WO2009040452A1 - Monofocal ophthalmic lenses - Google Patents

Monofocal ophthalmic lenses Download PDF

Info

Publication number
WO2009040452A1
WO2009040452A1 PCT/ES2008/000598 ES2008000598W WO2009040452A1 WO 2009040452 A1 WO2009040452 A1 WO 2009040452A1 ES 2008000598 W ES2008000598 W ES 2008000598W WO 2009040452 A1 WO2009040452 A1 WO 2009040452A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
ophthalmic lenses
lenses
monofocal ophthalmic
curvature
Prior art date
Application number
PCT/ES2008/000598
Other languages
Spanish (es)
French (fr)
Inventor
Daniel CRESPO VÁZQUEZ
Jose ALONSO FERNÁNDEZ
Jose Miguel Cleva Millor
Original Assignee
Indizen Optical Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indizen Optical Technologies, S.L. filed Critical Indizen Optical Technologies, S.L.
Publication of WO2009040452A1 publication Critical patent/WO2009040452A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses

Definitions

  • the object of the present invention is a method of designing ophthalmic lenses, monofocal lenses of the highest quality and ophthalmic lenses for compensation of refractive errors that are achieved with said method. Background of the invention.
  • ocular refractive errors are compensated by the use of ophthalmic lenses.
  • the requirement that is required of a compensatory ophthalmic lens is that its paraxial image focus coincides with the conjugate point of the retina of the ametropic eye, for a given object distance, and for a given ocular accommodation value.
  • the posterior frontal power of the lens, in the paraxial sense coincide with the refractive error. of the determined patient. in the plane of the glasses.
  • the visual axis can rotate in the center 'of rotation of the eye, away from the optical axis of the compensating lens of the refractive error.
  • Refractive error is traditionally specified from the main curvatures of the wavefront refracted by the eye. If we consider the difference between the curvature of a parallel beam refracted by a perfect eye, and the main curvatures corresponding to the beam refracted by the ametropic eye, and we call these differences Zc 1 and Zf 2 , traditionally called sphere, E, a of the two curvatures and cylinder, C, to the difference between the two.
  • the axis of the cylinder a is defined as the direction of the main curvature defined as a sphere.
  • the ideal power of the compensating lens can then be specified with the three figures [E, C * á ⁇ .
  • the obliquity of the visual axis has the consequence that the lens has a power [E + ⁇ (u, v), (C + ⁇ (u, v)) * (a + a (u, v))], where uyv are the horizontal and vertical angles that determine the direction of look and are shown in Figure 1, and the functions ⁇ , ⁇ and ⁇ , are errors in the spherical power, in the cylinder and in the direction of the axis of the cylinder, which we will call oblique errors (sphere error, cylinder error and cylinder axis error).
  • the meniscus shape is characterized by having an external surface of positive refracting power and an internal surface, the closest to the eye, of negative refracting power. .
  • the oblique power errors of the external and internal faces of the lens tend to compensate.
  • this format is not sufficient for a good correction of the three oblique errors. Only one of the two oblique power errors can be reduced, and even the improvement is unimportant in astigmatic lenses and in medium-high positive power lenses.
  • the meniscus shape tends to produce lenses with high curvature surfaces and with greater edge thicknesses in negative lenses or greater central thicknesses in positive lenses.
  • the optimal ophthalmic lens of spherical surfaces is less ergonomic, heavier and less aesthetic.
  • Another added problem is that the reduction of oblique power errors is only applicable in a certain position of use and for a certain position of the object observed by the user.
  • the position of use is a general denomination that encompasses all the parameters that specify the position of the lens with respect to the eye: Distance from its vertex posterior to the center of rotation V 2 , pantoscopic angle of the lens, ⁇ , facial angle, ⁇ , and decentralization of its optical center with respect to the user's pupil (x o , y o ). These parameters are illustrated in Figure 2.
  • the impositions of ophthalmic lens manufacturing systems require that at least one of the two surfaces of the lens have predefined curvature values. These values form a discrete and small set of possible curvatures, which are called bases, and partly limit the freedom to produce lenses with arbitrary shapes.
  • bases are usually used, that is, semi-finished lenses with a few possible values of curvature of the external surface.
  • the inner face of a semi-finished lens is detailed to obtain, in this way, a lens with the power required by the user.
  • the design efforts of ophthalmic lenses have focused primarily on the reduction of oblique errors for a given direction of view defined by the angles u and v. In this sense, three positions of the eye are defined in relation to the lens: In the primary position, or main gaze position, the visual axis of the eye coincides with the optical axis of the lens.
  • the design of monofocal ophthalmic lenses is limited to the optimization of a surface in response to the reduction of oblique power errors leaving aspects such as the base value or good correspondence binocular out of the optimization problem, and as part of a choice that is made a priori.
  • the modern point-to-point carving and polishing technology allows arbitrary surfaces to be manufactured in ophthalmic lenses, both on semi-finished surfaces with a spherical or aspherical surface of predetermined characteristics, and for the manufacture of b-aspherical lenses completely free. This ability to modify in .
  • Each specimen of ophthalmic lens features one or both surfaces opens the possibility to a global optimization of the ophthalmic lens. Description of the invention.
  • the objective of the present invention is to achieve optimized monofocal ophthalmic lenses in a global way to take into account, at the same time, the optical, binocular, ergonomic and aesthetic needs of the end user.
  • the calculation system will find the optimum form of both surfaces, or if semi-finishes are used, (which reduces the degrees of freedom), the system determines automatic the base together with the thickness and geometry of the carving surface, so that the lens is optimal according to the selected priorities.
  • the calculation system object of the present invention uses real ray tracing in a lens-eye model that reliably replicates the real lens and eye. This calculation system is essential to determine the powers that the eye really experiences in secondary and tertiary positions. For this, a specific ophthalmic lens shape with a spherical and toric surface is decided, which has the posterior frontal power necessary for the compensation of the user's refractive error.
  • An object space is then imposed (defined by the distances to the objects observed for each direction of gaze.) Subsequently, and from said object space, the rays coming from the object space pass through the center of rotation of the eye after The refraction in the ophthalmic lens and the deformation of the wavefront associated with each of these rays is calculated. TO From this deformation, the power that the lens offers for each direction of view is determined by standard techniques. Since the refractive error of the eye is substantially constant regardless of its position, the variations in the power of the lens in the different directions of view are translated into oblique errors, both power and axis, which are thus established in all the object space.
  • the thicknesses and curvatures of the lens used for the calculation described above allow determining other characteristics such as the size of the retinal image, the visual field and the possibility of generating parasitic images.
  • Figure 1 shows the lens-eye system in a typical oblique tertiary type position. In this position, the main ray defined by the center of rotation of the eye and the center of the pupil, cuts the lens out of the main meridians thereof.
  • Figure 2 shows the parameters that define the position of the lens with respect to the eye. These are the pantoscopic and facial angles, the distance from the posterior vertex of the lens to the center of rotation of the eye, and horizontal and vertical offsets.
  • Figure 3a shows an optimized lens [2.2 * 90], facial 10 °.
  • the AV is greater than 0.8 in a 20 ° cone.
  • Figure 6a shows the. Visual acuity map of a PA lens which, using the present invention, can be improved according to Figure 6b, further obtaining an improvement in the thickness of the lens as seen in Figure 6c.
  • Figure 7a shows the visual acuity map of a prescription PA lens (+2.5.1 x0) on a 8.50 base.
  • Figure 7b shows the same lens optimized according to the present invention using a base 4.25, which eliminates a parasitic image of type 4.
  • Figure 7c shows the map of the PA lens made in base 4.25 showing the improvement obtained by The optimized lens.
  • Figure 8 shows the values of the different functions in a PA lens and an optimized lens observing how the optimization process performs the overall improvement of all the visual characteristics of the lens.
  • Figure 9 shows typical values of the object distance as a function of the vertical viewing angle. Preferred embodiment of the invention. '
  • the surfaces of the family of ophthalmic lenses object of the present invention are chosen so that one of them is spherical and the other, in general, aspherical without revolution symmetry, or one of the surfaces is aspherical with Ia axisymmetric and other generally axisymmetric aspherical without or generally two surfaces' aspherical without symmetry of revolution.
  • an alternating aspherical form is proposed. It is possible to generate an atoric surface in different ways. Specifically, if we call ⁇ yr z a. the main radii of greater and lesser curvature at the apex of the surface, an atomic surface of type A with a ring format will be given by a Monge card of the type: where and where Ci and C 2 are the asphericity coefficients of each major meridian. On a type B atoric surface with a ring format, the Monge card is given by:, where,
  • Both atoric forms have their corresponding barrel version, which can be obtained by changing r- ⁇ for r 2 , C 1 for C 2 and x for y.
  • Each of the four atoric forms presents a different behavior outside the main meridians, in the regions where the visual axis cuts to the lens in the tertiary position. While the ring shape preserves the curvature in the meridians parallel to the maximum curvature, the barrel shape preserves the curvature in meridians parallel to the meridian of minimum curvature.
  • the aspherization affects equally all the meridians of the surface
  • the asphericity in the main meridians of a point, arbitrary of the surface depends on the distance of said point to the vertex of the surface.
  • This variability means that each type of surface has geometric, and therefore optical, slightly different properties.
  • the A-type format is adapted better to reduce oblique errors for prescriptions without a cylinder or with a low cylinder
  • form B is better adapted to the reduction of oblique errors for prescriptions with a medium-high cylinder.
  • the ring shape allows a greater reduction of the power errors in surfaces of less curvature, (internal surface in positive lenses, or external surfaces in negative lenses) while the barrel shape is better adapted to the reduction of oblique errors on surfaces with greater curvature (external surface in positive lenses, or internal surfaces in negative lenses).
  • the advantage of this embodiment is that each surface depends only on 2 parameters, which allows a rapid convergence of the optimization algorithm. Even so, the geometric variability is large by virtue of the 4 accessible surface types.
  • n, m 0
  • ⁇ and ⁇ are normalized coordinates through two parameters dependent on the indices n and m.
  • N is the maximum order of the polynomial, which can be set at a value between 4 and 6.
  • oblique errors are reduced by calculating a function of merit based on the Cartesian components of the power tensioner. This tensor depends on the angular coordinates ⁇ u, v), and can be calculated by the expression:. ,
  • the prescription of the lens is also a point of said. space and its power tensioner will be J? obJ , so that in this preferred embodiment a standard valid in 5R 3 is used as a measure of the quality of the lens for a direction of gaze. If we evaluate K gaze directions that cover the visual field more or less uniformly, the optical quality of the lens, in what refers to oblique errors, will be much better the smaller the quantity:
  • the oblique error metric presented in the previous equation treats the power as a single tensorial magnitude, instead of three independent magnitudes.
  • the angle of minimum resolution is proportional to the norm fP obj - (P + ⁇ H) II, provided that A takes the value that minimizes said norm.
  • the visual acuity is, therefore, inversely proportional to it, as long as it does not exceed the conditions imposed by diffraction, the aberrations of the eye and the density of photoreceptors, a situation contemplated by the operator G.
  • a choice of a suitable norm in the equation that defines ⁇ x makes, by minimizing the functional, the visual acuity that the user obtains in a certain direction of gaze is maximum.
  • Visual acuity is the figure of merit that determines the quality of monocular vision of the patient and, therefore, a minimum value ofcicza j guarantees the best possible quality of vision in the contour that encloses all possible directions of gaze.
  • the design process allows for the first time to take into account the effect of the orientation of the cylinder axis, traditionally neglected in the design of ophthalmic lenses. This direction changes in tertiary gaze directions with respect to the orientation of said axis in Ia.
  • the new design process allows to optimize the surfaces of the lens so that, as a whole, the visual acuity is not deteriorated by this change.
  • Another advantage of the proposed method is that, by virtue of the operator G, the optimization process does not attempt to improve the lens to reduce the norm below 1 / AV max , which would be an improvement that the user cannot take advantage of. This saves degrees of freedom and allows improving other characteristics of the lens through the functional ones described in subsequent embodiments of Ia. invention.
  • w ⁇ i and W 22 are positive weights associated with the mass of the lens, and the average curvature of the lens at its vertex, K, and W 2 is the overall weight given to the functional.
  • a minimum value of this functional guarantees a lens of minimum weight and curvature, and therefore excellent from an ergonomic and aesthetic point of view.
  • the functional is determined
  • ⁇ 4 w 4 (A ⁇ -A)
  • a ⁇ is the difference in induced ophthalmic lens magnification by the prescription for the right and left eyes
  • is the objective aniseiconia value for the patient. In general, this value will be null but there may be cases of anatomical aniseiconia that must be maintained are compensation for clinical reasons.
  • the difference in ophthalmic lens magnification is obtained from the expression:
  • ⁇ /? __J iii l- (e OD / 2n) tv (V om ) l- (d / 2) t ⁇ (Y 0 ⁇ ) l- ( ⁇ 0 / / 2 ⁇ ) tr (P o / 1 ) 1 - ⁇ / 2) tr (P o; )
  • eo D , and O ⁇ are the central thicknesses of the corrective lenses for the right and left eyes
  • d is the vertex distance
  • P 0 ⁇ p P 0n , P 0 ⁇ 5 P 07 are respectively the refracting power tensors of the external dipropia in the right and left eye lenses and the front power (objective power) of the lenses of the right and left eye. It is also possible and more convenient to calculate A ⁇ by means of approximate expression:
  • the value of ⁇ is determined by clinical procedures and, once known, the combined design of the lenses corresponding to the right and left eyes allows, through the minimization of the functional ⁇ 4 , the selection of bases and thicknesses that will guarantee a vision optimal binocular of the patient.
  • the weight W 4 determines Ia importance of the control of the aniseiconia induced by the pair of ophthalmic lenses versus the functional ⁇ 2 , which determines the flatness and the weight.
  • the functional is determined:
  • n is the index of refraction of the material
  • K 1 and ⁇ 2 are the average curvatures at the vertices of the external surfaces and internal, respectively.
  • the constants a s ⁇ are positive numbers, preferably integers. The value of the functional
  • ⁇ 5 becomes significantly large when the refractive powers of the lens are close to, the values that allow focusing a parasitic image, produced by reflections between the cornea and the surfaces of the lens, or reflections of the user's own face or eye in the surfaces of the lens.
  • a small value of ⁇ 5 guarantees that said images are out of focus, and therefore do not disturb the user of the ophthalmic lenses object of the present invention.
  • the functional w c is determined
  • a functional is determined that would allow an adequate correction of the power tensor error for any direction of gaze, or what is the same, a functional is determined that allows obtaining a lens that provides maximum visual acuity for any direction of gaze, regardless of the distance at which the observed object is placed.
  • ⁇ 7 ⁇ w v G [V obJ - (V (U ⁇ v n S,) + A (S 1 ) I)]
  • s ⁇ is the distance at which the object is when the user looks in the ith direction
  • ⁇ (s ⁇ ) is now the accommodation value that minimizes the operator G when the user looks at an object located at a distance s, - in the ith direction.
  • s (u, v) that determines the object distance for the direction of gaze defined by the angles u, v. This function can be completely general, but in most cases, the object distance depends fundamentally (or only) on the vertical viewing angle v. For one.
  • the positive vertical gaze angles correspond to objects at distances greater than L 5 or -6 meters, while the object distance begins to decrease for angles between 0 or -15 ° to reach the typical values from near vision, about -0.03 meters.
  • the power Y (U n V n S 1 ) is determined by means of the difference in tensile verges:
  • V (U n V n S i ) V (U n V n S 1 ) 1
  • V (U n V n S f ) is the image tensor vergence, which is obtained as the tensor vergence of the beam refracted by the lens and evaluated in the vertex sphere.
  • (1 / S 1 ) I is the object vergence, which is obviously a multiple of the identity matrix.
  • the evaluation of the image vergence can be carried out by drawing a main beam and calculating the main curvatures of the wave fronts refracted by the two surfaces of the lens, which is achieved through the generalized Coddington equations.
  • an optimal lens for any distance at least one of its two surfaces must be defined in general as a polynomial development, either in monomials or as an orthogonal polynomial development.
  • an optimal lens for any object distance will lack symmetries, such as those present in lenses for the compensation of spherical ametropias, or lenses for astigmatic ametropias with a spherical surface with revolution symmetry and another atoric surface. Because the object distance will vary for progressively more negative vertical directions of view.
  • the weights W 8x determine the relative importance of the magnitude x.
  • the most important weights are w Syo and w g / , since the vertical runout and the vertex distance are the parameters that most easily change in the size of the glasses. This functional can be calculated from O 1 in the case of lenses for fixed viewing distance, or from ⁇ 7 for lenses designed to be used with different object distances.
  • r ⁇ are the principal radii of curvature at the vertices of the external and internal faces of the lens
  • ⁇ j represents the parameters that define the asphericity of the surface or the surface itself
  • c and 6min are thicknesses center and minimum edge thickness in the lens.
  • the ligatures express in a simple way non-negotiable conditions in the optimization process such as the front frontal power of the lens, in terms of sphere, cylinder and axis, the prescription prism, if any, the maximum tolerated values for visual acuity ( or for the power tensioner error standard), etc.
  • Figure 4c and Figure 4d show how the base 4.25 is suitable for the manufacture of monofocals with the power of this example.
  • the AV deteriorates significantly, so that equalizing the retinal image sizes in case of anisometropia will be accompanied by a decrease in visual quality, an effect that is eliminated in the optimized lenses shown in Figures 4a and 4b.
  • Figure 5a shows an optimized power lens [-6.2x90]. 0.5 base. Maintains a level of visual acuity in a 30 ° cone.
  • Figure 5b shows a toric [-6.2x90] power lens. Base 4.25 In the most suitable base for the realization of the toric lens a 30% decrease in the visual acuity at 30 ° is observed.
  • Figure 6a shows a toric power lens [-4.0].
  • Figure 6b represents an optimized power lens [-4.0]. Visual acuity is maintained despite using a much flatter base than in the previous case, improving the aesthetics of the final result.
  • Figure 6b on the left shows the profile of the optimized lens that is much thinner than the corresponding PA lens whose profile is shown on the right.
  • Figure 7a shows a toric power lens [2.5,1x0] with base 8.25.
  • Figure 7b shows a power lens [2.5,1x0] optimized on base 4.25. The result eliminates a parasitic image of type 4.
  • Figure 7c a toric power lens [2.5,1x0] is shown on a 4.25 basis. To eliminate a parasitic image of type 4 in the PA lenses it is necessary to use a flatter base: Comparing this lens with the optimized equivalent, a significant deterioration of the optical quality of the resulting toric lens is observed.
  • a prescription guide is developed, preferably a computer assistant, that allows the prescriber to activate or deactivate requirements intuitively to proceed with the design of a lens or pair of lenses with the desired characteristics for the user.
  • the guide's mission is to facilitate the optimization process by deactivating incoherent requests (for example the reduction of the distortion and at the same time the reduction of the curvature of the lens) and allowing the prescriber to set minimum visual acuity levels or maximum thresholds for each one of the characteristics of the lens or pair of ophthalmic lenses that are represented in the functional ⁇ , a ⁇ 8 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)

Abstract

The invention relates to a novel type of ophthalmic lens designed to compensate for refractive errors with at least one non-spherical surface, in which the base and the mathematical form defining the surface are selected and calculated dynamically, with all of the optical, ergonomic and aesthetic properties of the lens being balanced simultaneously and in real time in order to obtain the best balanced lens design for each user and need.

Description

LENTES OFTÁLMICAS MONOFOCALES. MONOFOCAL OPHTHALMIC LENS.
Objeto de la invención,Object of the invention,
El objeto de Ia presente invención es un método de diseño de lentes oftálmicas , monofocales de máxima calidad y las lentes oftálmicas para Ia compensación de errores refractivos que se consiguen con dicho método. Antecedentes de Ia invención.The object of the present invention is a method of designing ophthalmic lenses, monofocal lenses of the highest quality and ophthalmic lenses for compensation of refractive errors that are achieved with said method. Background of the invention.
Es bien sabido que los errores refractivos oculares se compensan mediante el uso de lentes oftálmicas. En una primera aproximación, el requisito que se exige a una lente oftálmica compensadora es que su foco imagen paraxial coincida con el punto conjugado de Ia retina del ojo amétrope, para una distancia objeto determinada, y para un valor de acomodación ocular determinado. Para que esta circunstancia se verifique, - basta con que Ia potencia frontal posterior de Ia lente, en sentido paraxial, coincida con el error refractivo. del paciente determinado. en el plano de Ia gafa. Sin embargo, y dado que el ojo es un sistema óptico giratorio, el eje visual puede girar en tomo al centro' de rotación del ojo, apartándose del eje óptico de Ia lente compensadora del error refractivo. Bajo esta circunstancia, la potencia de Ia lente' deja de coincidir con el valor paraxial, y el error refractivo no se compensa de forma adecuada. El error refractivo se especifica tradicionalmente a partir de las curvaturas principales del frente de onda refractado por el ojo. Si consideramos Ia diferencia entre Ia curvatura de un haz paralelo refractado por un ojo perfecto, y las curvaturas principales correspondientes al haz refractado por el ojo amétrope, y denominamos a estas diferencias Zc1 y Zf2, tradicionalmente se denomina esfera, E, a una de las dos curvaturas y cilindro, C, a Ia diferencia entre ambas. Ei eje del cilindro a, se define como Ia dirección de Ia curvatura principal definida como esfera. La potencia ideal de Ia lente compensadora se puede especificar entonces con las tres cifras [E, C*á\.It is well known that ocular refractive errors are compensated by the use of ophthalmic lenses. In a first approximation, the requirement that is required of a compensatory ophthalmic lens is that its paraxial image focus coincides with the conjugate point of the retina of the ametropic eye, for a given object distance, and for a given ocular accommodation value. In order for this circumstance to be verified, - it is sufficient that the posterior frontal power of the lens, in the paraxial sense, coincide with the refractive error. of the determined patient. in the plane of the glasses. However, and given that the eye is a rotating optical system, the visual axis can rotate in the center 'of rotation of the eye, away from the optical axis of the compensating lens of the refractive error. Under this circumstance, the power of the lens ' ceases to coincide with the paraxial value, and the refractive error is not adequately compensated. Refractive error is traditionally specified from the main curvatures of the wavefront refracted by the eye. If we consider the difference between the curvature of a parallel beam refracted by a perfect eye, and the main curvatures corresponding to the beam refracted by the ametropic eye, and we call these differences Zc 1 and Zf 2 , traditionally called sphere, E, a of the two curvatures and cylinder, C, to the difference between the two. The axis of the cylinder a, is defined as the direction of the main curvature defined as a sphere. The ideal power of the compensating lens can then be specified with the three figures [E, C * á \.
La oblicuidad del eje visual tiene como consecuencia que Ia lente presente una potencia [E + ε(u,v) , (C + χ (u,v)) *(a + a ( u,v))], en donde u y v son los ángulos horizontal y vertical que determinan Ia dirección de mirada y se muestran en Ia figura 1 , y las funciones ε , χ y β, son errores en Ia potencia esférica, en el cilindro y en Ia dirección del eje del cilindro, que denominaremos errores oblicuos (error dé esfera, error de cilindro y error de eje de cilindro).The obliquity of the visual axis has the consequence that the lens has a power [E + ε (u, v), (C + χ (u, v)) * (a + a (u, v))], where uyv are the horizontal and vertical angles that determine the direction of look and are shown in Figure 1, and the functions ε, χ and β, are errors in the spherical power, in the cylinder and in the direction of the axis of the cylinder, which we will call oblique errors (sphere error, cylinder error and cylinder axis error).
El diseño tradicional de lentes oftálmicas, desde Ia primera familia de lentes libres de error oblicuo de cilindro (familia Punktal, de 1908) se ha centrado en Ia reducción del error de cilindro principalmente y en Ia reducción del error de esfera, de forma secundaria. Esta reducción de errores oblicuos de potencia (no de eje) se ha acometido hasta Ia actualidad para un valor determinado del ángulo de oblicuidad, ya que se acepta Ia hipótesis bajo Ia cual, si el error oblicuo es pequeño para un determinado ángulo de oblicuidad, también Io es para el resto del campo de visión. La forma clásica de reducción del error oblicuo de potencia consiste en Ia utilización de un factor de forma de menisco para Ia lente compensadora. La forma de menisco se caracteriza por poseer una superficie externa de poder refractor positivo y una superficie interna, Ia más cercana al ojo, de poder refractor negativo. . De esta forma, los errores oblicuos de potencia de las caras externa e interna de Ia lente tienden a compensarse. Sin embargo, este formato no es suficiente para' una buena corrección de los tres errores oblicuos. Tan solo puede reducirse uno de los dos errores oblicuos de potencia, e incluso Ia mejora es poco importante en, lentes astigmáticas y en lentes de potencia positiva media - alta.The traditional design of ophthalmic lenses, from the first family of lenses free of oblique cylinder error (Punktal family, 1908) has focused mainly on the reduction of the cylinder error and on the reduction of the sphere error, of secondary form This reduction of oblique power errors (not axis) has been undertaken until now for a certain value of the angle of obliqueness, since the hypothesis is accepted under which, if the oblique error is small for a certain angle of obliqueness, It is also for the rest of the field of vision. The classic form of reduction of the oblique power error consists in the use of a meniscus form factor for the compensating lens. The meniscus shape is characterized by having an external surface of positive refracting power and an internal surface, the closest to the eye, of negative refracting power. . In this way, the oblique power errors of the external and internal faces of the lens tend to compensate. However, this format is not sufficient for a good correction of the three oblique errors. Only one of the two oblique power errors can be reduced, and even the improvement is unimportant in astigmatic lenses and in medium-high positive power lenses.
Por otro lado, Ia forma de menisco tiende a producir lentes con superficies de alta curvatura y con mayores espesores de borde en lentes negativas o mayores espesores centrales en lentes positivas. Como consecuencia, Ia lente oftálmica óptima de superficies esféricas resulta menos ergonómica, más pesada y menos estética. Otro problema añadido consiste en que Ia reducción de los errores oblicuos de potencia es solo aplicable en una determinada posición de uso y para una determinada posición del objeto observado por el usuario. La posición de uso es una denominación general que engloba todos los parámetros que especifican Ia posición de Ia lente respecto del ojo: Distancia de su vértice posterior al centro de rotación V2 , ángulo pantoscópico de Ia lente, γ , ángulo facial, φ , y descentramiento de su centro óptico respecto de Ia pupila del usuario (xo,yo) . Estos parámetros se ilustran en Ia figura 2.On the other hand, the meniscus shape tends to produce lenses with high curvature surfaces and with greater edge thicknesses in negative lenses or greater central thicknesses in positive lenses. As a consequence, the optimal ophthalmic lens of spherical surfaces is less ergonomic, heavier and less aesthetic. Another added problem is that the reduction of oblique power errors is only applicable in a certain position of use and for a certain position of the object observed by the user. The position of use is a general denomination that encompasses all the parameters that specify the position of the lens with respect to the eye: Distance from its vertex posterior to the center of rotation V 2 , pantoscopic angle of the lens, γ, facial angle, φ, and decentralization of its optical center with respect to the user's pupil (x o , y o ). These parameters are illustrated in Figure 2.
Por último, las imposiciones de los sistemas de fabricación de lentes oftálmicas requieren que al menos una de las dos superficies de Ia lente tenga valores de curvatura predefinidos. Estos valores forman un conjunto discreto y pequeño de posibles curvaturas, a las que se denomina bases, y limitan en parte Ia libertad de producir lentes con formas arbitrarias. En Ia industria moderna de fabricación de lentes oftálmicas se suelen utilizar bases positivas, es decir, lentes semiacabadas con unos pocos valores posibles de curvatura de Ia superficie externa. Dada una prescripción, Ia cara interna de una lente semiacabada se retalla para obtener, de esta forma, una lente con Ia potencia requerida por el usuario. Los esfuerzos de diseño de lentes oftálmicas se han centrado fundamentalmente en Ia reducción de los errores oblicuos para una determinada dirección de mirada definida por los ángulos u y v. En este sentido, se definen tres posiciones del ojo en relación a Ia lente: En la posición primaria, o posición de mirada principal, el eje visual del ojo coincide con el eje óptico de Ia lente.Finally, the impositions of ophthalmic lens manufacturing systems require that at least one of the two surfaces of the lens have predefined curvature values. These values form a discrete and small set of possible curvatures, which are called bases, and partly limit the freedom to produce lenses with arbitrary shapes. In the modern industry of ophthalmic lens manufacturing, positive bases are usually used, that is, semi-finished lenses with a few possible values of curvature of the external surface. Given a prescription, the inner face of a semi-finished lens is detailed to obtain, in this way, a lens with the power required by the user. The design efforts of ophthalmic lenses have focused primarily on the reduction of oblique errors for a given direction of view defined by the angles u and v. In this sense, three positions of the eye are defined in relation to the lens: In the primary position, or main gaze position, the visual axis of the eye coincides with the optical axis of the lens.
En Ia posición secundaria, el ojo gira un determinado ángulo, pero su eje visual corta Ia lente en alguno de sus meridianos principales, de forma que, por ejemplo, si el eje de cilindro se orienta a 0o o 90°, en Ia posición secundaria o bien u = 0 o bien v = 0 , pero no ambos a Ia vez.In Ia secondary position, the eye rotates a certain angle, but its short visual axis the lens in one of its principal meridians, so that, for example, if the cylinder axis is oriented at 0 or or 90 °, in the position secondary or u = 0 or v = 0, but not both at the same time.
En Ia patente US4310225, se reivindica una familia de lentes en las que se escoge una entre un conjunto de superficies cóncavas internas, separadas en valor dióptrico por intervalos de 0.50D, para conseguir una reducción de los errores oblicuos a diferentes valores de Ia distancia objeto y de Ia distancia al centro de rotación. ' Dada Ia limitación impuesta por la fabricación a partir de bases, una de las tácticas más empleadas consiste en Ia sustitución de al menos una de las superficies esféricas de Ia lente, fáciles de fabricar, por una superficie asférica, más compleja pero que ofrece mayores grados de libertad. La variación de las curvaturas principales permite compensar, en parte, los errores oblicuos de potencia provocados por Ia oblicuidad. En este sentido, en la patente US5235357,"se reivindica un tipo de lentes oftálmicas con Ia superficie externa con Ia forma de un conicoide, de forma que los errores oblicuos (error de esfera y error de cilindro) son minimizados para una determinada potencia frontal y para un determinado índice de refracción.In US4310225, a family of lenses is claimed in which one is chosen from a set of internal concave surfaces, separated in dioptric value by intervals of 0.50D, to achieve a reduction of oblique errors at different values of the object distance and from the distance to the center of rotation. Given the limitation imposed by manufacturing from bases, one of the most commonly used tactics consists in replacing at least one of the spherical surfaces of the lens, easy to manufacture, by an aspherical surface, more complex but offering greater degrees of freedom. The variation of the main curvatures makes it possible, in part, to compensate for the oblique power errors caused by the obliqueness. In this sense, in US5235357, " a type of ophthalmic lens with the external surface in the form of a conicoid is claimed, so that oblique errors (sphere error and cylinder error) are minimized for a given frontal power and for a given index of refraction.
Sin embargo, las superficies esféricas con simetría de revolución presentan claras limitaciones para Ia reducción de errores oblicuos en lentes astigmáticas, razón por Ia cual se han introducido superficies de tipo atórico.However, spherical surfaces with revolution symmetry have clear limitations for the reduction of oblique errors in astigmatic lenses, which is why atoric type surfaces have been introduced.
En Ia patente US3960442 se presenta un nuevo tipo de lentes monofocales en las que una de las dos superficies se corresponde con un atoro. Esta generalización permite seleccionar Ia base de Ia lente de acuerdo a un criterio diferente a Ia corrección de los errores oblicuos, por ejemplo, Ia ecualización de los tamaños de imagen retiniana, o para controlar Ia aparición de ciertas imágenes parásitas resultantes de los reflejos internos en las superficies de Ia lente. Una vez seleccionada Ia base de acuerdo a alguno de estos criterios, los errores oblicuos se reducen mediante Ia selección adecuada de los parámetros de asferización de Ia superficie tórica. - A -In US3960442 a new type of monofocal lens is presented in which one of the two surfaces corresponds to an atoro. This generalization allows to select the base of the lens according to a criterion different from the correction of oblique errors, for example, the equalization of retinal image sizes, or to control the appearance of certain parasitic images resulting from internal reflections in the surfaces of the lens. Once the base has been selected according to any of these criteria, the oblique errors are reduced by means of the appropriate selection of the toric surface aspherization parameters. - TO -
En Ia patente US6419549 se reivindica un sistema completo de cálculo y fabricación que permite calcular y fabricar parejas de lentes con substancialmente los mismos valores de poder refractor de Ia cara externa a pesar de una posible anisometropía del paciente. La posibilidad de calcular y tallar superficies internas asféricas permite Ia reducción de los errores oblicuos aun cuando las bases de las lentes correspondientes al ojo derecho y al ojo izquierdo, tal y como se fabricarían de forma independiente, sean significativamente diferentes.In the US6419549 patent a complete system of calculation and manufacturing is claimed that allows to calculate and manufacture pairs of lenses with substantially the same refractive power values of the external face despite a possible anisometropia of the patient. The possibility of calculating and carving aspherical internal surfaces allows the reduction of oblique errors even when the bases of the lenses corresponding to the right eye and the left eye, as they would be manufactured independently, are significantly different.
Otra alternativa que facilita el diseño de las lentes oftálmicas asféricas se muestra en Ia patente US7111937, que reivindica lentes oftálmicas en las que Ia superficie tórica se ha sustituido por una superficie reglada en Ia que las direcciones de curvatura principal son en todo punto sustancialmente paralelas a las direcciones de los ejes de coordenadas X e Y.Another alternative that facilitates the design of aspherical ophthalmic lenses is shown in patent US7111937, which claims ophthalmic lenses in which the toric surface has been replaced by a ruled surface in which the principal curvature directions are at all points substantially parallel to the directions of the X and Y coordinate axes.
En la patente US4978211 se reivindican lentes oftálmicas de potencia positiva en Ia que Ia- esfericidad de Ia cara externa permite fundir- de forma continua dos regiones, una región central óptica en Ia que el paciente consigue buena calidad de visión, con una zona extema de forma anular, con potencia tangencial sustancialmente menor que en Ia zona interna, y que permite obtener lentes positivas de alta potencia y aun así de no demasiado espesor central y más ligeras que las correspondientes lentes esféricas. En Ia patente US5825454, se reivindica un diseño de lente asférica que es tolerante al descentramiento, tomando bajo consideración los errores oblicuos (astigmatismo y error de potencia) para un determinado ángulo de oblicuidad y bajo ciertos descentramientosIn US4978211 patent ophthalmic lenses of positive power are claimed in which the sphericity of the external face allows to melt two regions continuously, a central optical region in which the patient achieves good quality of vision, with an external area of annular shape, with tangential power substantially less than in the internal zone, and that allows to obtain positive lenses of high power and still not too central thickness and lighter than the corresponding spherical lenses. In the US5825454 patent, an aspherical lens design is claimed that is tolerant to decentralization, taking into account oblique errors (astigmatism and power error) for a certain angle of obliqueness and under certain offsets
En todos los desarrollos anteriores, Ia optimización se realiza para superficies- con una forma analítica cerrada, ya sea una carta de Monje o una descripción paramétrica de Ia superficie. Otra limitación es Ia realización de Ia optimización para rayos directores que cortan por las secciones principales de Ia lente, y para ángulos de oblicuidad fijos, bajo Ia hipótesis de que si el error oblicuo es pequeño o nulo para un cierto grado de oblicuidad, Io es también para todo el campo visual. En Ia patente US6012813, se reivindica Ia utilización de superficies definidas mediante splines para conseguir una mayor flexibilidad en Ia descripción de Ia misma. También se considera Ia corrección de los errores de potencia oblicuos en Ia así llamada "posición terciaria del ojo", que es aquella en Ia que el rayo principal no pasa por las secciones principales de Ia lente. En esta patente, de nuevo el objetivo consiste en reducir los errores oblicuos para un determinado valor de Ia oblicuidad. En otro diseño de lentes esféricas monofocales (US5550600) se propone, solo para lentes negativas, una superficie asférica con simetría de revolución en Ia que Ia diferencia entre las curvaturas principales, que en este caso coinciden con las direcciones tangencial y sagital, crece con Ia coordenada radial sobre una zona central, decrece en una zona anular contigua, para luego volver a crecer en el resto (periferia) de Ia lente. Tal diseño permite Ia obtención de lentes de buena calidad óptica en Ia primera zona (20 mm de radio) a Ia vez que una mayor planitud y unos menores espesores de borde.In all the previous developments, the optimization is carried out for surfaces - with a closed analytical form, either a monk card or a parametric description of the surface. Another limitation is the realization of the optimization for director rays that cut through the main sections of the lens, and for fixed oblique angles, under the hypothesis that if the oblique error is small or null for a certain degree of obliqueness, it is also for the entire visual field. In US6012813, the use of surfaces defined by splines is claimed to achieve greater flexibility in the description thereof. It is also considered the correction of oblique power errors in the so-called "tertiary position of the eye", which is that in which the main ray does not pass through the main sections of the lens. In this patent, again the objective is to reduce the oblique errors for a certain value of the obliqueness. In another design of monofocal spherical lenses (US5550600) it is proposed, only for negative lenses, an aspherical surface with revolution symmetry in which the difference between the main curvatures, which in this case coincide with the tangential and sagittal directions, grows with the radial coordinate on a central zone, decreases in an adjacent annular zone, and then grows back on the rest (periphery) of the lens. Such design allows the obtaining of good optical quality lenses in the first zone (20 mm radius) at the same time as greater flatness and lower edge thicknesses.
En otro diseño de lentes asféricas negativas (US5083859), se considera Ia mejora de dichas lentes mediante el uso de superficies asféricas cóncavas que responden a una función unidimensional polinomial en los meridianos principales de Ia lente. En meridianos oblicuos, Ia superficie se define mediante proyección geométrica de los. meridianos principales. La mejora buscada consiste en una reducción del error de astigmatismo oblicuo a Io largo de las direcciones dé mirada principales. . Sin embargo, y a pesar de todos los avances mencionados con anterioridad, las lentes oftálmicas monofocales siguen calculándose con el objetivo de minimizar por debajo de cierta tolerancia los errores oblicuos de potencia para un valor de oblicuidad determinado. Normalmente ello garantiza que dichos errores oblicuos de potencia son también pequeños para ángulos de oblicuidad más pequeños, pero en bastantes casos, que dependen de Ia potencia de Ia lente y el tipo de asfericidad elegido, los errores oblicuos se disparan para valores mayores del ángulo de oblicuidad. Ello da lugar a que Ia potencia ofrecida por Ia lente en dichas posiciones se aleje considerablemente de Ia potencia frontal paraxial. Otro problema asociado a las lentes oftálmicas es debido a Ia aberración cromática transversal. Tal y como se demuestra en Ia referencia de Mercier et al, Ia aberración cromática transversal es Ia causa de Ia mayor reducción en agudeza visual para posiciones de mirada secundarias y terciarias. La aberración cromática transversal es proporcional al efecto prismático producido por Ia lente e inversamente proporcional al número de Abbe del material con el que está fabricada. Normalmente se considera que el efecto prismático crece linealmente con Ia distancia al eje óptico, por Io que hasta ahora se ha considerado que Ia aberración cromática transversal solo puede reducirse con un material de baja dispersión.In another design of negative aspherical lenses (US5083859), the improvement of said lenses is considered through the use of concave aspherical surfaces that respond to a polynomial one-dimensional function in the main meridians of the lens. In oblique meridians, the surface is defined by geometric projection of the. main meridians The improvement sought is a reduction in the oblique astigmatism error along the main directions. . However, and despite all the advances mentioned above, monofocal ophthalmic lenses are still calculated with the objective of minimizing oblique power errors below a certain tolerance for a given oblique value. Normally this guarantees that said oblique power errors are also small for smaller oblique angles, but in quite a few cases, which depend on the power of the lens and the type of asphericity chosen, the oblique errors are triggered for values greater than the angle of obliquity. This results in that the power offered by the lens in said positions moves away considerably from the paraxial frontal power. Another problem associated with ophthalmic lenses is due to transverse chromatic aberration. As demonstrated in the Mercier et al reference, transverse chromatic aberration is the cause of the greater reduction in visual acuity for secondary and tertiary gaze positions. The transverse chromatic aberration is proportional to the prismatic effect produced by the lens and inversely proportional to the Abbe number of the material with which it is manufactured. Normally it is considered that the prismatic effect grows linearly with the distance to the optical axis, so that until now it has been considered that transverse chromatic aberration can only be reduced with a low dispersion material.
Señalar finalmente que, el diseño de lentes oftálmicas monofocales se ciñe a Ia optimización de una superficie atendiendo a Ia reducción dé los errores oblicuos de potencia dejando aspectos como el valor de Ia base o Ia buena correspondencia binocular fuera del problema de optimización, y como parte de una elección que se realiza a priori.Finally, note that, the design of monofocal ophthalmic lenses is limited to the optimization of a surface in response to the reduction of oblique power errors leaving aspects such as the base value or good correspondence binocular out of the optimization problem, and as part of a choice that is made a priori.
Por último, Ia moderna tecnología de tallado y pulido punto a punto permite, fabricar superficies arbitrarias en lentes oftálmicas, tanto sobre semiterminados con una superficie esférica o asférica de características predeterminadas, como para Ia fabricación de lentes b¡-asfér¡cas de forma completamente libre. Esta capacidad para modificar en. cada ejemplar de lente oftálmica las características de una o ambas superficies, abre Ia posibilidad a una optimización global de Ia lente oftálmica. Descripción de Ia invención. El objetivo de Ia presente invención es el de conseguir lentes oftálmicas monofocales optimizadas de una forma global para tener, en cuenta a Ia vez las necesidades ópticas, binoculares, ergonómicas y estéticas del usuario final. La ventaja de dicha optimización es que una vez seleccionadas las prioridades para cada problema, el sistema de cálculo encontrará Ja forma óptima de ambas superficies, o en caso de utilizar semiterminados, (Io cual reduce los grados de libertad), el sistema determina de forma automática Ia base junto con el espesor y Ia geometría de Ia superficie tallable, de manera que Ia lente sea óptima de acuerdo a las prioridades seleccionadas.Finally, the modern point-to-point carving and polishing technology allows arbitrary surfaces to be manufactured in ophthalmic lenses, both on semi-finished surfaces with a spherical or aspherical surface of predetermined characteristics, and for the manufacture of b-aspherical lenses completely free. This ability to modify in . Each specimen of ophthalmic lens features one or both surfaces, opens the possibility to a global optimization of the ophthalmic lens. Description of the invention. The objective of the present invention is to achieve optimized monofocal ophthalmic lenses in a global way to take into account, at the same time, the optical, binocular, ergonomic and aesthetic needs of the end user. The advantage of this optimization is that once the priorities for each problem have been selected, the calculation system will find the optimum form of both surfaces, or if semi-finishes are used, (which reduces the degrees of freedom), the system determines automatic the base together with the thickness and geometry of the carving surface, so that the lens is optimal according to the selected priorities.
Para que este sistema de fabricación sea eficiente, es necesario describir las superficies asféricas con. funciones Io suficientemente flexibles como para permitir Ia máxima generalidad, pero dependientes de un número de parámetros Io suficientemente pequeño como para poder realizar el cálculo de optimización en tiempo real, que es otra característica fundamental del sistema de diseño de Ia presente invención. i El sistema de cálculo objeto de Ia presente invención utiliza trazado real de rayos en un modelo lente-ojo que replica de forma fidedigna Ia lente y el ojo reales. Este sistema de cálculo es fundamental para determinar las potencias que realmente experimenta el ojo en posiciones secundarias y terciarias. Para ello, se decide una forma concreta de lente oftálmica con una superficie esférica y otra tórica, Ia cual posee Ia potencia frontal posterior necesaria para Ia compensación del error refractivo del usuario. A continuación se impone un espacio objeto (definido por las distancias a los objetos observados para cada dirección de mirada.) Posteriormente, y a partir de dicho espacio objeto, se determinan los rayos que procedentes del espacio objeto pasan por el centro de rotación del ojo tras Ia refracción en Ia lente oftálmica y se calcula Ia deformación del frente de ondas asociado a cada uno de estos rayos. A partir de esta deformación, se determina mediante técnicas estándar Ia potencia que Ia lente ofrece para cada dirección de mirada. Dado que el error refractivo del ojo es sustancialmente constante independientemente de su posición, las variaciones de Ia potencia de Ia lente en las diferentes direcciones de mirada se traducen en errores oblicuos, tanto de potencia como de eje, que quedan de esta forma establecidos en todo el espacio objeto. El trazado de rayos descrito permite determinar todas las características ópticas de Ia lente: efecto prismático y aberración cromática transversal para cada dirección de mirada, distorsión dinámica y estática, errores oblicuos e , incluso aberraciones de orden superior. La posición relativa entre Ia lente y el ojo influye obviamente en las propiedades calculadas. Sin embargo, esta posición no es normalmente fija, ya que existen dos factores que tienden a modificarla de forma más o menos aleatoria: Por un lado, Ia deformación de las monturas que sujetan las lentes en posición debido al uso continuado de las mismas, y por otro el deslizamiento de la montura sobre- Ia cara del paciente por efecto del sudor o de defectos posturales. Como consecuencia, Ia posición relativa entre Ia lente y el ojo es variable, y el sistema de diseño propuesto en Ia presente invención tiene en cuenta dicha variabilidad. Para ello, se realizan pequeñas variaciones de las variables que determinan Ia posición de Ia lente (ángulos pantoscópico, facial, distancia de Ia superficie posterior al centro de rotación del ojo y descentramientos vertical y horizontal de Ia lente) y se recalculan de nuevo las características ópticas de Ia lente bajo diseño. Esto es equivalente al cálculo de los gradientes de las características ópticas como función de los 5 parámetros que controlan Ia posición de Ia lente en el espacio. Interesa que estos gradientes queden minimizados, especialmente las componentes asociadas con el descentramiento vertical y Ia distancia al centro de rotación, que son los parámetros que cambian con más facilidad en el porte diario de las lentes oftálmicas. En Ia figura 3 se muestra el efecto de Ia variación de Ia distancia al centro de rotación en el error de cilindro oblicuoFor this manufacturing system to be efficient, it is necessary to describe the aspherical surfaces with. functions flexible enough to allow maximum generality, but dependent on a number of parameters small enough to be able to perform the optimization calculation in real time, which is another fundamental characteristic of the design system of the present invention. The calculation system object of the present invention uses real ray tracing in a lens-eye model that reliably replicates the real lens and eye. This calculation system is essential to determine the powers that the eye really experiences in secondary and tertiary positions. For this, a specific ophthalmic lens shape with a spherical and toric surface is decided, which has the posterior frontal power necessary for the compensation of the user's refractive error. An object space is then imposed (defined by the distances to the objects observed for each direction of gaze.) Subsequently, and from said object space, the rays coming from the object space pass through the center of rotation of the eye after The refraction in the ophthalmic lens and the deformation of the wavefront associated with each of these rays is calculated. TO From this deformation, the power that the lens offers for each direction of view is determined by standard techniques. Since the refractive error of the eye is substantially constant regardless of its position, the variations in the power of the lens in the different directions of view are translated into oblique errors, both power and axis, which are thus established in all the object space. The ray tracing described allows to determine all the optical characteristics of the lens: prismatic effect and transverse chromatic aberration for each direction of gaze, dynamic and static distortion, oblique errors and even higher order aberrations. The relative position between the lens and the eye obviously influences the calculated properties. However, this position is not normally fixed, since there are two factors that tend to modify it more or less randomly: On the one hand, the deformation of the frames that hold the lenses in position due to their continued use, and on the other, the sliding of the saddle over the patient's face due to sweat or postural defects. As a consequence, the relative position between the lens and the eye is variable, and the design system proposed in the present invention takes into account said variability. For this, small variations are made of the variables that determine the position of the lens (pantoscopic, facial angles, distance from the surface posterior to the center of rotation of the eye and vertical and horizontal offsets of the lens) and the characteristics are recalculated again optical lens under design. This is equivalent to the calculation of the gradients of the optical characteristics as a function of the 5 parameters that control the position of the lens in space. It is interesting that these gradients are minimized, especially the components associated with vertical offset and the distance to the center of rotation, which are the parameters that change most easily in the daily bearing of ophthalmic lenses. Figure 3 shows the effect of the variation of the distance to the center of rotation on the oblique cylinder error
Por otro lado, los espesores y curvaturas de Ia lente utilizada para el cálculo descrito anteriormente permiten determinar otras características como el tamaño de Ia imagen retiniana, el campo visual y Ia posibilidad de generación de imágenes parásitas.On the other hand, the thicknesses and curvatures of the lens used for the calculation described above allow determining other characteristics such as the size of the retinal image, the visual field and the possibility of generating parasitic images.
Toda Ia información obtenida con los cálculos anteriores se introduce en una función de mérito diseñada para acomodar variables continuas, variables discontinuas, y ligaduras entre los parámetros libres. Estas ligaduras vienen representadas por características de prescripción (potencia frontal posterior de la lente y prismas si fuesen necesarios) y por las prioridades definidas en el problema, normalmente expresadas como desigualdades: por ejemplo, que una determinada magnitud óptica no supere cierto umbral. El siguiente paso es el uso de un algoritmo de optimización iterativo. Antes de Ia primera iteración se evalúan los parámetros de descripción de superficies que corresponderían a Ia superficie esférica y tórica inicial, y en cada iteración se van modificando de forma que se cumplen las ligaduras y Ia función de mérito evoluciona hacia el valor más pequeño posible. De esta forma se consigue un diseño óptimo de lente oftálmica, desde un punto de vista global. Otra ventaja añadida del sistema de diseño propuesto y de las lentes oftálmicas resultantes es que en función de las preferencias del usuario, es posible obtener lentes en las que prima Ia calidad óptica por encima de aspectos estéticos o ergonómicos, o viceversa, ponderar Ia planitud y el peso de las lentes sacrificando en parte Ia reducción de los errores oblicuos. Las ligaduras establecidas como cotas a las diferentes propiedades de las lentes evitan que en cualquiera de los casos se obtengan soluciones demasiado curvadas o con demasiadas imperfecciones o aberraciones ópticas. Breve descripción de las figuras.All the information obtained with the previous calculations is introduced into a merit function designed to accommodate continuous variables, discontinuous variables, and ligatures between free parameters. These ligatures are represented by prescription characteristics (posterior frontal power of the lens and prisms if were necessary) and by the priorities defined in the problem, normally expressed as inequalities: for example, that a certain optical magnitude does not exceed a certain threshold. The next step is the use of an iterative optimization algorithm. Before the first iteration, the surface description parameters that would correspond to the initial spherical and toric surface are evaluated, and in each iteration they are modified so that the ligatures are fulfilled and the merit function evolves towards the smallest possible value. In this way an optimal ophthalmic lens design is achieved, from a global point of view. Another added advantage of the proposed design system and the resulting ophthalmic lenses is that depending on the user's preferences, it is possible to obtain lenses in which the optical quality prevails over aesthetic or ergonomic aspects, or vice versa, weigh the flatness and the weight of the lenses sacrificing in part the reduction of oblique errors. The ligatures established as dimensions to the different properties of the lenses prevent that in either case solutions are obtained too curved or with too many imperfections or optical aberrations. Brief description of the figures.
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor Ia invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.Next, a series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention that is presented as a non-limiting example thereof is described very briefly.
En la figura 1 se muestra el sistema lente-ojo en una típica posición oblicua de tipo terciario. En esta posición, el rayo principal definido por el centro de rotación del ojo y el centro de Ia pupila, corta á Ia lente fuera de los meridianos principales de la misma. En Ia figura 2 se muestran los parámetros que definen Ia posición de Ia lente respecto del ojo. Estos son los ángulos pantoscópico y facial, Ia distancia del vértice posterior de Ia lente al centro de rotación del ojo, y los descentramientos horizontal y vertical.Figure 1 shows the lens-eye system in a typical oblique tertiary type position. In this position, the main ray defined by the center of rotation of the eye and the center of the pupil, cuts the lens out of the main meridians thereof. Figure 2 shows the parameters that define the position of the lens with respect to the eye. These are the pantoscopic and facial angles, the distance from the posterior vertex of the lens to the center of rotation of the eye, and horizontal and vertical offsets.
En la figura 3a se muestra una lente optimizada [2,2*90], facial 10°. La AV es superior a 0.8 en un cono de 20°.Figure 3a shows an optimized lens [2.2 * 90], facial 10 °. The AV is greater than 0.8 in a 20 ° cone.
En Ia figura 3b se muestra Ia forma en que estas prestaciones pueden estabilizarse mediante Ia presente invención, con una lente optimizada [2,2x90], facial 10°, desplazada 5 mm en dirección axial. La AV sigue manteniéndose superior a 0.8 en un cono de 20°. En Ia figura 3c se muestra Ia variación de las prestaciones de una lente oftálmica de PA en la que se modifica Ia distancia al centro de rotación. Lente no optimizada [2,2x90], facial 10°. La AV cae a 0.3 a 20° hacia el lado derecho (nasal en el 0I1 temporal en el OD). A 10°, Ia AV ha caído a 0.6. En Ia figura 3d se muestra Ia variación de las prestaciones de una lente oftálmica de PA en Ia que se modifica Ia distancia al centro de rotación. Lente no optimizada [2,2*90], facial 10° y desplazada axialmente 5 mm. La AV cae hacia el lado derecho, siendo inferior a 0.3 a 10° hacia el lado derecho, Ia AV ha caído a 0.5.Figure 3b shows the way in which these benefits can be stabilized by means of the present invention, with an optimized lens [2,2x90], facial 10 °, displaced 5 mm in axial direction. The AV remains higher than 0.8 in a 20 ° cone. Figure 3c shows the variation of the performance of a PA ophthalmic lens in which the distance to the center of rotation is modified. Lens not optimized [2,2x90], facial 10 °. VA falls to 0.3 to 20 ° to the right side (nasal in the temporary 0I 1 in the OD). At 10 °, the AV has fallen to 0.6. The variation of the performance of an ophthalmic PA lens in which the distance to the center of rotation is modified is shown in Figure 3d. Lens not optimized [2.2 * 90], facial 10 ° and axially displaced 5 mm. The AV falls to the right side, being less than 0.3 to 10 ° to the right side, the AV has fallen to 0.5.
En las figuras 4a (lente de potencia [-6,2x135] optimizada, base 0.5) y 4b (lente de potencia [-6,2x135] optimizada, base 4.25) se muestra como Ia presente invención permite utilizar bases diferentes para ecualizar los tamaños de imagen retiniana (aumento de lente oftálmica) aun manteniendo una buena calidad visual a diferencia de lo. que ocurre en Ia lentes PA como se muestra. en las figuras 4c (lente de potencia [-6,2x135] tórica, base 0.5) y figura 4d (lente de potencia [-6,2x135] tórica, base 4.25).In figures 4a (optimized power lens [-6,2x135], base 0.5) and 4b (optimized power lens [-6,2x135], base 4.25) it is shown how the present invention allows different bases to be used to equalize the sizes Retinal imaging (ophthalmic lens augmentation) even while maintaining good visual quality unlike. which occurs in the PA lenses as shown. in figures 4c (toric power lens [-6.2x135], base 0.5) and figure 4d (toric power lens [-6.2x135], base 4.25).
En Ia figura 5a se muestra el mapa de agudeza visual de Ia lente optimizada según Ia presente invención para Ia que se obtiene una mejora sustancial respecto a una lente PA cuyo mapa de agudeza visual es el de Ia figura 5b.Figure 5a shows the visual acuity map of the optimized lens according to the present invention for which a substantial improvement is obtained with respect to a PA lens whose visual acuity map is that of Figure 5b.
En Ia figura 6a se muestra el. mapa de agudeza visual de una lente PA que utilizando Ia presente invención puede ser mejorada según Ia figura 6b obteniendo además una mejora en el espesor de Ia lente como se aprecia en Ia figura 6c.Figure 6a shows the. Visual acuity map of a PA lens which, using the present invention, can be improved according to Figure 6b, further obtaining an improvement in the thickness of the lens as seen in Figure 6c.
En Ia figura 7a se muestra el mapa de agudeza visual de una lente PA de prescripción (+2.5,1 x0) en base 8.50. En Ia figura 7b se muestra Ia misma lente optimizada según Ia presente invención usando una base 4.25, que elimina una imagen parásita de tipo 4. En Ia figura 7c se muestra el mapa de Ia lente PA realizada en Ia base 4.25 mostrando Ia mejora obtenida por Ia lente optimizada.Figure 7a shows the visual acuity map of a prescription PA lens (+2.5.1 x0) on a 8.50 base. Figure 7b shows the same lens optimized according to the present invention using a base 4.25, which eliminates a parasitic image of type 4. Figure 7c shows the map of the PA lens made in base 4.25 showing the improvement obtained by The optimized lens.
La figura 8 muestra los valores de las distintas funciones en una lente PA y una lente optimizada observando como el proceso de optimización realiza Ia mejora global de todas las características visuales de Ia lente. En Ia figura 9 se muestran valores típicos de Ia distancia objeto como función del ángulo de mirada vertical. Realización preferente de la invención. ' Figure 8 shows the values of the different functions in a PA lens and an optimized lens observing how the optimization process performs the overall improvement of all the visual characteristics of the lens. Figure 9 shows typical values of the object distance as a function of the vertical viewing angle. Preferred embodiment of the invention. '
Las superficies de Ia familia de lentes oftálmicas objeto de Ia presente invención, se escogen de forma que una de ellas es esférica y Ia otra, en general, asférica sin simetría de revolución, o bien una de las superficies es asférica con simetría de revolución y Ia otra, en general, asférica sin simetría de revolución o en general, dos superficies 'asféricas sin simetría alguna de revolución.The surfaces of the family of ophthalmic lenses object of the present invention, are chosen so that one of them is spherical and the other, in general, aspherical without revolution symmetry, or one of the surfaces is aspherical with Ia axisymmetric and other generally axisymmetric aspherical without or generally two surfaces' aspherical without symmetry of revolution.
En una realización de Ia presente invención, sin perjuicio de la posibilidad de utilizar otros sistemas de representación de superficies asféricas, se propone una forma asferotórica alternante. Es posible Ia generación de una superficie atórica de diferentes formas. En concreto, si denominamos η y rz a. los radios principales de curvatura mayor y menor en el vértice de Ia superficie, una superficie atórica de tipo A con formato de anillo vendrá dada por una carta de Monge del tipo:
Figure imgf000012_0001
en donde
Figure imgf000012_0002
y en donde Ci y C2 son los coeficientes de asfericidad de cada meridiano principal. En una superficie atórica de tipo B con formato de anillo, Ia carta de Monge viene dada por: ,
Figure imgf000012_0003
en donde,
Figure imgf000012_0004
In an embodiment of the present invention, without prejudice to the possibility of using other systems for representing aspherical surfaces, an alternating aspherical form is proposed. It is possible to generate an atoric surface in different ways. Specifically, if we call η yr z a. the main radii of greater and lesser curvature at the apex of the surface, an atomic surface of type A with a ring format will be given by a Monge card of the type:
Figure imgf000012_0001
where
Figure imgf000012_0002
and where Ci and C 2 are the asphericity coefficients of each major meridian. On a type B atoric surface with a ring format, the Monge card is given by:,
Figure imgf000012_0003
where,
Figure imgf000012_0004
Ambas formas atóricas tienen su correspondiente versión de barril, Ia cual puede obtenerse cambiando r-¡ por r2, C1 por C2 y x por y. Cada una de las cuatro formas atóricas presenta un comportamiento diferente fuera de los meridianos principales, en las regiones por donde corta el eje visual a Ia lente en posición terciaria. Mientras que Ia forma de anillo preserva Ia curvatura en los meridianos paralelos al de máxima curvatura, Ia forma de barril preserva Ia curvatura en meridianos paralelos al meridiano de mínima curvatura. Por otro lado, mientras que en Ia forma B Ia asferización afecta por igual a todos los meridianos de Ia superficie, en Ia forma A, Ia asfericidad en los meridianos principales de un punto, arbitrario de Ia superficie depende de Ia distancia de dicho punto al vértice de Ia superficie. Esta variabilidad hace que cada tipo de superficie tenga unas propiedades geométricas, y por tanto ópticas, ligeramente diferentes. Así, el formato atórico de tipo A se adapta mejor a Ia reducción de los errores oblicuos para prescripciones sin cilindro o con cilindro bajo, mientras que Ia forma B se adapta mejor a Ia reducción de errores oblicuos para prescripciones con cilindro medio-elevado. Por otro lado, la forma de anillo permite una mayor reducción de los errores de potencia en superficies de menor curvatura, (superficie interna en lentes positivas, o superficies externas en lentes negativas) mientras que Ia forma de barril se adapta mejor a Ia reducción de errores oblicuos en superficies de mayor curvatura (superficie extema en lentes positivas, o superficies internas en lentes negativas). La ventaja de esta realización consiste en que cada superficie depende únicamente de 2 parámetros, Io que permite una rápida convergencia del algoritmo de optimización. Aun así, Ia variabilidad geométrica es grande en virtud dé los 4 tipos de superficie accesibles.Both atoric forms have their corresponding barrel version, which can be obtained by changing r-¡for r 2 , C 1 for C 2 and x for y. Each of the four atoric forms presents a different behavior outside the main meridians, in the regions where the visual axis cuts to the lens in the tertiary position. While the ring shape preserves the curvature in the meridians parallel to the maximum curvature, the barrel shape preserves the curvature in meridians parallel to the meridian of minimum curvature. On the other hand, while in the form B the aspherization affects equally all the meridians of the surface, in the form A, the asphericity in the main meridians of a point, arbitrary of the surface depends on the distance of said point to the vertex of the surface. This variability means that each type of surface has geometric, and therefore optical, slightly different properties. Thus, the A-type format is adapted better to reduce oblique errors for prescriptions without a cylinder or with a low cylinder, while form B is better adapted to the reduction of oblique errors for prescriptions with a medium-high cylinder. On the other hand, the ring shape allows a greater reduction of the power errors in surfaces of less curvature, (internal surface in positive lenses, or external surfaces in negative lenses) while the barrel shape is better adapted to the reduction of oblique errors on surfaces with greater curvature (external surface in positive lenses, or internal surfaces in negative lenses). The advantage of this embodiment is that each surface depends only on 2 parameters, which allows a rapid convergence of the optimization algorithm. Even so, the geometric variability is large by virtue of the 4 accessible surface types.
En otra realización dé Ia invención, Ia superficie se describe mediante un polinomio bidimensional del tipo: *In another embodiment of the invention, the surface is described by a two-dimensional polynomial of the type: *
n,m=0 en donde anm son coeficientes , y ξ y ψ son coordenadas normalizadas a través de sendos parámetros dependientes de los índices n y m. N es el orden máximo del polinomio, que puede fijarse en un valor entre 4 y 6. En otra realización de Ia invención las superficies asféricas sin simetría de revolución se describen mediante un desarrollo del, tipon, m = 0 where a nm are coefficients, and ξ and ψ are normalized coordinates through two parameters dependent on the indices n and m. N is the maximum order of the polynomial, which can be set at a value between 4 and 6. In another embodiment of the invention the aspherical surfaces without revolution symmetry are described by a development of the type
M z = ∑χnPn(x,y)M z = ∑χ n P n (x, y)
, »=1 en donde χn son coeficientes y Pn(x,y) son polinomios de x e y, de orden creciente y definidos en una determinada región Ω en el interior de Ia cual satisfacen Ia condición,, »= 1 where χ n are coefficients and P n (x, y) are polynomials of x and y, of increasing order and defined in a given region Ω within which they satisfy the condition,
¡¡Pn(χ,y)Pm(χ,y)ώcdy = δnm .¡P n (χ, y) P m (χ, y) ώcdy = δ nm .
Ω donde M es el número máximo de polinomios a utilizar en el desarrollo, y es tal que el orden del polinomio PM es süstancialmente igual a N. En cualquiera de los dos casos anteriores, anm y χn son coeficientes que definen Ia superficie y que deben obtenerse mediante el proceso de optimización descrito anteriormente. La ventaja de las descripciones de superficie mediante polinomios es que poseen más grados de libertad, Io que otorga más flexibilidad al problema de Ia optimización. Como contrapartida, el número de coeficientes de los que depende el problema se hace considerablemente mayor que en el caso de las cuatro superficies atóricas de Ia anterior realización, Io que aumenta de forma significativa el tiempo de cálculo. Aún así, el proceso de diseño descrito en esta patente puede ejecutarse en tiempo real, incluso con superficies polinómicas. En otra realización de Ia presente invención, los errores oblicuos se reducen mediante él cálculo de una función de mérito basada en las componentes cartesianas del tensor de potencia. Este tensor depende de las coordenadas angulares {u,v), y puede, calcularse mediante Ia expresión: . ,Ω where M is the maximum number of polynomials to be used in development, and it is such that the order of the polynomial P M is substantially equal to N. In either of the two previous cases, at nm and χ n are coefficients that define the surface and that must be obtained through the optimization process described above. The advantage of surface descriptions by polynomials is that they have more degrees of freedom, which gives more flexibility to the problem of optimization. In return, the number of coefficients on which the problem depends is made considerably greater than in the case of the four atoric surfaces of the previous embodiment, which significantly increases the calculation time. Even so, the design process described in this patent can be executed in real time, even with polynomial surfaces. In another embodiment of the present invention, oblique errors are reduced by calculating a function of merit based on the Cartesian components of the power tensioner. This tensor depends on the angular coordinates {u, v), and can be calculated by the expression:. ,
| E(u,v) + C(u,v) skí2 a(u,v) -C(M5V)SUIa(M5V) COSa(M5V)^| E (u, v) + C (u, v) skí 2 a (u, v) -C (M 5 V) SUIa (M 5 V) THING (M 5 V) ^
^-C(M5 v) sin cc(u,v) eos a(u,v) E(u,v) + C(u,v) eos a(u,v) J siendo los elementos de Ia diagonal principal de este tensor las curvaturas del frente de onda refractado por Ia lente en las direcciones x e y del sistema de referencia móvil ligado al ojo, y el elemento de Ia antidiagonal es Ia torsión de una curva x=cté, ó y=cte, de dicho frente de ondas. El espacio de tensores de potencia es isomorfo a SR3 , por Io que existe una relación biunívoca entre cada valor del tensor de potencia y un punto del espacio tridimensional. La prescripción de Ia lente también es un punto de dicho. espacio y su tensor de potencia será J?obJ , por Io que en esta realización preferente se utiliza una norma válida en 5R3 como medida de Ia calidad de Ia lente para una dirección de mirada. Si evaluamos K direcciones de mirada que cubren de manera más o menos uniformé el campo visual, Ia calidad óptica .de Ia lente, en Io que se refiere a errores oblicuos, será tanto mejor cuanto menor sea Ia cantidad:^ -C (M 5 v) without cc (u, v) eos a (u, v) E (u, v) + C (u, v) eos a (u, v) J being the main diagonal elements of this tensor the curvatures of the wavefront refracted by the lens in the x and y directions of the mobile reference system linked to the eye, and the element of the antidiagonal is the torsion of a curve x = cté, or y = cte, of said front of waves. The space of power tensors is isomorphic to SR 3 , so there is a biunivocal relationship between each value of the power tensioner and a point in three-dimensional space. The prescription of the lens is also a point of said. space and its power tensioner will be J? obJ , so that in this preferred embodiment a standard valid in 5R 3 is used as a measure of the quality of the lens for a direction of gaze. If we evaluate K gaze directions that cover the visual field more or less uniformly, the optical quality of the lens, in what refers to oblique errors, will be much better the smaller the quantity:
O1 -(P(«/.v,) + Al)] , • • •
Figure imgf000014_0001
en donde Wy es un peso positivo que se asigna a ía dirección de mirada i-ésima, A es el valor de acomodación que minimiza el funcional (sujeto a Ia restricción A <=[θ,AÁ] donde AA es Ia amplitud de acomodación del usuario), K es el número máximo de direcciones de mirada que se encuentran dentro del contorno especificado por el usuario definido normalmente, por la forma de Ia montura o de Ia elipse de fabricación y G es una función escalar definida como:
O 1 - (P («/. V,) + Al)], • • •
Figure imgf000014_0001
where Wy is a positive weight that is assigned to the ith direction of view, A is the accommodation value that minimizes the functional (subject to the constraint A <= [θ, AÁ] where AA is the amplitude of accommodation of the user), K is the maximum number of look directions that are within the contour specified by the user defined normally, by the shape of the mount or manufacturing ellipse and G is a scalar function defined as:
J IMl SÍ IM| > (ΛC,)-' donde Nl es una matriz simétrica 2x2, || || es una norma válida en el espacio de tensores simétricos 2*2 y AVmax es un valor máximo de agudeza visual que depende del usuario.J IMl YES IM | > (ΛC,) - ' where Nl is a 2x2 symmetric matrix, || || it is a valid norm in the space of symmetrical tensioners 2 * 2 and AV max is a maximum value of visual acuity that depends on the user.
Una de las ventajas que aporta esta invención es que Ia métrica de error oblicuo presentada en Ia ecuación anterior trata Ia potencia como una única magnitud tensorial, en lugar de tres magnitudes independientes. En efecto, el ángulo de mínima resolución es proporcional a Ia norma fPobj - (P + ^H)II , siempre, que A tome el valor que minimiza dicha norma. La agudeza visual es, por tanto, inversamente proporcional a Ia misma, siempre que no supere los condicionantes impuestos por Ia difracción, las aberraciones del ojo y Ia, densidad de fotprreceptores, situación contemplada por medio del operador G. De esta forma, una elección de una norma adecuada en Ia ecuación que define Φx , hace que, al minimizar el funcional, Ia agudeza visual que el usuario obtiene en una determinada dirección de mirada sea máxima. La agudeza visual es Ia figura de mérito que, determina Ia calidad de visión monocular del paciente y, por tanto, un valor mínimo de Φj garantiza Ia mejor calidad de visión posible en el contorno que encierra todas las posibles direcciones de mirada. Como consecuencia de esta mejora, y en función de Ia norma elegida, el proceso de diseño permite tener en cuenta por primera vez el efecto de Ia orientación del eje del cilindro, tradicionalmente despreciada en el diseño de lentes oftálmicas. Esta dirección cambia en direcciones de mirada terciarias respecto de Ia orientación de dicho eje en Ia. zona paraxial. El nuevo proceso de diseño permite optimizar las superficies de Ia lente para que, en conjunto, Ia agudeza visual no se deteriore por este cambio. Otra ventaja del método propuesto es que, en virtud del operador G, el proceso de optimización no intenta mejorar Ia lente para reducir Ia norma por debajo de 1/AVmax, lo cual sería una mejora a Ia que él usuario no puede sacar partido. Esto ahorra grados de libertad y permite mejorar otras características de Ia lente a través de los funcionales que se describen en subsecuentes realizaciones de Ia. invención.One of the advantages provided by this invention is that the oblique error metric presented in the previous equation treats the power as a single tensorial magnitude, instead of three independent magnitudes. In fact, the angle of minimum resolution is proportional to the norm fP obj - (P + ^ H) II, provided that A takes the value that minimizes said norm. The visual acuity is, therefore, inversely proportional to it, as long as it does not exceed the conditions imposed by diffraction, the aberrations of the eye and the density of photoreceptors, a situation contemplated by the operator G. Thus, a choice of a suitable norm in the equation that defines Φ x , makes, by minimizing the functional, the visual acuity that the user obtains in a certain direction of gaze is maximum. Visual acuity is the figure of merit that determines the quality of monocular vision of the patient and, therefore, a minimum value of garantiza j guarantees the best possible quality of vision in the contour that encloses all possible directions of gaze. As a result of this improvement, and depending on the standard chosen, the design process allows for the first time to take into account the effect of the orientation of the cylinder axis, traditionally neglected in the design of ophthalmic lenses. This direction changes in tertiary gaze directions with respect to the orientation of said axis in Ia. paraxial zone The new design process allows to optimize the surfaces of the lens so that, as a whole, the visual acuity is not deteriorated by this change. Another advantage of the proposed method is that, by virtue of the operator G, the optimization process does not attempt to improve the lens to reduce the norm below 1 / AV max , which would be an improvement that the user cannot take advantage of. This saves degrees of freedom and allows improving other characteristics of the lens through the functional ones described in subsequent embodiments of Ia. invention.
En otra realización de Ia invención, se calcula el peso de Ia lente en cada etapa del proceso iterativo, su curvatura promedio, y se determina el funcional: Φ2 = W2 (W21M1 + w22κ) , en donde wi y W22 son pesos positivos asociados a Ia masa de Ia lente, m¡ y a Ia curvatura promedio de Ia lente en su vértice, K , y W2 es el peso global que se otorga al funcional. Un valor mínimo de este funcional garantiza una lente de peso y curvatura mínimas, y por tanto excelente desde el punto de vista ergonómico y estético. En otra realización de Ia invención, se determina el funcionalIn another embodiment of the invention, the weight of the lens is calculated at each stage of the iterative process, its average curvature, and the functional is determined: Φ 2 = W 2 (W 21 M 1 + w 22 κ), where w i and W 22 are positive weights associated with the mass of the lens, and the average curvature of the lens at its vertex, K, and W 2 is the overall weight given to the functional. A minimum value of this functional guarantees a lens of minimum weight and curvature, and therefore excellent from an ergonomic and aesthetic point of view. In another embodiment of the invention, the functional is determined
KK
Φ3 = ∑W3, |-?,Φ 3 = ∑ W 3, | - ?,
;=1 en donde vi/3/ son pesos positivos, \p,\ es el módulo del efecto prismático para Ia dirección de mirada i-ésima, y α es una constante positiva, normalmente un entero positivo. Dado que Ia aberración cromática transversal es proporcional al módulo del efecto prismático, y significativa en Ia parte extremas del campo visual, los pesos W3, tendrán un valor significativo para ángulos de oblicuidad altos, y valores despreciables para valores de oblicuidad pequeños. De esta forma Ia reducción de Ia aberración cromática transversal no penaliza Ia calidad óptica en Ia parte central del campo de visión.; = 1 where vi / 3 / are positive weights, \ p, \ is the module of the prismatic effect for the ith direction of view, and α is a positive constant, usually a positive integer. Since the transverse chromatic aberration is proportional to the module of the prismatic effect, and significant in the extreme part of the visual field, the weights W 3 will have a significant value for high oblique angles, and negligible values for small oblique values. In this way the reduction of the transverse chromatic aberration does not penalize the optical quality in the central part of the field of vision.
En otra realización de Ia invención, y siempre en cada iteración del proceso que busca una lente óptima en sentido global, se determina el funcional: Φ4 = w4(Aβ-A) en donde Aβ es Ia diferencia de aumento de lente oftálmica inducido por Ia prescripción para los ojos derecho e izquierdo y Λ es el valor de aniseiconia objetivo para el paciente. En general, este valor será nulo pero pueden presentarse casos de aniseiconia anatómica que deban mantenerse son compensación por razones de tipo clínico. La diferencia de aumento de lente oftálmica se obtiene de Ia expresión:In another embodiment of the invention, and always in each iteration of the process that seeks an optimal lens in a global sense, the functional is determined: Φ 4 = w 4 (Aβ-A) where Aβ is the difference in induced ophthalmic lens magnification by the prescription for the right and left eyes and Λ is the objective aniseiconia value for the patient. In general, this value will be null but there may be cases of anatomical aniseiconia that must be maintained are compensation for clinical reasons. The difference in ophthalmic lens magnification is obtained from the expression:
Δ/? =__J i i i l-(eOD /2n)tv(Vom) l-(d/2)tτ(Y) l-(β0/ /2π)tr(Po/1) 1-^/2) tr(Po;) en donde eoD, eOι son los espesores centrales de las lentes correctoras para los ojos derecho e izquierdo; d es Ia distancia de vértice y P0^p P0n, P0^5 P07 son respectivamente los tensores de poder refractor de los díoptrios externos en las lentes del ojo derecho e izquierdo y de potencia frontal (potencia objetivo) de las lentes del ojo derecho e izquierdo. También es posible y más conveniente el cálculo de Aβ mediante Ia expresión aproximada: Δ /? = __J iii l- (e OD / 2n) tv (V om ) l- (d / 2) tτ (Y ) l- (β 0 / / 2π) tr (P o / 1 ) 1 - ^ / 2) tr (P o; ) where eo D , and O ι are the central thicknesses of the corrective lenses for the right and left eyes; d is the vertex distance and P 0 ^ p P 0n , P 0 ^ 5 P 07 are respectively the refracting power tensors of the external dipropia in the right and left eye lenses and the front power (objective power) of the lenses of the right and left eye. It is also possible and more convenient to calculate Aβ by means of approximate expression:
AB « ^eθD?om ~eoiVon) +í trfP _P ) 2n 2AB «^ eθD? Om ~ e or iVo n) + í trfP _P) 2n 2
El valor de Λ se determina por procedimientos clínicos y, una vez conocido, el diseño combinado de las lentes correspondientes a los ojos derecho e izquierdo permite, a través de Ia minimización del funcional φ4 , Ia selección de bases y espesores que garantizarán una visión binocular óptima del paciente. El peso W4 determina Ia importancia del control de Ia aniseiconia inducida por Ia pareja de lentes oftálmicas frente al funcional φ2 , que determina Ia planitud y el peso.The value of Λ is determined by clinical procedures and, once known, the combined design of the lenses corresponding to the right and left eyes allows, through the minimization of the functional φ 4 , the selection of bases and thicknesses that will guarantee a vision optimal binocular of the patient. The weight W 4 determines Ia importance of the control of the aniseiconia induced by the pair of ophthalmic lenses versus the functional φ 2 , which determines the flatness and the weight.
En otra realización preferente de Ia invención, se determina el funcional:In another preferred embodiment of the invention, the functional is determined:
Figure imgf000017_0001
en donde se w5¡, j = 1 ,,.,4 son pesos asignados a diferentes tipos de imágenes parásitas, n es el índice de refracción del material y K1 y κ2 son las curvaturas promedio en los vértices de las superficies externa e interna, respectivamente. Las constantes a son números positivos, preferiblemente enteros. El valor del funcional
Figure imgf000017_0001
where w 5 ¡, j = 1 ,,., 4 are weights assigned to different types of parasitic images, n is the index of refraction of the material and K 1 and κ 2 are the average curvatures at the vertices of the external surfaces and internal, respectively. The constants a are positive numbers, preferably integers. The value of the functional
Φ 5 se hace significativamente grande cuando los poderes refractores de Ia lente son próximos a, los valores que permiten enfocar una imagen parásita, producida por reflexiones entre Ia córnea y las superficies de Ia lente, o reflexiones de la propia cara u ojo del usuario en las superficies de Ia lente. Un valor pequeño de Φ 5 garantiza que dichas imágenes quedan desenfocadas, y por tanto no perturban al usuario de las lentes oftálmicas objeto de Ia presente invención.Φ 5 becomes significantly large when the refractive powers of the lens are close to, the values that allow focusing a parasitic image, produced by reflections between the cornea and the surfaces of the lens, or reflections of the user's own face or eye in the surfaces of the lens. A small value of Φ 5 guarantees that said images are out of focus, and therefore do not disturb the user of the ophthalmic lenses object of the present invention.
En aún otra realización de Ia invención, se determina el funcional wc In yet another embodiment of the invention, the functional w c is determined
Φ« =Φ «=
Kn que es proporcional al 1 valor absoluto del radio de curvatura promedio de Ia cara interna de Ia lente. Puesto que las lentes monofocales de mínima distorsión, tanto estática como dinámica, requieren valores de Ia curvatura interna de Ia lente muy elevados, cualquier aumento del valor absoluto de dicha curvatura se traduce en una disminución de Ia distorsión, ya sea estática o dinámica. El peso positivo W6 determina Ia importancia que se concede a Ia reducción de Ia distorsión. Como norma general, Ia distorsión será mayor en lentes planas que en lentes curvadas, por Io que el funcional Φ6 evoluciona en sentido contrario a Ia forma de evolución de Φ2 , el funcional que determina el factor ergonómico y estético. En general, y dado que Ia distorsión se cancela en el postprocesado neurológico del sistema Visual, el peso W6 puede ser nulo, excepto en casos muy específicos en los que interese minimizar dicha aberración. En el diseño clásico de lentes, y en el estado previo de Ia técnica, se ha prestado típicamente mayor atención a Ia reducción de errores oblicuos. En Ia presente invención, este concepto se generaliza y potencia a través del funcional O1 , el cual no sólo tiene en cuenta el error en astigmatismo o en esfera, sino que tiene a Ia vez en cuenta ambos errores junto con el error en Ia orientación del eje del cilindro.K n which is proportional to one absolute value of average radius of curvature of the inner face of the lens. Since the monofocal lenses of minimum distortion, both static and dynamic, require very high values of the internal curvature of the lens, any increase in the absolute value of said curvature results in a decrease in the distortion, either static or dynamic. The positive weight W 6 determines the importance attached to the reduction of the distortion. As a general rule, the distortion will be greater in flat lenses than in curved lenses, so that the functional Φ 6 evolves in the opposite direction to the form of evolution of Φ 2 , the functional that determines the ergonomic and aesthetic factor. In general, and since the distortion is canceled in the neurological postprocessing of the Visual system, the weight W 6 can be null, except in very specific cases in which it is of interest to minimize said aberration. In the classic lens design, and in the prior state of the art, greater attention has been typically given to the reduction of oblique errors. In the present invention, this concept is generalized and enhanced through the functional O 1 , which not only takes into account the error in astigmatism or sphere, but also takes into account both errors together with the error in the orientation of the cylinder shaft.
Además de esto, el valor dé los funcionales Φ1 y Φ3 depende no sólo de los parámetros geométricos que definen superficies y lentes, sino que también depende de Ia distancia a Ia que se encuentra el objeto que visualiza.In addition to this, the value of the functional Φ 1 and Φ 3 depends not only on the geometric parameters that define surfaces and lenses, but also depends on the distance at which the object being visualized is located.
Es bien conocido que una lente con geometría de revolución diseñada para estar libre de astigmatismo oblicuo cuando se observan objetos lejanos a través de ella, produce dicho tipo de astigmatismo cuando se observan objetos cercanos. De Ia misma forma, una lente corregida de error de potencia para objetos lejanos, pasa a tener un error de potencia apreciable a Ia vez que se reduce ligeramente el astigmatismo cuando con ella se observan objetos cercanos. En aún otra realización de Ia invención, se determina un funcional que permitiría una corrección adecuada del error tensorial de potencia para cualquier dirección de mirada, o Io que es Io mismo, se determina un funcional que permite obtener una lente que proporciona máxima agudeza visual para cualquier dirección de mirada, sin importar Ia distancia a Ia que se sitúa el objeto observado. El funcional que permite ésta funcionalidad es el siguiente:It is well known that a lens with revolution geometry designed to be free of oblique astigmatism when distant objects are observed through it, produces such astigmatism when nearby objects are observed. In the same way, a corrected lens of power error for distant objects, has an appreciable power error while reducing astigmatism slightly when nearby objects are observed. In yet another embodiment of the invention, a functional is determined that would allow an adequate correction of the power tensor error for any direction of gaze, or what is the same, a functional is determined that allows obtaining a lens that provides maximum visual acuity for any direction of gaze, regardless of the distance at which the observed object is placed. The functional that allows this functionality is as follows:
Φ7 = ∑wvG[VobJ -(V(U^vnS,) + A(S1)I)]Φ 7 = ∑w v G [V obJ - (V (U ^ v n S,) + A (S 1 ) I)]
en donde s¡ es Ia distancia a Ia que se encuentra el objeto cuando él usuario mira en Ia dirección i-ésima, y Á(s¡) es ahora el valor de acomodación que minimiza el operador G cuando el usuario mira un objeto situado a una distancia s,- en Ia dirección i-ésima. En general, supondremos que existe una función s(u,v) que determina Ia distancia objeto para Ia dirección de mirada definida por los ángulos u, v. Esta función puede ser completamente general, pero en Ia mayor- parte de los casos, Ia distancia objeto depende fundamentalmente (o únicamente) del ángulo de mirada vertical v. Para una. lente de uso general, los ángulos dé mirada verticales positivos se corresponden con objetos a distancias superiores a L5 o -6 metros, mientras que Ia distancia objeto comienza a disminuir para ángulos comprendidos entre 0o y -15° para situarse en los valores típicos de Ia visión de cerca, unos -0.03 metros. Las funciones que determinan Ia distancia objeto respecto del ángulo de mirada varían según el uso específico de Ia lente: exteriores, oficina, trabajo con ordenador, visión de cerca, etc. Una. vez se ha elegido una forma funcional para Ia relación s(u,v), Ia discretización de direcciones de mirada en' ei funcional Φ7 conduce a una discretización correspondiente de las distancias objeto, s¡ = s(u¡,Vj). La potencia Y(UnVnS1) se determina mediante Ia diferencia de vergencias tensoriaies:where s¡ is the distance at which the object is when the user looks in the ith direction, and Á (s¡) is now the accommodation value that minimizes the operator G when the user looks at an object located at a distance s, - in the ith direction. In general, we will assume that there is a function s (u, v) that determines the object distance for the direction of gaze defined by the angles u, v. This function can be completely general, but in most cases, the object distance depends fundamentally (or only) on the vertical viewing angle v. For one. general purpose lens, the positive vertical gaze angles correspond to objects at distances greater than L 5 or -6 meters, while the object distance begins to decrease for angles between 0 or -15 ° to reach the typical values from near vision, about -0.03 meters. The functions that determine the object distance with respect to the angle of view vary according to the specific use of the lens: outdoors, office, computer work, near vision, etc. A. once has Once a functional form has been chosen for the relation s (u, v), the discretization of gaze directions in ' functional funcional 7 leads to a corresponding discretization of the object distances, s¡ = s (u¡, Vj). The power Y (U n V n S 1 ) is determined by means of the difference in tensile verges:
V (UnVn Si ) = V (UnVn S1 ) 1V (U n V n S i ) = V (U n V n S 1 ) 1
en donde V(UnVnSf ) es Ia vergencia tensorial imagen, que se obtiene como Ia vergencia tensorial del haz refractado por Ia lente y evaluada en Ia esfera de vértice. (1/ S1)I es Ia vergencia objeto, que obviamente es un múltiplo de Ia matriz identidad.where V (U n V n S f ) is the image tensor vergence, which is obtained as the tensor vergence of the beam refracted by the lens and evaluated in the vertex sphere. (1 / S 1 ) I is the object vergence, which is obviously a multiple of the identity matrix.
La evaluación de Ia vergencia imagen puede realizarse mediante el trazado de un rayo principal y del cálculo de las curvaturas principales de los frentes de onda refractados por las dos superficies de Ia lente, Io cual se consigue a través de las ecuaciones de Coddington generalizadas.The evaluation of the image vergence can be carried out by drawing a main beam and calculating the main curvatures of the wave fronts refracted by the two surfaces of the lens, which is achieved through the generalized Coddington equations.
Para obtener una lente óptima para cualquier distancia, al menos una de sus dos superficies debe definirse con total generalidad como un desarrollo polinómico, ya sea en monomios o como un desarrollo de polinomios ortogonales. En general, una lente óptima para cualquier distancia objeto carecerá de simetrías, como las presentes en lentes para Ia compensación de ametropías esféricas, o lentes para ametropías astigmáticas con una superficie esférica con simetría de revolución y otra superficie atórica. Debido a que Ia distancia objeto irá variando para direcciones de mirada verticales progresivamente más negativas. La corrección de error de potencia a través de Ia maximización de Ia agudeza visual dará lugar a superficies cuya asfericidad va cambiando a Jo largo de un meridiano vertical, Io cual elimina cualquier tipo de simetrías sobre Ia lente, de forma parecida a Io que ocurre con lentes progresivas. Estas superficies asféricas de tipo general son, por tanto, las únicas que permiten fabricar lentes con agudeza visual máxima para cualquier dirección de mirada y para cualquier distancia objeto.To obtain an optimal lens for any distance, at least one of its two surfaces must be defined in general as a polynomial development, either in monomials or as an orthogonal polynomial development. In general, an optimal lens for any object distance will lack symmetries, such as those present in lenses for the compensation of spherical ametropias, or lenses for astigmatic ametropias with a spherical surface with revolution symmetry and another atoric surface. Because the object distance will vary for progressively more negative vertical directions of view. The correction of power error through the maximization of visual acuity will give rise to surfaces whose asphericity is changing along a vertical meridian, which eliminates any type of symmetry on the lens, similar to what occurs with progressive lenses These aspherical surfaces of general type are, therefore, the only ones that allow to manufacture lenses with maximum visual acuity for any direction of gaze and for any object distance.
Por último, calculamos también Ia magnitud:
Figure imgf000019_0001
que es una suma ponderada de las componentes del gradiente del funcional φ
Finally, we also calculate the magnitude:
Figure imgf000019_0001
which is a weighted sum of the functional gradient components φ
M elevadas al cuadrado, y que permite determinar Ia estabilidad de Ia calidad óptica conseguida con la minimización de φ frente a movimientos de Ia lente de su posición relativa al ojo. Los pesos W8x determinan Ia importancia relativa de Ia magnitud x. En general, los pesos más importantes son wSyo y wg/, ya que el descentramiento vertical y Ia distancia de vértice son los parámetros que con más facilidad cambian en el porte de Ia gafa. Este funcional puede calcularse a partir de O1 si se trata de lentes para distancia de visualización fija, o partir de Φ7 para lentes diseñadas para ser utilizadas con distintas distancias objeto.M squared, and that allows to determine the stability of the optical quality achieved with the minimization of φ against movements of the lens of its position relative to the eye. The weights W 8x determine the relative importance of the magnitude x. In general, the most important weights are w Syo and w g / , since the vertical runout and the vertex distance are the parameters that most easily change in the size of the glasses. This functional can be calculated from O 1 in the case of lenses for fixed viewing distance, or from Φ 7 for lenses designed to be used with different object distances.
En otra realización de Ia invención, se determinan cualquiera de los dos funcionales siguientes:In another embodiment of the invention, any of the following two functions are determined:
6 ' φ = ]T φ; + Φ8 6 ' φ =] T φ ; + Φ 8
7=1 para lentes diseñadas para distancia objeto fija, o7 = 1 for lenses designed for fixed object distance, or
7 ' ' . . . . . . .7``. . . . . . .
1=2 ' • para lentes de uso general, diseñadas para distancias objeto variables. En cualquiera de las dos formas, se han seleccionado previamente los pesos que controlan cada uno de los funcionales secundarios φf , /=1 ,...8. Este funcional se minimiza a través de un algoritmo que modifica en cada iteración los parámetros que definen Ia lente oftálmica, si bien el espacio de variación de estos parámetros queda restringido a un conjunto de ligaduras, . .1 = 2 ' • for general purpose lenses, designed for variable object distances. In either of the two ways, weights have previously been selected that control each of the secondary functional φ f , / = 1, ... 8. This functional is minimized through an algorithm that modifies in each iteration the parameters that define the ophthalmic lens, although the space of variation of these parameters is restricted to a set of ligatures,. .
en donde r¡¡ son los radios principales de curvatura en los vértices de las caras externa e interna de las lente, λj representa a los parámetros que definen Ia asfericidad de Ia superficie o Ia superficie en sí misma, y ec y e6min son espesores de centro y espesor de borde mínimo en Ia lente. .where r¡¡ are the principal radii of curvature at the vertices of the external and internal faces of the lens, λ j represents the parameters that define the asphericity of the surface or the surface itself, and c and 6min are thicknesses center and minimum edge thickness in the lens. .
Las ligaduras expresan de una forma sencilla condiciones no negociables en el proceso de optimización como Ia potencia frontal posterior de Ia lente, en términos de esfera, cilindro y eje, el prisma de prescripción si Io hubiere, los valores máximos tolerados para Ia agudeza visual (o para Ia norma del error del tensor de potencia), etc.The ligatures express in a simple way non-negotiable conditions in the optimization process such as the front frontal power of the lens, in terms of sphere, cylinder and axis, the prescription prism, if any, the maximum tolerated values for visual acuity ( or for the power tensioner error standard), etc.
En Ia figura 4a y figura 4b Ia AV se mantiene superior a Ia unidad en un cono de 20°. Sin embargo, Ia lente de Ia figura 4b, con una base 8.5 veces más potente que Ia primera, produce un aumento asociado al factor de forma 8.5 veces menor. En caso de anisómetropía, el diseño propuesto en Ia presenté invención permite balancear los aumentos de lente oftálmica en ambos ojos sin estropear Ia calidad visual.In Figure 4a and Figure 4b the AV is maintained higher than the unit in a 20 ° cone. However, the lens of Figure 4b, with a base 8.5 times more powerful than the first, produces an increase associated with the 8.5 times smaller form factor. In case of anisometropia, the design proposed in the present invention allows balancing the ophthalmic lens increases in both eyes without damaging the visual quality.
En las figura 4c y figura 4d se aprecia como Ia base 4.25 es idónea para Ia fabricación de monofocales con Ia potencia de este ejemplo. Al pasar a una base de 4.25, Ia AV se deteriora de forma .significativa, por Io que ecualizar los tamaños de imagen retiniana en caso de anisómetropía irá acompañado de una merma de Ia calidad visual, efecto que queda eliminado en las lentes optimizadas mostradas en las figuras 4a y 4b.Figure 4c and Figure 4d show how the base 4.25 is suitable for the manufacture of monofocals with the power of this example. When moving to a base of 4.25, the AV deteriorates significantly, so that equalizing the retinal image sizes in case of anisometropia will be accompanied by a decrease in visual quality, an effect that is eliminated in the optimized lenses shown in Figures 4a and 4b.
La figura 5a muestra una lente de potencia [-6,2x90] optimizada. Base 0.5. Mantiene un nivel de agudeza visual en un cono de 30°. La figura 5b muestra una lente de potencia [-6,2x90] tórica. Base 4.25 En Ia base más adecuada para Ia realización de Ia lente tórica se observa un descenso de un 30% en Ia agudeza visual a 30°. La figura 6a muestra una lente de potencia [-4,0] tórica. La figura 6b representa una lente de potencia [-4,0] optimizada. La agudeza visual se mantiene a pesar de emplear una base mucho más plana que en el caso anterior, mejorando Ia estética del resultado final. En Ia figura 6b en Ia izquierda se muestra el perfil de Ia lente optimizada que es mucho más delgada que la correspondiente lente PA cuyo perfil se muestra a Ia derecha. En Ia figura 7a se muestra una lente de potencia [2.5,1x0] tórica con base 8.25. En Ia figura 7b se muestra una lente de potencia [2.5,1x0] optimizada en base 4.25. El resultado elimina una imagen parásita de tipo 4. Én Ia figura 7c se muestra una lente de potencia [2.5,1x0] tórica en base 4.25. Para eliminar una imagen parásita de tipo 4 en las lentes PA es necesario utilizar una base más plana: Comparando esta lente con Ia equivalente optimizada se observa un importante deterioro de Ia calidad óptica de Ia lente tórica resultante.Figure 5a shows an optimized power lens [-6.2x90]. 0.5 base. Maintains a level of visual acuity in a 30 ° cone. Figure 5b shows a toric [-6.2x90] power lens. Base 4.25 In the most suitable base for the realization of the toric lens a 30% decrease in the visual acuity at 30 ° is observed. Figure 6a shows a toric power lens [-4.0]. Figure 6b represents an optimized power lens [-4.0]. Visual acuity is maintained despite using a much flatter base than in the previous case, improving the aesthetics of the final result. Figure 6b on the left shows the profile of the optimized lens that is much thinner than the corresponding PA lens whose profile is shown on the right. Figure 7a shows a toric power lens [2.5,1x0] with base 8.25. Figure 7b shows a power lens [2.5,1x0] optimized on base 4.25. The result eliminates a parasitic image of type 4. In Figure 7c a toric power lens [2.5,1x0] is shown on a 4.25 basis. To eliminate a parasitic image of type 4 in the PA lenses it is necessary to use a flatter base: Comparing this lens with the optimized equivalent, a significant deterioration of the optical quality of the resulting toric lens is observed.
Finalmente se desarrolla una guía de prescripción, preferentemente un asistente informático, que permite al prescriptor activar o desactivar requisitos de forma intuitiva para proceder al diseño de una lente o pareja de lentes con las características deseadas para el usuario. La guía tiene como misión facilitar el proceso de optimización desactivando solicitudes incoherentes (por ejemplo Ia reducción de Ia distorsión y a Ia vez Ia reducción de Ia curvatura de Ia lente) y permitiendo que el prescriptor pueda fijar niveles de agudeza visual mínima o umbrales máximos para cada una de las características de Ia lente o pareja de lentes oftálmicas que quedan representadas en los funcionales Φ, a Φ8 . Finally, a prescription guide is developed, preferably a computer assistant, that allows the prescriber to activate or deactivate requirements intuitively to proceed with the design of a lens or pair of lenses with the desired characteristics for the user. The guide's mission is to facilitate the optimization process by deactivating incoherent requests (for example the reduction of the distortion and at the same time the reduction of the curvature of the lens) and allowing the prescriber to set minimum visual acuity levels or maximum thresholds for each one of the characteristics of the lens or pair of ophthalmic lenses that are represented in the functional Φ, a Φ 8 .

Claims

Reivindicaciones. Claims
1.- Lentes oftálmicas monofocales caracterizadas porque las superficies se escogen, al menos una entre: una superficie esférica y otra superficie asférica sin simetría de revolución, una superficie asférica con simetría de revolución y otra superficie asférica sin simetría de revolución, dos superficies asféricas sin simetría de revolución.1.- Monofocal ophthalmic lenses characterized in that the surfaces are chosen, at least one between: a spherical surface and another aspherical surface without revolution symmetry, an aspherical surface with revolution symmetry and another aspherical surface without revolution symmetry, two aspherical surfaces without symmetry of revolution.
2.- Lentes oftálmicas monofocales, según reivindicación primera, caracterizadas porque las superficies asféricas están representadas por una superficie a tórica con formato de anillo dada por:2. Monofocal ophthalmic lenses, according to claim one, characterized in that the aspherical surfaces are represented by a toric surface with a ring format given by:
Figure imgf000022_0001
en donde
Figure imgf000022_0002
y en donde c-\ y C2 son los coeficientes de esfericidad de cada meridiano principal, siendo además r-i el radio de curvatura mayor y r2 el radio de curvatura menor en el vértice de Ia superficie.
Figure imgf000022_0001
where
Figure imgf000022_0002
and where c- \ and C 2 are the sphericity coefficients of each main meridian, with ri also being the radius of greater curvature and r 2 the radius of lesser curvature at the apex of the surface.
3.- Lentes oftálmicas monofocales, según reivindicación segunda, caracterizadas porque Ia superficie atórica tiene su versión de barril, cambiando r-i por r2 y Ci por C2. 3. Monofocal ophthalmic lenses, according to claim two, characterized in that the atoric surface has its barrel version, changing ri for r 2 and Ci for C 2 .
4.- Lentes oftálmicas monofocales, según reivindicación segunda, caracterizadas porque Ia esfericidad en los meridianos principales de un punto arbitrario de ía superficie depende de Ia distancia de dicho punto al vértice de Ia superficie, adaptándose mejor a Ia reducción de los errores oblicuos en prescripciones sin cilindro o cilindro bajo. 4. Monofocal ophthalmic lenses, according to claim two, characterized in that the sphericity in the main meridians of an arbitrary point of the surface depends on the distance from said point to the vertex of the surface, better adapting to the reduction of oblique errors in prescriptions Without cylinder or low cylinder.
5.- Lentes oftálmicas monofocales, según reivindicación primera, caracterizadas porque las superficies asféricas están representadas por una superficie a tórica con formato de anillo dada por:
Figure imgf000022_0003
en donde,
Figure imgf000023_0001
y en donde C1 y C2 son los coeficientes de asfericidad de cada meridiano principal, siendo además r1 el radio de curvatura mayor y r2 el radio de curvatura menor en el vértice de Ia superficie.
5. Monofocal ophthalmic lenses, according to claim one, characterized in that the aspherical surfaces are represented by a toric surface with a ring format given by:
Figure imgf000022_0003
where,
Figure imgf000023_0001
and where C 1 and C 2 are the asphericity coefficients of each main meridian, r1 being also the radius of greater curvature and r2 the radius of lesser curvature at the vertex of the surface.
6.- Lentes oftálmicas monofocales, según reivindicación quinta, caracterizadas porque Ia superficie atórica tiene su versión de barril, cambiando π por r2 y Ci por C2. 6. Monofocal ophthalmic lenses, according to claim five, characterized in that the atoric surface has its barrel version, changing π for r 2 and Ci for C 2 .
7.- Lentes oftálmicas monofocales, según reivindicación quinta, caracterizadas porque Ia asferización afecta por igual a todos los meridianos de Ia superficie, adaptándose mejor a Ia reducción de errores oblicuos para prescripciones con cilindro medio-elevado.7. Monofocal ophthalmic lenses, according to claim five, characterized in that the asferization affects all the meridians of the surface equally, adapting better to the reduction of oblique errors for prescriptions with medium-high cylinder.
8> Lentes oftálmicas monofocales, según reivindicaciones anteriores, caracterizadas porque el formato de anillo en las superficies toncas preserva Ia curvatura en los meridianos paralelos al de máxima curvatura, permitiendo una mayor reducción de los errores de potencia en superficies de menor curvatura, del tipo de superficies internas en lentes positivas o superficies internas en lentes negativas, y porque además, el formato de barril en las superficies tóricas preserva Ia curvatura en meridianos paralelos al meridiano de mínima curvatura, adaptándose mejor a Ia reducción de errores oblicuos en superficies de mayor curvatura como superficies externas en lentes positivas o su superficies internas en lentes negativas. 8> Monofocal ophthalmic lenses, according to previous claims, characterized in that the ring format in the dull surfaces preserves the curvature in the meridians parallel to that of maximum curvature, allowing a greater reduction of the power errors in surfaces of less curvature, of the type of internal surfaces in positive lenses or internal surfaces in negative lenses, and because in addition, the barrel format in the toric surfaces preserves the curvature in meridians parallel to the meridian of minimum curvature, better adapting to the reduction of oblique errors in surfaces of greater curvature such as external surfaces in positive lenses or their internal surfaces in negative lenses.
9.- Lentes oftálmicas monofocales, según reivindicación primera, caracterizadas porque Ia superficie asférica se define mediante un polinomio bidimensional del tipo:
Figure imgf000023_0002
en donde anm son coeficientes y ξ y ψ son coordenadas normalizadas a través de sendos parámetros dependientes de los índices n y m, y Λ/ es el orden máximo del polinomio. ,
9. Monofocal ophthalmic lenses, according to claim one, characterized in that the aspherical surface is defined by a two-dimensional polynomial of the type:
Figure imgf000023_0002
where nm are coefficients and ξ and ψ are normalized coordinates through two parameters dependent on the indices n and m, and Λ / is the maximum order of the polynomial. ,
10.- Lentes oftálmicas monofocales, según reivindicación novena, caracterizadas porque el orden máximo del polinomio N está comprendido entre 4 y 6. 10. Monofocal ophthalmic lenses, according to claim 9, characterized in that the maximum order of polynomial N is between 4 and 6.
11.- Lentes oftálmicas monofocales, según reivindicación primera; caracterizadas porque las superficies asféricas sin simetría de revolución se describen mediante un desarrollo del tipo:11. Monofocal ophthalmic lenses, according to claim one; characterized in that aspherical surfaces without revolution symmetry are described by a development of the type:
M z=∑x,Λ>y) en donde χn son coeficientes y Pn(x,y) son polinomios de x e y, dé orden creciente y definidos en una determinada región Ω en el interior de Ia cual satisfacen Ia condición,
Figure imgf000024_0001
donde M es el número máximo de polinomios a utilizar en el desarrollo, y es tal que el orden del polinomio PM es sustancialmente igual a N, orden máximo del polinomio.
M z = ∑x, Λ > y) where χ n are coefficients and P n (x, y) are polynomials of x and y, of increasing order and defined in a given region Ω within which they satisfy the condition,
Figure imgf000024_0001
where M is the maximum number of polynomials to be used in development, and it is such that the order of the polynomial PM is substantially equal to N, the maximum order of the polynomial.
12.- Lentes oftálmicas monofocales, según reivindicaciones anteriores, caracterizadas porque Ia optimización de los errores oblicuos de Ia lente se realiza en base a Ia minimización de una norma válida de Ia matriz de potencia dióptrica del error G[P06 (w,v) -(P(u,v) + .4I)] , en donde J?ob(u,v) es Ia matriz de potencia dióptrica objetivo para Ia dirección de mirada (u, v). P(ω,v) es Ia matriz de potencia dióptrica de12.- Monofocal ophthalmic lenses, according to previous claims, characterized in that the optimization of the oblique errors of the lens is performed based on the minimization of a valid standard of the dioptric power matrix of the error G [P 06 (w, v) - (P (u, v) + .4I)], where J? ob (u, v) is the target dioptric power matrix for the direction of gaze (u, v). P (ω, v) is the dioptric power matrix of
Ia lente para Ia dirección de mirada (u, v), y A es la acomodación del usuario. The lens for the direction of gaze (u, v), and A is the user's accommodation.
13.- Lentes oftálmicas monofocales, según reivindicación 12, caracterizadas porqué Ia norma de Ia matriz de potencia dióptrica del error es inversamente proporcional a Ia agudeza visual del usuario y toma un valor mínimo que es igual al inverso de Ia agudeza visual del usuario.13. Monofocal ophthalmic lenses, according to claim 12, characterized in that the norm of the dioptric power matrix of the error is inversely proportional to the user's visual acuity and takes a minimum value that is equal to the inverse of the user's visual acuity.
14.- Lentes oftálrnicas monofocales, según reivindicación 12, caracterizadas porque T?(u,v) depende de las coordenadas angulares (u,v), y puede calcularse mediante Ia expresión:14. Monofocal ophthalmic lenses, according to claim 12, characterized in that T? (U, v) depends on the angular coordinates (u, v), and can be calculated by means of the expression:
TK , _( E(u,v) + C(u,v)sia2 a(u,v) -C(u,v)sina(u,v)cosa(u,vγ\ y~ C(u,v)sina(u,v) cosa(u,v)
Figure imgf000024_0002
TK , _ (E (u, v) + C (u, v) sia 2 a (u, v) -C (u, v) sina (u, v) thing (u, vγ \ y ~ C (u, v) sina (u, v) thing (u, v)
Figure imgf000024_0002
15.- Lentes oftálmicas monofocales, según reivindicaciones 1 a 11 , caracterizadas porque Ia optimización de los errores oblicuos de Ia lente se realiza en base a Ia minimización de una norma válida de Ia matriz de potencia dióptrica del error15. Monofocal ophthalmic lenses, according to claims 1 to 11, characterized in that the optimization of the oblique errors of the lens is performed based on the minimization of a valid standard of the dioptric power matrix of the error
G[J*ob(u,v) -(P(u,v,$) + A(s)ϊ)] , en donde Yob (u,y) es Ia matriz de potencia dióptrica objetivo para la dirección de mirada (u, v), siendo V(u,v,s) Ia matriz de potencia dióptrica de Ia lente para Ia dirección de mirada (u, v) y una distancia objeto s a Io largo de dicha dirección de mirada, siendo A(s) Ia acomodación que minimiza Ia norma anterior para una distancia objeto s. ι16.- Lentes oftálmicas monofocales, según reivindicación 15, caracterizadas porque Ia norma de Ia matriz de potencia dióptrica del error es inversamente proporcional a Ia agudeza visual del usuario y toma un valor mínimo que es igual al inverso de Ia agudeza visual del usuario. G [J * ob (u, v) - (P (u, v, $) + A (s) ϊ)], where Y ob (u, y) is the target dioptric power matrix for the direction of gaze (u, v), where V (u, v, s) is the dioptric power matrix of the lens for the direction of view (u, v) and an object distance along said direction of view, where A (s) ) The accommodation that minimizes the previous norm for an object distance s. ι16.- Monofocal ophthalmic lenses, according to claim 15, characterized in that the norm of the dioptric power matrix of the error is inversely proportional to the user's visual acuity and takes a minimum value that is equal to the inverse of the user's visual acuity.
17.- Lentes oftálmicas monofocales, según reivindicación 15, caracterizadas porque T*(u,v,$) depende de las coordenadas angulares (ú,v) y a Ia distancia objeto s, y se calcula mediante Ia expresión:17. Monofocal ophthalmic lenses, according to claim 15, characterized in that T * (u, v, $) depends on the angular coordinates (u, v) and the object distance s, and is calculated by means of the expression:
s¡ 18.- Lentes oftálmicas monofocales, según Ia reivindicación 15, caracterizadas porque se proporciona la función visual que se cuantifica a través de Ia relación entre Ia distancia objeto para cada dirección de mirada.s¡ 18.- Monofocal ophthalmic lenses, according to claim 15, characterized in that the visual function that is quantified is provided through the relationship between the object distance for each direction of gaze.
19.- Método de prescripción de lentes oftálmicas monofocales, según las reivindicaciones 1 a 18, caracterizado porque activa o desactiva requisitos de diseño de las lentes oftálmicas monofocales. 19.- Prescription method of monofocal ophthalmic lenses, according to claims 1 to 18, characterized in that it activates or deactivates design requirements of monofocal ophthalmic lenses.
PCT/ES2008/000598 2007-09-26 2008-09-22 Monofocal ophthalmic lenses WO2009040452A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200702529 2007-09-26
ES200702529A ES2337970B1 (en) 2007-09-26 2007-09-26 MONOFOCAL OPHTHALMIC LENSES WITH SPHERICAL AND / OR ASPHERIC SURFACES COMBINED.

Publications (1)

Publication Number Publication Date
WO2009040452A1 true WO2009040452A1 (en) 2009-04-02

Family

ID=40510771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000598 WO2009040452A1 (en) 2007-09-26 2008-09-22 Monofocal ophthalmic lenses

Country Status (2)

Country Link
ES (1) ES2337970B1 (en)
WO (1) WO2009040452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170433B2 (en) 2011-12-19 2015-10-27 Indo Optical S.L. Method for designing and manufacturing a monofocal ophthalmic lens and corresponding lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11609437B2 (en) 2020-11-06 2023-03-21 Indizen Optical Technologies S.L. Ophthalmic lens optimization considering wearer's accommodation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820029A (en) * 1986-10-20 1989-04-11 Alps Electric Co., Ltd. Objective lens for optical pickup
US5680256A (en) * 1995-08-10 1997-10-21 Fuji Photo Optical Co., Ltd. Lens for reading out optical recording medium
JP2001004916A (en) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Objective lens for optical disk as well as optical head device using the same and optical information recording and reproducing device
US20020054282A1 (en) * 1993-12-22 2002-05-09 Nikon Corporation Projection exposure apparatus
KR20030062968A (en) * 2002-01-21 2003-07-28 주식회사 포엠 Rotational asymmetric aspheric lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820029A (en) * 1986-10-20 1989-04-11 Alps Electric Co., Ltd. Objective lens for optical pickup
US20020054282A1 (en) * 1993-12-22 2002-05-09 Nikon Corporation Projection exposure apparatus
US5680256A (en) * 1995-08-10 1997-10-21 Fuji Photo Optical Co., Ltd. Lens for reading out optical recording medium
JP2001004916A (en) * 1999-06-23 2001-01-12 Matsushita Electric Ind Co Ltd Objective lens for optical disk as well as optical head device using the same and optical information recording and reproducing device
KR20030062968A (en) * 2002-01-21 2003-07-28 주식회사 포엠 Rotational asymmetric aspheric lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170433B2 (en) 2011-12-19 2015-10-27 Indo Optical S.L. Method for designing and manufacturing a monofocal ophthalmic lens and corresponding lens

Also Published As

Publication number Publication date
ES2337970B1 (en) 2011-05-27
ES2337970A1 (en) 2010-04-30

Similar Documents

Publication Publication Date Title
US7159981B2 (en) Progressive refractive power lens
KR101309003B1 (en) Ophthalmic lens
US9557578B2 (en) Methods for determining a progressive ophthalmic lens
US11016310B2 (en) Method for determining a three dimensional performance of an ophthalmic lens; associated method of calculating an ophthalmic lens
KR102042554B1 (en) A method for determining an ophthalmic lens
US10365503B2 (en) Method implemented by computer means for calculating a lens optical system of a spectacle ophthalmic lens for a wearer
US9360684B2 (en) Method for determining target optical functions
CN106461968B (en) Method of calculating an optical system of a progressive addition ophthalmic lens arranged for outputting a supplementary image
JP3617004B2 (en) Double-sided aspherical progressive-power lens
US9759931B2 (en) Pair of progressive ophthalmic lenses
ES2830755T3 (en) Procedure for Determining an Improved Design of a Progressive Lens Taking into Account Higher-Order Eye Aberrations
EP2684094A1 (en) A method for determining a progressive ophthalmic lens
JP4618656B2 (en) Progressive multifocal lens series
JP4380887B2 (en) Progressive multifocal lens
CN106526890B (en) A kind of progressive multi-focus lens and preparation method thereof for glasses wearer&#39;s customization
US20150219923A1 (en) Progressive reading and intermediate distance lens defined by employment of a zernike expansion
US11892711B2 (en) Method for determining a single vision ophthalmic lens
US8757799B2 (en) Progressive multifocal ophthalmic lens
ES2337970B1 (en) MONOFOCAL OPHTHALMIC LENSES WITH SPHERICAL AND / OR ASPHERIC SURFACES COMBINED.
JP2004126256A (en) Double-side aspherical progressive power lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08833793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08833793

Country of ref document: EP

Kind code of ref document: A1