WO2009037495A1 - Puncture indicating gloves - Google Patents

Puncture indicating gloves Download PDF

Info

Publication number
WO2009037495A1
WO2009037495A1 PCT/GB2008/050470 GB2008050470W WO2009037495A1 WO 2009037495 A1 WO2009037495 A1 WO 2009037495A1 GB 2008050470 W GB2008050470 W GB 2008050470W WO 2009037495 A1 WO2009037495 A1 WO 2009037495A1
Authority
WO
WIPO (PCT)
Prior art keywords
glove
puncture indicating
colour
puncture
opacity
Prior art date
Application number
PCT/GB2008/050470
Other languages
French (fr)
Inventor
Simon Pickard
Gareth Hilton
Original Assignee
Regent Medical Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Regent Medical Limited filed Critical Regent Medical Limited
Publication of WO2009037495A1 publication Critical patent/WO2009037495A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B42/00Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B42/00Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
    • A61B42/30Devices for detecting perforations, leaks or tears
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0055Plastic or rubber gloves
    • A41D19/0058Three-dimensional gloves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4842Outerwear
    • B29L2031/4864Gloves

Definitions

  • the present invention relates to gloves, in particular surgical gloves which have puncture evident characteristics by means of which a wearer can easily identify if the glove has been pierced.
  • Surgical gloves perform an important function of protecting the wearer's hands from exposure to bodily fluids such as blood which might be infected and hence present a health risk as well as protecting the patient's internal organs from exposure to sweat and the like from the surgeons hands. Accordingly, the integrity of the liquid barrier formed by the glove is very important.
  • surgical gloves are used within an environment where there is a risk of piercing, for example from scalpels and other sharp surgical implements, and it is therefore desirable for the wearer to be able to easily identify if a glove has been pierced, either before or during use, so as to minimize any potential contamination either to the wearer or the patient.
  • US 5224221 describes a tamper or damage evident surgical glove in the form of a bi-layer glove, comprising an inner layer and an outer layer, in which the outer layer is translucent, in particular yellow, and the inner layer is a contrasting colour, in particular a darker colour such as green or black. If either the inner or outer layer is pierced, liquid can permeate between the two layers. This liquid causes two effects; the colour of the inner layer becomes more apparent through the outer layer, and or the colour of the liquid becomes apparent through the outer layer. The user sees this as a region of contrasting colour where the liquid is present between the two layers of the bilayer.
  • the change in visibility produced by the indicating system in US 5224221 has been found, in practice to be dependent on circumstance and in certain cases not to be that easily perceived by the wearer.
  • the present invention seeks to provide a bilayer system of the type of US 5224221 that results in a large colour change as fluid ingresses into the region between the bilayers.
  • the present invention seeks to maximize the colour change that becomes apparent in a double glove system by specifying the opacity of the outer glove and the density and strength of colour of the under glove.
  • the fluids generally exposed to the indicating system in the field of the invention are not of consistent colour.
  • the colour of the fluid can range from colourless, transparent fluid such as water to strongly coloured fluid such as blood.
  • the fluid provides the source for indication of loss of barrier properties it is preferred to have a coloured under glove that contrasts with indicating fluid such as blood. It is also preferred that the colour of the under glove is strong enough to show through a transparent over glove when the indicating fluid is colourless and transparent.
  • the present invention is based on the realization that the transparency of the over glove is key to generating optimal indication.
  • the user relies on a colour change visible from the exterior of the glove on ingress of indicating fluid to indicate that the barrier properties of the bilayer have been compromised.
  • the colour change occurs due to an increase in the amount of colour from the under glove or the indicating fluid showing through the outer glove.
  • the intensity of colour of the inner glove does not change but the fluid ingressing into the space between the gloves results in the inner glove becoming more visible through the outer glove.
  • This colour has to contrast with the colour of the double layer that is absent of fluid to be evident to the user.
  • the level of contrast or difference in colour between the bilayer containing fluid and the bilayer absent of fluid is partially determined by the transparency or opacity of the outer glove.
  • the overglove is of low translucency (that is having an opacity of 100 %) the over glove will mask the under glove. Therefore the apparent colour to the user will be of the overglove. When liquid ingresses into the space between the two layers the over glove will continue to mask the colour of the under glove and any colour associated with the fluid. Therefore there will be little change of colour on indication. Both these systems will result in a low probability that the user will detect the occurrence of a puncture in the barrier.
  • a puncture indicating glove comprising a bilayer formed by an inner glove layer and an outer glove layer, the outer glove having an opacity in the range of 15 40%.
  • a puncture indicating glove in accordance with the invention has the advantage that it provides particularly effective indication of liquid penetration between the layers, making it particularly easy for the wearer to identify if the integrity of the barrier formed by the glove has been compromised.
  • the opacity range referred to above and hereinafter is based on a range of 0%, being completely transparent, to 100% being totally opaque.
  • the opacity is in the range of 18 to 38 %, advantageously 20 to 35 % and more particularly 23 to 34 %. This has the advantage that it results in the largest contrast in colour when transparent liquids ingress between the layers.
  • the opacity of the over glove is preferably controlled by the inclusion of a fine particulate material such as, but not limited to: titanium dioxide, silica, barite powder, barium sulphate, barium carbonate, calcium carbonate, gypsum, clay, talc, alumina white, basic magnesium carbonate, zinc oxide etc in the over glove.
  • the inner or under glove preferably has a chroma range C* (which essentially is the strength of colour) which is controlled to result in a glove that indicates optimally with transparent liquid and strongly coloured liquids such as blood.
  • the chroma of the inner glove is preferably greater than 30, advantageously greater than 40, more preferably greater than 43, and in particular greater than 46.
  • the chroma is preferably controlled by the inclusion of pigment and can be increased by choosing pigments of relatively high values of C* as well as increasing the levels of said pigment. This ensures that the maximum colour difference is observed on wetting with transparent fluid such as water or when the indicating fluid is more highly coloured as in the case when blood is the indicating medium. If the chroma of the underglove is relatively small (weakly coloured) the indicator system will not work well with fluids of low chroma (e.g. water).
  • C* is low L* should be relatively low, and in particular that L* is less than 45, preferably less than 35 and more preferably less than 32
  • the product of C* and 1/L* is greater than 0.8, more preferably greater than 1 ,2 and in particular greater than 1.5.
  • a middle layer is disposed between the inner and outer layers, which middle layer has a refractive index which varies depending on its liquid content — in particular, the opacity of the material of the middle layer decreases, so that it becomes more transparent, in the presence of liquid, thereby increasing the visibility of the inner layer when liquid is present.
  • the inner and outer glove layers are formed as separate gloves which may be connected together, for example af the cuff opening, so that the assembly is donned as a unitary glove, or may be completely separate from each other and donned separately in order, one over another.
  • Figure 1 is a graph of ⁇ E* vs. opacity for various different samples; and Figure 2 is a graph of ⁇ E* vs. C*/L for various different samples.
  • the degree of colour change can be measured by determining the value of ⁇ E* (euclidean distance) on the ingress of fluid between the layers - the larger the value of ⁇ E* the greater the colour change. This leads to and increased probability of perception of failure of barrier properties.
  • the colour characterization of gloves can be performed using either CIELAB system or a CIELCH system. These systems have been demonstrated to reflect the perception of an average observer demonstrating the measurement in colour change is representative of that of visualized by the user of the product.
  • the data stated in this document has been generated using an F2/2 illuminant and allowing speculative light to be included in the measurement.
  • Synthetic blood was used to meet the specification described in ASTMF 1862 - 00a.
  • synthetic blood meeting this specification was purchased from Johnson, Moen & Co., 2505 Northridge Lane NE 5 Rochester, MN 55906.
  • Examples A to G demonstrate the benefit of using overgloves with optimal opacity in combination with high values for C*.
  • Examples F and G demonstrate the benefits of the correct combination of the opacity of the overglove and colour of the underglove.

Abstract

A puncture indicating glove comprises a bilayer formed by an inner glove layer and an outer glove layer, the outer glove having an opacity in the range of 23 - 34%. The opacity of the over glove is controlled by the inclusion in the over glove of a fine particulate material, in particular selected from the group comprising titanium dioxide, silica, barite powder, barium sulphate, barium carbonate, calcium carbonate, gypsum, clay, talc, alumina white, basic magnesium carbonate, zinc oxide. The inner glove has a chroma range C* which is controlled to result in a glove that indicates optimally with transparent liquid and strongly coloured liquids such as blood. The inner glove has a chroma C* which is greater than 30, advantageously greater than 40, more preferably greater than 43, and in particular greater than 46.

Description

Puncture Indicating Gloves
The present invention relates to gloves, in particular surgical gloves which have puncture evident characteristics by means of which a wearer can easily identify if the glove has been pierced.
Surgical gloves perform an important function of protecting the wearer's hands from exposure to bodily fluids such as blood which might be infected and hence present a health risk as well as protecting the patient's internal organs from exposure to sweat and the like from the surgeons hands. Accordingly, the integrity of the liquid barrier formed by the glove is very important. In practice, surgical gloves are used within an environment where there is a risk of piercing, for example from scalpels and other sharp surgical implements, and it is therefore desirable for the wearer to be able to easily identify if a glove has been pierced, either before or during use, so as to minimize any potential contamination either to the wearer or the patient.
US 5224221 describes a tamper or damage evident surgical glove in the form of a bi-layer glove, comprising an inner layer and an outer layer, in which the outer layer is translucent, in particular yellow, and the inner layer is a contrasting colour, in particular a darker colour such as green or black. If either the inner or outer layer is pierced, liquid can permeate between the two layers. This liquid causes two effects; the colour of the inner layer becomes more apparent through the outer layer, and or the colour of the liquid becomes apparent through the outer layer. The user sees this as a region of contrasting colour where the liquid is present between the two layers of the bilayer. However, the change in visibility produced by the indicating system in US 5224221 has been found, in practice to be dependent on circumstance and in certain cases not to be that easily perceived by the wearer.
To maximize the perception of loss of barrier properties it is preferred that there is a large difference in colour or shade between regions of the bilayer that have fluid present between the two layers and regions of the bilayer that are absent of fluid. Large differences in colour result in an obvious indication of loss of barrier properties to the user. This is much preferred over a bilayer that results in a small difference in colour that is much less obvious to the user. As the user is reliant on a colour change to indicate the bilayer has been compromised it is imperative that the colour change is obvious. The present invention seeks to provide a bilayer system of the type of US 5224221 that results in a large colour change as fluid ingresses into the region between the bilayers. In particular, the present invention seeks to maximize the colour change that becomes apparent in a double glove system by specifying the opacity of the outer glove and the density and strength of colour of the under glove.
The fluids generally exposed to the indicating system in the field of the invention are not of consistent colour. The colour of the fluid can range from colourless, transparent fluid such as water to strongly coloured fluid such as blood. As the fluid provides the source for indication of loss of barrier properties it is preferred to have a coloured under glove that contrasts with indicating fluid such as blood. It is also preferred that the colour of the under glove is strong enough to show through a transparent over glove when the indicating fluid is colourless and transparent.
The present invention is based on the realization that the transparency of the over glove is key to generating optimal indication. The user relies on a colour change visible from the exterior of the glove on ingress of indicating fluid to indicate that the barrier properties of the bilayer have been compromised. The colour change occurs due to an increase in the amount of colour from the under glove or the indicating fluid showing through the outer glove. The intensity of colour of the inner glove does not change but the fluid ingressing into the space between the gloves results in the inner glove becoming more visible through the outer glove. This colour has to contrast with the colour of the double layer that is absent of fluid to be evident to the user. The level of contrast or difference in colour between the bilayer containing fluid and the bilayer absent of fluid is partially determined by the transparency or opacity of the outer glove. The opacity of the outer glove can be determined using a method similar to that described in ISO 2814. Measurements are made using the automatic (factory preset) controls for measuring opacity on the X-rite SP60 series. The reflectance of the outer glove is measured over a black background and then measure over a white background. Opacity = (Reflectance over black)/(Reflectance over white) x 100.If the outer glove is truly transparent (that is having an opacity of 0 %) the colour of the underglove will always be visible through the outer glove. If this is the case ingress of a colourless fluid will have no impact on the colour of the double layer when viewed from the outside. This results in little colour change on indication and little perception of puncture to the user. If the overglove is of low translucency (that is having an opacity of 100 %) the over glove will mask the under glove. Therefore the apparent colour to the user will be of the overglove. When liquid ingresses into the space between the two layers the over glove will continue to mask the colour of the under glove and any colour associated with the fluid. Therefore there will be little change of colour on indication. Both these systems will result in a low probability that the user will detect the occurrence of a puncture in the barrier.
According to the present invention there is provided a puncture indicating glove comprising a bilayer formed by an inner glove layer and an outer glove layer, the outer glove having an opacity in the range of 15 40%.
A puncture indicating glove in accordance with the invention has the advantage that it provides particularly effective indication of liquid penetration between the layers, making it particularly easy for the wearer to identify if the integrity of the barrier formed by the glove has been compromised.
The opacity range referred to above and hereinafter is based on a range of 0%, being completely transparent, to 100% being totally opaque. Preferably, the opacity is in the range of 18 to 38 %, advantageously 20 to 35 % and more particularly 23 to 34 %. This has the advantage that it results in the largest contrast in colour when transparent liquids ingress between the layers. The opacity of the over glove is preferably controlled by the inclusion of a fine particulate material such as, but not limited to: titanium dioxide, silica, barite powder, barium sulphate, barium carbonate, calcium carbonate, gypsum, clay, talc, alumina white, basic magnesium carbonate, zinc oxide etc in the over glove. This can also be achieved by including finely milled organic or inorganic pigments in the overglove. The levels of materials required to achieve the desired opacity will depend on the nature of the material and particle size of the particulate material along with the amount of particulate material contained in the compounding formulation for the polymer. For this reason it is preferred to minimize the amount and size of particulate material used in the formulation of the polymer constituents to make up the glove.
The inner or under glove preferably has a chroma range C* (which essentially is the strength of colour) which is controlled to result in a glove that indicates optimally with transparent liquid and strongly coloured liquids such as blood. The chroma of the inner glove is preferably greater than 30, advantageously greater than 40, more preferably greater than 43, and in particular greater than 46. The chroma is preferably controlled by the inclusion of pigment and can be increased by choosing pigments of relatively high values of C* as well as increasing the levels of said pigment. This ensures that the maximum colour difference is observed on wetting with transparent fluid such as water or when the indicating fluid is more highly coloured as in the case when blood is the indicating medium. If the chroma of the underglove is relatively small (weakly coloured) the indicator system will not work well with fluids of low chroma (e.g. water).
The depth of density of colour is not solely controlled by C* as black or dark grey undergloves would have a relatively low C* but appear to provide good contrast on the ingress of liquid. Therefore it is preferred that if C* is low L* should be relatively low, and in particular that L* is less than 45, preferably less than 35 and more preferably less than 32 Furthermore, to encompass both the properties of C* and L* it is advantageous that the product of C* and 1/L* is greater than 0.8, more preferably greater than 1 ,2 and in particular greater than 1.5.
Preferably the inner glove is of a colour having a hue angle (hue angle being defined by h0 = arctan (b*/a*)) in the range of 160 - 300°, advantageously 180 - 280°, more preferably 220 - 270° and in particular 250 -270 °). This has the advantage that it results in a glove in which the inner glove contrasts well with blood, so that in the case of the indicating medium being blood, the inner layer may be visible through the fluid that ingresses to give indication on puncture. To give the greatest perception of colour change it is preferred that the under glove has a colour that contrasts with red. This will also ensure that indication becomes apparent when examining the gloves in an environment that is predominantly red in colour.
In an advantageous development of the invention, a middle layer is disposed between the inner and outer layers, which middle layer has a refractive index which varies depending on its liquid content — in particular, the opacity of the material of the middle layer decreases, so that it becomes more transparent, in the presence of liquid, thereby increasing the visibility of the inner layer when liquid is present.
The inner and outer glove layers, and, indeed, if present the middle layer, are formed as separate gloves which may be connected together, for example af the cuff opening, so that the assembly is donned as a unitary glove, or may be completely separate from each other and donned separately in order, one over another.
Further details of the invention will now be provided by description of embodiments, which are given by way of example, with reference being made to the accompanying drawing, in which:
Figure 1 is a graph of ΔE* vs. opacity for various different samples; and Figure 2 is a graph of ΔE* vs. C*/L for various different samples.
The degree of colour change can be measured by determining the value of ΔE* (euclidean distance) on the ingress of fluid between the layers - the larger the value of ΔE* the greater the colour change. This leads to and increased probability of perception of failure of barrier properties. With regards to this C*, L*, a*, b* (The three basic coordinates represent the lightness of the color (L*, L* = 0 yields black and L* = 100 indicates white), its position between red/magenta and green («*, negative values indicate green while positive values indicate magenta) and its position between yellow and blue (b*, negative values indicate blue and positive values indicate yellow), and ΔE* values (all of which are universally recognized parameters with regard to colour within the art - CIE 1976 commission Interntionale de l'Eclairage) may be determined using a spectrophotometer such as an SP62 provided by X— Rite of Grandville Michigan. This method can also be used to determine the preferred properties of the underglove. The colour characterization of gloves can be performed using either CIELAB system or a CIELCH system. These systems have been demonstrated to reflect the perception of an average observer demonstrating the measurement in colour change is representative of that of visualized by the user of the product. The data stated in this document has been generated using an F2/2 illuminant and allowing speculative light to be included in the measurement.
ΔE* — ((L* standard " L*saraple) + (a*standard ~ ^sample) + (b* standard — b*sampie) )
C* = (a*2 + b*2)05
h° = arctan (b*/a*)
When performing these measurements it is important to ensure the background is consistent, as the colour of the background may affect the colour of the glove under evaluation. Measurements for this document were all performed by placing a single layer of material over either a ceramic plate or a ceramic former used for glove manufacture with L* of 81.95 to 90.69, an a* of -0.87 to 0.13 and a b* of 2.79 to 11.82. The colour of the underglove was measured on the former or plate. An overglove was placed over the underglove and the colour measured of the composite. Liquid was then injected into the gap between the underglove and the overglove and the colour determined of the composite in a region containing the liquid. It is important that sufficient liquid is injected into the gap to give a large area in which the colour of the underglove becomes more apparent through the overglove. For this purpose approximately 0.1 ml of liquid was injected into the gap between the two glove layers. Both distilled water and synthetic blood were used as the liquid. The values for ΔE* were then determined on indication using the equation above. Where L*, a* and b* for the standard refer to the values determined for the combination of the gloves with no liquid present and L*, a* and b* for the sample all refer to those measured for areas of the bilayer after injection of liquid.
Synthetic blood was used to meet the specification described in ASTMF 1862 - 00a. For this purpose synthetic blood meeting this specification was purchased from Johnson, Moen & Co., 2505 Northridge Lane NE5 Rochester, MN 55906.
The various parameter value ranges and sub-ranges recited above can each individually be used in combination with the outer glove opacity defined in connection with the present invention in order to give advantageous results in terms of ease of recognition of the ingress of liquid between the layers of the glove, but in a particularly preferred embodiment, a puncture indicating glove is provided which combines some and preferably all of these parameters, at least with respect to the broadest ranges thereof defined in each case.
Examples
Comparative example:
Gloves were made with varying opacity these were then put together with undergloves of varying colour. All the measurements were made using an X-rite spectrophotometer using an F2/2 illuminant Measurements were made that included speculative light. The measurements of ΔE* were performed as described previously in this document. Gloves with high opacity were generated in comparative examples A, B, D and E. It is clearly demonstrated that all these examples give lower values for ΔE* when the indicating fluid is synthetic blood or water. Higher values of ΔE* are generated when the opacity fo the over glove is optimal. Comparative example C demonstarates that the colour of the underglove is required with high C* to give good level of indication with blood and water. This example has a low value for C* and lower colour changes with low chroma indicating fluids such as water. This further exemplified in the graph of ΔE* vs. opacity.
Examples A to G demonstrate the benefit of using overgloves with optimal opacity in combination with high values for C*. Examples F and G demonstrate the benefits of the correct combination of the opacity of the overglove and colour of the underglove.
The relationship between the strength of indication as indicated by ΔE* with C* /L is further exemplified in the graph of ΔE* vs. C*/L.
Figure imgf000009_0001

Claims

1. A puncture indicating glove comprising a bilayer formed by an inner glove layer and an outer glove layer, the outer glove having an opacity in the range of 15 - 40%.
2. A puncture indicating glove according to claim 1, wherein the opacity is in the range of 18 to 38 % , advantageously 20 to 35 % and more particularly 23 to 34 %.
3. A puncture indicating glove according to claim 1 or claim 2, wherein the opacity of the over glove is controlled by the inclusion in the over glove of a fine particulate material, in particular selected from the group comprising titanium dioxide, silica, barite powder, barium sulphate, barium carbonate, calcium carbonate, gypsum, clay, talc, alumina white, basic magnesium carbonate, zinc oxide.
4. A puncture indicating glove according to any of the preceding claims, wherein the inner glove has a chroma range C* which is controlled to result in a glove that indicates optimally with transparent liquid and strongly coloured liquids such as blood.
5. A puncture indicating glove according to any of the preceding claims, wherein the inner glove has a chroma C* which is greater than 30, advantageously greater than 40, more preferably greater than 43, and in particular greater than 46.
6. A puncture indicating glove according to claim 4 or claim 5, wherein the inner glove includes pigment in order to control the chroma.
7. A puncture indicating glove according to claim 6, wherein the chroma is varied by choosing pigments of relatively high values of C* and / or increasing the amount of said pigment.
8. A puncture indicating glove according to any of the preceding claims, wherein L* of the inner glove is less than 45, preferably less than 35 and more preferably less than 32.
9. A puncture indicating glove according to any of the preceding claims, wherein the product of C* and 1/L* is greater than 0.8, more preferably greater than 1.2 and in particular greater than 1.5.
10. A puncture indicating glove according to any of the preceding claims, wherein the inner glove is of a colour having a hue angle in the range of 160 - 300°, advantageously 180 - 280°, more preferably 220 -270° and in particular 250 -270 °.
11. A puncture indicating glove according to any of the preceding claims, wherein the inner glove has a colour that contrasts with red.
12. A puncture indicating glove according to any of the preceding claims, wherein a middle layer is disposed between the inner and outer layers, which middle layer has a refractive index which varies depending on its liquid content.
13. A puncture indicating glove according to claim 12, wherein the opacity of the material of the middle layer decreases in the presence of liquid, thereby increasing the visibility of the inner layer when liquid is present.
14. A puncture indicating glove according to any of claims 1 to 11 , wherein the outer glove includes finely milled organic or inorganic pigments.
PCT/GB2008/050470 2007-09-18 2008-06-20 Puncture indicating gloves WO2009037495A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0718240.5 2007-09-18
GBGB0718240.5A GB0718240D0 (en) 2007-09-18 2007-09-18 Punture indicating gloves
GB0801602.4A GB2453000B (en) 2007-09-18 2008-01-29 Puncture indicating gloves
GB0801602.4 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009037495A1 true WO2009037495A1 (en) 2009-03-26

Family

ID=38670133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/050470 WO2009037495A1 (en) 2007-09-18 2008-06-20 Puncture indicating gloves

Country Status (3)

Country Link
US (1) US20090070918A1 (en)
GB (2) GB0718240D0 (en)
WO (1) WO2009037495A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481175A (en) * 2009-07-02 2012-05-30 雷根特医药有限公司 Puncture indicating gloves

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932664B2 (en) * 2011-10-13 2015-01-13 Bradley P Bengtson Surgical finger, hand and arm barrier coating and covering, method and system
CN108602214B (en) 2015-11-19 2021-07-02 O&M霍尔亚德国际无限公司 Crack detection glove with high contrast between colors of donning side and gripping side of glove
US11819303B2 (en) 2017-01-24 2023-11-21 Smarterials Technology Gmbh Damage-resistant gloves with breach-indicator function
US11666106B2 (en) 2018-11-30 2023-06-06 O&M Halyard, Inc. Low friction glove for easy double gloving

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672509A2 (en) * 1994-03-15 1995-09-20 Margaret Pamela Richardson Rubber articles
WO2003057444A1 (en) * 2001-12-27 2003-07-17 Kimberly-Clark Worldwide, Inc. Colored multi-layered polymer coated articles and method of making same
US20060026737A1 (en) * 2004-08-07 2006-02-09 Chen Fung B Multilayered gloves having enhanced barrier protection
WO2007068873A1 (en) * 2005-12-16 2007-06-21 Regent Medical Limited Puncture-indicating laminates

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2208358A (en) * 1987-08-01 1989-03-30 Ind Gloves Protective garment
EP0368456B1 (en) * 1988-09-19 1994-04-27 RICHARDSON, Margaret Pamela Tamper or damage-indicating members
US5817365A (en) * 1991-04-22 1998-10-06 Richardson; Margaret Pamela Production of rubber articles, such as gloves
GB9215117D0 (en) * 1992-07-16 1992-08-26 Isis Innovation Protective articles
US6618861B2 (en) * 2000-12-28 2003-09-16 Microflex Corporation Medical gloves with watch viewing capabilities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0672509A2 (en) * 1994-03-15 1995-09-20 Margaret Pamela Richardson Rubber articles
WO2003057444A1 (en) * 2001-12-27 2003-07-17 Kimberly-Clark Worldwide, Inc. Colored multi-layered polymer coated articles and method of making same
US20060026737A1 (en) * 2004-08-07 2006-02-09 Chen Fung B Multilayered gloves having enhanced barrier protection
WO2007068873A1 (en) * 2005-12-16 2007-06-21 Regent Medical Limited Puncture-indicating laminates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102481175A (en) * 2009-07-02 2012-05-30 雷根特医药有限公司 Puncture indicating gloves

Also Published As

Publication number Publication date
US20090070918A1 (en) 2009-03-19
GB2453000B (en) 2012-08-01
GB0801602D0 (en) 2008-03-05
GB2453000A (en) 2009-03-25
GB0718240D0 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US20090070918A1 (en) Puncture indicating gloves
AU2010267770B2 (en) Puncture indicating gloves
US7163528B2 (en) Absorbent article
AU2016358110B2 (en) Breach detection glove with a high contrast between the color on the donning side and the grip side of the glove
RU2438639C1 (en) Absorbent product
US7306582B2 (en) Absorbent article
US10307048B2 (en) Otoscope and otoscopic method based on spectral analysis
JP2005512682A5 (en)
GB2433227A (en) Puncture indicating laminates
WO2007131065A3 (en) Radiological scanning orientation indicator
JP7026399B2 (en) Makeup judgment tool and makeup judgment method
US20240023827A1 (en) Tissue color measurement device
CN104297164A (en) Liquid colorimetric device and method
JP2007145586A (en) Garbage bag
TWD229511S (en) Medical examination equipment
CA2592535C (en) Absorbent article
JPH0269625A (en) Method for evaluating color difference based on colorimetric data
KR20160145407A (en) Smart-phone based biosensor for measuring sleepiness of a driver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08762578

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08762578

Country of ref document: EP

Kind code of ref document: A1