WO2009039759A1 - Method and apparatus for controlling dsl line transmission power - Google Patents
Method and apparatus for controlling dsl line transmission power Download PDFInfo
- Publication number
- WO2009039759A1 WO2009039759A1 PCT/CN2008/072342 CN2008072342W WO2009039759A1 WO 2009039759 A1 WO2009039759 A1 WO 2009039759A1 CN 2008072342 W CN2008072342 W CN 2008072342W WO 2009039759 A1 WO2009039759 A1 WO 2009039759A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- model
- transmission power
- spectral density
- power spectral
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/08—Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
- H04L25/085—Arrangements for reducing interference in line transmission systems, e.g. by differential transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B3/00—Line transmission systems
- H04B3/02—Details
- H04B3/32—Reducing cross-talk, e.g. by compensating
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03828—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M11/00—Telephonic communication systems specially adapted for combination with other electrical systems
- H04M11/06—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
- H04M11/062—Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
Definitions
- the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and a device for controlling transmission power of a DSL line. Background technique
- xDSL Digital Subscriber Loop
- DSL Digital Subscriber Line
- XDSL for passband transmission uses DMT (Discrete Mutitone Modulation).
- DSLAM Digital Subscriber Line Access Multiplexer
- Figure 1 DSLAM (Digital Subscriber Line Access Multiplexer), and its system reference model is shown in Figure 1.
- User cables basically contain multiple pairs (25 pairs or more) of twisted pairs. Different twisted pairs may run a variety of different services. When various types of xDSL work simultaneously, crosstalk occurs between them. Some lines will experience a sharp drop in performance; when the line is long, some lines will not be able to open any form of DSL service at all.
- ITU-T International The Telecommunication Union Telecommunication Standardization Sector (DST) has proposed the DSM (Dynamic Spectrum Management) scheme.
- the DSM solution is designed to use dynamic frequency balance to improve line rate, distance and stability, or to transmit signals with minimal power while meeting performance and stability requirements (rate, noise margin, and bit error rate) Optimize and manage various parameter configurations and signal PSD (Power Spectral Density) through a series of methods, and even coordinate the transmission and reception of signals in the entire cable bundle to optimize the line transmission performance in the entire cable bundle.
- the DSM automatically adjusts the transmit power on each modem in the network to achieve crosstalk cancellation.
- the mainstream architecture of the first level of DSM is shown in Figure 4.
- SMC Subscribetrum Maintenance Center
- three control interfaces which are DSM-S, DSM-C, and DSM-D.
- the SMC reads parameters such as the working status of the DSL line from the DSL-LT through the DSM-D interface, and performs information exchange with the associated SMC through the DSM-S interface.
- the SMC grasps enough information, it performs a series of optimization algorithms, and finally passes The DSM-C issues control parameters to the DSL-LT to keep the line in optimal condition.
- a centralized spectrum management algorithm is OSB (Optimum Spectrum Balancing).
- OSB Optimum Spectrum Balancing
- N-1 users have a target rate.
- the basic problem of DSM can be expressed as follows: Under the premise of satisfying N-1 user rates, try to increase the rate of the first user, and the energy of each signal should meet the requirements of PSD. The total power of each user should meet the corresponding constraints.
- the OSB algorithm can obtain the calculation result in an acceptable time when the number of users N is not too large, but when the number of users increases, the calculation time increases exponentially.
- the advantages of the OSB algorithm are: Optimality, computability when N is small. OSB has the best performance, but the complexity is too high, it is not self-made, and the central manager needs data interaction, which does not have any practical value.
- a number of approximate optimal algorithms such as ISB (iterative spectrum balancing) have been developed on the basis of OSB, the complexity of the algorithm is much simpler than that of OSB, but in actual work, especially the line. In a much larger case, the amount of computation is still quite large.
- IWF iterative water fillinging
- the IWF method has lower computational complexity, can be calculated for larger N and K, and is completely autonomous, that is, each user only needs to optimize its own rate and meet its own power constraints, without requiring different users.
- the interaction of data information between them, that is, without the need for a central manager, is easy to implement in an actual system.
- an embodiment of the present invention provides a method for controlling transmission power of a DSL line of a digital subscriber line, including:
- the transmit power of the line is increased according to the spectrum control parameter.
- the present invention also provides an apparatus for controlling transmission power of a DSL line, comprising: a line grouping unit, configured to determine a grouping of lines;
- a line model generating unit configured to select a representative line of each of the groups according to a packet provided by the line grouping unit, generate a line model, and send the line model to the crosstalk model acquiring unit;
- a crosstalk model obtaining unit configured to acquire a crosstalk model of the line model provided by the line model generating unit, and send the crosstalk model to a transmit power spectral density acquiring unit;
- a transmit power spectral density obtaining unit configured to acquire, according to the crosstalk model provided by the crosstalk model acquiring unit, a transmit power spectral density of a representative line in the line model, and send the transmit power spectral density to a conversion unit, and send Give the processing unit;
- a converting unit configured to convert a transmit power spectral density of the representative line provided by the transmit power spectral density acquiring unit into a frequency control parameter
- a processing unit configured to optimize the frequency control parameter by using a specific optimization algorithm according to the spectrum control parameter provided by the conversion unit, and improve the rate of the line.
- the transmission power of the frequency band in which the crosstalk is relatively large is limited, and the line with more serious crosstalk can obtain a larger transmission.
- the transmission rate reduces the adverse effects caused by crosstalk between xDSL lines and makes the line reach an optimal working state.
- FIG. 1 is a model diagram of a parameter of an xDSL system in the prior art
- FIG. 3 is a schematic diagram of a user scenario in the prior art
- FIG. 5 is a flow chart showing a method for controlling transmission power of a DSL line according to Embodiment 1 of the present invention.
- FIG. 6 is a scene parameter map of a typical embodiment of the present invention
- FIG. 7 is a typical scene parameter map according to Embodiment 2 of the present invention. Method flow chart;
- Embodiment 8 is a line group diagram of Embodiment 2 of the present invention.
- FIG. 9 is a flow chart of a method for controlling transmission power of a DSL line according to Embodiment 3 of the present invention.
- FIG. 10 is a schematic diagram of acquiring a crosstalk matrix according to Embodiment 3 of the present invention.
- FIG. 11 is a flow chart of a method for controlling transmission power of a DSL line according to Embodiment 4 of the present invention.
- FIG. 12 is a flow chart showing a method for controlling transmission power of a DSL line according to Embodiment 5 of the present invention.
- FIG. 13 is a flow chart of a method for controlling transmission power of a DSL line according to Embodiment 6 of the present invention.
- FIG. 14 is a flow chart of a method for controlling transmission power of a DSL line according to Embodiment 7 of the present invention.
- FIG. 15 is a diagram of an apparatus for controlling transmission power of a DSL line according to Embodiment 8 of the present invention. detailed description
- FIG. 5 a method for controlling the transmission power of a DSL line is shown in FIG. 5, and the specific steps are as follows:
- Step s501 Acquire an operation parameter of the line and/or an operation scenario parameter.
- Step s502 Determine, according to the parameter, a grouping of the lines.
- the principle of determining the line grouping is: making the lines in each group have the same characteristics, such as approximately the same electrical (line) length; the crosstalk between each other is substantially equal.
- Step s503 Select a representative line from each group, and form a line model by the representative lines.
- the representative line is any one of the lines in the group or an average of all lines, such as the average of the electrical lengths in the line grouping.
- Step s504 Acquire a crosstalk model of the line model.
- Step s505 Acquire an optimized transmit power spectral density of the line model by using a DSM optimization algorithm according to the crosstalk model.
- the optimized transmit power spectral density of each representative line in the line model is obtained. .
- Step s506 Convert the transmit power spectral density into a spectrum control parameter.
- the spectrum control parameter is a parameter capable of controlling a transmission power spectral density, such as PSDMASK (Power Spectral Density Template) or stop-band PSD (PSD Prohibited Frequency Band) corresponding to the line.
- PSDMASK Power Spectral Density Template
- PSD Stop-band PSD
- step s507 an optimization algorithm is implemented according to the spectrum control parameter to obtain an optimal transmit power of the line.
- the optimization algorithm uses an iterative water injection algorithm or a dynamic reconfiguration function of the line.
- the transmission power spectrum of the frequency band that originally generated crosstalk to other lines has been received.
- the limitation of PSDMASK is either prohibited by the stop-band PSD, so that the amount of crosstalk generated between the lines is generally equal or not much different.
- no line can be absolutely dominant, that is to say, each line is in a relatively fair condition, and the experience optimization algorithm or the dynamic reconfiguration function of the line similar to the IWF algorithm can achieve very good results, the rate Can get the maximum increase.
- the transmission power of the frequency band in which the crosstalk is relatively large is limited, and the line with severe crosstalk can obtain a larger transmission rate, which reduces the adverse effects caused by crosstalk between the xDSL lines. Make the line work optimally.
- FIG. 7 a method for controlling the transmission power of the DSL line is shown in FIG. 7, and the specific steps are as follows:
- Step s701 Acquire an operation scenario parameter of the line.
- the operating scenario parameters shown in Figure 6 can be obtained. Depending on the situation, more parameters can be obtained, such as the port number of the line (sometimes using DSLAM location information, board location information, and port information). Indicates); corresponding service type (ADSL, ADSL2, ADSL2 +, VDSL2, etc.); number of lines at different locations; approximate length of lines at different locations; distance between RT and CO.
- Step s702 Determine a grouping of the lines according to the starting point of the line.
- different groups are determined according to whether the starting point of the line is the CO end or the RT end.
- the operational scenarios shown in Figure 6 can be divided into two groups. If there are more RTs, you can also divide them into more groups based on the details of the RT side.
- Step s703 Select a representative line from each group to form a line model.
- the representative line is any one of the lines in the group or an average of all lines, such as the average of the electrical lengths in the line grouping.
- the representative line 1 and the representative line 2 are selected from the group as shown in FIG.
- Step s704 Acquire a crosstalk matrix representing the line 1 and the representative line 2 in the line model. Specifically, the specific steps of obtaining the crosstalk matrix are: The crosstalk of the representative line 1 to the representative line 2 is equal to the attenuation of the line length L plus the crosstalk of the coupling length Jl - L length, and then the line length is J2 + L
- Step s705 Acquire optimized transmit power spectral densities TxPSD1 and TxPSD2 representing the line 1 and representing the line 2.
- the crosstalk of the representative line 2 to the representative line 1 is significantly larger than the crosstalk of the representative line 1 to the representative line 2. Since the representative line 2 is clearly dominant in the process of competition, using the IWF algorithm introduced in the prior art 2 does not cause too much improvement in the rate of the representative line 1, the main reason is that the representative line 2 does not sacrifice a part of itself.
- the rate makes the representative line 1 obtain a larger rate increase; and the TxPSD1 and TxPSD2 calculated by the OSB optimization method in the prior art are globally optimal, and the representative line 2 is set in some pairs. Less power is transmitted on the frequency that represents the greater impact of line 1. Therefore, in the present embodiment, the transmission power spectral density of the representative line 1 and the representative line 2 is calculated by the OSB optimization method of the prior art 1.
- Step s706 Convert the transmit power spectral density to a spectrum control parameter PSDMASK.
- TJ1 and TJ2 are the adjustments taking into account the actual situation, for example considering the power margin (PSD Margin) factor, in the original Add a positive or negative regulation constant, such as 3dB or -3dB, based on the transmit power spectrum.
- this adjustment amount is expressed as TJ (TxPSD) according to a variable of the acquired transmission power spectrum (TxPSD).
- TxPSD a piecewise function is formulated to express, mainly to improve the transmission power spectrum limit in the case where the crosstalk is not large, as follows:
- A is a set threshold, which is generally the average of the statistics.
- the spectrum control parameter PSDMASK is optimized by using the IWF algorithm to improve the transmission power of the line.
- a method for controlling the transmission power of the DSL line is as shown in FIG. 9, and the specific steps are as follows:
- Step s901 Acquire an operation parameter of the line.
- the following parameters can be obtained: the electrical length (EL) of the line, the attenuation of the line (Hlog), the uplink transmit power of the line (Sup), the downlink transmit power of the line (Sdn), and the receiving end of the line.
- Noise ratio (SNRup, SNRdn) and static noise (QLN) of the line are examples of the electrical length (EL) of the line.
- Step s902 Determine the group according to the electrical length of the line and the average noise ratio of the uplink and the downlink.
- This uplink-downlink average noise ratio can be obtained by equation (7):
- Ndn and Nup represent the number of frequency bands used by the uplink and downlink, respectively.
- Step s903 Select a representative line from each group to form a line model.
- Step s904 Acquire a crosstalk model of the line model.
- an average transmission power spectrum and an average received noise spectrum of each representative line are obtained, and a crosstalk model of the line model is obtained according to the data.
- the crosstalk of the representative line 1 to the representative line 2 is the difference between the average received noise spectrum 2 and the average transmitted power spectrum 1 in FIG. 10, which represents that the crosstalk of the line 2 to the representative line 1 is the average received noise spectrum 1 and the average transmitted power spectrum 2 Difference.
- Step s905 Calculate the transmission power spectral density of the representative line according to the crosstalk model, and convert it to PSDMASK, which is similar to the implementation process of steps s705 to s706 in the second embodiment, and is not described repeatedly.
- step s906 the spectrum control parameter PSDMASK is optimized by using the IWF algorithm to increase the rate of the line.
- a method for controlling the transmission power of the DSL line is as shown in FIG. 11, and the specific steps are as follows:
- Step sll01 obtain the running parameters of the line and the operating scene parameters.
- the operating scenario parameters and the operating parameters can be considered together, wherein the operating parameters can provide more accurate data for the operating scenario parameters, for example, the operating scenario parameters can only give the approximate length of the line, and The exact length of each line cannot be determined, but the electrical length provided by the operating parameters or the electrical length derived from the attenuation of the line is accurate.
- Step sll02 determining the grouping of the line according to the running parameters of the line and the operating scenario parameters.
- the grouping of the lines is determined according to the specific locations of the lines, such as CO and RT, and some other groups can be subdivided according to the length of the line based on the operating parameters of the lines on the basis of the CO and RT packets.
- Step sll03 select a representative line from each group to form a line model.
- Steps sll04 ⁇ sll07 are similar to the methods provided in steps s704 to s707 in the second embodiment, and are not described repeatedly.
- a method for controlling the transmission power of the DSL line is as shown in FIG. 12, and the specific steps are as follows:
- Step sl201 obtaining running parameters of the line and/or operating scene parameters, determining line grouping according to the parameters, selecting representative lines from the grouping, forming a line model, and acquiring a crosstalk model of the line model.
- Step sl202 Acquire an optimized transmit power spectral density of the representative line in the line model according to the crosstalk model, and determine a spectrum control parameter stop-band PSD.
- the step of determining stop-band PSD according to the transmit power spectral density TxPSD is as follows: Set a threshold M. If TxPSD is less than this threshold, set the frequency spacing below this threshold to stop-band PSD.
- the stop-band PSD is clearly defined in the ITU-T G.993.2 standard, and the threshold M is generally the average of the dominant data.
- Step S1203 Control the value range of the transmission power spectral density by using the frequency control parameter stop-band PSD.
- step sl204 the spectrum control parameter stop-band PSD is optimized by using the IWF algorithm to increase the rate of the line.
- a method for controlling the transmission power of the DSL line is as shown in FIG. 13, and the specific steps are as follows:
- Step sl301 obtaining running parameters of the line and/or operating scene parameters, according to these The parameters are used to determine the line grouping, the representative line is selected from the group, a line model is formed, and the crosstalk model of the line model is obtained.
- Step sl302 Acquire an optimized transmit power spectral density of the representative line in the line model according to the crosstalk model, and convert it into a frequency control parameter capable of controlling the transmit power spectral density, such as PSDMASK or stop-band PSD.
- a frequency control parameter capable of controlling the transmit power spectral density, such as PSDMASK or stop-band PSD.
- step sl303 an iterative water injection optimization algorithm is implemented according to the spectrum control parameter PSDMASK or stop-band PSD to increase the speed of the line.
- the transmit power spectral density on each representative line is increased by the IWF optimization algorithm under the limitations of PSDMASK or stop-band PSD described above.
- the transmission power spectrum of the frequency band which is originally strong in crosstalk to other lines is limited by PSDMASK or disabled by the stop-band PSD, so that the crosstalk generated between the lines is generally approximate. Equal or not very different. In the process of mutual competition, no line can be absolutely dominant, that is to say, each line is in a relatively fair condition. Experience and simulation results show that when the lines are in relatively fair conditions, the IWF algorithm can achieve very good results, and the rate can be maximized.
- a method for controlling the transmission power of the DSL line is as shown in FIG. 14, and the specific steps are as follows:
- Step sl401 obtaining running parameters of the line and/or operating scene parameters, determining line grouping according to the parameters, selecting representative lines from the grouping, forming a line model, and acquiring a crosstalk model of the line model.
- Any one of the second embodiment to the sixth embodiment is selected to obtain a crosstalk model of the line model.
- Step s402 Obtain an optimized transmit power spectral density of the representative line in the line model according to the crosstalk model, and convert the frequency to a frequency control parameter capable of controlling a transmit power spectral density.
- a frequency control parameter capable of controlling a transmit power spectral density.
- step sl403 opening the dynamic reconfiguration function of each representative line, and increasing the speed of the line.
- step si401 and step sl402 the dynamic reconfiguration function of each representative line, such as SRA (Seamless Rate Adaptive), Bit Swap (bit Swap), etc., is completed.
- SRA Seamless Rate Adaptive
- Bit Swap Bit Swap
- the re-injection process of a line, with the accumulation of time in the process, its indirect function is equivalent to the iterative water injection function, so that the overall speed of the line model is maximized.
- a device for controlling transmission power of a DSL line the structure of the device is as shown in FIG. 15, and includes:
- the line grouping unit 11 is configured to determine a grouping of the lines according to the line parameters.
- the line model generating unit 12 is configured to select a representative line of each group according to the packet provided by the line grouping unit 11, generate a line model, and send it to the crosstalk model obtaining unit 13.
- the crosstalk model acquisition unit 13 is configured to acquire a crosstalk model of the line model provided by the line model generating unit 12, and send the crosstalk model to the transmission power spectral density acquiring unit 14.
- the transmit power spectral density acquisition unit 14 is configured to obtain a crosstalk model provided by the crosstalk model acquisition unit 13, obtain a transmit power spectral density of the representative line in the line model through the DSM optimization algorithm, and send the transmit power spectral density to the conversion unit 15.
- the converting unit 15 is configured to convert the transmission power spectral density of the representative line provided by the transmission power spectral density acquiring unit 14 into a frequency control parameter, and send the signal to the processing unit 16.
- the processing unit 16 is configured to optimize the frequency control parameter according to the spectrum control parameter provided by the conversion unit 15 by using a specific optimization algorithm to increase the rate of the line.
- This device also includes:
- the line parameter obtaining unit 17 is configured to acquire an operating parameter and/or an operating scene parameter of the line, and send the parameter to the line grouping unit 11.
- the present invention can be implemented by hardware or by software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present invention can be embodied in the form of a software product that can be stored in a non-volatile storage medium.
- a computer device (may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
Description
一种控制 DSL线路发送功率的方法和设备
本申请要求于 2007 年 9 月 27 日提交中国专利局、 申请号为 200710152346.3、 发明名称为"一种控制 DSL线路发送功率的方法和 设备"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种控制 DSL线路 发送功率的方法和设备。 背景技术
xDSL (数字用户环线)是一种在电话双绞线上传输的高速数据 传输技术, 分为釆用基带传输的 DSL ( Digital Subscriber Line, 数字 用户线路)和利用频分复用技术釆用通带传输的 xDSL。 通带传输的 xDSL釆用 DMT ( Discrete Mutitone Modulation, 离散多音频调制)。 提供多路 xDSL接入的系统叫做 DSLAM ( Digital Subscriber Line Access Multiplexer, 数字用户线路接入复用器), 其系统参考模型如 图 1所示。
随着 xDSL技术使用的频带的提高, 串扰尤其是高频段的串扰问 题表现得日益突出, 如图 2所示。 由于 xDSL上下行信道釆用频分复 用, 近端串扰对系统的性能不会产生太大的危害; 而远端串扰会严重 影响线路的传输性能。 当一捆电缆内有多路用户都要求开通 xDSL业 务时, 会因为远端串扰使一些线路速率低、 性能不稳定、 甚至不能开 通, 最终导致 DSLAM的出线率比较低。
用户电缆基本上都包含多对(25 对或以上) 双绞线, 在各个双 绞线上可能运行了多种不同的业务,各种类型的 xDSL同时工作的时 候互相之间会产生串扰, 其中某些线路会因此性能急剧下降; 当线路 比较长时, 某些线路根本无法开通任何形式的 DSL业务。
为了避免串扰导致的线路性能严重下降, ITU-T ( International
Telecommunication Union Telecommunication Standardization Sector,国 际电信联盟电信标准化部门) 提出了 DSM ( Dynamic Spectrum Management, 动态频语管理)方案。 DSM方案旨在釆用动态频语平 衡的方法来提升线路速率、距离和稳定性, 或在满足性能和稳定性要 求(速率、 噪声容限和误码率)的情况下以最小的功率发送信号, 通 过一系列的方法集中优化管理各种参数配置和信号 PSD ( Power Spectral Density,发送功率谱密度),甚至协调整个电缆束中信号的发 送和接收, 使得整个电缆束中的线路传输性能最优化。 具体地, DSM 就是自动调整网络中各个 modem上的发送功率来达到消除串扰的目 的。 特别是在 CO/RT (局端 /远程终端) 混合应用的情况下短线对长 线的串扰影响较大。 如图 3所示, 线路 2对线路 1的影响要远远大于 线路 1对线路 2的影响。 DSM的目标就是通过调整发射功率使每个 modem在达到自身速率最大化和减少对其他 modem的串扰影响之间 达到一个平衡。
目前 DSM第一层面的主流架构如图 4所示,有一个控制器 SMC ( Spectrum Maintenance Center, 频谱管理中心)和三个控制接口, 分 别为 DSM-S、 DSM-C、 DSM-D。 SMC通过 DSM-D接口从 DSL-LT 读取 DSL线路的工作状态等参数, 通过 DSM-S接口与其相关联的 SMC进行信息交互,当 SMC掌握足够的信息,作一系列的优化算法, 最后通过 DSM-C向 DSL-LT下发控制参数, 使线路工作在最佳的状 态。
现有技术一中, 一种集中式的频谱管理算法为 OSB (Optimum Spectrum Balancing)。假设共有 N个用户每个用户有 K个 tone, 且其 中 N-1个用户有一个目标速率。 DSM的基本问题可表示为: 在满足 N-1个用户速率的前提下, 尽量提高第一个用户的速率, 同时每个信 号的能量要满足 PSD 要求每个用户的总功率应满足相应的约束
K
sn≤P
( ^ k— 为 n用户的最大允许发送功率)。由于该问题的非凸性,
直接对其进行完整求解需要枚举所有可能的 取值,则算法同时具有 关于用户数 N和 tone数 K的指数计算复杂度, 即 G(eXAr)。 OSB应用 对偶方法, 将上述问题用公式表示为:
s.t.0≤sH,k:\,...,K,'n:\,...,N ( 1 ) 公式 (1)中目标函数又可转化为: J =∑ +∑∑w„bk" -∑∑ =∑(∑(wnb: - ,")) =∑
( 2 )
- (3) 这里 Wl=l, 考虑到 Λ只与第 k个 tone上的功率分配5 Κ'···' 有 关, 而与其他 tone 上的功率分配无关这一特性, 只需要枚举在第 k 个 tone 上各个用户的功率分配就可以求出 的最大值。 对各个独立 的 tone分别求解111^ 即可求出 J的最优解。 OSB在保证找到最优解 的前提下将原来的计算复杂度降到了 0 Ke 。
OSB的实现流程具体为:
;
重复以上步骤, 直至函数收敛。
在计算使 最大的5 Κ'···' 时, 因为 ^为非凸函数, 不存在简单 的解析解。 因此,要求出最优的 4' 2'···' 则需对所有的 在 [Q,5皿] ""的 空间上进行枚举。 当一轮枚举结束后, ^和 ^根据约束条件满足的程 度动态地进行调整。 如果约束条件已满足, 则要降低相应用户线上的 ^或 ^值, 以降低此部分对整个目标函数的影响程度; 如果约束条件 尚未满足, 则需提高相应用户线上的^或 ^值, 以增大此部分约束在 整个目标函数中所占比重。 算法不断重复以上操作, 直至所有约束条
件均得到满足且功率分配不再发生变化为止。 此时可认为算法收敛。
OSB算法在用户数 N不太大时在可接受的时间内可得到计算结 果, 但当用户数增大时, 其计算时间成指数倍增长。 简言之, OSB 算法的优点为: 最优性, 当 N较小时可计算性。 OSB虽然性能最好, 但是复杂度太高、 非自制、 需要中心管理器进行数据交互, 不具备任 何的实用价值。 虽然后续在 OSB的基础上演变出多种近似最优的算 法如 ISB ( iterative spectrum balancing, 迭代频谱平衡), 相对于 OSB 来说算法复杂度要简单很多, 但是在实际工作过程中, 特别是线路比 较多的情况下, 运算量还是相当大。
现有技术二中, 一种分布式的频语管理算法为 IWF ( iterative Water Filling, 迭代注水算法)。 IWF是一种贪心方法, 只考虑 的变 化对第 n个用户线上速率的影响,不从优化的角度考虑对其他线路产 生的干扰。 其目标函数 ^可以写为 Jk ≡ jkn = wnK - Α"。
IWF的具体实现过程具体为:
对每个用户 n ( n = 2,...,N )执行以下步骤:
对 每 个 tone k , 固 定 m≠n' 令 wm„ . =argmax(wA"-^ );
如果∑ 〉 , 执行 " + f;
否则 4=½+ ∑ "— '
直至函数收敛。
IWF的方法计算复杂度较低,对于较大的 N和 K都可进行计算, 并且是完全自治的,即各个用户只需优化自身的速率和满足自身的功 率约束即可, 而不需要不同用户之间进行数据信息的交互, 即不需要 中心管理器, 易于在实际系统中实现。 但是 IWF是一种贪心算法, 在串扰环境比较复杂的情况下其性能比较差,无法保证最优解或近似 最优解。 发明内容
本发明实施例提供一种控制 DSL线路发送功率的方法和设备, 以实现线路产生串扰比较大的频段的信号发送功率得到限制,提升线 路速率和稳定性。
为达到上述目的,本发明实施例提出一种控制数字用户线路 DSL 线路发送功率的方法, 包括:
确定线路的分组,并选取每个所述分组的代表线路组成一个线路 模型;
获取所述线路模型的串扰模型;
根据所述串扰模型 ,获取所述线路模型中每个代表线路的发送功 率谱密度, 并将所述发送功率谱密度转换成频谱控制参数;
根据所述频谱控制参数提升线路的发送功率。
本发明还提出一种控制 DSL线路发送功率的设备, 包括: 线路分组单元, 用于确定线路的分组;
线路模型生成单元, 用于根据所述线路分组单元提供的分组, 选 取每个所述分组的代表线路, 生成一个线路模型, 并发送给串扰模型 获取单元;
串扰模型获取单元,用于获取所述线路模型生成单元提供的所述 线路模型的串扰模型,并将所述串扰模型发送给发送功率谱密度获取 单元;
发送功率谱密度获取单元,用于根据所述串扰模型获取单元提供 的串扰模型, 获取所述线路模型中代表线路的发送功率谱密度, 并将 所述发送功率谱密度发送给转换单元, 并发送给处理单元;
转换单元,用于将所述发送功率谱密度获取单元提供的所述代表 线路的发送功率谱密度转换成频语控制参数;
处理单元, 用于根据所述转换单元提供的频谱控制参数, 利用特 定的优化算法对所述频语控制参数进行优化, 提升线路的速率。
与现有技术相比, 本发明的实施例具有以下优点:
通过使用本发明实施例提供的方法,使得线路产生串扰比较大的 频段的发送功率得到了限制,受串扰比较严重的线路能获得更大的发
送速率, 降低了 xDSL线路间的串扰带来的不利影响, 使线路达到最 优的工作状态。 附图说明
图 1是现有技术中 xDSL系统参数模型图;
图 2是现有技术中串扰示意图;
图 3是现有技术中用户场景示意图;
图 4是现有技术中 DSM参考模型示意图;
图 5是本发明实施例一的一种控制 DSL线路发送功率的方法流 程图;
图 6是本发明实施例二的一种具有典型意义的场景参数图; 图 7 是本发明实施例二的一种具有典型意义的场景参数图本发 明实施例二的一种控制 DSL线路发送功率的方法流程图;
图 8是本发明实施例二的线路分组图;
图 9是本发明实施例三的一种控制 DSL线路发送功率的方法流 程图;
图 10是本发明实施例三中获取串扰矩阵的示意图;
图 11是本发明实施例四的一种控制 DSL线路发送功率的方法流 程图;
图 12是本发明实施例五的一种控制 DSL线路发送功率的方法流 程图;
图 13是本发明实施例六的一种控制 DSL线路发送功率的方法流 程图;
图 14是本发明实施例七的一种控制 DSL线路发送功率的方法流 程图;
图 15是本发明实施例八的一种控制 DSL线路发送功率的设备 图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细 描述:
本发明的实施例一中 ,一种控制 DSL线路发送功率的方法如图 5 所示, 具体步骤如下:
步骤 s501、 获取线路的运行参数和 /或运营场景参数。
步骤 s502、 根据该参数, 确定线路的分组。
具体的, 确定线路分组的原则为: 使每个分组中的线路具有相同 的特性,如大致相同的电气(线路)长度; 相互间的串扰基本相当等。
步骤 s503、从每个分组中选取出一个代表线路, 由这些代表线路 组成一个线路模型。
该代表线路为分组中的任意一个线路或者是所有线路的平均值, 例如线路分组中电气长度的平均值。
步骤 s504、 获取线路模型的串扰模型。
步骤 s505、 根据该串扰模型, 通过使用 DSM优化算法获取线路 模型的优化的发送功率谱密度。
具体的,通过使用 DSM的算法(如 ISB、 LPM( Linear Programming Method, 线性规划方法)、 SSB ( Successive Spectrum Balancing, 连续 频谱平衡) ), 获取线路模型中每个代表线路的优化的发送功率谱密 度。
步骤 s506、 将该发送功率谱密度转换成一种频谱控制参数。 具体的, 该频谱控制参数为能控制发送功率谱密度的参数, 如代 表线路对应的 PSDMASK (功率谱密度模板 )或 stop-band PSD ( PSD 禁止频带)。
进一步的, 步骤 s507、根据该频谱控制参数实施优化算法, 获取 线路的最优发送功率。
具体的, 优化算法釆用迭代注水算法或线路的动态重配功能等。 原来对其他线路产生串扰比较强的频段的发送功率谱受到了
PSDMASK的限制或者被 stop - band PSD禁止,使得在总体上各线路 间相互产生的串扰量大致相等或是差别不大。 在相互竟争的过程, 没 有线路能绝对占优, 也就是说各线路处于相对比较公平的条件, 经验 优化算法或者类似于 IWF算法的线路的动态重配功能, 可以取得非 常好的结果, 速率能得到最大限度的提升。
通过上述实施例提供的方法,使得线路产生串扰比较大的频段的 发送功率得到了限制, 受串扰比较严重的线路能获得更大的发送速 率, 降低了 xDSL线路间的串扰带来的不利影响, 使线路达到最优的 工作状态。
本发明的实施例二中, 以图 6 所示的具体场景为例, 一种控制 DSL线路发送功率的方法如图 7所示, 具体步骤如下:
步骤 s701、 获取线路的运营场景参数。
一般的情况下, 可以获取图 6所示的运营场景参数, 视不同的情 况有时还可以获得更多的参数, 如线路的端口号(有时使用 DSLAM 的位置信息、 单板位置信息和端口的信息表示); 相应的业务类型 ( ADSL, ADSL2, ADSL2 + , VDSL2等); 不同位置的线路数目; 不同位置的线路的大致长度; RT端与 CO端的距离等。
步骤 s702、 根据线路的起点, 确定线路的分组。
具体为,根据线路的起点为 CO端还是 RT端,确定不同的分组。 图 6所示的运营场景可以分成两组。 如果存在更多 RT端, 也可以才艮 据 RT端的详细信息分成更多的组。
步骤 s703、从每个分组中选取出一个代表线路,组成一个线路模 型。
该代表线路为分组中的任意一个线路或者是所有线路的平均值, 例如线路分组中电气长度的平均值。如图 8所示从分组中选取代表线 路 1和代表线路 2。
步骤 s704、获取线路模型中代表线路 1和代表线路 2的串扰矩阵。 具体的, 获取串扰矩阵的具体步骤为:
代表线路 1对代表线路 2的串扰 ( )等于线路长度为 L的衰 减加上耦合长度为 Jl - L长度的串扰, 然后再加上线路长度为 J2 + L
- J1的衰减, 其中, L为 RT端与 CO端的距离, J1为代表线路 1的 大致长度, J2为代表线路 2的大致长度。假设计算双绞线衰减函数的 模型用 S ( 1 )表示, 计算双绞线串扰函数的模型用 C ( 1 )表示, 上 述步骤可以用公式表示为:
h2 = S{L) + C{J, -L) + S{J2 + L - J,) dB ( 4 ) 同样可以得出: 代表线路 2 对代表线路 1 的串扰为: ^2 = C( -L) dB . 代表线路1对自身的串扰为: Α ^Λ) dB . 代 表线路 2对自身的串扰为: C 气 另外, 工业界和学术界 还提供许多其他不同的双绞线衰减函数的模型和双绞线的串扰函数 的模型, 均可应用于此。
通过以上步骤, 获取到代表线路的串扰矩阵。
步骤 s705、获取代表线路 1和代表线路 2的优化的发送功率谱密 度 TxPSDl和 TxPSD2。
从步骤 s704获取的串扰矩阵可以看出,代表线路 2对代表线路 1 的串扰要明显大于代表线路 1对代表线路 2的串扰。 由于代表线路 2 在竟争的过程中明显占优势, 使用现有技术二中介绍的 IWF算法不 会使代表线路 1的速率有太多的提升,主要原因是代表线路 2不会牺 牲一部分本身的速率而使代表线路 1获得更大的速率提升;而使用现 有技术一中的 OSB优化方法计算出来的 TxPSDl和 TxPSD2是从全 局的角度出发达到整体最优,代表线路 2—定在某些对代表线路 1影 响较大的频率上发送较少的功率。因此本实施例中釆用现有技术一中 的 OSB优化方法计算代表线路 1和代表线路 2的的发送功率谱密度。
步骤 s706、 将该发送功率谱密度转换为频谱控制参数 PSDMASK。
如果把获取的发送功率谱密度转换为 PSDMASK,能限制串扰比 较大的频率的发送功率。 发送功率谱密度与 PSDMASK之间的转换 公式如下:
PSDMASK, = TXPSD, + TJX · PSDMASK2 = TXPSD2 +TJ2 ( 5 ) 其中 TJ1和 TJ2是考虑到实际情况下的调节量,例如考虑到功率 语裕量(PSD Margin)的因素, 在原来的发送功率谱的基础上增加一 个正的或是负的调节常量, 如 3dB或- 3dB。 同时此调节量或者是根 据获取的发送功率谱(TxPSD) 的一个变量, 表示为 TJ (TxPSD)。 例如制定一个分段函数来表示,主要是提升在串扰不大的情况下的发 送功率谱限制, 如下式:
其中 A为设定的一个门限值, 该门限值一般为统计数据的平均 值。 进一步的, 步骤 s707、 对频谱控制参数 PSDMASK利用 IWF算 法进行优化, 提升线路的发送功率。
本发明的实施例三中, 一种控制 DSL线路发送功率的方法, 如 图 9所示, 具体步骤如下:
步骤 s901、 获取线路的运行参数。
当线路在运行过程中, 可以获取如下参数: 线路的电气长度 (EL)、 线路的衰减 (Hlog)、 线路的上行发送功率 (Sup)、 线路的 下行发送功率(Sdn)、 线路的接收端信噪比(SNRup, SNRdn)以及 线路的静态噪声 (QLN)等。
步骤 s902、 根据线路的电气长度和上下行平均噪声比来确定分 组。
此上下行平均噪声比可以通过公式(7)获取:
雄 =
" (7)
将电气长度和上下行平均噪声比相等或相近的线路作为一组。 步骤 s903、从每个分组中选取出一个代表线路,组成一个线路模 型。
当根据上述两个参数把整个组分成多个代表线路组后,选取其中 一个代表线路分别表示各组, 如图 10所示。
步骤 s904、 获取线路模型的串扰模型。
具体的, 获取各代表线路的平均发送功率谱和平均接收噪声谱, 根据这些数据获取线路模型的串扰模型。代表线路 1对代表线路 2的 串扰为图 10中平均接收噪声谱 2与平均发送功率谱 1的差值, 代表 线路 2对代表线路 1的串扰为平均接收噪声谱 1与平均发送功率谱 2 的差值。
步骤 s905、 根据上述串扰模型计算出代表线路的发送功率谱密 度, 并转换为 PSDMASK, 与实施例二中步骤 s705 ~ s706的实现过 程类似, 在此不做重复描述。
进一步的, 步骤 s906、 对频谱控制参数 PSDMASK利用 IWF算 法进行优化, 提升线路的速率。
本发明的实施例四中, 一种控制 DSL线路发送功率的方法, 如 图 11所示, 具体步骤如下:
步骤 sll01、 获取线路的运行参数和运营场景参数。
在选取线路参数确定分组的时候 ,可以把运营场景参数和运行参 数结合起来共同考虑,其中运行参数可以为运营场景参数提供更加精 确的数据, 例如运营场景参数只能给出线路的大致长度, 并不能确定 每一条线路的具体长度,但运行参数提供的电气长度或者是根据线路 的衰减推导出来的电气长度就艮精确。
步骤 sll02、 根据线路的运行参数和运营场景参数来确定线路的 分组。
例如在实施例二中, 根据线路的具体位置如 CO和 RT来确定线 路的分组, 可以结合线路的运行参数在 CO和 RT分组的基础上再根 据线路的长度细分出一些其他的分组。
步骤 sll03、 从每个分组中选取出一个代表线路, 组成一个线路 模型。
步骤 sll04~sll07、 与实施例二中步骤 s704 ~ s707中提供的方法 类似, 在此不做重复描述。
本发明的实施例五中, 一种控制 DSL线路发送功率的方法, 如 图 12所示, 具体步骤如下:
步骤 sl201、 获取线路的运行参数和 /或运营场景参数, 根据这些 参数来确定线路分组, 从分组中选取代表线路, 组成一个线路模型, 并获取该线路模型的串扰模型。
上述步骤选取实施例二、 三或四方法中的任一种, 在此不做重复 描述。
步骤 sl202、 根据该串扰模型获取线路模型中代表线路的优化的 发送功率谱密度, 并确定频谱控制参数 stop-band PSD。
根据发送功率谱密度 TxPSD确定 stop - band PSD的步骤具体为: 设置一个门限 M, 如果 TxPSD小于这个门限值, 就把低于这个门限 值的频率间距设置成 stop-band PSD。其中 stop-band PSD在 ITU-T的 G.993.2标准中有明确的定义, 门限值 M—般为统治数据的平均值。
步骤 S1203 , 通过频语控制参数 stop-band PSD, 控制发送功率谱 密度的取值范围。
进一步的,步骤 sl204、对频谱控制参数 stop-band PSD利用 IWF 算法进行优化, 提升线路的速率。
本发明的实施例六中, 一种控制 DSL线路发送功率的方法, 如 图 13所示, 具体步骤如下:
步骤 sl301、 获取线路的运行参数和 /或运营场景参数, 根据这些
参数来确定线路分组, 从分组选取代表线路, 组成一个线路模型, 并 获取线路模型的串扰模型。
上述步骤选取实施例二至五方法中的任一种, 在此不作重复描 述。
步骤 sl302、 根据该串扰模型获取线路模型中代表线路的优化的 发送功率谱密度, 并转化为能控制发送功率谱密度的频语控制参数, 如 PSDMASK或 stop - band PSD。
上述步骤选取实施例二至五方法中的任一种, 在此不作重复描 述。
进一步的, 步骤 sl303、 根据频谱控制参数 PSDMASK或 stop - band PSD实施迭代注水优化算法, 提升线路的速率。
各代表线路上的发送功率谱密度在上述 PSDMASK 或 stop - band PSD的限制下, 使用 IWF优化算法, 提升线路的速率。
通过使用上述实施例提供的方法,使得原来对其他线路产生串扰 比较强的频段的发送功率谱受到了 PSDMASK的限制或者被 stop - band PSD禁止, 这样在总体上各线路间相互产生的串扰量大致相等 或是差别不大。 在相互竟争的过程, 没有线路能绝对占优, 也就是说 各线路处于相对比较公平的条件。经验和仿真结果显示当各线路处于 相对比较公平的条件下时, 使用 IWF算法可以取得非常好的结果, 速率能得到最大限度的提升。
本发明的实施例七中, 一种控制 DSL线路发送功率的方法, 如 图 14所示, 具体步骤如下:
步骤 sl401、 获取线路的运行参数和 /或运营场景参数, 根据这些 参数来确定线路分组, 从分组中选取代表线路, 组成一个线路模型, 并获取线路模型的串扰模型。
选取实施例二至实施例六方法中的任一种来获取线路模型的串 扰模型。
步骤 sl402、 根据该串扰模型获取线路模型中代表线路的优化的 发送功率谱密度, 并转化为能控制发送功率谱密度的频语控制参数,
如 PSDMASK或 stop - band PSD。
上述步骤选取实施例二至实施例六方法中的任一种来获取控制 发送功率谱密度的频谱控制参数, 在此不作重复描述。
进一步的, 步骤 sl403、 开放各代表线路的动态重配功能, 提升 线路的速率。
根据步骤 si401和步骤 sl402获取的参数, 开放各代表线路的动 态重配功能, 如 SRA ( Seamless Rate Adaptive, 无缝速率调整)、 Bit Swap ( Bit Swap, 比特交换)等, 这些功能都是完成了一个线路的重 注水过程,过程中随着时间的累积,其间接功能相当于迭代注水功能, 使线路模型的整体速率得到最大限度的提升。
本发明的实施例八中, 一种控制 DSL线路发送功率的设备, 该 设备的结构图如图 15所示, 包括:
线路分组单元 11 , 用于根据线路参数确定线路的分组。
线路模型生成单元 12, 用于根据线路分组单元 11提供的分组, 选取每个分组的代表线路, 生成一个线路模型, 并发送给串扰模型获 取单元 13。
串扰模型获取单元 13 , 用于获取线路模型生成单元 12提供的线 路模型的串扰模型,并将该串扰模型发送给发送功率谱密度获取单元 14。
发送功率谱密度获取单元 14, 用于根据串扰模型获取单元 13提 供的串扰模型, 通过 DSM优化算法获取线路模型中代表线路的发送 功率谱密度, 并将该发送功率谱密度发送给转换单元 15。
转换单元 15 , 用于将发送功率谱密度获取单元 14提供的代表线 路的发送功率谱密度转换成频语控制参数, 并发送给处理单元 16。
处理单元 16, 用于根据转换单元 15提供的频谱控制参数, 利用 特定的优化算法对该频语控制参数进行优化, 提升线路的速率。
本设备还包括:
线路参数获取单元 17, 用于获取线路的运行参数和 /或运营场景 参数, 并发送给线路分组单元 11。
通过上述实施例提供的设备,使得线路产生串扰比较大的频段的 发送功率得到了限制, 受串扰比较严重的线路能获得更大的发送速 率, 降低了 xDSL线路间的串扰带来的不利影响, 使线路达到最优的 工作状态。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明, 可以通过硬件实现, 也可以借助软件加必要的通用硬件平 台的方式来实现。基于这样的理解, 本发明的技术方案可以以软件产 品的形式体现出来, 该软件产品可以存储在一个非易失性存储介质
(可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指令用以使 得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述的方法。
总之, 以上所述仅为本发明的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1、 一种控制数字用户线路 DSL线路发送功率的方法, 其特征在 于, 包括:
确定线路的分组,并选取每个所述分组的代表线路组成一个线路 模型;
获取所述线路模型的串扰模型;
根据所述串扰模型 ,获取所述线路模型中每个代表线路的发送功 率谱密度, 并将所述发送功率谱密度转换成频谱控制参数;
根据所述频谱控制参数提升线路的发送功率。
2、 如权利要求 1所述控制 DSL线路发送功率的方法, 其特征在 于, 所述确定线路的分组具体为:
获取线路的运营场景参数和 /或运行参数;
选取所述线路的运营场景参数和运行参数中的一种或多种确定 线路的分组。
3、 如权利要求 1所述控制 DSL线路发送功率的方法, 其特征在 于, 所述根据所述串扰模型, 获取所述线路模型中每个代表线路的发 送功率谱密度具体为:
根据所述串扰模型, 通过动态频谱管理 DSM的优化算法获取所 述线路模型中每个代表线路的发送功率谱密度。
4、 如权利要求 1所述控制 DSL线路发送功率的方法, 其特征在 于, 所述将发送功率谱密度转换成频谱控制参数具体为:
将所述发送功率谱密度转换成所述代表线路的能控制所述发送 功率谱密度的频谱控制参数, 所述频谱控制参数为发送功率语模板 PSDMASK或禁止频带 stop-band PSD。
5、 如权利要求 4所述控制 DSL线路发送功率的方法, 其特征在 于, 所述频语控制参数 PSDMASK为发送功率谱密度与特定调节量 的和。
6、 如权利要求 4所述控制 DSL线路发送功率的方法, 其特征在
于, 所述将所述发送功率谱密度转换成频语控制参数 stop-band PSD 具体为:
设置一门限值;
如果所述代表线路的发送功率谱密度小于所述门限值,则把所述 门限值的频率间距设置成 stop-band PSD。
7、 如权利要求 1所述控制 DSL线路发送功率的方法, 其特征在 于, 所述根据所述频语控制参数提升线路的速率具体为: 对所述频谱 控制参数实施优化算法, 提升线路的速率; 所述优化算法至少包括迭 代注水算法、 或线路的动态重配。
8、 一种控制数字用户线路 DSL线路发送功率的设备, 其特征在 于, 包括:
线路分组单元, 用于确定线路的分组;
线路模型生成单元, 用于根据所述线路分组单元提供的分组, 选 取每个所述分组的代表线路, 生成一个线路模型, 并发送给串扰模型 获取单元;
串扰模型获取单元,用于获取所述线路模型生成单元提供的所述 线路模型的串扰模型,并将所述串扰模型发送给发送功率谱密度获取 单元;
发送功率谱密度获取单元,用于根据所述串扰模型获取单元提供 的串扰模型, 获取所述线路模型中代表线路的发送功率谱密度, 并将 所述发送功率谱密度发送给转换单元;
转换单元,用于将所述发送功率谱密度获取单元提供的所述代表 线路的发送功率谱密度转换成频语控制参数, 并发送给处理单元; 处理单元, 用于根据所述转换单元提供的频语控制参数, 利用特 定的优化算法对所述频语控制参数进行优化, 提升线路的速率。
9、 如权利要求 8所述控制 DSL线路发送功率的设备, 其特征在 于, 还包括:
线路参数获取单元, 用于获取线路的运行参数和 /或运营场景参 数, 并发送给所述线路分组单元。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/551,246 US8908749B2 (en) | 2007-09-27 | 2009-08-31 | Method and apparatus for controlling DSL line transmission power |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710152346.3 | 2007-09-27 | ||
CN 200710152346 CN101399575B (zh) | 2007-09-27 | 2007-09-27 | 一种控制dsl线路发送功率的方法和设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/551,246 Continuation US8908749B2 (en) | 2007-09-27 | 2009-08-31 | Method and apparatus for controlling DSL line transmission power |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009039759A1 true WO2009039759A1 (en) | 2009-04-02 |
Family
ID=40510755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/072342 WO2009039759A1 (en) | 2007-09-27 | 2008-09-11 | Method and apparatus for controlling dsl line transmission power |
Country Status (3)
Country | Link |
---|---|
US (1) | US8908749B2 (zh) |
CN (1) | CN101399575B (zh) |
WO (1) | WO2009039759A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7860020B2 (en) | 2006-05-22 | 2010-12-28 | Plx Technology, Inc. | Master/slave transceiver power back-off |
CN101610102B (zh) * | 2008-06-18 | 2014-03-12 | 华为技术有限公司 | 一种优化功率的方法、系统和装置 |
US8848555B2 (en) * | 2008-11-27 | 2014-09-30 | Telefonaktiebolaget L M Ericsson (Publ) | Method and a system for management of transmission resources in digital communication systems |
JP5438821B2 (ja) * | 2009-04-27 | 2014-03-12 | イカノス テクノロジー リミテッド | Dmtモデムにおいてダイナミックレンジを最適化するための方法および装置 |
EP2550752B1 (en) * | 2010-03-26 | 2018-11-21 | Telefonaktiebolaget LM Ericsson (publ) | Estimating pair symmetry status for a communication line |
WO2011147372A2 (zh) * | 2011-06-07 | 2011-12-01 | 华为技术有限公司 | 降低数字用户线业务传输中线间串扰的方法、装置及系统 |
US8804798B2 (en) * | 2011-09-16 | 2014-08-12 | Aquantia Corporation | Transceiver spectrum control for cross-talk mitigation |
EP2573946B1 (en) * | 2011-09-23 | 2014-07-30 | Alcatel Lucent | Power adaptation avoidance during crosstalk measurements |
WO2012167537A1 (zh) * | 2011-11-03 | 2012-12-13 | 华为技术有限公司 | 一种降低数字用户线路干扰的方法、装置和系统 |
EP2709345B1 (en) * | 2012-09-17 | 2015-02-25 | Alcatel Lucent | Method and device for identifying crosstalk |
EP3127312B1 (en) * | 2014-03-31 | 2020-02-12 | British Telecommunications public limited company | Resource allocation in a digital communication network |
TWI619359B (zh) * | 2016-01-12 | 2018-03-21 | 智易科技股份有限公司 | 自動移除串音的方法與裝置 |
TW201801483A (zh) * | 2016-06-16 | 2018-01-01 | 智易科技股份有限公司 | 自動移除串音的方法與裝置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020041565A1 (en) * | 2000-08-03 | 2002-04-11 | Valenti Craig F. | Crosstalk identification for spectrum management in broadband telecommunications systems |
CN1866938A (zh) * | 2005-09-21 | 2006-11-22 | 华为技术有限公司 | 基于降低dsl线路串扰的自适应功率调整的方法及装置 |
CN1866937A (zh) * | 2005-07-29 | 2006-11-22 | 华为技术有限公司 | 对接入设备输出信号的频谱进行整形的方法和系统 |
US20070036207A1 (en) * | 2001-12-19 | 2007-02-15 | Xianbin Wang | Near-end crosstalk noise minimization and power reduction for digital subscriber loops |
CN101174855A (zh) * | 2006-11-01 | 2008-05-07 | 华为技术有限公司 | 频谱管理方法和装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002058369A2 (en) * | 2000-10-19 | 2002-07-25 | Teradyne, Inc. | Method and apparatus for bridged tap impact analysis |
US6826258B2 (en) * | 2002-06-20 | 2004-11-30 | Teradyne, Inc. | System and method for pre-qualification of telephone lines for DSL service using an average loop loss |
US7809116B2 (en) * | 2003-12-07 | 2010-10-05 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system estimation including known DSL line scanning and bad splice detection capability |
US7742387B2 (en) * | 2005-04-12 | 2010-06-22 | New Wire Systems, Inc. | Cancellation of crosstalk energy in communication loops |
US7852952B2 (en) * | 2005-06-10 | 2010-12-14 | Adaptive Spectrum And Signal Alignment, Inc. | DSL system loading and ordering |
-
2007
- 2007-09-27 CN CN 200710152346 patent/CN101399575B/zh not_active Expired - Fee Related
-
2008
- 2008-09-11 WO PCT/CN2008/072342 patent/WO2009039759A1/zh active Application Filing
-
2009
- 2009-08-31 US US12/551,246 patent/US8908749B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020041565A1 (en) * | 2000-08-03 | 2002-04-11 | Valenti Craig F. | Crosstalk identification for spectrum management in broadband telecommunications systems |
US20070036207A1 (en) * | 2001-12-19 | 2007-02-15 | Xianbin Wang | Near-end crosstalk noise minimization and power reduction for digital subscriber loops |
CN1866937A (zh) * | 2005-07-29 | 2006-11-22 | 华为技术有限公司 | 对接入设备输出信号的频谱进行整形的方法和系统 |
CN1866938A (zh) * | 2005-09-21 | 2006-11-22 | 华为技术有限公司 | 基于降低dsl线路串扰的自适应功率调整的方法及装置 |
CN101174855A (zh) * | 2006-11-01 | 2008-05-07 | 华为技术有限公司 | 频谱管理方法和装置 |
Non-Patent Citations (1)
Title |
---|
PAPANDRIOPOULO J. ET AL.: "Low-Complexity Distributed Algorithms for Spectrum Balancing in Multi-user DSL Networks", IEEE ICC 2006 PROCEEDINGS, 30 June 2006 (2006-06-30) * |
Also Published As
Publication number | Publication date |
---|---|
US20100027601A1 (en) | 2010-02-04 |
CN101399575B (zh) | 2013-04-17 |
CN101399575A (zh) | 2009-04-01 |
US8908749B2 (en) | 2014-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009039759A1 (en) | Method and apparatus for controlling dsl line transmission power | |
US10404300B2 (en) | Dynamic digital communication system control | |
EP1863249B1 (en) | Method and device for dynamic spectrum management of xDSL upstream and downstream shared frequency | |
CN101174855B (zh) | 频谱管理方法和装置 | |
JP5180069B2 (ja) | Dslシステムのローディングとオーダリング | |
CN103947125B (zh) | 数字用户线的最优下行电源关闭 | |
CN101047459B (zh) | 用于动态管理xDSL频谱的方法及其装置 | |
CN101192850B (zh) | 一种动态功率频谱管理方法及频谱优化系统及客户端设备 | |
CN101047682B (zh) | 数字用户线收发器发送功率谱密度整形方法 | |
CN102165724B (zh) | 一种降低用户线路串扰的方法、装置和系统 | |
Zou et al. | A centralized multi-level water-filling algorithm for dynamic spectrum management | |
Sharma et al. | A modified low complexity based distributed iterative water-filling (IWF) spectrum management algorithm | |
WO2008017274A1 (fr) | Procédé et dispositif pour contrôler la qualité de communication en ligne | |
Sarhan et al. | Combining Virtual Noise and Seamless Rate Adaptation for User-specific Requirements on Quality of Service in xDSL Systems | |
Sjöberg et al. | Power back-off for multiple target bit rates | |
Verlinden et al. | Spectrally compatible iterative water filling | |
Molina et al. | Spectrum Balancing algorithms comparison for ADSL downstream | |
Statovci et al. | Spectrum balancing for DSL with restrictions on maximum transmit PSD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08834658 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08834658 Country of ref document: EP Kind code of ref document: A1 |