000012780 transparent material Substances 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 229920004482 WACKER® Polymers 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910007709 ZnTe Inorganic materials 0.000 description 4
- 239000000292 calcium oxide Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 150000004770 chalcogenides Chemical class 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 229920003020 cross-linked polyethylene Polymers 0.000 description 4
- 239000004703 cross-linked polyethylene Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 239000005394 sealing glass Substances 0.000 description 4
- 239000013464 silicone adhesive Substances 0.000 description 4
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 4
- 229910052950 sphalerite Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920004511 Dow Corning® 200 Fluid Polymers 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 238000013006 addition curing Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000013466 adhesive and sealant Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000002800 charge carrier Substances 0.000 description 3
- HGAZMNJKRQFZKS-UHFFFAOYSA-N chloroethene;ethenyl acetate Chemical compound ClC=C.CC(=O)OC=C HGAZMNJKRQFZKS-UHFFFAOYSA-N 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000007373 indentation Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910000833 kovar Inorganic materials 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 239000012811 non-conductive material Substances 0.000 description 3
- 229920002312 polyamide-imide Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002096 quantum dot Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- 238000004383 yellowing Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 2
- 229910017115 AlSb Inorganic materials 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 241001581440 Astroides Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 229920002449 FKM Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 230000005483 Hooke's law Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910006854 SnOx Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000003848 UV Light-Curing Methods 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000005282 brightening Methods 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 239000005387 chalcogenide glass Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000006059 cover glass Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 239000005355 lead glass Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002159 nanocrystal Substances 0.000 description 2
- 210000003739 neck Anatomy 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- RLQWHDODQVOVKU-UHFFFAOYSA-N tetrapotassium;silicate Chemical compound [K+].[K+].[K+].[K+].[O-][Si]([O-])([O-])[O-] RLQWHDODQVOVKU-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 2
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 2
- 150000003673 urethanes Chemical class 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- 229910018873 (CdSe)ZnS Inorganic materials 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- 229910003373 AgInS2 Inorganic materials 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910017000 As2Se3 Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 240000005636 Dryobalanops aromatica Species 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 229910016021 MoTe2 Inorganic materials 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 241000337661 Parada Species 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 229910020286 SiOxNy Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910002370 SrTiO3 Inorganic materials 0.000 description 1
- 239000005084 Strontium aluminate Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920006355 Tefzel Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 239000004963 Torlon Substances 0.000 description 1
- 229920003997 Torlon® Polymers 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229910003090 WSe2 Inorganic materials 0.000 description 1
- 229910000754 Wrought iron Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 229910007475 ZnGeP2 Inorganic materials 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical group [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- PKLGPLDEALFDSB-UHFFFAOYSA-N [SeH-]=[Se].[In+3].[Cu+2].[SeH-]=[Se].[SeH-]=[Se].[SeH-]=[Se].[SeH-]=[Se] Chemical compound [SeH-]=[Se].[In+3].[Cu+2].[SeH-]=[Se].[SeH-]=[Se].[SeH-]=[Se].[SeH-]=[Se] PKLGPLDEALFDSB-UHFFFAOYSA-N 0.000 description 1
- MSDNMOYJBGKQDH-UHFFFAOYSA-N [Zn+2].[O-2].[In+3].[O-2].[Zn+2] Chemical compound [Zn+2].[O-2].[In+3].[O-2].[Zn+2] MSDNMOYJBGKQDH-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- JGIATAMCQXIDNZ-UHFFFAOYSA-N calcium sulfide Chemical compound [Ca]=S JGIATAMCQXIDNZ-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000013005 condensation curing Methods 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 229920006335 epoxy glue Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 1
- VJYFKVYYMZPMAB-UHFFFAOYSA-N ethoprophos Chemical compound CCCSP(=O)(OCC)SCCC VJYFKVYYMZPMAB-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000006459 hydrosilylation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010103 injection stretch blow moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000007537 lampworking Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000001053 micromoulding Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000013082 photovoltaic technology Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 150000003112 potassium compounds Chemical class 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000006862 quantum yield reaction Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 150000004771 selenides Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000004590 silicone sealant Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-N sodium;hydron;carbonate Chemical compound [Na+].OC(O)=O UIIMBOGNXHQVGW-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 229910052959 stibnite Inorganic materials 0.000 description 1
- 150000001629 stilbenes Chemical class 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- FNWBQFMGIFLWII-UHFFFAOYSA-N strontium aluminate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Sr+2].[Sr+2] FNWBQFMGIFLWII-UHFFFAOYSA-N 0.000 description 1
- RGZQGGVFIISIHZ-UHFFFAOYSA-N strontium titanium Chemical compound [Ti].[Sr] RGZQGGVFIISIHZ-UHFFFAOYSA-N 0.000 description 1
- ZEGFMFQPWDMMEP-UHFFFAOYSA-N strontium;sulfide Chemical compound [S-2].[Sr+2] ZEGFMFQPWDMMEP-UHFFFAOYSA-N 0.000 description 1
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ZZLOQICNGDMUBA-UHFFFAOYSA-N tetraethyl silicate;hydrate Chemical compound O.CCO[Si](OCC)(OCC)OCC ZZLOQICNGDMUBA-UHFFFAOYSA-N 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N trans-stilbene Chemical group C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000011345 viscous material Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0543—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- FIELD This application is directed to photovoltaic module construction and photovoltaic modules made by such construction.
- Solar cells are typically fabricated as separate physical entities with light gathering surface areas on the order of 4-6 cm 2 or larger. For this reason, it is standard practice for power generating applications to mount the photovoltaic modules containing one or more solar cells in a flat array on a supporting substrate or panel so that their light gathering surfaces provide an approximation of a single large light gathering surface. Also, since each solar cell itself generates only a small amount of power, the required voltage and/or current is realized by interconnecting the solar cells of the module in a series and/or parallel matrix.
- a conventional prior art photovoltaic module 10 is shown in Figure 1.
- a photovoltaic module 10 can typically have one or more photovoltaic cells (solar cells) 12a-b disposed within it. Because of the large range in the thickness of the different layers in a solar cell 12, they are depicted schematically. Moreover, Figure 1 is highly schematic so that it represents the features of both "thick-film” solar cells 12 and "thin- film” solar cells 12.
- solar cells 12 that use an indirect band gap material to absorb light are typically configured as "thick-film” solar cells 12 because a thick film of the absorber layer is required to absorb a sufficient amount of light.
- Solar cells 12 that use a direct band gap material to absorb light are typically configured as "thin-film” solar cells 12 because only a thin layer of the direct band-gap material is needed to absorb a sufficient amount of light.
- each solar cell 12 in the photovoltaic module 10 has its own discrete substrate 102 as illustrated in Figure 1. In other embodiments, there is a substrate 102 that is common to all of the solar cells 12 of the photovoltaic module 10.
- Layer 104 is the back electrical contact for a solar cell 12 in photovoltaic module 10.
- Layer 106 is the semiconductor absorber layer of a solar cell 12 in photovoltaic module 10. In a given solar cell 12, back electrical contact 104 makes ohmic contact with absorber layer 106. In many but not all cases, absorber layer 106 is ap-type semiconductor. Absorber layer 106 is thick enough to absorb light.
- Layer 108 is the semiconductor junction partner that, together with semiconductor absorber layer 106, completes the formation of a p-n junction of a solar cell 12. A p-n junction is a common type of junction found in solar cells 12.
- junction partner 108 is an M-type doped material. Conversely, when the semiconductor absorber layer 106 is an M-type doped material, the junction partner 108 is a/?-type doped material. Generally, the junction partner 108 is much thinner than the absorber layer 106.
- junction partner 108 is highly transparent to solar radiation.
- the junction partner 108 is also known as the window layer, since it lets the light pass down to the absorber layer 106.
- the absorber layer 106 and the window layer 108 can be made from the same semiconductor material but have different carrier types (dopants) and/or carrier concentrations in order to give the two layers their distinct/?- type and H-type properties.
- the use of CdS to form the junction partner 108 has resulted in high efficiency photovoltaic devices.
- the layer 1 10 is the counter electrode, which completes the functioning solar cell. 12.
- the counter electrode 110 is used to draw current away from the junction since the junction partner 108 is generally too resistive to serve this function. As such, the counter electrode 1 10 should be highly conductive and transparent to light.
- the counter electrode 1 10 can in fact be a comb-like structure of metal printed onto the layer 108 rather than forming a discrete layer.
- the counter electrode 110 is typically a transparent conductive oxide (TCO) such as doped zinc oxide.
- TCO transparent conductive oxide
- a bus bar network 1 14 is typically needed in conventional photovoltaic modules 10 to draw off current since the TCO has too much resistance to efficiently perform this function in larger photovoltaic modules.
- the network 114 shortens the distance charge carriers must move in the TCO layer in order to reach the metal contact, thereby reducing resistive losses.
- the metal bus bars also termed grid lines, can be made of any reasonably conductive metal such as, for example, silver, steel or aluminum.
- the metal bars are preferably configured in a comb- like arrangement to permit light rays through the TCO layer 110.
- the bus bar network layer 114 and the TCO layer 110 act as a single metallurgical unit, functionally interfacing with a first ohmic contact to form a current collection circuit.
- Optional antireflective coating 112 allows a significant amount of extra light into the solar cell 12. Depending on the intended use of the photovoltaic module 10, it might be deposited directly on the top conductor as illustrated in Figure 1. Alternatively or additionally, the antireflective coating 112 may be deposited on a separate cover glass that overlays the top electrode 110.
- the antireflective coating 112 reduces the reflection of the solar cell 12 to very near zero over the spectral region in which photoelectric absorption occurs, and at the same time increases the reflection in the other spectral regions to reduce heating.
- United States Patent Number 6,107,564 to Aguilera et al. hereby incorporated by reference herein in its entirety, describes representative antireflective coatings that are known in the art.
- Solar cells 12 typically produce only a small voltage. For example, silicon based solar cells produce a voltage of about 0.6 volts (V). Thus, solar cells 12 are interconnected in series or parallel in order to achieve greater voltages. When connected in series, voltages of individual solar cells add together while current remains the same.
- solar cells arranged in series reduce the amount of current flow through such cells, compared to analogous solar cells arranged in parallel, thereby improving efficiency.
- the arrangement of solar cells 12 in series is accomplished using interconnects 116.
- an interconnect 116 places the first electrode of one solar cell 12 in electrical communication with the counter-electrode of an adjoining solar cell 12 of a photovoltaic module 10.
- conventional photovoltaic modules 10 are typically in the form of a plate structure. Although such photovoltaic modules 10 are highly efficient when they contain smaller solar cells 12, photovoltaic modules 10 with larger planar solar cells 12 have reduced efficiency because it is harder to make the semiconductor films that form the junction in such solar cells 12 uniform. Furthermore, the occurrence of pinholes and similar flaws increase in larger planar solar cells 12. These features can cause shunts across the junction.
- light beam Li incident on a nonplanar photovoltaic module 10 undergoes optical effects before reaching the active layers of the one or more solar cells 12 in the photovoltaic module 10. Some of the light is reflected as light beam L 2 , while some is refracted as light beam L 3 that continues traveling into the layers of a solar cell 12 of the photovoltaic module 10. If light beam L 3 is incident to another boundary between two layers of the solar cell 12 of a photovoltaic module that have different incidences of refraction, the process of reflection and refraction occur again. Light that is reflected does not reach the active layers of the solar cell (e.g., the layers of the solar cell junction) and thus is not used by the solar cell to generate an electric potential.
- the active layers of the solar cell e.g., the layers of the solar cell junction
- the transparent casing, filler material, and transparent conductive layer within a photovoltaic module each have indexes of refraction, and the values for the indexes are chosen so that light incident on the transparent casing is refracted towards the active layers of the solar cells of the photovoltaic module.
- the values of the refraction indexes are also chosen to reduce the amount of reflection that occurs at the surface boundary of the aforementioned layers.
- One aspect provides a photovoltaic module having an elongated substrate.
- One or more solar cells are disposed on the substrate, and each of the solar cells has a back- electrode disposed on the elongated substrate, a semiconductor junction layer disposed on the back-electrode, and a transparent conductive layer having a first refractive index disposed on the semiconductor junction.
- a filler material is configured so that it is disposed on the transparent conductive layer of each of the one or more solar cells.
- the filler material has a second refractive index that is smaller or equal in value to the first refractive index.
- a transparent casing is disposed on the filler material.
- the transparent casing has a third refractive index that is smaller or equal in value to the second refractive index.
- the transparent casing has a third refractive index that is greater in value to the second refractive index.
- the second refractive index has a value approximately equal to the third refractive index plus X, where X is half the absolute difference between the values of the first and third refractive indexes.
- the third refractive index is slightly more than the second refractive index.
- the second refractive index is approximately equal to the first refractive index.
- the second refractive index is approximately equal to the third refractive index.
- the first and second refractive indexes are chosen to minimize the reflection of light on the surface of the transparent conductive layer.
- the third refractive index is in the range of 1.2 to 1.9. In, other embodiments, the third refractive index is in the range of 1.1 to 2. In some embodiments, the second refractive index is in the range of 1.2 to 1.9. In, other embodiments, the second refractive index is approximately equal to 1.6. In some embodiment, the first refractive index is greater or equal to 1.5. In, other embodiments, the first refractive index is greater or equal to 1.6. In some embodiments, the first, second, and third refractive indexes are chosen such that light incident on the transparent casing is refracted towards a solar cell within the photovoltaic module.
- the one or more solar cells on a substrate within the transparent casing of the photovoltaic module each have a first surface area and the transparent casing has a second surface area.
- the first, second, and third refractive indexes are chosen such that the one or more solar cells on the substrate within the transparent casing exhibit an effective optical surface area approximately equal to the second surface area.
- the second and third refractive indexes are chosen to minimize the reflection of light on the surface of the filler material of the photovoltaic module.
- the photovoltaic module further comprises a water resistant layer disposed on the transparent casing.
- an antireflective coating is disposed on the transparent casing.
- all or a portion of the substrate is a rigid tube or a rigid solid rod.
- a solar cell in the photovoltaic module is cylindrical shaped and the photovoltaic module obeys the inequality
- the elongated substrate or transparent casing is nonplanar.
- the elongated substrate or transparent casing is characterized by a circular cross-section, an ovoid cross-section, a triangular cross-section, a pentangular cross- section, a hexagonal cross-section, a cross-section having at least one arcuate portion, or a cross-section having at least one curved portion.
- a first portion of the elongated substrate or transparent casing is characterized by a first cross-sectional shape and a second portion of the photovoltaic module is characterized by a second cross-sectional shape.
- the first cross-sectional shape and the second cross-sectional shape are the same. In other embodiments, the first cross-sectional shape and the second cross- sectional shape are different.
- at least ninety percent of the length of the elongated substrate is characterized by the first cross-sectional shape.
- the first cross-sectional shape is planar and the second cross-sectional shape has at least one arcuate side.
- a cross-section of the elongated substrate or transparent casing forms an n-sided polygon, where n is an integer greater than or equal to 3.
- the elongated substrate has a Young's modulus of 20 GPa or greater. In other embodiments, the elongated substrate has a Young's modulus of 40 GPa or greater. In yet other embodiments, the elongated substrate has a Young's modulus of 70 GPa or greater. In some embodiments, the elongated substrate is made of a linear material.
- the photovoltaic module is elongated, having a longitudinal dimension and a width dimension.
- the longitudinal dimension is at least four times greater than the width dimension.
- the longitudinal dimension is at least five times greater than the width dimension.
- the longitudinal dimension is at least six times greater than the width dimension.
- the longitudinal dimension is 10 cm or greater.
- the longitudinal dimension is 50 cm or greater.
- the width dimension is 1 cm or greater.
- the width dimension is 5 cm or greater.
- the width dimension is 10 cm or greater.
- the elongated substrate is closed at both ends, only at one end, or open at both ends.
- a first solar cell and a second solar cell in a photovoltaic module are electrically arranged in series. In other embodiments, a first solar cell and a second solar cell in a plurality of solar cell in a photovoltaic module are electrically arranged in parallel.
- Another aspect of the invention provides an assembly comprising a plurality of photovoltaic modules, each of which is arranged in coplanar rows to form the assembly.
- the assembly further comprises an albedo surface positioned to reflect sunlight into the plurality of photovoltaic modules of the assembly.
- the albedo surface has an albedo that exceeds 80%.
- the albedo surface is Lambertian or diffuse.
- Fig. 1 illustrates interconnected solar cells in a photovoltaic module in accordance with the prior art.
- Fig. 2 illustrates a partial cross-sectional view of an elongated photovoltaic module in a casing, in accordance with an embodiment of the present application.
- Fig. 3A illustrates a photovoltaic module with a tubular casing, in accordance with an embodiment of the present application.
- Fig. 3B illustrates a cross-sectional view of an exemplary photovoltaic module, in accordance with an embodiment of the present application.
- Fig. 3C illustrates the multi-layer components of a photovoltaic module in accordance with an embodiment of the present application.
- Fig. 3D illustrates a transparent casing, in accordance with an embodiment of the present application.
- Fig. 3E illustrates a photovoltaic module comprising multiple solar cells disposed on an elongated substrate in accordance with an embodiment of the present application.
- Fig. 4A is a cross-sectional view of photovoltaic modules in tubular casings that are electrically arranged in series and geometrically arranged in a parallel or near parallel manner, in accordance with an embodiment of the present application.
- Fig. 4B is a cross-sectional view taken about line 4B-4B of Fig. 4A depicting the serial electrical arrangement of photovoltaic modules in an assembly, in accordance with an embodiment of the present application.
- Fig. 4C is a blow-up perspective view of region 4C of Fig. 4B, illustrating various layers in an exemplary photovoltaic module, in accordance with one embodiment of the present application.
- Fig. 4D is a cross-sectional view of a photovoltaic module taken about line 4D-4D of Fig. 4B, in accordance with an embodiment of the present application.
- Figs. 5A- 5D illustrate semiconductor junctions that are used in various solar cells in various embodiments of the present application.
- Fig. 6A illustrates an extrusion blow molding method in accordance with the prior art.
- Fig. 6B illustrates an injection blow molding method in accordance with the prior art.
- Fig. 6C illustrates a stretch blow molding method in accordance with the prior art.
- Fig. 7 is a perspective view an array of transparent casings, in accordance with an embodiment disclosed herein.
- Fig. 8 is a cross-sectional view of photovoltaic modules electrically arranged in series in an assembly where counter-electrodes abut individual photovoltaic modules and the outer TCO is cut, in accordance with another embodiment disclosed herein.
- Fig. 9 is a cross-sectional view of photovoltaic modules each having an elongated substrate electrically arranged in series in an assembly in which the substrate is hollowed, in accordance with an embodiment disclosed herein.
- Fig. 10 is a cross-sectional view of photovoltaic modules each having an elongated substrate electrically arranged in series in an assembly in which a groove pierces the counter-electrodes, transparent conducting layer, and junction layers of the photovoltaic modules, in accordance with an embodiment disclosed herein.
- Fig. 11 illustrates a static concentrator for use in some embodiments of the present application.
- Fig. 12 illustrates a static concentrator used in some embodiments disclosed herein.
- Fig. 13 illustrates a cross-sectional view of a photovoltaic module in accordance with an embodiment disclosed herein.
- Fig. 14 illustrates a cross-sectional view of an array of alternating tubular casings and internal reflectors, in accordance with an embodiment disclosed herein.
- Fig. 15A illustrates a suction loading assembly method in accordance with an embodiment disclosed herein.
- Fig. 15B illustrates a pressure loading assembly method in accordance with an embodiment disclosed herein.
- Fig. 15C illustrates a pour-and-slide loading assembly method in accordance with an embodiment disclosed herein.
- Fig. 16 illustrates Q-type silicone, silsequioxane, D-type silicon, and M-type silicon, in accordance with the prior art.
- Figs. 17A-17K illustrate a hermetically sealed elongated photovoltaic module, in accordance with some embodiments of the present application.
- a photovoltaic module having an elongated substrate is provided.
- a portion of the elongated substrate is rigid.
- One or more solar cells are disposed on the elongated substrate.
- the one or more solar cells each comprise (i) a back-electrode disposed on the elongated substrate, (ii) a semiconductor junction layer disposed on the back-electrode, (iii) and a transparent conductive layer disposed on the semiconductor junction, where the transparent conductive layer has a first refractive index.
- a filler material is disposed on the transparent conductive layer.
- the filler material has a second refractive index that is smaller or equal in value to said first refractive index.
- a transparent casing is disposed on the filler material thereby sealing the photovoltaic module.
- the transparent casing has a third refractive index that is smaller or equal in value to the second refractive index.
- the transparent casing has a third refractive index that is larger in value to the second ref
- the present application provides individually covered photovoltaic modules 402 that are illustrated in perspective view in Fig. 3A and cross-sectional view in Fig. 3B.
- a photovoltaic module 402 one (Fig. 3C) or more (Fig. 3E) solar cells 12 are covered by a transparent casing 310 (Fig. 3D).
- one end of the photovoltaic module 402 is exposed by the transparent casing 310 in order to form an electrical connection with solar cells 12 of an adjacent photovoltaic module 402 or other circuitry.
- both ends of the photovoltaic module 402 are exposed by the transparent casing 310 in order to form an electrical connection with solar cells 12 of adjacent photovoltaic modules 402 or other circuitry.
- the transparent casing 310 has a cylindrical shape.
- cylindrical means objects having a cylindrical or approximately cylindrical shape. In fact, cylindrical objects can have irregular shapes so long as the object, taken as a whole, is roughly cylindrical. Such cylindrical shapes can be solid (e.g., a rod) or hollowed (e.g., a tube).
- tubular means objects having a tubular or approximately tubular shape. In fact, tubular objects can have irregular shapes so long as the object, taken as a whole, is roughly tubular.
- FIG. 3B illustrates the cross-sectional view of an exemplary embodiment of a photovoltaic module 402.
- Other exemplary embodiments of photovoltaic modules e.g.,
- FIG. 4A are also suitable for coating by a transparent casing 310.
- Figs. 3 A and 3B illustrate a case in which there is a single solar cell 12 in a photovoltaic module 402. More typically, there are several solar cells 12 on a common substrate within a photovoltaic module 402.
- Fig. 3E illustrates one such photovoltaic module 402 that contains several solar cells 12 disposed on a common elongated substrate 403.
- individual solar cells 12 are separated on elongated substrate 403 by separations 296. More disclosure of exemplary photovoltaic modules 402 that have multiple solar cells 12 is found in United States Patent No. 7,235,736, which is hereby incorporated by reference herein in its entirety.
- the solar cells 12 may be disposed on a nonplanar elongated substrate 403 as illustrated in Fig. 3E or on a planar substrate.
- An elongated elongated substrate 403 serves as a substrate for one or more solar cells 12.
- the elongated substrate 403 is made of a plastic, metal, metal alloy, or glass.
- the elongated substrate 403 is cylindrical shaped.
- the elongated substrate 403 has a hollow core, as illustrated in Fig. 3B.
- the elongated substrate 403 has a solid core.
- the shape of the elongated substrate 403 is only approximately that of a cylindrical object, meaning that a cross-section taken at a right angle to the long axis of the elongated substrate 403 defines an ellipse rather than a circle. As the term is used herein, such approximately shaped objects are still considered cylindrically shaped in the present application.
- the elongated substrate 403 supports one or more solar cells 12 arranged in a bifacial, multi-facial, or omnifacial manner.
- the elongated substrate 403 is flat planar while in other embodiments the elongated substrate 403 is nonplanar. More description of the elongated substrate 403 is found in Section 5.9, below.
- a back-electrode 404 is disposed over all or a portion of the elongated substrate 403. By “a portion of it is meant at least 20%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% of the surface area of the elongated substrate 403.
- the back-electrode 404 serves as the first electrode for each solar cell 12 in the photovoltaic module 402.
- the back-electrode 404 is made out of any material such that it can support the photovoltaic current generated by the solar cell 12 with negligible resistive losses. Additional disclosure on the back-electrode 404 is found in Section 5.11, below.
- a semiconductor junction 410 is disposed on all or a portion of the back-electrode 404. By "a portion of it is meant at least 20%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% of the surface area of the back-electrode 404.
- the semiconductor junction 410 is any photovoltaic homojunction, heteroj unction, heteroface junction, buried homojunction, p-i-n junction or tandem junction having an absorber layer that is a direct band-gap absorber ⁇ e.g., crystalline silicon) or an indirect band-gap absorber ⁇ e.g., amorphous silicon).
- junctions are described in Chapter 1 of Bube, Photovoltaic Materials, 1998, Imperial College Press, London, as well as Lugue and Hegedus, 2003, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Ltd., Westshire, England, each of which is hereby incorporated by reference herein in its entirety. Details of exemplary types of semiconductors junctions 410 in accordance with the present application are disclosed in Section 5.2, below. In addition to the exemplary junctions disclosed in Section 5.2, below, the junctions 410 can be multij unctions in which light traverses into the core of the junction 410 through multiple junctions that, preferably, have successfully smaller band gaps.
- the semiconductor junction 410 includes a copper-indium-gallium-diselenide (CIGS) absorber layer.
- the semiconductor junction 410 is a so-called thin film semiconductor junction.
- the semiconductor junction 410 is a so-called thick film ⁇ e.g., silicon) semiconductor junction.
- Optional intrinsic layer 415 there is a thin intrinsic layer (/-layer) 415 disposed on all or a portion of the semiconductor junction 410.
- a portion of it is meant at least 20%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% of the exposed surface area of the semiconductor junction 410.
- the /-layer 415 can be formed using any undoped transparent oxide including, but not limited to, zinc oxide, metal oxide, or any transparent material that is highly insulating. In some embodiments, the /-layer 415 is highly pure zinc oxide.
- the transparent conductive layer 412 is disposed on all or a portion of semiconductor junction 410 thereby completing the circuit of each solar cell 12.
- a portion of it is meant at least 20%, or at least 30%, or at least 40%, or at least 50%, or at least 60%, or at least 70%, or at least 80%, or at least 90%, or at least 95% of the exposed surface area of the semiconductor junction 410.
- a thin /-layer 415 is disposed on the semiconductor junction 410.
- the transparent conductive layer 412 is disposed on all or a portion of the /-layer 415. Additional disclosure on the transparent conductive layer 412 is found in Section 5.12, below
- Optional electrode strips 420 are disposed on the transparent conductive layer 412 in order to facilitate electrical current flow. Additional disclosure on the optional electrode strips 420 is found in Section 5.10, below.
- Transparent casing 310 A transparent casing 310 is disposed on all or a portion of the transparent conductive layer 412 and/or the filler material detailed below 330. In some embodiments, the transparent casing 310 is made of plastic or glass. In some embodiments, the solar cells 12 of a photovoltaic module 402 are sealed in the transparent casing 310. As shown in Fig. 4A, a transparent casing 310 fits over the outermost layer of the photovoltaic module 402. In some embodiments, the photovoltaic module 402 is inside the transparent casing 310 such that adjacent photovoltaic modules 402 do not form electric contact with each other except at the ends of the photovoltaic modules 402.
- Methods such as heat shrinking, injection molding, or vacuum loading, can be used to construct the transparent casing 310 such that they exclude oxygen and water from the system as well as provide complementary fitting to the underlying photovoltaic module 402. Additional disclosure on the transparent casing 310 is found in Section 5.13, below.
- Filler material 330 In some embodiments of the present application, as depicted in Fig. 3B, a filler material 330 is disposed between transparent conducting layer 412 and the transparent casing 310. The filler material 330 can be used to protect the photovoltaic module 402 from physical or other damage, and can also be used to aid the photovoltaic module 402 in collecting more light by its optical and chemical properties.
- ⁇ i and ⁇ 2 are the refractive indices of the two bordering media 1 and 2 while ⁇ i and ⁇ 2 represent the angle of incidence and the angle of refraction, respectively.
- the first refraction process occurs when incident beam Li travels from air through the transparent casing 310 as L 3 .
- Ambient air has a refractive index around 1 (vacuum space has a refractive index of 1 , which is the smallest among all known materials), which is much smaller than the refractive index of glass material (ranging from 1.2 to 1.9) or plastic material (around 1.45).
- the refractive angle ⁇ 310 is always smaller than the incident angle ⁇ a j r , e.g., the incident beam is always bent towards the interior of photovoltaic module 402 as it travels through the transparent casing 310.
- the refractive index of the filler material 330 (e.g., ⁇ 33 o in Fig. 2) should be larger than the refractive index of the transparent casing 310 so that refracted beam L 4 will also be bent towards the interior layers of the solar cells 12 of the photovoltaic module 402.
- L 4 itself becomes the incident beam that strikes the surface of the layers of the solar cells 12 of the photovoltaic module 402 (specifically, the transparent conductive layer 412), and is refracted yet again into beam L 5 in transparent conductive layer 412.
- the refractive index of transparent conductive layer 412, ⁇ 4 i 2 should be larger than ⁇ 33 o so that refracted beam L 5 is also bent towards interior layers of the solar cells 12 of the photovoltaic module 402.
- the refractive indexes of the various layers preferably have magnitudes that obey the following inequality: ⁇ 412
- the refractive index of air is approximately 1.
- materials that form the transparent casing 310 comprise transparent materials (either glass or plastic or other suitable materials) with refractive indices between approximately 1.2 and 1.9.
- the material that forms the transparent casing 310 has a refractive index between 1.1 and 2.
- fused silica glass has a refractive index of 1.46.
- Common plastic materials have refractive indices between 1.46 and 1.55.
- the refractive index of the transparent conductive layer 412 is approximately 1.9.
- the refractive index of the transparent conductive layer 412 is greater or equal to 1.5, or greater or equal to 1.6.
- Fresnel's equations describe the intensity of reflected waves and refracted waves when an electromagnetic wave strikes an interface between two materials. According to Fresnel's equations in the special case of an incident wave that is normal (perpendicular) to the surface, the reflection coefficient R and transmission (refracted wave) coefficient T are:
- ⁇ i and ⁇ 2 are the refractive indices of the two bordering media 1 and 2.
- the reflection coefficient R becomes larger. This means that more light is reflected (and thus less light refracted by transmission) when the difference between the refractive indexes is larger than when the difference is smaller. This extends beyond the special case of normal incidence and affects all incident beams regardless of the angle of incidence.
- ⁇ 33 o is chosen such that the aggregate reflection of light at the interface between the components 310 and 330 and components 330 and 412 is minimized.
- a given index of refraction is approximately equal to a reference index of refraction when the given index of refraction is within 0.5, within 0.4, within 0.3, within 0.2, 0.1, with 0.05, or with 001 units of the reference index of refraction.
- the given index of refraction is x
- the reference index of refraction is y
- the term "approximately equal” in accordance with one embodiment is 0.1.
- y - 0.1 ⁇ x ⁇ y + 0.1 the term “approximately equal” in accordance with one embodiment is 0.2, y - 0.2 ⁇ x ⁇ y + 0.2, and so forth.
- Reflective properties of components 310 and 330 Reflective properties of components 310 and 330.
- an incident beam Li hits the surface of the transparent casing 310.
- Part of the incident beam L] is reflected as L 2 while the remainder of incident beam Li (e.g., as refracted beam L 3 in Fig. 2) travels through the transparent casing 310.
- the refracted beam L 3 directly impinges upon the transparent conductive layer 412 of a solar cell 12 of photovoltaic module 402 (e.g., when the filler material 330 is absent).
- L 3 hits the outer surface of the filler material 330, and the processes of reflection and refraction are repeated as they were when Li hit the surface of the transparent casing 310, with some of L 3 reflected back into the filler material 330 and some of L 3 refracted by the filler material 330 as beam L 4 .
- Antireflective coating may be applied on the outside of the transparent casing 310.
- this antireflective coating is made OfMgF 2 .
- this antireflective coating is made of silicon nitride or titanium nitride.
- this antireflective coating is made of one or more layers of silicon monoxide (SiO). For example, shiny silicon can act as a mirror and reflects more than thirty percent of the light that shines on it.
- a single layer of SiO reduces surface reflection to about ten percent, and a second layer of SiO can lower the reflection to less than four percent.
- Other organic antireflective materials in particular, one which prevents back reflection from the surface of or lower layers in the semiconductor device and eliminates the standing waves and reflective notching due to various optical properties of lower layers on the wafer and the photosensitive film, are disclosed in United States Patent Number 6,803,172, which is hereby incorporated by reference herein in its entirety. Additional antireflective coating materials and methods are disclosed in United States Patent Nos. 6,689,535; 6,673,713; 6,635,583; 6,784,094; and 6,713,234, each of which is hereby incorporated by reference herein in its entirety.
- the outer surface of the transparent casing 310 may be textured to reduce reflected radiation. Chemical etching creates a pattern of cones and pyramids, which capture light rays that might otherwise be deflected away from the cell. Reflected light is redirected down into the cell, where it has another chance to be absorbed.
- the filler material 330 can be made of sealant such as ethylene vinyl acetate (EVA), silicone, silicone gel, epoxy, polydimethyl siloxane (PDMS), RTV silicone rubber, polyvinyl butyral (PVB), thermoplastic polyurethane (TPU), a polycarbonate, an acrylic, a fluoropolymer, and/or a urethane is coated over the transparent conductive layer 412 to seal out air and, optionally, to provide complementary fitting to a transparent casing 310.
- the filler material 330 is a Q-type silicone, a silsequioxane, a D-type silicone, or an M-type silicone.
- Filler material 330 can be, for example, a gel or a liquid.
- the substance used to form the filler material 330 comprises a resin or resin-like substance, the resin potentially being added as one component, or added as multiple components that interact with one another to effect a change in viscosity.
- the resin can be diluted with a less viscous material, such as a silicone-based oil or liquid acrylates. In these cases, the viscosity of the initial substance can be far less than that of the resin material itself.
- a medium viscosity polydimethylsiloxane mixed with an elastomer-type dielectric gel can be used to make the filler material 330.
- a mixture of 85% (by weight) Dow Corning 200 fluid, 50 centistoke viscosity (PDMS, polydimethylsiloxane); 7.5% Dow Corning 3-4207 Dielectric Tough Gel, Part A -Resin; and 7.5% Dow Corning 3-4207 Dielectric Tough Gel, Part B - Catalyst is used to form the filler material 330.
- oils, gels, or silicones can be used to produce much of what is described in the specification, and accordingly this specification should be read to include those other oils, gels and silicones to generate the described layer.
- oils include silicone based oils, and the gels include many commercially available dielectric gels. Curing of silicones can also extend beyond a gel like state. Commercially available dielectric gels and silicones and the various formulations are contemplated as being usable in this application.
- the composition used to form the filler material 330 is 85%, by weight, polydimethylsiloxane polymer liquid, where the polydimethylsiloxane has the chemical formula (CH 3 ) 3 SiO[SiO(CH 3 ) 2 ] n Si(CH 3 ) 3 , where n is a range of integers chosen such that the polymer liquid has an average bulk viscosity that falls in the range between 50 centistokes and 100,000 centistokes (all viscosity values given in this application for compositions assume that the compositions are at room temperature).
- polydimethylsiloxane molecules in the polydimethylsiloxane polymer liquid with varying values for n provided that the bulk viscosity of the liquid falls in the range between 50 centistokes and 100,000 centistokes.
- Bulk viscosity of the polydimethylsiloxane polymer liquid may be determined by any of a number of methods known to those of skill in the art, such as using a capillary viscometer.
- the composition includes 7.5%, by weight, of a silicone elastomer comprising at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane (CAS number 68083-19-2) and between 3 and 7 percent by weight silicate (New Jersey TSRN 14962700-537 6P). Further, the composition includes 7.5%, by weight, of a silicone elastomer comprising at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane (CAS number 68083- 19-2), between ten and thirty percent by weight hydrogen-terminated dimethyl siloxane (CAS 70900-21-9) and between 3 and 7 percent by weight trimethylated silica (CAS number 68909-20-6).
- the filler material 330 is formed by soft and flexible optically suitable material such as silicone gel.
- the filler material 330 is formed by a silicone gel such as a silicone-based adhesives or sealants.
- the filler material 330 is formed by GE RTV 615 Silicone. Silicone-based adhesives or sealants are based on tough silicone elastomeric technology. The characteristics of silicone-based materials, such as adhesives and sealants, are controlled by three factors: resin mixing ratio, potting life and curing conditions.
- silicone adhesives have a high degree of flexibility and very high temperature resistance (up to 600 0 F).
- Silicone-based adhesives and sealants have a high degree of flexibility.
- Silicone-based adhesives and sealants are available in a number of technologies (or cure systems). These technologies include pressure sensitive, radiation cured, moisture cured, thermo-set and room temperature vulcanizing (RTV).
- the silicone-based sealants use two-component addition or condensation curing systems or single component (RTV) forms. RTV forms cure easily through reaction with moisture in the air and give off acid fumes or other by-product vapors during curing.
- Pressure sensitive silicone adhesives adhere to most surfaces with very slight pressure and retain their tackiness. This type of material forms viscoelastic bonds that are aggressively and permanently tacky, and adheres without the need of more than finger or hand pressure.
- radiation is used to cure silicone-based adhesives.
- ultraviolet light, visible light or electron bean irradiation is used to initiate curing of sealants, which allows a permanent bond without heating or excessive heat generation. While UV-based curing requires one substrate to be UV transparent, the electron beam can penetrate through material that is opaque to UV light.
- silicone adhesives and cyanoacrylates based on a moisture or water curing mechanism may need additional reagents properly attached to the photovoltaic module 402 without affecting the proper functioning of the photovoltaic module 402.
- Thermo-set silicone adhesives and silicone sealants are cross-linked polymeric resins cured using heat or heat and pressure. Cured thermo-set resins do not melt and flow when heated, but they may soften. Vulcanization is a thermosetting reaction involving the use of heat and/or pressure in conjunction with a vulcanizing agent, resulting in greatly increased strength, stability and elasticity in rubber-like materials.
- RTV silicone rubbers are room temperature vulcanizing materials.
- the vulcanizing agent is a cross-linking compound or catalyst. In some embodiments in accordance with the present application, sulfur is added as the traditional vulcanizing agent.
- the composition used to form the filler material 330 is silicone oil mixed with a dielectric gel.
- the silicone oil is a polydimethylsiloxane polymer liquid
- the dielectric gel is a mixture of a first silicone elastomer and a second silicone elastomer.
- the composition used to form the filler material 330 is X%, by weight, polydimethylsiloxane polymer liquid, Y%, by weight, a first silicone elastomer, and Z%, by weight, a second silicone elastomer, where X, Y, and Z sum to 100.
- the polydimethylsiloxane polymer liquid has the chemical formula (CH 3 ) 3 SiO[SiO(CH 3 ) 2 ] n Si(CH 3 ) 3 , where n is a range of integers chosen such that the polymer liquid has an average bulk viscosity that falls in the range between 50 centistokes and 100,000 centistokes.
- n is a range of integers chosen such that the polymer liquid has an average bulk viscosity that falls in the range between 50 centistokes and 100,000 centistokes.
- n is a range of integers chosen such that the polymer liquid has an average bulk viscosity that falls in the range between 50 centistokes and 100,000 centistokes.
- the first silicone elastomer comprises at least sixty percent, by weight, dimethylvinyl- terminated dimethyl siloxane (CAS number 68083-19-2) and between 3 and 7 percent by weight silicate (New Jersey TSRN 14962700-537 6P). Further, the second silicone elastomer comprises at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane (CAS number 68083-19-2), between ten and thirty percent by weight hydrogen- terminated dimethyl siloxane (CAS 70900-21-9) and between 3 and 7 percent by weight trimethylated silica (CAS number 68909-20-6).
- X may range between 30 and 90
- Y may range between 2 and 20
- Z may range between 2 and 20, provided that X, Y and Z sum to 100 percent.
- the composition used to form the filler material 330 is silicone oil mixed with a dielectric gel.
- the silicone oil is a polydimethylsiloxane polymer liquid
- the dielectric gel is a mixture of a first silicone elastomer and a second silicone elastomer.
- the composition used to form the filler material 330 is X%, by weight, polydimethylsiloxane polymer liquid, Y%, by weight, a first silicone elastomer, and Z%, by weight, a second silicone elastomer, where X, Y, and Z sum to 100.
- the polydimethylsiloxane polymer liquid has the chemical formula (CH 3 ) 3 SiO[SiO(CH 3 ) 2 ] n Si(CH 3 ) 3 , where n is a range of integers chosen such that the polymer liquid has a volumetric thermal expansion coefficient of at least 500 x 10 "6 /°C.
- n is a range of integers chosen such that the polymer liquid has a volumetric thermal expansion coefficient of at least 500 x 10 "6 /°C.
- the first silicone elastomer comprises at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane (CAS number 68083-19-2) and between 3 and 7 percent by weight silicate (New Jersey TSRN 14962700-537 6P).
- the second silicone elastomer comprises at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane (CAS number 68083-19- 2), between ten and thirty percent by weight hydrogen-terminated dimethyl siloxane (CAS 70900-21-9) and between 3 and 7 percent by weight trimethylated silica (CAS number 68909-20-6).
- X may range between 30 and 90
- Y may range between 2 and 20
- Z may range between 2 and 20, provided that X, Y and Z sum to 100 percent.
- the composition used to form the filler material 330 is a crystal clear silicone oil mixed with a dielectric gel.
- the filler material 330 has a volumetric thermal coefficient of expansion of greater than 250 x 10 "6 / 0 C, greater than 300 x 10 "6 / 0 C, greater than 400 x ⁇ 0 '6 / 0 C, greater than 500 x 10 "6 / 0 C, greater than 1000 x 10 "6 / 0 C, greater than 2000 x 10 "6 / 0 C, greater than 5000 x 10 "6 / 0 C, or between 250 x lO 6 / 0 C and 10000 x 10 "6 / 0 C.
- a silicone-based dielectric gel can be used in-situ.
- the dielectric gel can also be mixed with a silicone based oil to reduce both beginning and ending viscosities.
- the ratio of silicone-based oil by weight in the mixture can be varied.
- the percentage of silicone-based oil by weight in the mixture of silicone-based oil and silicone-based dielectric gel can have values at or about (e.g. ⁇ 2.5%) 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, and 85%.
- Ranges of 20%-30%, 25%-35%, 30%-40%, 35%-45%, 40%-50%, 45%-55%, 50%-60%, 55%-65%, 60%-70%, 65%-75%, 70%-80%, 75%-85%, and 80%-90% (by weight) are also contemplated. Further, these same ratios by weight can be contemplated for the mixture when using other types of oils or acrylates instead of or in addition to silicon-based oil to lessen the beginning viscosity of the gel mixture alone.
- the initial viscosity of the mixture of 85% Dow Corning 200 fluid, 50 centistoke viscosity (PDMS, polydimethylsiloxane); 7.5 % Dow Corning 3-4207 Dielectric Tough Gel, Part A -Resin; and 7.5 % Dow Corning 3 4207 Dielectric Tough Gel, Part B - Pt Catalyst is approximately 100 centipoise (cP).
- Beginning viscosities of less than 1, less than 5, less than 10, less than 25, less than 50, less than 100, less than 250, less than 500, less than 750, less than 1000, less than 1200, less than 1500, less than 1800, and less than 2000 cP are imagined, and any beginning viscosity in the range 1 - 2000 cP is acceptable.
- ranges can include 1-10 cP, 10-50 cP, 50-100 cP, 100-250 cP, 250-500 cP, 500-750 cP, 750-1000 cP, 800-120O cP, 1000-150O cP, 1250-175O cP, 1500-2000 cP, and 1800- 2000 cP. In some cases an initial viscosity between 1000 cP and 1500 cP can also be used.
- a final viscosity for the filler material 330 of well above the initial viscosity is envisioned in some embodiments. In most cases, a ratio of the final viscosity to the beginning viscosity is at least 50:1. With lower beginning viscosities, the ratio of the final viscosity to the beginning viscosity may be 20,000:1, or in some cases, up to 50,000:1. In most cases, a ratio of the final viscosity to the beginning viscosity of between 5,000:1 to 20,000:1, for beginning viscosities in the 10 cP range, may be used. For beginning viscosities in the 1000 cP range, ratios of the final viscosity to the beginning viscosity between 50:1 to 200:1 are imagined.
- ratios in the ranges of 200:1 to 1,000:1, 1,000:1 to 2,000:1, 2,000:1 to 5,000:1, 5,000: 1 to 20,000:1, 20,000:1 to 50,000:1, 50,000:1 to 100,000:1, 100,000:1 to 150,000:1, and 150,000:1 to 200,000:1 are contemplated.
- the final viscosity of the filler material 330 is typically on the order of 50,000 cP to 200,000 cP. In some cases, a final viscosity of at least 1 x 10 6 cP is envisioned. Final viscosities of at least 50,000 cP, at least 60,000 cP, at least 75,000 cP, at least 100,000 cP, at least 150,000 cP, at least 200,000 cP, at least 250,000 cP, at least 300,000 cP, at least 500,000 cP, at least 750,000 cP, at least 800,000 cP, at least 900,000 cP, and at least 1 x 10 6 cP are all envisioned.
- Ranges of final viscosity for the filler material 330 can include 50,000 cP to 75,000 cP, 60,000 cP to 100,000 cP, 75,000 cP to 150,000 cP, 100,000 cP to 200,000 cP, 100,000 cP to 250,000 cP, 150,000 cP to 300,000 cP, 200,000 cP to 500,000 cP, 250,000 cP to 600,000 cP, 300,000 cP to 750,000 cP, 500,000 cP to 800,000 cP, 600,000 cP to 900,000 cP, and 750,000 cP to 1 x 10 6 cP.
- Curing temperatures can be numerous, with a common curing temperature of room temperature.
- the curing step need not involve adding thermal energy to the system.
- Temperatures that can be used for curing can be envisioned (with temperatures in degrees F) at up to 60 degrees, up to 65 degrees, up to 70 degrees, up to 75 degrees, up to 80 degrees, up to 85 degrees, up to 90 degrees, up to 95 degrees, up to 100 degrees, up to 105 degrees, up to 110 degrees, up to 115 degrees, up to 120 degrees, up to 125 degrees, and up to 130 degrees, and temperatures generally between 55 and 130 degrees.
- Other curing temperature ranges can include 60-85 degrees, 70-95 degrees, 80-1 10 degrees, 90-120 degrees, and 100-130 degrees.
- the working time of the substance of a mixture can be varied as well.
- the working time of a mixture in this context means the time for the substance (e.g., the substance used to form the filler material 330) to cure to a viscosity more than double the initial viscosity when mixed.
- Working time for the layer can be varied. In particular, working times of less than 5 minutes, on the order of 10 minutes, up to 30 minutes, up to 1 hour, up to 2 hours, up to 4 hours, up to 6 hours, up to 8 hours, up to 12 hours, up to 18 hours, and up to 24 hours are all contemplated.
- a working time of 1 day or less is found to be best in practice. Any working time between 5 minutes and 1 day is acceptable.
- resin can mean both synthetic and natural substances that have a viscosity prior to curing and a greater viscosity after curing.
- the resin can be unitary in nature, or may be derived from the mixture of two other substances to form the resin.
- the filler material may comprise solely a liquid.
- the filler material may be a dielectric oil.
- dielectric oils may be silicone-based.
- the oil can be 85% Dow Corning 200 fluid, 50 centistoke viscosity
- PDMS polydimethylsiloxane
- the transparent casing 310, the filler material 330, the optional antireflective layer 350, the water-resistant layer 340, or any combination thereof form a package to maximize and maintain the photovoltaic module 402 efficiency, provide physical support, and prolong the life time of photovoltaic modules 402.
- the filler material 330 is a laminate layer such as any of those disclosed in United States Provisional patent application number 60/906,901, filed March 13, 2007, entitled "A Photovoltaic Apparatus Having a Laminate Layer and Method for Making the Same” which is hereby incorporated by reference herein in its entirety for such purpose.
- the filler material 330 has a viscosity of less than 1 x 10 6 cP.
- the filler material 330 has a thermal coefficient of expansion of greater than 500 x 10 "6 / 0 C or greater than 1000 x 10 "6 / 0 C.
- the filler material 330 comprises epolydimethylsiloxane polymer.
- the filler material 330 comprises by weight: less than 50% of a dielectric gel or components to form a dielectric gel; and at least 30% of a transparent silicone oil, the transparent silicone oil having a beginning viscosity of no more than half of the beginning viscosity of the dielectric gel or components to form the dielectric gel.
- the filler material 330 has a thermal coefficient of expansion of greater than 500 x 10 "6 / 0 C and comprises by weight: less than 50% of a dielectric gel or components to form a dielectric gel; and at least 30% of a transparent silicone oil.
- the filler material 330 is formed from silicone oil mixed with a dielectric gel.
- the silicone oil is a polydimethylsiloxane polymer liquid and the dielectric gel is a mixture of a first silicone elastomer and a second silicone elastomer.
- the filler material 330 is formed from X%, by weight, polydimethylsiloxane polymer liquid, Y%, by weight, a first silicone elastomer, and Z%, by weight, a second silicone elastomer, where X, Y, and Z sum to 100.
- the polydimethylsiloxane polymer liquid has the chemical formula (CH 3 ) 3 SiO[SiO(CH 3 ) 2 ] n Si(CH 3 ) 3 , where n is a range of integers chosen such that the polymer liquid has an average bulk viscosity that falls in the range between 50 centistokes and 100,000 centistokes.
- first silicone elastomer comprises at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane and between 3 and 7 percent by weight silicate.
- the second silicone elastomer comprises: (i) at least sixty percent, by weight, dimethylvinyl-terminated dimethyl siloxane; (ii) between ten and thirty percent by weight hydrogen-terminated dimethyl siloxane; and (iii) between 3 and 7 percent by weight trimethylated silica.
- X is between 30 and 90; Y is between 2 and 20; and Z is between 2 and 20.
- the filler material 330 comprises a silicone gel composition, comprising: (A) 100 parts by weight of a first polydiorganosiloxane containing an average of at least two silicon-bonded alkenyl groups per molecule and having a viscosity of from 0.2 to 10 Pa-s at 25°C; (B) at least about 0.5 part by weight to about 10 parts by weight of a second polydiorganosiloxane containing an average of at least two silicone-bonded alkenyl groups per molecule, wherein the second polydiorganosiloxane has a viscosity at 25 0 C of at least four times the viscosity of the first polydiorganosiloxane at 25 0 C; (C) an organohydrogensiloxane having the average formula R 7 Si(Si0R 8 2 H) 3 wherein R 7 is an alkyl group having 1 to 18 carbon atoms or aryl, R 8 is an alkyl group having 1 to 4 carbon
- one or more water resistant layers are disposed on solar cells 12 and/or the photovoltaic module 402 to prevent water damage.
- the one or more water resistant layers are disposed onto the transparent conductive layer 412 prior to depositing the filler material 330 and encasing the photovoltaic module 402 in the transparent casing 310.
- such water resistant layers are dipsosed ⁇ e.g., circumferential Iy coated) onto the filler material 330 prior to encasing the photovoltaic module 402 in the transparent casing 310.
- such water resistant layers are disposed (e.g. circumferentially coated) onto the transparent casing 310 itself.
- a water resistant layer is provided to seal water from the solar cells 12 and/or photovoltaic module 402 itself
- the optical properties of the water resistant layer preferably do not interfere with the absorption of incident solar radiation by the solar cells 12 of the photovoltaic module.
- this water resistant layer is made of clear silicone, SiN, SiO x N y , SiO x , or Al 2 O 3 , where x and y are integers.
- the water resistant layer is made of a Q-type silicone, a silsequioxane, a D- type silicone, or an M-type silicone.
- an optional antireflective coating is also disposed (e.g.) circumferentially disposed on the transparent casing 310 to maximize solar cell efficiency.
- a single layer serves the dual purpose of a water resistant layer and an antireflective coating.
- an antireflective coating is made Of MgF 2 , silicon nitride, titanium nitride, silicon monoxide (SiO), or silicon oxide nitride.
- there is more than one layer of antireflective coating there is more than one layer of antireflective coating.
- there is more than one layer of antireflective coating and each layer is made of the same material.
- there is more than one layer of antireflective coating and each layer is made of a different material.
- some of the layers of the multi-layered solar cells 12 are constructed using cylindrical magnetron sputtering techniques. In some embodiments, some of the layers of multi-layered solar cells 12 are constructed using conventional sputtering methods or reactive sputtering methods on long tubes or strips. Sputtering coating methods for long tubes and strips are disclosed in for example, Hoshi et al, 1983, “Thin Film Coating Techniques on Wires and Inner Walls of Small Tubes via Cylindrical Magnetron Sputtering," Electrical Engineering in Japan 103:73-80; Lincoln and Magnoliaensderfer, 1980, “Adapting Conventional Sputtering Equipment for Coating Long Tubes and Strips,” J. Vac. Sci. Technol.
- a fluorescent material (e.g., luminescent material, phosphorescent material) is coated on a surface of a layer of a solar cell 12 and/or photovoltaic module.
- the fluorescent material is coated on the luminal surface and/or the exterior surface of the transparent casing 310.
- the fluorescent material is coated on the outside surface of the transparent conductive layer 412.
- the photovoltaic module includes a filler material 330 and the fluorescent material is coated on the filler material.
- the photovoltaic module includes a water resistant layer and the fluorescent material is coated on the water resistant layer.
- more than one surface of a solar cell 12 and/or photovoltaic module 402 is coated with optional fluorescent material.
- the fluorescent material absorbs blue and/or ultraviolet light, which some semiconductor junctions 410 of the present application do not use to convert light to electricity, and the fluorescent material emits visible and/or infrared light which is useful for electrical generation in some photovoltaic modules 402 of the present application.
- fluorescent material is dissolved in the filler material 330.
- Fluorescent, luminescent, or phosphorescent materials can absorb light in the blue or UV range and emit visible light.
- Phosphorescent materials, or phosphors usually comprise a suitable host material and an activator material.
- the host materials are typically oxides, sulfides, selenides, halides or silicates of zinc, cadmium, manganese, aluminum, silicon, or various rare earth metals.
- the activators are added to prolong the emission time.
- phosphorescent materials are incorporated in the systems and methods of the present application to enhance light absorption by a photovoltaic module 402.
- the phosphorescent material is directly added to the material used to make the transparent casing 310.
- the phosphorescent materials are mixed with a binder for use as transparent paints to coat various outer or inner layers of the solar cells 12 and/or photovoltaic modules, as described above.
- Exemplary phosphors include, but are not limited to, copper-activated zinc sulfide (ZnS :Cu) and silver-activated zinc sulfide (ZnS: Ag).
- Other exemplary phosphorescent materials include, but are not limited to, zinc sulfide and cadmium sulfide (ZnS :CdS), strontium aluminate activated by europium (SrAlO 3 IEu), strontium titanium activated by praseodymium and aluminum (SrTiO3:Pr, Al), calcium sulfide with strontium sulfide with bismuth ((Ca 5 Sr)S :Bi), copper and magnesium activated zinc sulfide (ZnS:Cu,Mg), or any combination thereof.
- ZnS:Ag or related phosphorescent materials are described in United States Patent Nos. 6,200,497 to Park et al, 6,025,675 to Ihara et al.; 4,804,882 to Takahara et al, and 4,512,912 to Matsuda et al, each of which is hereby incorporated by reference herein in its entirety.
- the persistence of the phosphor increases as the wavelength decreases.
- quantum dots of CdSe or similar phosphorescent material can be used to get the same effects.
- optical brighteners are used in the optional fluorescent layers of the present application.
- Optical brighteners also known as optical brightening agents, fluorescent brightening agents or fluorescent whitening agents
- Optical brighteners are dyes that absorb light in the ultraviolet and violet region of the electromagnetic spectrum, and re- emit light in the blue region.
- Such compounds include stilbenes ⁇ e.g., trans-1, 2- diphenylethylene or (E)-I, 2-diphenylethene).
- Another exemplary optical brightener that can be used in the optional fluorescent layers of the present application is umbelliferone (7-hydroxycoumarin), which also absorbs energy in the UV portion of the spectrum. This energy is then re-emitted in the blue portion of the visible spectrum.
- layers of material are successively circumferentially disposed on a non-planar elongated substrate 403 in order to form solar cells 12 of the photovoltaic module 402 as well as the encapsulating layers of the photovoltaic module such as filler material 330 and the casing 310.
- the term "circumferentially disposed" is not intended to imply that each such layer of material is necessarily deposited on an underlying layer or that the shape of the solar cell 12 and/or photovoltaic module 402 is cylindrical. In fact, the present application teaches methods by which such layers are molded or otherwise formed on an underlying layer.
- the substrate and underlying layers may have any of several different planar or nonplanar shapes.
- the term “circumferentially disposed” means that an overlying layer is disposed on an underlying layer such that there is no space (e.g., no annular space) between the overlying layer and the underlying layer.
- the term “circumferentially disposed” means that an overlying layer is disposed on at least fifty percent of the perimeter of the underlying layer.
- the term “circumferentially disposed” means that an overlying layer is disposed along at least half of the length of the underlying layer.
- the term "disposed” means that one layer is disposed on an underlying layer without any space between the two layers. So, if a first layer is disposed on a second layer, there is no space between the two layers. Circumferentially sealed. In the present application, the term “circumferentially sealed” is not intended to imply that an overlying layer or structure is necessarily deposited on an underlying layer or structure. In fact, the present application teaches methods by which such layers or structures (e.g., transparent casing 310) are molded or otherwise formed on an underlying layer or structure.
- circumferentially sealed means that an overlying layer or structure is disposed on an underlying layer or structure such that there is no space (e.g., no annular space) between the overlying layer or structure and the underlying layer or structure.
- circumferentially sealed means that an overlying layer is disposed on the full perimeter of the underlying layer.
- a layer or structure circumferentially seals an underlying layer or structure when it is circumferentially disposed around the full perimeter of the underlying layer or structure and along the full length of the underlying layer or structure.
- a circumferentially sealing layer or structure does not extend along the full length of an underlying layer or structure.
- one or both ends of the photovoltaic module 402 are sealed with a sealant cap.
- Examples of sealant caps are illustrated, for example, in Figs. 17A through 17K.
- Each illustration in Figs. 17A- 17K provides a perspective view of a photovoltaic module 402. Below each perspective view is a corresponding cross-sectional view of the photovoltaic module.
- the photovoltaic modules illustrated in Figs. 17A through 17K do not have an electrically conducting substrate 403.
- any of the photovoltaic modules 402 disclosed herein are sealed with sealant caps such as those illustrated in Figure 17 and described herein.
- sealant cap 612 seals end 460 of the photovoltaic module 402.
- the sealant cap 612 is sealed onto the outer surface of transparent nonplanar casing 310.
- other configurations of the sealant cap 612 are possible.
- the sealant cap 612 is sealed onto the inner surface of the transparent nonplanar casing 310.
- a first portion of the cap 612 seals onto the inner surface of the transparent nonplanar casing 310 while a second portion of the cap 612 seals onto the outer surface of the transparent nonplanar casing 310.
- this first portion is approximately half the circumference of the cap 612.
- this first portion is some value other than half the circumference of the cap 612.
- the first portion is a quarter of the circumference of the cap 612 and the second portion is three quarters of the circumference of the cap 612.
- the first portion is one percent or more, ten percent or more, twenty percent or more, thirty percent or more of the circumference of the cap 612 and the second portion makes up the balance of cap 612.
- the cap 612 comprises a plurality of first portions, where each first portion seals onto the inner surface of the transparent nonplanar casing 310, and a plurality of second portions, where each said second portion of the cap 612 seals onto the outer surface of the transparent nonplanar casing 310.
- the sealant cap 612 is sealed onto the inner surface of the transparent nonplanar casing 310 and the outer surface of the substrate 403.
- the substrate 403 is hollowed. In other embodiments, however, the substrate 403 is solid, with no hollow core. In some embodiments, any of the configurations shown in Fig. 17 has a substrate 403 with a hollow core.
- the sealant cap 612 is bonded onto the outer surface of the transparent nonplanar casing 310 and the outer surface of the substrate 403. In some embodiments, the sealant cap 612 is bonded onto the outer surface of the transparent nonplanar casing 310 and the inner surface of the substrate 403. In some embodiments, the sealant cap 612 is bonded onto the inner surface of the transparent nonplanar casing 310 and the inner surface of the substrate 403.
- the metal(s) that are typically used to make some embodiments of the sealant cap 612 are chosen to match the thermal expansion coefficient of the glass.
- the transparent nonplanar casing 310 is made of soda lime glass (CTE of about 9 ppm/C) and the sealant cap 612 is made of a low expansion stainless steel alloy like 410 (CTE of about 10 ppm/C).
- the transparent nonplanar casing 310 is made of borosilicate glass (CTE of about 3.5 ppm/C) and sealant cap 612 is made of KOVAR (CTE of about 5 ppm/C).
- KOVAR is an iron-nickel-cobalt alloy.
- the sealant cap 612 is composed of any conductive material, such as aluminum, molybdenum, tungsten, vanadium, rhodium, niobium, chromium, tantalum, titanium, steel, nickel, platinum, silver, gold, an alloy thereof (e.g. KOVAR), or any combination thereof.
- the sealant cap 612 is composed of any waterproof conductive material, such as indium tin oxide, titanium nitride, tin oxide, fluorine doped tin oxide, doped zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, boron dope zinc oxide, or indium-zinc oxide.
- the sealant cap 612 is made of aluminosilicate glass, borosilicate glass ⁇ e.g., Pyrex, Duran, Simax, etc.), dichroic glass, germanium / semiconductor glass, glass ceramic, silicate / fused silica glass, soda lime glass, quartz glass, chalcogenide / sulphide glass, fluoride glass, pyrex glass, a glass-based phenolic, cereated glass, or flint glass.
- aluminosilicate glass borosilicate glass ⁇ e.g., Pyrex, Duran, Simax, etc.
- dichroic glass germanium / semiconductor glass
- glass ceramic silicate / fused silica glass
- soda lime glass soda lime glass
- quartz glass chalcogenide / sulphide glass
- fluoride glass pyrex glass
- a glass-based phenolic, cereated glass or flint glass.
- sealant cap 612 is made of metal
- care is taken to make sure that the sealant cap does not form an electrical connection with both the transparent conductive layer 412 and the back-electrode 404. This can be accomplished in any number of ways.
- a filler material 560 is positioned between the end 460 and the sealant cap 612. The filler material 560 electrically isolates the sealant cap 612 from the transparent conductive layer 412 and back-electrode 404.
- the filler material 560 includes ethylene vinyl acetate (EVA), silicone, silicone gel, epoxy, polydimethyl siloxane (PDMS), RTV silicone rubber, polyvinyl butyral (PVB), thermoplastic polyurethane (TPU), a polycarbonate, an acrylic, a fluoropolymer, and/or a urethane.
- EVA ethylene vinyl acetate
- silicone silicone gel
- epoxy polydimethyl siloxane
- PVB polyvinyl butyral
- TPU thermoplastic polyurethane
- the filler layer 560 is a Q-type silicone, a silsequioxane, a D-type silicone, or an M-type silicone.
- the filler material 560 comprises EVA, silicone rubber, or solid rubber.
- the filler material 560 is part of filler material 330.
- the filler material 560 is laced with a desiccant such as calcium oxide or barium oxide.
- the sealant cap 612 in addition to using the filler material 560, is shaped so that it will not contact the transparent conductive layer 412 and the back-electrode 404.
- One such shape for the sealant cap 612 is illustrated in Figure 17K. As can be seen in Figure 17K, the sealant cap 612 is bowed out relative to the photovoltaic module 402 so that it does not make electrical contact with the transparent conductive layer 412 and the back-electrode 404.
- Figure 17K merely serves to illustrate the point that the sealant cap 612 can adopt any type of shape so long at it makes a seal with the solar cell unit.
- the sealant cap 612 can serve as an electrical lead for either the transparent conductive layer 412 or the back-electrode 404.
- a first end of the photovoltaic module 402 is sealed with a first sealant cap 612 that makes an electrical connection with the transparent conductive layer 412 and the second end of the photovoltaic module 402 is sealed with a second sealant cap 612 that makes an electrical connection with the back-electrode 404.
- a first end of the photovoltaic module 402 is sealed with a first sealant cap 612 that makes an electrical connection with the back-electrode 404 that is electrical communication with the transparent conductive layer 412 while a second end of the photovoltaic module 402 is sealed with a second sealant cap 612 that makes an electrical connection with the back-electrode 404 that is electrically isolated from the transparent conductive layer 412.
- a first sealant cap 612A makes an electrical connection with the back-electrode 404 that is in electrical communication with the transparent conductive layer 412 and a second sealant cap 612B makes an electrical connection with the back-electrode 404 that is electrically isolated from the transparent conductive layer 412.
- the first sealant cap 612 serves as the electrode for transparent conductive layer 412 while the second sealant cap 612 serves as the electrode for the back-electrode 404.
- sealant cap 612 is made of metal
- electrical contact between the sealant cap 612 and both the transparent conductive layer 412 and the back-electrode 404 is not made.
- the sealant cap 612 is electrically isolated from at least one of the transparent conductive layer 412 and the back-electrode 404.
- the sealant cap 612A includes the electrical contacts 540 that are positioned within the sealant cap 612A so that they form electrical contact with the back-electrode 404 (as illustrated in Fig. 17J). Then the lead 542 serves as the electrical lead for the transparent conductive layer 412 (as illustrated in Fig. 17J) since the transparent conductive layer 412 is in electrical communication with the back-electrode 404 at the point of contact of electrode 540. Referring to Fig. 17 J, sealant cap 612A is sealed onto the photovoltaic module 402 using the sealant 614 and/or 616. As a result, the electrical contacts 540 make electrical contact with the back-electrode 404.
- the space 560 is filled with a non-conducting filler such as ethylene vinyl acetate (EVA), silicone, silicone gel, epoxy, polydimethyl siloxane (PDMS), RTV silicone rubber, polyvinyl butyral (PVB), thermoplastic polyurethane (TPU), a polycarbonate, an acrylic, a fluoropolymer, or a urethane, before sealing the sealant cap 612 onto the nonplanar solar cell unit to prevent encapsulation of air within the solar cell.
- EVA ethylene vinyl acetate
- silicone silicone gel
- epoxy polydimethyl siloxane
- PVB polyvinyl butyral
- TPU thermoplastic polyurethane
- a polycarbonate an acrylic, a fluoropolymer, or a urethane
- the electrical contacts 540 are fitted onto the back- electrode 404 rather than onto the sealant cap 612.
- the electrical contacts 540 are simply an extension of the back-electrode 404.
- the sealant cap 612 is made of glass. In some of such embodiments, there is a lead for the transparent conductive layer 412 or the back-electrode 404 through the sealant cap 612 (not shown). In such embodiments, the sealant cap 612 can abut directly against the side ends 460. Thus, in such embodiments, the filler layer 560 is optional.
- the sealant cap 612 is sealed onto solar cell unit using butyl rubber (e.g., polyisobutylene).
- the filler layer 560 is butyl rubber and glass frits or ceramics are not required to seal the sealant cap 612 onto the photovoltaic module 402 because the butyl rubber performs this function.
- this butyl rubber is loaded with active desiccant such as CaO or BaO.
- the solar cell unit has a water vapor transmission rate of less than 10 "4 g/m 2 -day. In some embodiments that use butyl rubber for the filler layer 560, the sealant cap 612 is not required.
- the ends of the photovoltaic module 402 are sealed with butyl rubber.
- butyl rubber is used without the sealant cap 612 leads such as leads 540 and 542 of Figure 31 can be used to electrically connect the photovoltaic module 402 with other photovoltaic modules 402 or other circuitry.
- the sealant cap 612 is sealed onto the photovoltaic module 402 using glass-to-glass, metal-to-metal, ceramic-to-metal, or glass-to-metal seals.
- glass-to-metal hermetic seals There are two exemplary types of glass-to-metal hermetic seals used in various exemplary embodiments: matched seals and mismatched (compression) seals.
- Matched glass-to-metal hermetic seals are made of metal alloys and the substrate 403 / transparent nonplanar casing 310 that share similar thermal expansion characteristics.
- Mismatched or compression glass to metal hermetic seals feature a steel or stainless steel sealant cap 612 that has a higher thermal expansion rate than the glass solar cell.
- a hermetic seal is any seal that has a water vapor transmission rate of 10 "4 g/m 2 -day or better. In some embodiments, a hermetic seal is any seal that has a water vapor transmission rate of 10 "5 g/m 2 -day or better. In some embodiments, a hermetic seal is any seal that has a water vapor transmission rate of 10 "6 g/m 2 -day or better. In some embodiments, a hermetic seal is any seal that has a water vapor transmission rate of 10 "7 g/m 2 -day or better. In some embodiments, a hermetic seal is any seal that has a water vapor transmission rate of 10 " g/m 2 -day or better.
- the seal formed between the sealant cap 612 and the photovoltaic module 402 has a water vapor transmission rate (WVTR) of 10 '4 g /m 2> day or less. In some embodiments, the seal formed between the sealant cap 612 and the photovoltaic module 402 has a water vapor transmission rate (WVTR) of 10 "5 g /m 2 'day or less. In some embodiments, the seal formed between the cap 612 and the photovoltaic module 402 has a WVTR of 10 "6 g/m 2 -day or less. In some embodiments, the seal formed between the cap 612 and the photovoltaic module 402 has a WVTR of 10 "7 g/m 2 -day or less.
- WVTR water vapor transmission rate
- the seal formed between the cap 612 and the photovoltaic module 402 has a WVTR of 10 "8 g/m 2 day or less.
- the seal between the sealant cap 612 and the photovoltaic module 402 can be accomplished using a glass or, more generally, a ceramic material.
- this glass or ceramic material has a melting temperature between 200 0 C and 450 0 C.
- this glass or ceramic material has a melting temperature between 300 0 C and 450 0 C.
- this glass or ceramic material has a melting temperature between 350 0 C and 400 0 C.
- oxide ceramics including alumina, zirconia, silica, aluminum silicate, magnesia and other metal oxide based materials, ceramics based upon aluminum dioxide, aluminum nitrate, aluminum oxide, aluminum zirconia, as well as glasses based upon silicon dioxide.
- the sealant cap 612 is sealed onto the photovoltaic module 402 by placing a continuous strip of sealant 614 around the inner edge of the sealant cap 612. Still referring to Figure 17A, in some embodiments, a continuous strip of sealant 616 is placed on the outer edge of the transparent nonplanar casing 310. Typically, the sealant 614 (around inner edge of sealant cap 612) or the sealant 616 (around outer edge of transparent nonplanar casing 310), but not both, are used (although both can be used).
- the sealant 614 and/or sealant 616 is glass frit.
- frit There are different types of frit which can be used for different types of glass and at different temperatures.
- the present invention is independent of the frit or glass type.
- the glass frit has a melting temperature between 200 0 C and 45O 0 C.
- solder glass are available from many sources, including Ferro Corporation (Cleveland, Ohio), Schott Glass (Elmsford, New York), and Asahi Glass (Tokyo, Japan).
- solder glass are available from many sources, including Ferro Corporation (Cleveland, Ohio), Schott Glass (Elmsford, New York), and Asahi Glass (Tokyo, Japan).
- the use of low temperature melting solder glass limits the exposure of the active components of the solar cell to extreme temperature during formation of the seal.
- the glass frit is a pressed or sintered preform made to the correct shape of the application (either to fit over outer edge of the transparent nonplanar casing 310 in the case of the sealant 616 or to fit within the inner edge of sealant cap 612 in the case of the sealant 614.
- the solder glass is suspended in an organic binder material or is applied as a dry powder.
- the temperature is increased to a value that will enable the continuous glass frit to soften. Heat can be applied by methods such as direct contact with a hot surface, by inductively heating up a metal part, by contact with flame or hot air, or through absorption of light from a laser.
- the sealant 614 and/or sealant 616 is a sol-gel material.
- a sol-gel material alternates between two states, one being a colloidal suspension of solid particles in a liquid, the other state being a dual phase material in which there is a solid outer shell filled with a solvent.
- a xerogel material results with a consistency similar to that of a low density glass.
- a sol-gel material may be formulated by combining a quantity of potassium silicate (kasil) (e.g., 120 grams) with a comparatively smaller quantity of formamide (e.g., 7-8 grams).
- a lesser quantity of kasil e.g., 12 grams
- a lesser quantity of propylene carbonate e.g., 2-3 grams
- Another method of forming a sol-gel material involves the mixture of TEOS-H 2 O and methanol, and allowing the mixture to hydrolyse.
- the sealant 614 and/or 616 is sol-gel
- the sealant cap 612 is pressed onto the photovoltaic module 402 and the sol-gel is allowed to cure.
- the sol-gel is cured at ambient temperature and ambient atmospheric pressure.
- the curing process may be accelerated by other methods such as, e.g., applying heat or using an infrared heat source.
- the sol-gel is a polycarbonate-kasil mixture
- the sol-gel material cures in approximately 5 to 10 minutes at room temperature.
- Sol-gels are discussed in Madou, 2002, Fundamentals of Microfabrication, The Science of Miniaturization, Second Edition, CRC Press, New York, pp. 156-157, which is hereby incorporated by reference herein in its entirety.
- the sealant 614 and/or sealant 616 is a ceramic cement material. Such materials are readily available from suppliers such as Aremco (Valley Cottage, New York) and Sauereisen (Pittsburgh, Pennsylvania). Such materials are relatively inexpensive and provide strong bonds to glass or metal.
- DM2700P DieMat, Byfield, Massachusetts
- the sealant cap 612 made of stainless steel
- the coated end of the solar cell is manually inserted into the hot cap, while still on the hotplate.
- the sealing glass paste is allowed to melt and wet the surface of the sealant cap 612.
- the solar cell is removed from the hotplate and allowed to cool.
- DM2700P coating is applied to the inner circumference of the sealant cap 612 in order to form the sealant 614.
- the paste is allowed to dry.
- the stainless steel cap is heated on a hotplate to about 42O 0 C until the sealing glass melts.
- One end of the solar cell is manually inserted into the stainless steal cap while the cap is still on the hotplate.
- the sealing glass paste melts and wets the outer surface of surface of the transparent nonplanar casing 310.
- the assembly is then removed from the hotplate and allowed to cool.
- the sealant 618 and/or 620 is used to seal the sealant cap 612 to the photovoltaic module 402.
- the sealant 618 and/or 620 is made of any of the compositions that can be used to make the sealant 614 and/or 616 described above.
- the sealant 622 and/or 624 is used to seal the sealant cap 612 to the photovoltaic module 402.
- the sealant 622 and/or 624 is made of any of the compositions that can be used to make the sealant 614 and/or 616 described above. Referring to Fig.
- the sealant 626 and/or 630 together with the sealant 628 and/or sealant 632 is used to seal the sealant cap 612 to the photovoltaic module 402.
- the sealant 626 and/or 628 and/or 630 and/or 632 is made of any of the compositions that can be used to make the sealant 614 and/or 616 described above.
- the photovoltaic module 402 is bifacial, having two flat photovoltaic cells conjoined in opposite directions, such that light entering from either the top or the bottom would be received and converted to electric energy.
- the photovoltaic module 402 and the transparent casing 310 may have the same or substantially the same geometric shape as each other.
- the solar cell and the transparent casing 310 may have differing geometries (e.g., a bifacial solar cell can be disposed within a tubular or cylindrical casing).
- the photovoltaic module 402 and the casing 310 can thus have any suitable cross-sectional shapes, such as square, rectangular, elliptical, polygonal, or have a varying cross-sectional shape, and any desired overall shape and configuration.
- the photovoltaic module 402 can have a multi-facial, or omnifacial configuration, or otherwise be designed to capture light from directions both facing and not facing the initial light source.
- An example omnifacial topology of a photovoltaic module 402 is a cylindrical embodiment illustrated in Figs 3A, where the surface of the cell has one continuous surface.
- the shape of the cross section of the photovoltaic module 402 can be described by any combination of straight lines and curved features.
- the omnifacial and multifacial configurations are operable to receive light from differing orientations, including anti- parallel directions.
- Fig. 4A illustrates a cross-sectional view of the arrangement of three photovoltaic modules 402 arranged in a coplanar fashion in order to form an assembly 400.
- Fig. 4B provides a cross-sectional view with respect to line 4B-4B of Fig. 4A with the exception that back-electrode 404 is shown as a solid core.
- back- electrode 404 is not a solid core but rather a one or more layers disposed on a elongated substrate 403.
- back-electrode 404 is a thin layer of electrically conducting material circumferentially disposed on elongated substrate 403 as depicted in Fig.
- each photovoltaic module 402 has a length that is great compared to the diameter d of its cross-section.
- An advantage of the architecture shown in Fig. 4A is that there is no front side contact that shades photovoltaic modules 402. Such a front side contact is found in known devices ⁇ e.g., elements 10 of Fig. 2B).
- Another advantage of the architecture shown in Fig. 4A is that photovoltaic modules 402 are electrically connected in series rather than in parallel. In such a series configuration, the voltage of each photovoltaic module 402 is summed.
- FIG. 4A Another advantage of the architecture shown in Fig. 4A is that the resistance loss across the system is low. This is because each electrode component of the circuit is made of highly conductive material.
- back-electrode 404 of each photovoltaic modules 402 is made of a conductive material such as metal.
- the back-electrode 404 is not a solid, but rather is a layer deposited on a elongated substrate 403, the back-electrode layer 404 is highly conductive.
- the advantageous low resistance nature of the architecture illustrated in Fig. 4A is also facilitated by the highly conductive properties of the optional counter- electrode strips 420.
- counter-electrode strips 420 are not used. Rather, monolithic integration architectures, such as those described in United States Patent No. 7,235,736 entitled "Monolithic integration of cylindrical solar cells, which is hereby incorporated by reference herein in its entirety for such purpose, are used.
- the counter-electrode strips 420 are composed of a conductive epoxy (e.g., silver epoxy) or conductive ink and the like.
- the counter-electrode strips 420 are formed by depositing a thin metallic layer on a suitable substrate and then patterning the layer into a series of parallel strips. Each counter-electrode strip 420 is affixed to a photovoltaic module 402 with a conductive epoxy along the length of a photovoltaic module 402, as shown in Fig. 4D.
- the counter-electrode strips 420 are formed directly on the photovoltaic modules 402.
- the counter-electrode strips 420 are formed on the outer transparent conductive layer 412, as illustrated in Fig. 3B. In some embodiments, connections between counter-electrode strip 420 to the electrodes 433 are established in series as depicted in Fig. 4B.
- Still another advantage of the architecture illustrated in Fig. 4A is that the path length through the absorber layer (e.g., layer 502, 510, 520, or 540 of Figure 5) of semiconductor junction 410 is, on average, longer than the path length through of the same type of absorber layer having the same width but in a planar configuration.
- the elongated architecture illustrated in Fig. 4A allows for the design of thinner absorption layers relative to analogous planar solar cell counterparts.
- the thinner absorption layer absorbs the light because of the increased path length through the layer. Because the absorption layer is thinner relative to comparable planar solar cells, there is less resistance and, hence, an overall increase in efficiency in the cell relative to analogous planar solar cells.
- photovoltaic modules 402 illustrated in Fig. 4A have a relatively small surface area, relative to comparable planar solar cells, and they possess radial symmetry, in the embodiment illustrated. Embodiments not illustrated do not necessarily have radial symmetry. Each of these properties allow for the controlled deposition of doped semiconductor layers necessary to form the semiconductor junction 410.
- the smaller surface area, relative to conventional flat panel solar cells, means that it is easier to present a uniform vapor across the surface during deposition of the layers that form the semiconductor junction 410.
- the radial symmetry can be exploited during the manufacture of the cells in order to ensure uniform composition (e.g., uniform material composition, uniform dopant concentration, etc.) and/or uniform thickness of individual layers of the semiconductor junction 410.
- the back-electrode 404 upon which layers are deposited to make the solar cells 12 of the photovoltaic modules 412 can be rotated along its longitudinal axis during such deposition in order to ensure uniform material composition and/or uniform thickness in embodiments where the solar cells posses radial symmetry.
- each of the photovoltaic modules 402 is generally circular in Fig. 4B.
- photovoltaic module 402 bodies with a quadrilateral cross-section or an elliptical shaped cross-section and the like are used.
- the photovoltaic modules 402 maintain a general overall rod-like shape in which their length is much larger than their diameter and they possess some form of cross-sectional radial symmetry or approximate cross-sectional radial symmetry.
- the photovoltaic modules 402 are characterized by any of the cross-sectional areas discussed above in conjunction with the description of the elongated substrate 403.
- a first and second photovoltaic module 402 are electrically connected in series by an electrical contact 433 that connects the back-electrode 404 (first electrode) of a solar cell 14 of a first photovoltaic module 402 to the corresponding counter-electrode strip 420 or TCO 412 of a solar cell 12 of a second photovoltaic module 402.
- photovoltaic modules 402 are multiply arranged in a row parallel or nearly parallel with respect to each other and rest upon independent leads (counter-electrodes) 420 that are electrically isolated from each other.
- the photovoltaic modules 402 can receive direct light through the transparent casing 310.
- not all the photovoltaic modules 402 in assembly 400 are electrically arranged in series.
- a first and second photovoltaic module can be electrically connected in parallel, and are thereby paired, by using a first electrical contact ⁇ e.g., an electrically conducting wire, etc., not shown) that joins the back-electrode 404 of a solar cell 12 of a first photovoltaic module 402 to a solar cell 12 of a second photovoltaic module.
- the transparent conductive layer 412 of the first solar cell 12 is electrically connected to the transparent conductive layer 412 of the solar cell of the second photovoltaic module 402 either by contacting the transparent conductive layers of the two solar cells either directly or through a second electrical contact (not shown).
- the pairs of photovoltaic modules are then electrically arranged in series.
- three, four, five, six, seven, eight, nine, ten, eleven or more photovoltaic modules 402 are electrically arranged in parallel. These parallel groups of photovoltaic modules 402 are then electrically arranged in series.
- Fig. 4C is an enlargement of region 4C of Fig. 4B in which a portion of the back-electrode 404 and the transparent conductive layer 412 have been cut away to illustrate the positional relationship between the counter-electrode strip 420, the electrode 433, the back-electrode 404, the semiconductor layer 410, and the transparent conductive layer 412. Furthermore, Fig. 4C illustrates how the electrical contact 433 joins the back- electrode 404 of one photovoltaic module 402 to the counter-electrode 420 of another photovoltaic modules 402.
- Fig. 4D is a cross-sectional view of a photovoltaic module 402 cell taken about line 4D-4D of Fig. 4B, it is possible to completely seal far-end 455 of photovoltaic module 402 with the transparent casing 310 in the manner illustrated.
- the layers in this seal are identical to the layers circumferentially disposed lengthwise on the back-electrode 404, namely, in order of deposition on the back- electrode 404 and/or elongated substrate 403, the semiconductor junction 410, the optional thin intrinsic layer (/-layer) 415, and the transparent conductive layer 412.
- the end 455 can receive sunlight and therefore contribute to the electrical generating properties of the photovoltaic module 402.
- the transparent casing 310 opens at both ends of the photovoltaic modules 402 such that electrical contacts can be extended from either end of the photovoltaic modules.
- Fig. 4D also illustrates how, in some embodiments, the various layers deposited on the back-electrode 404 are tapered at end 466 where the electrical contacts 433 are found.
- a terminal portion of the back-electrode 404 is exposed, as illustrated in Fig. 4D.
- the semiconductor junction 410, the optional /-layer 415, and the transparent conductive layer 412 are stripped away from a terminal portion of the back-electrode 404.
- a terminal portion of the semiconductor junction 410 is exposed as illustrated in Fig. 4D. That is, the optional /-layer 415 and the transparent conductive layer 412 are stripped away from a terminal portion of semiconductor junction 410.
- the photovoltaic module 402 is positioned on the counter-electrode strip 420 which, in turn, is positioned against electrically resistant the transparent casing 310. However, there is no requirement that the counter-electrode strip 420 make contact with an electrically resistant transparent casing 310.
- the photovoltaic modules 402 and their corresponding optional counter-electrode strips 420 are sealed within the transparent conductive layer 412 such that there is no unfavorable electrical contact.
- the photovoltaic modules 402 and the optional corresponding electrode strips 420 are fixedly held in place by a sealant such as ethylene vinyl acetate or silicone.
- the counter-electrode strips 420 are replaced with metal wires that are attached to the sides of the photovoltaic modules 402.
- the photovoltaic modules 402 implement a segmented design to eliminate the requirement of additional wire- or strip-like counter- electrodes. Details on segmented solar cell design are found in copending United States Patent 7,235,736, entitled “Monolithic Integration of Cylindrical Solar Cells," filed March 18, 2006, which is hereby incorporated by reference herein in its entirety.
- Fig. 4D further provides a perspective view of electrical contacts 433 that serially connect the photovoltaic modules 402.
- a first electrical contact 433-1 electrically interfaces with the counter-electrode 420
- a second electrical contact 433-2 electrically interfaces with the back-electrode 404 (the first electrode of photovoltaic module 402).
- the first electrical contact 433-1 serially connects the counter- electrode of the photovoltaic modules 402 to the back-electrode 404 of another photovoltaic module.
- the second electrical contact 433-2 serially connects the back- electrode 404 of a solar cell 12 of a photovoltaic module 402 to the counter-electrode 420 of solar cell 12 of another photovoltaic module 402, as shown in Fig.
- FIG. 4B Such an electrical configuration is possible regardless of whether the back-electrode 404 is itself a solid cylindrical substrate or is a layer of electrically conducting material on an elongated substrate 403 as depicted in Fig. 3B.
- Each photovoltaic module 402 is coated by a transparent casing 310.
- Fig. 4D provides an encapsulated photovoltaic module 402 where the filler material 330 and a transparent casing 310 cover the photovoltaic module, leaving only one end 466 to establish electrical contracts. It is to be appreciated that, in some embodiments, the filler material 330 and the transparent casing 310 are configured such that both ends (e.g., 455 and 466 in Fig. 4D) of the photovoltaic module 402 are available to establish electrical contacts.
- Figure 8 illustrates an assembly 800 of the present application in which the transparent conductive layer 412 is interrupted by breaks 810 that run along the long axis of the photovoltaic module 402 and cut completely through transparent conductive layer 412.
- the breaks 810 there are two breaks 810 that run the length of the photovoltaic module 402.
- the effect of such breaks 810 is that they electrically isolate the two counter-electrodes 420 associated with photovoltaic module 402 in the assembly 800.
- the breaks 810 can be made. For example, a laser or an HCl etch can be used.
- not all the photovoltaic modules 402 in the assembly 800 are electrically arranged in series.
- a first and second photovoltaic module can be electrically connected in parallel, and are thereby paired, by using a first electrical contact (e.g., an electrically conducting wire, etc., not shown) that joins the back-electrode 404 of a first photovoltaic module to the second photovoltaic module.
- a transparent conductive layer 412 of the first photovoltaic module 402 is electrically connected to a transparent conductive layer 412 of the second photovoltaic module 402 either by contacting the transparent conductive layers of the two photovoltaic modules either directly or through a second electrical contact (not shown).
- the pairs of photovoltaic modules are then electrically arranged in series.
- three, four, five, six, seven, eight, nine, ten, eleven or more photovoltaic modules 402 are electrically arranged in parallel. These parallel groups of photovoltaic modules 402 are then electrically arranged in series.
- a transparent casing 310 is used to encase photovoltaic modules 402. Because it is important to exclude air from the photovoltaic module 402, a filler material 330 may be used to prevent oxidation of components of the photovoltaic module 402. As illustrated in Figure 8, the filler material 330 (for example EVA) prevents seepage of oxygen and water into the photovoltaic module 402.
- the individually encapsulated photovoltaic modules 402 are assembled into a planar array as depicted in Figure 8.
- Figure 9 illustrates an assembly 900 of the present application in which elongated substrates 403 are hollowed. In fact, elongated substrate 403 can be hollowed in any of the embodiments of the present application.
- a hollowed elongated substrate 403 design is that it reduces the overall weight of the assembly.
- the elongated substrate 403 is hollowed when there is a channel that extends lengthwise through all or a portion of the elongated substrate 403.
- the elongated substrate 403 is metal tubing.
- back-electrode 404 is a thin layer of electrically conducting material, e.g. molybdenum, that is deposited on the elongated substrate 403.
- the elongated substrate 403 is made of glass or any of the materials described above in conjunction with the general description of elongated substrate 403.
- not all photovoltaic modules 402 in assembly 900 are electrically arranged in series.
- the pairs of photovoltaic modules are then electrically arranged in series.
- three, four, five, six, seven, eight, nine, ten, eleven or more photovoltaic modules 402 are electrically arranged in parallel. These parallel groups of photovoltaic modules 402 are then electrically arranged in series.
- a transparent casing 310 can be used to cover photovoltaic modules 402. Because it is important to exclude air from the photovoltaic module 402, additional sealant may be used to prevent oxidation of the photovoltaic module 402. Alternatively, as illustrated in Figure 9, a filler material 330 (for example, EVA or silicone, etc.) may be used to prevent seepage of oxygen and water into photovoltaic modules 402. In some embodiments, the individually encased photovoltaic modules 402 are assembled into a planar array as depicted in Fig. 9. Fig.
- FIG. 10 illustrates an assembly 1000 of the present application in which counter-electrodes 420, transparent conductive layers 412, and junctions 410 are pierced, in the manner illustrated, in order to form two discrete junctions in parallel.
- the transparent casing 310 for example as depicted in Figure 14, may be used to encase photovoltaic module 402 with or without the filler material 330.
- a transparent casing 310 seals a photovoltaic module 402 to provide support and protection to the photovoltaic module.
- the size and dimensions of the transparent casing 310 are determined by the size and dimension of the photovoltaic modules 402.
- the transparent casing 310 may be made of glass, plastic or any other suitable material. Examples of materials that can be used to make the transparent casing 310 include, but are not limited to, glass (e.g., soda lime glass), acrylics such as polymethylmethacrylate, polycarbonate, fluoropolymer (e.g., TEFZEL or TEFLON), polyethylene terephthalate (PET), TEDLAR, or some other suitable transparent material.
- the transparent casing 310 is a glass tubular rod into which a solar cell is fitted.
- the photovoltaic module is then sealed with a filler material 330 that is poured into the casing 310 in liquid or semi-liquid form, thereby sealing the device.
- the transparent casing 310 is constructed using blow molding.
- Blow molding involves clamping the ends of a softened tube of polymers, which can be either extruded or reheated, inflating the polymer against the mold walls with a blow pin, and cooling the product by conduction or evaporation of volatile fluids in the container.
- Three general types of blow molding are extrusion blow molding, injection blow molding, and stretch blow molding.
- United States Patent Number 237168 describes a process for blow molding (e.g., 602 in Figure 6A).
- Other forms of blow molding that can be used to make the transparent casing 310 include low density polyethylene (LDPE) blow molding, high density polyethylene (HDPE) blow molding and polypropylene (PP) blow molding
- the extrusion blow molding method comprises a Parison (e.g., 602 in Figure 6A) and mold halves that close onto the Parison (e.g., 604 in Figure 6A).
- EBM extrusion blow molding
- material is melted and extruded into a hollow tube (e.g., a Parison as depicted in Figure 6A).
- the Parison is then captured by closing it into a cooled metal mold. Air is then blown into the Parison, inflating it into the shape of the hollow bottle, container or part. After the material has cooled sufficiently, the mold is opened and the part is ejected.
- EBM processes consist of either continuous or intermittent extrusion of the Parison 602.
- the types of EBM equipment may be categorized accordingly.
- Typical continuous extrusion equipments usually comprise rotary wheel blow molding systems and a shuttle machinery that transports the finished products from the Parison.
- Exemplary intermittent extrusion machinery comprises a reciprocating screw machinery and an accumulator head machinery.
- Basic polymers, such as PP, HDPE, PVC and PET are increasingly being coextruded with high barrier resins, such as EVOH or Nylon, to provide permeation resistance to water, oxygen, CO 2 or other substances.
- blow molding is a low pressure process, with typical blow air pressures of 25 to 150 psi. This low pressure process allows the production of economical low-force clamping stations, while parts can still be produced with surface finishes ranging from high gloss to textured. The resulting low stresses in the molded parts also help make the containers resistant to strain and environmental stress cracking.
- IBM injection blow molding
- material is injection molded onto a core pin ⁇ e.g., 3012 in Figure 6B); then the core pin is rotated to a blow molding station ⁇ e.g., 3014 in Figure 6B) to be inflated and cooled.
- the process is divided in to three steps: injection, blowing and ejection.
- a typical IBM machine is based on an extruder barrel and screw assembly which melts the polymer. The molten polymer is fed into a manifold where it is injected through nozzles into a hollow, heated preform mold ⁇ e.g., 3016 in Figure 6B).
- the preform mold forms the external shape and is clamped around a mandrel (the core rod, e.g., 3012 in Figure 6B) which forms the internal shape of the preform.
- the preform consists of a fully formed bottle/jar neck with a thick tube of polymer attached, which will form the body.
- the preform mold opens and the core rod is rotated and clamped into the hollow, chilled blow mold.
- the core rod 3012 opens and allows compressed air into the preform 614, which inflates it to the finished article shape.
- the blow mold opens and the core rod is rotated to the ejection position.
- the finished article is stripped off the core rod and leak-tested prior to packing.
- the preform and blow mold can have many cavities, typically three to sixteen depending on the article size and the required output. There are three sets of core rods, which allow concurrent preform injection, blow molding and ejection.
- Stretch blow molding In the stretch blow molding (SBM) process, as depicted in Figure 6C, the material is first molded into a "preform," e.g., 3628 in Figure 6C, using the injection molded process.
- a typical SBM system comprises a stretch blow pin (e.g., 3622 in Figure 6C), an air entrance (e.g., 3624 in Figure 6C), mold vents (e.g., 3626 in Figure 6C), a preform (e.g., 3628 in Figure 6C), and cooling channels (e.g., 3632 in Figure 6C). These preforms are produced with the necks of the bottles, including threads (the "finish") on one end.
- preforms are packaged, and fed later, after cooling, into an EBM blow molding machine.
- the preforms are heated, typically using infrared heaters, above their glass transition temperature, then blown using high pressure air into bottles using metal blow molds.
- the preform is stretched with a core rod as part of the process (e.g., as in position 3630 in Figure 6C).
- the stretching of some polymers, such as PET (polyethylene terepthalate) results in strain hardening of the resin and thus allows the bottles to resist deforming under the pressures formed by carbonated beverages, which typically approach 60 psi.
- Figure 6C shows what happens inside the blow mold.
- the preform is first stretched mechanically with a stretch rod. As the rod travels down low-pressure air of 5 to 25 bar (70 to 350 psi) is introduced blowing a 'bubble.' Once the stretch rod is fully extended, high-pressure air of up to 40 bar (580 psi) blows the expanded bubble into the shape of the blow mold.
- the transparent casing 310 is made of plastic rather than glass. Production of the transparent casing 310 in such embodiments differs from glass transparent casing production even though the basic molding mechanisms remain the same.
- a typical plastic transparent casing manufacturing process comprises the following steps: extrusion, heading, decorating, and capping, with the latter two steps being optional.
- the transparent casing 310 is made using extrusion molding. A mixture of resin is placed into an extruder hopper. The extruder is temperature controlled as the resin is fed through to ensure proper melt of the resin. The material is extruded through a set of sizing dies that are encapsulated within a right angle cross section attached to the extruder. The forming die controls the shape of the transparent casing 310. The formed plastic sleeve cools under blown air or in a water bath and hardens on a moving belt. After cooling step, the formed plastic sleeve is ready for cutting to a given length by a rotating knife.
- the forming die controls the shape of the transparent casing 310.
- the forming dies are custom- made such that the shape of transparent casing 310 complements the shape of the photovoltaic module 402.
- the forming die also controls the wall thickness of the transparent casing 310.
- the transparent casing 310 has a wall thickness of 2 mm or thicker, 1 mm or thicker, 0.5 mm or thicker, 0.3 mm or thicker, or of any thickness between 0 and 0.3 mm.
- the sleeve is placed on a conveyor that takes it to the heading operation where the shoulder of the head is bound to the body of the tube while, at the same time, the thread is formed.
- the sleeve is then placed on a mandrel and transferred down to the slug pick-up station.
- the hot melt strip or slug is fused onto the end of the sleeve and then transferred onto the mold station.
- the angle of the shoulder, the thread and the orifice are molded at the end of the sleeve.
- the head is then cooled, removed from the mold, and transferred into a pin conveyor.
- the headed transparent casing is then conveyed to the accumulator.
- the accumulator is designed to balance the heading and decorating operation. From here, the transparent casing 310 may go to the decorating operation. Inks for the press are premixed and placed in the fountains. At this point, the ink is transferred onto a plate by a series of rollers. The plate then comes in contact with a rubber blanket, picking up the ink and transferring it onto the circumference of the transparent casing 310. The wet ink on the tube is cured by ultra-violet light or heat. In the embodiments in accordance with the present application, transparency is required in the tube products so the color process is unnecessary. However, a similar method may be used to apply a protective coating to the transparent casing 310.
- a conveyor transfers the tube to the capping station where the cap is applied and torqued to the customer's specifications.
- the capping step is unnecessary for the scope of this application.
- Glass is a preferred material choice for the transparent casing 310 relative to plastics because glass provides better waterproofing and therefore provides protection and helps to maintain the performance and prolong the lifetime of the photovoltaic module 402. Similar to plastics, glass may be made into a transparent casing 310 using the standard blow molding technologies. In addition, techniques such as casting, extrusion, drawing, pressing, heat shrinking or other fabrication processes may also be applied to manufacture suitable glass transparent casings 310 to circumferentially cover and/or encapsulate photovoltaic modules 402. Molding technologies, in particular micromolding technologies for microfabrication, are discussed in greater detail in Madou, Fundamentals of Microfabrication, Chapter 6, pp.
- Transparent casing made of glass.
- the transparent casing 310 is made of glass.
- glass In its pure form, glass is a transparent, relatively strong, hard- wearing, essentially inert, and biologically inactive material that can be formed with very smooth and impervious surfaces.
- the present application contemplates a wide variety of glasses for use in making transparent casings 310, some of which are described in this section and others of which are know to those of skill in the relevant arts, and still others that are described in other portions of this application.
- Common glass contains about 70% amorphous silicon dioxide (SiO 2 ), which is the same chemical compound found in quartz, and its polycrystalline form, sand. Common glass is used in some embodiments of the present application to make a transparent casing 310.
- common glass is brittle and will break into sharp shards.
- the properties of common glass are modified, or even changed entirely, with the addition of other compounds or heat treatment.
- Pure silica SiO 2
- Two other substances can be added to common glass to simplify processing.
- One is soda (sodium carbonate Na 2 CO 3 ), or potash, the equivalent potassium compound, which lowers the melting point to about 1000°C.
- soda makes the glass water-soluble, which is undesirable, so lime (calcium oxide, CaO) is a third component that is added to restore insolubility.
- the resulting glass contains about 70% silica and is called a soda-lime glass. Soda-lime glass is used in some embodiments of the present application to make a transparent casing 310.
- soda-lime most common glass has other ingredients added to change its properties.
- Lead glass such as lead crystal or flint glass, is more 'brilliant' because the increased refractive index causes noticeably more "sparkles", while boron may be added to change the thermal and electrical properties, as in Pyrex.
- boron may be added to change the thermal and electrical properties, as in Pyrex.
- Adding barium also increases the refractive index.
- Thorium oxide gives glass a high refractive index and low dispersion, and was formerly used in producing high-quality lenses, but due to its radioactivity has been replaced by lanthanum oxide in modern glasses.
- cerium(IV) oxide can be used for glass that absorbs UV wavelengths (biologically damaging ionizing radiation). Glass having one or more of these additives is used in some embodiments of the present application to make a transparent casing 310.
- glass material include, but is not limited to, aluminosilicate, borosilicate (e.g. , PYREX ® , DURAN ® , SIMAX ® ), dichroic, germanium / semiconductor, glass ceramic, silicate / fused silica, soda lime, quartz, chalcogenide / sulphide, cereated glass, and fluoride glass and a transparent casing 310 can be made of any of these materials.
- aluminosilicate e.g. , PYREX ® , DURAN ® , SIMAX ®
- dichroic germanium / semiconductor
- glass ceramic silicate / fused silica
- soda lime soda lime
- quartz chalcogenide / sulphide
- cereated glass chalcogenide / sulphide
- fluoride glass and a transparent casing 310 can be made of any of these materials.
- a transparent casing 310 is made of glass material such as borosilicate glass.
- borosilicate glass trade names for borosilicate glass include, but are not limited, to
- borosilicate glass is SiO 2 with boron and various other elements added. Borosilicate glass is easier to hot work than materials such as quartz, making fabrication less costly. Material cost for borosilicate glass is also considerably less than fused quartz. Compared to most glass, except fused quartz, borosilicate glass has low coefficient of expansion, three times less than soda lime glass. This makes borosilicate glass useful in thermal environments, without the risk of breakage due to thermal shock.
- a float process can be used to make relatively low cost optical quality sheet borosilicate glass in a variety of thickness from less than lmm to over 30mm thick. Relative to quartz, borosilicate glass is easily moldable. In addition, borosilicate glass has minimum devitrification when molding and flame working. This means high quality surfaces can be maintained when molding and slumping. Borosilicate glass is thermally stable up to 500 0 C for continuous use. Borosilicate glass is also more resistant to non-fluorinated chemicals than household soda lime glass and mechanically stronger and harder than soda lime glass. Borosilicate is usually two to three times more expensive than soda lime glass.
- the transparent casing 310 can be made with glass such as, for example, aluminosilicate, borosilicate ⁇ e.g., PYRAX ® , DURAN ® , SIMAX ® ), dichroic, germanium / semiconductor, glass ceramic, silicate / fused silica, soda lime, quartz, chalcogenide / sulphide, cereated glass and/or fluoride glass.
- aluminosilicate borosilicate ⁇ e.g., PYRAX ® , DURAN ® , SIMAX ®
- dichroic germanium / semiconductor
- glass ceramic silicate / fused silica
- soda lime soda lime
- quartz chalcogenide / sulphide
- cereated glass and/or fluoride glass cereated glass and/or fluoride glass.
- Transparent casing made of plastic is made of clear plastic.
- Plastics are a cheaper alternative to glass.
- plastic material is in general less stable under heat, has less favorable optical properties and does not prevent molecular water from penetrating the transparent casing 310. The last factor, if not rectified, damages photovoltaic modules 402 and severely reduces their lifetime.
- the water resistant layer described in Section 5.1.1. is used to prevent water seepage into the photovoltaic modules 402 when the transparent casing 310 is made of plastic.
- a transparent casing 310 A wide variety of materials can be used to make a transparent casing 310, including, but not limited to, ethylene vinyl acetate (EVA), perfluoroalkoxy fluorocarbon (PFA), nylon / polyamide, cross-linked polyethylene (PEX), polyolefin, polypropylene (PP), polyethylene terephtalate glycol (PETG), polytetrafluoroethylene (PTFE), thermoplastic copolymer (for example, ETFE ® , which is a derived from the polymerization of ethylene and tetrafluoroethylene: TEFLON ® monomers), polyurethane / urethane, polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), TYGON ® , Vinyl, and VITON ® , acrylics, and polycarbonates.
- EVA ethylene vinyl acetate
- PFA perfluoroalkoxy fluorocarbon
- nylon amide nylon /
- a filler material 330 is provided to seal a photovoltaic module 402 from adverse exposure to water or oxygen.
- a custom-designed transparent casing 310 made of either glass or plastics or other suitable transparent material, may be used to encase the corresponding embodiments of a photovoltaic module 402 to achieve tight fitting and better protection.
- Rod or cylindrical shaped photovoltaic modules 402, individually encased by transparent a casing 310 can be assembled into solar cell assemblies of any shape and size.
- the assembly can be monofacial, bifacial, multi-facial, or omnifacial arrays.
- There is no limit to the number of photovoltaic modules 402 in this plurality e.g., 10 or more, 100 or more, 1000 or more, 10,000 or more, between 5,000 and one million photovoltaic modules 402, etc.).
- photovoltaic modules 402 may also be encapsulated as arrays.
- multiple transparent casings may be manufactured as fused arrays.
- There is no limit to the number of transparent casings 310 in the assembly as depicted in Figure 7 e.g., 10 or more, 100 or more, 1000 or more, 10,000 or more, between 5,000 and one million transparent casings 310, etc.).
- a assembly is further completed by loading the photovoltaic module 402 (for example 402 in Figure 4A) into all or a portion of the transparent casing 310 in the array of casings.
- a photovoltaic module 402 having a filler material coated thereon is assembled into a transparent casing 310.
- the filler material 330 comprises one or more of the properties of: electrical insulation, oxidation eliminating effect, water proofing, and/or physical protection of transparent conductive layer 412 of a solar cell 12 of a photovoltaic module 402 during assembly.
- the transparent casing 310 and filler material 330 assembled into the photovoltaic module 402 using a suction loading method A transparent casing 310, made of transparent glass, plastics or other suitable material, is sealed at one end. Materials that are used to form the filler material 330, for example, silicone gel, are then poured into the sealed transparent casing 310.
- a silicone gel is Wacker SILGEL ® 612 (Wacker-Chemie GmbH, Kunststoff, Germany). Wacker SILGEL ® 612 is a pourable, addition-curing, RTV-2 silicone rubber that vulcanizes at room temperature to a soft silicone gel.
- silicone gel is SYLGARD ® silicone elastomer (Dow Corning).
- Another example of a silicone gel is Wacker ELASTOSIL ® 601 (Wacker-Chemie GmbH, Kunststoff, Germany).
- Wacker ELASTOSIL ® 601 is a pourable, addition-curing, RTV-2 silicone rubber.
- silicones can be considered a molecular hybrid between glass and organic linear polymers. As shown in Figure 16, if there are no R groups, only oxygen, the structure is inorganic silica glass (called a Q-type Si). If one oxygen is substituted with an R group (e.g.
- T- type Si a resin or silsequioxane (T- type Si) material is formed. These silsequioxanes are more flexible than the Q-type materials. Finally, if two oxygen atoms are replaced by organic groups a very flexible linear polymer (D-type Si) is obtained. The last structure shown (M-type Si) has three oxygen atoms replaced by R groups, resulting in an end cap structure. Because the backbone chain flexibility is increasing as R groups are added, the modulus of the materials and their coefficients of thermal expansion (CTE) also change.
- CTE coefficients of thermal expansion
- the silicone used to form filler material is a Q- type silicone, a silsequioxane, a D-type silicone, or an M-type silicone.
- the elongated photovoltaic module 402 is then loaded into a transparent casing 310.
- Optional suction force may be applied at the open end of the transparent casing 310 to draw the filler material upwards to completely fill the space between the outer layers of the solar cells 12 and the transparent casing 310.
- a transparent casing 310 and filler material are assembled into a photovoltaic module using a pressure loading method.
- the transparent casing 310 made of transparent glass, plastics or other suitable material, is dipped in a container containing filler material (e.g., silicone gel) used to form the filler material 330.
- the photovoltaic module 402 is then loaded into the transparent casing 310. Pressure force is applied at the filler material surface to put the filler material upwards to completely fill the space between outer layers of the solar cells 12 and the transparent casing 310.
- a transparent casing 310 and filler material 330 are assembled into the photovoltaic module 402 using a pour-and-slide loading method.
- a transparent casing 310 made of transparent glass, plastics or other suitable material, is sealed at one end.
- a container, containing filler material e.g., silicone gel
- the material that is being poured into the transparent casing 310 fills up the space between the photovoltaic module 402 and the transparent casing 310.
- the filler material that is being poured down the side of the transparent casing 310 provides lubrication to facilitate the slide-loading process.
- the transparent casing 310 is formed on the filler material 330) by spin coating, dip coating, plastic spraying, casting, Doctor's blade or tape casting, glow discharge polymerization, or UV curing. These techniques are discussed in greater detail in Madou, Fundamentals of Microfabrication, Chapter 3, pp. 159-161, second edition, CRC Press, New York, 2002, which is hereby incorporated by reference herein in its entirety. Casting is particularly suitable in instances where the transparent casing 310 is formed from acrylics or polycarbonates. UV curing is particularly suitable in instances where the transparent casing 310 is formed from an acrylic.
- any layer outside a photovoltaic module 402 (for example, the filler material 330 or the transparent casing 310) should not adversely affect the properties of incident radiation on the photovoltaic module. There are multiple factors to consider in optimizing the efficiency of the photovoltaic modules 402. A few significant factors will be discussed in detail in relation to solar cell production.
- Transparency In order to establish maximized input into semiconductor junction 410, absorption of the incident radiation by any layer outside a solar cell 12 should be avoided or minimized. This transparency requirement varies as a function of the absorption properties of the underlying semiconductor junction 410 of solar cells 12 of a photovoltaic module.
- the transparent casing 310 and the filler material 330 should be as transparent as possible to the wavelengths absorbed by the semiconductor junction 410.
- materials used to make transparent casing 310 and the filler material 330 should be transparent to light in the 500 nm to 1200 nm wavelength range. Ultraviolet Stability.
- any material used to construct a layer outside a solar cell 12 of the photovoltaic module 402 should be chemically stable and, in particular, stable upon exposure to UV radiation. More specifically, such material should not become less transparent upon UV exposure. Ordinary glass partially blocks UVA (wavelengths 400 and 300 nm) and it totally blocks UVC and UVB (wavelengths lower than 300 nm).
- the UV blocking effect of glass is usually due to additives, e.g. sodium carbonate, in glass.
- additives in the transparent casings 310 made of glass can render the casing 310 entirely UV protective. In such embodiments, because the transparent casing 310 provides complete protection from UV wavelengths, the UV stability requirements of the underlying filler material 330 are reduced.
- EVA, PVB, TPU (urethane), silicones, polycarbonates, and acrylics can be adapted to form a filler material 330 when the transparent casing 310 is made of UV protective glass.
- UV stability requirement may be adopted.
- Plastic materials that are sensitive to UV radiation are not used as the transparent casing 310 in some embodiments because yellowing of the material and/or filler material 330 blocks radiation input into the photovoltaic modules 402 and reduces their efficiency.
- cracking of the transparent casing 310 due to UV exposure permanently damages the photovoltaic modules 402.
- fluoropolymers like ETFE, and THV (Dyneon) are UV stable and highly transparent, while PET is transparent, but not sufficiently UV stable.
- the transparent casing 310 is made of fluoropolymer based on monomers of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride.
- PVC polyvinyl chloride
- VVC polyvinyl chloride
- Methods have been developed to render PVC UV- stabilized, but even UV stabilized PVC is typically not sufficiently durable (for example, yellowing and cracking of PVC product will occur over relative short term usage).
- Urethanes are better suited, but depend on the exact chemical nature of the polymer backbone. Urethane material is stable when the polymer backbone is formed by less reactive chemical groups (e.g., aliphatic or aromatic). On the other hand when the polymer backbone is formed by more reactive groups (e.g., double bonds), yellowing of the material occurs as a result of UV-catalyzed breakdown of the double bonds. Similarly, EVA will yellow and so will PVB upon continued exposure to UV light.
- Other options are polycarbonate (can be stabilized against UV for up to 10 years OD exposure) or acrylics (inherently UV stable).
- a characteristic of the transparent casing 310 and the filler material 330 in some embodiments is electrical insulation.
- conductive material is used to form either the transparent casing 310 or the filler material 330.
- the combined width of each of the layers outside the solar cells 12 of a photovoltaic module 402 (e.g., the combination of the transparent casing 310 and/or filler material 330) in some embodiments is:
- the refractive index of many, but not all, of the materials used to make the transparent casing 310 and/or the filler material 330 is about 1.5.
- values of r 0 are permissible that are less than 1.5 * r,. This constraint places a boundary on allowable thickness for the combination of the transparent casing 310 and/or the filler material 330.
- the diameter of the outermost layer e.g.
- the transparent casing 310) is between 20 and 24 mm, between 15 and 30 mm, over 20 mm, over 22 mm, or over 15 mm.
- the diameter of the photovoltaic module 402 is between 13 and 17 mm, between 10 and 20 mm, below 22 cm, below 20 cm, or below 17 cm.
- the thickness of the transparent casing 310 and/or the filler material 330 is 1.5 mm, between 1.2 and 1.7 mm, or between 1 mm and 2 mm.
- the photovoltaic module 402 When light is refracted towards solar cells 12 of the photovoltaic module 402 while passing through layers 310 and 330, the photovoltaic module 402 are able to capture more light than if layers 310 and 330 were not present. This increases the effective optical area of the photovoltaic module 402 (specifically the effective optical area of transparent conductive layer 412). As the amount of refraction increases, so does the effective optical area of layer 412.
- ⁇ 2 is the effective refractive index of the transparent casing 310 and/or the filler material 330 (also known as ⁇ Oute r ⁇ ng)- If >", is much smaller than r o , then ⁇ 2 is small and ⁇ 2 must be much larger than 1 for the photovoltaic module 402 to have an effective optical area approximately equal to the transparent casing 310. If r, is only slightly smaller than r o , then ⁇ 2 is larger and ⁇ 2 does not have to be much larger than 1 to achieve the same effect.
- a photovoltaic module 402 (also interchangeably referred to herein as an elongated photovoltaic module) is one that is characterized by having a longitudinal dimension and a width dimension.
- the longitudinal dimension exceeds the width dimension by at least a factor of 4, at least a factor of 5, or at least a factor of 6.
- the longitudinal dimension of the photovoltaic module 402 is 10 centimeters (cm) or greater, 20 cm or greater, 100 cm or greater.
- the width dimension of the photovoltaic module 402 is a diameter of 500 mm or more, 1 cm or more, 2 cm or more, 5 cm or more, or 10 cm or more.
- the elongated substrate of the module can be rigid in nature.
- the elongated substrate can be a solid substrate, or a hollow substrate.
- the elongated substrate can be closed at both ends, only at one end, or open at both ends.
- the semiconductor junction 410 is a heteroj unction between an absorber layer 502, disposed on all or a portion of the back-electrode 404, and a junction partner layer 504, disposed on all or a portion of the absorber layer 502.
- the junction partner layer 504 is disposed on all or a portion of back-electrode 404
- the absorber layer 502 is disposed on all or a portion of the junction partner layer 504.
- the absorber 502 and junction partner 504 layers are composed of different semiconductors with different band gaps and electron affinities such that the junction partner layer 504 has a larger band gap than the absorber layer 502.
- the absorber layer 502 is /?-doped and junction partner layer 504 (window layer) is n-doped.
- the transparent conductive layer 412 is « + -doped.
- the absorber layer 502 is r ⁇ -doped and junction partner layer 504 is/?-doped.
- transparent conductive layer 412 isp + -doped.
- the semiconductors listed in Pandey, Handbook of Semiconductor Electrodeposition, Marcel Dekker Inc., 1996, Appendix 5, which is hereby incorporated by reference herein in its entirety, are used to form the semiconductor junction 410.
- junction partner layer The absorber absorbs photons having energies above the band gap of the material of which it is made (more below), which generates electrons that drift under the influence of the potential generated by the junction.
- drift is a charged particle's response to an applied electric field. The electrons drift to the electrode connected to the absorber, drift through the external load (thus generating electricity), and then into the junction partner layer. At the junction partner layer, the electrons recombine with holes in the junction partner layer.
- junctions 410 of the present application a significant portion if not substantially all of the electricity generated by the junction (e.g., the electrons in the external load) derives from the absorption of photons by the absorber, e.g., greater than 30%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, greater than 98%, greater than 99%, or substantially all of the electricity generated by the junction 410 derives from the absorption of photons in the visible spectrum by the absorber.
- the absorption of photons by the absorber e.g., greater than 30%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, greater than 98%, greater than 99%, or substantially all of the electricity generated by the junction 410 derives from the absorption of photons in the visible spectrum by the absorber.
- a significant portion if not substantially all of the electricity generated by photovoltaic modules 402 derives from the absorption of photons by the absorber, e.g., greater than 30%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, greater than 98%, greater than 99%, or substantially all of the electricity generated by the junction 410 derives from the absorption of photons by the absorber.
- the absorption of photons by the absorber e.g., greater than 30%, greater than 50%, greater than 60%, greater than 70%, greater than 80%, greater than 90%, greater than 95%, greater than 98%, greater than 99%, or substantially all of the electricity generated by the junction 410 derives from the absorption of photons by the absorber.
- dye and polymer-based thin-film solar cells are generally not p-n-junction solar cells, and the dominant mode of electron-hole separation is via charge carrier diffusion, not drift in response to an applied electric field.
- dye- and polymer-based thin film solar cells see Chapter 15 of Handbook of Photovoltaic Science and Engineering, 2003, Luque and Hegedus (eds.), Wiley & Sons, West London, England, the entire contents of which are hereby incorporated by reference herein.
- materials for use in the semiconductor junctions 410 are inorganic meaning that they substantially do not contain reduced carbon, noting that negligible amounts of reduced carbon may naturally exist as impurities in such materials.
- inorganic compound refers to all compounds, except hydrocarbons and derivatives of hydrocarbons as set forth by Moeller, 1982, Inorganic Chemistry, A modern Introduction, Wiley, New York, p. 2, which is hereby incorporated by reference herein.
- materials for use in semiconductor junctions are solids, that is, the atoms making up the material have fixed positions in space relative to each other, with the exception that the atoms may vibrate about those positions due to the thermal energy in the material.
- a solid object is in the state of matter characterized by resistance to deformation and changes of volume.
- a solid has the following properties. First, the atoms or molecules that make up a solid are packed closely together. Second, the constituent elements of a solid have fixed positions in space relative to each other. This accounts for the solid's rigidity.
- a crystal structure which is one non-limiting form of a solid, is a unique arrangement of atoms in a crystal.
- a crystal structure is composed of a unit cell, a set of atoms arranged in a particular way; which is periodically repeated in three dimensions on a lattice. The spacing between unit cells in various directions is called its lattice parameters.
- the symmetry properties of the crystal are embodied in its space group.
- a crystal's structure and symmetry play a role in determining many of its properties, such as cleavage, electronic band structure, and optical properties.
- the semiconductor junction is in a solid state. In some embodiments, all of the layers in the solar cell are in a solid state. In some embodiments, any combination of the substrate 403, the back-electrode 404, the semiconductor junction 410, the optional intrinsic layer 415, the transparent conductive layer 412, the optional filler material 330, the transparent casing 310, the water resistant layer, and the antireflective coating is in the solid state.
- crystalline it is meant that the atoms or molecules making up the material are arranged in an ordered, repeating pattern that extends in all three spatial dimensions.
- polycrystalline it is meant that the material includes crystalline regions, but that the arrangement of atoms or molecules within each particular crystalline region is not necessarily related to the arrangement of atoms or molecules within other crystalline regions. In polycrystalline materials, grain boundaries typically separate one crystalline region from another.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the material making up the absorber and/or the junction partner layer is in a crystalline state.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the molecules of the material making up the absorber and/or the junction partner layer of a semiconductor junction 410 are independently arranged into one or more crystals, where such crystals are in the triclinic, monoclinic, orthorhombic, tetragonal, trigonal (rhombohedral lattice), trigonal (hexagonal lattice), hexagonal, or cubic crystal system defined by Table 3.1 of Stout and Jensen, 1989, X-ray Structure Determination, A Practical Guide, John Wiley & Sons, p.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the molecules of the material making up the absorber and/or the junction partner layer of a semiconductor junction 410 are independently arranged into one or more crystals that each conform to the symmetry of the triclinic crystal system, that each conform to the symmetry of the monoclinic crystal system, that each conform to the symmetry of the orthorhombic crystal system, that each conform to the symmetry of the tetragonal crystal system, that each conform to the symmetry of the trigonal (rhombohedral lattice) crystal system, that each conform to the symmetry of the trigonal (hexagonal lattice) crystal system, that that each conform to the symmetry of the hexagonal crystal system, or that each conform to the symmetry of the cubic crystal system.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the molecules of the material making up the absorber and/or the junction partner layer of a semiconductor junction 410 are independently arranged into one or more crystals, where each of the one or more crystals is independently in any one of the 230 possible space groups.
- 230 possible space groups see Table 3.4 of Stout and Jensen, 1989, X-ray Structure Determination, A Practical Guide, John Wiley & Sons, p. 68-69, which is hereby incorporated by reference herein.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the molecules of the material making up the absorber and/or the junction partner layer of a semiconductor junction 410 are arranged in a cubic space group.
- a cubic space group see Table 3.4 of Stout and Jensen, 1989, X-ray Structure Determination, A Practical Guide, John Wiley & Sons, p. 68-69, which is hereby incorporated by reference herein.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the molecules of the material making up the absorber and/or the junction partner layer of a semiconductor junction 410 are arranged in a tetragonal space group.
- tetragonal space groups see Table 3.4 of Stout and Jensen, 1989, X-ray Structure Determination, A Practical Guide, John Wiley & Sons, p. 68-69, which is hereby incorporated by reference herein.
- more than 10%, more than 20%, more than 30%, more than 40%, more than 50%, more than 60%, more than 70%, more than 80%, more than 90%, more than 99% or more of the molecules of the material making up the absorber and/or the junction partner layer of a semiconductor junction 410 are arranged in the Fm3m space group.
- the absorber and/or the junction partner layer of a semiconductor junction may include one or more grain boundaries.
- the materials used in semiconductor junctions 410 are solid inorganic semiconductors. That is, such materials are inorganic, they are in a solid state, and they are semiconductors. A direct consequence of such materials being in such a state is that the electronic band structure of such materials has a unique band structure in which there is an almost fully occupied valence band and an almost fully unoccupied conduction band, with a forbidden gap between the valence band and the conduction band that is referred to herein as the band gap.
- at least 80%, or at least 90%, or substantially of the molecules in the absorber layer are inorganic semiconductor molecules, and at least 80%, or at least 90%, or substantially all of the molecules in the junction partner layer are inorganic semiconductor molecules.
- amorphous it is meant a material in which there is no long-range order of the positions of the atoms or molecules making up the material. For example, on length scales greater than 10 nm, or greater than 50 nm, there is typically no recognizable order in an amorphous material. However, on small length scales ⁇ e.g., less than 5 nm, or less than 2 nm) even amorphous materials may have some short-range order among the atomic positions such that, on small length scales, such materials obey the requirements of one of the 230 possible space groups in Standard orientation.
- semiconducting materials suitable for use in various embodiments of solar cells are non-polymeric (e.g., not based on organic polymers).
- a polymer may have a repeating chemical structure based on the monomeric units of which it is made, those of skill in the art recognize that polymers are typically found in the amorphous state because there is typically no long-range order to the spatial positions of portions of the polymer relative to other portions and because the spatial positions of such polymers do not obey the symmetry requirements of any of the 230 possible space groups or any of the symmetry requirements of any of the seven crystal systems.
- polymer materials may have short-range crystalline regions.
- At least forty percent, at least fifty percent, at least sixty percent, at least seventy percent, at least eighty percent, at least ninety percent, at least ninety-five percent, at least 99 percent or substantially all of the energy generated in the solar cell is generated by the absorber layer ⁇ e.g. any layer that is deemed to be an absorber layer in a semiconductor junction 410 disclosed herein) absorbing photons with energies at or above the band gap of the absorber layer.
- At least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, at least about 99%, or even more of the energy generated in the solar cell is generated by the absorber layer ⁇ e.g., any layer that is deemed to be an absorber layer in a semiconductor junction 410 disclosed herein) absorbing photons with energies at or above the band gap of the absorber layer.
- the semiconductor junction e.g., absorber layer 502 and junction partner layer 504, each have a band gap between, e.g., about 0.6 eV (about 2066 nm) and about 2.4 eV (about 516 nm).
- a semiconductor junction 410 has a band gap between, e.g., about 0.7 eV (about 1771 nm) and about 2.2 eV (about 563 nm).
- the absorber layer or the junction partner layer in a semiconductor junction 410 band gap has a band gap between, e.g., about 0.8 eV (about 1550 nm) and about 2.0 eV (about 620 nm).
- an absorber layer or a junction partner layer in a semiconductor junction 410 has a band gap between, e.g., about 0.9 eV (about 1378 nm) and about 1.8 eV (about 689 nm). In some embodiments, an absorber layer or a junction partner layer in a semiconductor junction 410 has a band gap between, e.g., about 1 eV (about 1240 nm) and about 1.6 eV (about 775 nm). In some embodiments, an absorber layer or a junction partner layer in a semiconductor junction 410 has a band gap between, e.g., about 1.1 eV (about 1127 nm) and about 1.4 eV (about 886 nm).
- an absorber layer or a junction partner layer in a semiconductor junction 410 has a band gap between, e.g., about 1.1 eV (about 1127 nm) and about 1.2 eV (about 1033 nm). In some embodiments, an absorber layer or a junction partner layer in a semiconductor junction 41 410 has a band gap between, e.g., about 1.2 eV (about 1033 nm) and about 1.3 eV (about 954 nm).
- the absorber layer and/or the junction partner layer in a semiconductor junction 410 has a band gap between, e.g., 0.6 eV (2066 nm) and 2.4 eV (516 nm), 0.7 eV (1771 nm) and 2.2 eV (563 nm), 0.8 eV (1550 nm) and 2.0 eV (620 nm), 0.9 eV (1378 nm) and 1.8 eV (689 nm), 1 eV (1240 nm) and 1.6 eV (775 nm), 1.1 eV (1127 nm) and 1.4 eV (886 nm), or 1.2 eV (1033 nm) and 1.3 eV (954 nm).
- an absorber layer in a semiconductor junction 410 has a band gap between, e.g., 0.6 eV (2066 nm) and 2.4 eV (516 nm), 0.7 eV (1771 nm) and 2.2 eV (563 nm), e.g., 0.8 eV (1550 nm) and 2.0 eV (620 nm), 0.9 eV (1378 nm) and 1.8 eV (689 nm), 1 eV
- a junction partner layer in a semiconductor junction 410 has a band gap between, e.g., 0.6 eV (2066 nm) and 2.4 eV (516 nm), e.g., 0.7 eV (1771 nm) and 2.2 eV (563 nm), 0.8 eV (1550 nm) and 2.0 eV (620 nm), e.g., 0.9 eV (1378 nm) and 1.8 eV (689 nm), e.g., 1 eV (1240 nm) and 1.6 eV (775 nm), 1.1 eV (1127 nm) and 1.4 eV (886 nm) or between, e.g., 1.2 eV (1033 nm) and 1.3 eV (954 nm).
- the absorber layer 502 and the junction partner layer 504 include different semiconductors with different band gaps and electron affinities such that junction partner layer 504 has a larger band gap than absorber layer 502.
- the absorber may have a band gap between about 0.9 eV and about 1.8 eV.
- the absorber layer in a semiconductor junction 410 includes copper- indium-gallium-diselenide (CIGS) and the band gap of the absorber layer is in the range of 1.04 eV to 1.67 eV.
- the absorber layer in a semiconductor junction 410 includes copper-indium-gallium-diselenide (CIGS) and the minimum band gap of the absorber layer is between 1.1 eV and 1.2 eV.
- the absorber layer in a semiconductor junction 410 is graded such that the band gap of the absorber layer varies as a function of absorber layer depth.
- a graded absorber layer can be modeled as stacked layers, each with a different composition and corresponding band gap.
- the absorber layer in a semiconductor junction 410 includes copper-indium-gallium-diselenide having the stiochiometry Culnj. x Ga x Se 2 with non-uniform Ga/In composition versus absorber layer depth.
- the absorber layer in a semiconductor junction 410 includes copper-indium-gallium-diselenide with the stiochiometry CuIni -x Ga x Se 2 in which the band gap ranges of the absorber varies between a first value in the range 1.04 eV to 1.67 eV and a second value in the range of 1.04 eV to 1.67 eV as a function of absorber depth, where the first value is greater than the second value.
- the absorber layer in a semiconductor junction 410 includes copper- indium-gallium-diselenide having the stiochiometry CuIni -x Ga x Se 2 in which the band gap of the absorber layer ranges between a first value in the range of 1.04 eV to 1.67 eV to a second value in the range of 1.04 eV to 1.67 eV as a function of absorber layer depth, where the first value is less than the second value.
- the band gap ranges between the first value and the second value in a continuous linear gradient as a function of absorber layer depth.
- the band gap ranges between the first value and the second value in a nonlinear gradient or even a discontinuous fashion as a function of absorber layer depth.
- the absorber layer or the junction partner layer in a semiconductor junction 410 is characterized by a band gap that ranges between a first value in the range 1.04 eV to 1.67 eV to a second value in the range of 1.04 eV to 1.67 eV as a function of absorber layer depth, where the first value is greater than the second value.
- the absorber layer in a semiconductor junction 410 includes copper-indium-gallium-diselenide having the stiochiometry CuIni -x Ga x Se 2 in which the band gap ranges between a first value in the range of 1.04 eV to 1.67 eV to a second value in the range of 1.04 eV to 1.67 eV as a function of absorber depth, where the first value is less than the second value.
- the band gap ranges between the first value and the second value in a continuous linear gradient as a function of absorber depth.
- the band gap ranges between the first value and the second value in a nonlinear gradient or even a discontinuous fashion as a function of absorber depth. Moreover, in some embodiments, the band gap ranges between the first value and the second value in such a manner that the band gap increases and decreases a plurality of times as a function of absorber layer depth.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.6 eV (2066 nm) to 2.4 eV (516 nm) and a second value in the range of 0.6 eV (2066 nm) to 2.4 eV (516 nm), where the first value is less than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.7 eV (1771 nm) to 2.2 eV (563 nm) and a second value in the range of 0.7 eV (1771 nm) to 2.2 eV (563 nm), where the first value is less than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.8 eV (1550 nm) to 2.0 eV (620 nm) and a second value in the range of 0.8 eV (1550 nm) to 2.0 eV (620 nm), where the first value is less than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.9 eV (1378 nm) to 1.8 eV (689 nm) and a second value in the range of 0.9 eV (1378 nm) to 1.8 eV (689 nm), where the first value is less than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 1 eV (1240 nm) to 1.6 eV (775 nm) and a second value in the range of 1 eV (1240 nm) to 1.6 eV (775 nm), where the first value is less than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 1.1 eV (1127 nm) to 1.4 eV (886 nm) and a second value in the range of 1.1 eV (1127 nm) to 1.4 eV (886 nm), where the first value is less than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 1.2 eV (1033 nm) to 1.3 eV (954 nm) and a second value in the range of 1.2 eV (1033 nm) to 1.3 eV (954 nm), where the first value is less than the second value.
- the band gap ranges between the first value and the second value in a continuous linear gradient as a function of absorber layer or junction partner layer depth.
- the band gap ranges between the first value and the second value in a nonlinear gradient or even a discontinuous fashion as a function of absorber layer depth or junction partner layer depth. Moreover, in some embodiments, the band gap ranges between the first value and the second value in such a manner that the band gap increases and decreases a plurality of times as a function of absorber layer or junction partner layer depth.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.6 eV (2066 nm) to 2.4 eV (516 nm) and a second value in the range of 0.6 eV (2066 nm) to 2.4 eV (516 nm), where the first value is greater than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.7 eV (1771 nm) to 2.2 eV (563 nm) and a second value in the range of 0.7 eV (1771 nm) to 2.2 eV (563 nm), where the first value is greater than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.8 eV (1550 nm) to 2.0 eV (620 nm) and a second value in the range of 0.8 eV (1550 nm) to 2.0 eV (620 nm), where the first value is greater than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 0.9 eV (1378 nm) to 1.8 eV (689 nm) and a second value in the range of 0.9 eV (1378 nm) to 1.8 eV (689 nm), where the first value is greater than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 1 eV (1240 nm) to 1.6 eV (775 nm) and a second value in the range of 1 eV (1240 nm) to 1.6 eV (775 nm), where the first value is greater than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 1.1 eV (1127 nm) to 1.4 eV (886 nm) and a second value in the range of 1.1 eV (1127 nm) to 1.4 eV (886 nm), where the first value is greater than the second value.
- the absorber layer or the junction partner layer in a semiconductor junction 410 of the present application is characterized by a band gap that ranges between a first value in the range of 1.2 eV (1033 nm) to 1.3 eV (954 nm) and a second value in the range of 1.2 eV (1033 nm) to 1.3 eV (954 nm), where the first value is greater than the second value.
- the band gap ranges between the first value and the second value in a continuous linear gradient as a function of absorber layer or junction partner layer depth.
- the band gap ranges between the first value and the second value in a nonlinear gradient or even a discontinuous fashion as a function of absorber layer or junction partner layer depth. Moreover, in some embodiments, the band gap ranges between the first value and the second value in such a manner that the band gap increases and decreases a plurality of times as a function of absorber layer or junction partner layer depth.
- Table 1 lists exemplary band gaps of several semiconductors suitable for use in semiconductor junctions such as those described herein, as well as some other physical properties of the semiconductors. "D” indicates a direct band gap, and "I" indicates an indirect band gap.
- the density of the semiconductor materials in the absorber layer and/or the junction partner of a semiconductor junction 410 ranges between about 2.33 g/cm 3 and8.9 g/cm 3 .
- the absorber layer has a density of between about 5 g/cm 3 and 6 g/cm 3 .
- the absorber layer includes CIGS.
- the density of CIGS changes with its composition because the unit crystal cell changes from cubic to tetragonal.
- the chemical formula for CIGS is: Cu(Ini. x Ga x )Se2. At gallium mole fractions below 0.5, the CIGS takes on a tetragonal chalcopyrite structure. At mole fractions above 0.5, the cell structure is cubic zinc-blende.
- the absorber layer of a semiconductor junction 410 includes CIGS in which
- the absorber layer of a semiconductor junction 410 includes CIGS in which the mole fraction (x) is between 0.2 and 0.6, the density of the CIGS is between 5 g/cm 3 and 6 g/cm 3 and the band gap of the CIGS is between about 1.2 eV and 1.4 eV.
- the absorber layer of a semiconductor junction 410 includes CIGS in which the mole fraction (x) is 0.4, the density of the CIGS is about 5.43 g/cm 3 , and the band gap of the CIGS is about 1.2 eV.
- the combination of materials used in the semiconductor junction e.g., absorber layer and junction partner layer, are selected to generate a sufficient current density (also commonly called the “short circuit current density,” or J sc ) upon irradiation with photons with energies at or above the band gap of the absorber layer, to efficiently produce electricity.
- a sufficient current density also commonly called the "short circuit current density,” or J sc
- the band gap of the junction partner layer is usefully large relative to that of the absorber layer so that the bulk of the photon absorption occurs in the absorber layer.
- the compounds in the semiconductor junction 410 are selected such that the solar cell generates a current density J sc of at least 10 mA/cm 2 , at least 15 mA/cm 2 , at least 20 mA/cm 2 , at least 25 mA/cm 2 , at least 30 mA/cm 2 , at least 35 mA/cm 2 , or at least 39 mA/cm 2 upon irradiation with an air mass (AM) 1.5 global spectrum, an AMI .5 direct terrestrial spectra, an AMO reference spectra as defined in Section 16.2.1 o ⁇ Handbook of Photovoltaic Science and Engineering, 2003, Luque and Hegedus (eds.), Wiley & Sons, West Wales, England (2003), which is hereby incorporated by reference herein.
- AM air mass
- the air-mass value 0 equates to insolation at sea leve with the Sun at its zenith, as shown, AM 1.0 represents sunlight with the Sun at zenith above the Earth's atmosphere and absorbing oxygen and nitrogen gases, AM 1.5 is the same, but with the Sun at an oblique angle of 48.2°, which simulates a longer optical path through the Earth's atomosphere, and AM 2.0 extends that oblique angle to 60.1°. See Jeong, 2007, Laser Focus World 43, 71-74, which is hereby incorporated by reference herein.
- the solar cells of the present invention exhibit a J sc , when measured under standard conditions (25 0 C, AM 1.5 G 100 mW/cm 2 ), that is between 22 mA/cm 2 and 35 mA/cm 2 . In some embodiments, the solar cells of the present invention exhibit a J sc , when measured under AM 1.5 G, that is between 22 mA/cm 2 and 35 mA/cm 2 at any temperature between 0 0 C and 70°C. In some embodiments, the solar cells exhibit a J sc , when measured under AM 1.5 G conditions, that is between 22 mA/cm 2 and 35 mA/cm 2 at any temperature between 10°C and 6O 0 C.
- illumination intensities are calibrated, for example, by the standard amorphous Si solar cell in the manner used to report values in Nishitani et al, 1998, Solar Energy Materials and Solar Cells 50, p. 63-70 and the references cited therein, which is hereby incorporated by reference in its entirety.
- the materials of the absorber layer and/or the junction partner layer of the semiconductor junction 410 have electron mobilities between, e.g., 10 Cm 2 V 1 S 1 and 80,000 10 Cm 2 V 1 S 1 .
- substantially all, or some of the photovoltaic current generated by the solar cells is from absorption of light by a semiconductor in the semiconductor junction 410.
- the semiconductor junction is in a crystalline or polycrystalline state.
- at least fifty percent, or at least sixty percent, or at least seventy percent, or at least eighty percent, or at least ninety percent, or at least ninety-five percent of the photovoltaic current generated by the solar cell is from absorption of light by a semiconductor in the semiconductor junction. Open circuit voltage.
- the solar cells of the present invention exhibit an open circuit voltage V oc (V), when measured under standard conditions (25 °C, AM 1.5 G 100 mW/cm 2 ), that is between 0.4V and 0.8V. In some embodiments, the solar cells of the present invention exhibit a V oc , when measured under AM 1.5 G, that is between 0.4V and 0.8V at any temperature between 0 0 C and 70°C. In some embodiments, the solar cells of the present invention exhibit a V oc , when measured under AM 1.5 G conditions, that is between 0.4V and 0.8V at any temperature between 10°C and 60°C.
- illumination intensities are calibrated, for example, by the standard amorphous Si solar cell in the manner used to report values in Nishitani et al., 1998, Solar Energy Materials and Solar Cells 50, p. 63-70 and the references cited therein, which is hereby incorporated by reference in its entirety.
- the absorber layer 502 is a group 1-IH-VI 2 compound such as copper indium di-selenide (CuInSe 2 ; also known as CIS).
- the absorber layer 502 is a group 1-HI-VI 2 ternary compound selected from the group consisting of CdGeAs 2 , ZnSnAs 2 , CuInTe 2 , AgInTe 2 , CuInSe 2 , CuGaTe 2 , ZnGeAs 2 , CdSnP 2 , AgInSe 2 , AgGaTe 2 , CuInS 2 , CdSiAs 2 , ZnSnP 2 , CdGeP 2 , ZnSnAs 2 , CuGaSe 2 , AgGaSe 2 , AgInS 2 , ZnGeP 2 , ZnSiAs 2 , ZnSiP 2 , CdSiP 2 , or CuGaS 2 of either thep-type or the w-type when such compound is known to exist.
- the junction partner layer 504 is CdS, ZnS, ZnSe, or CdZnS.
- the absorber layer 502 is p-type CIS and the junction partner layer 504 is r ⁇ ' type CdS, ZnS, ZnSe, or CdZnS.
- Such semiconductor junctions 410 are described in Chapter 6 of Bube, Photovoltaic Materials, 1998, Imperial College Press, London, which is hereby incorporated by reference herein in its entirety.
- the absorber layer 502 is copper-indium-gallium-diselenide (CIGS). Such a layer is also known as Cu(InGa)Se 2 .
- the absorber layer 502 is copper-indium-gallium-diselenide (CIGS) and the junction partner layer 504 is CdS, ZnS, ZnSe, or CdZnS.
- the absorber layer 502 is/?-type CIGS and the junction partner layer 504 is w-type CdS, ZnS, ZnSe, or CdZnS.
- Such semiconductor junctions 410 are described in Chapter 13 of Handbook of Photovoltaic Science and Engineering, 2003, Luque and Hegedus (eds.), Wiley & Sons, West Wales, England, Chapter 12, which is hereby incorporated by reference herein in its entirety.
- CIGS is deposited using techniques disclosed in Beck and Britt, Final Technical Report, January 2006, NREL/SR-520-39119; and Delahoy and Chen, August 2005, "Advanced CIGS Photovoltaic Technology," subcontract report; Kapur et al, January 2005 subcontract report, NREL/SR-520-37284, "Lab to Large Scale Transition for Non- Vacuum Thin Film CIGS Solar Cells"; Simpson et al, October 2005 subcontract report, "Trajectory-Oriented and Fault-Tolerant-Based Intelligent Process Control for Flexible CIGS PV Module Manufacturing," NREL/SR-520-38681 ; and Ramanathan et al, 31 st IEEE Photovoltaics Specialists Conference and Exhibition, Lake Buena Vista, Florida, January 3-7, 2005, each of which is hereby incorporated by reference herein in its entirety.
- the CIGS the absorber layer 502 is grown on a molybdenum the back-electrode 404 by evaporation from elemental sources in accordance with a three stage process described in Ramanthan et al, 2003, "Properties of 19.2 % Efficiency ZnO/CdS/CuInGaSe 2 Thin-film Solar Cells," Progress in Photovoltaics: Research and Applications 11, 225, which is hereby incorporated by reference herein in its entirety.
- the layer 504 is a ZnS(O 5 OH) buffer layer as described, for example, in Ramanathan et al, Conference Paper, "CIGS Thin-Film Solar Research at NREL: FY04 Results and Accomplishments," NREL/CP-520-37020, January 2005, which is hereby incorporated by reference herein in its entirety.
- the layer 502 is between 0.5 ⁇ m and 2.0 ⁇ m thick.
- the composition ratio of Cu/(In+Ga) in layer 502 is between 0.7 and 0.95.
- the composition ratio of Ga/(In+Ga) in the layer 502 is between 0.2 and 0.4.
- the CIGS absorber has a ⁇ 110> crystallographic orientation.
- the CIGS absorber has a ⁇ 112> crystallographic orientation.
- the CIGS absorber is randomly oriented.
- the semiconductor junction 410 comprises amorphous silicon. In some embodiments this is an n/n type heteroj unction.
- layer 514 comprises SnO 2 (Sb)
- layer 512 comprises undoped amorphous silicon
- layer 510 comprises «+ doped amorphous silicon.
- the semiconductor junction 410 is ap-i-n type junction.
- layer 514 isp + doped amorphous silicon
- layer 512 is undoped amorphous silicon
- layer 510 is H + amorphous silicon.
- Such semiconductor junctions 410 are described in Chapter 3 of Bube, Photovoltaic Materials, 1998, Imperial College Press, London, which is hereby incorporated by reference herein in its entirety.
- the semiconductor junction 410 is based upon thin-film polycrystalline. Referring to Fig.
- layer 510 is a/?-doped polycrystalline silicon
- layer 512 is depleted polycrystalline silicon
- layer 514 is «-doped polycrystalline silicon.
- semiconductor junctions are described in Green, Silicon Solar Cells: Advanced Principles & Practice, Centre for Photovoltaic Devices and Systems, University of New South Wales, Sydney, 1995; and Bube, Photovoltaic Materials, 1998, Imperial College Press, London, pp. 57-66, which is hereby incorporated by reference herein in its entirety.
- the semiconductor junctions 410 based uponp-type microcrystalline Si:H and microcrystalline Si:C:H in an amorphous Si:H solar cell are used.
- the semiconductor junction 410 is a tandem junction. Tandem junctions are described in, for example, Kim et al., 1989, “Lightweight (AlGaAs)GaAs/CuInSe2 tandem junction solar cells for space applications,” Aerospace and Electronic Systems Magazine, IEEE Volume 4, Issue 11, Nov.
- the semiconductor junctions 410 are based upon gallium arsenide (GaAs) or other M-V materials such as InP, AlSb, and CdTe.
- GaAs is a direct- band gap material having a band gap of 1.43 eV and can absorb 97% of AMI radiation in a thickness of about two microns.
- Suitable type III- V junctions that can serve as semiconductor junctions 410 of the present application are described in Chapter 4 of Bube, Photovoltaic Materials, 1998, Imperial College Press, London, which is hereby incorporated by reference in its entirety.
- the semiconductor junction 410 is a hybrid multijunction solar cell such as a GaAs/Si mechanically stacked multijunction as described by Gee and Virshup, 1988, 20 th IEEE Photovoltaic Specialist Conference, IEEE Publishing, New York, p. 754, which is hereby incorporated by reference herein in its entirety, a GaAs/CuInSe 2 MSMJ four-terminal device, consisting of a GaAs thin film top cell and a ZnCdS/CuInSe 2 thin bottom cell described by Stanbery et al, 19 th IEEE Photovoltaic Specialist Conference, IEEE Publishing, New York, p.
- a hybrid multijunction solar cell such as a GaAs/Si mechanically stacked multijunction as described by Gee and Virshup, 1988, 20 th IEEE Photovoltaic Specialist Conference, IEEE Publishing, New York, p. 754, which is hereby incorporated by reference herein in its entirety, a GaAs/CuInSe 2 MSMJ four-terminal device, consist
- the semiconductor junctions 410 are based upon II- VI compounds that can be prepared in either the w-type or the/?-type form. Accordingly, in some embodiments, referring to Figure 5C, the semiconductor junction 410 is ap-n heteroj unction in which the layers 520 and 540 are any combination set forth in the following table or alloys thereof.
- semiconductor junctions 410 that are made from thin film semiconductor films are preferred, the application is not so limited. In some embodiments the semiconductor junctions 410 are based upon crystalline silicon. For example, referring to Figure 5D, in some embodiments, the semiconductor junction 410 comprises a layer ofp- type crystalline silicon 540 and a layer of ⁇ -type crystalline silicon 550. Methods for manufacturing crystalline silicon semiconductor junctions 410 are described in Chapter 2 of Bube, Photovoltaic Materials, 1998, Imperial College Press, London, which is hereby incorporated by reference herein in its entirety.
- assemblies 402 are arranged in a reflective environment in which surfaces around the photovoltaic modules 402 of the assemblies have some amount of albedo.
- Albedo is a measure of reflectivity of a surface or body. It is the ratio of electromagnetic radiation (EM radiation) reflected to the amount incident upon it. This fraction is usually expressed as a percentage from 0% to 100%.
- surfaces in the vicinity of the assemblies of the present application are prepared so that they have a high albedo by painting such surfaces a reflective white color. In some embodiments, other materials that have a high albedo can be used.
- the albedo of some materials around such photovoltaic modules approach or exceed ninety percent. See, for example, Boer, 1977, Solar Energy 19, 525, which is hereby incorporated by reference herein in its entirety.
- surfaces having any amount of albedo e.g., five percent or more, ten percent or more, twenty percent or more
- the photovoltaic modules of the present application are arranged in rows above a gravel surface, where the gravel has been painted white in order to improve the reflective properties of the gravel.
- any Lambertian or diffuse reflector surface can be used to provide a high albedo surface.
- the elongated substrate 403 is made of a material such as polybenzamidazole (e.g., CELAZOLE ® , available from Boedeker Plastics, Inc., Shiner, Texas).
- the inner core is made of polyimide (e.g., DUPONTTM VESPEL ® , or DUPONTTM KAPTON ® , Wilmington, Delaware).
- the inner core is made of polytetrafluoroethylene (PTFE) or polyetheretherketone
- the elongated substrate 403 is made of polyamide-imide (e.g., TORLON ® PAI, Solvay Advanced Polymers, Alpharetta, Georgia).
- polyamide-imide e.g., TORLON ® PAI, Solvay Advanced Polymers, Alpharetta, Georgia.
- the elongated substrate 403 is made of a glass-based phenolic.
- Phenolic laminates are made by applying heat and pressure to layers of paper, canvas, linen or glass cloth impregnated with synthetic thermosetting resins. When heat and pressure are applied to the layers, a chemical reaction (polymerization) transforms the separate layers into a single laminated material with a "set" shape that cannot be softened again. Therefore, these materials are called “thermosets.”
- thermosets A variety of resin types and cloth materials can be used to manufacture thermoset laminates with a range of mechanical, thermal, and electrical properties.
- the elongated substrate 403 is a phenoloic laminate having a NEMA grade of G-3, G-5, G-7, G-9, G- 10 or G-I l. Exemplary phenolic laminates are available from Boedeker Plastics, Inc.
- the elongated substrate 403 is made of polystyrene. Examples of polystyrene include general purpose polystyrene and high impact polystyrene as detailed in Marks' Standard Handbook for Mechanical Engineers, ninth edition, 1987, McGraw-Hill, Inc., p. 6-174, which is hereby incorporated by reference herein in its entirety.
- the elongated substrate 403 is made of cross-linked polystyrene.
- One example of cross-linked polystyrene is REXOLITE (C- Lee Plastics, Inc).
- REXOLITE is a thermoset, in particular a rigid and translucent plastic produced by cross linking polystyrene with divinylbenzene.
- the elongated substrate 403 is made of polycarbonate.
- polycarbonates can have varying amounts of glass fibers ⁇ e.g., 10%, 20%, 30%, or 40%) in order to adjust tensile strength, stiffness, compressive strength, as well as the thermal expansion coefficient of the material.
- Exemplary polycarbonates are ZELUX ® M and ZELUX ® W, which are available from Boedeker Plastics, Inc.
- the elongated substrate 403 is made of polyethylene. In some embodiments, the elongated substrate 403 is made of low density polyethylene (LDPE), high density polyethylene (HDPE), or ultra high molecular weight polyethylene (UHMW PE). Chemical properties of HDPE are described in Marks' Standard
- the elongated substrate 403 is made of acrylonitrile-butadiene-styrene, polytetrfluoro- ethylene (TEFLON), polymethacrylate (lucite or plexiglass), nylon 6,6, cellulose acetate butyrate, cellulose acetate, rigid vinyl, plasticized vinyl, or polypropylene. Chemical properties of these materials are described in Marks' Standard Handbook for Mechanical Engineers, ninth edition, 1987, McGraw-Hill, Inc., pp. 6-172 through 6-175, which is hereby incorporated by reference herein in its entirety.
- back-electrode 404 is made out of any material that can support the photovoltaic current generated by a solar cell 12 of the photovoltaic module 402 with negligible resistive losses.
- the back-electrode 404 is made of any conductive metal, such as aluminum, molybdenum, steel, nickel, silver, gold, or an alloy thereof. In some embodiments, the back-electrode 404 is made out of a metal-, graphite-, carbon black-, or superconductive carbon black-filled oxide, epoxy, glass, or plastic. In some embodiments, the back-electrode 404 is made of a conductive plastic. In some embodiments, this conductive plastic is inherently conductive without any requirement for a filler. In some embodiments, the elongated substrate 403 is made out of a conductive material and the back-electrode 404 is made out of molybdenum. In some embodiments, the elongated substrate 403 is made out of a nonconductive material, such as a glass rod, and the back-electrode 404 is made out of molybdenum.
- the present application encompasses assemblies of photovoltaic modules 402 having any dimensions that fall within a broad range of dimensions.
- the present application encompasses assemblies having a length / between 1 cm and 50,000 cm and a width w between 1 cm and 50,000 cm.
- the assemblies have a length / between 10 cm and 1,000 cm and a width w between 10 cm and 1,000 cm.
- the assemblies have a length / between 40 cm and 500 cm and a width w between 40 cm and 500 cm.
- a photovoltaic module 402 has a length / that is great compared to a width of its cross-section.
- a photovoltaic module 402 has a length / between 10 mm and 100,000 mm and a width w between 3mm and 10,000 mm.
- a photovoltaic module 402 has a length / between 10 mm and 5,000 mm and a width w between 10 mm and 1,000 mm.
- a photovoltaic module 402 has a length / between 40 mm and 15000 mm and a width w between 10 mm and 50 mm.
- a photovoltaic module 402 may be elongated as illustrated in Fig. 3A. As illustrated in Figs. 3A and 3B, a photovoltaic module 402 is one that is characterized by having a longitudinal dimension / and a width dimension w. In some embodiments of a photovoltaic module 402, the longitudinal dimension / exceeds the width dimension w by at least a factor of 4, at least a factor of 5, or at least a factor of 6. In some embodiments, the longitudinal dimension / of the photovoltaic module 402 is 10 centimeters or greater, 20 centimeters or greater, or 100 centimeters or greater.
- the width w (e.g., diameter in instances where the photovoltaic module 402 is cylindrical) of the photovoltaic module 402 is 5 millimeters or more, 10 millimeters or more, 50 millimeters or more, 100 millimeters or more, 500 millimeters or more, 1000 millimeters or more, or 2000 millimeters or more.
- CIGS copper- indium-gallium-diselenide
- the back-electrode 404 is made of molybdenum.
- the elongated substrate 403 is polyimide and the back-electrode 404 is a thin film of molybdenum sputtered onto the polyimide elongated substrate 403 prior to CIGS deposition. On top of the molybdenum, the CIGS film, which absorbs the light, is evaporated.
- Cadmium sulfide (CdS) is then deposited on the CIGS in order to complete semiconductor junction 410.
- a thin intrinsic layer (/-layer) 415 is then deposited on the semiconductor junction 410.
- the /-layer 415 can be formed using a material including but not limited to, zinc oxide, metal oxide or any transparent material that is highly insulating.
- the transparent conductive layer 412 is disposed on either the /-layer (when present) or the semiconductor junction 410 (when the /-layer is not present).
- the transparent conductive layer 412 can be made of a material such as aluminum doped zinc oxide (ZnO:Al), gallium doped zinc oxide, boron dope zinc oxide, indium-zinc oxide, or indium-tin oxide.
- a roll of molybdenum-coated polyimide film referred to as the web
- the web is unrolled and moved continuously into and through one or more deposition zones.
- the web is heated to temperatures of up to -450 °C and copper, indium, and gallium are evaporated onto it in the presence of selenium vapor.
- the web After passing out of the deposition zone(s), the web cools and is wound onto a take-up spool.
- an absorber material is deposited onto a polyimide/molybdenum web, such as those developed by Global Solar Energy (Tucson, Arizona), or a metal foil (e.g., the foil disclosed in Simpson et al).
- the absorber material is any of the absorbers disclosed herein.
- the absorber is Cu(InGa)Se 2 .
- the elongated substrate 403 is made of a nonconductive material such as undoped plastic.
- the elongated substrate 403 is made of a conductive material such as a conductive metal, a metal-filled epoxy, glass, or resin, or a conductive plastic (e.g., a plastic containing a conducting filler).
- the semiconductor junction 410 is completed by depositing a window layer onto the absorber layer.
- CdS can be used.
- the optional /-layer 415 and the transparent conductive layer 412 are added to complete the solar cell.
- the foil is wrapped around and/or glued to an elongated substrate 403.
- the advantage of such a fabrication method is that material that cannot withstand the deposition temperature of the absorber layer, window layer, /-layer or transparent conductive layer 412 can be used as an elongated substrate 403 for the photovoltaic module 402. This manufacturing process can be used to manufacture any of the photovoltaic modules 402 disclosed in the present application.
- the elongated substrate 403 is any conductive or nonconductive material disclosed herein whereas the back-electrode 404 is the web or foil onto which the absorber layer, window layer, and transparent conductive layer were deposited prior to rolling the foil onto the inner core.
- the web or foil is glued onto the elongated substrate 403 using appropriate glue.
- An aspect of the present application provides a method of manufacturing a photovoltaic module 402 comprising depositing an absorber layer on a first face of a metallic web or a conducting foil. Next, a window layer is deposited onto the absorber layer. Next, a transparent conductive layer is deposited onto the window layer. The metallic web or conducting foil is then rolled around an elongated substrate 403, thereby forming a photovoltaic module 402.
- the absorber layer is copper- indium-gallium-diselenide (Cu(InGa)Se 2 ) and the window layer is cadmium sulfide.
- the metallic web is a polyimide/molybdenum web.
- the conducting foil is steel foil or aluminum foil.
- the elongated core is made of a conductive metal, a metal-filled epoxy, a metal-filled glass, a metal-filled resin, or a conductive plastic.
- a transparent conducting oxide conductive film is deposited on a tubular shaped or rigid solid rod shaped elongated substrate 403 rather than wrapping a metal web or foil around the elongated substrate 403.
- the tubular shaped or rigid solid rod shaped elongated substrate 403 can be, for example, a plastic rod, a glass rod, a glass tube, or a plastic tube.
- Such embodiments require some form of conductor in electrical communication with the interior face or back contact of the semiconductor junction.
- divots in the tubular shaped or rigid solid rod shaped elongated substrate 403 are filled with a conductive metal in order to provide such a back-electrode 404.
- the conductor can be inserted in the divots prior to depositing the transparent conductive layer or conductive back contact film onto the tubular shaped or rigid solid rod shaped elongated core.
- a conductor is formed from a metal source that optionally runs lengthwise along the side of the photovoltaic module 402. This metal can be deposited by evaporation, sputtering, screen printing, inkjet printing, metal pressing, conductive ink or glue used to attach a metal wire, or other means of metal deposition.
- the elongated substrate 403 is a glass tubing having a divot that runs lengthwise on the outer surface of the glass tubing, and the manufacturing method comprises depositing a conductor in the divot prior to the rolling step.
- the glass tubing has a second divot that runs lengthwise on the surface of the glass tubing.
- the first divot and the second divot are on approximate or exact opposite circumferential sides of the glass tubing.
- the method further comprises depositing a conductor in the second divot prior to the rolling or, in embodiments in which rolling is not used, prior to the deposition of an inner transparent conductive layer or conductive film, junction, and outer transparent conductive layer onto the elongated core.
- the elongated substrate 403 is a glass rod having a first divot that runs lengthwise on the surface of the glass rod and the method comprises depositing a conductor in the first divot prior to the rolling.
- the glass rod has a second divot that runs lengthwise on the surface of the glass rod and the first divot and the second divot are on approximate or exact opposite circumferential sides of the glass rod.
- the method further comprises depositing a conductor in the second divot prior to the rolling or, in embodiments in which rolling is not used, prior to the deposition of an inner transparent conductive layer or conductive film, junction, and outer transparent conductive layer onto the elongated core.
- Suitable materials for the conductor are any of the materials described as a conductor herein including, but not limited to, aluminum, molybdenum, titanium, steel, nickel, silver, gold, or an alloy thereof.
- Figure 13 details a cross-section of a photovoltaic module 402 in accordance with an embodiment of the present application.
- the photovoltaic module 402 can be manufactured using either the rolling method or deposition techniques.
- Components that have reference numerals corresponding to other embodiments of the present application e.g., 410, 412, and 420
- Figure 13 there is an elongated tubing 1306 having a first and second divot running lengthwise along the tubing (perpendicular to the plane of the page) that are on circumferential Iy opposing sides of tubing 1306 as illustrated.
- the tubing 1306 is not conductive.
- the tubing 1306 is made of plastic or glass in some embodiments.
- the conductive wiring 1302 is placed in the first and second divot as illustrated in Figure 13.
- the conductive wiring is made of any of the conductive materials of the present application.
- the conductive wiring 1302 is made out of aluminum, molybdenum, steel, nickel, titanium, silver, gold, or an alloy thereof.
- element 1304 is a conducting foil or metallic web
- the conductive wiring 1302 is inserted into the divots prior to wrapping the metallic web or conducting foil 1304 around the elongated core 1306.
- the conductive wiring 1302 is inserted into the divots prior to depositing the transparent conductive oxide or conductive film 1304 onto the elongated core 1306.
- the metallic web or conducting foil 1304 is wrapped around the tubing 1306.
- metallic web or the conducting foil 1304 is glued to the tubing 1306.
- the layer 1304 is not a metallic web or conducting foil.
- the layer 1304 is a transparent conductive layer. Such a layer is advantageous because it allows for thinner absorption layers in the semiconductor junction.
- the layer 1304 is a transparent conductive layer
- the transparent conductive layer, the semiconductor junction 410 and the outer transparent conductive layer 412 are deposited using deposition techniques.
- One aspect of the application provides an assembly comprising a plurality of photovoltaic modules 402 each having the structure disclosed in Figure 13.
- each photovoltaic module 402 in the plurality of photovoltaic modules comprises an elongated tubing 1306, a metallic web or a conducting foil (or, alternatively, a layer of TCO) 1304 circumferentially disposed on the elongated tubing 1306, a semiconductor junction 410 circumferentially disposed on the metallic web or the conducting foil (or, alternatively, a layer of TCO) 1304 and a transparent conductive layer 412 disposed on the semiconductor junction 410.
- the photovoltaic modules 402 in the plurality of photovoltaic modules are geometrically arranged in a parallel or a near parallel manner thereby forming a planar array having a first face and a second face.
- the plurality of photovoltaic modules are arranged such that one or more photovoltaic modules in the plurality of photovoltaic modules are not in electrically conductive contact with adjacent photovoltaic modules.
- the photovoltaic modules can be in physical contact with each other if there is an insulative layer between adjacent photovoltaic modules.
- the assembly further comprises a plurality of metal counter- electrodes. Each respective photovoltaic module 402 in the plurality of photovoltaic modules is bound to a first corresponding metal counter-electrode 420 in the plurality of metal counter-electrodes such that the first metal counter-electrode lies in a first groove that runs lengthwise on the respective photovoltaic module 402.
- the apparatus further comprises a transparent electrically insulating substrate that covers all or a portion of the face of the planar array.
- a first and second photovoltaic module in the plurality of photovoltaic modules are electrically connected in series by an electrical contact that connects the first electrode of the first photovoltaic module to the first corresponding counter-electrode of the second photovoltaic module.
- the elongated tubing 1306 is glass tubing or plastic tubing having a one or more grooves filled with a conductor 1302.
- each respective photovoltaic module 402 in the plurality of photovoltaic modules is bound to a second corresponding metal counter-electrode 420 in the plurality of metal counter-electrodes such that the second metal counter-electrode lies in a second groove that runs lengthwise on the respective photovoltaic module 402 and such that the first groove and the second groove are on opposite or substantially opposite circumferential sides of the respective photovoltaic module 402.
- the plurality of photovoltaic modules 402 is configured to receive direct light from the first face and the second face of the planar array.
- photovoltaic modules 402 may be assembled into bifacial, multi-facial, or omnifacial arrays as, for example, any of assemblies 400 (Fig. 4), , 800 (Fig. 8), 900 (Fig. 9), or 1000 (Fig. 10).
- static concentrators are used to improve the performance of the assemblies of the present application.
- the use of a static concentrator in one exemplary embodiment is illustrated in Fig. 11, where the static concentrator 1102, with aperture AB, is used to increase the efficiency of bifacial solar cell assembly CD, where solar cell assembly CD is, for example, any of assemblies 400 (Fig. 4), , 800 (Fig. 8), 900 (Fig. 9), or 1000 (Fig.
- the static concentrator 1 102 can be formed from any static concentrator materials known in the art such as, for example, a simple, properly bent or molded aluminum sheet, or reflector film on polyurethane.
- the concentrator 1102 depicted in Fig. 1 1 is an example of a low concentration ratio, nonimaging, compound parabolic concentrator (CPC)-type collector. Any (CPC)-type collector can be used with the solar cell assemblies of the present application.
- CPC compound parabolic concentrator
- a static concentrator as illustrated in Fig. 12 is used.
- the bifacial solar cells illustrated in Fig. 12 can be any bifacial solar cell assembly ofthe present application including, but not limited to, assembly 400 ( Figure 4), 800 ( Figure 8), 900 ( Figure 9), or 1000 ( Figure 10).
- the static concentrator illustrated in Figure 12 uses two sheets of cover glass on the front and rear ofthe module with submillimeter V- grooves that are designed to capture and reflect incident light as illustrated in the figure. More details of such concentrators are found in Uematsu et al, 2001, Solar Energy Materials & Solar Cell 67, 425-434 and Uematsu et al, 2001, Solar Energy Materials & Solar Cell 67, 441-448, each of which is hereby incorporated by reference herein in its entirety. Additional static concentrators that can be used with the present application are discussed in Handbook of Photovoltaic Science and Engineering, 2003, Luque and Hegedus (eds.), Wiley & Sons, West Wales, England, Chapter 12, which is hereby incorporated by reference herein in its entirety.
- photovoltaic modules 402 After photovoltaic modules 402 are encapsulated they may be arranged to form assemblies. Referring to Figure 14, an internal reflector 1404 may be used to enhance solar input into the solar cell system in such assemblies, elongated substrate 403
- internal reflectors 1404 of the present application are designed to optimize reflection of light into adjacent photovoltaic modules 402.
- an internal reflector 1404 may have a symmetrical four-sided cross- sectional shape.
- the cross-sectional shape of the internal reflectors 1404 of the present application is not limited to such a configuration.
- a cross-sectional shape of an internal reflector 1404 is astroid.
- a cross-sectional shape of an internal reflector 1404 is four-sided and at least one side of the four-sided cross-sectional shape is linear.
- a cross-sectional shape of an internal reflector 1404 is four-sided and at least one side of the four-sided cross-sectional shape is parabolic. In some embodiments, a cross-sectional shape of an internal reflector 1404 is four-sided and at least one side of the four-sided cross-sectional shape is concave. In some embodiments, a cross-sectional shape of an internal reflector 1404 is four-sided; and at least one side of the four-sided cross-sectional shape is circular or elliptical. In some embodiments, a cross-sectional shape of an internal reflector in the plurality of internal reflectors is four-sided and at least one side of the four-sided cross-sectional shape defines a diffuse surface on the internal reflector.
- a cross-sectional shape of an internal reflector 1404 is four-sided and at least one side of the four-sided cross-sectional shape is the involute of a cross-sectional shape of photovoltaic module 402.
- a cross-sectional shape of an internal reflector 1404 is two-sided, three-sided, four-sided, five-sided, or six-sided.
- a cross-sectional shape of an internal reflector in the plurality of internal reflectors 1404 is four-sided and at least one side of the four-sided cross-sectional shape is faceted.
- Modified reflectors 1404 are equipped with a strong reflective property such that incident light is effectively reflected off the side surfaces 1610 of the reflectors 1404. In some embodiments, the reflected light off surfaces 1610 does not have directional preference. In other embodiments, the reflector surfaces 1610 are designed such that the reflected light is directed towards the photovoltaic module 402 for optimal absorbance.
- connection between an internal reflector 1404 and an adjacent photovoltaic module is provided by an additional adaptor piece.
- Such an adapter piece has surface features that are complementary to both the shapes of internal reflectors 1404 as well as photovoltaic modules 402 in order to provide a tight fit between such components.
- such adaptor pieces are fixed on the internal reflectors 1404.
- the adaptor pieces are fixed on the photovoltaic modules 402.
- the connection between photovoltaic modules 402 and internal reflectors 1404 may be strengthened by electrically conducting glue or tapes.
- a side surface 1610 of the reflector 1404 is a diffuse reflecting surface ⁇ e.g., 1610 in Fig. 14).
- specular reflection is defined as the reflection off smooth surfaces such as mirrors or a calm body of water.
- light is reflected mainly in the direction of the reflected ray and is attenuated by an amount dependent upon the physical properties of the surface. Since the light reflected from the surface is mainly in the direction of the reflected ray, the position of the observer ⁇ e.g., the position of the photovoltaic modules 402) determines the perceived illumination of the surface.
- Specular reflection models the light reflecting properties of shiny or mirror-like surfaces. In contrast to specular reflection, reflection off rough surfaces such as clothing, paper, and the asphalt roadway leads to a different type of reflection known as diffuse reflection.
- Light incident on a diffuse reflection surface is reflected equally in all directions and is attenuated by an amount dependent upon the physical properties of the surface. Since light is reflected equally in all directions the perceived illumination of the surface is not dependent on the position of the observer or receiver of the reflected light ⁇ e.g. the position of the photovoltaic module 402).
- Diffuse reflection models the light reflecting properties of matt surfaces. Diffuse reflection surfaces reflect off light with no directional dependence for the viewer. Whether the surface is microscopically rough or smooth has a tremendous impact upon the subsequent reflection of a beam of light.
- Input light from a single directional source is reflected off in all directions on a diffuse reflecting surface.
- Diffuse reflection originates from a combination of internal scattering of light, e.g., the light is absorbed and then re-emitted, and external scattering from the rough surface of the object.
- Lambertian reflection In some embodiments in accordance with the present application, a surface 1610 of a reflector 1404 is a Lambertian reflecting surface ⁇ e.g., 1610 in Figure 14).
- a Lambertian source is defined as an optical source that obeys Lambert's cosine law, i.e., that has an intensity directly proportional to the cosine of the angle from which it is viewed.
- a Lambertian surface is defined as a surface that provides uniform diffusion of incident radiation such that its radiance (or luminance) is the same in all directions from which it can be measured ⁇ e.g., radiance is independent of viewing angle) with the caveat that the total area of the radiating surface is larger than the area being measured.
- the intensity of the light emanating in a given direction from any small surface component is proportional to the cosine of the angle of the normal to the surface.
- the brightness (luminance, radiance) of a Lambertian surface is constant regardless of the angle from which it is viewed.
- the incident light / strikes a Lambertian surface and reflects in different directions.
- the intensity of / is defined as I 1n
- the intensity ⁇ e.g., I oul ) of a reflected light v can be defined as following in accordance to Lambert's cosine law:
- ⁇ v,l k d cos# ou
- k d is related to the surface property.
- the incident angle is defined as Q 1n
- the reflected angle is defined as ⁇ ou , .
- the intensity of the reflected light can also be written as:
- n denotes a vector that is normal to the Lambertian surface.
- Such a Lambertian surface does not lose any incident light radiation, but re-emits it in all the available solid angles with 2 ⁇ radians, on the illuminated side of the surface. Moreover, a Lambertian surface emits light so that the surface appears equally bright from any direction. That is, equal projected areas radiate equal amounts of luminous flux. Though this is an ideal, many real surfaces approach it.
- a Lambertian surface can be created with a layer of diffuse white paint. The reflectance of such a typical Lambertian surface may be 93%. In some embodiments, the reflectance of a Lambertian surface may be higher than 93%. In some embodiments, the reflectance of a Lambertian surface may be lower than 93%.
- Lambertian surfaces have been widely used in LED design to provide optimized illumination, for example, in United States Patent Number 6,257,737 to Marshall, et al ⁇ United States Patent Number 6,661,521 to Stern; and United States Patent Number 6,603,243 to Parkyn , et al, which are each hereby incorporated by reference herein in their entirety.
- Lambertian surfaces on an internal reflector 1404 effectively reflect light in all directions. The reflected light is then directed towards the photovoltaic module 402 to enhance solar cell performance. Reflection on involute surfaces.
- a surface 1610 of the internal reflector 1404 is an involute surface of the photovoltaic module 402.
- the photovoltaic module 402 is circular or near circular.
- the reflector surface 1610 is preferably the involute of a circle.
- the involute of a circle is defined as the path traced out by a point on a straight line that rolls around a circle. For example, the involute of a circle can be drawn in the following steps.
- Evolute and involute are reciprocal functions.
- the evolute of an involute of a circle is a circle.
- Involute surfaces have been implemented in numerous patent designs to optimize light reflections.
- a flash lamp reflector (United States Patent Number 4,641,315 to Draggoo, hereby incorporated by reference herein in its entirety) and concave light reflector devices (United States Patent Number 4,641,315 to Rose, hereby incorporated by reference herein in its entirety) both utilize involute surfaces to enhance light reflection efficiency.
- a plurality of photovoltaic modules 402 are geometrically arranged in a parallel or near parallel manner.
- the terminal ends of photovoltaic modules 402 can be stripped down to the back-electrode 404.
- the photovoltaic module 402 is constructed out of a s a cylindrical elongated substrate 403 and a back-electrode 404 made of molybdenum.
- the end of the photovoltaic module 402 can be stripped down to the molybdenum back-electrode 404 and an external electrode can be electrically connected with the back-electrode 404.
- each internal reflector 1404 connects to two photovoltaic modules as depicted in Fig. 14402. Because of this, photovoltaic modules 402 are effectively joined into a single composite device.
- external electrodes extend the connection from back-electrode 404.
- internal reflectors 1404 are connected to photovoltaic modules 402 via indentations on the transparent casing 310. In some embodiments, the indentations on the transparent casing 310 are created to complement the shape of the internal reflector 1404. Indentations on two transparent casings 310 are used to lock in one internal reflector 1404 that is positioned between the two photovoltaic modules.
- adhesive materials e.g., epoxy glue
- the internal reflector 1404 and the transparent casing 310 of a photovoltaic module 402 can be created in the same molding process.
- an array of alternating the transparent casing 310 and astroid reflectors 1404 can be made as a single composite entity. Additional modifications may be done to enhance the albedo effect from the internal reflector 1404.
- There is no limit to the number of internal reflectors 1404 in an assembly e.g., 10 or more, 100 or more, 1000 or more, 10,000 or more, between 5,000 and one million internal reflectors 1404). 5.9 Additional Substrate Embodiments
- all or a portion of the elongated substrate 403 is a nonplanar closed form shape.
- all or a portion of the elongated substrate 403 is a rigid tube or a rigid solid rod.
- all or a portion of the elongated substrate 403 is any solid cylindrical shape or hollowed cylindrical shape.
- the elongated substrate 403 is a rigid tube made out plastic metal or glass.
- the overall outer shape of the photovoltaic module 402 is the same shape as the elongated substrate 403. In some embodiments, the overall outer shape of the photovoltaic module 402 is different than the shape of the elongated substrate 403.
- the elongated substrate 403 is nonfibrous
- the elongated substrate 403 is rigid.
- Rigidity of a material can be measured using several different metrics including, but not limited to, Young's modulus.
- Young's Modulus (also known as the Young Modulus, modulus of elasticity, elastic modulus or tensile modulus) is a measure of the stiffness of a given material. It is defined as the ratio, for small strains, of the rate of change of stress with strain. This can be experimentally determined from the slope of a stress-strain curve created during tensile tests conducted on a sample of the material. Young's modulus for various materials is given in the following table.
- Titanium (Ti) 105-120 15,000,000-17,500,000
- a material e.g., an elongated substrate 403 is deemed to be rigid when it is made of a material that has a Young's modulus of 20 GPa or greater, 30 GPa or greater, 40 GPa or greater, 50 GPa or greater, 60 GPa or greater, or 70 GPa or greater.
- a material e.g., the elongated substrate 403 is deemed to be rigid when the Young's modulus for the material is a constant over a range of strains. Such materials are called linear, and are said to obey Hooke's law.
- the elongated substrate 403 is made out of a linear material that obeys Hooke's law.
- linear materials include, but are not limited to, steel, carbon fiber, and glass. Rubber and soil (except at very low strains) are non-linear materials.
- a material is considered rigid when it adheres to the small deformation theory of elasticity, when subjected to any amount of force in a large range of forces (e.g., between 1 dyne and 10 5 dynes, between 1000 dynes and 10 6 dynes, between 10,000 dynes and 10 7 dynes), such that the material only undergoes small elongations or shortenings or other deformations when subject to such force.
- a rigid material is characterized by a strain tensor that only has linear terms.
- the strain tensor for materials is described in Borg, 1962, Fundamentals of Engineering Elasticity, Princeton, New Jersey, pp. 36-41, which is hereby incorporated by reference herein in its entirety.
- a material is considered rigid when a sample of the material of sufficient size and dimensions does not bend under the force of gravity.
- the extent to which a body (e.g., the elongated substrate 403, etc.) deflects under a force is related to the Young's Modulus of the material from which it is made, the body's length and cross-sectional dimensions, and the force applied to the body, as is known to those of ordinary skill in the art.
- the Young's Modulus of the body material, and the body's length and cross-sectional area are selected such that the body (e.g., the elongated substrate 403, etc.) substantially does not visibly deflect (bend) when a first end of the body is subjected to a force of, e.g., between 1 dyne and 10 5 dynes, between 100 dynes and 10 6 dynes, or between 10,000 dynes and 10 7 dynes, while a second end of the body is held fixed.
- the Young's Modulus of the body material, and the body's length and cross-sectional area are selected such that the body (e.g., the elongated substrate 403, etc.) substantially does not visibly deflect when a first end of the body is subjected to the force of gravity, while a second end of the body is held fixed.
- the present application is not limited to substrates that have rigid cylindrical shapes or are solid rods. All or a portion of the elongated substrate 403 can be characterized by a cross-section bounded by any one of a number of shapes other than the circular shaped depicted in Fig. 3B.
- the bounding shape can be any one of circular, ovoid, or any shape characterized by one or more smooth curved surfaces, or any splice of smooth curved surfaces.
- the bounding shape can also be linear in nature, including triangular, rectangular, pentangular, hexagonal, or having any number of linear segmented surfaces.
- the bounding shape can be an n-gon, where n is 3, 5, or greater than 5.
- the cross-section can be bounded by any combination of linear surfaces, arcuate surfaces, or curved surfaces.
- the bounding shape can be any shape that includes at least one arcuate edge.
- an omnifacial circular cross- section is illustrated to represent nonplanar embodiments of the photovoltaic module 402.
- any cross-sectional geometry may be used in a photovoltaic module 402 that is nonplanar in practice.
- a first portion of the elongated substrate 403 is characterized by a first cross-sectional shape and a second portion of the elongated substrate 403 is characterized by a second cross-sectional shape, where the first and second cross-sectional shapes are the same or different.
- At least ten percent, at least twenty percent, at least thirty percent, at least forty percent, at least fifty percent, at least sixty percent, at least seventy percent, at least eighty percent, at least ninety percent or all of the length of the elongated substrate 403 is characterized by the first cross-sectional shape.
- the first cross-sectional shape is planar (e.g., has no arcuate side) and the second cross-sectional shape has at least one arcuate side.
- the elongated substrate 403 is made of a urethane polymer, an acrylic polymer, a fluoropolymer, polybenzamidazole, polyimide, polytetrafluoroethylene, polyetheretherketone, polyamide-imide, glass-based phenolic, polystyrene, cross-linked polystyrene, polyester, polycarbonate, polyethylene, polyethylene, acrylonitrile-butadiene-styrene, polytetrafluoro-ethylene, polymethacrylate, nylon 6,6, cellulose acetate butyrate, cellulose acetate, rigid vinyl, plasticized vinyl, or polypropylene.
- a urethane polymer an acrylic polymer, a fluoropolymer, polybenzamidazole, polyimide, polytetrafluoroethylene, polyetheretherketone, polyamide-imide, glass-based phenolic, polystyrene, cross-linked polystyrene, polyester, polycarbonate, polyethylene
- the elongated substrate 403 is made of aluminosilicate glass, borosilicate glass (e.g., Pyrex, Duran, Simax, etc.), dichroic glass, germanium / semiconductor glass, glass ceramic, silicate / fused silica glass, soda lime glass, quartz glass, chalcogenide / sulphide glass, fluoride glass, pyrex glass, a glass- based phenolic, cereated glass, or flint glass.
- the elongated substrate 403 is a solid cylindrical shape. Such solid cylindrical substrates 403 can be made out of a plastic, glass, metal, or metal alloy.
- a cross-section of the elongated substrate 403 is circumferential and has an outer diameter of between 3 mm and 100 mm, between 4 mm and 75 mm, between 5 mm and 50 mm, between 10 mm and 40 mm, or between 14 mm and 17 mm. In some embodiments, a cross-section of the elongated substrate 403 is circumferential and has an outer diameter of between 1 mm and 1000 mm.
- the elongated substrate 403 is a tube with a hollowed inner portion.
- a cross-section of the elongated substrate 403 is characterized by an inner radius defining the hollowed interior and an outer radius. The difference between the inner radius and the outer radius is the thickness of the elongated substrate 403.
- the thickness of the elongated substrate 403 is between 0.1 mm and 20 mm, between 0.3 mm and 10 mm, between 0.5 mm and 5 mm, or between 1 mm and 2 mm.
- the inner radius is between 1 mm and 100 mm, between 3 mm and 50 mm, or between 5 mm and 10 mm.
- the elongated substrate 403 has a length (perpendicular to the plane defined by Figure 3B) that is between 5 mm and 10,000 mm, between 50 mm and 5,000 mm, between 100 mm and 3000 mm, or between 500 mm and 1500 mm.
- the elongated substrate 403 is a hollowed tube having an outer diameter of 15 mm and a thickness of 1.2 mm, and a length of 1040 mm.
- the elongated substrate 403 has a width dimension and a longitudinal dimension. In some embodiments, the longitudinal dimension of the elongated substrate 403 is at least four times greater than the width dimension. In other embodiments, the longitudinal dimension of the elongated substrate 403 is at least five times greater than the width dimension. In yet other embodiments, the longitudinal dimension of the elongated substrate 403 is at least six times greater than the width dimension. In some embodiments, the longitudinal dimension of the elongated substrate 403 is 10 cm or greater. In other embodiments, the longitudinal dimension of the elongated substrate 403 is 50 cm or greater. In some embodiments, the width dimension of the elongated substrate 403 is 1 cm or greater. In other embodiments, the width dimension of the elongated substrate 403 is 5 cm or greater. In yet other embodiments, the width dimension of the elongated substrate 403 is 10 cm or greater.
- the electrode strips 420 are thin strips of electrically conducting material that run lengthwise along the long axis (cylindrical axis) of the photovoltaic module 402, as depicted in Figure 4A.
- the optional electrode strips are positioned at spaced intervals on the surface of the transparent conductive layer 412. For instance, in Fig. 3B, the electrode strips 420 run parallel to each other and are spaced out at ninety degree intervals along the cylindrical axis of the photovoltaic module 402.
- the electrode strips 420 are spaced out at five degree, ten degree, fifteen degree, twenty degree, thirty degree, forty degree, fifty degree, sixty degree, ninety degree or 180 degree intervals on the surface of the transparent conductive layer 412. In some embodiments, there is a single electrode strip 420 on the surface of the transparent conductive layer 412. In some embodiments, there is no electrode strip 420 on the surface of the transparent conductive layer 412. In some embodiments, there are zero, one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, fifteen or more, or thirty or more electrode strips on the transparent conductive layer 412, all running parallel, or near parallel, to each down the long (cylindrical) axis of the photovoltaic module.
- the electrode strips 420 are evenly spaced about the circumference of the transparent conductive layer 412, for example, as depicted in Fig. 3B. In alternative embodiments, the electrode strips 420 are not evenly spaced about the circumference of the transparent conductive layer 412. In some embodiments, the electrode strips 420 are only on one face of the photovoltaic module. In some embodiments, the electrode strips 420 are made of conductive epoxy, conductive ink, copper or an alloy thereof, aluminum or an alloy thereof, nickel or an alloy thereof, silver or an alloy thereof, gold or an alloy thereof, a conductive glue, or a conductive plastic.
- Electrodes strips that run along the long (cylindrical) axis of the photovoltaic module and these electrode strips are interconnected to each other by grid lines.
- These grid lines can be thicker than, thinner than, or the same width as the electrode strips.
- These grid lines can be made of the same or different electrically material as the electrode strips.
- the electrode strips 420 are deposited on the transparent conductive layer 412 using ink jet printing.
- conductive ink that can be used for such strips include, but are not limited to silver loaded or nickel loaded conductive ink.
- epoxies as well as anisotropic conductive adhesives can be used to construct the electrode strips 420.
- such inks or epoxies are thermally cured in order to form the electrode strips 420.
- the back-electrode 404 is composed of any conductive material, such as aluminum, molybdenum, tungsten, vanadium, rhodium, niobium, chromium, tantalum, titanium, steel, nickel, platinum, silver, gold, an alloy thereof, or any combination thereof.
- any conductive material such as aluminum, molybdenum, tungsten, vanadium, rhodium, niobium, chromium, tantalum, titanium, steel, nickel, platinum, silver, gold, an alloy thereof, or any combination thereof.
- the back-electrode 404 is composed of any conductive material, such as indium tin oxide, titanium nitride, tin oxide, fluorine doped tin oxide, doped zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, boron doped zinc oxide indium-zinc oxide, a metal-carbon black-filled oxide, a graphite-carbon black-filled oxide, a carbon black-filled oxide, a superconductive carbon black-filled oxide, an epoxy, a conductive glass, or a conductive plastic.
- a conductive plastic is one that, through compounding techniques, contains conductive fillers which, in turn, impart their conductive properties to the plastic.
- the conductive plastics used in the present application to form the back-electrode 404 contain fillers that form sufficient conductive current-carrying paths through the plastic matrix to support the photovoltaic current generated by the photovoltaic module with negligible resistive losses.
- the plastic matrix of the conductive plastic is typically insulating, but the composite produced exhibits the conductive properties of the filler.
- the transparent conductive layer 412 is made of tin oxide SnO x (with or without fluorine doping), indium-tin oxide (ITO), doped zinc oxide (e.g., aluminum doped zinc oxide, gallium doped zinc oxide, boron doped zinc oxide), indium- zinc oxide or any combination thereof.
- the transparent conductive layer 412 is either /?-doped or n- doped.
- the transparent conductive layer is made of carbon nanotubes. Carbon nanotubes are commercially available, for example from Eikos (Franklin, Massachusetts) and are described in United States Patent 6,988,925, which is hereby incorporated by reference herein in its entirety.
- the transparent conductive layer 412 can bep-doped.
- the transparent conductive layer 412 can be «-doped.
- the transparent conductive layer 412 is preferably made of a material that has very low resistance, suitable optical transmission properties ⁇ e.g., greater than 90%), and a deposition temperature that will not damage underlying layers of the semiconductor junction 410 and/or the optional /-layer 415.
- the transparent conductive layer 412 is an electrically conductive polymer material such as a conductive polythiophene, a conductive polyaniline, a conductive polypyrrole, a PSS-doped PEDOT ⁇ e.g., Bayrton), or a derivative of any of the foregoing.
- the transparent conductive layer 412 comprises more than one layer, including a first layer comprising tin oxide SnO x (with or without fluorine doping), indium-tin oxide (ITO), indium-zinc oxide, doped zinc oxide ⁇ e.g., aluminum doped zinc oxide, gallium doped zinc oxide, boron dope zinc oxide) or a combination thereof and a second layer comprising a conductive polythiophene, a conductive polyaniline, a conductive polypyrrole, a PSS-doped PEDOT ⁇ e.g., Bayrton), or a derivative of any of the foregoing.
- Additional suitable materials that can be used to form transparent conductive layer are disclosed in United States Patent publication 2004/0187917Al to Pichler, which is hereby incorporated by reference herein in its entirety.
- Potential transparent casing 310 geometries include, but are not limited to, cylindrical, various elongate structures where the radial dimension and/or cross-sectional area are far less than the length, having arcuate features, box-like, or any potential geometry compatible for use with photovoltaic cells.
- the transparent casing 310 is tubular, with a hollow core.
- other geometries and shapes can be used.
- the transparent casing 310 is made of a urethane polymer, an acrylic polymer, polymethylmethacrylate (PMMA), a fluoropolymer, silicone, poly- dimethyl siloxane (PDMS), silicone gel, epoxy, ethylene vinyl acetate (EVA), perfluoroalkoxy fluorocarbon (PFA), nylon / polyamide, cross-linked polyethylene (PEX), polyolefin, polypropylene (PP), polyethylene terephtalate glycol (PETG), polytetrafluoroethylene (PTFE), thermoplastic copolymer (for example, ETFE ® ' which is a derived from the polymerization of ethylene and tetrafluoroethylene: TEFLON monomers), polyurethane / urethane, polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), TYGON ® , vinyl, VITON ® , or any combination or variation thereof.
- the transparent casing 310 comprises a plurality of transparent casing layers. In some embodiments, each transparent casing is composed of a different material. For example, in some embodiments, the transparent casing 310 comprises a first transparent casing layer and a second transparent casing layer.
- the first transparent casing layer is disposed on the transparent conductive layer 412, the filler material 330 or the water resistant layer.
- the second transparent casing layer is disposed on the first transparent casing layer.
- each transparent casing layer has different properties.
- the outer transparent casing layer has excellent UV shielding properties whereas the inner transparent casing layer has good water proofing characteristics.
- the use of multiple transparent casing layers can be used to reduce costs and/or improve the overall properties of the transparent casing 310.
- one transparent casing layer may be made of an expensive material that has a desired physical property.
- one transparent casing layer may have excellent optical properties (e.g., index of refraction, etc.) but be very heavy.
- the thickness of the heavy transparent casing layer may be reduced, thereby reducing the overall weight of the transparent casing 310.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
L'invention porte sur un module photovoltaïque comprenant un substrat allongé dans lequel au moins une partie du substrat allongé est rigide. Une ou plusieurs cellules solaires sont disposées sur le substrat allongé et comprennent chacune : (i) une électrode arrière disposée sur le substrat allongé, (ii) une couche de jonction semi-conductrice disposée sur l'ensemble ou une partie d'une surface de l'électrode arrière, et (iii) une couche conductrice transparente, ayant un premier indice de réfraction, disposée sur l'ensemble ou une partie d'une surface de la jonction semi-conductrice. Le module photovoltaïque comprend en outre un matériau de remplissage, ayant un second indice de réfraction qui est inférieur ou égal au premier indice de réfraction, disposé sur la couche conductrice transparente de la ou des cellules solaires. Le module photovoltaïque comprend en outre un boîtier transparent disposé sur le matériau de remplissage pour ainsi sceller hermétiquement le module photovoltaïque.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08834026A EP2203942A2 (fr) | 2007-09-26 | 2008-09-25 | Modules photovoltaïques ayant un matériau de remplissage |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97517507P | 2007-09-26 | 2007-09-26 | |
US60/975,175 | 2007-09-26 | ||
US12/039,659 | 2008-02-28 | ||
US12/039,659 US8183458B2 (en) | 2007-03-13 | 2008-02-28 | Photovoltaic apparatus having a filler layer and method for making the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009042184A2 true WO2009042184A2 (fr) | 2009-04-02 |
WO2009042184A3 WO2009042184A3 (fr) | 2009-08-06 |
Family
ID=40512066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2008/011133 WO2009042184A2 (fr) | 2007-09-26 | 2008-09-25 | Modules photovoltaïques ayant un matériau de remplissage |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2203942A2 (fr) |
WO (1) | WO2009042184A2 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010141697A3 (fr) * | 2009-06-05 | 2011-07-07 | Dow Corning Corporation | Procédés de fabrication de modules photovoltaïques par syntonisation des propriétés optiques de composants individuels |
US8183458B2 (en) | 2007-03-13 | 2012-05-22 | Solyndra Llc | Photovoltaic apparatus having a filler layer and method for making the same |
WO2013096336A1 (fr) * | 2011-12-19 | 2013-06-27 | Nthdegree Technologies Worldwide Inc. | Formation d'une lentille à gradient d'indice dans tout un procédé d'impression à pression atmosphérique afin de former des panneaux photovoltaïques |
US8742252B2 (en) | 2006-03-18 | 2014-06-03 | Solyndra, Llc | Elongated photovoltaic cells in casings with a filling layer |
TWI511306B (zh) * | 2012-05-18 | 2015-12-01 | Nthdegree Tech Worldwide Inc | 在一全大氣壓印刷程序中形成漸變折射率透鏡以形成光伏打面板 |
CN105276838A (zh) * | 2015-10-22 | 2016-01-27 | 西安交通大学 | 一种基于折射的太阳能均光管式反应器或干燥器 |
CN114759115A (zh) * | 2021-05-25 | 2022-07-15 | 北京劲吾新能源科技有限公司 | 一种优化彩色光伏组件画面的方法及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7235736B1 (en) * | 2006-03-18 | 2007-06-26 | Solyndra, Inc. | Monolithic integration of cylindrical solar cells |
US20070215197A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in casings |
US20070215195A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in tubular casings |
-
2008
- 2008-09-25 EP EP08834026A patent/EP2203942A2/fr not_active Ceased
- 2008-09-25 WO PCT/US2008/011133 patent/WO2009042184A2/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7235736B1 (en) * | 2006-03-18 | 2007-06-26 | Solyndra, Inc. | Monolithic integration of cylindrical solar cells |
US20070215197A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in casings |
US20070215195A1 (en) * | 2006-03-18 | 2007-09-20 | Benyamin Buller | Elongated photovoltaic cells in tubular casings |
Non-Patent Citations (1)
Title |
---|
See also references of EP2203942A2 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8742252B2 (en) | 2006-03-18 | 2014-06-03 | Solyndra, Llc | Elongated photovoltaic cells in casings with a filling layer |
US8183458B2 (en) | 2007-03-13 | 2012-05-22 | Solyndra Llc | Photovoltaic apparatus having a filler layer and method for making the same |
US8674213B2 (en) | 2007-03-13 | 2014-03-18 | Solyndra, Llc | Photovoltaic apparatus having a filler layer and method for making the same |
US8796532B2 (en) | 2009-06-05 | 2014-08-05 | Dow Corning Corporation | Methods for fabricating photovoltaic modules by tuning the optical properties of individual components |
CN102473781A (zh) * | 2009-06-05 | 2012-05-23 | 道康宁公司 | 通过调整单独的部件的光学性质制作光伏组件的方法 |
WO2010141697A3 (fr) * | 2009-06-05 | 2011-07-07 | Dow Corning Corporation | Procédés de fabrication de modules photovoltaïques par syntonisation des propriétés optiques de composants individuels |
WO2013096336A1 (fr) * | 2011-12-19 | 2013-06-27 | Nthdegree Technologies Worldwide Inc. | Formation d'une lentille à gradient d'indice dans tout un procédé d'impression à pression atmosphérique afin de former des panneaux photovoltaïques |
CN104025317A (zh) * | 2011-12-19 | 2014-09-03 | 尼斯迪格瑞科技环球公司 | 以全大气压印刷工艺形成渐变折射率透镜以形成光伏面板 |
KR101508597B1 (ko) * | 2011-12-19 | 2015-04-07 | 엔티에이치 디그리 테크놀로지스 월드와이드 인코포레이티드 | 광전지 패널을 제조하기 위한 전체 대기압 프린팅 방법에서 그레이디드 인덱스 렌즈의 제조 |
US9035174B2 (en) | 2011-12-19 | 2015-05-19 | Nthdegree Technologies Worldwide Inc. | Forming graded index lens in an all atmospheric pressure printing process to form photovoltaic panels |
CN104025317B (zh) * | 2011-12-19 | 2016-03-02 | 尼斯迪格瑞科技环球公司 | 以全大气压印刷工艺形成渐变折射率透镜以形成光伏面板 |
TWI511306B (zh) * | 2012-05-18 | 2015-12-01 | Nthdegree Tech Worldwide Inc | 在一全大氣壓印刷程序中形成漸變折射率透鏡以形成光伏打面板 |
CN105276838A (zh) * | 2015-10-22 | 2016-01-27 | 西安交通大学 | 一种基于折射的太阳能均光管式反应器或干燥器 |
CN114759115A (zh) * | 2021-05-25 | 2022-07-15 | 北京劲吾新能源科技有限公司 | 一种优化彩色光伏组件画面的方法及其应用 |
CN114759115B (zh) * | 2021-05-25 | 2024-05-31 | 新源劲吾(北京)科技有限公司 | 一种优化彩色光伏组件画面的方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
EP2203942A2 (fr) | 2010-07-07 |
WO2009042184A3 (fr) | 2009-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090014055A1 (en) | Photovoltaic Modules Having a Filling Material | |
US20080302418A1 (en) | Elongated Photovoltaic Devices in Casings | |
US8742252B2 (en) | Elongated photovoltaic cells in casings with a filling layer | |
WO2008137141A1 (fr) | Dispositifs photovoltaïques allongés contenus dans des boîtiers | |
US20100326429A1 (en) | Hermetically sealed cylindrical solar cells | |
US8710361B2 (en) | Volume compensation within a photovoltaic device | |
CA2685518C (fr) | Dispositif photovoltaique a contenant renfermant un volume de compensation | |
US20100132765A1 (en) | Hermetically sealed solar cells | |
US20100300532A1 (en) | Hermetically sealed nonplanar solar cells | |
US20100255628A1 (en) | Scribing methods for photovoltaic modules including a mechanical scribe | |
WO2008137140A2 (fr) | Intégration monolithique de cellules solaires non planes | |
WO2007002110A2 (fr) | Dispositifs bifaciaux a cellules solaires allongees | |
WO2009042184A2 (fr) | Modules photovoltaïques ayant un matériau de remplissage | |
WO2010008604A1 (fr) | Dispositifs semi-conducteurs allongés et leurs procédés de fabrication | |
US20100147367A1 (en) | Volume Compensation Within a Photovoltaic Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08834026 Country of ref document: EP Kind code of ref document: A2 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008834026 Country of ref document: EP |