WO2009036012A1 - Hsp90 inhibitors containing a zinc binding moiety - Google Patents

Hsp90 inhibitors containing a zinc binding moiety Download PDF

Info

Publication number
WO2009036012A1
WO2009036012A1 PCT/US2008/075785 US2008075785W WO2009036012A1 WO 2009036012 A1 WO2009036012 A1 WO 2009036012A1 US 2008075785 W US2008075785 W US 2008075785W WO 2009036012 A1 WO2009036012 A1 WO 2009036012A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
aliphatic
mmol
Prior art date
Application number
PCT/US2008/075785
Other languages
French (fr)
Inventor
Changgeng Qian
Xiong Cai
Haixiao Zhai
Original Assignee
Curis, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Curis, Inc. filed Critical Curis, Inc.
Publication of WO2009036012A1 publication Critical patent/WO2009036012A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/10Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D261/18Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • HSP90s are ubiquitous chaperone proteins that are involved in proper protein folding and stabilization of a wide range of proteins, including key proteins involved in signal transduction, cell cycle control and transcriptional regulation.
  • HSP90 chaperone proteins are associated with important signaling proteins, such as steroid hormone receptors and protein kinases, (e.g., Raf- 1, EGFR, v-Src family kinases, Cdk4, and ErbB-2), many of which are overexpressed or mutated in various cancers (Buchner J. TIBS, 1999, 24, 136-141; Stepanova, L. et al. Genes Dev. 1996, 10, 1491-502; Dai, K. et al. J. Biol. Chem.
  • HSP90 may assist HSP90 in its function (Caplan, A. Trends in Cell Biol. 1999, 9, 262-68).
  • HSP90 has been shown by mutational analysis to be necessary for the survival of normal eukaryotic cells. However, HSP90 is overexpressed in many tumor types indicating that it may play a significant role in the survival of cancer cells and that cancer cells may be more sensitive to inhibition of HSP90 than normal cells.
  • cancer cells typically have a large number of mutated and overexpressed oncoproteins that are dependent on HSP90 for folding.
  • HSP90 because the environment of a tumor is typically hostile due to hypoxia, nutrient deprivation, acidosis, etc., tumor cells may be especially dependent on HSP90 for survival.
  • inhibition of HSP90 causes simultaneous inhibition of a number of client oncoproteins, as well as hormone receptors and transcription factors making it an attractive target for an anti-cancer agent.
  • the two main classes of HSP90 inhibitors that are currently pursued by many companies are based on the natural antibiotic geldanamycin and synthetic purine-scaffold.
  • geldanamycin related HSP90 inhibitors are currently in clinical trial namely, 17-allylamino 17-demethoxygeldanamycin (17- AAG), 17-dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG) and IPI-504.
  • many of the purine-scaffold HSP90 inhibitors are showing positive preclinical results.
  • the frontrunner in the purine-scaffold is CNF- 2024, which is currently in phase 1 clinical trial.
  • conjugates or fusion proteins that contain most or all of the amino acid sequences of two different proteins/polypeptides and that retain the individual binding activities of the separate proteins/polypeptides.
  • This approach is made possible by independent folding of the component protein domains and the large size of the conjugates that permits the components to bind their cellular targets in an essentially independent manner.
  • Such an approach is not, however, generally feasible in the case of small molecule therapeutics, where even minor structural modifications can lead to major changes in target binding and/or the pharmacokinetic/pharmacodynamic properties of the resulting molecule.
  • HSP90 inhibitors in combination with histone deacetylases (HDAC) has been shown to produce synergistic effects.
  • Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed HDACs.
  • HDACs are represented by X genes in humans and are divided into four distinct classes ⁇ J MoI Biol, 2004, 338:1, 17-31).
  • HDACs HDACl-3, and HDAC8 are related to yeast RPD3 HDAC, class 2 (HDAC4-7, HDAC9 and HDAClO) related to yeast HDAl, class 4 (HDACl 1), and class 3 (a distinct class encompassing the sirtuins which are related to yeast Sir2).
  • Csordas Biochem. J, 1990, 286: 23-38 teaches that histones are subject to post-translational acetylation of the, ⁇ -amino groups of N-terminal lysine residues, a reaction that is catalyzed by histone acetyl transferase (HATl).
  • Acetylation neutralizes the positive charge of the lysine side chain, and is thought to impact chromatin structure. Indeed, access of transcription factors to chromatin templates is enhanced by histone hyperacetylation, and enrichment in underacetylated histone H4 has been found in transcriptionally silent regions of the genome (Taunton et al., Science, 1996, 272:408-411). In the case of tumor suppressor genes, transcriptional silencing due to histone modification can lead to oncogenic transformation and cancer.
  • HDAC inhibitors are being evaluated by clinical investigators.
  • the first FDA approved HDAC inhibitor is Suberoylanilide hydroxamic acid (SAHA, Zolinza®) for the treatment of cutaneous T-cell lymphoma (CTCL).
  • Other HDAC inhibitors include hydroxamic acid derivatives, PXDlOl, LBH589 and LAQ824, are currently in the clinical development.
  • benzamide class of HDAC inhibitors MS-275, MGCDO 103 and CI-994 have reached clinical trials. Mourne et al. (Abstract #4725, AACR 2005), demonstrate that thiophenyl modification of benzamides significantly enhance HDAC inhibitory activity against HDACl .
  • HSP90 inhibitors in combination with HDAC inhibitors may provide advantageous results in the treatment of cancer.
  • co-treatment with HDAC inhibitor SAHA and HSP90 inhibitor 17-AAG synergistically induces apoptosis in Bcr-Abl + cells sensitive and resistant to STI571 (imatinib mesylate) (Rahmani, M., et al., MoI Pharmacol, 2005, 67: 1166-1176).
  • combination therapies may be greater than for single molecule therapies.
  • novel agents that target multiple therapeutic targets selected not by virtue of cross reactivity, but through rational design will help improve patient outcome while avoiding these limitations.
  • enormous efforts are still directed to the development of selective anti-cancer drugs as well as to new and more efficacious combinations of known anti-cancer drugs.
  • the present invention relates to HSP90 inhibitors containing zinc-binding moiety based derivatives that have enhanced and unexpected properties as inhibitors of HSP90 and their use in the treatment of HSP90 related diseases and disorders such as cancer.
  • the compounds of the present invention may further act as HDAC or matrix metalloproteinase (MMP) inhibitors by virtue of their ability to bind zinc ions.
  • MMP matrix metalloproteinase
  • these compounds are active at multiple therapeutic targets and are effective for treating disease.
  • the compounds have enhanced activity when compared to the activities of combinations of separate molecules individually having the HSP90 and HDAC activities.
  • the combination of pharmacophores into a single molecule may provide a synergistic effect as compared to the individual pharmacophores.
  • the compounds of the present invention inhibit both HSP90 and HDAC activity.
  • the present invention provides a compound having a general formula I or II:
  • Cy and Cy 1 are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl;
  • X and Y are independently O, S, N, NRs or CRs, where Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
  • W is hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, thiol, substituted thiol, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , acyl, aliphatic or substituted aliphatic, C(O)Wi 0 ; where Wi 0 is OR', SR' and NR 7 R 8 , wherein R 7 is hydrogen, OR', aliphatic or substituted aliphatic; R' is hydrogen, aliphatic, substituted aliphatic or acyl; and Rg is hydrogen, acyl, aliphatic or substituted aliphatic; or R 7 and Rs together with nitrogen atom to which they attached to form a heterocyclic ring;
  • Xi-X 5 are independently C, N or CR 2I , where R 2 i is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF 3 , CN, NO 2 , N 3 , substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; B is linker; C is selected from:
  • Wi O or S
  • Yi is absent, N, or CH
  • Zi is N or CH
  • R 7 and R 9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R 7 and R 9 are both present, one of R 7 or R9 must be OR' and if Y is absent, R9 must be OR'; and Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
  • Wi is O or S
  • Y 2 and Z 2 are independently N, C or CH;
  • Rn and Ri 2 are independently selected from hydrogen or aliphatic;
  • R 1 , R 2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF3, CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
  • the compounds of the present invention are compounds represented by formula (I) or (II) as illustrated above, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof.
  • Cy and Cy 1 are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl;
  • Y is N, NR 8 or CRs, where Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
  • X is CR 8 , NR 8 , N, O or S; W is hydrogen, acyl, aliphatic or substituted aliphatic; or C(O)WiO , where
  • Wio is as previously defined; Xi-X 5 are independently C, or CH;
  • R 7 and R 9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R 7 and R9 are both present, one of R 7 or R9 must be OR' and if Y is absent, R9 must be OR'; and R 8 is hydrogen, acyl, aliphatic or substituted aliphatic; (b) ; where Wi is O or S; J is O, NH or NCH 3 ; and Ri 0 is hydrogen or lower alkyl;
  • Rn and Ri 2 are independently selected from hydrogen or aliphatic;
  • R 1 , R 2 and R 3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
  • compounds of the present invention are compounds represented by formula (III) or (IV) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • X 1 -X 5 are independently N or CR21, wherein R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO 2 , N 3 , substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, O, S, SO, SO 2 , N(R 8 ), CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl,
  • X 1 -X 5 are independently N or CR 2I , where R 2 i is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, and substituted aliphatic; substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO,
  • compounds of the present invention are compounds represented by formula (V) or (VI) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • X1-X10 are independently N or CR 2 I, wherein X1-X10 are independently N or CR 2 I, where R 2 i is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted thiol, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, , substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, O, S, SO, SO 2 , N(R 8
  • X 1 -X 10 are independently N or CR 2 I, where R 2 i is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, cycloalkyl, heterocyclic or aryl; B 2 is absent, O, S, SO, SO 2 ,
  • compounds of the present invention are compounds represented by formula (VII) or (VIII) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • X 1 -X 10 are independently N or CR 21 , where R 21 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF 3 , CN, NO 2 , N 3 , sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; B 2 is absent, O, S, SO, SO 2 , N(R 8 ) or CO; Wi is OR', SR' or NHR'; n is 1 to 7; R' and R 8 are as previously defined.
  • compounds of the present invention are compounds represented by formula (IX) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • X 1 -X 10 are independently N or CR 21 , wherein R 21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF 3 , CN, NO 2 , N 3 , substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is CO, Ci-C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl; B 2 is
  • At least one of Xi to X5 is CR 2 I, where R 2 i is heterocyclylalkyl, and, more preferably, morpholinomethyl.
  • X 3 is C-(morpholin-4-yl- methyl) and X 1 , X 2 , X 4 and X 5 are CH.
  • Representative compounds according to the invention are those selected from the Table A below or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
  • the invention further provides methods for the prevention or treatment of diseases or conditions involving aberrant proliferation, differentiation or survival of cells.
  • the invention further provides for the use of one or more compounds of the invention in the manufacture of a medicament for halting or decreasing diseases involving aberrant proliferation, differentiation, or survival of cells.
  • the disease is cancer.
  • the invention relates to a method of treating cancer in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.
  • cancer refers to any cancer caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, lymphomas and the like.
  • cancers include, but are not limited to, mesothelioma, leukemias and lymphomas such as cutaneous T-cell lymphomas (CTCL), noncutaneous peripheral T-cell lymphomas, lymphomas associated with human T-cell lymphotrophic virus (HTLV) such as adult T-cell leukemia/lymphoma (ATLL), B-cell lymphoma, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia, lymphomas, and multiple myeloma, non-Hodgkin lymphoma, acute lymphatic leukemia (ALL), chronic lymphatic leukemia (CLL), Hodgkin's lymphoma, Burkitt lymphoma, adult T-cell leukemia lymphoma, acute-myeloid leukemia (AML), chronic myeloid leukemia (CML), or hepatocellular carcinoma.
  • CCL cutaneous T-cell lymphomas
  • myelodisplastic syndrome childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft- tissue sarcomas, common solid tumors of adults such as head and neck cancers (e.g., oral, laryngeal, nasopharyngeal and esophageal), genitourinary cancers (e.g., prostate, bladder, renal, uterine, ovarian, testicular), lung cancer (e.g., small-cell and non small cell), breast cancer, pancreatic cancer, melanoma and other skin cancers, stomach cancer, brain tumors, tumors related to Gorlin's syndrome (e.g., medulloblastoma, meningioma, etc.), and liver cancer.
  • childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft- tissue s
  • Additional exemplary forms of cancer which may be treated by the subject compounds include, but are not limited to, cancer of skeletal or smooth muscle, stomach cancer, cancer of the small intestine, rectum carcinoma, cancer of the salivary gland, endometrial cancer, adrenal cancer, anal cancer, rectal cancer, parathyroid cancer, and pituitary cancer. Additional cancers that the compounds described herein may be useful in preventing, treating and studying are, for example, colon carcinoma, familiary adenomatous polyposis carcinoma and hereditary non-polyposis colorectal cancer, or melanoma.
  • cancers include, but are not limited to, labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tongue carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, thyroid cancer (medullary and papillary thyroid carcinoma, renal carcinoma, kidney parenchyma carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, testis carcinoma, urinary carcinoma, melanoma, brain tumors such as glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, gall bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblastoma, choroidea melanoma, seminoma, rhabdomyosarcoma, craniopharyngeoma, osteosarcoma, chondrosarcoma, myosarcoma,
  • the present invention includes the use of one or more compounds of the invention in the manufacture of a medicament that prevents further aberrant proliferation, differentiation, or survival of cells.
  • compounds of the invention may be useful in preventing tumors from increasing in size or from reaching a metastatic state.
  • the subject compounds may be administered to halt the progression or advancement of cancer or to induce tumor apoptosis or to inhibit tumor angiogenesis.
  • the instant invention includes use of the subject compounds to prevent a recurrence of cancer. This invention further embraces the treatment or prevention of cell proliferative disorders such as hyperplasias, dysplasias and pre-cancerous lesions.
  • Dysplasia is the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist.
  • the subject compounds may be administered for the purpose of preventing said hyperplasias, dysplasias or pre-cancerous lesions from continuing to expand or from becoming cancerous. Examples of pre-cancerous lesions may occur in skin, esophageal tissue, breast and cervical intra-epithelial tissue.
  • Combination therapy includes the administration of the subject compounds in further combination with other biologically active ingredients (such as, but not limited to, a second and different antineoplastic agent) and non-drug therapies (such as, but not limited to, surgery or radiation treatment).
  • the compounds of the invention can be used in combination with other pharmaceutically active compounds, preferably compounds that are able to enhance the effect of the compounds of the invention.
  • the compounds of the invention can be administered simultaneously (as a single preparation or separate preparation) or sequentially to the other drug therapy.
  • a combination therapy envisions administration of two or more drugs during a single cycle or course of therapy.
  • the subject compounds may be administered in combination with one or more separate agents that modulate protein kinases involved in various disease states.
  • kinases may include, but are not limited to: serine/threonine specific kinases, receptor tyrosine specific kinases and non-receptor tyrosine specific kinases.
  • Serine/threonine kinases include mitogen activated protein kinases (MAPK), meiosis specific kinase (MEK), RAF and aurora kinase.
  • MAPK mitogen activated protein kinases
  • MEK meiosis specific kinase
  • RAF aurora kinase
  • receptor kinase families include epidermal growth factor receptor (EGFR) (e.g.
  • FGF fibroblast growth factor
  • HGFR hepatocyte growth/scatter factor receptor
  • IGFI-R insulin receptor
  • Eph e.g.
  • Nonreceptor tyrosine kinase families include, but are not limited to, BCR-ABL (e.g. p43 abl , ARG); BTK (e.g. ITK/EMT, TEC); CSK, FAK, FPS, JAK, SRC, BMX, FER, CDK and SYK.
  • the subject compounds may be administered in combination with one or more separate agents that modulate non- kinase biological targets or processes.
  • targets include histone deacetylases (HDAC), DNA methyltransferase (DNMT), heat shock proteins (e.g. HSP90), and proteosomes.
  • subject compounds may be combined with antineoplastic agents (e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins) that inhibit one or more biological targets such as Zolinza, Tarceva, Iressa, Tykerb, Gleevec, Sutent, Sprycel, Nexavar, Sorafinib, CNF2024, RG108, BMS387032, Affinitak, Avastin, Herceptin, Erbitux, AG24322, PD325901, ZD6474, PD 184322, Obatodax, ABT737 and AEE788.
  • antineoplastic agents e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins
  • antineoplastic agents e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins
  • antineoplastic agents e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins
  • antineoplastic agents
  • the compounds of the invention are administered in combination with a chemotherapeutic agent.
  • chemotherapeutic agents encompass a wide range of therapeutic treatments in the field of oncology. These agents are administered at various stages of the disease for the purposes of shrinking tumors, destroying remaining cancer cells left over after surgery, inducing remission, maintaining remission and/or alleviating symptoms relating to the cancer or its treatment.
  • alkylating agents such as mustard gas derivatives (Mechlorethamine, cylophosphamide, chlorambucil, melphalan, ifosfamide), ethylenimines (thiotepa, hexamethylmelanine), Alkylsulfonates (Busulfan), Hydrazines and Triazines (Altretamine, Procarbazine, dacarbazine and Temozolomide), Nitrosoureas
  • alkylating agents such as mustard gas derivatives (Mechlorethamine, cylophosphamide, chlorambucil, melphalan, ifosfamide), ethylenimines (thiotepa, hexamethylmelanine), Alkylsulfonates (Busulfan), Hydrazines and Triazines (Altretamine, Procarbazine, dacarbazine and Temozolomide), Nitrosoureas
  • Carmustine, Lomustine and Streptozocin Ifosfamide and metal salts (Carboplatin, Cisplatin, and Oxaliplatin); plant alkaloids such as Podophyllotoxins (Etoposide and Tenisopide), Taxanes (Paclitaxel and Docetaxel), Vinca alkaloids (Vincristine, Vinblastine, Vindesine and Vinorelbine), and Camptothecan analogs (Irinotecan and Topotecan); anti-tumor antibiotics such as Chromomycins (Dactinomycin and
  • Plicamycin Anthracyclines (Doxorubicin, Daunorubicin, Epirubicin, Mitoxantrone, Valrubicin and Idarubicin), and miscellaneous antibiotics such as Mitomycin, Actinomycin and Bleomycin; anti-metabolites such as folic acid antagonists (Methotrexate, Pemetrexed, Raltitrexed, Aminopterin), pyrimidine antagonists (5- Fluorouracil, Floxuridine, Cytarabine, Capecitabine, and Gemcitabine), purine antagonists (6-Mercaptopurine and 6-Thioguanine) and adenosine deaminase inhibitors (Cladribine, Fludarabine, Mercaptopurine, Clofarabine, Thioguanine, Nelarabine and Pentostatin); topoisomerase inhibitors such as topoisomerase I inhibitors (Ironotecan, topotecan) and topoisomerase II inhibitors (Ams
  • the compounds of the invention are administered in combination with a chemoprotective agent.
  • chemoprotective agents act to protect the body or minimize the side effects of chemotherapy. Examples of such agents include, but are not limited to, amfostine, mesna, and dexrazoxane.
  • the subject compounds are administered in combination with radiation therapy.
  • Radiation is commonly delivered internally (implantation of radioactive material near cancer site) or externally from a machine that employs photon (x-ray or gamma-ray) or particle radiation.
  • the combination therapy further comprises radiation treatment
  • the radiation treatment may be conducted at any suitable time so long as a beneficial effect from the co- action of the combination of the therapeutic agents and radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the radiation treatment is temporally removed from the administration of the therapeutic agents, perhaps by days or even weeks.
  • compounds of the invention can be used in combination with an immunotherapeutic agent.
  • immunotherapy is the generation of an active systemic tumor-specific immune response of host origin by administering a vaccine composition at a site distant from the tumor.
  • Various types of vaccines have been proposed, including isolated tumor-antigen vaccines and antiidiotype vaccines.
  • Another approach is to use tumor cells from the subject to be treated, or a derivative of such cells (reviewed by Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol. 121 :487).
  • Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol. 121 :487) In U.S. Pat. No. 5,484,596, Hanna Jr. et al.
  • a method for treating a resectable carcinoma to prevent recurrence or metastases comprising surgically removing the tumor, dispersing the cells with collagenase, irradiating the cells, and vaccinating the patient with at least three consecutive doses of about 10 7 cells.
  • Suitable agents for adjunctive therapy include a 5HTi agonist, such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g. an NKi antagonist); a cannabinoid; acetaminophen or phenacetin; a 5-lipoxygenase inhibitor; a leukotriene receptor antagonist; a DMARD (e.g.
  • a 5HTi agonist such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g.
  • methotrexate e.g. methotrexate
  • gabapentin and related compounds e.g. a tricyclic antidepressant (e.g. amitryptilline); a neurone stabilising antiepileptic drug; a mono-aminergic uptake inhibitor (e.g. venlafaxine); a matrix metalloproteinase inhibitor; a nitric oxide synthase (NOS) inhibitor, such as an iNOS or an nNOS inhibitor; an inhibitor of the release, or action, of tumour necrosis factor .alpha.; an antibody therapy, such as a monoclonal antibody therapy; an antiviral agent, such as a nucleoside inhibitor (e.g. lamivudine) or an immune system modulator (e.g.
  • a nucleoside inhibitor e.g. lamivudine
  • an immune system modulator e.g.
  • an opioid analgesic e.g. ranitidine
  • a proton pump inhibitor e.g. omeprazole
  • an antacid e.g. aluminium or magnesium hydroxide
  • an antiflatulent e.g. simethicone
  • a decongestant e.g. phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, epinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine
  • an antitussive e.g. codeine, hydrocodone, carmiphen, carbetapentane, or dextramethorphan
  • a diuretic or a sedating or non-sedating antihistamine.
  • MMPs Matrix metalloproteinases
  • HDAC trichostatin A
  • MMP2 gelatinase A
  • MMP2 Type IV collagenase
  • Another recent article that discusses the relationship of HDAC and MMPs can be found in Young D.A., et al., Arthritis Research & Therapy, 2005, 7: 503.
  • the commonality between HDAC and MMPs inhibitors is their zinc-binding functionality.
  • compounds of the invention can be used as MMP inhibitors and may be of use in the treatment of disorders relating to or associated with dysregulation of MMP.
  • the overexpression and activation of MMPs are known to induce tissue destruction and are also associated with a number of specific diseases including rheumatoid arthritis, periodontal disease, cancer and atherosclerosis.
  • the compounds may also be used in the treatment of a disorder involving, relating to or, associated with dysregulation of histone deacetylase (HDAC).
  • HDAC histone deacetylase
  • disorders that have been implicated by or known to be mediated at least in part by HDAC activity, where HDAC activity is known to play a role in triggering disease onset, or whose symptoms are known or have been shown to be alleviated by HDAC inhibitors.
  • disorders of this type that would be expected to be amenable to treatment with the compounds of the invention include the following but not limited to: Anti-proliferative disorders (e.g.
  • Neurodegenerative diseases including Huntington's Disease, Polyglutamine disease, Parkinson's Disease, Alzheimer's Disease, Seizures, Striatonigral degeneration, Progressive supranuclear palsy, Torsion dystonia, Spasmodic torticollis and dyskinesis, Familial tremor, Gilles de Ia Tourette syndrome, Diffuse Lewy body disease, Progressive supranuclear palsy, Pick's disease, intracerebral hemorrhage, Primary lateral sclerosis, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Hypertrophic interstitial polyneuropathy, Retinitis pigmentosa, Hereditary optic atrophy, Hereditary spastic paraplegia, Progressive ataxia and Shy-Drager syndrome; Metabolic diseases including Type 2 diabetes; Degenerative Diseases of the Eye including Glaucoma, Age-related macular degeneration, Rubeotic glaucoma; Inflammatory diseases and/or Immune system disorders including Rheuma
  • RA Arthritis
  • Osteoarthritis Juvenile chronic arthritis
  • Graft versus Host disease Psoriasis, Asthma, Spondyloarthropathy, Crohn's Disease, inflammatory bowel disease Colitis Ulcerosa, Alcoholic hepatitis, Diabetes, Sjoegrens's syndrome, Multiple Sclerosis, Ankylosing spondylitis, Membranous glomerulopathy, Discogenic pain, Systemic Lupus Erythematosus
  • Disease involving angiogenesis including cancer, psoriasis, rheumatoid arthritis
  • Psychological disorders including bipolar disease, schizophrenia, mania, depression and dementia
  • Cardiovascular Diseases including the prevention and treatment of ischemia-related or reperfusion- related vascular and myocardial tissue damage, heart failure, restenosis and arteriosclerosis
  • Fibrotic diseases including liver fibrosis, cystic fibrosis and angiofibroma
  • Infectious diseases including Fungal infections, such as candid
  • compounds of the invention can be used to induce or inhibit apoptosis, a physiological cell death process critical for normal development and homeostasis. Alterations of apoptotic pathways contribute to the pathogenesis of a variety of human diseases.
  • Compounds of the invention, as modulators of apoptosis will be useful in the treatment of a variety of human diseases with aberrations in apoptosis including cancer (particularly, but not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, immune mediated glomerulonephritis, rheumatoid arthritis, psorias
  • the invention provides the use of compounds of the invention for the treatment and/or prevention of immune response or immune -mediated responses and diseases, such as the prevention or treatment of rejection following transplantation of synthetic or organic grafting materials, cells, organs or tissue to replace all or part of the function of tissues, such as heart, kidney, liver, bone marrow, skin, cornea, vessels, lung, pancreas, intestine, limb, muscle, nerve tissue, duodenum, small-bowel, pancreatic-islet-cell, including xeno-transplants, etc.; to treat or prevent graft-versus-host disease, autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, thyroiditis, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes uveitis, juvenile-onset or recent-onset diabetes mellitus, uveitis, Graves disease, psoriasis, atopic dermatiti
  • the present invention may be used to prevent/suppress an immune response associated with a gene therapy treatment, such as the introduction of foreign genes into autologous cells and expression of the encoded product.
  • a gene therapy treatment such as the introduction of foreign genes into autologous cells and expression of the encoded product.
  • the invention relates to a method of treating an immune response disease or disorder or an immune-mediated response or disorder in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.
  • the invention provides the use of compounds of the invention in the treatment of a variety of neurodegenerative diseases, a non-exhaustive list of which includes: I. Disorders characterized by progressive dementia in the absence of other prominent neurologic signs, such as Alzheimer's disease; Senile dementia of the Alzheimer type; and Pick's disease (lobar atrophy); II.
  • Syndromes combining progressive dementia with other prominent neurologic abnormalities such as A) syndromes appearing mainly in adults (e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration); and B) syndromes appearing mainly in children or young adults (e.g., Hallervorden-Spatz disease and progressive familial myoclonic epilepsy); III.
  • A) syndromes appearing mainly in adults e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration
  • B) syndromes appearing mainly in children or young adults e.g
  • Syndromes of gradually developing abnormalities of posture and movement such as paralysis agitans (Parkinson's disease), striatonigral degeneration, progressive supranuclear palsy, torsion dystonia (torsion spasm; dystonia musculorum deformans), spasmodic torticollis and other dyskinesis, familial tremor, and Gilles de Ia Tourette syndrome;
  • Syndromes of progressive ataxia such as cerebellar degenerations (e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)); and spinocerebellar degeneration (Friedreich's atazia and related disorders);
  • cerebellar degenerations e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)
  • spinocerebellar degeneration Friedreich's atazia and related disorders
  • Syndrome of central autonomic nervous system failure (Shy-Drager syndrome); VI. Syndromes of muscular weakness and wasting without sensory changes (motorneuron disease such as amyotrophic lateral sclerosis, spinal muscular atrophy (e.g., infantile spinal muscular atrophy (Werdnig-Hoffman), juvenile spinal muscular atrophy (Wohlfart- Kugelberg-Welander) and other forms of familial spinal muscular atrophy), primary lateral sclerosis, and hereditary spastic paraplegia; VII.
  • disorders combining muscular weakness and wasting with sensory changes progressive neural muscular atrophy; chronic familial polyneuropathies) such as peroneal muscular atrophy (Charcot-Marie-Tooth), hypertrophic interstitial polyneuropathy (Dejerine-Sottas), and miscellaneous forms of chronic progressive neuropathy; VIII Syndromes of progressive visual loss such as pigmentary degeneration of the retina (retinitis pigmentosa), and hereditary optic atrophy (Leber's disease).
  • compounds of the invention can be implicated in chromatin remodeling.
  • the invention encompasses pharmaceutical compositions comprising pharmaceutically acceptable salts of the compounds of the invention as described above.
  • the invention also encompasses pharmaceutical compositions comprising hydrates of the compounds of the invention.
  • hydrate includes but is not limited to hemihydrate, monohydrate, dihydrate, trihydrate and the like.
  • the invention further encompasses pharmaceutical compositions comprising any solid or liquid physical form of the compound of the invention.
  • the compounds can be in a crystalline form, in amorphous form, and have any particle size. The particles may be micronized, or may be agglomerated, particulate granules, powders, oils, oily suspensions or any other form of solid or liquid physical form.
  • compositions suitable for administration can be incorporated into pharmaceutical compositions suitable for administration, together with a pharmaceutically acceptable carrier or excipient.
  • Such compositions typically comprise a therapeutically effective amount of any of the compounds above, and a pharmaceutically acceptable carrier.
  • the effective amount when treating cancer is an amount effective to selectively induce terminal differentiation of suitable neoplastic cells and less than an amount which causes toxicity in a patient.
  • Compounds of the invention may be administered by any suitable means, including, without limitation, parenteral, intravenous, intramuscular, subcutaneous, implantation, oral, sublingual, buccal, nasal, pulmonary, transdermal, topical, vaginal, rectal, and transmucosal administrations or the like. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices.
  • Pharmaceutical preparations include a solid, semisolid or liquid preparation (tablet, pellet, troche, capsule, suppository, cream, ointment, aerosol, powder, liquid, emulsion, suspension, syrup, injection etc.) containing a compound of the invention as an active ingredient, which is suitable for selected mode of administration.
  • the pharmaceutical compositions are administered orally, and are thus formulated in a form suitable for oral administration, i.e., as a solid or a liquid preparation.
  • suitable solid oral formulations include tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like.
  • Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like.
  • the composition is formulated in a capsule.
  • the compositions of the present invention comprise in addition to the active compound and the inert carrier or diluent, a hard gelatin capsule.
  • any inert excipient that is commonly used as a carrier or diluent may be used in the formulations of the present invention, such as for example, a gum, a starch, a sugar, a cellulosic material, an acrylate, or mixtures thereof.
  • a preferred diluent is microcrystalline cellulose.
  • compositions may further comprise a disintegrating agent (e.g., croscarmellose sodium) and a lubricant (e.g., magnesium stearate), and may additionally comprise one or more additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof.
  • a disintegrating agent e.g., croscarmellose sodium
  • a lubricant e.g., magnesium stearate
  • additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof.
  • non-aqueous solvents examples include propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate.
  • Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish- liver oil.
  • Solutions or suspensions can also include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • compositions may further comprise binders (e.g., acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmellose sodium, crospovidone, guar gum, sodium starch glycolate, Primogel), buffers (e.g., tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g., sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., glycerol, polyethylene glycerol
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • a controlled release formulation including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat No. 4,522,811.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • the pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • Daily administration may be repeated continuously for a period of several days to several years.
  • Oral treatment may continue for between one week and the life of the patient.
  • Preferably the administration may take place for five consecutive days after which time the patient can be evaluated to determine if further administration is required.
  • the administration can be continuous or intermittent, e.g., treatment for a number of consecutive days followed by a rest period.
  • the compounds of the present invention may be administered intravenously on the first day of treatment, with oral administration on the second day and all consecutive days thereafter.
  • compositions that contain an active component are well understood in the art, for example, by mixing, granulating, or tablet- forming processes.
  • the active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient.
  • the active agents are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into suitable forms for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions and the like as detailed above.
  • the amount of the compound administered to the patient is less than an amount that would cause toxicity in the patient. In certain embodiments, the amount of the compound that is administered to the patient is less than the amount that causes a concentration of the compound in the patient's plasma to equal or exceed the toxic level of the compound.
  • the concentration of the compound in the patient's plasma is maintained at about 10 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 25 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 50 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 100 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 500 nM.
  • the concentration of the compound in the patient's plasma is maintained at about 1000 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 2500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 5000 nM.
  • the optimal amount of the compound that should be administered to the patient in the practice of the present invention will depend on the particular compound used and the type of cancer being treated.
  • an "aliphatic group” or “aliphatic” is non-aromatic moiety that may be saturated (e.g. single bond) or contain one or more units of unsaturation, e.g., double and/or triple bonds.
  • An aliphatic group may be straight chained, branched or cyclic, contain carbon, hydrogen or, optionally, one or more heteroatoms and may be substituted or unsubstituted.
  • An aliphatic group, when used as a linker preferably contains between about 1 and about 24 atoms, more preferably between about 4 to about 24 atoms, more preferably between about 4-12 atoms, more typically between about 4 and about 8 atoms.
  • An aliphatic group when used as a substituent, preferably contains between about 1 and about 24 atoms, more preferably between about 1 to about 10 atoms, more preferably between about 1-8 atoms, more typically between about 1 and about 6 atoms.
  • aliphatic groups include, for example, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Such aliphatic groups may be further substituted. It is understood that aliphatic groups may include alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl groups described herein.
  • substituted carbonyl includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom, and tautomeric forms thereof.
  • moieties that contain a substituted carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc.
  • carbonyl moiety refers to groups such as “alkylcarbonyl” groups wherein an alkyl group is covalently bound to a carbonyl group, "alkenylcarbonyl” groups wherein an alkenyl group is covalently bound to a carbonyl group, "alkynylcarbonyl” groups wherein an alkynyl group is covalently bound to a carbonyl group, “arylcarbonyl” groups wherein an aryl group is covalently attached to the carbonyl group.
  • the term also refers to groups wherein one or more heteroatoms are covalently bonded to the carbonyl moiety.
  • the term includes moieties such as, for example, aminocarbonyl moieties, (wherein a nitrogen atom is bound to the carbon of the carbonyl group, e.g., an amide).
  • acyl refers to hydrogen, alkyl, partially saturated or fully saturated cycloalkyl, partially saturated or fully saturated heterocycle, aryl, and heteroaryl substituted carbonyl groups.
  • acyl includes groups such as (Ci-Ce)alkanoyl (e.g., formyl, acetyl, propionyl, butyryl, valeryl, caproyl, t- butylacetyl, etc.), (C 3 -Ce)cycloalkylcarbonyl (e.g., cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, etc.), heterocyclic carbonyl (e.g., pyrrolidinylcarbonyl, pyrrolid-2-one-5 -carbonyl, piperidinylcarbonyl, piperazinylcarbonyl, tetrahydrofuranylcarbonyl, etc.
  • alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be any one of the groups described in the respective definitions.
  • the acyl group may be unsubstituted or optionally substituted with one or more substituents (typically, one to three substituents) independently selected from the group of substituents listed below in the definition for "substituted” or the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be substituted as described above in the preferred and more preferred list of substituents, respectively.
  • alkyl embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl” radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about eight carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like.
  • alkenyl embraces linear or branched radicals having at least one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl” radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkenyl radicals include ethenyl, allyl, propenyl, butenyl and 4-methylbutenyl.
  • alkenyl and “lower alkenyl” embrace radicals having "cis” and “trans” orientations, or alternatively, "E” and "Z” orientations.
  • alkynyl embraces linear or branched radicals having at least one carbon-carbon triple bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl” radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkynyl radicals include propargyl, 1- propynyl, 2-propynyl, 1-butyne, 2-butynyl and 1-pentynyl.
  • cycloalkyl embraces saturated carbocyclic radicals having three to about twelve carbon atoms.
  • cycloalkyl embraces saturated carbocyclic radicals having three to about twelve carbon atoms.
  • More preferred cycloalkyl radicals are "lower cycloalkyl” radicals having three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • cycloalkenyl embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms.
  • Cycloalkenyl radicals that are partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called “cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about eight carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl.
  • alkoxy embraces linear or branched oxy-containing radicals each having alkyl portions of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to about ten carbon atoms and more preferably having one to about eight carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy.
  • alkoxyalkyl embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals.
  • aryl alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused.
  • aryl embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl.
  • heterocyclyl "heterocycle” “heterocyclic” or “heterocyclo” embrace saturated, partially unsaturated and unsaturated heteroatom-containing ring- shaped radicals, which can also be called “heterocyclyl”, “heterocycloalkenyl” and “heteroaryl” correspondingly, where the heteroatoms may be selected from nitrogen, sulfur and oxygen.
  • saturated heterocyclyl radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g.
  • pyrrolidinyl imidazolidinyl, piperidino, piperazinyl, etc.
  • saturated 3 to 6- membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms e.g. morpholinyl, etc.
  • saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms e.g., thiazolidinyl, etc.
  • partially unsaturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole.
  • Heterocyclyl radicals may include a pentavalent nitrogen, such as in tetrazolium and pyridinium radicals.
  • the term "heterocycle” also embraces radicals where heterocyclyl radicals are fused with aryl or cycloalkyl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like.
  • heteroaryl embraces unsaturated heterocyclyl radicals.
  • heteroaryl radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H- 1,2,4- triazolyl, lH-l,2,3-triazolyl, 2H-l,2,3-triazolyl, etc.) tetrazolyl (e.g.
  • unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., tetrazolo[l,5-b]pyridazinyl, etc.), etc.
  • unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom for example, pyranyl, furyl, etc.
  • unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom for example, thienyl, etc.
  • benzoxazolyl, benzoxadiazolyl, etc. unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazolyl, benzothiadiazolyl, etc.) and the like.
  • thiazolyl, thiadiazolyl e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.
  • unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms e.g., be
  • heterocycloalkyl embraces heterocyclo-substituted alkyl radicals. More preferred heterocycloalkyl radicals are "lower heterocycloalkyl” radicals having one to six carbon atoms in the heterocyclo radicals.
  • alkylthio embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom.
  • Preferred alkylthio radicals have alkyl radicals of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylthio radicals have alkyl radicals are "lower alkylthio" radicals having one to about ten carbon atoms. Most preferred are alkylthio radicals having lower alkyl radicals of one to about eight carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio.
  • aralkyl or "arylalkyl” embrace aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl.
  • aryloxy embraces aryl radicals attached through an oxygen atom to other radicals.
  • aminoalkyl embraces alkyl radicals substituted with amino radicals.
  • Preferred aminoalkyl radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred aminoalkyl radicals are "lower aminoalkyl” that have alkyl radicals having one to about ten carbon atoms. Most preferred are aminoalkyl radicals having lower alkyl radicals having one to eight carbon atoms. Examples of such radicals include aminomethyl, aminoethyl, and the like.
  • alkylamino denotes amino groups which are substituted with one or two alkyl radicals.
  • Preferred alkylamino radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylamino radicals are "lower alkylamino” that have alkyl radicals having one to about ten carbon atoms. Most preferred are alkylamino radicals having lower alkyl radicals having one to about eight carbon atoms.
  • Suitable lower alkylamino may be monosubstituted N-alkylamino or disubstituted N,N-alkylamino, such as N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino or the like.
  • linker means an organic moiety that connects two parts of a compound.
  • Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR 8 , C(O), C(O)NH, SO, SO 2 , SO 2 NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenyl
  • the linker B is between 1-24 atoms, preferably 4-24 atoms, preferably 4-18 atoms, more preferably 4-12 atoms, and most preferably about 4-10 atoms. In some embodiments, the linker is a C(O)NH(alkyl) chain or an alkoxy chain.
  • substituted refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy
  • chemical moieties are defined and referred to throughout can be univalent chemical moieties (e.g., alkyl, aryl, etc.) or multivalent moieties under the appropriate structural circumstances clear to those skilled in the art.
  • an "alkyl” moiety can be referred to a monovalent radical (e.g.
  • a bivalent linking moiety can be "alkyl,” in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., -CH 2 -CH 2 -), which is equivalent to the term “alkylene.”
  • divalent moieties are required and are stated as being “alkoxy”, “alkylamino”, “aryloxy”, “alkylthio”, “aryl”, “heteroaryl”, “heterocyclic”, “alkyl” “alkenyl", “alkynyl”, “aliphatic”, or “cycloalkyl”
  • alkoxy", alkylamino", “aryloxy”, “alkylthio”, “aryl”, “heteroaryl”, “heterocyclic”, “alkyl”, “alkenyl”, “alkynyl”, “aliphatic”, or “cycloalkyl” refer to the corresponding divalent
  • halogen refers to an atom selected from fluorine, chlorine, bromine and iodine.
  • the term "aberrant proliferation” refers to abnormal cell growth.
  • adjunct therapy encompasses treatment of a subject with agents that reduce or avoid side effects associated with the combination therapy of the present invention, including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents; prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation; or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs.
  • agents that reduce or avoid side effects associated with the combination therapy of the present invention including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents; prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation; or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs.
  • angiogenesis refers to the formation of blood vessels. Specifically, angiogenesis is a multi-step process in which endothelial cells focally degrade and invade through their own basement membrane, migrate through interstitial stroma toward an angiogenic stimulus, proliferate proximal to the migrating tip, organize into blood vessels, and reattach to newly synthesized basement membrane (see Folkman et al., Adv. Cancer Res., Vol. 43, pp. 175-203 (1985)). Anti-angiogenic agents interfere with this process.
  • agents that interfere with several of these steps include thrombospondin-1, angiostatin, endostatin, interferon alpha and compounds such as matrix metalloproteinase (MMP) inhibitors that block the actions of enzymes that clear and create paths for newly forming blood vessels to follow; compounds, such as .alpha.v.beta.3 inhibitors, that interfere with molecules that blood vessel cells use to bridge between a parent blood vessel and a tumor; agents, such as specific COX-2 inhibitors, that prevent the growth of cells that form new blood vessels; and protein-based compounds that simultaneously interfere with several of these targets.
  • MMP matrix metalloproteinase
  • apoptosis refers to programmed cell death as signaled by the nuclei in normally functioning human and animal cells when age or state of cell health and condition dictates.
  • An “apoptosis inducing agent” triggers the process of programmed cell death.
  • cancer denotes a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis.
  • the term "compound” is defined herein to include pharmaceutically acceptable salts, solvates, hydrates, polymorphs, enantiomers, diastereoisomers, racemates and the like of the compounds having a formula as set forth herein.
  • device refers to any appliance, usually mechanical or electrical, designed to perform a particular function.
  • displasia refers to abnormal cell growth, and typically refers to the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist.
  • the term "effective amount of the subject compounds,” with respect to the subject method of treatment, refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards.
  • This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.
  • hypoplasia refers to excessive cell division or growth.
  • an "immunotherapeutic agent” refers to agents used to transfer the immunity of an immune donor, e.g., another person or an animal, to a host by inoculation.
  • the term embraces the use of serum or gamma globulin containing performed antibodies produced by another individual or an animal; nonspecific systemic stimulation; adjuvants; active specific immunotherapy; and adoptive immunotherapy.
  • Adoptive immunotherapy refers to the treatment of a disease by therapy or agents that include host inoculation of sensitized lymphocytes, transfer factor, immune RNA, or antibodies in serum or gamma globulin.
  • inhibitors in the context of neoplasia, tumor growth or tumor cell growth, may be assessed by delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary tumors, slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention.
  • prevention or chemoprevention refers to the migration of cancer cells from the original tumor site through the blood and lymph vessels to produce cancers in other tissues. Metastasis also is the term used for a secondary cancer growing at a distant site.
  • Neoplasm refers to an abnormal mass of tissue that results from excessive cell division. Neoplasms may be benign (not cancerous), or malignant (cancerous) and may also be called a tumor. The term “neoplasia” is the pathological process that results in tumor formation.
  • pre-cancerous refers to a condition that is not malignant, but is likely to become malignant if left untreated.
  • HSP90 related disease or disorder refers to a disease or disorder characterized by inappropriate HSP90 activity or over-activity of the HSP90. Inappropriate activity refers to either; (i) HSP90 expression in cells which normally do not express HSP90; (ii) increased HSP90 expression leading to unwanted cell proliferation, differentiation and/or growth; or, (iii) decreased HSP90 expression leading to unwanted reductions in cell proliferation, differentiation and/or growth.
  • Over-activity of HSP90 refers to either amplification of the gene encoding a particular HSP90 or production of a level of HSP90 activity which can correlate with a cell proliferation, differentiation and/or growth disorder (that is, as the level of the HSP90 increases, the severity of one or more of the symptoms of the cellular disorder increases).
  • a "radio therapeutic agent” refers to the use of electromagnetic or particulate radiation in the treatment of neoplasia.
  • the term “recurrence” as used herein refers to the return of cancer after a period of remission. This may be due to incomplete removal of cells from the initial cancer and may occur locally (the same site of initial cancer), regionally (in vicinity of initial cancer, possibly in the lymph nodes or tissue), and/or distally as a result of metastasis.
  • treatment refers to any process, action, application, therapy, or the like, wherein a mammal, including a human being, is subject to medical aid with the object of improving the mammal's condition, directly or indirectly.
  • the term “vaccine” includes agents that induce the patient's immune system to mount an immune response against the tumor by attacking cells that express tumor associated antigens (Teas).
  • the term "pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977).
  • the salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid or inorganic acid.
  • nontoxic acid addition salts include, but are not limited to, salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid
  • organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamo
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate.
  • pharmaceutically acceptable ester refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof.
  • Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms.
  • Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
  • prodrugs refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention.
  • Prodrug as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to a compound of the invention.
  • prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). "Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration, such as sterile pyrogen-free water. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • pre-cancerous refers to a condition that is not malignant, but is likely to become malignant if left untreated.
  • subject refers to an animal.
  • the animal is a mammal. More preferably the mammal is a human.
  • a subject also refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, fish, birds and the like.
  • the compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties.
  • modifications are known in the art and may include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
  • the synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization.
  • a method such as column chromatography, high pressure liquid chromatography, or recrystallization.
  • further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds.
  • Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock,
  • the compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- , or as (D)- or (L)- for amino acids.
  • the present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms.
  • Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art.
  • compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers or excipients.
  • the term "pharmaceutically acceptable carrier or excipient” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
  • materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; cyclodextrins such as alpha- ( ⁇ ), beta- ( ⁇ ) and gamma- ( ⁇ ) cyclodextrins; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl
  • compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection.
  • the pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles.
  • the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form.
  • parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsif ⁇ ers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • the oral compositions can also include adjuvants such as wetting agents,
  • Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents.
  • the sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution.
  • sterile, fixed oils are conventionally employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid are used in the preparation of injectables.
  • the injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
  • the rate of drug release can be controlled.
  • biodegradable polymers include poly(orthoesters) and poly(anhydrides).
  • Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissues.
  • compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and g
  • compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
  • Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches.
  • the active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required.
  • Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention.
  • the ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
  • Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel.
  • a therapeutic composition of the invention is formulated and administered to the patient in solid or liquid particulate form by direct administration e.g., inhalation into the respiratory system.
  • Solid or liquid particulate forms of the active compound prepared for practicing the present invention include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. Delivery of aerosolized therapeutics, particularly aerosolized antibiotics, is known in the art (see, for example U.S. Pat. No. 5,767,068 to VanDevanter et al., U.S. Pat. No.
  • a “therapeutically effective amount” of a compound of the invention is meant an amount of the compound which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment.
  • the therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect).
  • An effective amount of the compound described above may range from about 0.1 mg/Kg to about 500 mg/Kg, preferably from about 1 to about 50 mg/Kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
  • the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.
  • the total daily dose of the compounds of this invention administered to a human or other animal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight.
  • Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose.
  • treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) of this invention per day in single or multiple doses.
  • the compounds of the formulae described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.1 to about 500 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug.
  • the methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect.
  • the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion.
  • Such administration can be used as a chronic or acute therapy.
  • the amount of active ingredient that may be combined with pharmaceutically excipients or carriers to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • a typical preparation will contain from about 5% to about 95% active compound (w/w).
  • such preparations may contain from about 20% to about 80% active compound.
  • the compounds of formulae I and II, or a pharmaceutically-acceptable salt thereof may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes for making certain intermediates include, for example, those illustrated in PCT publication number WO2003055860. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of a chemist.
  • Step Ia (4-Bromophenoxy)(ter£-butyl)dimethylsilane (compound 0101)
  • Et 3 N (16.7 g, 115.6 mmol) was added dropwise to a solution of compound 4- bromophenol (10.0 g, 57.8 mmol) and TBSCl (11.3 g, 75.14 mmol) in DMC (100 ml) at room temperature and the mixture was stirred for 2 h. After solvent was removed, 200 ml of petroleum ether was added.
  • Step Ib 4-(Tert-butyldimethylsilyloxy)phenylboronic acid (Compound 0102)
  • Step Ig 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)-JV-ethylisoxazole- 3-carboxamide (Compound 0107)
  • 0106 4-40 g, 9.51 mmol
  • a solution of ethylamine in ethanol 2.0 M, 40 ml, 80 mmol
  • the mixture was heated to 8O 0 C and stirred for 5 h.
  • the mixture was allowed to cool to ice-bath temperature, filtered and the solid was washed with cold ethanol, dried in vacuo to obtain 0107 as a white solid (4.10 g, 93 %): LCMS: 463 [M+l] + .
  • Step Ih 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)-4-bromo- ⁇ /-ethyl- isoxazole-3- carboxamide
  • a solution of bromine in acetic acid (0.6 M, 306.0 ml, 183.6 mmol) was added to a stirred suspension of 0107 (8.50 g, 18.36 mmol) and potassium acetate (3.97 g, 40.50 mmol) in acetic acid (127 ml) at room temperature. The mixture was stirred at room temperature for 5 min. And saturated solution of Na 2 SO 3 was added to the solution.
  • Step Ii 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)- ⁇ /-ethyl-4-(4-hydroxy- phenyl)- isoxazole-3-carboxamide (Compound 0109)
  • Step Ij Ethyl 4-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethyl- carbamoyl) isoxazol-4-yl)phenoxy)butanoate (Compound 0110-1)
  • a mixture of 0109 (500 mg, 0.901 mmol), ethyl 4-bromobutanoate (193 mg, 0.991 mmol) and K 2 CO 3 (374 mg, 2.703 mmol) in CH 3 CN (20 ml) was stirred at 8O 0 C overnight. After concentrated, the residue was extracted with ethyl acetate.
  • Step Ik Ethyl 4-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl-carbamoyl) isoxazol-4-yl) phenoxy)butanoate ( Compound 0111-1 )
  • dichloromethane 16 ml
  • N 2 a 1.0 M solution of boron dichloromethane in dichloromethane
  • the reaction mixture was stirred at O 0 C for 15 min then warmed to room temperature and stirred for additional 35 min.
  • Step 11 5-(5-Chloro-2,4-dihydroxyphenyl)- ⁇ /-ethyl-4-(4-(4-(hydroxyamino)-4- oxobutoxy)phenyl)isoxazole-3-carboxamide (Compound 1)
  • hydroxylamine hydrochloride (4.67g, 67 mmol) was dissolved in methanol(24 mL) to form solution A.
  • Potassium hydroxide (5.61 g, 100 mmol) was dissolved in methanol(14 mL) to form solution B.
  • the solution A was cooled to O 0 C, and solution B was added into solution A dropwise.
  • the mixture was stirred for 30 minutes at 0° C, and the precipitate was filtered off and the filtrate to afford the solution of hydroxylamine in methanol.
  • Step 2a Ethyl 5-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethylcarbamoyl) isoxazol- 4-yl)phenoxy)pentanoate (Compound 0110-2)
  • the title compound 0110-2 was prepared (320 mg, 52 %) from 0109 (500 mg,
  • Step 2b Ethyl 5-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl-carbamoyl) isoxazol-4-yl) phenoxy)pentanoate (Compound 0111-2)
  • the title compound 0111-2 was prepared (81 mg, 37 %) from 0110-2 (296 mg,
  • Step 2c 5-(5-Chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4-(5-(hydroxyamino)-5- oxopentyloxy)phenyl)isoxazole-3-carboxamide
  • Compound 2 The title compound 2 was prepared (50 mg, 64 %) from compound 0111 -2 (81 mg, 0.16 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 490 [M+l] + .
  • Step 3a Ethyl 6-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethylcarbamoyl) isoxazol-4 -yl)phenoxy)hexanoate (Compound 0110-3)
  • the title compound 0110-3 was prepared (800 mg, 66 %) from 0109 (1.00 g, 1.80 mmol) and ethyl 6-bromohexanoate (0.44 g, 1.97 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 697 [M+l] + .
  • Step 3b Ethyl 6-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl- carbamoyl)isoxazol-4 -yl)phenoxy)hexanoate (0111-3)
  • the title compound 0111-3 was prepared (300 mg, 58 %) from 0110-3 (700 mg,
  • Step 3c 5-(5-Chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4-(6-(hydroxyamino)-6- oxohexyloxy)phenyl)isoxazole-3-carboxamide (Compound 3)
  • the title compound 3 was prepared (80 mg, 32 %) from compound 0111-3 (260 mg, 0.5 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 504 [M+l] + .
  • 1 H NMR (DMSO-J 6 ): ⁇ 1.08 (t, J 6 Hz, 3H), 1.32-1.39
  • Step 4a Ethyl 7-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethyl-carbamoyl) isoxazol-4 -yl)phenoxy)heptanoate (Compound 0110-4)
  • the title compound 0110-4 was prepared (1.0 g, 78 %) from 0109 (1.0 g, 1.8 mmol) and ethyl 7-bromoheptanoate (510 mg, 2.15 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 710 [M+ 1] + .
  • Step 4b Ethyl 7-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl- carbamoyl)isoxazol-4-yl) phenoxy)heptanoate (Compound 0111-4)
  • the title compound 0111-4 was prepared (0.82 g, 91.6 %) from 0110-4 (1.0 g, 1.4 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 531 [M+l] + .
  • Step 4c 5-(5-Chloro-2,4-dihydroxyphenyl)-JV-ethyl-4-(4-(7-(hydroxyl- amino)-7-oxoheptyloxy)phenyl)isoxazole-3-carboxamide (compound 4)
  • the title compound 4 was prepared (120 mg, 15 %) from compound 0111-4
  • Step 5a Ethyl 5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-bromo-isoxazole-3- carboxylate (Compound 0201)
  • acetic acid 93 ml
  • bromine in acetic acid 0.6 M, 225 ml, 134.9 mmol
  • Step 5b Ethyl 5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole-3- carboxylate (Compound 0202)
  • 4-methoxyphenylboronic acid (4.03 g, 26.51 mmol)
  • sodium hydrogen carbonate (5.64 g, 67.14 mmol)
  • dichloro ⁇ (triphenylphoshine)palladium (1.94 mg, 2.76 mmol).
  • the mixture was heated to 9O 0 C and stirred overnight.
  • Step 5d Ethyl 3-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole- 3-carboxamido)propanoate (Compound 0204-5)
  • a mixture of BOP (980 mg, 2.21 mmol), compound 0203 (1.00 g, 1.84 mmol) and DIEA (953 mg, 7.38 mmol) in DMF (5 mL) was stirred at room temperature for 30 min.
  • ethyl 3-aminopropanoate hydrogen chloride 370 mg, 2.4 mmol
  • the resulting mixture was stirred at room temperature overnight and the mixture was concentrated in vacuo.
  • Step 5e Ethyl 3-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxy-phenyl) isoxazole-3- carboxamido)propanoate (Compound 0205-5)
  • dichloromethane 14 ml
  • N 2 a 1.0 M solution of Boron dichloromethane in dichloromethane (3.3 ml, 3.3 mmol).
  • the reaction mixture was stirred at O 0 C for 15 min then at room temperature for 35 min.
  • Step 5f 5-(5-Chloro-2,4-dihydroxyphenyl)- JV-(3-(hydroxyl amino)- 3-oxo propyl) -4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 5)
  • the title compound 5 was prepared as a brown solid (80 mg, 24%) from compound 0205-5 (340 mg, 0.74 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 448 [M+l] + .
  • Step 6b Methyl 4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl) isoxazole-3- carboxamido)butanoate (Compound 0205-6)
  • the title compound 0205-6 was prepared (233 mg, 73 %) from 0204-6 (442 mg, 0.69 mmol)using a procedure similar to that described for compound 0205-5 (Example 5): LCMS: 461 [M+l] + .
  • Step 6c 5-(5-chloro-2,4-dihydroxyphenyl)- ⁇ /-(4-(hydroxyamino)-4-oxobutyl)-4- (4-methoxyphenyl)isoxazole-3-carboxamide (Compound 6)
  • the title compound 6 was prepared (100 mg, 42 %) from compound 0205-6 (233 mg, 0.51 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 462 [M+l] + .
  • Step 7a Methyl 6-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4- methoxyphenyl) isoxazole-3 -carboxamido)hexanoate (Compound 0204-8)
  • the title compound 0204-8 was prepared (500 mg, 41 %) from 0203 (1.00 mg, 1.84 mmol) and methyl 6-aminohexanoate hydrogen chloride (503 mg, 2.40 mmol) using a procedure similar to that described for compound 0204-5 (Example 5): LCMS: 669 [M+l] + .
  • Step 7b Methyl 6-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxy-phenyl) isoxazole-3 -carboxamido)hexanoate (Compound 0205-8)
  • the title compound 0205-8 was prepared (216 mg, 59 %) from 0204-8 (500 mg,
  • Step 7c 5-(5-Chloro-2,4-dihydroxyphenyl)- ⁇ /-(6-(hydroxyl-amino)-6-oxohexyl)-
  • EXAMPLE 8 Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-7V-(7-(hydroxyl amino)-7-oxoheptyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 9)
  • Step 8a Ethyl 7-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole-3 -carboxamido)heptanoate (Compound 0204-9)
  • the title compound 0204-9 was prepared (640 mg, 52 %) from 0203 (1.00 mg,
  • Step 8b Ethyl 7-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl) isoxazole-3- carboxamido)heptanoate (Compound 0205-9)
  • Step 9a Methyl 8-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4- methoxyphenyl) isoxazole-3-carboxamido)octanoate (Compound 0204-10)
  • the title compound 0204-10 was prepared (450 mg, 44 %) from 0203 (800 mg,
  • Step 9b Methyl 8-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl) isoxazole-3 -carboxamido)octanoate (Compound 0205-10)
  • the title compound 0205-10 was prepared (274 mg, 62 %) from 0204-10 (450 mg, 0.65 mmol) using a procedure similar to that described for compound 0205-5
  • Step 9c 5-(5-Chloro-2,4-dihydroxyphenyl)-N-(8-(hydroxyamino)-8- oxooctyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamidemn (Compound 10)
  • the title compound 10 was prepared (70 mg, 71 %) from compound 0205-10 (100 mg, 0.19 mmol) using a procedure similar to that described for compound 1
  • a 500 mL, three neck, round bottom flask equipped with magnetic stirrer and a reflux condenser is purged with nitrogen.
  • the flask is then charged sequentially with methyl 3,3-dimethoxypropionate (0301) (26.1 g, 176 mmol), anhydrous 1,2- dimethoxyethane (125 mL), anhydrous methyl formate (25 mL, 400 mmol), 60% NaH (8.5 g, 212.5 mmol), and the mixture was heated to 40 ⁇ 50°C until evolution of hydrogen gas is observed.
  • the reaction mixture was cooled in an ice bath and slowly warmed to room temperature and stirred for 20 h.
  • the reaction mixture was filtered, washed with anhydrous ether, dried to provide desired product 0302 (25.4 g, 73%) as a white power.
  • Step 10b Methyl 2-(4-benzylpiperazin-l-yl)pyrimidine-5-carboxylate (Compound 0305)
  • Step 1Oe Methyl 2-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl)- isoxazole-3 -carbonyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0308)
  • 0307 (1.10 g, 1.47 mmol) in dichloromethane (15 mL)
  • BCI 3 in dichloromethane 5.9 mL, 5.90 mmol, 1 M
  • the mixture was stirred at r.t. for 30 min.
  • Step 1Of 2-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl)- isoxazole-3-carbonyl)- piperazin- 1 -yl)-N-hydroxypyrimidine- 5-carboxamide (Compound 11)
  • Step He Ethyl 2-(4-(aminomethyl)piperidin-l-yl)pyrimidine-5-carboxylate (Compound 0406) A mixture of 0405 (1.10 g, 5.9 mmol), piperidin-4-ylmethanamine (1.35 g, 11.8 mmol) in 2-(dimethylamino)acetamide ( 50 mL) was stirred at room temperature for 1.5 h.
  • Step Hf Ethyl 2-(4-((5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl)- isoxazole-3 -carboxamido)methyl)piperidin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0407)
  • the title compound 0407 was prepared as a white solid (820 mg, 52%) from 0203 (1.10 g, 2.03 mmol) and 0406 (660 mg, 2.64 mmol) using a procedure similar to that described for compound 0307 (Example 10): LCMS: 788 [M+l]+.
  • Step Hg Ethyl 2-(4-((5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl)- isoxazole-3 -carboxamido)methyl)piperidin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0408)
  • the title compound 0408 was prepared as a white solid (350 mg, 63%) from 0407 (715 mg, 0.91 mmol) using a procedure similar to that described for compound 0308 (Example 10): LCMS: 608 [M+l]+.
  • Step Hh 5-(5-Chloro-2,4-dihydroxyphenyl)-N-((l-(5-(hydroxycarbamoyl)- pyrimidin-2-yl)piperidin-4-yl)methyl)-4-(4-methoxyphenyl)isoxazole-3- carboxamide (Compound 13)
  • the title compound 13 was prepared as a white solid (110 mg, 56 %) from 0408 (200 mg, 0.33 mmol) using a procedure similar to that described for compound 11
  • Step 12c 2,4-Bis(benzyloxy)-l-(prop-l-en-2-yl)benzene (Compound 0504)
  • Step 12g (Z)-Ethyl 4-(2,4-bis(benzyloxy)-5-isopropylphenyl)-2-hydroxy-4-oxobut- 2-enoate (Compound 0508)
  • Step 12i 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)- ⁇ /-ethylisoxazole-3- carboxamide (Compound 0510)
  • Step 12j 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)-iV-ethyl-4-iodoisoxazole-3-car- boxamide (Compound 0511)
  • Step 12k 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)- ⁇ /-ethyl-4-(4- formylphenyl)iso-xazole-3-carboxamide
  • Compound 0512 To a mixture of 0511 (70.2 g, 0.11 mol) and 4-formylphenylboronic acid (26.4 g, 0.17 mol) was added sodium hydrogen carbonate (27.7 g, 0.33 mol), followed by DMF (700 mL) and water (140 mL). The mixture was degassed by evacuation and flushing with nitrogen for three times.
  • Step 12m Methyl 3-(4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzylamino)propanoate (Compound 0515- 15)
  • Step 12n 5-(2,4-Dihydroxy-5-isopropylphenyl)-JV-ethyl-4-(4-((3-(hydroxyl amino)- -3 -oxopropylamino)methyl)phenyl)isoxazole-3 -carboxamide (Compound 15)
  • hydroxyamine solution 8.0 mL
  • the mixture was stirred at room temperature for an hour. Then it was adjusted to pH 6 using 1.2 M hydrochloric acid. The mixture was concentrated and the residue was added ethyl acetate (20.0 mL). The organic layer was washed with water, dried over anhydrous Na 2 SO 4 and concentrated.
  • Step 13b Ethyl 3-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)propanoate (Compound 0516-16)
  • EXAMPLE 14 Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-7V-ethyl-4- (4-(((4-(hydroxyamino)-4-oxobutyl)(methyl)amino)methyl)phenyl)isoxazole-3- carboxamide (Compound 18)
  • Step 14a Ethyl 4-((4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3- (ethylcarbamoyl)-isoxazol-4-yl)benzyl)(methyl)amino)butanoate (Compound 0514- 18)
  • Step 14b Ethyl 4-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)butanoate (Compound 0516-18)
  • the title compound 18 was prepared (85 mg, 52%) from 0516-18 (168 mg, 0.3 mmol) using a procedure similar to that described for 16 (Example 13): m.p. 132-134 0 C. LCMS: 511 [M+l] + .
  • Step 15a Ethyl 6-(4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3-(ethylcar- bamoyl)-isoxazol-4-yl)benzylamino)hexanoate (Compound 0513-21)
  • the title compound 0513-21 was prepared (0.6 g, 36%) from 0512 (1.3 g, 2.3 mmol) using a procedure similar to that described for 0513-15 (Example 12): LCMS: 718 [M+l] + .
  • Step 15b Ethyl 6-(4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzylamino)hexanoate (Compound 0515-21)
  • the title compound 0515-21 was prepared (0.2 g, 52%) from 0513-21 (0.51 g, 0.7 mmol) using a procedure similar to that described for 0515-15 (Example 12):
  • Step 15c 5-(2,4-Dihydroxy-5-isopropylphenyl)- ⁇ /-ethyl-4-(4-((6-(hydroxyamino)-
  • the title compound 0514-22 was prepared (379 mg, 35%) from 0512 (0.85 g,
  • Step 16b Ethyl 6-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)hexanoate (Compound 0516-22)
  • the title compound 0516-22 was prepared (167 mg, 72%) from 0514-16
  • the title compound 22 was prepared (52 mg, 34%) from 0516-22 (157 mg, 0.3 mmol) using a procedure similar to that described for 16 (Example 13): mp 113-115
  • Step 17a Ethyl 7-(4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3- (methylcarbamoyl)isoxazol-4-yl)benzylamino)heptanoate (Compound 0513-23)
  • the title compound 0513-23 was prepared (410 mg, 36%) from 512 (0.89 g,
  • Step 17b Ethyl 7-(4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)-iso- xazol-4-yl)benzylamino)heptanoate (Compound 0515-23)
  • the title compound 0515-23 was prepared (392 mg, 56%) from 0513-23
  • Step 17c 5-(2,4-Dihydroxy-5-isopropylphenyl)-7V-ethyl-4-(4-((7-(hydroxyamino)- 7-oxoheptylamino)methyl)phenyl)isoxazole-3-carboxamide (Compound 23)
  • the title compound 23 was prepared (137 mg, 37%) from 0515-23 (380 mg,
  • the title compound 0514-24 was prepared (256 mg, 36%) from 0512 (548 mg, 0.9 mmol) using a procedure similar to that described for 0514-16 (Example 13): LCMS: 746 [M+l] + .
  • Step 18b Ethyl 7-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)heptanoate (Compound 0516-24)
  • the title compound 0516-24 was prepared (119 mg, 64%) from 0514-24 (245 mg, 0.3 mmol) using a procedure similar to that described for 0516-16 (Example 13): LCMS: 566 [M+l] + .
  • Step 18c 5-(2,4-Dihydroxy-5-isopropylphenyl)- ⁇ /-ethyl-4-(4-(((7-(hydroxyamino)- 7-oxoheptyl)(methyl)amino)methyl)phenyl)isoxazole-3-carboxamide (Compound 24)
  • the title compound 24 was prepared (39 mg, 37%) from 0516-24 (108 g, 0.2 mmol) using a procedure similar to that described for 16 (Example 13): m.p. 118- 119 0 C. LCMS: 553 [M+l] + .
  • Step 19a Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-iodoisoxazole-3- carboxylate (Compound 0601)
  • acetonitrile 700 mL
  • Step 19b Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4-formylphenyl)iso- xazole-3-carboxylate (Compound 0602)
  • Step 19c Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4- (morpholinomethyl)-phenyl)isoxazole-3-carboxylate (Compound 0603)
  • Acetic acid 1.2 g, 19.0 mmol
  • morpholine 1 g, 11.4 mmol
  • magnesium sulfate 490 mg, 11.4 mmol
  • Step 19e Ethyl 3-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4- (morpholinomethyl)phenyl) isoxazole-3 -carboxamido)propanoate (Compound 605-25) To a solution of 0604 (1 g, 1.6 mmol) in dichloromethane (15 mL) was added
  • Step 19f Ethyl 4-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl)iso xazole-3-carboxamido)butanoate (Compound 0606-25)
  • BCI 3 1.0 M in dichloromethane, 4.2 mL, 4.2 mmol
  • the reaction mixture was allowed to warm to room temperature and stirred for 2 h.
  • the mixture was adjusted to pH7 with saturated aqueous sodium bicarbonate and concentrated.
  • Step 19g 5-(2,4-Dihydroxy-5-isopropylphenyl)-N-(4-(hydroxyamino)-4-oxobutyl)- 4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide
  • Compound 25 Compound 0606-25 (0.51 g, 0.9 mmol) was added to the freshly prepared solution of hydroxyamine in methanol (4.0 mL) and stirred at room temperature for 30 min. Then the mixture was adjusted to pH7 using 1.2 M hydrochloric acid. After concentration, ethyl acetate (200 mL) was added. The organic was washed with water, dried over anhydrous Na 2 SO 4 and concentrated. The residue was purified by prep.
  • Step 20a Ethyl 6-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4-(morpholino- methyl)phenyl)isoxazole-3-carboxamido)hexanoate (Compound 0605-27)
  • the title compound 0606-27 was prepared as a yellow solid (250 mg, 81%) from 0605-27 (404 mg, 0.5 mmol )using a procedure similar to that described for 0606-25 (example 19): LCMS: 580 [M+l] + .
  • Step 20c 5-(2,4-Dihydroxy-5-isopropylphenyl)-N-(6-(hydroxyamino)-6-oxohexyl)- 4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 27)
  • the title compound 27 was prepared as a white solid (46 mg, 13%) from 0606-27 (250 mg, 0.4 mmol) using a procedure similar to that described for 25 (Example 19): mp 164-166 0 C.
  • Step 21a Ethyl 7-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4-(morpholino- methyl)phenyl) isoxazole-3-carboxamido)heptanoate (Compound 0605-28)
  • the title compound 0605-28 was prepared as a pale yellow solid (0.86 g, 69%) from 0604 (1 g, 1.6 mmol) using a procedure similar to that described for
  • Step 21b Ethyl 7-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl) isoxazole-3-carboxamido)heptanoate (Compound 0606-28)
  • Step 21c 5-(2,4-Dihydroxy-5-isopropylphenyl)- ⁇ /-(7-(hydroxyamino)-7- oxoheptyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound
  • the title compound 28 was prepared as a white solid (240 mg, 45%) from
  • EXAMPLE 22 Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-N-(8- (hydroxyl-amino)-8-oxooctyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3- carboxamide (Compound 29)
  • Step 22a 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)- ⁇ /-(8-(hydroxyamino)-8-oxo- octyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 0605-29)
  • the title compound 0605-29 was prepared as a pale yellow solid (0.71 g, 56%) from 0604 (1 g, 1.6 mmol) using a procedure similar to that described for 0605-25 (Example 19): LCMS: 788 [M+l] + .
  • Step 22b Ethyl 8-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl)isoxazo le-3-carboxamido)octanoate (Compound 0606-29)
  • the title compound 0606-29 was prepared as a yellow solid (452 mg, 82%) from 0605-29 (0.71 g, 0.9 mmol ) using a procedure similar to that described for 0606-25 (Example 19): LCMS: 608 [M+l] + .
  • Step 22c 5-(2,4-Dihydroxy-5-isopropylphenyl)- ⁇ /-(8-(hydroxyamino)-8-oxooctyl)- 4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 29)
  • the title compound 29 was prepared as a white solid (123 mg, 28%) from 0606-29 (452 mg, 0.7 mmol) using a procedure similar to that described for 25 (Example 19): mp 117-119 0 C. LCMS: 595 [M+ 1] + .
  • Hsp90 chaperone assay An in vitro assay which determines the ability of a test compound to inhibit Hsp90 chaperone activity.
  • the Hsp90 chaperone assay was performed to measure the ability of HSP90 protein to refold the heat-denatured luciferase protein.
  • HSP90 was first incubated with different concentrations of test compounds in denaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol) at room temperature for 30 min. Luciferase protein was added to denaturation mix and incubated at 50 0 C for 8 min.
  • denaturation buffer 25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol
  • the final concentration of HSP90 and luciferase in denaturation mixture were 0.375 ⁇ M and 0.125 ⁇ M respectively.
  • a 5 ⁇ l sample of the denatured mix was diluted into 25 ⁇ l of renaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol, 0.5 mM ATP, 2 mM DTT, 5 mM KCl, 0.3 ⁇ M HSP70 and 0.15 ⁇ M HSP40).
  • the renaturation reaction was incubated at room temperature for 150 min, followed by dilution of lO ⁇ l of the renatured sample into 90 ⁇ l of luciferin reagent (Luclite, PerkinElmer Life Science). The mixture was incubated at dark for 5 min before reading the luminescence signal on a TopCount plate reader (PerkinElmer Life Science).
  • InvivoGen (ant-fgl-1).
  • HSP90 labeled GM
  • a free and fast-tumbling FITC labeled GM emits random light with respect to the plane of polarization plane of excited light, resulting in a lower polarization degree (mP) value.
  • mP polarization degree
  • GM is bound to HSP90, the complex tumble slower and the emitted light is polarized, resulting in a higher mP value.
  • This competition binding assay was performed in 96-well plate and with each assay contained 10 and 5OnM of labeled GM and purified HSP90 protein (Assay Design, SPP-776F) respectively.
  • the assay buffer contained 2OmM HEPES (pH 7.3), 5OmM KCl, ImM DTT, 5OmM MgCl 2 , 2OmM Na 2 MoO 4 , 0.01% NP40 with O.lmg/ml bovine gamma-globulin.
  • Compounds are diluted in DMSO and added to the final assay before labeled GM with concentration range from 2OuM to 2nM.
  • mP value was determined by BioTek Synergy II with background subtraction after 24 hours of incubation at 4 0 C.
  • HDAC inhibitors were screened using an HDAC fluorimetric assay kit (AK- 500, Biomol, Plymouth Meeting, PA). Test compounds were dissolved in dimethylsulphoxide (DMSO) to give a 20 mM working stock concentration.
  • DMSO dimethylsulphoxide
  • Diluted Fluor de LysTM developer concentrate 20-fold (e.g. 50 ⁇ l plus 950 ⁇ l Assay Buffer) in cold assay buffer. Second, diluted the 0.2 mM
  • Added Assay buffer, diluted trichostatin A or test inhibitor to appropriate wells of the microtiter plate.
  • Added diluted HeLa extract or other HDAC sample to all wells except for negative controls. Allowed diluted Fluor de LysTM Substrate and the samples in the microtiter plate to equilibrate to assay temperature (e.g. 25 or 37°C.
  • Initiated HDAC reactions by adding diluted substrate (25 ⁇ l) to each well and mixing thoroughly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to HSP90 inhibitors containing a zinc binding moiety and their use in the treatment of cell proliferative diseases such as cancer. The said derivatives may further act as HDAC inhibitors.

Description

HSP90 INHIBITORS CONTAINING A ZINC BINDING MOIETY
RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No. 60/971,045, filed on September 10, 2007 and U.S. Provisional Application No. 61/035,264, filed on March 10, 2008 The entire teachings of the above applications are incorporated herein by reference.
BACKGROUND OF THE INVENTION
HSP90s are ubiquitous chaperone proteins that are involved in proper protein folding and stabilization of a wide range of proteins, including key proteins involved in signal transduction, cell cycle control and transcriptional regulation. Researchers have reported that HSP90 chaperone proteins are associated with important signaling proteins, such as steroid hormone receptors and protein kinases, (e.g., Raf- 1, EGFR, v-Src family kinases, Cdk4, and ErbB-2), many of which are overexpressed or mutated in various cancers (Buchner J. TIBS, 1999, 24, 136-141; Stepanova, L. et al. Genes Dev. 1996, 10, 1491-502; Dai, K. et al. J. Biol. Chem. 1996, 271, 22030-4). Studies further indicate that certain co-chaperones, e.g., HSP70, p60/Hop/Stil, Hip, Bagl, HSP40/Hdj2/Hsjl, immunophilins, p23, and p50, may assist HSP90 in its function (Caplan, A. Trends in Cell Biol. 1999, 9, 262-68). HSP90 has been shown by mutational analysis to be necessary for the survival of normal eukaryotic cells. However, HSP90 is overexpressed in many tumor types indicating that it may play a significant role in the survival of cancer cells and that cancer cells may be more sensitive to inhibition of HSP90 than normal cells. In fact, cancer cells typically have a large number of mutated and overexpressed oncoproteins that are dependent on HSP90 for folding. In addition, because the environment of a tumor is typically hostile due to hypoxia, nutrient deprivation, acidosis, etc., tumor cells may be especially dependent on HSP90 for survival. Moreover, inhibition of HSP90 causes simultaneous inhibition of a number of client oncoproteins, as well as hormone receptors and transcription factors making it an attractive target for an anti-cancer agent. The two main classes of HSP90 inhibitors that are currently pursued by many companies are based on the natural antibiotic geldanamycin and synthetic purine-scaffold. Several promising geldanamycin related HSP90 inhibitors are currently in clinical trial namely, 17-allylamino 17-demethoxygeldanamycin (17- AAG), 17-dimethylaminoethylamino- 17-demethoxygeldanamycin (17-DMAG) and IPI-504. Furthermore, many of the purine-scaffold HSP90 inhibitors are showing positive preclinical results. Currently, the frontrunner in the purine-scaffold is CNF- 2024, which is currently in phase 1 clinical trial.
Elucidation of the complex and multifactorial nature of various diseases that involve multiple pathogenic pathways and numerous molecular components suggests that multi-targeted therapies may be advantageous over mono-therapies. Recent combination therapies with two or more agents for many such diseases in the areas of oncology, infectious disease, cardiovascular disease and other complex pathologies demonstrate that this combinatorial approach may provide advantages with respect to overcoming drug resistance, reduced toxicity and, in some circumstances, a synergistic therapeutic effect compared to the individual components.
Certain cancers have been effectively treated with such a combinatorial approach; however, treatment regimes using a cocktail of cytotoxic drugs often are limited by dose limiting toxicities and drug-drug interactions. More recent advances with molecularly targeted drugs have provided new approaches to combination treatment for cancer, allowing multiple targeted agents to be used simultaneously, or combining these new therapies with standard chemotherapeutics or radiation to improve outcome without reaching dose limiting toxicities. However, the ability to use such combinations currently is limited to drugs that show compatible pharmacologic and pharmacodynamic properties. In addition, the regulatory requirements to demonstrate safety and efficacy of combination therapies can be more costly and lengthy than corresponding single agent trials. Once approved, combination strategies may also be associated with increased costs to patients, as well as decreased patient compliance owing to the more intricate dosing paradigms required.
In the field of protein and polypeptide-based therapeutics it has become commonplace to prepare conjugates or fusion proteins that contain most or all of the amino acid sequences of two different proteins/polypeptides and that retain the individual binding activities of the separate proteins/polypeptides. This approach is made possible by independent folding of the component protein domains and the large size of the conjugates that permits the components to bind their cellular targets in an essentially independent manner. Such an approach is not, however, generally feasible in the case of small molecule therapeutics, where even minor structural modifications can lead to major changes in target binding and/or the pharmacokinetic/pharmacodynamic properties of the resulting molecule.
The use of HSP90 inhibitors in combination with histone deacetylases (HDAC) has been shown to produce synergistic effects. Histone acetylation is a reversible modification, with deacetylation being catalyzed by a family of enzymes termed HDACs. HDACs are represented by X genes in humans and are divided into four distinct classes {J MoI Biol, 2004, 338:1, 17-31). In mammalians class I HDACs (HDACl-3, and HDAC8) are related to yeast RPD3 HDAC, class 2 (HDAC4-7, HDAC9 and HDAClO) related to yeast HDAl, class 4 (HDACl 1), and class 3 (a distinct class encompassing the sirtuins which are related to yeast Sir2). Csordas, Biochem. J, 1990, 286: 23-38 teaches that histones are subject to post-translational acetylation of the, ε-amino groups of N-terminal lysine residues, a reaction that is catalyzed by histone acetyl transferase (HATl). Acetylation neutralizes the positive charge of the lysine side chain, and is thought to impact chromatin structure. Indeed, access of transcription factors to chromatin templates is enhanced by histone hyperacetylation, and enrichment in underacetylated histone H4 has been found in transcriptionally silent regions of the genome (Taunton et al., Science, 1996, 272:408-411). In the case of tumor suppressor genes, transcriptional silencing due to histone modification can lead to oncogenic transformation and cancer.
Several classes of HDAC inhibitors currently are being evaluated by clinical investigators. The first FDA approved HDAC inhibitor is Suberoylanilide hydroxamic acid (SAHA, Zolinza®) for the treatment of cutaneous T-cell lymphoma (CTCL). Other HDAC inhibitors include hydroxamic acid derivatives, PXDlOl, LBH589 and LAQ824, are currently in the clinical development. In the benzamide class of HDAC inhibitors, MS-275, MGCDO 103 and CI-994 have reached clinical trials. Mourne et al. (Abstract #4725, AACR 2005), demonstrate that thiophenyl modification of benzamides significantly enhance HDAC inhibitory activity against HDACl . Recent advances suggest that HSP90 inhibitors in combination with HDAC inhibitors may provide advantageous results in the treatment of cancer. For example, co-treatment with HDAC inhibitor SAHA and HSP90 inhibitor 17-AAG synergistically induces apoptosis in Bcr-Abl+ cells sensitive and resistant to STI571 (imatinib mesylate) (Rahmani, M., et al., MoI Pharmacol, 2005, 67: 1166-1176). In addition, combination of the histone deacetylase inhibitor LBH589 and the HSP90 inhibitor 17-AAG was found to be highly active against human CML-BC cells and AML cells with activating mutation of FLT-3 (George, P., et al, BLOOD, 2005, 105(4), 1768-1776). Current therapeutic regimens of the types described above attempt to address the problem of drug resistance by the administration of multiple agents. However, the combined toxicity of multiple agents due to off-target side effects as well as drug-drug interactions often limits the effectiveness of this approach. Moreover, it often is difficult to combine compounds having differing pharmacokinetics into a single dosage form, and the consequent requirement of taking multiple medications at different time intervals leads to problems with patient compliance that can undermine the efficacy of the drug combinations. In addition, the health care costs of combination therapies may be greater than for single molecule therapies. Furthermore, it may be more difficult to obtain regulatory approval of a combination therapy since the burden for demonstrating activity/safety of a combination of two agents may be greater than for a single agent (Dancey J & Chen H, Nat. Rev. Drug Dis., 2006, 5:649). The development of novel agents that target multiple therapeutic targets selected not by virtue of cross reactivity, but through rational design will help improve patient outcome while avoiding these limitations. Thus, enormous efforts are still directed to the development of selective anti-cancer drugs as well as to new and more efficacious combinations of known anti-cancer drugs.
SUMMARY OF THE INVENTION
The present invention relates to HSP90 inhibitors containing zinc-binding moiety based derivatives that have enhanced and unexpected properties as inhibitors of HSP90 and their use in the treatment of HSP90 related diseases and disorders such as cancer.
The compounds of the present invention may further act as HDAC or matrix metalloproteinase (MMP) inhibitors by virtue of their ability to bind zinc ions. Surprisingly these compounds are active at multiple therapeutic targets and are effective for treating disease. Moreover, in some cases it has even more surprisingly been found that the compounds have enhanced activity when compared to the activities of combinations of separate molecules individually having the HSP90 and HDAC activities. In other words, the combination of pharmacophores into a single molecule may provide a synergistic effect as compared to the individual pharmacophores. More specifically, it has been found that it is possible to prepare compounds that simultaneously contain a first portion of the molecule that binds zinc ions and thus permits inhibition of HDAC and/or matrix metalloproteinase (MMP) activity and at least a second portion of the molecule that permits binding to a separate and distinct target that inhibits HSP90 and thus provides therapeutic benefit. Preferably, the compounds of the present invention inhibit both HSP90 and HDAC activity.
Accordingly, the present invention provides a compound having a general formula I or II:
Figure imgf000006_0001
or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein
Cy and Cy1 are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl;
X and Y are independently O, S, N, NRs or CRs, where Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
W is hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, thiol, substituted thiol, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO2, N3, acyl, aliphatic or substituted aliphatic, C(O)Wi0; where Wi0 is OR', SR' and NR7R8, wherein R7 is hydrogen, OR', aliphatic or substituted aliphatic; R' is hydrogen, aliphatic, substituted aliphatic or acyl; and Rg is hydrogen, acyl, aliphatic or substituted aliphatic; or R7 and Rs together with nitrogen atom to which they attached to form a heterocyclic ring;
Xi-X5 are independently C, N or CR2I, where R2i is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; B is linker; C is selected from:
Figure imgf000007_0001
where Wi is O or S; Yi is absent, N, or CH; Zi is N or CH; R7 and R9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R7 and R9 are both present, one of R7 or R9 must be OR' and if Y is absent, R9 must be OR'; and Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
(b)
Figure imgf000007_0002
; where Wi is O or S; J is O, NH or NCH3; and Rio is hydrogen or lower alkyl;
Figure imgf000007_0003
; where Wi is O or S; Y2 and Z2 are independently N, C or CH; and
(d)
Figure imgf000007_0004
; where Zi, Yi, and Wi are as previously defined; Rn and Ri2 are independently selected from hydrogen or aliphatic; R1, R2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
DETAILED DESCRIPTION OF THE INVENTION
In a first embodiment of the compounds of the present invention are compounds represented by formula (I) or (II) as illustrated above, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof. In one example, Cy and Cy1 are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl; Y is N, NR8 or CRs, where Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
X is CR8, NR8, N, O or S; W is hydrogen, acyl, aliphatic or substituted aliphatic; or C(O)WiO , where
Wio is as previously defined; Xi-X5 are independently C, or CH;
B is linker; C is selected from:
Figure imgf000008_0001
CH; R7 and R9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R7 and R9 are both present, one of R7 or R9 must be OR' and if Y is absent, R9 must be OR'; and R8 is hydrogen, acyl, aliphatic or substituted aliphatic; (b)
Figure imgf000009_0001
; where Wi is O or S; J is O, NH or NCH3; and Ri0 is hydrogen or lower alkyl;
W1
HO.
7^V^
(c) ^*»^ ; where Wi is O or S; Y2 and Z2 are independently N, C or CH; and
(d)
Figure imgf000009_0002
; where Zi, Yi, and Wi are as previously defined; Rn and Ri2 are independently selected from hydrogen or aliphatic; R1, R2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
In one embodiment of the compounds of the present invention are compounds represented by formula (III) or (IV) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000010_0001
wherein X1-X5 are independently N or CR21, where R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(Rg) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(Rg), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Cy, W, X, Y, R' and Rs are as previously defined. In one example, X1-X5 are independently N or CR2I, where R2i is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, and substituted aliphatic; substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Cy, W, X, Y, R' and R8 are as previously defined.
In one embodiment of the compounds of the present invention are compounds represented by formula (V) or (VI) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000011_0001
(V) or
Figure imgf000011_0002
wherein X1-X10 are independently N or CR2I, where R2i is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted thiol, substituted or unsubstituted dialkylamino, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, , substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; W, R' and R8 are as previously defined. In one example, X1-X10 are independently N or CR2I, where R2i is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, C1-C6 alkyl, C2-C6 alkenyl, C2- C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; W, R' and R8 are as previously defined.
In one embodiment of the compounds of the present invention are compounds represented by formula (VII) or (VIII) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000012_0001
wherein X1-X10 are independently N or CR21, where R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; B2 is absent, O, S, SO, SO2, N(R8) or CO; W10 is OR', SR' or NR7R8, wherein R7 and Rs are as previously defined. In one example, X1-X10 are independently N or CR21, where R21 is independently selected from hydrogen, hydroxy, amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; B2 is absent, O, S, SO, SO2, N(R8) or CO; Wi is OR', SR' or NHR'; n is 1 to 7; R' and R8 are as previously defined.
In one embodiment of the compounds of the present invention are compounds represented by formula (IX) as illustrated below, or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
Figure imgf000013_0001
wherein X1-X10 are independently N or CR21, where R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl; B2 is absent, O, S, SO, SO2, or N(R8); Wi0 is OR', SR' or NR7R8, wherein R7 and R8 are as previously defined.
In one preferred subset of compounds of the invention, at least one of Xi to X5 is CR2I, where R2i is heterocyclylalkyl, and, more preferably, morpholinomethyl. In another preferred subset of compounds of the invention, X3 is C-(morpholin-4-yl- methyl) and X1, X2, X4 and X5 are CH.
Representative compounds according to the invention are those selected from the Table A below or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
TABLE A
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0002
Figure imgf000015_0003
Figure imgf000015_0004
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
The invention further provides methods for the prevention or treatment of diseases or conditions involving aberrant proliferation, differentiation or survival of cells. In one embodiment, the invention further provides for the use of one or more compounds of the invention in the manufacture of a medicament for halting or decreasing diseases involving aberrant proliferation, differentiation, or survival of cells. In preferred embodiments, the disease is cancer. In one embodiment, the invention relates to a method of treating cancer in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention. The term "cancer" refers to any cancer caused by the proliferation of malignant neoplastic cells, such as tumors, neoplasms, carcinomas, sarcomas, leukemias, lymphomas and the like. For example, cancers include, but are not limited to, mesothelioma, leukemias and lymphomas such as cutaneous T-cell lymphomas (CTCL), noncutaneous peripheral T-cell lymphomas, lymphomas associated with human T-cell lymphotrophic virus (HTLV) such as adult T-cell leukemia/lymphoma (ATLL), B-cell lymphoma, acute nonlymphocytic leukemias, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelogenous leukemia, lymphomas, and multiple myeloma, non-Hodgkin lymphoma, acute lymphatic leukemia (ALL), chronic lymphatic leukemia (CLL), Hodgkin's lymphoma, Burkitt lymphoma, adult T-cell leukemia lymphoma, acute-myeloid leukemia (AML), chronic myeloid leukemia (CML), or hepatocellular carcinoma. Further examples include myelodisplastic syndrome, childhood solid tumors such as brain tumors, neuroblastoma, retinoblastoma, Wilms' tumor, bone tumors, and soft- tissue sarcomas, common solid tumors of adults such as head and neck cancers (e.g., oral, laryngeal, nasopharyngeal and esophageal), genitourinary cancers (e.g., prostate, bladder, renal, uterine, ovarian, testicular), lung cancer (e.g., small-cell and non small cell), breast cancer, pancreatic cancer, melanoma and other skin cancers, stomach cancer, brain tumors, tumors related to Gorlin's syndrome (e.g., medulloblastoma, meningioma, etc.), and liver cancer. Additional exemplary forms of cancer which may be treated by the subject compounds include, but are not limited to, cancer of skeletal or smooth muscle, stomach cancer, cancer of the small intestine, rectum carcinoma, cancer of the salivary gland, endometrial cancer, adrenal cancer, anal cancer, rectal cancer, parathyroid cancer, and pituitary cancer. Additional cancers that the compounds described herein may be useful in preventing, treating and studying are, for example, colon carcinoma, familiary adenomatous polyposis carcinoma and hereditary non-polyposis colorectal cancer, or melanoma. Further, cancers include, but are not limited to, labial carcinoma, larynx carcinoma, hypopharynx carcinoma, tongue carcinoma, salivary gland carcinoma, gastric carcinoma, adenocarcinoma, thyroid cancer (medullary and papillary thyroid carcinoma, renal carcinoma, kidney parenchyma carcinoma, cervix carcinoma, uterine corpus carcinoma, endometrium carcinoma, chorion carcinoma, testis carcinoma, urinary carcinoma, melanoma, brain tumors such as glioblastoma, astrocytoma, meningioma, medulloblastoma and peripheral neuroectodermal tumors, gall bladder carcinoma, bronchial carcinoma, multiple myeloma, basalioma, teratoma, retinoblastoma, choroidea melanoma, seminoma, rhabdomyosarcoma, craniopharyngeoma, osteosarcoma, chondrosarcoma, myosarcoma, liposarcoma, fibrosarcoma, Ewing sarcoma, and plasmocytoma. In one aspect of the invention, the present invention provides for the use of one or more compounds of the invention in the manufacture of a medicament for the treatment of cancer.
In one embodiment, the present invention includes the use of one or more compounds of the invention in the manufacture of a medicament that prevents further aberrant proliferation, differentiation, or survival of cells. For example, compounds of the invention may be useful in preventing tumors from increasing in size or from reaching a metastatic state. The subject compounds may be administered to halt the progression or advancement of cancer or to induce tumor apoptosis or to inhibit tumor angiogenesis. In addition, the instant invention includes use of the subject compounds to prevent a recurrence of cancer. This invention further embraces the treatment or prevention of cell proliferative disorders such as hyperplasias, dysplasias and pre-cancerous lesions. Dysplasia is the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist. The subject compounds may be administered for the purpose of preventing said hyperplasias, dysplasias or pre-cancerous lesions from continuing to expand or from becoming cancerous. Examples of pre-cancerous lesions may occur in skin, esophageal tissue, breast and cervical intra-epithelial tissue.
"Combination therapy" includes the administration of the subject compounds in further combination with other biologically active ingredients (such as, but not limited to, a second and different antineoplastic agent) and non-drug therapies (such as, but not limited to, surgery or radiation treatment). For instance, the compounds of the invention can be used in combination with other pharmaceutically active compounds, preferably compounds that are able to enhance the effect of the compounds of the invention. The compounds of the invention can be administered simultaneously (as a single preparation or separate preparation) or sequentially to the other drug therapy. In general, a combination therapy envisions administration of two or more drugs during a single cycle or course of therapy.
In one aspect of the invention, the subject compounds may be administered in combination with one or more separate agents that modulate protein kinases involved in various disease states. Examples of such kinases may include, but are not limited to: serine/threonine specific kinases, receptor tyrosine specific kinases and non-receptor tyrosine specific kinases. Serine/threonine kinases include mitogen activated protein kinases (MAPK), meiosis specific kinase (MEK), RAF and aurora kinase. Examples of receptor kinase families include epidermal growth factor receptor (EGFR) (e.g. HER2/neu, HER3, HER4, ErbB, ErbB2, ErbB3, ErbB4, Xmrk, DER, Let23); fibroblast growth factor (FGF) receptor (e.g. FGF- R1,GFF-R2/BEK/CEK3, FGF-R3/CEK2, FGF-R4/TKF, KGF-R); hepatocyte growth/scatter factor receptor (HGFR) (e.g, MET, RON, SEA, SEX); insulin receptor (e.g. IGFI-R); Eph (e.g. CEK5, CEK8, EBK, ECK, EEK, EHK-I, EHK-2, ELK, EPH, ERK, HEK, MDK2, MDK5, SEK); AxI (e.g. Mer/Nyk, Rse); RET; and platelet-derived growth factor receptor (PDGFR) (e.g. PDGFα-R, PDGβ-R, CSFl- R/FMS, SCF-R/C-KIT, VEGF-R/FLT, NEK/FLK1, FLT3/FLK2/STK-1). Nonreceptor tyrosine kinase families include, but are not limited to, BCR-ABL (e.g. p43abl, ARG); BTK (e.g. ITK/EMT, TEC); CSK, FAK, FPS, JAK, SRC, BMX, FER, CDK and SYK.
In another aspect of the invention, the subject compounds may be administered in combination with one or more separate agents that modulate non- kinase biological targets or processes. Such targets include histone deacetylases (HDAC), DNA methyltransferase (DNMT), heat shock proteins (e.g. HSP90), and proteosomes.
In a preferred embodiment, subject compounds may be combined with antineoplastic agents (e.g. small molecules, monoclonal antibodies, antisense RNA, and fusion proteins) that inhibit one or more biological targets such as Zolinza, Tarceva, Iressa, Tykerb, Gleevec, Sutent, Sprycel, Nexavar, Sorafinib, CNF2024, RG108, BMS387032, Affinitak, Avastin, Herceptin, Erbitux, AG24322, PD325901, ZD6474, PD 184322, Obatodax, ABT737 and AEE788. Such combinations may enhance therapeutic efficacy over efficacy achieved by any of the agents alone and may prevent or delay the appearance of resistant mutational variants.
In certain preferred embodiments, the compounds of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents encompass a wide range of therapeutic treatments in the field of oncology. These agents are administered at various stages of the disease for the purposes of shrinking tumors, destroying remaining cancer cells left over after surgery, inducing remission, maintaining remission and/or alleviating symptoms relating to the cancer or its treatment. Examples of such agents include, but are not limited to, alkylating agents such as mustard gas derivatives (Mechlorethamine, cylophosphamide, chlorambucil, melphalan, ifosfamide), ethylenimines (thiotepa, hexamethylmelanine), Alkylsulfonates (Busulfan), Hydrazines and Triazines (Altretamine, Procarbazine, Dacarbazine and Temozolomide), Nitrosoureas
(Carmustine, Lomustine and Streptozocin), Ifosfamide and metal salts (Carboplatin, Cisplatin, and Oxaliplatin); plant alkaloids such as Podophyllotoxins (Etoposide and Tenisopide), Taxanes (Paclitaxel and Docetaxel), Vinca alkaloids (Vincristine, Vinblastine, Vindesine and Vinorelbine), and Camptothecan analogs (Irinotecan and Topotecan); anti-tumor antibiotics such as Chromomycins (Dactinomycin and
Plicamycin), Anthracyclines (Doxorubicin, Daunorubicin, Epirubicin, Mitoxantrone, Valrubicin and Idarubicin), and miscellaneous antibiotics such as Mitomycin, Actinomycin and Bleomycin; anti-metabolites such as folic acid antagonists (Methotrexate, Pemetrexed, Raltitrexed, Aminopterin), pyrimidine antagonists (5- Fluorouracil, Floxuridine, Cytarabine, Capecitabine, and Gemcitabine), purine antagonists (6-Mercaptopurine and 6-Thioguanine) and adenosine deaminase inhibitors (Cladribine, Fludarabine, Mercaptopurine, Clofarabine, Thioguanine, Nelarabine and Pentostatin); topoisomerase inhibitors such as topoisomerase I inhibitors (Ironotecan, topotecan) and topoisomerase II inhibitors (Amsacrine, etoposide, etoposide phosphate, teniposide); monoclonal antibodies (Alemtuzumab, Gemtuzumab ozogamicin, Rituximab, Trastuzumab, Ibritumomab Tioxetan, Cetuximab, Panitumumab, Tositumomab, Bevacizumab); and miscellaneous antineoplastics such as ribonucleotide reductase inhibitors (Hydroxyurea); adrenocortical steroid inhibitor (Mitotane); enzymes (Asparaginase and Pegaspargase); anti-microtubule agents (Estramustine); and retinoids (Bexarotene, Isotretinoin, Tretinoin (ATRA).
In certain preferred embodiments, the compounds of the invention are administered in combination with a chemoprotective agent. Chemoprotective agents act to protect the body or minimize the side effects of chemotherapy. Examples of such agents include, but are not limited to, amfostine, mesna, and dexrazoxane.
In one aspect of the invention, the subject compounds are administered in combination with radiation therapy. Radiation is commonly delivered internally (implantation of radioactive material near cancer site) or externally from a machine that employs photon (x-ray or gamma-ray) or particle radiation. Where the combination therapy further comprises radiation treatment, the radiation treatment may be conducted at any suitable time so long as a beneficial effect from the co- action of the combination of the therapeutic agents and radiation treatment is achieved. For example, in appropriate cases, the beneficial effect is still achieved when the radiation treatment is temporally removed from the administration of the therapeutic agents, perhaps by days or even weeks.
It will be appreciated that compounds of the invention can be used in combination with an immunotherapeutic agent. One form of immunotherapy is the generation of an active systemic tumor-specific immune response of host origin by administering a vaccine composition at a site distant from the tumor. Various types of vaccines have been proposed, including isolated tumor-antigen vaccines and antiidiotype vaccines. Another approach is to use tumor cells from the subject to be treated, or a derivative of such cells (reviewed by Schirrmacher et al. (1995) J. Cancer Res. Clin. Oncol. 121 :487). In U.S. Pat. No. 5,484,596, Hanna Jr. et al. claim a method for treating a resectable carcinoma to prevent recurrence or metastases, comprising surgically removing the tumor, dispersing the cells with collagenase, irradiating the cells, and vaccinating the patient with at least three consecutive doses of about 107 cells.
It will be appreciated that the compounds of the invention may advantageously be used in conjunction with one or more adjunctive therapeutic agents. Examples of suitable agents for adjunctive therapy include a 5HTi agonist, such as a triptan (e.g. sumatriptan or naratriptan); an adenosine Al agonist; an EP ligand; an NMDA modulator, such as a glycine antagonist; a sodium channel blocker (e.g. lamotrigine); a substance P antagonist (e.g. an NKi antagonist); a cannabinoid; acetaminophen or phenacetin; a 5-lipoxygenase inhibitor; a leukotriene receptor antagonist; a DMARD (e.g. methotrexate); gabapentin and related compounds; a tricyclic antidepressant (e.g. amitryptilline); a neurone stabilising antiepileptic drug; a mono-aminergic uptake inhibitor (e.g. venlafaxine); a matrix metalloproteinase inhibitor; a nitric oxide synthase (NOS) inhibitor, such as an iNOS or an nNOS inhibitor; an inhibitor of the release, or action, of tumour necrosis factor .alpha.; an antibody therapy, such as a monoclonal antibody therapy; an antiviral agent, such as a nucleoside inhibitor (e.g. lamivudine) or an immune system modulator (e.g. interferon); an opioid analgesic; a local anaesthetic; a stimulant, including caffeine; an ^-antagonist (e.g. ranitidine); a proton pump inhibitor (e.g. omeprazole); an antacid (e.g. aluminium or magnesium hydroxide; an antiflatulent (e.g. simethicone); a decongestant (e.g. phenylephrine, phenylpropanolamine, pseudoephedrine, oxymetazoline, epinephrine, naphazoline, xylometazoline, propylhexedrine, or levo-desoxyephedrine); an antitussive (e.g. codeine, hydrocodone, carmiphen, carbetapentane, or dextramethorphan); a diuretic; or a sedating or non-sedating antihistamine.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent neutral endopeptidases collectively capable of degrading essentially all matrix components. Over 20 MMP modulating agents are in pharmaceutical develop, almost half of which are indicated for cancer. The University of Toronto researchers have reported that HDACs regulate MMP expression and activity in 3T3 cells. In particular, inhibition of HDAC by trichostatin A (TSA), which has been shown to prevent tumorigenesis and metastasis, decreases mRNA as well as zymographic activity of gelatinase A (MMP2; Type IV collagenase), a matrix metalloproteinase, which is itself, implicated in tumorigenesis and metastasis (Ailenberg M., Silverman M., Biochem Biophys Res Commun. 2002 , 298: 110-115). Another recent article that discusses the relationship of HDAC and MMPs can be found in Young D.A., et al., Arthritis Research & Therapy, 2005, 7: 503. Furthermore, the commonality between HDAC and MMPs inhibitors is their zinc-binding functionality. Therefore, in one aspect of the invention, compounds of the invention can be used as MMP inhibitors and may be of use in the treatment of disorders relating to or associated with dysregulation of MMP. The overexpression and activation of MMPs are known to induce tissue destruction and are also associated with a number of specific diseases including rheumatoid arthritis, periodontal disease, cancer and atherosclerosis.
The compounds may also be used in the treatment of a disorder involving, relating to or, associated with dysregulation of histone deacetylase (HDAC). There are a number of disorders that have been implicated by or known to be mediated at least in part by HDAC activity, where HDAC activity is known to play a role in triggering disease onset, or whose symptoms are known or have been shown to be alleviated by HDAC inhibitors. Disorders of this type that would be expected to be amenable to treatment with the compounds of the invention include the following but not limited to: Anti-proliferative disorders (e.g. cancers); Neurodegenerative diseases including Huntington's Disease, Polyglutamine disease, Parkinson's Disease, Alzheimer's Disease, Seizures, Striatonigral degeneration, Progressive supranuclear palsy, Torsion dystonia, Spasmodic torticollis and dyskinesis, Familial tremor, Gilles de Ia Tourette syndrome, Diffuse Lewy body disease, Progressive supranuclear palsy, Pick's disease, intracerebral hemorrhage, Primary lateral sclerosis, Spinal muscular atrophy, Amyotrophic lateral sclerosis, Hypertrophic interstitial polyneuropathy, Retinitis pigmentosa, Hereditary optic atrophy, Hereditary spastic paraplegia, Progressive ataxia and Shy-Drager syndrome; Metabolic diseases including Type 2 diabetes; Degenerative Diseases of the Eye including Glaucoma, Age-related macular degeneration, Rubeotic glaucoma; Inflammatory diseases and/or Immune system disorders including Rheumatoid
Arthritis (RA), Osteoarthritis, Juvenile chronic arthritis, Graft versus Host disease, Psoriasis, Asthma, Spondyloarthropathy, Crohn's Disease, inflammatory bowel disease Colitis Ulcerosa, Alcoholic hepatitis, Diabetes, Sjoegrens's syndrome, Multiple Sclerosis, Ankylosing spondylitis, Membranous glomerulopathy, Discogenic pain, Systemic Lupus Erythematosus; Disease involving angiogenesis including cancer, psoriasis, rheumatoid arthritis; Psychological disorders including bipolar disease, schizophrenia, mania, depression and dementia; Cardiovascular Diseases including the prevention and treatment of ischemia-related or reperfusion- related vascular and myocardial tissue damage, heart failure, restenosis and arteriosclerosis; Fibrotic diseases including liver fibrosis, cystic fibrosis and angiofibroma; Infectious diseases including Fungal infections, such as candidiasis or Candida Albicans, Bacterial infections, Viral infections, such as Herpes Simplex, poliovirus, rhinovirus and coxsackievirus, Protozoal infections, such as Malaria, Leishmania infection, Trypanosoma brucei infection, Toxoplasmosis and coccidlosis and Haematopoietic disorders including thalassemia, anemia and sickle cell anemia.
In one embodiment, compounds of the invention can be used to induce or inhibit apoptosis, a physiological cell death process critical for normal development and homeostasis. Alterations of apoptotic pathways contribute to the pathogenesis of a variety of human diseases. Compounds of the invention, as modulators of apoptosis, will be useful in the treatment of a variety of human diseases with aberrations in apoptosis including cancer (particularly, but not limited to, follicular lymphomas, carcinomas with p53 mutations, hormone dependent tumors of the breast, prostate and ovary, and precancerous lesions such as familial adenomatous polyposis), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, immune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, and autoimmune diabetes mellitus), neurodegenerative disorders (including, but not limited to, Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), AIDS, myelodysplastic syndromes, aplastic anemia, ischemic injury associated myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol induced liver diseases, hematological diseases (including, but not limited to, chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including, but not limited to, osteoporosis and arthritis), aspirin-sensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases, and cancer pain.
In one aspect, the invention provides the use of compounds of the invention for the treatment and/or prevention of immune response or immune -mediated responses and diseases, such as the prevention or treatment of rejection following transplantation of synthetic or organic grafting materials, cells, organs or tissue to replace all or part of the function of tissues, such as heart, kidney, liver, bone marrow, skin, cornea, vessels, lung, pancreas, intestine, limb, muscle, nerve tissue, duodenum, small-bowel, pancreatic-islet-cell, including xeno-transplants, etc.; to treat or prevent graft-versus-host disease, autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, thyroiditis, Hashimoto's thyroiditis, multiple sclerosis, myasthenia gravis, type I diabetes uveitis, juvenile-onset or recent-onset diabetes mellitus, uveitis, Graves disease, psoriasis, atopic dermatitis, Crohn's disease, ulcerative colitis, vasculitis, auto-antibody mediated diseases, aplastic anemia, Evan's syndrome, autoimmune hemolytic anemia, and the like; and further to treat infectious diseases causing aberrant immune response and/or activation, such as traumatic or pathogen induced immune disregulation, including for example, that which are caused by hepatitis B and C infections, HIV, staphylococcus aureus infection, viral encephalitis, sepsis, parasitic diseases wherein damage is induced by an inflammatory response (e.g., leprosy); and to prevent or treat circulatory diseases, such as arteriosclerosis, atherosclerosis, vasculitis, polyarteritis nodosa and myocarditis. In addition, the present invention may be used to prevent/suppress an immune response associated with a gene therapy treatment, such as the introduction of foreign genes into autologous cells and expression of the encoded product. Thus in one embodiment, the invention relates to a method of treating an immune response disease or disorder or an immune-mediated response or disorder in a subject in need of treatment comprising administering to said subject a therapeutically effective amount of a compound of the invention.
In one aspect, the invention provides the use of compounds of the invention in the treatment of a variety of neurodegenerative diseases, a non-exhaustive list of which includes: I. Disorders characterized by progressive dementia in the absence of other prominent neurologic signs, such as Alzheimer's disease; Senile dementia of the Alzheimer type; and Pick's disease (lobar atrophy); II. Syndromes combining progressive dementia with other prominent neurologic abnormalities such as A) syndromes appearing mainly in adults (e.g., Huntington's disease, Multiple system atrophy combining dementia with ataxia and/or manifestations of Parkinson's disease, Progressive supranuclear palsy (Steel-Richardson-Olszewski), diffuse Lewy body disease, and corticodentatonigral degeneration); and B) syndromes appearing mainly in children or young adults (e.g., Hallervorden-Spatz disease and progressive familial myoclonic epilepsy); III. Syndromes of gradually developing abnormalities of posture and movement such as paralysis agitans (Parkinson's disease), striatonigral degeneration, progressive supranuclear palsy, torsion dystonia (torsion spasm; dystonia musculorum deformans), spasmodic torticollis and other dyskinesis, familial tremor, and Gilles de Ia Tourette syndrome; IV. Syndromes of progressive ataxia such as cerebellar degenerations (e.g., cerebellar cortical degeneration and olivopontocerebellar atrophy (OPCA)); and spinocerebellar degeneration (Friedreich's atazia and related disorders); V. Syndrome of central autonomic nervous system failure (Shy-Drager syndrome); VI. Syndromes of muscular weakness and wasting without sensory changes (motorneuron disease such as amyotrophic lateral sclerosis, spinal muscular atrophy (e.g., infantile spinal muscular atrophy (Werdnig-Hoffman), juvenile spinal muscular atrophy (Wohlfart- Kugelberg-Welander) and other forms of familial spinal muscular atrophy), primary lateral sclerosis, and hereditary spastic paraplegia; VII. Syndromes combining muscular weakness and wasting with sensory changes (progressive neural muscular atrophy; chronic familial polyneuropathies) such as peroneal muscular atrophy (Charcot-Marie-Tooth), hypertrophic interstitial polyneuropathy (Dejerine-Sottas), and miscellaneous forms of chronic progressive neuropathy; VIII Syndromes of progressive visual loss such as pigmentary degeneration of the retina (retinitis pigmentosa), and hereditary optic atrophy (Leber's disease). Furthermore, compounds of the invention can be implicated in chromatin remodeling.
The invention encompasses pharmaceutical compositions comprising pharmaceutically acceptable salts of the compounds of the invention as described above. The invention also encompasses pharmaceutical compositions comprising hydrates of the compounds of the invention. The term "hydrate" includes but is not limited to hemihydrate, monohydrate, dihydrate, trihydrate and the like. The invention further encompasses pharmaceutical compositions comprising any solid or liquid physical form of the compound of the invention. For example, the compounds can be in a crystalline form, in amorphous form, and have any particle size. The particles may be micronized, or may be agglomerated, particulate granules, powders, oils, oily suspensions or any other form of solid or liquid physical form. The compounds of the invention, and derivatives, fragments, analogs, homo logs, pharmaceutically acceptable salts or hydrate thereof can be incorporated into pharmaceutical compositions suitable for administration, together with a pharmaceutically acceptable carrier or excipient. Such compositions typically comprise a therapeutically effective amount of any of the compounds above, and a pharmaceutically acceptable carrier. Preferably, the effective amount when treating cancer is an amount effective to selectively induce terminal differentiation of suitable neoplastic cells and less than an amount which causes toxicity in a patient.
Compounds of the invention may be administered by any suitable means, including, without limitation, parenteral, intravenous, intramuscular, subcutaneous, implantation, oral, sublingual, buccal, nasal, pulmonary, transdermal, topical, vaginal, rectal, and transmucosal administrations or the like. Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. Pharmaceutical preparations include a solid, semisolid or liquid preparation (tablet, pellet, troche, capsule, suppository, cream, ointment, aerosol, powder, liquid, emulsion, suspension, syrup, injection etc.) containing a compound of the invention as an active ingredient, which is suitable for selected mode of administration. In one embodiment, the pharmaceutical compositions are administered orally, and are thus formulated in a form suitable for oral administration, i.e., as a solid or a liquid preparation. Suitable solid oral formulations include tablets, capsules, pills, granules, pellets, sachets and effervescent, powders, and the like. Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like. In one embodiment of the present invention, the composition is formulated in a capsule. In accordance with this embodiment, the compositions of the present invention comprise in addition to the active compound and the inert carrier or diluent, a hard gelatin capsule.
Any inert excipient that is commonly used as a carrier or diluent may be used in the formulations of the present invention, such as for example, a gum, a starch, a sugar, a cellulosic material, an acrylate, or mixtures thereof. A preferred diluent is microcrystalline cellulose. The compositions may further comprise a disintegrating agent (e.g., croscarmellose sodium) and a lubricant (e.g., magnesium stearate), and may additionally comprise one or more additives selected from a binder, a buffer, a protease inhibitor, a surfactant, a solubilizing agent, a plasticizer, an emulsifier, a stabilizing agent, a viscosity increasing agent, a sweetener, a film forming agent, or any combination thereof. Furthermore, the compositions of the present invention may be in the form of controlled release or immediate release formulations. For liquid formulations, pharmaceutically acceptable carriers may be aqueous or non-aqueous solutions, suspensions, emulsions or oils. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Examples of oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish- liver oil. Solutions or suspensions can also include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
In addition, the compositions may further comprise binders (e.g., acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g., cornstarch, potato starch, alginic acid, silicon dioxide, croscarmellose sodium, crospovidone, guar gum, sodium starch glycolate, Primogel), buffers (e.g., tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g., sodium lauryl sulfate), permeation enhancers, solubilizing agents (e.g., glycerol, polyethylene glycerol), a glidant (e.g., colloidal silicon dioxide), anti-oxidants (e.g., ascorbic acid, sodium metabisulfϊte, butylated hydroxyanisole), stabilizers (e.g., hydroxypropyl cellulose, hydroxypropylmethyl cellulose), viscosity increasing agents (e.g., carbomer, colloidal silicon dioxide, ethyl cellulose, guar gum), sweeteners (e.g., sucrose, aspartame, citric acid), flavoring agents (e.g., peppermint, methyl salicylate, or orange flavoring), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), lubricants (e.g., stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate), flow-aids (e.g., colloidal silicon dioxide), plasticizers (e.g., diethyl phthalate, triethyl citrate), emulsifiers (e.g., carbomer, hydroxypropyl cellulose, sodium lauryl sulfate), polymer coatings (e.g., poloxamers or poloxamines), coating and film forming agents (e.g., ethyl cellulose, acrylates, polymethacrylates) and/or adjuvants. In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat No. 4,522,811.
It is especially advantageous to formulate oral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration. Daily administration may be repeated continuously for a period of several days to several years. Oral treatment may continue for between one week and the life of the patient. Preferably the administration may take place for five consecutive days after which time the patient can be evaluated to determine if further administration is required. The administration can be continuous or intermittent, e.g., treatment for a number of consecutive days followed by a rest period. The compounds of the present invention may be administered intravenously on the first day of treatment, with oral administration on the second day and all consecutive days thereafter.
The preparation of pharmaceutical compositions that contain an active component is well understood in the art, for example, by mixing, granulating, or tablet- forming processes. The active therapeutic ingredient is often mixed with excipients that are pharmaceutically acceptable and compatible with the active ingredient. For oral administration, the active agents are mixed with additives customary for this purpose, such as vehicles, stabilizers, or inert diluents, and converted by customary methods into suitable forms for administration, such as tablets, coated tablets, hard or soft gelatin capsules, aqueous, alcoholic or oily solutions and the like as detailed above.
The amount of the compound administered to the patient is less than an amount that would cause toxicity in the patient. In certain embodiments, the amount of the compound that is administered to the patient is less than the amount that causes a concentration of the compound in the patient's plasma to equal or exceed the toxic level of the compound. Preferably, the concentration of the compound in the patient's plasma is maintained at about 10 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 25 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 50 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 100 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 1000 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 2500 nM. In one embodiment, the concentration of the compound in the patient's plasma is maintained at about 5000 nM. The optimal amount of the compound that should be administered to the patient in the practice of the present invention will depend on the particular compound used and the type of cancer being treated.
DEFINITIONS
Listed below are definitions of various terms used to describe this invention. These definitions apply to the terms as they are used throughout this specification and claims, unless otherwise limited in specific instances, either individually or as part of a larger group.
An "aliphatic group" or "aliphatic" is non-aromatic moiety that may be saturated (e.g. single bond) or contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic, contain carbon, hydrogen or, optionally, one or more heteroatoms and may be substituted or unsubstituted. An aliphatic group, when used as a linker, preferably contains between about 1 and about 24 atoms, more preferably between about 4 to about 24 atoms, more preferably between about 4-12 atoms, more typically between about 4 and about 8 atoms. An aliphatic group, when used as a substituent, preferably contains between about 1 and about 24 atoms, more preferably between about 1 to about 10 atoms, more preferably between about 1-8 atoms, more typically between about 1 and about 6 atoms. In addition to aliphatic hydrocarbon groups, aliphatic groups include, for example, polyalkoxyalkyls, such as polyalkylene glycols, polyamines, and polyimines, for example. Such aliphatic groups may be further substituted. It is understood that aliphatic groups may include alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl groups described herein. The term "substituted carbonyl" includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom, and tautomeric forms thereof. Examples of moieties that contain a substituted carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc. The term "carbonyl moiety" refers to groups such as "alkylcarbonyl" groups wherein an alkyl group is covalently bound to a carbonyl group, "alkenylcarbonyl" groups wherein an alkenyl group is covalently bound to a carbonyl group, "alkynylcarbonyl" groups wherein an alkynyl group is covalently bound to a carbonyl group, "arylcarbonyl" groups wherein an aryl group is covalently attached to the carbonyl group. Furthermore, the term also refers to groups wherein one or more heteroatoms are covalently bonded to the carbonyl moiety. For example, the term includes moieties such as, for example, aminocarbonyl moieties, (wherein a nitrogen atom is bound to the carbon of the carbonyl group, e.g., an amide).
The term "acyl" refers to hydrogen, alkyl, partially saturated or fully saturated cycloalkyl, partially saturated or fully saturated heterocycle, aryl, and heteroaryl substituted carbonyl groups. For example, acyl includes groups such as (Ci-Ce)alkanoyl (e.g., formyl, acetyl, propionyl, butyryl, valeryl, caproyl, t- butylacetyl, etc.), (C3-Ce)cycloalkylcarbonyl (e.g., cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl, cyclohexylcarbonyl, etc.), heterocyclic carbonyl (e.g., pyrrolidinylcarbonyl, pyrrolid-2-one-5 -carbonyl, piperidinylcarbonyl, piperazinylcarbonyl, tetrahydrofuranylcarbonyl, etc.), aroyl (e.g., benzoyl) and heteroaroyl (e.g., thiophenyl-2-carbonyl, thiophenyl-3 -carbonyl, furanyl-2-carbonyl, furanyl-3 -carbonyl, lH-pyrroyl-2-carbonyl, lH-pyrroyl-3 -carbonyl, benzo[b]thiophenyl-2-carbonyl, etc.). In addition, the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be any one of the groups described in the respective definitions. When indicated as being "optionally substituted", the acyl group may be unsubstituted or optionally substituted with one or more substituents (typically, one to three substituents) independently selected from the group of substituents listed below in the definition for "substituted" or the alkyl, cycloalkyl, heterocycle, aryl and heteroaryl portion of the acyl group may be substituted as described above in the preferred and more preferred list of substituents, respectively.
The term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about eight carbon atoms. Examples of such radicals include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, iso-amyl, hexyl and the like. The term "alkenyl" embraces linear or branched radicals having at least one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower alkenyl" radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkenyl radicals include ethenyl, allyl, propenyl, butenyl and 4-methylbutenyl. The terms "alkenyl", and "lower alkenyl", embrace radicals having "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations.
The term "alkynyl" embraces linear or branched radicals having at least one carbon-carbon triple bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl" radicals having two to about ten carbon atoms and more preferably about two to about eight carbon atoms. Examples of alkynyl radicals include propargyl, 1- propynyl, 2-propynyl, 1-butyne, 2-butynyl and 1-pentynyl.
The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. More preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "cycloalkenyl" embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. Cycloalkenyl radicals that are partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called "cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about eight carbon atoms. Examples of such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl.
The term "alkoxy" embraces linear or branched oxy-containing radicals each having alkyl portions of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkoxy radicals are "lower alkoxy" radicals having one to about ten carbon atoms and more preferably having one to about eight carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy and tert-butoxy.
The term "alkoxyalkyl" embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl radicals.
The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl. The terms "heterocyclyl", "heterocycle" "heterocyclic" or "heterocyclo" embrace saturated, partially unsaturated and unsaturated heteroatom-containing ring- shaped radicals, which can also be called "heterocyclyl", "heterocycloalkenyl" and "heteroaryl" correspondingly, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclyl radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.); saturated 3 to 6- membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. morpholinyl, etc.); saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., thiazolidinyl, etc.). Examples of partially unsaturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. Heterocyclyl radicals may include a pentavalent nitrogen, such as in tetrazolium and pyridinium radicals. The term "heterocycle" also embraces radicals where heterocyclyl radicals are fused with aryl or cycloalkyl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like.
The term "heteroaryl" embraces unsaturated heterocyclyl radicals. Examples of heteroaryl radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H- 1,2,4- triazolyl, lH-l,2,3-triazolyl, 2H-l,2,3-triazolyl, etc.) tetrazolyl (e.g. lH-tetrazolyl, 2H-tetrazolyl, etc.), etc.; unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., tetrazolo[l,5-b]pyridazinyl, etc.), etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur atom, for example, thienyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5- oxadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. benzoxazolyl, benzoxadiazolyl, etc.); unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazolyl, benzothiadiazolyl, etc.) and the like.
The term "heterocycloalkyl" embraces heterocyclo-substituted alkyl radicals. More preferred heterocycloalkyl radicals are "lower heterocycloalkyl" radicals having one to six carbon atoms in the heterocyclo radicals.
The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom. Preferred alkylthio radicals have alkyl radicals of one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylthio radicals have alkyl radicals are "lower alkylthio" radicals having one to about ten carbon atoms. Most preferred are alkylthio radicals having lower alkyl radicals of one to about eight carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, butylthio and hexylthio.
The terms "aralkyl" or "arylalkyl" embrace aryl-substituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl.
The term "aryloxy" embraces aryl radicals attached through an oxygen atom to other radicals.
The terms "aralkoxy" or "arylalkoxy" embrace aralkyl radicals attached through an oxygen atom to other radicals. The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. Preferred aminoalkyl radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred aminoalkyl radicals are "lower aminoalkyl" that have alkyl radicals having one to about ten carbon atoms. Most preferred are aminoalkyl radicals having lower alkyl radicals having one to eight carbon atoms. Examples of such radicals include aminomethyl, aminoethyl, and the like.
The term "alkylamino" denotes amino groups which are substituted with one or two alkyl radicals. Preferred alkylamino radicals have alkyl radicals having about one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More preferred alkylamino radicals are "lower alkylamino" that have alkyl radicals having one to about ten carbon atoms. Most preferred are alkylamino radicals having lower alkyl radicals having one to about eight carbon atoms. Suitable lower alkylamino may be monosubstituted N-alkylamino or disubstituted N,N-alkylamino, such as N-methylamino, N-ethylamino, N,N-dimethylamino, N,N-diethylamino or the like.
The term "linker" means an organic moiety that connects two parts of a compound. Linkers typically comprise a direct bond or an atom such as oxygen or sulfur, a unit such as NR8, C(O), C(O)NH, SO, SO2, SO2NH or a chain of atoms, such as substituted or unsubstituted alkyl, substituted or unsubstituted alkenyl, substituted or unsubstituted alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heteroarylalkyl, heteroarylalkenyl, heteroarylalkynyl, heterocyclylalkyl, heterocyclylalkenyl, heterocyclylalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, alkylarylalkyl, alkylarylalkenyl, alkylarylalkynyl, alkenylarylalkyl, alkenylarylalkenyl, alkenylarylalkynyl, alkynylarylalkyl, alkynylarylalkenyl, alkynylarylalkynyl, alkylheteroarylalkyl, alkylheteroarylalkenyl, alkylheteroarylalkynyl, alkenylheteroarylalkyl, alkenylheteroarylalkenyl, alkenylheteroarylalkynyl, alkynylheteroarylalkyl, alkynylheteroarylalkenyl, alkynylheteroarylalkynyl, alkylheterocyclylalkyl, alkylheterocyclylalkenyl, alkylhererocyclylalkynyl, alkenylheterocyclylalkyl, alkenylheterocyclylalkenyl, alkenylheterocyclylalkynyl, alkynylheterocyclylalkyl, alkynylheterocyclylalkenyl, alkynylheterocyclylalkynyl, alkylaryl, alkenylaryl, alkynylaryl, alkylheteroaryl, alkenylheteroaryl, alkynylhereroaryl, which one or more methylenes can be interrupted or terminated by O, S, S(O), SO2, N(R8), C(O), substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocyclic; where R8 is hydrogen, acyl, aliphatic or substituted aliphatic. In one embodiment, the linker B is between 1-24 atoms, preferably 4-24 atoms, preferably 4-18 atoms, more preferably 4-12 atoms, and most preferably about 4-10 atoms. In some embodiments, the linker is a C(O)NH(alkyl) chain or an alkoxy chain.
The term "substituted" refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, arylthio, alkylthioalkyl, arylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, arylsulfonylalkyl, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylaminoalkyl, arylaminoalkyl, aminoalkylamino, hydroxy, alkoxyalkyl, carboxyalkyl, alkoxycarbonylalkyl, aminocarbonylalkyl, acyl, aralkoxycarbonyl, carboxylic acid, sulfonic acid, sulfonyl, phosphonic acid, aryl, heteroaryl, heterocyclic, and aliphatic. It is understood that the substituent may be further substituted.
For simplicity, chemical moieties are defined and referred to throughout can be univalent chemical moieties (e.g., alkyl, aryl, etc.) or multivalent moieties under the appropriate structural circumstances clear to those skilled in the art. For example, an "alkyl" moiety can be referred to a monovalent radical (e.g. CH3-CH2-), or in other instances, a bivalent linking moiety can be "alkyl," in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., -CH2-CH2-), which is equivalent to the term "alkylene." Similarly, in circumstances in which divalent moieties are required and are stated as being "alkoxy", "alkylamino", "aryloxy", "alkylthio", "aryl", "heteroaryl", "heterocyclic", "alkyl" "alkenyl", "alkynyl", "aliphatic", or "cycloalkyl", those skilled in the art will understand that the terms alkoxy", "alkylamino", "aryloxy", "alkylthio", "aryl", "heteroaryl", "heterocyclic", "alkyl", "alkenyl", "alkynyl", "aliphatic", or "cycloalkyl" refer to the corresponding divalent moiety.
The terms "halogen" or "halo" as used herein, refers to an atom selected from fluorine, chlorine, bromine and iodine.
As used herein, the term "aberrant proliferation" refers to abnormal cell growth.
The phrase "adjunctive therapy" encompasses treatment of a subject with agents that reduce or avoid side effects associated with the combination therapy of the present invention, including, but not limited to, those agents, for example, that reduce the toxic effect of anticancer drugs, e.g., bone resorption inhibitors, cardioprotective agents; prevent or reduce the incidence of nausea and vomiting associated with chemotherapy, radiotherapy or operation; or reduce the incidence of infection associated with the administration of myelosuppressive anticancer drugs.
The term "angiogenesis," as used herein, refers to the formation of blood vessels. Specifically, angiogenesis is a multi-step process in which endothelial cells focally degrade and invade through their own basement membrane, migrate through interstitial stroma toward an angiogenic stimulus, proliferate proximal to the migrating tip, organize into blood vessels, and reattach to newly synthesized basement membrane (see Folkman et al., Adv. Cancer Res., Vol. 43, pp. 175-203 (1985)). Anti-angiogenic agents interfere with this process. Examples of agents that interfere with several of these steps include thrombospondin-1, angiostatin, endostatin, interferon alpha and compounds such as matrix metalloproteinase (MMP) inhibitors that block the actions of enzymes that clear and create paths for newly forming blood vessels to follow; compounds, such as .alpha.v.beta.3 inhibitors, that interfere with molecules that blood vessel cells use to bridge between a parent blood vessel and a tumor; agents, such as specific COX-2 inhibitors, that prevent the growth of cells that form new blood vessels; and protein-based compounds that simultaneously interfere with several of these targets.
The term "apoptosis" as used herein refers to programmed cell death as signaled by the nuclei in normally functioning human and animal cells when age or state of cell health and condition dictates. An "apoptosis inducing agent" triggers the process of programmed cell death.
The term "cancer" as used herein denotes a class of diseases or disorders characterized by uncontrolled division of cells and the ability of these cells to invade other tissues, either by direct growth into adjacent tissue through invasion or by implantation into distant sites by metastasis.
The term "compound" is defined herein to include pharmaceutically acceptable salts, solvates, hydrates, polymorphs, enantiomers, diastereoisomers, racemates and the like of the compounds having a formula as set forth herein. The term "device" refers to any appliance, usually mechanical or electrical, designed to perform a particular function. As used herein, the term "dysplasia" refers to abnormal cell growth, and typically refers to the earliest form of pre-cancerous lesion recognizable in a biopsy by a pathologist.
As used herein, the term "effective amount of the subject compounds," with respect to the subject method of treatment, refers to an amount of the subject compound which, when delivered as part of desired dose regimen, brings about, e.g. a change in the rate of cell proliferation and/or state of differentiation and/or rate of survival of a cell to clinically acceptable standards. This amount may further relieve to some extent one or more of the symptoms of a neoplasia disorder, including, but is not limited to: 1) reduction in the number of cancer cells; 2) reduction in tumor size; 3) inhibition (i.e., slowing to some extent, preferably stopping) of cancer cell infiltration into peripheral organs; 4) inhibition (i.e., slowing to some extent, preferably stopping) of tumor metastasis; 5) inhibition, to some extent, of tumor growth; 6) relieving or reducing to some extent one or more of the symptoms associated with the disorder; and/or 7) relieving or reducing the side effects associated with the administration of anticancer agents.
The term "hyperplasia," as used herein, refers to excessive cell division or growth.
The phrase an "immunotherapeutic agent" refers to agents used to transfer the immunity of an immune donor, e.g., another person or an animal, to a host by inoculation. The term embraces the use of serum or gamma globulin containing performed antibodies produced by another individual or an animal; nonspecific systemic stimulation; adjuvants; active specific immunotherapy; and adoptive immunotherapy. Adoptive immunotherapy refers to the treatment of a disease by therapy or agents that include host inoculation of sensitized lymphocytes, transfer factor, immune RNA, or antibodies in serum or gamma globulin.
The term "inhibition," in the context of neoplasia, tumor growth or tumor cell growth, may be assessed by delayed appearance of primary or secondary tumors, slowed development of primary or secondary tumors, decreased occurrence of primary or secondary tumors, slowed or decreased severity of secondary effects of disease, arrested tumor growth and regression of tumors, among others. In the extreme, complete inhibition, is referred to herein as prevention or chemoprevention. The term "metastasis," as used herein, refers to the migration of cancer cells from the original tumor site through the blood and lymph vessels to produce cancers in other tissues. Metastasis also is the term used for a secondary cancer growing at a distant site. The term "neoplasm," as used herein, refers to an abnormal mass of tissue that results from excessive cell division. Neoplasms may be benign (not cancerous), or malignant (cancerous) and may also be called a tumor. The term "neoplasia" is the pathological process that results in tumor formation.
As used herein, the term "pre-cancerous" refers to a condition that is not malignant, but is likely to become malignant if left untreated.
The term "proliferation" refers to cells undergoing mitosis. The phrase "HSP90 related disease or disorder" refers to a disease or disorder characterized by inappropriate HSP90 activity or over-activity of the HSP90. Inappropriate activity refers to either; (i) HSP90 expression in cells which normally do not express HSP90; (ii) increased HSP90 expression leading to unwanted cell proliferation, differentiation and/or growth; or, (iii) decreased HSP90 expression leading to unwanted reductions in cell proliferation, differentiation and/or growth. Over-activity of HSP90 refers to either amplification of the gene encoding a particular HSP90 or production of a level of HSP90 activity which can correlate with a cell proliferation, differentiation and/or growth disorder (that is, as the level of the HSP90 increases, the severity of one or more of the symptoms of the cellular disorder increases).
The phrase a "radio therapeutic agent" refers to the use of electromagnetic or particulate radiation in the treatment of neoplasia. The term "recurrence" as used herein refers to the return of cancer after a period of remission. This may be due to incomplete removal of cells from the initial cancer and may occur locally (the same site of initial cancer), regionally (in vicinity of initial cancer, possibly in the lymph nodes or tissue), and/or distally as a result of metastasis. The term "treatment" refers to any process, action, application, therapy, or the like, wherein a mammal, including a human being, is subject to medical aid with the object of improving the mammal's condition, directly or indirectly. The term "vaccine" includes agents that induce the patient's immune system to mount an immune response against the tumor by attacking cells that express tumor associated antigens (Teas).
As used herein, the term "pharmaceutically acceptable salt" refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge, et al. describes pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 66: 1-19 (1977). The salts can be prepared in situ during the final isolation and purification of the compounds of the invention, or separately by reacting the free base function with a suitable organic acid or inorganic acid. Examples of pharmaceutically acceptable nontoxic acid addition salts include, but are not limited to, salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, maleic acid, tartaric acid, citric acid, succinic acid lactobionic acid or malonic acid or by using other methods used in the art such as ion exchange. Other pharmaceutically acceptable salts include, but are not limited to, adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p- toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, alkyl having from 1 to 6 carbon atoms, sulfonate and aryl sulfonate. As used herein, the term "pharmaceutically acceptable ester" refers to esters which hydrolyze in vivo and include those that break down readily in the human body to leave the parent compound or a salt thereof. Suitable ester groups include, for example, those derived from pharmaceutically acceptable aliphatic carboxylic acids, particularly alkanoic, alkenoic, cycloalkanoic and alkanedioic acids, in which each alkyl or alkenyl moiety advantageously has not more than 6 carbon atoms. Examples of particular esters include, but are not limited to, formates, acetates, propionates, butyrates, acrylates and ethylsuccinates.
The term "pharmaceutically acceptable prodrugs" as used herein refers to those prodrugs of the compounds of the present invention which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals with undue toxicity, irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the present invention. "Prodrug", as used herein means a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis) to a compound of the invention. Various forms of prodrugs are known in the art, for example, as discussed in Bundgaard, (ed.), Design of Prodrugs, Elsevier (1985); Widder, et al. (ed.), Methods in Enzymology, vol. 4, Academic Press (1985); Krogsgaard-Larsen, et al., (ed). "Design and Application of Prodrugs, Textbook of Drug Design and Development, Chapter 5, 113-191 (1991); Bundgaard, et al., Journal of Drug Deliver Reviews, 8:1-38(1992); Bundgaard, J. of Pharmaceutical Sciences, 77:285 et seq. (1988); Higuchi and Stella (eds.) Prodrugs as Novel Drug Delivery Systems, American Chemical Society (1975); and Bernard Testa & Joachim Mayer, "Hydrolysis In Drug And Prodrug Metabolism: Chemistry, Biochemistry And Enzymology," John Wiley and Sons, Ltd. (2002).
As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration, such as sterile pyrogen-free water. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
As used herein, the term "pre-cancerous" refers to a condition that is not malignant, but is likely to become malignant if left untreated.
The term "subject" as used herein refers to an animal. Preferably the animal is a mammal. More preferably the mammal is a human. A subject also refers to, for example, dogs, cats, horses, cows, pigs, guinea pigs, fish, birds and the like.
The compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and may include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
The synthesized compounds can be separated from a reaction mixture and further purified by a method such as column chromatography, high pressure liquid chromatography, or recrystallization. As can be appreciated by the skilled artisan, further methods of synthesizing the compounds of the formulae herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock,
Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof. The compounds described herein contain one or more asymmetric centers and thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that may be defined, in terms of absolute stereochemistry, as (R)- or (S)- , or as (D)- or (L)- for amino acids. The present invention is meant to include all such possible isomers, as well as their racemic and optically pure forms. Optical isomers may be prepared from their respective optically active precursors by the procedures described above, or by resolving the racemic mixtures. The resolution can be carried out in the presence of a resolving agent, by chromatography or by repeated crystallization or by some combination of these techniques which are known to those skilled in the art. Further details regarding resolutions can be found in Jacques, et al, Enantiomers, Racemates, and Resolutions (John Wiley & Sons, 1981). When the compounds described herein contain olefmic double bonds, other unsaturation, or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers and/or cis- and trans- isomers. Likewise, all tautomeric forms are also intended to be included. The configuration of any carbon-carbon double bond appearing herein is selected for convenience only and is not intended to designate a particular configuration unless the text so states; thus a carbon-carbon double bond or carbon- heteroatom double bond depicted arbitrarily herein as trans may be cis, trans, or a mixture of the two in any proportion. Pharmaceutical Compositions
The pharmaceutical compositions of the present invention comprise a therapeutically effective amount of a compound of the present invention formulated together with one or more pharmaceutically acceptable carriers or excipients.
As used herein, the term "pharmaceutically acceptable carrier or excipient" means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Some examples of materials which can serve as pharmaceutically acceptable carriers are sugars such as lactose, glucose and sucrose; cyclodextrins such as alpha- (α), beta- (β) and gamma- (γ) cyclodextrins; starches such as corn starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen-free water; isotonic saline; Ringer's solution; ethyl alcohol, and phosphate buffer solutions, as well as other non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the composition, according to the judgment of the formulator. The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifϊers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions, may be formulated according to the known art using suitable dispersing or wetting agents and suspending agents. The sterile injectable preparation may also be a sterile injectable solution, suspension or emulsion in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S. P. and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid are used in the preparation of injectables.
The injectable formulations can be sterilized, for example, by filtration through a bacterial-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
In order to prolong the effect of a drug, it is often desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions that are compatible with body tissues.
Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the active compound is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or: a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, c) humectants such as glycerol, d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, e) solution retarding agents such as paraffin, f) absorption accelerators such as quaternary ammonium compounds, g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, h) absorbents such as kaolin and bentonite clay, and i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may also comprise buffering agents.
Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally contain opacifying agents and can also be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions that can be used include polymeric substances and waxes.
Dosage forms for topical or transdermal administration of a compound of this invention include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants or patches. The active component is admixed under sterile conditions with a pharmaceutically acceptable carrier and any needed preservatives or buffers as may be required. Ophthalmic formulation, ear drops, eye ointments, powders and solutions are also contemplated as being within the scope of this invention. The ointments, pastes, creams and gels may contain, in addition to an active compound of this invention, excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
Powders and sprays can contain, in addition to the compounds of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons. Transdermal patches have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms can be made by dissolving or dispensing the compound in the proper medium. Absorption enhancers can also be used to increase the flux of the compound across the skin. The rate can be controlled by either providing a rate controlling membrane or by dispersing the compound in a polymer matrix or gel. For pulmonary delivery, a therapeutic composition of the invention is formulated and administered to the patient in solid or liquid particulate form by direct administration e.g., inhalation into the respiratory system. Solid or liquid particulate forms of the active compound prepared for practicing the present invention include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. Delivery of aerosolized therapeutics, particularly aerosolized antibiotics, is known in the art (see, for example U.S. Pat. No. 5,767,068 to VanDevanter et al., U.S. Pat. No. 5,508,269 to Smith et ah, and WO 98/43650 by Montgomery, all of which are incorporated herein by reference). A discussion of pulmonary delivery of antibiotics is also found in U.S. Pat. No. 6,014,969, incorporated herein by reference.
By a "therapeutically effective amount" of a compound of the invention is meant an amount of the compound which confers a therapeutic effect on the treated subject, at a reasonable benefit/risk ratio applicable to any medical treatment. The therapeutic effect may be objective (i.e., measurable by some test or marker) or subjective (i.e., subject gives an indication of or feels an effect). An effective amount of the compound described above may range from about 0.1 mg/Kg to about 500 mg/Kg, preferably from about 1 to about 50 mg/Kg. Effective doses will also vary depending on route of administration, as well as the possibility of co-usage with other agents. It will be understood, however, that the total daily usage of the compounds and compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or contemporaneously with the specific compound employed; and like factors well known in the medical arts.
The total daily dose of the compounds of this invention administered to a human or other animal in single or in divided doses can be in amounts, for example, from 0.01 to 50 mg/kg body weight or more usually from 0.1 to 25 mg/kg body weight. Single dose compositions may contain such amounts or submultiples thereof to make up the daily dose. In general, treatment regimens according to the present invention comprise administration to a patient in need of such treatment from about 10 mg to about 1000 mg of the compound(s) of this invention per day in single or multiple doses.
The compounds of the formulae described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.1 to about 500 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with pharmaceutically excipients or carriers to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w).
Alternatively, such preparations may contain from about 20% to about 80% active compound.
Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician. Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms. Synthetic Methods
The compounds of formulae I and II, or a pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes for making certain intermediates include, for example, those illustrated in PCT publication number WO2003055860. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of a chemist.
The compounds and processes of the present invention will be better understood in connection with the following representative synthetic schemes that illustrate the methods by which the compounds of the invention may be prepared, which are intended as an illustration only and not limiting of the scope of the invention.
Scheme 1
Figure imgf000053_0001
0106 0107 0108
Figure imgf000053_0002
,OTBDMS
Figure imgf000053_0003
0101 0102
Scheme 2
Figure imgf000054_0001
0106 0201
0202
Figure imgf000054_0002
Scheme 3
Figure imgf000055_0001
Scheme 4
EtC
Figure imgf000056_0001
Figure imgf000056_0002
Scheme 5
Figure imgf000057_0001
0501 0504
Figure imgf000057_0002
DIPEA MgSO4 *
H2O DMF 8O0C ove
Figure imgf000057_0004
DCM NaBH3CN
Figure imgf000057_0003
0511
0512
Figure imgf000057_0005
Scheme 6
Figure imgf000058_0001
EXAMPLES
The compounds and processes of the present invention will be better understood in connection with the following examples, which are intended as an illustration only and not limiting of the scope of the invention. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art and such changes and modifications including, without limitation, those relating to the chemical structures, substituents, derivatives, formulations and/or methods of the invention may be made without departing from the spirit of the invention and the scope of the appended claims.
EXAMPLE 1: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-7V-ethyl-4- (4- (4-(hydroxyamino)-4-oxobutoxy)phenyl)isoxazole-3-carboxamide (Compound
1)
Step Ia: (4-Bromophenoxy)(ter£-butyl)dimethylsilane (compound 0101)
Et3N (16.7 g, 115.6 mmol) was added dropwise to a solution of compound 4- bromophenol (10.0 g, 57.8 mmol) and TBSCl (11.3 g, 75.14 mmol) in DMC (100 ml) at room temperature and the mixture was stirred for 2 h. After solvent was removed, 200 ml of petroleum ether was added. The organic layer was wash with water and brine, dried over anhydrous Na2SO4, filtered through a short silica gel column and evaporated to obtain OlOlas a colorless oil (16.6 g, 100 %): 1H NMR (CDCl3): δ 0.18 (s, 6 H), 2.71 (t, J= 6 Hz, 2H), 0.98 (s, 9H), 6.70-6.73 (m, 2H), 7.30-7.33 (m, 2 H).
Step Ib: 4-(Tert-butyldimethylsilyloxy)phenylboronic acid (Compound 0102)
To a solution of compound 0101 (1.548 g, 5.389 mmol) in dry THF (20 ml) was added dropwise a 2.5 M n-BuLi in hexane solution (2.5 ml, 6.326 mmol,) at -780C for 15 min under N2. After the mixture was stirred at -780C for 0.5 h, trimethyl borate (730 mg, 7.029 mmol) was added dropwise for 15 min to the mixture. The mixture was stirred at -780C for additional 1 h and warmed to room temperature. The reaction mixture was quenched with aqueous hydrochloric acid solution (to pH 5-7). The solvent was removed and the residue was extracted with DCM. The organic layer was washed with brine, dried over anhydrous Na2SO4, concentrated to give a residue which was washed by petroleum (2 ml) to afford the product 0102 as a white solid (1.102 g, 81%): LCMS: 253 [M+l]+. Step Ic: l-(5-Chloro-2,4-dihydroxyphenyl)ethanone (Compound 0103)
To a suspension of 4-chlororesorcinol (21.25 g, 0.147 mol) in boron trifluoride etherate (100 ml) was added acetic acid (8.75 ml) dropwise under N2. The reaction mixture was stirred at 8O0C overnight and then allowed to cool to room temperature. The mixture was poured into 350 ml of 10% w/v aqueous sodium acetate solution and stirred vigorously for 2.5 h. A light brown solid was precipitated which was filtered, washed with water and petroleum ether, dried to obtain 0103 as a white brown solid (18.49 g, 67.4%): LCMS: 187 [M+l]+. Step Id: l-(2,4-Bis(benzyloxy)-5-chlorophenyl)ethanone (Compound 0104)
Benzyl chloride (23.72 g, 0.187 mol) was added to a mixture of compound 0103 (17.49 g, 0.094 mol) and potassium carbonate (32.33 g, 0.234 mol) in acetonitrile (320 ml). The mixture was heated to reflux for 48h and allowed to cool to room temperature. After the mixture was evaporated near dryness, it was filtered and the solids were washed with water to remove K2CO3 and dried in vacuo. The solids were washed with petroleum (350 ml) and ethyl acetate (15 ml) to obtain the product 0104 as a brown solid (37 g, 100%): LCMS: 367 [M+l]+. 1H NMR (CDCl3): δ 2.45 (s, 3H), 5.30 (s, 2H), 5.35 (s, 2H), 7.16 (s, IH), 7.37-7.54 (m, 10H), 7.70 (s, IH). Step Ie: Ethyl 4-(2,4-bis(benzyloxy)-5-chlorophenyl)-2,4-dioxo- butanoate (Compound 0105)
To the solution of compound 0104 (5.O g, 13.63 mmol) in anhydrous THF (30 ml) was added 60% NaH (1.64 g, 40.89 mmol) slowly. After the mixture was stirred at room temperature for 30 min, diethyl oxalate (3.98 g, 27.26 mmol) was added and the mixture was stirred at 6O0C for 40 min. Then it was allowed to cool to room temperature and acetic acid (2.7 g, 44.98 mmol) was added. It was evaporated near to dryness and 100 ml ethyl acetate was added, washed with water and brine, dried over anhydrous Na2SO4. The organic phase was evaporated and the residue was washed with 10-20 ml of ethanol, filtrated to obtain compound 0105 as a light yellow solid (5.0 g, 79%): LCMS: 467 [M+l]+. 1H NMR (DMSO-J6): δ 1.16 (t, J = 6 Hz, 3H), 4.20 (q, J= 6 Hz, 2H), 5.36 (s, 2H), 5.39 (s, 2H), 7.23 (s, IH), 7.29(s, IH), 7.38-7.55 (m, 10H), 7.89 (s, 1 H).
Step If: Ethyl 5-(2,4-bis(benzyloxy)-5-chlorophenyl)isoxazole- 3-carboxylate (Compound 0106) Hydroxylamine hydrochloride (0.89 g, 12.8 mmol) was added to a suspension of compound 0105 (5.00 g, 10.7 mmol) in absolute ethanol (100 ml). The reaction mixture was heated at refluxing for 4 hours and was allowed to cool to room temperature. The mixture was filtered and the solid was washed with ethanol and dried in vacuo at 450C to obtain compound 0106 as a pale yellow solid (4.8 g, 97 %): LCMS: 464 [M+l]+. 1H NMR (CDCl3): δ 1.40 (t, J= 6 Hz, 3H), 4.42 (q, J= 6 Hz, 2H), 5.12 (s, 2 H), 5.15 (s, 2H), 6.61 (s, 1 H), 7.01 (s, IH), 7.35-7.40 (m, 10H), 8.01(s, IH).
Step Ig: 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)-JV-ethylisoxazole- 3-carboxamide (Compound 0107) To a flask containing 0106 (4.40 g, 9.51 mmol) was added a solution of ethylamine in ethanol (2.0 M, 40 ml, 80 mmol). The mixture was heated to 8O0C and stirred for 5 h. The mixture was allowed to cool to ice-bath temperature, filtered and the solid was washed with cold ethanol, dried in vacuo to obtain 0107 as a white solid (4.10 g, 93 %): LCMS: 463 [M+l]+. 1H NMR (CDCl3): δ 1.28 (t, J= 6 Hz, 3H), 3.44-3.53 (m, 2H), 5.10 (s, 2 H), 5.16 (s, 2H), 6.59 (s, 1 H), 6.81 (t, J= 6 Hz, IH), 7.08 (s, IH), 7.25-7.40 (m, 10H), 7.97 (s, 1 H).
Step Ih: 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)-4-bromo-Λ/-ethyl- isoxazole-3- carboxamide (Compound 0108) A solution of bromine in acetic acid (0.6 M, 306.0 ml, 183.6 mmol) was added to a stirred suspension of 0107 (8.50 g, 18.36 mmol) and potassium acetate (3.97 g, 40.50 mmol) in acetic acid (127 ml) at room temperature. The mixture was stirred at room temperature for 5 min. And saturated solution of Na2SO3 was added to the solution. After the mixture was concentrated to near dry, water (50 mL) was added and the mixture was filtered, the solid was washed with water and cooled ethanol (20 ml) and dried to obtain compound 0108 as a white solid (8.50 g, 85.4%): LCMS: 543 [M+l]+. 1H NMR (CDCl3): δ 1.26 (t, J= 6 Hz, 3H), 3.45-3.54 (m, 2H), 5.06 (s, 2 H), 5.11 (s, 2H), 6.61 (s, 1 H), 6.73 (t, J= 6 Hz, IH), 7.25-7.39 (m, 10H), 7.52 (s, 1 H).
Step Ii: 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)-Λ/-ethyl-4-(4-hydroxy- phenyl)- isoxazole-3-carboxamide (Compound 0109)
To a mixture of 0102 (1.40 g, 5.53 mmol) and 0108 (2.50, 4.61 mmol) in a mixed solvents of DMF (25 ml) and water (5 ml) was added sodium hydrogen carbonate (1.61 g, 13.83 mmol). To the mixture dichloroδώ(triphenylphoshine)Palladium (388 mg, 0.553 mmol) was added and the mixture was heated to 9O0C and stirred overnight. The solvents were removed in vacuo and the residue was partitioned between ethyl acetate and water. And the organic layer was washed with water and brine, dried over anhydrous Na2SO4, filtered and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate=3/l) to afford product 0109 (2.00 g, 78%): LCMS: 555 [M+l]+. 1H NMR (DMSO-J6): δ 1.07 (t, J= 6 Hz, 3H), 3.18-3.25 (m, 2H), 5.05 (s, 2 H), 5.26 (s, 2H), 6.66 (d, J= 3 Hz, 2 H), 6.98 (d, J= 3 Hz, 2H), 7.07- 7.10 (m, 3H), 7.29-7.31 (m, 3H), 7.38-7.48 (m, 6H), 8.88 (t, J= 3 Hz, IH), 7.56 (s, 1 H).
Step Ij: Ethyl 4-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethyl- carbamoyl) isoxazol-4-yl)phenoxy)butanoate (Compound 0110-1) A mixture of 0109 (500 mg, 0.901 mmol), ethyl 4-bromobutanoate (193 mg, 0.991 mmol) and K2CO3 (374 mg, 2.703 mmol) in CH3CN (20 ml) was stirred at 8O0C overnight. After concentrated, the residue was extracted with ethyl acetate. The organic layer was washed with water and brine, dried over anhydrous Na2SO4, filtered, evaporated. The solid was washed with cold ethanol to give compound 0110-1 as a white solid (480 mg, 80%): LCMS: 669 [M+ 1]+. 1H NMR (DMSO-J6): δ 1.14-1.20 (m, 6H), 1.94 (t, J= 6 Hz, 2H), 2.45 (t, J= 6 Hz, 2H), 3.20-3.27 (m, 2H), 3.97 (t, J= 6 Hz, 2H), 5.03 (s, 2 H), 5.26 (s, 2H), 6.84 (d, J= 9 Hz, 2H), 7.05- 7.11 (m, 5H), 7.28-7.30 (m, 3H), 7.36-7.47 (m, 6H), 8.89 (t, J= 6 Hz, IH). Step Ik: Ethyl 4-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl-carbamoyl) isoxazol-4-yl) phenoxy)butanoate ( Compound 0111-1 ) To an ice bath cooled solution of compound 0110-1 (850 mg, 1.27 mmol) in dichloromethane (16 ml) under N2 was added a 1.0 M solution of boron dichloromethane in dichloromethane (5.08 ml, 5.08 mmol). The reaction mixture was stirred at O0C for 15 min then warmed to room temperature and stirred for additional 35 min. The reaction mixture was cooled to O0C and the reaction was quenched by addition of saturated aqueous sodium hydrogen carbonate solution (16 ml). After stirred for 5 min the dichloromethane was removed in vacuo and the residue was partitioned between ethyl acetate (120 ml) and water (60 ml). The organic phase was washed with water and brine, dried over anhydrous Na2SO4, evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate=2/l) to afford 0111-1 (205 mg, 33%): LCMS: 489 [M+l]+.
Step 11: 5-(5-Chloro-2,4-dihydroxyphenyl)-Λ/-ethyl-4-(4-(4-(hydroxyamino)-4- oxobutoxy)phenyl)isoxazole-3-carboxamide (Compound 1) Preparation of hydroxylamine in methanol solution: hydroxylamine hydrochloride (4.67g, 67 mmol) was dissolved in methanol(24 mL) to form solution A. Potassium hydroxide (5.61 g, 100 mmol) was dissolved in methanol(14 mL) to form solution B. The solution A was cooled to O0C, and solution B was added into solution A dropwise. The mixture was stirred for 30 minutes at 0° C, and the precipitate was filtered off and the filtrate to afford the solution of hydroxylamine in methanol.
To a flask containing compound 0111-1 (200 mg, 0.41 mmol) was added the solution of hydroxylamine in methanol (4.0 ml). The mixture was stirred at room temperature for 30 min. Then it was adjusted to pH4 with 1.2 M hydrochloric acid. The mixture was concentrated and the residue was dissolved in ethyl acetate (200 ml). The organic layer was washed with water, dried over anhydrous Na2SO4, concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate) to afford the compound 1 as a white solid (96mg, 49%): LCMS: 476 [M+l]+. 1H NMR (DMSO-J6): δ 1.06 (t, J= 6 Hz, 3H), 1.87-1.96 (m, 2H), 2.12 (t, J = 6 Hz, 2H), 3.19-3.28 (m, 2H), 3.92 (t, J= 6 Hz, 2H), 6.57 (s, IH), 6.84 (d, J= 9 Hz, 2H), 7.10-7.15 (m, 3H), 8.68 (s, IH), 8.85 (t, J= 6 Hz, IH), 10.07 (s, IH), 10.40 (s, IH), 10.60 (s, IH).
EXAMPLE 2: Preparation of 5-(5-Chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4- (5-(hydroxyamino)-5-oxopentyloxy)phenyl)isoxazole-3-carboxamide (Compound 2)
Step 2a: Ethyl 5-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethylcarbamoyl) isoxazol- 4-yl)phenoxy)pentanoate (Compound 0110-2) The title compound 0110-2 was prepared (320 mg, 52 %) from 0109 (500 mg,
0.90 mmol) and ethyl 5-bromopentanoate (226 mg, 1.08 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 683 [M+l]+. Step 2b: Ethyl 5-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl-carbamoyl) isoxazol-4-yl) phenoxy)pentanoate (Compound 0111-2) The title compound 0111-2 was prepared (81 mg, 37 %) from 0110-2 (296 mg,
0.44 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 503 [M+l]+.
Step 2c: 5-(5-Chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4-(5-(hydroxyamino)-5- oxopentyloxy)phenyl)isoxazole-3-carboxamide (Compound 2) The title compound 2 was prepared (50 mg, 64 %) from compound 0111 -2 (81 mg, 0.16 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 490 [M+l]+. 1H NMR (DMSO-J6): δ 1.08 (t, J= 6 Hz, 3H), 1.66 (s, 4H), 2.00 (t, J= 6 Hz, 2H), 3.19-3.28 (m, 2H), 3.93 (t, J= 6 Hz, 2H), 6.59 (s, IH), 6.86 (d, J= 9 Hz, 2H), 7.12-7.16 (m, 3H), 8.68 (s, IH), 8.85 (t, J= 6 Hz, IH), 10.08 (s, IH), 10.40 (s, IH), 10.60 (s, IH).
EXAMPLE 3: Preparation of 5-(5-Chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4- (6-(hydroxyamino)-6-oxohexyloxy)phenyl)isoxazole-3-carboxamide (Compound
3) Step 3a: Ethyl 6-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethylcarbamoyl) isoxazol-4 -yl)phenoxy)hexanoate (Compound 0110-3) The title compound 0110-3 was prepared (800 mg, 66 %) from 0109 (1.00 g, 1.80 mmol) and ethyl 6-bromohexanoate (0.44 g, 1.97 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 697 [M+l]+. Step 3b: Ethyl 6-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl- carbamoyl)isoxazol-4 -yl)phenoxy)hexanoate (0111-3)
The title compound 0111-3 was prepared (300 mg, 58 %) from 0110-3 (700 mg,
1.0 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 517 [M+l]+ .
Step 3c: 5-(5-Chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4-(6-(hydroxyamino)-6- oxohexyloxy)phenyl)isoxazole-3-carboxamide (Compound 3) The title compound 3 was prepared (80 mg, 32 %) from compound 0111-3 (260 mg, 0.5 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 504 [M+l]+. 1H NMR (DMSO-J6): δ 1.08 (t, J= 6 Hz, 3H), 1.32-1.39
(m, 2H), 1.47-1.55 (m, 2H), 1.64-1.69 (m, 2H), 1.94 (t, J= 6 Hz, 2H), 3.18-3.26 (m,
2H), 3.90 (t, J= 6 Hz, 2H), 6.54 (s, IH), 6.84 (d, J= 9 Hz, 2H), 7.07-7.14 (m, 3H),
8.67 (s, IH), 8.85 (t, J= 6 Hz, IH), 10.07 (s, IH), 10.34 (s, IH), 10.61 (s, IH).
EXAMPLE 4: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-N-ethyl-4-(4- (7-(hydroxylamino)-7-oxoheptyloxy)phenyl)isoxazole-3-carboxamide (Compound 4)
Step 4a: Ethyl 7-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-3-(ethyl-carbamoyl) isoxazol-4 -yl)phenoxy)heptanoate (Compound 0110-4) The title compound 0110-4 was prepared (1.0 g, 78 %) from 0109 (1.0 g, 1.8 mmol) and ethyl 7-bromoheptanoate (510 mg, 2.15 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 710 [M+ 1]+. Step 4b: Ethyl 7-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-3-(ethyl- carbamoyl)isoxazol-4-yl) phenoxy)heptanoate (Compound 0111-4) The title compound 0111-4 was prepared (0.82 g, 91.6 %) from 0110-4 (1.0 g, 1.4 mmol) using a procedure similar to that described for compound 0110-1 (Example 1): LCMS: 531 [M+l]+. Step 4c: 5-(5-Chloro-2,4-dihydroxyphenyl)-JV-ethyl-4-(4-(7-(hydroxyl- amino)-7-oxoheptyloxy)phenyl)isoxazole-3-carboxamide (compound 4) The title compound 4 was prepared (120 mg, 15 %) from compound 0111-4
(800 mg, 1.5 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 518 [M+l]+. 1H NMR (DMSO-J6): δ 1.08 (t, J= 6 Hz, 3H), 1.23-1.31 (m, 2H),1.32-1.39 (m, 2H), 1.47-1.55 (m, 2H), 1.64-1.69 (m, 2H), 1.93 (t, J= 6 Hz, 2H), 3.21-3.27 (m, 2H), 3.92 (t, J= 6 Hz, 2H), 6.59 (s, IH), 6.86 (d, J= 9 Hz, 2H), 7.10-7.16 (m, 3H), 8.65 (s, IH), 8.85 (t, J= 6 Hz, IH), 10.07 (s, IH), 10.34 (s, IH), 10.61 (s, IH).
EXAMPLE 5: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)- 7V-(3- (hydroxyl- amino)-3-oxopropyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 5)
Step 5a: Ethyl 5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-bromo-isoxazole-3- carboxylate (Compound 0201) To a suspension of compound 0106 (6.26 g, 13.49 mmol) and potassium acetate (2.80 g, 29.76 mmol) in acetic acid (93 ml) was added a solution of bromine in acetic acid (0.6 M, 225 ml, 134.9 mmol) at room temperature and stirred for 5 min. To the mixture was added saturated aqueous Na2SO3. After concentrated, water (50 ml) was added, filtered. The solid was washed with water and cooled ethanol (20 ml) and dried under vacuuo to obtain compound 0201 as a white solid (5.8 g, 79%): LCMS: 544 [M+l]+. 1H NMR (DMSO-J6): δ 1.34 (t, J= 6 Hz, 3H), 4.37-4.45 (m, 2H), 5.27 (s, 2 H), 5.35 (s, 2H), 7.26 (s, 1 H), 7.35-7.51 (m, 10H), 7.65 (s, 1 H). Step 5b: Ethyl 5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole-3- carboxylate (Compound 0202) To a mixture of 4-methoxyphenylboronic acid (4.03 g, 26.51 mmol), 0201(12.1 g, 22.36 mmol), sodium hydrogen carbonate (5.64 g, 67.14 mmol) in a mixed solvents of DMF (25 ml) and water (5 ml) was added dichloroδώ(triphenylphoshine)palladium (1.94 mg, 2.76 mmol). The mixture was heated to 9O0C and stirred overnight. The solvent was removed in vacuo and the residue was partitioned between ethyl acetate and water. The organic layer was washed with water and brine, dried over anhydrous Na2SO4, filtered and evaporated to obtain crude product which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate=4/l) to afford product 0202 (8.4 g, 66%). LCMS: 570 [M+l]+. Step 5c: 5-(2,4-Bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxy- phenyl)isoxazole-3- carboxylic acid (Compound 0203)
To the solution of 0202 (4.21 g, 7.40 mmol) in a mixed solvents of THF (80 ml), H2O (80 ml) and methanol (80 ml) was added LiOKH2O (621 mg, 14.80 mmol). The mixture was stirred at r.t. for 30 min, then it was adjusted to pH 4 with 1.2 M HCl. After organic solvent was evaporated, the residue was extracted with ethyl acetate (100 ml x 3). The organic layer was dried over anhydrous Na2SO4, filtered and evaporated to obtain compound 0203 as a yellow solid (3.98 g, 99 %): LCMS: 542 [M+l]+. 1H NMR (DMSO-/): δ 3.75 (s, 3H), 5.06 (s, 2H), 5.25 (s, 2H), 6.85 (d, J= 9 Hz, 2H), 7.08-7.14 (m, 4H), 7.37-7.45 (m, 10H), 11.64 (s, IH). Step 5d: Ethyl 3-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole- 3-carboxamido)propanoate (Compound 0204-5) A mixture of BOP (980 mg, 2.21 mmol), compound 0203 (1.00 g, 1.84 mmol) and DIEA (953 mg, 7.38 mmol) in DMF (5 mL) was stirred at room temperature for 30 min. To the mixture ethyl 3-aminopropanoate hydrogen chloride (370 mg, 2.4 mmol) was added. The resulting mixture was stirred at room temperature overnight and the mixture was concentrated in vacuo. The residue was dissolved in ethyl acetate (240 ml) and washed with water (15 ml x 3), dried over anhydrous Na2SO4, filtered and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate=4/l) to afford the desired product 0204-5 (700 mg, 29%): LCMS: 641 [M+ 1]+.
Step 5e: Ethyl 3-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxy-phenyl) isoxazole-3- carboxamido)propanoate (Compound 0205-5) To an ice bath cooled solution of compound 0204-5 (690 mg, 1.08 mmol) in dichloromethane (14 ml) under N2 was added a 1.0 M solution of Boron dichloromethane in dichloromethane (3.3 ml, 3.3 mmol). The reaction mixture was stirred at O0C for 15 min then at room temperature for 35 min. The reaction mixture was cooled to O0C and quenched by addition of saturated aqueous sodium hydrogen carbonate solution (14 ml). After stirred for 5 min, the solvent was removed in vacuo and the residue was partitioned between ethyl acetate (120 ml) and water (60 ml). The organic phase was washed water and brine, dried over anhydrous Na2SO4, filtered and evaporated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate=2/l) to afford product 0205-5 (350 mg, 70%): LCMS: 461 [M+l]+. 1H NMR (DMSO-J6): δ 1.20 (t, J = 6Hz, 3H), 2.56 (t, J = 6 Hz, 2H), 3.46-3.50 (m, 2H), 3.75 (s, 3H), 4.06 (q, J = 6 Hz, 3H), 6.61 (s, IH), 6.88 (d, J= 9 Hz, 2H), 7.14-7.19 (m, 3H), 8.93 (t, J= 6 Hz, IH), 10.08 (s, IH), 10.61 (s, IH).
Step 5f: 5-(5-Chloro-2,4-dihydroxyphenyl)- JV-(3-(hydroxyl amino)- 3-oxo propyl) -4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 5) The title compound 5 was prepared as a brown solid (80 mg, 24%) from compound 0205-5 (340 mg, 0.74 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 448 [M+l]+. 1U NMR (DMSO-J6): δ 2.28 (t, J = 6 Hz, 2H), 3.44 (t, J= 6 Hz, 2H), 3.78 (s, 3H), 6.57 (s, IH), 6.88-6.92 (m, 2H), 7.11-7.18 (m, 3H), 8.88 (t, J= 6 Hz, IH), 10.44 (s, IH).
EXAMPLE 6: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-7V-(4-(hydroxyl amino)-4-oxobutyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 6) Step 6a: Methyl 4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole-3 -carboxamido)butanoate (Compound 0204-6) The title compound 0204-6 was prepared (442 mg, 37 %) from 0203 (1.00 mg, 1.84 mmol) and methyl 4-aminobutanoate hydrogen chloride (368 mg, 2.40 mmol) using a procedure similar to that described for compound 0204-5 (Example 5): LCMS: 641 [M+l]+.
Step 6b: Methyl 4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl) isoxazole-3- carboxamido)butanoate (Compound 0205-6) The title compound 0205-6 was prepared (233 mg, 73 %) from 0204-6 (442 mg, 0.69 mmol)using a procedure similar to that described for compound 0205-5 (Example 5): LCMS: 461 [M+l]+.
Step 6c: 5-(5-chloro-2,4-dihydroxyphenyl)-Λ/-(4-(hydroxyamino)-4-oxobutyl)-4- (4-methoxyphenyl)isoxazole-3-carboxamide (Compound 6) The title compound 6 was prepared (100 mg, 42 %) from compound 0205-6 (233 mg, 0.51 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 462 [M+l]+. 1H NMR (DMSO-J6): «51.65-1.75 (m, 2H), 1.97 (t, J= 6 Hz, 2H), 3.15-3.22 (m, 2H), 3.73 (s, 3H), 6.59 (s, IH), 6.87 (d, J= 9 Hz, 2H), 7.12-7.17 (m, 3H), 8.71 (s, IH), 8.90 (t, J= 6 Hz, IH), 10.08 (s, IH), 10.37 (s, IH), 10.60 (s, IH).
EXAMPLE 7: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-7V-(6-(hydroxyl amino)-6-oxohexyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 8)
Step 7a: Methyl 6-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4- methoxyphenyl) isoxazole-3 -carboxamido)hexanoate (Compound 0204-8) The title compound 0204-8 was prepared (500 mg, 41 %) from 0203 (1.00 mg, 1.84 mmol) and methyl 6-aminohexanoate hydrogen chloride (503 mg, 2.40 mmol) using a procedure similar to that described for compound 0204-5 (Example 5): LCMS: 669 [M+l]+. 1U NMR (DMSO-J6): δ 1.43-1.56 (m, 4H), 2.27 (t, J= 6 Hz, 2H), 3.15-3.22 (m, 2H), 3.58 (s, 3H), 3.74 (s, 3H), 5.04 (s, 2H), 5.26 (s, 2H), 6.59 (s, IH), 6.84 (d, J= 9 Hz, 2H), 7.06-7.10 (m, 4H), 7.29 (t, J= 3 Hz, 3H), 7.38-7.47 (m, 7H), 8.88 (t, J= 6 Hz, IH). Step 7b: Methyl 6-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxy-phenyl) isoxazole-3 -carboxamido)hexanoate (Compound 0205-8) The title compound 0205-8 was prepared (216 mg, 59 %) from 0204-8 (500 mg,
0.75 mmol) using a procedure similar to that described for compound 0205-5 (Example 5): LCMS: 489 [M+l]+. 1H NMR (DMSO-J6): δ 1.43-1.56 (m, 4H), 2.25 (t, J= 6 Hz, 2H), 3.15-3.22 (m, 2H), 3.58 (s, 3H), 3.73 (s, 3H), 6.59 (s, IH), 6.87 (d, J= 9 Hz, 2H), 7.12-7.17 (m, 3H), 8.84 (t, J= 6 Hz, IH), 10.08 (s, IH), 10.60 (s, IH).
Step 7c: 5-(5-Chloro-2,4-dihydroxyphenyl)-Λ/-(6-(hydroxyl-amino)-6-oxohexyl)-
4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 8)
The title compound 8 was prepared (100 mg, 50 %) from compound 0205-8 (200 mg, 0.41 mmol) using a procedure similar to that described for compound 1 (Example 1): LCMS: 490 [M+l]+. 1H NMR (DMSO-J6): «51.43-1.53 (m, 4H), 1.93 (t, J= 6 Hz, 2H), 3.15-3.22 (m, 2H), 3.73 (s, 3H), 6.59 (s, IH), 6.87 (d, J= 9 Hz, 2H), 7.12-7.17 (m, 3H), 8.66 (s, IH), 8.84 (t, J= 6 Hz, IH), 10.08 (s, IH), 10.33 (s, IH), 10.60 (s, IH).
EXAMPLE 8: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-7V-(7-(hydroxyl amino)-7-oxoheptyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 9) Step 8a: Ethyl 7-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl) isoxazole-3 -carboxamido)heptanoate (Compound 0204-9) The title compound 0204-9 was prepared (640 mg, 52 %) from 0203 (1.00 mg,
1.84 mmol) and methyl 7-aminoheptanoate hydrogen chloride (503 mg, 2.40 mmol) using a procedure similar to that described for compound 0204-5 (Example 5): LCMS: 697 [M+l]+. Step 8b: Ethyl 7-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl) isoxazole-3- carboxamido)heptanoate (Compound 0205-9)
The title compound 0205-9 was prepared (274 mg, 62 %) from 0204-9 (600 mg,
0.86 mmol) using a procedure similar to that described for compound 0205-5
(Example 5): LCMS: 517 [M+l]+. Step 8c: 5-(5-Chloro-2,4-dihydroxyphenyl)-N-(7-(hydroxyl-amino)-7-oxoheptyl)- 4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 9) The title compound 9 was prepared (90 mg, 34 %) from compound 0205-9 (90 mg, 34 %) using a procedure similar to that described for compound 1 (Example 1):
LCMS: 504 [M+l]+. 1U NMR (DMSO-J6): «51.22 (s, 4H), 1.43-1.49 (m, 4H), 1.92 (t, J= 6 Hz, 2H), 3.13-3.20 (m, 2H), 3.71 (s, 3H), 6.57 (s, IH), 6.87 (d, J= 9 Hz, 2H),
7.10-7.15 (m, 3H), 8.84 (t, J= 6 Hz, IH), 10.06 (s, IH), 10.30 (s, IH), 10.58 (s, IH).
EXAMPLE 9: Preparation of 5-(5-chloro-2,4-dihydroxyphenyl)-7V-(8-(hydroxyl amino)-8-oxooctyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamide (Compound 10)
Step 9a: Methyl 8-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4- methoxyphenyl) isoxazole-3-carboxamido)octanoate (Compound 0204-10) The title compound 0204-10 was prepared (450 mg, 44 %) from 0203 (800 mg,
1.48 mmol) and methyl 8-aminooctanoate hydrogen chloride (400 mg, 1.91 mmol) using a procedure similar to that described for compound 0204-5 (Example 5):
LCMS: 697 [M+l]+.
Step 9b: Methyl 8-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl) isoxazole-3 -carboxamido)octanoate (Compound 0205-10) The title compound 0205-10 was prepared (274 mg, 62 %) from 0204-10 (450 mg, 0.65 mmol) using a procedure similar to that described for compound 0205-5
(Example 5): LCMS: 517 [M+l]+.
Step 9c: 5-(5-Chloro-2,4-dihydroxyphenyl)-N-(8-(hydroxyamino)-8- oxooctyl)-4-(4-methoxyphenyl)isoxazole-3-carboxamidemn (Compound 10) The title compound 10 was prepared (70 mg, 71 %) from compound 0205-10 (100 mg, 0.19 mmol) using a procedure similar to that described for compound 1
(Example 1): LCMS: 518 [M+l]+. 1H NMR (DMSO-J6): «51.23 (s, 6H), 1.43-1.49
(m, 4H), 1.93 (t, J= 6 Hz, 2H), 3.15-3.20 (m, 2H), 3.73 (s, 3H), 6.59 (s, IH), 6.87
(d, J= 9 Hz, 2H), 7.12-7.17 (m, 3H), 8.64 (s, IH), 8.84 (t, J= 6 Hz, IH), 10.08 (s,
IH), 10.33 (s, IH), 10.60 (s, IH). EXAMPLE 10: Preparation of 2-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4- methoxyphenylJisoxazole-S-carbonytypiperazin-l-ylJ-N-hydroxypyrimidine-S- carboxamide (Compound 11) Step 10a: Sodium 3,3-dimethoxy-2-methoxycarbonylprop-l-en-l-oxide (Compound 0302)
A 500 mL, three neck, round bottom flask equipped with magnetic stirrer and a reflux condenser is purged with nitrogen. The flask is then charged sequentially with methyl 3,3-dimethoxypropionate (0301) (26.1 g, 176 mmol), anhydrous 1,2- dimethoxyethane (125 mL), anhydrous methyl formate (25 mL, 400 mmol), 60% NaH (8.5 g, 212.5 mmol), and the mixture was heated to 40~50°C until evolution of hydrogen gas is observed. The reaction mixture was cooled in an ice bath and slowly warmed to room temperature and stirred for 20 h. The reaction mixture was filtered, washed with anhydrous ether, dried to provide desired product 0302 (25.4 g, 73%) as a white power.
Step 10b: Methyl 2-(4-benzylpiperazin-l-yl)pyrimidine-5-carboxylate (Compound 0305)
A mixture of compound 1-benzylpiperazine, 0303 (3.0 g, 17 mmol), S- methylisothiouronium sulfate (4.74 g, 17 mmol), K2CO3 (3.4 g, 25 mmol) and H2O (20 mL) was stirred for 6 h at 8O0C. The solvent was removed under reduced pressure and the residue was dilute with anhydrous ethanol. The resulting mixture was refluxing for 0.5 h and filtered. The organic layer was concentrated to get a crude colorless viscous oil.
To a solution of above oil in anhydrous DMF (40 mL) is added sodium 3,3- dimethoxy-2-methoxycarbonylprop-l -en- 1 -oxide (0302) (5.1 g, 25.6 mmol) and the reaction mixture was heated to 1000C under nitrogen. The mixture was then cooled to room temperature and diluted with water (120 mL). The precipitated was filtered, washed with water, dried to give product 0305 (2.47 g, in total yield of two steps: 46%) as a pale yellow solid: LCMS: 313 [M+l]+, 1U NMR (DMSO-/) : δ 2.44 (t, J = 5.7 Hz, 4H), 3.52 (s, 2H), 3.80 (s, 3H), 3.86 (t, J= 5.7 Hz, 3H), 7.24-7.36 (m, 5H), 8.78 (s, 2H). Step 10c: Methyl 2-(piperazin-l-yl)pyrimidine-5-carboxylate (Compound 0306)
A mixture of 0305 (1.5 g, 4.8 mmol), 10% Pd/C (150 mg) in dioxane (40 mL) and methanol (80 mL) was stirred for 24 h at room temperature. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH2Cl2ZMeOH= 40/1) to provide the target product 0306 (0.8 g, 77%) as a pale white solid: LCMS: 223 [M+l]+, 1U NMR (DMSO-/; : δ 2.74 (t, J= 5.7 Hz, 4H), 3.78 (t, J= 5.7 Hz, 3H), 3.80 (s, 3H), 8.77 (s, 2H).
Step 1Od: Methyl 2-(4-(5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4- methoxyphenyl)-isoxazole-3 -carbonyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0307)
To a solution of compound 0203 (700 mg, 1.29 mmol) in dichloromethane (10 mL) was added BOP (743 mg, 1.68 mmol). The suspension was stirred at 3O0C for 30 min. Then compound 0306 (373 mg, 1.68 mg) was added into and the mixture and stirred at the same temperature overnight. The solvent was removed under reduced pressure and residue was dissolved in ethyl acetate. The organic layer was washed with water and brine, dried over anhydrous Na2SO4, evaporated and the residue was purified by column chromatography on silica gel (ethyl acetate in dichloromethane 10%-25%, v/v) to give the desired product 0307 (450 mg, 47%) as a white solid: LCMS: 746 [M+l]+. 1U NMR (400 Hz, DMSO-J6) δ 3.35 (s, 2H), 3.48 (br s, 2H), 3.71 (s, 3H), 3.75 (br s, 2H), 3.84 (s, 3H), 3.88 (br s, 2H), 5.05 (s, 2H), 5.30 (s, 2H), 6.89 (d, J= 11.2 Hz, 2H), 7.04-7.07 (m, 4H), 7.16 (s, IH), 7.28- 7.30 (m, 3H), 7.37-7.51 (m, 5H), 7.59 (s, IH), 8.82 (s, 2H).
Step 1Oe: Methyl 2-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl)- isoxazole-3 -carbonyl)piperazin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0308) To a solution of 0307 (1.10 g, 1.47 mmol) in dichloromethane (15 mL) was added dropwise the solution of BCI3 in dichloromethane (5.9 mL, 5.90 mmol, 1 M) at O0C under N2. The mixture was stirred at r.t. for 30 min. Then saturated NaHCO3 (5.9 mL) was added to the mixture at O0C and stirred for 5 min. The mixture was extracted with dichloromethane (3x50 mL). The organic phase was washed with water and brine, dried over anhydrous Na2SO4, purified by column chromatography on silica gel (ethyl acetate in dichloromethane, 25%-50% v/v) to give product 0308 (500 mg, 60%) as a white solid: LCMS: 566 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 3.38 (br s, 2H), 3.50 (br s, 2H), 3.70 (s, 3H), 3.74 (br s, 2H), 3.84 (s, 3H), 3.86 (br s, 2H), 6.60 (s, IH), 6.92 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.8 Hz, 2H), 7.27 (s, IH), 8.80 (s, 2H), 10.12 (s, IH), 10.67 (s, IH). Step 1Of: 2-(4-(5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl)- isoxazole-3-carbonyl)- piperazin- 1 -yl)-N-hydroxypyrimidine- 5-carboxamide (Compound 11)
To a flask containing 0308 (160 mg, 0.28 mmol) was added to the freshly prepared saturation solution of hydroxylamine in methanol (6.0 mL). The mixture was stirred at room temperature for 30 min. Then it was adjusted to pH5 using 1.2 M hydrochloric acid. The mixture was concentrated and the resulting precipitate was filtered, washed with water, purified by pre-HPLC to afford product compound 11 (98 mg, 62%) as a white solid: mp 186-190 0C. LCMS: 567 [M+l]+. 1U NMR (400 Hz, DMSO-J6) δ 3.35 (br s, 2H), 3.45 (br s, 2H), 3.69 (s, 5H), 3.80 (br s, 2H), 6.60 (s, IH), 6.91 (d, J= 8.4 Hz, 2H), 7.11 (d, J= 8.8 Hz, 2H), 7.27 (s, IH), 8.66 (s, 2H), 9.03 (s, IH), 10.12 (s, IH), 10.67 (s, IH), 11.10 (s, IH).
EXAMPLE 11: Preparation of 5-(5-Chloro-2,4-dihydroxyphenyl)-N-((l-(5- (hydroxycarbamoyl)pyrimidin-2-yl)piperidin-4-yl)methyl)-4-(4- methoxyphenyl)isoxazole-3-carboxamide (Compound 13) Step 11a: (Z)-ethyl-2-(ethoxymethyl)-3-methoxyacrylate (Compound 0402)
Sodium (13.8 g) was added to a mixed solution of benzene (200 mL) and ethanol (27 g) at room temperature. To the mixture ethyl formate (45.0 g, 0.61 mol) and ethyl 3-ethoxypropionate (44.0 g, 0.30 mol) were added slowly at O0C, and stirred for 2 h. Dimethyl sulfate (76.0 g, 0.61 mol) was then added and the resulting mixture was heated to 5O0C and stirred for 3 h. The mixture was filtered and the filtrate was washed with water three times. Triethylammonium chloride (40.0 g, 0.29 mol) and sodium hydroxide (7.00 g, 0.175 mol) was added to the organic layer, and stirred for 4 h. The mixture was filtered and the organic layer was washed with water, dried over Na2SO4, and evaporated. The residue was distilled under reduced pressure to give product 0402 (18.8 g, 33%): 1H NMR (400 MHz, CDC13): ^1.26 (m, 6H), 3.48 (m, 3H), 3.63 (m, JH), 4.20 (m, 2H). Step lib: Ethyl 2-oxo-l,2,3,4-tetrahydropyrimidine-5-carboxylate (Compound 0403)
A mixture of 0402 (21.4 g, 0.11 mol), urea (5.70 g, 0.095 mol), and hydrochloric acid (5 mL) in ethanol (300 mL) was heated to reflux overnight. After evaporation of solvents, the residue was recrystallized from ethanol to give product 0403 (7.80 g, 65%) as a colorless prisms: LCMS: 171 [M+l]+, 1H NMR (400 MHz, CDC13): δ 1.27 (t, J= 7.2 Hz , 3H), 4.19 (m, 4H), 5.28 (s, IH), 7.21 (d, J= 5.6 Hz ,
IH), 7.40 (s, IH),
Step lie: Ethyl 2-oxo-l,2-dihydropyrimidine-5-carboxylate (Compound 0404)
A solution of 0403 (2.50 g, 14.7 mmol) and bromine (2.40 g, 15 mmol) in acetic acid (55 mL) was heated to reflux for 1.5 h. Removal of the solvent afforded crude product 0404 (3.60 g, 99%): LCMS: 169 [M+l]+, 1H NMR (400 MHz, CDC13): δ 111 (t, J= 7.2 Hz , 3H), 4.28 (q, J= 7.2 Hz , 2H), 8.85 (s, 2H), 12.19 (ds, 2H). Step Hd: Ethyl 2-chloropyrimidine-5-carboxylate (Compound 0405)
A mixture of 0404 (3.60 g, 21 mmol), phosphorus oxychloride (25 mL), and N,N-dimethylaniline (2.5 mL) was heated to reflux for 1.5 h. After removal of the solvent, ice water (10 mL) was added to the residue. The mixture was added to 2 N NaOH (90 ml), and extracted with EtOAc. After work up the residue was purified by column chromatography on silica gel (ethyl acetate in petroleum ether, 5% v/v) to give product 0405 (1.20 g, 30%): LCMS: 187 [M+l]+, 1H NMR (300 MHz, CDC13): δ 1.42 (t, J= 7.5 Hz , 3H), 4.48 (q, J= 7.5 Hz, 2H), 9.15 (s, 2H); 1H NMR (400 MHz, DMSO-J6): δ 1.33 (t, J= 6.8 Hz, 3H); 4.37 (q, J= 6.8 Hz, 2H), 9.18 (s, 2H).
Step He: Ethyl 2-(4-(aminomethyl)piperidin-l-yl)pyrimidine-5-carboxylate (Compound 0406) A mixture of 0405 (1.10 g, 5.9 mmol), piperidin-4-ylmethanamine (1.35 g, 11.8 mmol) in 2-(dimethylamino)acetamide ( 50 mL) was stirred at room temperature for 1.5 h. After removal of the solvent, the residue was purified by column chromatography on silica gel (CH3OH in CH2C12 6% v/v) to give desired product 0406 (1.27 g, 81%): LCMS: 265 [M+l]+, 1H NMR (400 MHz, CDC13): δ 1.16 (m, 2H), 1.22(m, 5H), 1.36 (m, IH), 1.64 (m, IB), 1.85 (d, J= 12 Hz, 2H), 2.62 (d, J = 6.42 Hz, 2H), 2.94 (ds, J= 12.8 Hz, J= 2.4 Hz ,2H), 4.91 (d, J= 11.2 Hz, 2H), 7.26(s, IH), 8.82 (s, 2H).
Step Hf: Ethyl 2-(4-((5-(2,4-bis(benzyloxy)-5-chlorophenyl)-4-(4-methoxyphenyl)- isoxazole-3 -carboxamido)methyl)piperidin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0407)
The title compound 0407 was prepared as a white solid (820 mg, 52%) from 0203 (1.10 g, 2.03 mmol) and 0406 (660 mg, 2.64 mmol) using a procedure similar to that described for compound 0307 (Example 10): LCMS: 788 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 1.03-1.11 (m, 2H), 1.29 (t, J= 7.2 Hz, 3H), 1.67 (d, J= 10.8 Hz, 2H), 1.84 (br s, IH), 2.96 (t, J= 11.6 Hz, 2H), 3.14 (s, 2H), 3.74 (s, 3H), 4.26 (q, J= 6.4 Hz, 2H), 4.72 (d, J= 13.6 Hz, 2H), 5.04 (s, 2H), 5.26 (s, 2H), 6.84-6.86 (m, 2H), 7.08-7.11 (m, 5H), 7.29 (s, 3H), 7.39-7.47 (m, 6H), 8.77 (s, 2H), 8.99 (t, J = 5.2 Hz, IH).
Step Hg: Ethyl 2-(4-((5-(5-chloro-2,4-dihydroxyphenyl)-4-(4-methoxyphenyl)- isoxazole-3 -carboxamido)methyl)piperidin- 1 -yl)pyrimidine-5 -carboxylate (Compound 0408)
The title compound 0408 was prepared as a white solid (350 mg, 63%) from 0407 (715 mg, 0.91 mmol) using a procedure similar to that described for compound 0308 (Example 10): LCMS: 608 [M+l]+. 1U NMR (400 Hz, DMSO-J6) δ 1.03-1.11 (m, 2H), 1.29 (t, J= 7.2 Hz, 3H), 1.67 (d, J= 10.8 Hz, 2H), 1.84 (br s, IH), 2.96 (t, J = 11.6 Hz, 2H), 3.13 (t, J= 5.6 Hz, 2H), 3.68 (s, 3H), 4.26 (q, J= 6.4 Hz, 2H), 4.70 (d, J= 13.6 Hz, 2H), 6.60 (s, IH), 6.87 (d, J= 8.8 Hz, 2H), 7.12-7.17 (m, 3H), 8.76 (s, 2H), 8.94 (t, J= 5.6 Hz, IH), 10.09 (s, IH), 10.61 (s, IH).
Step Hh: 5-(5-Chloro-2,4-dihydroxyphenyl)-N-((l-(5-(hydroxycarbamoyl)- pyrimidin-2-yl)piperidin-4-yl)methyl)-4-(4-methoxyphenyl)isoxazole-3- carboxamide (Compound 13)
The title compound 13 was prepared as a white solid (110 mg, 56 %) from 0408 (200 mg, 0.33 mmol) using a procedure similar to that described for compound 11
(Example 10): mp 148-151 0C. LCMS: 595 [M+l]+. 1U NMR (400 Hz, DMSO-J6) δ 1.00-1.10 (m, 2H), 1.65 (d, J= 11.6 Hz, 2H), 1.82 (br s, IH), 2.90 (t, J= 10.8 Hz, 2H), 3.12 (t, J= 6.0 Hz, 2H), 3.74 (s, 3H), 4.67 (d, J= 12.8 Hz, 2H), 6.60 (s, IH), 6.88 (d, J= 8.8 Hz, 2H), 7.13-7.17 (m, 3H), 8.65 (s, 2H), 8.95 (t, J= 5.6 Hz, IH), 10.11 (s, IH), 10.64 (s, IH), 11.05 (s, IH).
EXAMPLE 12: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-7V-ethyl-4- (4-((3-(hydroxyamino)-3-oxopro-pylamino)methyl)phenyl)isoxazole-3- carboxamide (Compound 15) Step 12a: l-(2,4-Dihydroxyphenyl)ethanone (Compound 0502)
Acetic acid (58.5 g, 0.97 mol) was added dropwise to a suspension of resorcinol (97.5 g, 0.89 mol) in boron trifluoride etherate (670 mL) under nitrogen atmosphere. The reaction mixture was heated to 8O0C overnight and then allowed to cool to room temperature. A yellow solid was formed. The mixture was poured into a 10% (w/v) aqueous sodium acetate (2.4 L). The resulting mixture was stirred vigorously for 2.5 hours. The precipitate was filtered, washed with water and petroleum ether, dried to give product 0502 (105 g, 78%) as a pale brown solid: LCMS: 153 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 2.56 (s, 3H), 6.28 (d, J= 2.4 Hz, IH), 6.42 (dd, J = 8.8 Hz, J= 2.4 Hz , IH), 7.79 (d, J= 8.4 Hz, IH), 10.65 (s, IH), 12.65 (s, IH). Step 12b: l-(2,4-Bis(benzyloxy)phenyl)ethanone (Compound 0503)
(Bromomethyl)benzene (139 g, 0.82 mol) was added to a mixture of 0502 (103.5 g, 0.68 mol) and potassium carbonate (193 g, 1.4 mol) in acetonitrile (2 L). The mixture was heated to reflux for 48h, and then allowed to cool to room temperature. After concentration the residue was filtered and the solid was washed with water (3 L) and dried in vacuo. The collected solid was washed with ethyl acetate in petroleum ether (4% v/v, 365 mL) to give product 0503 (226 g, 100%) as a brown solid: LCMS: 333 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 2.50 (s, 3H), 5.19 (s, 2H), 5.24 (s, 2H), 6.70 (dd, J= 8.8 Hz, J= 2.0 Hz , IH), 6.87 (d, J= 2.4 Hz, IH), 7.33-7.52 (m, 10H), 7.68 (d, J= 8.8 Hz , IH).
Step 12c: 2,4-Bis(benzyloxy)-l-(prop-l-en-2-yl)benzene (Compound 0504)
To a suspension of t-BuOK (98 g, 0.87 mol) and Ph3PMeI (353 g, 0.87 mol) in anhydrous THF (4 L) at O0C was added dropwise a solution of 0503 (223 g, 0.67 mol) in THF (1 L). The mixture was stirred for 1 hour, allowed to warm to room temperature and stirred overnight. After concentration, water (1 L) was added slowly, extracted with ethyl acetate (3 x 700 mL). The organic phase was washed with water(2 x 300 mL), dried over anhydrous Na2SO4, evaporated and the residue was purified by column chromatographer on silica-gel (ethyl acetate in petroleum ether, 8%-10% v/v) to give desired product 0504 (162 g, 73%): LCMS: 331 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 2.03 (s, 3H), 5.03 (s, 2H), 5.09 (s, 2H), 5.10 (s,
2H), 6.30 (d, J= 8 Hz, IH), 6.75 (s, IH), 7.09 (d, J= 8 Hz, IH), 7.33-7.46 (m, 10H). Step 12d: 4-Isopropylbenzene-l,3-diol (Compound 0505)
The mixture of 0504 (160.4 g, 0.48 mol), Pd/C (10%, 16 g) in ethanol (2.1 L) was heated to 6O0C under hydrogen atmosphere at 5 atm for two days. The mixture was filtered and washed with ethanol (2 x 300 mL). The combined organic phase was evaporated to afford product 0505 (65 g, 88%) as colorless oil: LCMS: 153 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.09 (d, J= 6.8 Hz, 6H), 3.01-3.11 (m, IH), 6.14 (dd, J= 8 Hz, 2.4 Hz, IH), 6.24 (s, 1 H), 6.84 (d, J= 8.4 Hz, IH), 8.89 (s, IH), 9.01 (s, IH). Step 12e: l-(2,4-Dihydroxy-5-isopropylphenyl)ethanone (Compound 0506)
Acetic acid (28 g, 0.47 mol) was added dropwise to a suspension of 0505 (64.0 g, 0.42 mol) in boron trifluoride etherate (140 mL) under nitrogen atmosphere. The reaction mixture was heated to 850C overnight and cooled to room temperature. A yellow solid was formed. The mixture was poured into 10% (w/v) aqueous sodium acetate (2.8 L). This mixture was stirred vigorously for 2.5 h. A light brown solid was formed. The precipitate was filtered, washed with water and petroleum ether, evaporated, and dried to give product 0506 (70.2 g, 86%) as a brown solid: LCMS: 195 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.17 (d, J= 6.8 Hz, 6H), 2.54 (s, IH), 3.05-3.14 (m, IH), 6.30 (s, IH), 7.55 (s, IH), 10.63 (s, IH), 12.48 (s, IH). Step 12f: l-(2,4-Bis(benzyloxy)-5-isopropylphenyl)ethanone (Compound 0507)
(Bromomethyl)benzene (119 g, 0.7 mol) was added to a mixture of 0506 (68.8 g, 0.35 mol) and potassium carbonate (193 g, 1.4 mol) in acetonitrile (1.5 L). The mixture was heated to reflux for 48 h, cooled to room temperature. After the mixture was evaporated near dryness, it was filtered, washed with water, and dried in vacuo. The solid was then washed with ethyl acetate in petroleum ether (4% v/v, 730 mL,) to give product 0507 (118 g, 89%) as a brown solid: LCMS: 375 [M+l]+. 1H NMR (400 MHz, CDCl3-Ci5) δ 1.14 (d, J= 7.2 Hz, 6H), 2.45 (s, 3H), 3.13-3.22 (m, IH), 5.25 (s, 2H), 5.26 (s, 2H), 6.94 (s, IH), 7.34-7.53 (m, 10H), 7.56 (s, IH).
Step 12g: (Z)-Ethyl 4-(2,4-bis(benzyloxy)-5-isopropylphenyl)-2-hydroxy-4-oxobut- 2-enoate (Compound 0508)
NaH (20.9 g, 0.87 mol, 60%) was added slowly to the solution of 0507 (108 g, 0.29 mol) in anhydrous THF (550 mL). After the mixture was stirred at room temperature for 30 minutes, diethyl oxalate (84.7 g, 0.58 mol) was added. The mixture was heated to 590C for one hour. Then it was allowed to cool to room temperature and acetic acid (52.2 g, 0.87 mol) was added. After concentration, the mixture was partitioned between ethyl acetate (1.8 L) and water (1 L). The organic phase was washed with water (2 x 300 mL), and brine (300 mL), dried over anhydrous Na2SO4. The organic phase was evaporated and the residue was washed with cooled ethanol (2x300 mL). The solid was filtered to give product 0508 (117 g, 86%) as a light yellow solid: LCMS: 475 [M+ 1]+. 1H NMR (400 MHz, DMSO-J6) δ 1.16-1.19 (m, 9H), 3.17-3.24 (m, IH), 4.20 (q, 7.2 Hz, 2H), 5.32 (s, 2H), 5.34 (s, 2H), 7.04 (s, IH), 7.37-7.55 (m, 12H), 7.77 (s, IH). Step 12h: Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)isoxazole-3-carboxylate (Compound 0509)
Hydroxylamine hydrochloride (20.5 g, 0.29 mol) was added to a suspension of 0508 (116 g, 0.24 mol) in absolute ethanol (1.3 L). The resulting mixture was heated to reflux for four hours, and then allowed to cool to room temperature. The precipitate was filtered, washed with cooled ethanol (2 x 300 mL) and dried in vacuo at 450C to give product 0509 (82 g, 71 %) as a yellow solid: LCMS: 472 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.21 (d, J= 7.2 Hz, 6H), 1.30 (t, J= 7.2 Hz, 3H), 3.22-3.29 (m, IH), 4.34 (q, 7.2 Hz, 2H), 5.26 (s, 2H), 5.34 (s, 2H), 6.92 (s, IH), 7.08 (s, IH), 7.35-7.53 (m, 10H), 7.70 (s, IH).
Step 12i: 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)-Λ/-ethylisoxazole-3- carboxamide (Compound 0510)
Compound 0509 (81.5 g, 0.17 mol) was added into a solution of ethylamine in ethanol (2.0 M, 865 mL, 1.73 mol). The mixture was heated to 8O0C for 1 h. The mixture was allowed to cool to room temperature to produce white solid and further cooled in an ice-water bath. The resulting precipitate was filtered and washed with cold ethanol, dried in vacuo to give desired product 0510 (74 g, 91%) as a pale white solid: LCMS: 471 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 1.11 (t, J= 7.2 Hz, 3H), 1.20 (d, J= 6.8 Hz, 6H), 3.23-3.28 (m, 2H), 3.41-3.47 (m, IH), 5.23-5.3 (m, 4H), 7.04 (s, IH), 7.31-7.48 (m, HH), 8.88 (t, J= 5.4 Hz, IH).
Step 12j : 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)-iV-ethyl-4-iodoisoxazole-3-car- boxamide (Compound 0511)
A mixture of 0510 (73.7 g, 0.16 mol), TV-iodosuccinimide (72 g, 0.32 mol) and eerie ammonium nitrate (4.38 g, 8 mmol) in acetonitrile (2.9 L) was stirred at room temperature overnight. Aqueous sodium sulfite was added into the mixture. The mixture was concentrated and the residue was poured into cooled water, filtered, washed with water and dried in vacuo to give product 0511 (71 g, 76%) as a yellow solid: LCMS: 597 [M+l]+. 1U NMR (400 MHz, DMSO-J6) «5 1.12 (t, J= 7.2 Hz, 3H), 1.17 (d, J= 7.2 Hz, 6H), 3.23-3.28 (m, 2H), 3.41-3.47 (m, IH), 5.24 (s, 2H), 5.35 (s, 2H), 6.89 (s, IH), 7.05 (s, IH), 7.40-7.50 (m, 10H), 7.67 (s, IH), 8.74 (t, J = 5.4 Hz, IH).
Step 12k: 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)-Λ/-ethyl-4-(4- formylphenyl)iso-xazole-3-carboxamide (Compound 0512) To a mixture of 0511 (70.2 g, 0.11 mol) and 4-formylphenylboronic acid (26.4 g, 0.17 mol) was added sodium hydrogen carbonate (27.7 g, 0.33 mol), followed by DMF (700 mL) and water (140 mL). The mixture was degassed by evacuation and flushing with nitrogen for three times. Dichloroδώ(triphenylphoshine)Palladium (16.1 g, 23 mmol) was added and the resulting mixture was heated to 8O0C overnight. The mixture was concentrated in vacuum and the residue was partitioned between ethyl acetate and water. The mixture was filtered to remove palladium residue. And the organic layer was washed with water and brine, dried over anhydrous Na2SO4, evaporated. The residue was purified by column chromatography on silica gel (ethyl acetate in petroleum ether, 25%, v/v) to give product 0512 (52 g, 77%): LCMS: 575 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 1.03-1.09 (m, 9H), 3.12-3.17 (m,lH), 3.20-3.27 (m, 2H), 4.95 (s, 2H), 5.18 (s, 2H), 6.93 (s, IH), 7.05 (d, J= 3.6 Hz, 6H), 7.13 (s, IH), 7.27-7.46 (m, 10H), 7.79 (d, J = 8.4 Hz, 2H), 8.99 (t, J= 5.6 Hz, IH), 9.98 (s, IH). Step 121: Methyl 3-(4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3-
(ethylcarbamoyl)-isoxazol-4-yl)benzylamino)propanoate (Compound 0513-15)
To a mixture ofΛ/-ethyl-JV-isopropylpropan-2-amine (1.65 g, 12.8 mmol) and hydrochloric methyl 3-aminopropanoate (1.8 g, 12.8 mmol) in dichloromethane was added MgSO4 (3.76 g, 31.3 mmol) and 0512 (1.8 g, 3.1 mmol). The resulting mixture was stirred for 3 hours, followed by addition of NaBH3CN (0.44 g, 6.2 mmol) and the mixture was stirred overnight. The mixture was filtered, washed with dichloromethane. The filtrate was washed with saturated aqueous sodium hydrogen carbonate, dried over Na2SO4 and concentrated. The residue was purified by column chromatograph on silica-gel (ethyl acetate in petroleum ether 25%-50%, v/v) to afford product 0513-12 (0.60 g, 29%): LCMS: 662 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 0.98 (d, J= 6.8 Hz, 6H), 1.06 (t, J= 7.2 Hz, 3H), 2.40-2.44 (m, 2H), 2.65-2.70 (m, 2H), 3.06-3.13 (m, IH), 3.16-3.32 (m, 2H), 3.54 (s, 3H), 3.65 (s, 2H), 5.00 (s, 2H), 5.15 (s, 2H), 6.91-7.45 (m, 16H), 8.88 (t, J= 5.6 Hz, IH). Step 12m: Methyl 3-(4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzylamino)propanoate (Compound 0515- 15)
To an ice bath cooled solution of 0513-15 (0.60 g, 0.9 mmol) in dichloromethane (3 mL) under N2 was added a 1.0 M solution of Boron dichloromethane in dichloromethane (5 mL, 5.0 mmol). The reaction mixture was stirred at O0C for 15 minutes, then at room temperature for 30 minutes. The reaction mixture was re-cooled to O0C and quenched by addition of saturated aqueous sodium hydrogen carbonate (10 mL). After stirred for 5 minutes the dichloromethane was removed in vacuo and the residue was partitioned between ethyl acetate (120 mL) and water (60 mL). The organic phase was washed with water and brine, dried over anhydrous Na2SO4 and evaporated. The residue was purified by column chromatography on silica gel (methanol in dichloromethane 20%-50%, v/v) to give product 0515-15 (0.2 g, 46%): LCMS: 482 [M+l]+. 1H NMR(400 MHz, DMSO-J6) δ 0.95 (d, J= 6.8 Hz, 6H), 1.08 (t, J= 7.2 Hz, 3H), 2.43-2.46 (m, 2H), 2.70 (t, J = 6.4 Hz, 2H), 2.95-3.02 (m, IH), 3.19-3.26 (m, 2H), 3.57 (s, 3H), 3.65 (s, 2H), 6.43 (s, IH), 6.78 (s, IH), 7.17 (d, J= 7.6 Hz, 2H), 7.23 (d, J= 8.4 Hz, 2H), 8.85 (t, J = 5.6 Hz, IH), 9.63 (s, IH), 9.75 (s, IH).
Step 12n: 5-(2,4-Dihydroxy-5-isopropylphenyl)-JV-ethyl-4-(4-((3-(hydroxyl amino)- -3 -oxopropylamino)methyl)phenyl)isoxazole-3 -carboxamide (Compound 15) To a flask containing 0515-15 (120 mg, 0.2 mmol) was added freshly prepared hydroxyamine solution (8.0 mL). The mixture was stirred at room temperature for an hour. Then it was adjusted to pH 6 using 1.2 M hydrochloric acid. The mixture was concentrated and the residue was added ethyl acetate (20.0 mL). The organic layer was washed with water, dried over anhydrous Na2SO4 and concentrated. The residue was purified by prep. HPLC to give product compound 15 (49 mg, 31%) as a pale yellow solid: m.p. 146-148 0C. LCMS: 483 [M+l]+. 1U NMR (400 MHz, DMSO-J6) δ 0.96 (d, J= 6.8 Hz,6H), 1.08 (t, J= 7.2 Hz, 3H), 2.12 (t, J= 6.6 Hz, 3H), 2.69 (t, J= 7.2 Hz, 3H), 2.96-3.03 (m, IH), 3.19-3.26 (m, 2H), 3.66 (s, 2H), 6.42 (s, 2H), 6.81 (s, 2H), 7.17 (d, J= 8 Hz,2H), 7.24 (d, J= 8 Hz, 2H), 8.70 (s, IH), 8.85 (t, J= 5.2 Hz, 3H), 9.63 (s, IH), 9.75 (s, IH).
EXAMPLE 13: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-7V-ethyl-4- (4-(((3-(hydroxyamino)-3-oxopropyl)(methyl)amino)methyl)phenyl)isoxazole-3- carboxamide (Compound 16) Step 13a: Ethyl 3-((4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3-(ethylcarba- moyl)isoxazol-4-yl)benzyl)(methyl)amino)propanoate (Compound
0514-16)
To the suspension of ethyl 3-aminopropanoate hydrogen chloride (4.75 g, 30.9 mmol) and MgSO4(4.63 g, 38.6 mmol)in dichloromethane (9 mL) was added N- ethyl-JV-isopropylpropan-2-amine (4.98 g, 38.6 mmol). The mixture was stirred for 10 minutes and then 0512 (2.22 g, 3.86 mmol) was added and stirred for two hours. To the mixture NaBH3CN (0.97 g, 15.4 mmol) was added and stirred overnight at room temperature. Formaldehyde (1.16 g, 38.6 mmol) was added to the mixture and stirred for two hours, followed by the addition OfNaBH3CN (0.97 g, 15.4 mmol). The mixture was stirred overnight at room temperature, filtered and washed by dichloromethane (3 x 10 mL). The combined organic phase was concentrated and the residue was purified by column chromatography on silica gel (acetate in petroleum ether 25%-50%, v/v) to afford product 0514-16(0.82 g, 31%): LCMS: 690 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 0.98 (d, J= 6.8 Hz, 6H), 1.07 (t, J = 7.2 Hz, 3H), 1.16 (t, J= 6.8 Hz, 3H), 2.49-2.51 (m, 9H), 3.11-3.14 (m, IH), 3.19- 3.26 (m, 2H), 4.05-4.08 (m, 2H), 5.03 (s, 2H), 5.17 (s, 2H), 6.95 (s, IH), 7.02(s, IH), 7.12-7.46 (m, 14H), 8.93 (t, J= 5.6 Hz, IH). Step 13b: Ethyl 3-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)propanoate (Compound 0516-16)
The title compound 0516-16 was prepared as a white solid (421 mg, 70%) from 0514-16 (0.81 g, 1.2 mmol) using a procedure similar to that described for compound 0515-15 (Example 12): LCMS: 510 [M+l]+. 1H NMR (400 MHz, MeOD-^) δ 1.00 (d, J= 6.8 Hz, 6H), 1.18 (t, J= 7.2 Hz, 3H), 1.26 (t, J= 6.8 Hz, 3H), 2.80 (s, 3H), 2.88 (t, J= 6.8 Hz, 2H), 3.11-3.16 (m, IH), 3.29-3.34 (m, 4H),
3.35-3.38 (m, 2H), 4.16-4.21 (m, 2H), 6.32 (s, IH), 6.85 (s, IH), 7.39-7.45 (m, 4H). Step 13c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-JV-ethyl-4-(4-(((3-(hydroxyl- amino)-3-oxopropyl)(methyl)amino)methyl)phenyl)isoxazole-3-carboxamide (Compound 16) The title compound 16 was prepared as a white solid (122 mg, 31%) from
0516-16 (404 mg, 0.8 mmol) using a procedure similar to that described for compound 15 (Example 12): m.p. 120-122 0C. LCMS: 497 [M+l]+. 1U NMR (400 MHz, MeOD-^) δ 0.96 (d, J= 6.8 Hz, 6H), 1.17 (t, J= 7.2 Hz, 3H), 2.14 (s, 3H), 2.26 (t, J= 7.2 Hz, 2H), 2.66 (t, J= 6.8 Hz, 2H), 2.95 (m, IH), 3.27-3.32 (m, 2H), 3.47 (s, 2H), 6.29 (s, IH), 6.77 (s, IH), 7.18-7.23 (m, 4H).
EXAMPLE 14: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-7V-ethyl-4- (4-(((4-(hydroxyamino)-4-oxobutyl)(methyl)amino)methyl)phenyl)isoxazole-3- carboxamide (Compound 18) Step 14a: Ethyl 4-((4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3- (ethylcarbamoyl)-isoxazol-4-yl)benzyl)(methyl)amino)butanoate (Compound 0514- 18)
The title compound 0514-18 was prepared (378 mg, 36%) from 512 (0.86 g, 1.5 mmol) using a procedure similar to that described for 0514-16 (Example 13): LCMS: 704 [M+l]+. 1H NMR (400 MHz, MeOD-^) δ 1.05 (d, J= 6.8 Hz, 6H), 1.13-1.21 (m, 6H), 1.75-1.82 (m, 2H), 2.15 (s, 3H), 2.28 (t, J= 7.2 Hz, 2H), 2.36 (t, J= 7.2 Hz, 2H), 3.17-3.22 (m, IH), 3.32-3.36 (m, 2H), 3.47 (s, 2H), 4.01-4.09 (m, 2H), 4.84 (s, 2H), 5.06 (s, 2H), 6.68 (s, IH), 7.07-7.38 (m, 15H). Step 14b: Ethyl 4-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)butanoate (Compound 0516-18)
The title compound 0516-18 was prepared (178 mg, 68%) from 0514-18 (361 mg, 0.5 mmol) using a procedure similar to that described for 0516-16 (Example 13): LCMS: 524 [M+l]+. Step 14c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-N-ethyl-4-(4-(((4-(hydroxyamino)- 4-oxobutyl)(methyl)amino)methyl)phenyl)isoxazole-3-carboxamide (Compound 18)
The title compound 18 was prepared (85 mg, 52%) from 0516-18 (168 mg, 0.3 mmol) using a procedure similar to that described for 16 (Example 13): m.p. 132-134 0C. LCMS: 511 [M+l]+. 1H NMR (400 MHz, MeOD-^) δ 0.95 (d, J= 6.8 Hz, 6H), 1.15 (t, J= 7.2 Hz,3H), 1.76-1.84 (m, 2H), 2.06-2.10 (m, 2H), 2.18 (s, 3H), 2.41 (t, J= 7.2 Hz, 2H), 3.00-3.07 (m, IH), 3.33 (q, J= 7.2 Hz, 2H), 3.51 (s, 2H), 6.31 (s, IH), 6.79 (s, IH), 7.20-7.24 (m, 4H).
EXAMPLE 15: Preparation of 5-(2,4-Dihydroxy-5-isopropylphenyl)-7V-ethyl-4- (4-((6-(hydroxyamino)-6-oxohexylamino)methyl)phenyl)isoxazole-3- carboxamide (Compound 21)
Step 15a: Ethyl 6-(4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3-(ethylcar- bamoyl)-isoxazol-4-yl)benzylamino)hexanoate (Compound 0513-21) The title compound 0513-21 was prepared (0.6 g, 36%) from 0512 (1.3 g, 2.3 mmol) using a procedure similar to that described for 0513-15 (Example 12): LCMS: 718 [M+l]+. 1H NMR (400 MHz, DMSO-J6) δ 0.99 (d, J= 7.2 Hz, 6H), 1.07 (t, J= 7.2 Hz, 3H), 1.13-1.17 (m, 3H), 1.24-1.52 (m, 6H), 2.22-2.28 (m, 2H), 2.43-2.47 (m, 2H), 3.10-3.14 (m, IH), 3.24-3.34 (m, 2H), 4.00-4.07 (m, 4H), 5.02 (s, 2H), 5.17 (s, 2H), 6.93 (s, IH), 7.02 (s, IH), 7.14-7.65 (m, 14H), 8.91 (t, J= 5.6 Hz,
IH).
Step 15b: Ethyl 6-(4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzylamino)hexanoate (Compound 0515-21) The title compound 0515-21 was prepared (0.2 g, 52%) from 0513-21 (0.51 g, 0.7 mmol) using a procedure similar to that described for 0515-15 (Example 12):
LCMS: 538 [M+l]+.
Step 15c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-Λ/-ethyl-4-(4-((6-(hydroxyamino)-
6-oxohexylamino)methyl)phenyl)isoxazole-3-carboxamide (Compound 21) The title compound 21 was prepared (43 mg, 22%) from 0515-21 (200 mg,
0.4 mmol) using a procedure similar to that described for 15 (Example 12): m.p.
134-135 0C. LCMS: 525 [M+l]+. 1U NMR (400 MHz, MeOD-J6) δ 0.96 (d, J= 6.8
Hz,6H), 1.01 (t, J= 7.2 Hz,6H), 1.16-1.35 (m, 2H), 1.55-1.63 (m, 4H), 2.08 (t, J =
7.2 Hz, 2H), 2.62 (t, J= 7.2 Hz, 2H), 3.03-3.10 (m, IH), 3.31-3.37 (m, 2H), 3.80 (s, 2H), 6.33 (s, IH), 6.82 (s, IH), 7.27-7.30 (m, 4H).
EXAMPLE 16: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(((6-
(hydroxyamino)-6-oxohexyl)(methyl)amino)methyl)phenyl)-7V-methylisoxazole-
3-carboxamide (Compound 22) Step 16a: Ethyl 6-((4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3-
(ethylcarbamoyl)-isoxazol-4-yl)benzyl)(methyl)amino)hexanoate (Compound 0514-
22)
The title compound 0514-22 was prepared (379 mg, 35%) from 0512 (0.85 g,
0.1 mmol) using a procedure similar to that described for 0514-16 (Example 13): LCMS: 732 [M+l]+. 1H NMR (400 MHz, MeOD-^) δ 1.05 (d, J= 6.8 Hz, 6H),
1.13-1.19 (m, 6H), 1.23-1.29 (m, 2H), 1.47-1.60 (m, 4H), 2.17 (s, 3H), 2.25 (t, J =
7.2 Hz, 2H), 2.35 (t, J= 7.2 Hz, 2H), 3.16-3.24 (m, IH), 3.30-3.35 (m, 2H), 3.50 (s,
2H), 4.05 (q, J= 7.2 Hz, 2H), 4.83 (s, 2H), 5.06 (s, 2H), 6.69 (s, IH), 7.07-7.38 (m,
15H). Step 16b: Ethyl 6-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)hexanoate (Compound 0516-22) The title compound 0516-22 was prepared (167 mg, 72%) from 0514-16
(308 mg, 0.4 mmol) using a procedure similar to that described for 0516-16
(Example 13): LCMS: 538 [M+l]+. Step 16c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-Λ/-ethyl-4-(4-(((6-(hydroxyamino)-
6-oxohexyl)(methyl)amino)methyl)phenyl)isoxazole-3-carboxamide (Compound 22)
The title compound 22 was prepared (52 mg, 34%) from 0516-22 (157 mg, 0.3 mmol) using a procedure similar to that described for 16 (Example 13): mp 113-115
0C. LCMS: 539 [M+l]+. 1H NMR (500 MHz, MeOD-^) δ 0.95 (d, J= 6.8 Hz, 6H),
1.15 (t, J= 7.0 Hz, 3H), 1.26-1.32 (m, 2H), 1.52-1.63 (m, 4H), 2.06 (t, J= 6.5 Hz,
2H), 2.23 (s, 3H), 2.44 (t, J= 7.2 Hz, 3H), 3.01-3.06 (m, IH), 3.31-3.35 (m, 2H),
3.57 (s, 2H), 6.31 (s, IH), 6.79 (s, IH), 7.23-7.25 (m, 4H).
EXAMPLE 17: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-7V-ethyl-4-
(4-((7-(hydroxyamino)-7-oxoheptylamino)methyl)phenyl)isoxazole-3- carboxamide (Compound 23)
Step 17a: Ethyl 7-(4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3- (methylcarbamoyl)isoxazol-4-yl)benzylamino)heptanoate (Compound 0513-23)
The title compound 0513-23 was prepared (410 mg, 36%) from 512 (0.89 g,
1.6 mmol) using a procedure similar to that described for 513-15 (Example 12):
LCMS: 732[M+1]+.
Step 17b: Ethyl 7-(4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)-iso- xazol-4-yl)benzylamino)heptanoate (Compound 0515-23)
The title compound 0515-23 was prepared (392 mg, 56%) from 0513-23
(0.93 g, 1.3 mmol) using a procedure similar to that described for 515-15 (Example
12): LCMS: 552 [M+l]+.
Step 17c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-7V-ethyl-4-(4-((7-(hydroxyamino)- 7-oxoheptylamino)methyl)phenyl)isoxazole-3-carboxamide (Compound 23)
The title compound 23 was prepared (137 mg, 37%) from 0515-23 (380 mg,
0.7 mmol) using a procedure similar to that described for 15 (Example 12): m.p.
126-128 0C. LCMS: 539 [M+l]+. 1U NMR (400 MHz, MeOD) δ 0.94 (d, J= 6.8
Hz,6H), 1.07 (t, J= 7.2 Hz, 3H), 1.22-1.24 (m, 4H), 1.35-1.50 (m, 4H), 1.92 (t, J = 7.2 Hz, 2H), 2.42 (t, J= 7.2 Hz, 2H), 2.95-3.02 (m, IH), 3.19-3.26 (m, 2H), 3.63 (s,
2H), 6.43 (s, IH), 6.77 (s, IH), 7.16 (d, J= 8 Hz, 2H), 7.23 (d, J= 8 Hz, 2H), 8.85
(t, J= 5.6 Hz, IH), 9.65 (s, IH), 9.75 (s, IH), 10.36 (s, IH). EXAMPLE 18: Preparation of 5-(2,4-dihydroxy-5-isopropyl- phenyl)-7V-ethyl- 4-(4- (((7-(hydroxyamino)-7-oxoheptyl)(methyl)amino) methyl)phenyl)isoxazole-3-carboxamide (Compound 24) Step 18a: Ethyl 7-((4-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-3- (ethylcarbamoyl)-isoxazol-4-yl)benzyl)(methyl)amino)heptanoate (Compound 0514-24)
The title compound 0514-24 was prepared (256 mg, 36%) from 0512 (548 mg, 0.9 mmol) using a procedure similar to that described for 0514-16 (Example 13): LCMS: 746 [M+l]+. Step 18b: Ethyl 7-((4-(5-(2,4-dihydroxy-5-isopropylphenyl)-3-(ethylcarbamoyl)- isoxazol-4-yl)benzyl)(methyl)amino)heptanoate (Compound 0516-24) The title compound 0516-24 was prepared (119 mg, 64%) from 0514-24 (245 mg, 0.3 mmol) using a procedure similar to that described for 0516-16 (Example 13): LCMS: 566 [M+l]+. Step 18c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-Λ/-ethyl-4-(4-(((7-(hydroxyamino)- 7-oxoheptyl)(methyl)amino)methyl)phenyl)isoxazole-3-carboxamide (Compound 24)
The title compound 24 was prepared (39 mg, 37%) from 0516-24 (108 g, 0.2 mmol) using a procedure similar to that described for 16 (Example 13): m.p. 118- 119 0C. LCMS: 553 [M+l]+. 1H NMR (400 MHz, MeOD-^) δ 0.93 (d, J= 6.8 Hz, 6H), 1.13 (t, J= 7.2 Hz, 3H), 1.26-1.28 (m, 4H), 1.45- 1.59 (m, 4H), 2.03 (t, J= 7.2 Hz, 2H), 2.32 (t, J= 7.2 Hz, 2H), 2.97-3.04 (m, IH), 3.31 (q, J= 7.2 Hz, 2H), 3.46 (s, 2H), 6.30 (s, IH), 6.75 (s, IH), 7.20-7.22 (m, 4H).
EXAMPLE 19: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-N- (4- (hydroxyl- amino)-4-oxobutyl)-4-(4-(morpholinomethyl)phenyl)isoxazole- 3- carboxamide (Compound 25)
Step 19a: Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-iodoisoxazole-3- carboxylate (Compound 0601) A mixture of 0509 (20.5 g, 43 mmol), TV-iodosuccinimide (19.6 g, 86 mmol) and eerie ammonium nitrate (1.2 g, 2.2 mmol) in acetonitrile (700 mL) was stirred at room temperature overnight. To the mixture was added aqueous sodium thiosulfate and then concentrated to a small volume. The resulting precipitate was filtered and washed with water. The solid was dried in vacuo for 12 h to afford the product 0601 (25 g, 96%) as a white solid: LCMS: 598 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 1.18 (d, J= 6.8 Hz, 6H), 1.35 (t, J= 5.1 Hz, 3H), 3.26(m, IH), 4.40 (q, J= 5.1 Hz, 2H), 5.24(s, 4H), 7.05(s, IH), 7.44(m, HH).
Step 19b: Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4-formylphenyl)iso- xazole-3-carboxylate (Compound 0602)
To the mixture of 0601 (10 g, 17 mmol), 4-formylphenylboronic acid (3.8 g, 34 mmol), sodium hydrogen carbonate (4.3 g, 51 mmol), DMF (100 mL) and water (20 mL) was added dichlorobis(triphenylphoshine)palladium (1.4g, 3.4 mmol). The resulting mixture was heated to 8O0C overnight. After concentration, the residue was partitioned between ethyl acetate and water. This mixture was filtered to remove palladium residue. The organic layer was washed with water and brine, dried over sodium sulfate and evaporated. The residue was purified by column chromatography on silica gel (ethyl acetate in petroether,l 1% v/v) to afford product 0602 (7.4 g, 77%) as a yellow solid: LCMS: 576 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 1.00 (d, J= 6.8 Hz, 6H), 1.20 (t, J= 5.1 Hz, 3H), 3.13 (m, IH), 4.30 (q, J= 5.1 Hz, 2H), 5.01 (s, 2H), 5.18(s, 2H), 6.93(s, IH), 7.14(m, 3H), 7.40 (m, 4H), 7.83 (d, J= 8.0 Hz, 2H), 8.05 (m, 2H), 10.02 (s,lH).
Step 19c: Ethyl 5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4- (morpholinomethyl)-phenyl)isoxazole-3-carboxylate (Compound 0603) Acetic acid (1.2 g, 19.0 mmol) was added dropwised to the mixture of 0602 (2.2 g, 3.8 mmol), morpholine (1 g, 11.4 mmol) and magnesium sulfate (4.6 g, 38 mmol) in dichloromethane (50 mL). After stirred for 2h, sodium cyanoborohydride (490 mg, 11.4 mmol) was added and stirred overnight. The mixture was then filtered and the filtrate was washed with saturated sodium bicarbonate, water, and brine. The organic layer was dried over sodium sulfate and concentrated to give desired product 0603 (1.8 g, 73%) as a yellow solid: LCMS: 647 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.91 (d, J= 6.8 Hz, 6H), 1.17 (t, J= 5.2 Hz, 3H), 2.32 (s, 4H), 3.08 (m, IH), 3.42(s,2H), 3.54 (s, 4H), 4.26 (q, 5.2 Hz, 2H), 5.08 (s, 2H), 5.17 (s, 2H), 6.95 (d, J= 3.6 Hz, 2H), 7.26 (m, 4H), 7.37 (m, HH). Step 19d: 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl)isoxazole-3-carboxylic acid (Compound 0604)
To the solution of 0603 (6.1 g, 9.4 mmol) in tetrahydrofuran/methano I/water (1 :1 :1, v/v) (100 mL) was added lithium hydroxide monohydrate (0.79 g, 18.8 mmol) and stirred for 2h at room temperature. Then the mixture was adjusted to pH 7 with hydrochloric acid (1 M) and concentrated. The residue was extracted with ethyl acetate, washed with water and brine. The organic layer was dried over sodium sulfate and concentrated to give product 0604 as a pale yellow solid (5.2 g, 89%): LCMS: 619 [M+l]+ . 1H NMR (400 Hz, DMSO-J6) δ 0.96 (d, J= 6.8 Hz, 6H), 3.07 (m, IH), 3.38 (s, 4H), 3.85 (s, 4H), 4.27 (s, 2H), 5.09 (s, 2H), 5.18 (s, 2H), 6.98 (d, J = 17.6 Hz, 2H), 7.40 (m, 14H), 12.12 (s, IH). Step 19e: Ethyl 3-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4- (morpholinomethyl)phenyl) isoxazole-3 -carboxamido)propanoate (Compound 605-25) To a solution of 0604 (1 g, 1.6 mmol) in dichloromethane (15 mL) was added
BOP (1.07 g, 2.4 mmol) and stirred for 30 min at room temperature. Then N ,N- Diisopropylethylamine (0.84 g, 6.4 mmol) and ethyl 4-aminobutyrate hydrochloride (0.41 g, 2.4 mmol) were added to the mixture and stirred overnight. The reaction mixture was extracted with dichloromethane, washed with water and brine. The organic layer was dried over sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate in petroleum ether 33%, v/v) to give product 0605-25 (0.76 g, 64%) as a pale yellow solid: LCMS: 733 [M+l]+ . 1H NMR (400 Hz, DMSO-J6) δ 0.96 (d, J= 6.8 Hz, 6H), 1.18 (t, J= 7.2 Hz, 3H), 1.72 (m, 2H), 2.28 (t, J= 7.2 Hz, 2H), 2.31 (m, 4H), 3.11 (m, IH), 3.22 (m, 2H), 3.42 (s, 2H), 3.53 (s, 4H), 4.05 (q, J= 7.2 Hz, 3H), 5.03 (s, 2H), 5.18 ( s, 2H), 6.96 (d, J = 15.6 Hz, 2H), 7.32 (m, 14H), 8.94 (t, J= 5.4 Hz, IH). Step 19f: Ethyl 4-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl)iso xazole-3-carboxamido)butanoate (Compound 0606-25) To a solution of 0605-25 (0.76 g, 1.0 mmol) in dichloromethane (1 mL) was added BCI3 (1.0 M in dichloromethane, 4.2 mL, 4.2 mmol) at O0C. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. The mixture was adjusted to pH7 with saturated aqueous sodium bicarbonate and concentrated. The residue was extracted with dichloromethane and washed with water and brine. The organic layer was dried over sodium sulfate and concentrated. The residue was purified by column chromatography on silica gel (ethyl acetate in petroleum ether 33%, v/v) to give product 0606-25 (0.51 g, 89%) as a yellow solid: LCMS: 552 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.90 (d, J= 6.8 Hz, 6H), 1.16 (t, J= 7.2 Hz, 3H), 1.71 (m, 2H), 2.28 (t, J= 7.2 Hz, 2H), 2.32 (s, 4H), 2.97 (m, IH), 3.22 (m, 2H), 3.41 (s, 2H), 3.55 (s, 4H), 4.05 (q, J= 7.2 Hz, 2H), 6.44 (s, IH), 6.73 (s, IH), 7.20 (m, 4H), 8.87 (t, J= 5.2 Hz, IH), 9.66 (s, IH), 9.77 (s, IH). Step 19g: 5-(2,4-Dihydroxy-5-isopropylphenyl)-N-(4-(hydroxyamino)-4-oxobutyl)- 4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 25) Compound 0606-25 (0.51 g, 0.9 mmol) was added to the freshly prepared solution of hydroxyamine in methanol (4.0 mL) and stirred at room temperature for 30 min. Then the mixture was adjusted to pH7 using 1.2 M hydrochloric acid. After concentration, ethyl acetate (200 mL) was added. The organic was washed with water, dried over anhydrous Na2SO4 and concentrated. The residue was purified by prep. -HPLC to afford the title product 25 (242 mg, 48 %) as a white solid: mp 129- 1300C. LCMS: 538 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.89 (d, J= 6.8 Hz, 6H), 1.69 (m, 2H), 1.98 (t, J= 7.2 Hz, 2H), 2.33 (s, 4H), 2.97 (m, IH), 3.18 (m, 2H), 3.42 (s, 2H), 3.55 (s, 4H), 6.43 (s, IH), 6.71 (s, IH), 7.20 (m, 4H), 8.73 (s, IH), 8.88 (t, J= 5.6 Hz, IH), 9.68 (s,lH), 9.83 (s, IH), 10.39 (s, IH) .
EXAMPLE 20: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-N- (6-
(hydroxyl-amino)-6-oxohexyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3- carboxamide (Compound 27)
Step 20a: Ethyl 6-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4-(morpholino- methyl)phenyl)isoxazole-3-carboxamido)hexanoate (Compound 0605-27)
The title compound 0605-27 was prepared as a pale yellow solid (404 mg, 53%) from 0604 (0.62 g, 1.0 mmol) using a procedure similar to that described for 0605-25 (Example 19): LCMS: 760 [M+l]+. Step 20b: Ethyl 6-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl) isoxazole-3-carboxamido)hexanoate (606-27)
The title compound 0606-27 was prepared as a yellow solid (250 mg, 81%) from 0605-27 (404 mg, 0.5 mmol )using a procedure similar to that described for 0606-25 (example 19): LCMS: 580 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.93 (d, J= 6.8 Hz, 6H),1.16 (t, J= 7.2 Hz, 3H), 1.26 (m, 2H), 1.50 (m, 4H), 2.26 (t, J= 7.2 Hz, 2H), 2.97 (m, IH), 3.00 (s, 4H), 3.37 (s, 2H), 3.76 (s, 4H), 4.04 (q, J= 7.2 Hz, 2H), 6.48 (s, IH), 6.77 (s, IH), 7.31(m, 4H), 8.90 (t, J= 5.2 Hz, IH), 9.73 (s, IH), 9.87 (s, IH).
Step 20c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-N-(6-(hydroxyamino)-6-oxohexyl)- 4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 27) The title compound 27 was prepared as a white solid (46 mg, 13%) from 0606-27 (250 mg, 0.4 mmol) using a procedure similar to that described for 25 (Example 19): mp 164-1660C. LCMS: 567 [M+ 1]+. 1U NMR (400 Hz, DMSO-J6) δ 0.89 (d, J= 6.8 Hz, 6H), 1.24 (m, 2H), 1.46 (m, 4H), 1.92 (t, J= 7.2Hz, 2H), 2.33 (s, 4H),2.97 (m, IH), 3.17 (m, 2H), 3.42 (s, 2H), 3.55 (s, 4H), 6.43 (s, IH), 6.72 (s, IH), 7.20 (m, 4H), 8.68 (s, IH), 8.83 (t, J= 5.2 Hz, IH), 9.66 (s, IH), 9.77 (s, IH), 10.35 (s, IH).
EXAMPLE 21: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-N- (7- (hydroxyl-amino)-7-oxoheptyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3- carboxamide (Compound 28)
Step 21a: Ethyl 7-(5-(2,4-bis(benzyloxy)-5-isopropylphenyl)-4-(4-(morpholino- methyl)phenyl) isoxazole-3-carboxamido)heptanoate (Compound 0605-28) The title compound 0605-28 was prepared as a pale yellow solid (0.86 g, 69%) from 0604 (1 g, 1.6 mmol) using a procedure similar to that described for
0605-25 (Example 19): LCMS: 774 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.97
(d, J= 6.8 Hz, 6H), 1.17 (t, J= 7.2 Hz, 3H), 1.24 (m, 4H), 1.46 (m, 4H), 2.27 (t, J =
7.2 Hz, 2H), 2.32 (s, 4H), 2.99 (m, 2H), 3.15 (m, IH), 3.43 (s, 2H), 3.54 (s, 4H),
4.05 (q, J= 7.2 Hz, 2H), 5.04 (s, IH), 5.19 (s, IH), 6.97 (d, J= 17.2 Hz, IH), 7.38 (m, 14H), 8.89 (t, J= 5.2 Hz, IH).
Step 21b: Ethyl 7-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl) isoxazole-3-carboxamido)heptanoate (Compound 0606-28)
The title compound 0606-28 was prepared as a yellow solid (0.54 g, 82%) from 0605-28 (0.86 g, 1.1 mmol ) using a procedure similar to that described for 0606-25 (Example 19): LCMS: 594 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.90
(d, J= 6.8 Hz, 6H), 1.17 (t, J= 7.2 Hz, 3H), 1.25 (m, 4H), 1.47 (m, 4H), 2.27 (t, J =
7.2 Hz, 2H), 2.33 (s, 4H), 2.99 (m, 2H), 3.16 (m, IH), 3.42 (s, 2H), 3.57 (s, 4H),
4.05 (q, J= 7.2 Hz, 2H), 6.45 (s, IH), 6.74 (s, IH), 7.22 (m, 4H), 8.83 (t, J= 5.2 Hz,
IH), 9.69 (s, IH), 9.79 (s, IH). Step 21c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-Λ/-(7-(hydroxyamino)-7- oxoheptyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound
28)
The title compound 28 was prepared as a white solid (240 mg, 45%) from
0606-28 (0.54 mg, 0.9 mmol) using a procedure similar to that described for 25 (Example 19): mp 109-111 0C. LCMS: 581 [M+l]+. 1U NMR (400 Hz, DMSO-J6) δ 0.90 (d, J= 6.8 Hz, 6H), 1.23 (m, 4H), 1.45 (m, 4H), 1.93 (t, J= 7.2 Hz, 2H), 2.33 (s, 4H), 2.97 (m, IH), 3.18 (m, 2H), 3.42 (s, 2H), 3.56 (m, 4H), 6.44 (s, IH), 6.73 (s, IH), 7.21 (m, 4H), 8.67 (s,lH), 8.82 (t, J= 5.2 Hz, IH), 9.65 (s, IH), 9.76 (s, IH), 10.34 (s, IH).
EXAMPLE 22: Preparation of 5-(2,4-dihydroxy-5-isopropylphenyl)-N-(8- (hydroxyl-amino)-8-oxooctyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3- carboxamide (Compound 29) Step 22a: 5-(2,4-Bis(benzyloxy)-5-isopropylphenyl)-Λ/-(8-(hydroxyamino)-8-oxo- octyl)-4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 0605-29)
The title compound 0605-29 was prepared as a pale yellow solid (0.71 g, 56%) from 0604 (1 g, 1.6 mmol) using a procedure similar to that described for 0605-25 (Example 19): LCMS: 788 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.97 (d, J= 6.8 Hz, 6H), 1.17 (t, J= 7.2 Hz, 3H), 1.23 (m, 6H), 1.50 (m, 4H), 2.27 (t, J = 7.2 Hz, 2H), 2.33 (s, 4H), 3.14 (m, IH), 3.42 (s, 2H), 3.53 (s, 4H), 4.04 (q, J= 7.2 Hz, 2H), 5.03 (s, 2H), 5.18 (s, 2H), 6.97 (d, J= 17.2 Hz, IH), 7.38 (m, 14H), 8.88 (t, J= 5.2 Hz, IH). Step 22b: Ethyl 8-(5-(2,4-dihydroxy-5-isopropylphenyl)-4-(4-(morpholinomethyl)- phenyl)isoxazo le-3-carboxamido)octanoate (Compound 0606-29)
The title compound 0606-29 was prepared as a yellow solid (452 mg, 82%) from 0605-29 (0.71 g, 0.9 mmol ) using a procedure similar to that described for 0606-25 (Example 19): LCMS: 608 [M+l]+. 1H NMR (400 Hz, DMSO-J6) δ 0.90 (d, J= 6.8 Hz, 6H), 1.17 (t, J= 7.2 Hz, 3H), 1.24 (m, 6H), 1.49 (m, 4H), 2.27 (t, J = 7.2 Hz, 2H), 2.33 (s, 4H), 3.18 (m, IH), 3.42 (s, 2H), 3.60 (s, 4H), 4.04 (q, J= 7.2 Hz, 2H), 6.45 (s, IH), 6.74 (s, IH), 7.23 (m, 4H), 8.84 (t, J = 5.6 Hz, IH), 9.69 (s, IH), 9.80 (s, IH).
Step 22c: 5-(2,4-Dihydroxy-5-isopropylphenyl)-Λ/-(8-(hydroxyamino)-8-oxooctyl)- 4-(4-(morpholinomethyl)phenyl)isoxazole-3-carboxamide (Compound 29)
The title compound 29 was prepared as a white solid (123 mg, 28%) from 0606-29 (452 mg, 0.7 mmol) using a procedure similar to that described for 25 (Example 19): mp 117-1190C. LCMS: 595 [M+ 1]+. 1H NMR (400 Hz, DMSO-J6) δ 0.90 (d, J= 6.8 Hz, 6H), 1.23 (m, 6H), 1.93 (t, J= 7.2 Hz, 2H), 2.33 (s, 4H), 2.97 (m, IH), 3.17 (m, 2H), 3.42 (s, 2H), 3.52 (s, 4H), 6.43 (s, IH), 6.73 (s, IH), 7.19 (m, 4H), 8.66 (s, IH), 8.81 (t, J= 5.2 Hz, IH), 9.66 (s, IH), 9.77 (s, IH), 10.34 (s, IH).
Biological Assays: As stated hereinbefore the derivatives defined in the present invention possess anti-proliferation activity. These properties may be assessed, for example, using one or more of the procedures set out below:
(a) An in vitro assay which determines the ability of a test compound to inhibit Hsp90 chaperone activity. The Hsp90 chaperone assay was performed to measure the ability of HSP90 protein to refold the heat-denatured luciferase protein. HSP90 was first incubated with different concentrations of test compounds in denaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol) at room temperature for 30 min. Luciferase protein was added to denaturation mix and incubated at 50 0C for 8 min. The final concentration of HSP90 and luciferase in denaturation mixture were 0.375 μM and 0.125 μM respectively. A 5 μl sample of the denatured mix was diluted into 25 μl of renaturation buffer (25 mM Tris, pH7.5, 8 mM MgSO4, 0.01% bovine gamma globulin and 10% glycerol, 0.5 mM ATP, 2 mM DTT, 5 mM KCl, 0.3 μM HSP70 and 0.15 μM HSP40). The renaturation reaction was incubated at room temperature for 150 min, followed by dilution of lOμl of the renatured sample into 90 μl of luciferin reagent (Luclite, PerkinElmer Life Science). The mixture was incubated at dark for 5 min before reading the luminescence signal on a TopCount plate reader (PerkinElmer Life Science).
(b) HSP90 Competition Binding (Fluorescence Polarization) Assay. A fluorescein isothiocyanate (FITC) labeled GM was purchase from
InvivoGen (ant-fgl-1). The interaction between HSP90 and labeled GM forms the basis for the fluorescence polarization assay. A free and fast-tumbling FITC labeled GM emits random light with respect to the plane of polarization plane of excited light, resulting in a lower polarization degree (mP) value. When GM is bound to HSP90, the complex tumble slower and the emitted light is polarized, resulting in a higher mP value. This competition binding assay was performed in 96-well plate and with each assay contained 10 and 5OnM of labeled GM and purified HSP90 protein (Assay Design, SPP-776F) respectively. The assay buffer contained 2OmM HEPES (pH 7.3), 5OmM KCl, ImM DTT, 5OmM MgCl2, 2OmM Na2MoO4, 0.01% NP40 with O.lmg/ml bovine gamma-globulin. Compounds are diluted in DMSO and added to the final assay before labeled GM with concentration range from 2OuM to 2nM. mP value was determined by BioTek Synergy II with background subtraction after 24 hours of incubation at 40C.
(c) An in vitro assay which determines the ability of a test compound to inhibit HDAC enzymatic activity.
HDAC inhibitors were screened using an HDAC fluorimetric assay kit (AK- 500, Biomol, Plymouth Meeting, PA). Test compounds were dissolved in dimethylsulphoxide (DMSO) to give a 20 mM working stock concentration.
Fluorescence was measured on a WALLAC Victor 2 plate reader and reported as relative fluorescence units (RFU). Data were plotted using GraphPad Prism (v4.0a) and IC50's calculated using a sigmoidal dose response curve fitting algorithm. Each assay was setup as follows: Defrosted all kit components and kept on ice until use. Diluted HeLa nuclear extract 1 :29 in Assay Buffer (50 mM Tris/Cl, pH 8.0, 137 mM NaCl, 2.7 mM KCl, 1 mM MgC12). Prepared dilutions of Trichostatin A (TSA, positive control) and tested compounds in assay buffer (5x of final concentration). Diluted Fluor de LysTM Substrate in assay buffer to 100 uM (50 fold = 2x final). Diluted Fluor de LysTM developer concentrate 20-fold (e.g. 50 μl plus 950 μl Assay Buffer) in cold assay buffer. Second, diluted the 0.2 mM
Trichostatin A 100-fold in the Ix Developer (e.g. 10 μl in 1 ml; final Trichostatin A concentration in the Ix Developer = 2 μM; final concentration after addition to HDAC/Substrate reaction = 1 μM). Added Assay buffer, diluted trichostatin A or test inhibitor to appropriate wells of the microtiter plate. Added diluted HeLa extract or other HDAC sample to all wells except for negative controls. Allowed diluted Fluor de LysTM Substrate and the samples in the microtiter plate to equilibrate to assay temperature (e.g. 25 or 37°C. Initiated HDAC reactions by adding diluted substrate (25 μl) to each well and mixing thoroughly. Allowed HDAC reactions to proceed for 1 hour and then stopped them by addition of Fluor de LysTM Developer (50 μl). Incubated plate at room temperature (25°C) for 10-15 min. Read samples in a microtiter-plate reading fluorimeter capable of excitation at a wavelength in the range 350- 380 nm and detection of emitted light in the range 440- 460 nm. The following TABLE B lists compounds representative of the invention and their activity in HDAC and HSP90 assays. In these assays, the following grading was used: I > 10 μM, 10 μM > II > 1 μM, 1 μM > III > 0.1 μM, and IV < 0.1 μM for IC50.
TABLE B
Figure imgf000092_0001
The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A compound represented by formula I or II:
Figure imgf000093_0001
or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein
Cy and Cy1 are each independently selected from aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkyl and substituted cycloalkyl;
X and Y are independently O, S, N, NRs or CRs, where Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
W is hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, thiol, substituted thiol, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, CF3, CN, NO2, N3, acyl, aliphatic or substituted aliphatic, C(0)Wio; where W10 is OR', SR' and NR7R8, wherein R7 is hydrogen, OR', aliphatic or substituted aliphatic; R' is hydrogen, aliphatic, substituted aliphatic or acyl; and Rg is hydrogen, acyl, aliphatic or substituted aliphatic; or R7 and Rs together with nitrogen atom to which they are attached to form a heterocyclic ring; B is linker; C is selected from:
Figure imgf000093_0002
where Wi is O or S; Yi is absent, N, or CH; Zi is N or
CH; R7 and R9 are independently hydrogen, OR', aliphatic or substituted aliphatic, wherein R' is hydrogen, aliphatic, substituted aliphatic or acyl; provided that if R7 and R9 are both present, one of R7 or Rg must be OR' and if Y is absent, Rg must be OR'; and Rs is hydrogen, acyl, aliphatic or substituted aliphatic;
(b)
Figure imgf000094_0001
; where Wi is O or S; J is O, NH or NCH3; and Ri0 is hydrogen or lower alkyl;
Figure imgf000094_0002
; where Wi is O or S; Y2 and Z2 are independently N, C or CH; and
(d)
Figure imgf000094_0003
Zi, Yi, and Wi are as previously defined; Rn and Ri2 are independently selected from hydrogen or aliphatic; R1, R2 and R3 are independently selected from hydrogen, hydroxy, amino, halogen, alkoxy, substituted alkoxy, alkylamino, substituted alkylamino, dialkylamino, substituted dialkylamino, substituted or unsubstituted alkylthio, substituted or unsubstituted alkylsulfonyl, CF3, CN, NO2, N3, sulfonyl, acyl, aliphatic, substituted aliphatic, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
2. A compound according to Claim 1 represented by formula (III) or (IV):
Figure imgf000094_0004
or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein X1-X5 are independently N or CR21, where R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, cycloalkylalkyl, arylalkyl, heterocyclylalkyl, and heteroarylalkyl; substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, substituted aliphatic, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; Bi is absent, O, S, SO, SO2, N(Rg), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic or aryl; B2 is absent, O, S, SO, SO2, N(R8) or CO; B3 is absent, O, S, SO, SO2, N(R8), CO, C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B4 is absent, O, S, SO, SO2, N(R8), CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; B5 is absent, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, cycloalkyl, heterocyclic, aryl, or heteroaryl; Cy, W, X, Y, R' and R8 are as previously defined in Claim 1.
3. A compound according to Claim 2 wherein at least one of Xi to X5 is CR2I, where R2i is heterocyclylalkyl.
4. A compound according to Claim 3 wherein at least one of Xi to X5 is CR2I, where R2i is morpholinomethyl.
5. A compound according to Claim 1 represented by formula (VII) or (VIII):
Figure imgf000095_0001
Figure imgf000096_0001
or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein X1-X1O are independently N or CR21, where R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, and substituted aliphatic; B2 is absent, O, S, SO, SO2, N(R8) or CO; Wi0 is OR', SR' or NR7R8, wherein R7 and R8 are as previously defined in Claim 1.
6. A compound according to Claim 1 represented by formula (IX):
Figure imgf000096_0002
or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof, wherein X1-X10 are independently N or CR2I, where R21 is independently selected from hydrogen, hydroxy, substituted hydroxy, amino, substituted amino, halogen, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heterocyclylalkyl, and substituted or unsubstituted heteroarylalkyl; substituted or unsubstituted alkylamino, substituted or unsubstituted dialkylamino, substituted or unsubstituted thiol, CF3, CN, NO2, N3, substituted carbonyl, sulfonyl, acyl, aliphatic, and substituted aliphatic; Bi is CO, Ci-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl; B2 is absent, O, S, SO, SO2, Or N(R8); Wi0 is OR', SR' or NR7Rg, wherein R7 and Rg are as previously defined in Claim 1.
7. A compound according to Claim 1 selected from the compounds delineated in Table A or its geometric isomers, enantiomers, diastereomers, racemates, pharmaceutically acceptable salts, prodrugs and solvates thereof:
TABLE A
Compound # Structure
Figure imgf000097_0001
Figure imgf000097_0002
Figure imgf000097_0003
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
8. A pharmaceutical composition comprising as an active ingredient a compound of Claim 1 and a pharmaceutical acceptable carrier.
9. A method of treating cell proliferative disorder that requires or is facilitated by expression of an HSP90 protein in a subject in need thereof, the method comprising administering to the subject a therapeutically effective amount of the pharmaceutical composition of Claim 8.
10. The method of Claim 9, wherein said cell proliferative disorder is selected from the group consisting of papilloma, blastoglioma, Kaposi's sarcoma, melanoma, non- small cell lung cancer, ovarian cancer, prostate cancer, colon cancer, squamous cell carcinoma, astrocytoma, head cancer, neck cancer, bladder cancer, breast cancer, lung cancer, colorectal cancer, thyroid cancer, pancreatic cancer, renal cell carcinoma, gastric cancer, hepatocellular carcinoma, neuroblastoma, leukemia, lymphoma, vulcar cancer, Hodgkin's disease and Burkitt's disease.
11. A method of treating an HDAC-mediated disease comprising administering to a subject in need thereof a pharmaceutical composition of Claim 8.
12. A method of treating cell proliferative disorder that relates to expression of an HSP90 protein and HDAC comprising administering to a subject in need thereof a pharmaceutical composition of Claim 8.
13. A method for the treatment or prophylaxis of cancer in a subject in need thereof, comprising administering to the subject a compound of Claim 8.
PCT/US2008/075785 2007-09-10 2008-09-10 Hsp90 inhibitors containing a zinc binding moiety WO2009036012A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US97104507P 2007-09-10 2007-09-10
US60/971,045 2007-09-10
US3526408P 2008-03-10 2008-03-10
US61/035,264 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009036012A1 true WO2009036012A1 (en) 2009-03-19

Family

ID=40452434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/075785 WO2009036012A1 (en) 2007-09-10 2008-09-10 Hsp90 inhibitors containing a zinc binding moiety

Country Status (3)

Country Link
US (1) US20090076006A1 (en)
TW (1) TW200920357A (en)
WO (1) WO2009036012A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027081A2 (en) 2009-09-03 2011-03-10 Sanofi-Aventis Novel derivatives of 5,6,7,8-tetrahydroindolizine inhibiting hsp90, compositions containing same, and use thereof
WO2011153109A2 (en) 2010-05-31 2011-12-08 Bridgestone Corporation Hydroxyl group-containing methylstyrene and polymers incorporating same
WO2011102660A3 (en) * 2010-02-17 2012-01-19 Ildong Pharm Co., Ltd. A novel 5-membered heterocycle derivatives and manufacturing process thereof
WO2013015661A2 (en) * 2011-07-28 2013-01-31 Ildong Pharm Co.,Ltd. Novel prodrugs of 5-(2,4-dihydroxy-5-isopropylphenyl)-n-ethyl-4-(5-methyl1-1,2,4-oxadiazol-3-yl)isoxazole-3-carboxamide
EP2682389A1 (en) * 2012-07-02 2014-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dihydropyrimidin-2(1H)-ones and dihydropyrimidin-2(1H)-thiones as inhibitors of sodium iodide symporter
US9126944B2 (en) 2013-02-28 2015-09-08 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent ROCK1 and ROCK2 inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
CN106349180A (en) * 2015-07-14 2017-01-25 上海翰森生物医药科技有限公司 4,5-diphenyl isoxazole derivative as well as preparation method and application thereof
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
WO2017182433A1 (en) * 2016-04-18 2017-10-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Novel inhibitors of meprin alpha and beta
US9828345B2 (en) 2013-02-28 2017-11-28 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent ROCK1 and ROCK2 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
CN107827820A (en) * 2017-11-10 2018-03-23 山东大学 Pyrazolines aminopeptidase N inhibitor and its preparation method and application
CN109879732A (en) * 2019-02-27 2019-06-14 上海卡洛化学有限公司 A kind of preparation method of 1- (5- isopropyl -2,4- Dimethoxyphenyl) ethyl ketone
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
US11834441B2 (en) 2019-12-06 2023-12-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US12122767B2 (en) 2020-09-30 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849598B1 (en) * 2003-01-07 2006-09-22 Merck Sante Sas USE OF KYNURENINE-3-HYDROXYLASE INHIBITORS FOR THE TREATMENT OF DIABETES BY INCREASING THE NUMBER OF CELLS OF THE LANGERHANS ISLANDS
MX2012014273A (en) 2010-06-07 2013-03-22 Novomedix Llc Furanyl compounds and the use thereof.
NZ702169A (en) 2012-05-25 2016-10-28 Berg Llc The use of heat shock protein 90 (hsp90) modulators for the treatment of metabolic syndrome
EP3152307A4 (en) 2014-06-06 2018-05-02 Berg LLC Methods of treating a metabolic syndrome by modulating heat shock protein (hsp) 90-beta
WO2020113094A1 (en) 2018-11-30 2020-06-04 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
CN116253695A (en) * 2022-12-19 2023-06-13 青岛泰博恒生物医药科技有限公司 HSP90 inhibitor and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096212A1 (en) * 2003-04-28 2004-11-11 Vernalis (Cambridge) Limited Pyrazole compounds as hsp90 inhibitors for the treatment of cancer
WO2006113498A2 (en) * 2005-04-14 2006-10-26 Novartis Vaccines And Diagnostics Inc. 2-amino-quinaz0lin-5-ones as hsp90 inhibitors useful in treating proliferation diseases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096212A1 (en) * 2003-04-28 2004-11-11 Vernalis (Cambridge) Limited Pyrazole compounds as hsp90 inhibitors for the treatment of cancer
WO2006113498A2 (en) * 2005-04-14 2006-10-26 Novartis Vaccines And Diagnostics Inc. 2-amino-quinaz0lin-5-ones as hsp90 inhibitors useful in treating proliferation diseases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUTLER ET AL.: "Suberoylanilide hydroxamic acid,an inhibitor if histone deacetylase,suppresses the growth of prostate cancer cells in vitro and in vivo", CANCER RES., vol. 60, 2000, pages 5165 - 5170 *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027081A2 (en) 2009-09-03 2011-03-10 Sanofi-Aventis Novel derivatives of 5,6,7,8-tetrahydroindolizine inhibiting hsp90, compositions containing same, and use thereof
CN102753546A (en) * 2010-02-17 2012-10-24 日东制药株式会社 A novel 5-membered heterocycle derivatives and manufacturing process thereo
WO2011102660A3 (en) * 2010-02-17 2012-01-19 Ildong Pharm Co., Ltd. A novel 5-membered heterocycle derivatives and manufacturing process thereof
EP2576490A4 (en) * 2010-05-31 2015-02-18 Bridgestone Corp Hydroxyl group-containing methylstyrene and polymers incorporating same
WO2011153109A2 (en) 2010-05-31 2011-12-08 Bridgestone Corporation Hydroxyl group-containing methylstyrene and polymers incorporating same
US10213427B2 (en) 2010-12-22 2019-02-26 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US10813930B2 (en) 2010-12-22 2020-10-27 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
US9533954B2 (en) 2010-12-22 2017-01-03 Incyte Corporation Substituted imidazopyridazines and benzimidazoles as inhibitors of FGFR3
WO2013015661A2 (en) * 2011-07-28 2013-01-31 Ildong Pharm Co.,Ltd. Novel prodrugs of 5-(2,4-dihydroxy-5-isopropylphenyl)-n-ethyl-4-(5-methyl1-1,2,4-oxadiazol-3-yl)isoxazole-3-carboxamide
WO2013015661A3 (en) * 2011-07-28 2013-05-02 Ildong Pharm Co.,Ltd. Novel prodrugs of 5-(2,4-dihydroxy-5-isopropylphenyl)-n-ethyl-4-(5-methyl1-1,2,4-oxadiazol-3-yl)isoxazole-3-carboxamide
US11840534B2 (en) 2012-06-13 2023-12-12 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US10131667B2 (en) 2012-06-13 2018-11-20 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US11053246B2 (en) 2012-06-13 2021-07-06 Incyte Corporation Substituted tricyclic compounds as FGFR inhibitors
US9611267B2 (en) 2012-06-13 2017-04-04 Incyte Holdings Corporation Substituted tricyclic compounds as FGFR inhibitors
EP2682389A1 (en) * 2012-07-02 2014-01-08 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dihydropyrimidin-2(1H)-ones and dihydropyrimidin-2(1H)-thiones as inhibitors of sodium iodide symporter
US9745311B2 (en) 2012-08-10 2017-08-29 Incyte Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9388185B2 (en) 2012-08-10 2016-07-12 Incyte Holdings Corporation Substituted pyrrolo[2,3-b]pyrazines as FGFR inhibitors
US9266892B2 (en) 2012-12-19 2016-02-23 Incyte Holdings Corporation Fused pyrazoles as FGFR inhibitors
US9458110B2 (en) 2013-02-28 2016-10-04 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent ROCK1 and ROCK2 inhibitors
US9828345B2 (en) 2013-02-28 2017-11-28 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent ROCK1 and ROCK2 inhibitors
US9126944B2 (en) 2013-02-28 2015-09-08 Bristol-Myers Squibb Company Phenylpyrazole derivatives as potent ROCK1 and ROCK2 inhibitors
US11530214B2 (en) 2013-04-19 2022-12-20 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US9533984B2 (en) 2013-04-19 2017-01-03 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10947230B2 (en) 2013-04-19 2021-03-16 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US10450313B2 (en) 2013-04-19 2019-10-22 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10040790B2 (en) 2013-04-19 2018-08-07 Incyte Holdings Corporation Bicyclic heterocycles as FGFR inhibitors
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10738048B2 (en) 2015-02-20 2020-08-11 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11173162B2 (en) 2015-02-20 2021-11-16 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10214528B2 (en) 2015-02-20 2019-02-26 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10251892B2 (en) 2015-02-20 2019-04-09 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9580423B2 (en) 2015-02-20 2017-02-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10016438B2 (en) 2015-02-20 2018-07-10 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11667635B2 (en) 2015-02-20 2023-06-06 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9708318B2 (en) 2015-02-20 2017-07-18 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US10632126B2 (en) 2015-02-20 2020-04-28 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9801889B2 (en) 2015-02-20 2017-10-31 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US11014923B2 (en) 2015-02-20 2021-05-25 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
US9890156B2 (en) 2015-02-20 2018-02-13 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
CN106349180B (en) * 2015-07-14 2020-05-19 上海翰森生物医药科技有限公司 4, 5-diphenyl isoxazole derivative and preparation method and application thereof
CN106349180A (en) * 2015-07-14 2017-01-25 上海翰森生物医药科技有限公司 4,5-diphenyl isoxazole derivative as well as preparation method and application thereof
WO2017182433A1 (en) * 2016-04-18 2017-10-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Novel inhibitors of meprin alpha and beta
RU2746850C2 (en) * 2016-04-18 2021-04-21 Виворион Терапьютикс Аг New inhibitors of alpha and beta meprin
US10975019B2 (en) 2016-04-18 2021-04-13 Vivoryon Therapeutics Ag Inhibitors of meprin α and β
AU2021257905B2 (en) * 2016-04-18 2023-03-02 Vivoryon Therapeutics N.V. Novel inhibitors of meprin alpha and beta
JP2021102645A (en) * 2016-04-18 2021-07-15 ビーボリヨン・セラピューティクス・アーゲー Novel inhibitor of meprin alpha and beta
CN114507175A (en) * 2016-04-18 2022-05-17 维沃里翁治疗股份有限公司 Novel inhibitors of hypnotic proteins alpha and beta
CN109195947A (en) * 2016-04-18 2019-01-11 弗劳恩霍夫应用研究促进协会 The new inhibitor of sleeping protein alpha and β
JP7179114B2 (en) 2016-04-18 2022-11-28 ビボリョン セラピューティクス エヌブイ Novel inhibitors of meprin alpha and beta
CN114507175B (en) * 2016-04-18 2024-10-01 维沃里翁治疗股份有限公司 Novel inhibitors of hypnotins alpha and beta
US10611762B2 (en) 2017-05-26 2020-04-07 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
US11472801B2 (en) 2017-05-26 2022-10-18 Incyte Corporation Crystalline forms of a FGFR inhibitor and processes for preparing the same
CN107827820A (en) * 2017-11-10 2018-03-23 山东大学 Pyrazolines aminopeptidase N inhibitor and its preparation method and application
CN107827820B (en) * 2017-11-10 2020-01-07 山东大学 Pyrazoline aminopeptidase N inhibitor and preparation method and application thereof
US11466004B2 (en) 2018-05-04 2022-10-11 Incyte Corporation Solid forms of an FGFR inhibitor and processes for preparing the same
US12024517B2 (en) 2018-05-04 2024-07-02 Incyte Corporation Salts of an FGFR inhibitor
US11174257B2 (en) 2018-05-04 2021-11-16 Incyte Corporation Salts of an FGFR inhibitor
CN109879732A (en) * 2019-02-27 2019-06-14 上海卡洛化学有限公司 A kind of preparation method of 1- (5- isopropyl -2,4- Dimethoxyphenyl) ethyl ketone
US11628162B2 (en) 2019-03-08 2023-04-18 Incyte Corporation Methods of treating cancer with an FGFR inhibitor
US11591329B2 (en) 2019-07-09 2023-02-28 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11607416B2 (en) 2019-10-14 2023-03-21 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12083124B2 (en) 2019-10-14 2024-09-10 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11566028B2 (en) 2019-10-16 2023-01-31 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US11407750B2 (en) 2019-12-04 2022-08-09 Incyte Corporation Derivatives of an FGFR inhibitor
US11897891B2 (en) 2019-12-04 2024-02-13 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors
US11919887B2 (en) 2019-12-06 2024-03-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
US11834441B2 (en) 2019-12-06 2023-12-05 Vertex Pharmaceuticals Incorporated Substituted tetrahydrofurans as modulators of sodium channels
US12012409B2 (en) 2020-01-15 2024-06-18 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12122767B2 (en) 2020-09-30 2024-10-22 Incyte Corporation Bicyclic heterocycles as FGFR inhibitors
US12065494B2 (en) 2021-04-12 2024-08-20 Incyte Corporation Combination therapy comprising an FGFR inhibitor and a Nectin-4 targeting agent
US11827627B2 (en) 2021-06-04 2023-11-28 Vertex Pharmaceuticals Incorporated N-(hydroxyalkyl (hetero)aryl) tetrahydrofuran carboxamides as modulators of sodium channels
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Also Published As

Publication number Publication date
US20090076006A1 (en) 2009-03-19
TW200920357A (en) 2009-05-16

Similar Documents

Publication Publication Date Title
US20090076006A1 (en) Hsp90 inhibitors containing a zinc binding moiety
CA2662580C (en) Tyrosine kinase inhibitors containing a zinc binding moiety
US8273785B2 (en) Substituted 2-indolinone as PTK inhibitors containing a zinc binding moiety
AU2007349284B2 (en) Raf kinase inhibitors containing a zinc binding moiety
US20080234297A1 (en) HSP90 Inhibitors Containing a Zinc Binding Moiety
US8563741B2 (en) CDK inhibitors containing a zinc binding moiety
AU2008299008B2 (en) VEGFR inhibitors containing a zinc binding moiety
WO2009036057A1 (en) Antiproliferative agents containing a zinc binding moiety
WO2009036066A1 (en) Vegfr inhibitors containing a zinc binding moiety
WO2009036020A1 (en) Mek inhibitors containing a zinc binding moiety
WO2009036051A1 (en) Bcl-2 inhibitors containing a zinc binding moiety
WO2009086012A1 (en) Aurora inhibitors containing a zinc binding moiety
WO2009114470A2 (en) Tetrahydroindole and tetrahdyroindazole as hsp90 inhibitors containing a zinc binding moiety
AU2012261533A1 (en) Substituted 2-indolinone as ptk inhibitors containing a zinc binding moiety
AU2012202431A1 (en) Tyrosine kinase inhibitors containing a zinc binding moiety
AU2012268819A1 (en) Raf kinase inhibitors containing a zinc binding moiety

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08830994

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08830994

Country of ref document: EP

Kind code of ref document: A1