WO2009034131A2 - Method and arrangement for providing chalcogens - Google Patents
Method and arrangement for providing chalcogens Download PDFInfo
- Publication number
- WO2009034131A2 WO2009034131A2 PCT/EP2008/062061 EP2008062061W WO2009034131A2 WO 2009034131 A2 WO2009034131 A2 WO 2009034131A2 EP 2008062061 W EP2008062061 W EP 2008062061W WO 2009034131 A2 WO2009034131 A2 WO 2009034131A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrates
- transport channel
- deposition head
- vapour
- vapour deposition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0623—Sulfides, selenides or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/228—Gas flow assisted PVD deposition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/564—Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
Definitions
- the invention relates to a method and an arrangement for providing chalcogens in the form of thin layers on substrates, in particular on planar substrates prepared with precursor layers and composed of any desired materials, preferably on substrates composed of float glass .
- the present invention concerns a novel source
- the substrates can have the customary dimensions of e.g. 1.25 x 1.1 m for photovoltaic solar modules.
- the chalcogens are required as process substances for converting the metallic precursor layers into the compound semiconductor layer.
- Typical conversion temperatures are 500 - 600 0 C.
- the conversion temperature is so high that the chalcogens present in the solid state of matter at room temperature around 2O 0 C evaporate within the process installation.
- the chalcogens are evaporated again from the substrates, or additionally fed to a process chamber.
- the source for producing the chalcogen layer on the metalized substrates is operated at atmospheric pressure, that is to say at approximately 1000 hPa.
- Vacuum is generally used in order to avoid the element oxygen during coating with selenium, sulphur or mixtures of selenium and sulphur.
- the selenium reacts to form a toxic compound (selenium oxide) which is disruptive for the further processes, such as e.g. the conversion of the metal layers with the aid of the chalcogens to form a semiconducting layer, a so-called chalcopyrite layer, or impairs the function of the semiconductor layer and drastically reduces the efficiency.
- the object to be achieved consists in providing a very fast and cost-effective coating method for chalcogens, in particular for applying thin layers of the chalcogens within the range of 100 nm to 10 ⁇ m, or mixtures of these materials, on planar substrates and also an apparatus suitable for carrying out the method.
- the object on which the invention is based is achieved by forming an inlet- and outlet-side gas curtain for the oxygen-tight closure of a transport channel in a vapour deposition head, introducing an inert gas into the transport channel for displacing the atmospheric oxygen, introducing one or more substrates to be coated, said substrates being temperature- regulated to a predetermined temperature, into the transport channel of the process chamber, introducing a chalcogen vapour/carrier gas mixture from a source into the transport channel at the vapour deposition head above the substrates and forming a selenium layer on the substrates by means of PVD at a predetermined pressure, and removing the substrates after a predetermined process time has elapsed.
- approximately an atmospheric pressure with deviations of +/- a few pascals is set in the process chamber.
- the substrates are moved relative to a vapour deposition head during the coating, the substrates being moved at a constant speed.
- the substrates are temperature-regulated to a temperature of below 200 0 C prior to being transported into the transport channel of the process chamber, e.g. to a temperature of 2O 0 C to 5O 0 C or else room temperature.
- the coating process is formed with exclusion of oxygen by means of a gas curtain formed on the inlet and outlet sides of the transport channel in the process chamber, said gas curtain being composed of an inert gas, e.g. of a noble gas such as argon.
- a gas curtain formed on the inlet and outlet sides of the transport channel in the process chamber, said gas curtain being composed of an inert gas, e.g. of a noble gas such as argon.
- the chalcogen vapour/carrier gas mixture is conducted directly onto the surface of the substrates.
- a process chamber is provided with a transport channel which is assigned a transport device for flat substrates, in that the transport channel is provided with an oxygen-tight gas curtain composed of inert gas or a noble gas on the inlet and outlet sides, in that the transport channel can be filled with a carrier gas in the process chamber between the gas curtains, and in that a vapour deposition head is arranged directly above the substrates above the transport channel, said vapour deposition head being connected to a feed device for a chalcogen vapour/carrier gas mixture.
- the vapour deposition head is provided with a slot - which runs transversely with respect to the transport direction of the substrate and is directed at the latter - for feeding the chalcogen vapour/carrier gas mixture.
- the vapour deposition head between an evaporation chamber and the slot is provided with a plurality of constrictions followed by expansion zones one behind another over the entire width of said slot, such that the chalcogen vapour/carrier gas mixture is multiply compressed and expanded on its way to the slot, and thus distributed uniformly over the width of the slot.
- the vapour deposition head is configured like a spray head and provided with a multiplicity of outflow openings.
- the vapour deposition head and the evaporation source including the associated connecting elements can be heated by means of a suitable heating system, e.g. an electrical heating system.
- a suitable heating system e.g. an electrical heating system.
- all components with which the chalcogen vapour or the chalcogen vapour/carrier gas mixture can make contact are composed of a material resistant to this mixture, such as graphite.
- the pressure in the process chamber can be set to atmospheric pressure.
- the substrates can be temperature-regulated to a temperature of between -50 °C and +100 0 C, or to room temperature, on the transport device.
- Oxygen reacts chemically with selenium and sulphur, in which case primarily the compounds between selenium and oxygen would be harmful for the subsequent reactions of the system to form chalcopyrite semiconductors.
- Advantages of the present method include a significantly faster coating, shorter cycle times in the industrial process and a more cost-effective fabrication since lower costs in terms of capital expenditure arise owing to fewer installations.
- the present invention concerns a novel process (method) for any desired substrates in which thin chalcogen layers are applied to large-area substrates, e.g. composed of float glass, under atmospheric conditions or at pressures between fine vacuum and atmospheric pressure .
- a special feature of the present invention is that rather than working under high vacuum, atmospheric ambient pressure is employed, whereby the installation technology is significantly simplified. Particularly when working under atmospheric conditions, no vacuum pumps or vacuum valves at all are required.
- a much simpler method is the use of continuous methods that work with so-called nitrogen or inert gas curtains.
- the entry of oxygen into the process installation is avoided or excluded by virtue of the fact that the substrates pass through a gas curtain in the form of a strong flow of nitrogen or inert gas (e.g. noble gases such as argon) before they pass into the actual coating zone.
- nitrogen or inert gas e.g. noble gases such as argon
- the substrates After passing through the gas curtain, the substrates are situated in a space that is practically free of oxygen.
- free of oxygen means a residual oxygen content of less than 5 ppm oxygen in the residual gas. Under these conditions it is possible to produce high-quality coatings with chalcogens.
- Figure 1 shows an overview illustration of an apparatus for carrying out a coating method with chalcogens, in particular for applying thin layers of these materials on large-area substrates;
- Figure 2 shows a perspective side view of the apparatus according to Figure 1;
- Figure 3 shows a schematic illustration of the vapour deposition head with associated transport device for transporting large-area substrates through the transport channel in the vapour deposition head.
- Figure 1 shows a process chamber 1 suitable for continuous operation and having a transport device 2 for supplying and for transporting away large-area substrates 3 to further processing stations, such as e.g. a heat treatment furnace (not illustrated) .
- the process chamber 1, which is equipped with an internal transport channel 6 in a vapour deposition head 11, comprises a double-walled high-grade steel chamber.
- the vapour deposition head 11 with transport channels 6 leading through it is preferably composed of graphite, which does not react with selenium and has a good thermal stability with optimum temperature distribution .
- the transport channel 6 of the process chamber 1 is equipped with an inlet-side and an outlet-side lock 4, 5 in each case comprising a multistage gas curtain composed of nitrogen or an inert gas in the transport channel 6 of the substrates 3 ( Figure 3) , such that when the interior of the vapour deposition head 11 and of the transport channel 6 is filled with a carrier gas, the atmospheric oxygen otherwise situated there is displaced ( Figure 3) .
- Argon too, can be used as inert gas.
- the multistage gas curtain of each lock 4, 5 comprises two nitrogen curtains situated alongside one another, with gas flows directed oppositely to one another in each case from the top and bottom, whereby a small excess pressure is produced centrally in the lock region, and also an extraction system at the top and bottom between the two nitrogen curtains.
- gas outflow openings and extraction nozzles are situated at the top in the ceiling of the transport channel 6 and at the bottom on the inlet and outlet sides.
- a transport channel 6 that is open on one side and provided with a gas curtain there can also be equipped and operated in a vapour deposition head 11 according to the invention, although in that case not in continuous operation but rather in batch operation.
- chalcogens 7, e.g. selenium by means of a carrier gas in the form of a slot 8 in the ceiling of the transport channel 6 of the process chamber 1.
- Said slot 8 is connected to a chamber 9 in a vapour deposition head 11 for liquid and vaporous selenium above the transport channel 6 through a channel 10 and is provided with a heating device 12
- the chamber 9 is a simple horizontal hole through the vapour deposition head 11 and is closed off at both ends.
- a level sensor (not illustrated) can be arranged in the chamber 9.
- said chamber is connected to a container 13 for selenium in the form of a funnel via pipelines 14 ( Figure 1) .
- the selenium is stored in the solid state in the form of small balls at room temperature in the container 13 and in this state is supplied to the chamber 9 and evaporated there.
- a metering and lock device 16 is situated between the container 13 and the chamber 9 ( Figure 1 ⁇ .
- the metering and lock device 16 comprises a cylindrical housing with a centrally mounted rotary part.
- the housing is provided with two holes, to be precise one at the top side and one at the underside in each case on the same pitch circle diameter, but offset by 180°.
- the rotary part is likewise provided with two holes on the same pitch circle diameter, offset by 180°. If the upper hole in the housing is in alignment above one of the holes in the rotary part, then selenium balls can fall from the container 13 into the holes. If the rotary part is subsequently rotated through 180°, the selenium balls can pass from the hole in the rotary part through the lower hole in the housing through the pipelines 14 into the chamber 9. At the same time, the respective other hole in the rotary part is filled again with selenium balls from the container.
- valve 16 comprising a ball valve with a complete opening, which is briefly opened only during the metering of the selenium balls in the metering and lock device 15.
- a plurality of constrictions and extensions are arranged one behind another in the vapour deposition head 11 along the channel 10, such that the selenium vapour, on its way to the slot 8, can be accumulated and subsequently expand again in an expansion zone. This process is repeated a number of times, such that the selenium vapour is distributed over the desired width and then leaves the vapour deposition head 11 through the slot 8 into the transport channel 6.
- vapour deposition head 11 must be constantly kept above the evaporation temperature of the selenium by means of the heating system 12.
- the feed device in the form of one or more slots 8, it is also possible to arrange in the oxygen- free space in the transport channel 6 between the two locks 4, 5 one or more coating heads (not illustrated) for chalcogens, e.g. selenium, in the transport channel above the substrates 3.
- Said coating heads can be configured in a manner similar to spray heads of a shower.
- the coating head is therefore a planar element having numerous outflow openings for the vaporous selenium.
- the coating head can also be embodied like a simple tube containing a plurality of openings through which the chalcogens can emerge.
- Both the sources for the chalcogens, i.e. the chamber 9, and the supply lines to the slot 8 in the vapour deposition head 11 have to be at a temperature above the evaporation temperature of the chalcogens, such that the vaporous chalcogens can emerge from the slot 8 and the vapour can be deposited on the substrates 3. This prevents chalcogens from depositing unintentionally and clogging the slot 8.
- the substrates 3 run past below the slot or slots 8 on a transport device 2 with rollers, on a conveyor belt or on a gas cushion.
- the substrates 3 are either cooled or at room temperature around 2O 0 C or are heated.
- the substrates 3 are preferably at room temperature.
- the substrates 3 can be heated by the vapour deposition head. This heating is unimportant for the process.
- the substrates 3, after coating with the chalcogens, are fed to a heat treatment furnace (not illustrated) , in which the metallic layers are then converted as required into compound semiconductor layers in a manner mediated by chalcogens.
- Excess chalcogen/carrier gas mixture is removed from the process chamber 1 by means of an extraction and disposal device 17 and solid chalcogen, e.g. selenium, obtained in the process is collected in a collecting container 18.
- solid chalcogen e.g. selenium
- the vaporous chalcogen/carrier gas mixture is conducted through a so-called chalcogen trap 19, in which the chalcogen undergoes transition to the solid state of matter and from there is conducted into the collecting container 18.
- the apparatus according to the invention and the method not only make it possible to deposit the above- mentioned chalcogens on any desired substrates, e.g. on glass or silicon substrates, but they can also be used without any problems for any other coating purposes and also other evaporable substances.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
- Glass Compositions (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Chemical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008297124A AU2008297124A1 (en) | 2007-09-11 | 2008-09-11 | Method and arrangement for providing chalcogens |
US12/529,872 US20100151129A1 (en) | 2007-09-11 | 2008-09-11 | Method and arrangement for providing chalcogens |
JP2010523539A JP2010539323A (en) | 2007-09-11 | 2008-09-11 | Methods and arrangements for providing chalcogens |
EP08804026A EP2205772A2 (en) | 2007-09-11 | 2008-09-11 | Method and arrangement for providing chalcogens |
US14/824,806 US20150368789A1 (en) | 2007-09-11 | 2015-08-12 | Method and arrangement for providing chalcogens |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007043051 | 2007-09-11 | ||
DE102007043051.7 | 2007-09-11 | ||
DE102007047099 | 2007-10-01 | ||
DE102007047099.3 | 2007-10-01 | ||
DE102007047098 | 2007-10-01 | ||
DE102007047098.5 | 2007-10-01 | ||
DE102007048204 | 2007-10-08 | ||
DE102007048204.5 | 2007-10-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/529,872 A-371-Of-International US20100151129A1 (en) | 2007-09-11 | 2008-09-11 | Method and arrangement for providing chalcogens |
US14/824,806 Division US20150368789A1 (en) | 2007-09-11 | 2015-08-12 | Method and arrangement for providing chalcogens |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009034131A2 true WO2009034131A2 (en) | 2009-03-19 |
WO2009034131A3 WO2009034131A3 (en) | 2009-05-22 |
Family
ID=40380095
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/062061 WO2009034131A2 (en) | 2007-09-11 | 2008-09-11 | Method and arrangement for providing chalcogens |
PCT/EP2008/007466 WO2009033674A2 (en) | 2007-09-11 | 2008-09-11 | Method and apparatus for thermally converting metallic precursor layers into semiconducting layers, and also solar module |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/007466 WO2009033674A2 (en) | 2007-09-11 | 2008-09-11 | Method and apparatus for thermally converting metallic precursor layers into semiconducting layers, and also solar module |
Country Status (7)
Country | Link |
---|---|
US (3) | US20100203668A1 (en) |
EP (2) | EP2205772A2 (en) |
JP (2) | JP2010539323A (en) |
KR (2) | KR20100052429A (en) |
AU (2) | AU2008297124A1 (en) |
TW (2) | TWI555864B (en) |
WO (2) | WO2009034131A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009009022A1 (en) | 2009-02-16 | 2010-08-26 | Centrotherm Photovoltaics Ag | Method and device for coating flat substrates with chalcogens |
DE102009012200A1 (en) | 2009-03-11 | 2010-09-16 | Centrotherm Photovoltaics Ag | Thermal conversion of metallic precursor layer into semiconductor layer in thin layer solar cell, involves introducing chalcogen vapor/carrier gas mixture on substrate having precursor layer, heating, converting and cooling |
WO2011033445A1 (en) | 2009-09-17 | 2011-03-24 | Advanced Research On Pv-Tech S.R.L. | PROCESS FOR THE PRODUCTION OF Cu(In,Ga)Se2/CdS THIN-FILM SOLAR CELLS |
EP2369034A1 (en) | 2010-03-26 | 2011-09-28 | Saint-Gobain Glass France | Method for refilling a selenium evaporation chamber |
EP2369033A1 (en) | 2010-03-26 | 2011-09-28 | Saint-Gobain Glass France | Method for refilling an evaporation chamber |
EP2371991A1 (en) | 2010-03-26 | 2011-10-05 | Saint-Gobain Glass France | Method for discontinuous refilling of a selenium evaporation chamber |
DE102010034653A1 (en) | 2010-08-17 | 2012-02-23 | Centrotherm Photovoltaics Ag | Process for the condensation of chalcogen vapor and apparatus for carrying out the process |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009011496A1 (en) | 2009-03-06 | 2010-09-16 | Centrotherm Photovoltaics Ag | Process and device for the thermal conversion of metallic precursor layers into semiconducting layers with chalcogen recovery |
DE102009011695A1 (en) | 2009-03-09 | 2010-09-16 | Centrotherm Photovoltaics Ag | Thermal conversion of metallic precursor layer into semiconductor layer in thin layer solar cell, involves introducing chalcogen vapor/carrier gas mixture on substrate having precursor layer, heating, converting and cooling |
KR101245371B1 (en) * | 2009-06-19 | 2013-03-19 | 한국전자통신연구원 | Solar cell and method of fabricating the same |
EP2278625A1 (en) | 2009-07-24 | 2011-01-26 | centrotherm photovoltaics AG | Method and apparatus for deposition of a layer of an Indium Chalcogenide onto a substrate |
WO2011028957A2 (en) * | 2009-09-02 | 2011-03-10 | Brent Bollman | Methods and devices for processing a precursor layer in a group via environment |
FR2951022B1 (en) * | 2009-10-07 | 2012-07-27 | Nexcis | MANUFACTURE OF THIN LAYERS WITH PHOTOVOLTAIC PROPERTIES, BASED ON TYPE I-III-VI2 ALLOY, BY SUCCESSIVE ELECTRO-DEPOSITS AND THERMAL POST-TREATMENT. |
DE102009053532B4 (en) | 2009-11-18 | 2017-01-05 | Centrotherm Photovoltaics Ag | Method and apparatus for producing a compound semiconductor layer |
DE102010018595A1 (en) | 2010-04-27 | 2011-10-27 | Centrothem Photovoltaics Ag | Process for producing a compound semiconductor layer |
JP2012015323A (en) * | 2010-06-30 | 2012-01-19 | Fujifilm Corp | Method of manufacturing cis-based film |
JP2012015314A (en) * | 2010-06-30 | 2012-01-19 | Fujifilm Corp | Manufacturing method of cis-based film |
JP2012015328A (en) * | 2010-06-30 | 2012-01-19 | Fujifilm Corp | Manufacturing method of cis-based film |
DE102010035569A1 (en) | 2010-08-26 | 2012-03-01 | Centrotherm Photovoltaics Ag | Continuous furnace |
US20130216967A1 (en) * | 2010-08-27 | 2013-08-22 | Saint-Gobain Glass France | Device and method for heat-treating a plurality of multi-layer bodies |
US8828787B2 (en) * | 2010-09-15 | 2014-09-09 | Precursor Energetics, Inc. | Inks with alkali metals for thin film solar cell processes |
KR101371077B1 (en) * | 2011-03-30 | 2014-03-07 | 씨디에스(주) | Apparatus for forming thin film |
TW201250017A (en) * | 2011-06-08 | 2012-12-16 | Ind Tech Res Inst | Method and apparatus for depositing selenium thin-film and plasma head thereof |
JP5709730B2 (en) * | 2011-11-15 | 2015-04-30 | 京セラ株式会社 | Thin film manufacturing method |
WO2013125818A1 (en) * | 2012-02-24 | 2013-08-29 | 영남대학교 산학협력단 | Solar cell manufacturing apparatus and solar cell manufacturing method |
US20130309848A1 (en) * | 2012-05-16 | 2013-11-21 | Alliance For Sustainable Energy, Llc | High throughput semiconductor deposition system |
BR112015014013A2 (en) | 2012-12-20 | 2017-07-11 | Saint Gobain | method to produce a composite semiconductor and thin film solar cell |
US10317139B2 (en) * | 2013-10-09 | 2019-06-11 | United Technologies Corporation | Method and apparatus for processing process-environment-sensitive material |
DE102013113108B4 (en) * | 2013-11-27 | 2024-08-29 | Hanwha Q Cells Gmbh | Solar cell manufacturing process |
CN105363397A (en) * | 2014-08-19 | 2016-03-02 | 姚小兵 | Steam system |
TWI550717B (en) | 2014-08-25 | 2016-09-21 | 新能光電科技股份有限公司 | A heat treatment method and the product prepared therefrom |
TWI617684B (en) * | 2016-10-07 | 2018-03-11 | 國家中山科學研究院 | Integrated fast selenium vulcanization process equipment |
US10190234B1 (en) | 2017-10-30 | 2019-01-29 | Wisconsin Alumni Research Foundation | Continuous system for fabricating multilayer heterostructures via hydride vapor phase epitaxy |
TWI689455B (en) * | 2019-07-30 | 2020-04-01 | 群翊工業股份有限公司 | Nitrogen box capable of preventing board deviation from continuous passage |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005086238A1 (en) | 2004-03-05 | 2005-09-15 | Solibro Ab | Method and apparatus for in-line process control of the cigs process |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2426377A (en) * | 1943-12-07 | 1947-08-26 | Ruben Samuel | Selenium rectifier and method of making |
JPS5320950B2 (en) * | 1972-07-12 | 1978-06-29 | ||
US4576830A (en) * | 1984-11-05 | 1986-03-18 | Chronar Corp. | Deposition of materials |
US5248349A (en) * | 1992-05-12 | 1993-09-28 | Solar Cells, Inc. | Process for making photovoltaic devices and resultant product |
US6202591B1 (en) * | 1998-11-12 | 2001-03-20 | Flex Products, Inc. | Linear aperture deposition apparatus and coating process |
US6143080A (en) * | 1999-02-02 | 2000-11-07 | Silicon Valley Group Thermal Systems Llc | Wafer processing reactor having a gas flow control system and method |
JP2001049432A (en) * | 1999-08-02 | 2001-02-20 | Sony Corp | Work moving type reactive sputtering device, and its method |
DE60237159D1 (en) * | 2001-07-06 | 2010-09-09 | Honda Motor Co Ltd | METHOD FOR FORMING A LIGHT ABSORBING LAYER |
JP2005133122A (en) * | 2003-10-29 | 2005-05-26 | Sony Corp | Film deposition system and film deposition method |
EP1880037B1 (en) * | 2005-04-26 | 2022-06-15 | First Solar, Inc. | System and method for depositing a material on a substrate |
US7931937B2 (en) * | 2005-04-26 | 2011-04-26 | First Solar, Inc. | System and method for depositing a material on a substrate |
US7955031B2 (en) * | 2005-07-06 | 2011-06-07 | First Solar, Inc. | Material supply system and method |
US20070111367A1 (en) * | 2005-10-19 | 2007-05-17 | Basol Bulent M | Method and apparatus for converting precursor layers into photovoltaic absorbers |
CA2649520A1 (en) * | 2006-04-14 | 2007-10-25 | Silica Tech, Llc | Plasma deposition apparatus and method for making solar cells |
JP2008011467A (en) * | 2006-06-30 | 2008-01-17 | Toshiba Corp | Imaging method and apparatus for display panel |
EP2102898A4 (en) * | 2006-11-10 | 2011-06-29 | Solopower Inc | Reel-to-reel reaction of precursor film to form solar cell absorber |
-
2008
- 2008-09-11 TW TW097134932A patent/TWI555864B/en not_active IP Right Cessation
- 2008-09-11 KR KR1020097021149A patent/KR20100052429A/en not_active Application Discontinuation
- 2008-09-11 EP EP08804026A patent/EP2205772A2/en not_active Withdrawn
- 2008-09-11 AU AU2008297124A patent/AU2008297124A1/en not_active Abandoned
- 2008-09-11 US US12/528,913 patent/US20100203668A1/en not_active Abandoned
- 2008-09-11 AU AU2008297944A patent/AU2008297944A1/en not_active Abandoned
- 2008-09-11 WO PCT/EP2008/062061 patent/WO2009034131A2/en active Application Filing
- 2008-09-11 JP JP2010523539A patent/JP2010539323A/en not_active Withdrawn
- 2008-09-11 WO PCT/EP2008/007466 patent/WO2009033674A2/en active Application Filing
- 2008-09-11 KR KR1020097021552A patent/KR20100051586A/en not_active Application Discontinuation
- 2008-09-11 JP JP2010523359A patent/JP2010539679A/en not_active Withdrawn
- 2008-09-11 TW TW097134931A patent/TWI424073B/en not_active IP Right Cessation
- 2008-09-11 EP EP08830338.3A patent/EP2205773B1/en not_active Not-in-force
- 2008-09-11 US US12/529,872 patent/US20100151129A1/en not_active Abandoned
-
2015
- 2015-08-12 US US14/824,806 patent/US20150368789A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005086238A1 (en) | 2004-03-05 | 2005-09-15 | Solibro Ab | Method and apparatus for in-line process control of the cigs process |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009009022A1 (en) | 2009-02-16 | 2010-08-26 | Centrotherm Photovoltaics Ag | Method and device for coating flat substrates with chalcogens |
WO2010092471A3 (en) * | 2009-02-16 | 2010-12-16 | Centrotherm Photovoltaics Ag | Method and device for coating planar substrates with chalcogens |
DE102009012200A1 (en) | 2009-03-11 | 2010-09-16 | Centrotherm Photovoltaics Ag | Thermal conversion of metallic precursor layer into semiconductor layer in thin layer solar cell, involves introducing chalcogen vapor/carrier gas mixture on substrate having precursor layer, heating, converting and cooling |
WO2011033445A1 (en) | 2009-09-17 | 2011-03-24 | Advanced Research On Pv-Tech S.R.L. | PROCESS FOR THE PRODUCTION OF Cu(In,Ga)Se2/CdS THIN-FILM SOLAR CELLS |
EP2369034A1 (en) | 2010-03-26 | 2011-09-28 | Saint-Gobain Glass France | Method for refilling a selenium evaporation chamber |
EP2369033A1 (en) | 2010-03-26 | 2011-09-28 | Saint-Gobain Glass France | Method for refilling an evaporation chamber |
WO2011117291A1 (en) | 2010-03-26 | 2011-09-29 | Saint-Gobain Glass France | Method and device for refilling an evaporator chamber |
EP2371991A1 (en) | 2010-03-26 | 2011-10-05 | Saint-Gobain Glass France | Method for discontinuous refilling of a selenium evaporation chamber |
DE102010034653A1 (en) | 2010-08-17 | 2012-02-23 | Centrotherm Photovoltaics Ag | Process for the condensation of chalcogen vapor and apparatus for carrying out the process |
WO2012023027A1 (en) | 2010-08-17 | 2012-02-23 | Centrotherm Photovoltaics Ag | Process for condensation of chalcogen vapour and apparatus to carry out the process |
Also Published As
Publication number | Publication date |
---|---|
AU2008297944A1 (en) | 2009-03-19 |
TW200914634A (en) | 2009-04-01 |
TWI555864B (en) | 2016-11-01 |
JP2010539679A (en) | 2010-12-16 |
WO2009034131A3 (en) | 2009-05-22 |
US20150368789A1 (en) | 2015-12-24 |
KR20100052429A (en) | 2010-05-19 |
WO2009033674A2 (en) | 2009-03-19 |
JP2010539323A (en) | 2010-12-16 |
AU2008297124A1 (en) | 2009-03-19 |
US20100151129A1 (en) | 2010-06-17 |
TW200914633A (en) | 2009-04-01 |
WO2009033674A3 (en) | 2009-05-22 |
EP2205773A2 (en) | 2010-07-14 |
EP2205772A2 (en) | 2010-07-14 |
KR20100051586A (en) | 2010-05-17 |
TWI424073B (en) | 2014-01-21 |
EP2205773B1 (en) | 2014-11-12 |
US20100203668A1 (en) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150368789A1 (en) | Method and arrangement for providing chalcogens | |
US5945163A (en) | Apparatus and method for depositing a material on a substrate | |
RU2421418C2 (en) | Chemical deposition from vapour phase at atmospheric pressure | |
EP1938360B1 (en) | Method and apparatus for converting precursor layers into photovoltaic absorbers | |
KR101343149B1 (en) | Device and method for tempering objects in a treatment chamber | |
US5405517A (en) | Magnetron sputtering method and apparatus for compound thin films | |
CN102308174A (en) | Method for producing semiconductor layers and coated substrates treated with elemental selenium and/or sulfur, in particular flat substrates | |
US20090148669A1 (en) | Methods structures and apparatus to provide group via and ia materials for solar cell absorber formation | |
EP2355936A1 (en) | Reactor to form solar cell absorbers | |
JP4074574B2 (en) | Organic vapor deposition equipment | |
US20110262641A1 (en) | Inline chemical vapor deposition system | |
KR101284760B1 (en) | Rapid thermal process apparatus for solar cell and processing method using thereof | |
US20110017283A1 (en) | Method and apparatus for deposition of a layer of an indium chalcogenide onto a substrate | |
WO2012102824A1 (en) | Device and method for making polycrystalline thin films | |
CN101668877B (en) | Method and apparatus for thermally converting metallic precursor layers into semiconducting layers, and also solar module | |
WO2010092471A2 (en) | Method and device for coating planar substrates with chalcogens | |
TWI509107B (en) | Verfahren und vorrichtung zur thermischen umsetzung metallischer precusorschichten in halbleitende schichten mit chalkogenquelle | |
WO2011135420A1 (en) | Process for the production of a compound semiconductor layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880013112.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008804026 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008297124 Country of ref document: AU Ref document number: 1587/MUMNP/2009 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2008297124 Country of ref document: AU Date of ref document: 20080911 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20097021149 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2010523539 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12529872 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |