WO2009030731A1 - Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre - Google Patents

Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre Download PDF

Info

Publication number
WO2009030731A1
WO2009030731A1 PCT/EP2008/061703 EP2008061703W WO2009030731A1 WO 2009030731 A1 WO2009030731 A1 WO 2009030731A1 EP 2008061703 W EP2008061703 W EP 2008061703W WO 2009030731 A1 WO2009030731 A1 WO 2009030731A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
sets
main part
degrees
angle
Prior art date
Application number
PCT/EP2008/061703
Other languages
English (en)
Inventor
Anaïs MARKOWSKI
Eric Bouchet
Denis Soula
Marie Elduayen
Original Assignee
Airbus France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus France filed Critical Airbus France
Priority to US12/676,725 priority Critical patent/US8556213B2/en
Priority to CN2008801057438A priority patent/CN101795850B/zh
Priority to CA2698617A priority patent/CA2698617C/fr
Priority to JP2010523504A priority patent/JP5314024B2/ja
Priority to BRPI0816483 priority patent/BRPI0816483A2/pt
Priority to RU2010113382/05A priority patent/RU2469853C2/ru
Priority to EP08803673A priority patent/EP2185345B1/fr
Publication of WO2009030731A1 publication Critical patent/WO2009030731A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/001Profiled members, e.g. beams, sections
    • B29L2031/003Profiled members, e.g. beams, sections having a profiled transverse cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3076Aircrafts
    • B29L2031/3082Fuselages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers

Definitions

  • the invention relates to a structural frame of composite material, designed in particular to present significant mechanical performance while maintaining simplicity of implementation.
  • An application of the invention relates in particular to the structural frames on which is fixed the outer skin of an aircraft fuselage.
  • the invention also relates to an aircraft fuselage comprising one or more frames according to the invention.
  • the fuselage structures of the aircraft comprise structural frames regularly distributed over the entire length of the fuselage and on which is fixed an outer covering.
  • the structural frames have a substantially circular shape, for example annular or oval, or having two or three lobes, or any other shape of the same type. They generally comprise in section a substantially flat annular main portion which extends in a direction substantially perpendicular to the axis of the fuselage and two heel-shaped or sole-shaped abutments connected to the inner and outer peripheral edges of the main part.
  • structural frames are to enhance the mechanical strength of the fuselage. They undergo significant mechanical stresses in tension or compression, especially in the circumferential direction, that is to say along a median circumferential line of the frame. Also, they must be designed to have a high circumferential stiffness, so to have a low deformation during heavy mechanical stresses. In addition, in the case of substantial circumferential compression, these frames must have a high critical buckling flow, that is to say avoid bending in a direction perpendicular to the direction of the mechanical stresses undergone. Finally, the realization of these frames of composite material must have a limited number of steps so as to be economical and fast, while being adapted to the complicated geometric shapes of the structural frame.
  • one solution is to have in the main part of the unidirectional fibers oriented only in the circumferential direction.
  • this provision implies a critical low buckling flux.
  • the structural frame will thus be resistant to the phenomenon of buckling.
  • the provision of unidirectional fibers in the circumferential direction is of one embodiment particularly difficult from tablecloths or fabrics since the formation of folds is to be avoided.
  • the frames of structure are usually made from unidirectional fibers arranged in the main part of the frame so as to form a predetermined non-zero angle with respect to the circumferential axis of the part principal (this circumferential axis being defined as the tangent to a median circumferential line of the frame in each of the points of this line).
  • This circumferential axis being defined as the tangent to a median circumferential line of the frame in each of the points of this line).
  • WO2004 / 016844 discloses a curved fiber preform having a plurality of reinforcing fibers disposed at a predetermined angle to the circumferential axis.
  • the preform may have a flat cylindrical or annular shape.
  • the main portion of the fiber preform comprises unidirectional fibers alternately forming angles of -45 degrees and +45 degrees with respect to the circumferential axi
  • the subject of the invention is mainly a structural frame made of composite material, in particular for an aircraft fuselage, designed so as to exhibit significant mechanical performance while keeping a simplicity of implementation.
  • the result is obtained by means of a structural frame of composite material, in particular for an aircraft fuselage, comprising a substantially flat annular main part, characterized in that the main part comprises first sets of unidirectional fibers. forming an angle substantially between 20 degrees and 40 degrees with respect to the circumferential axis of the frame, and second sets of unidirectional fibers forming an angle substantially between -40 degrees and -20 degrees with respect to the circumferential axis of the frame , the first and second sets being regularly distributed over the thickness of the main part.
  • the main part comprises first sets of unidirectional fibers forming an angle substantially between 25 degrees and 35 degrees relative to the circumferential axis of the frame, and second sets of unidirectional fibers forming an angle substantially between -35 degrees and -25 degrees relative to the circumferential axis of the frame, the first and the second sets being evenly distributed over the thickness of the main part.
  • the orientation of the first and second sets of unidirectional fibers has a symmetry with respect to the circumferential axis of the frame. This improves the simplicity of realization of the frame according to the invention since the arrangement of unidirectional fiber sets is made at a single angle in absolute value along the circumferential axis of the main part of the frame.
  • the main part comprises first sets of unidirectional fibers forming an angle substantially of 30 degrees with respect to the circumferential axis of the frame, and second sets of unidirectional fibers forming an angle of substantially -30 degrees with respect to the axis. circumferential frame, the first and second sets being regularly distributed over the thickness of the main part.
  • This orientation of the unidirectional fiber sets of the main part of the frame makes it possible to increase the rigidity in the circumferential direction of the main part with respect to the rigidity obtained for fiber orientations at + 45 degrees and -45 degrees with respect to the circumferential axis of the frame as used in the prior art.
  • this arrangement of unidirectional fiber sets of the main part of the frame makes it possible to maintain a critical buckling flux at a value that is substantially identical to that of a critical buckling flux obtained in the case of an arrangement of the fiber sets. at +45 degrees and at -45 degrees to the circumferential axis of the frame.
  • the frame according to the invention has a simplicity of embodiment since only the value of the non-zero angle formed by the sets of unidirectional fibers relative to the circumferential axis of the main part is modified.
  • the arrangement of fibers forming an angle of 0 degrees with respect to the circumferential axis of the main part and parallel to each other makes it necessary to change the production technique, which presents technical difficulties and increases production costs.
  • the frame has a secondary portion connected to an outer peripheral edge of the main portion and extending substantially perpendicular to the main portion.
  • the main part comprises third sets of unidirectional fibers forming an angle of 90 degrees with respect to the circumferential axis of the frame, arranged alternately with the first and second sets, which makes it possible to increase the buckling resistance.
  • the secondary portion comprises unidirectional fibers arranged substantially in the circumferential direction of the frame, which makes it possible to increase the stiffness of the frame in the circumferential direction.
  • the unidirectional fiber assemblies of the main portion may be arranged as a stack of webs or arranged as fabrics.
  • a second secondary portion is disposed on an inner peripheral edge of the main portion and extends substantially perpendicular to the main portion.
  • the second secondary portion comprises unidirectional fibers arranged substantially in the circumferential direction of the frame.
  • the invention also relates to an aircraft fuselage, comprising a frame and an outer coating fixed thereto, the frame comprising structural frames having the characteristics that have just been defined.
  • Figure 1 is a perspective view schematically showing an aircraft fuselage section incorporating frames made in accordance with the invention
  • Figure 2 is a perspective view showing a frame sector according to a preferred embodiment of the invention, on which is fixed the outer shell of the fuselage.
  • Fig. 3 is a perspective view of a frame sector according to a preferred embodiment of the invention.
  • FIG. 4 illustrates the evolution of the Young's modulus of the main part of the structural frame as a function of the value of the angle formed by the sets of unidirectional fibers of the main part with respect to the circumferential axis of the frame.
  • FIG. 5 illustrates the evolution of the critical buckling flux of the main part of the structural frame as a function of the value of the angle formed by the sets of unidirectional fibers of the main part relative to the circumferential axis of the frame.
  • the fuselage 10 of an aircraft comprises a frame on which is fixed an outer covering 11 reinforced by longitudinal members 12.
  • the fuselage 10 may be of variable shape and size depending on the type of aircraft , without departing from the scope of the invention.
  • the frame of the fuselage 10 is formed mainly of structural frames 13.
  • the structural frames 13 are regularly distributed over the entire length of the fuselage. Each of them is arranged in a fuselage section, perpendicular to the longitudinal axis II of the fuselage, and generally has a substantially annular or oval circular shape, or having two or three lobes, or any other shape of the same type.
  • a direct orthogonal reference in cylindrical coordinates (e R , e ⁇ , e L ) is presented in FIG. 1.
  • e R gives the radial direction of a point belonging to the fuselage, e ⁇ the tangential or circumferential direction
  • e L is the longitudinal direction, e L coinciding with the longitudinal axis II of the fuselage.
  • Figure 2 shows a structural frame sector 13 according to a preferred embodiment of the invention.
  • the frame structure 13 supports the outer skin 11 of the fuselage.
  • the outer skin 11 of the fuselage is reinforced on its inner face by longitudinal members 12 arranged parallel to the longitudinal axis I-I of the fuselage and evenly spaced along the perimeter of the fuselage.
  • Figure 3 shows in detail a structural frame sector 13 according to a preferred embodiment of the invention.
  • the structural frame 13 comprises a main portion 31, an outer secondary portion 32, and an inner sub-portion 33.
  • this embodiment relates to a structural frame whose section is approximately C-shaped.
  • the inner abutment 33 does not exist and the frame 13 then has a substantially L-shaped section.
  • the main part 31 of the structural frame 13 is constituted by a substantially flat plate, of annular shape, whose median plane is substantially perpendicular to the longitudinal axis II of the fuselage.
  • the main part 31 has a curved shape along a medial circumferential line II-II.
  • the direction e ⁇ is tangent at each point on the line II-II and thus defines at each point of the line II-II the circumferential axis of the frame 13.
  • the frame structure 13 is made of composite material. It is made according to the techniques usually used for the manufacture of parts of this type. These techniques include draping techniques which consist of superimposing sets of unidirectional fibers or resin pre-impregnated fabrics, and then polymerizing the resin.
  • the main part 31 comprises several sets of unidirectional fibers which extend over the entire width of the main part 31, between its inner and outer peripheral edges 40 and 39.
  • These sets comprise several first sets of unidirectional fibers 34 which form a predetermined non-zero angle 37 with the circumferential axis of the frame 13.
  • the angle 37 is in the range of +20 degrees to + 40 degrees. It is preferably in the range of +25 degrees to +35 degrees and preferably substantially +30 degrees.
  • the unidirectional fiber assemblies of the main portion 31 also comprise a plurality of second sets of unidirectional fibers 35 forming a predetermined non-zero angle 38 with the circumferential axis of the frame 13.
  • this angle 38 is in the range ranging from -40 degrees to -20 degrees. It is preferable in the range of -35 degrees to -25 degrees and preferably substantially -30 degrees.
  • the fiber assemblies 34 and the fiber assemblies 35 are regularly distributed over the thickness of the main part 31, that is to say along the axis I-I of the fuselage 10.
  • the unidirectional fibers of the first sets of fibers 34 and the second sets of fibers 35 are arranged substantially symmetrically with respect to the circumferential axis of the frame 13, so that the angles 37 and 38 are substantially equal in absolute value.
  • third sets of unidirectional fibers 36 may be disposed in the main portion 31 substantially perpendicular to the circumferential axis of the frame 13, that is to say in the radial direction e R of the fuselage.
  • the first, second and third sets of fibers are regularly distributed over the thickness of the main part 31, that is to say along the axis II of the fuselage 10.
  • the structural frame 13 has an outer secondary portion 32 connected to an outer peripheral edge 39 of the main portion 31.
  • the outer secondary portion 32 is in the form of a plate which extends substantially perpendicular to the main part 31, that is to say in the direction longitudinally e L of the fuselage 10, over the entire length of the outer peripheral edge 39.
  • the outer abutment 32 may comprise sets of unidirectional fibers 41 arranged in the circumferential direction of the frame 13.
  • This outer secondary portion 32 makes it possible to fix the structural frame 13 to the outer skin 11 of the fuselage 10, for example by riveting.
  • the presence of unidirectional fiber assemblies 41 arranged in the direction described makes it possible to increase the rigidity of the structural frame 13.
  • the frame structure 13 also has an inner secondary portion 33 connected to an inner peripheral edge 40 of the main portion 31 and which extends substantially perpendicular to the main portion 31, c ' that is to say in the longitudinal direction e L of the fuselage.
  • the inner abutment 33 may also comprise unidirectional fiber assemblies 42 arranged in the circumferential direction of the frame 13. The presence of unidirectional fiber assemblies 42 arranged in the direction described makes it possible to increase the rigidity of the structural frame 13.
  • the unidirectional fiber assemblies 34, 35 and possibly 36 of the main part 31 are made in the form of a stack of webs or fabrics.
  • the sets of unidirectional fibers 41, 42 of the secondary parts 32, 33 are made in the form of stacked sheets.
  • the nature of the fibers used in the different sets of fibers 34, 35 and possibly 36, 41, 42 of the main 31 and secondary parts 32, 33 and the nature of the resin in which the fibers are embedded are chosen according to the intended application. among the fibers and resins commonly used in the field of composite materials.
  • the fibers may be carbon fibers, glass fibers or aramid fibers and the resin a thermosetting resin such as a phenolic or epoxy resin.
  • FIGS. 4 and 5 give an example of the influence of the orientation of the sets of unidirectional fibers of the main part 31 of the frame 13 with respect to the circumferential axis of the frame 13 on the mechanical performances of the main part 31 of the frame 13.
  • FIG. 4 illustrates the evolution of the Young's modulus of the main part 31 E ⁇ (in MPa) measured in the circumferential direction of the frame 13, as a function of the angle ⁇ (in degrees) of orientation of the fibers. relative to the circumferential axis of the frame.
  • FIG. 5 shows the evolution of the critical buckling flux of the main part 31 N ⁇ (in N / mm) measured in the circumferential direction of the frame 13, as a function of the angle ⁇ (in degrees) of orientation of the fibers. relative to the circumferential axis of the frame.
  • + ⁇ corresponds to the angle 37 and - ⁇ corresponds to the angle 38.
  • a flat plate 150 mm long and 70 mm high and formed by draping a succession of 8 sets of unidirectional fibers oriented along - ⁇ / 90 ° / + ⁇ / - ⁇ / + ⁇ / + ⁇ / 90 ° / - ⁇ is considered in the context of this example.
  • the angle ⁇ varies from 10 degrees to 45 degrees.
  • the frame structure 13 according to the invention is made from a draping technique known to those skilled in the art.
  • the outer 32 and inner 33 outer parts can be made according to the technique described in WO2007 / 074179, different from conventional techniques in which the secondary parts are connected to the main part by adding glue films between these elements when autoclave polymerization.
  • the secondary parts of the structural frame correspond to the borders of a monolithic assembly comprising the main part and having the desired shape. The secondary parts are obtained by deformation under vacuum and at high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

L' invention concerne un cadre de structure (13) en matériau composite. Le but de l'invention est d'obtenir un cadre de structure présentant des performances mécaniques importantes tout en gardant une simplicité de réalisation. Ce but est atteint en disposant des ensembles de fibres unidirectionnelles (34, 35) dans la partie principale (31) du cadre de structure selon un angle prédéterminé. Ce dispositif peut être utilisé comme cadre de structure notamment pour fuselage d'aéronef.

Description

CADRE DE STRUCTURE EN MATERIAU COMPOSITE ET FUSELAGE D'AERONEF COMPORTANT UN TEL CADRE
DESCRIPTION
DOMAINE TECHNIQUE
L' invention concerne un cadre de structure en matériau composite, conçu notamment pour présenter des performances mécaniques importantes tout en gardant une simplicité de réalisation. Une application de l'invention concerne notamment les cadres de structure sur lesquels est fixé le revêtement extérieur d'un fuselage d'aéronef.
L' invention concerne également un fuselage d'aéronef comportant un ou plusieurs cadres selon l'invention.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Les structures de fuselage des aéronefs comprennent des cadres de structure régulièrement répartis sur toute la longueur du fuselage et sur lesquels est fixé un revêtement extérieur.
Les cadres de structure ont une forme sensiblement circulaire, par exemple annulaire ou ovale, ou présentant deux ou trois lobes, ou encore tout autre forme du même type. Ils comportent généralement en section une partie principale annulaire sensiblement plane qui s'étend selon une direction sensiblement perpendiculaire à l'axe du fuselage et deux parties secondaires en forme de talon ou de semelle reliées aux bords périphériques intérieur et extérieur de la partie principale .
Les cadres de structure ont pour fonction de renforcer la résistance mécanique du fuselage. Ils subissent des contraintes mécaniques importantes en traction ou en compression, notamment dans le sens circonférentiel, c'est-à-dire suivant une ligne circonférentielle médiane du cadre. Aussi, ils doivent être conçus de manière à présenter une rigidité circonférentielle importante, donc à présenter une faible déformation lors de fortes contraintes mécaniques. De plus, dans le cas d'une compression circonférentielle importante, ces cadres doivent présenter un flux critique de flambage élevé, c'est-à- dire éviter de se fléchir dans une direction perpendiculaire à la direction des contraintes mécaniques subies. Enfin, la réalisation de ces cadres en matériau composite doit présenter un nombre d'étapes limité de manière à être économique et rapide, tout en étant adaptée aux formes géométriques compliquées du cadre de structure.
Afin d'obtenir une rigidité importante vis-à-vis des contraintes mécaniques appliquées dans le sens circonférentiel, une solution consiste à disposer dans la partie principale des fibres unidirectionnelles orientée uniquement dans le sens circonférentiel . Toutefois cette disposition implique un flux critique de flambage faible. Le cadre de structure sera ainsi peu résistant face au phénomène de flambage. De plus, la disposition de fibres unidirectionnelles dans le sens circonférentiel est d'une réalisation particulièrement difficile à partir de nappes ou de tissus puisque la formation de plis est à éviter.
Pour éviter ces problèmes concernant les performances mécaniques et la réalisation, les cadres de structure sont habituellement réalisés à partir de fibres unidirectionnelles disposées dans la partie principale du cadre de manière à former un angle prédéterminé non nul par rapport à l'axe circonférentiel de la partie principale (cet axe circonférentiel étant défini comme la tangente à une ligne circonférentielle médiane du cadre en chacun des points de cette ligne) . Cela permet d'éviter d'avoir à disposer des fibres formant un angle de 0 degré vis-à- vis de l'axe circonférentiel . Par exemple, le document WO2004/016844 décrit une préforme fibreuse de forme courbe qui présente une pluralité de fibres de renfort disposées selon un angle prédéterminé par rapport à l'axe circonférentiel . La préforme peut présenter une forme cylindrique ou annulaire plane. La partie principale de la préforme fibreuse comprend des fibres unidirectionnelles formant alternativement des angles de -45 degrés et de +45 degrés par rapport à l'axe circonférentiel de la partie principale, avec éventuellement interposition de fibres orientées à 90 degrés par rapport à cet axe.
Cependant, l'orientation des fibres dans la partie principale du cadre de structure telle que décrite dans ce document n'est pas totalement satisfaisante puisque la rigidité dans le sens circonférentiel du cadre de structure n'est pas optimale. EXPOSE DE L'INVENTION
L'invention a principalement pour objet un cadre de structure en matériau composite, notamment pour fuselage d'aéronef, conçu de manière à présenter des performances mécaniques importantes tout en gardant une simplicité de réalisation.
Selon l'invention, le résultat est obtenu au moyen d'un cadre de structure en matériau composite, notamment pour fuselage d'aéronef, comprenant une partie principale annulaire sensiblement plane, caractérisé en ce que la partie principale comporte des premiers ensembles de fibres unidirectionnelles formant un angle sensiblement compris entre 20 degrés et 40 degrés par rapport à l'axe circonférentiel du cadre, et des deuxièmes ensembles de fibres unidirectionnelles formant un angle sensiblement compris entre -40 degrés et -20 degrés par rapport à l'axe circonférentiel du cadre, les premiers et les deuxièmes ensembles étant régulièrement répartis sur l'épaisseur de la partie principale.
Avantageusement, la partie principale comporte des premiers ensembles de fibres unidirectionnelles formant un angle sensiblement compris entre 25 degrés et 35 degrés par rapport à l'axe circonférentiel du cadre, et des deuxièmes ensembles de fibres unidirectionnelles formant un angle sensiblement compris entre -35 degrés et -25 degrés par rapport à l'axe circonférentiel du cadre, les premiers et les deuxièmes ensembles étant régulièrement répartis sur l'épaisseur de la partie principale. De préférence, l'orientation des premiers et des deuxièmes ensembles de fibres unidirectionnelles présente une symétrie par rapport à l'axe circonférentiel du cadre. Cela permet d'améliorer la simplicité de réalisation du cadre selon l'invention puisque la disposition des ensembles de fibres unidirectionnelles se fait selon un angle unique en valeur absolue suivant l'axe circonférentiel de la partie principale du cadre. Avantageusement, la partie principale comporte des premiers ensembles de fibres unidirectionnelles formant un angle sensiblement de 30 degrés par rapport à l'axe circonférentiel du cadre, et des deuxièmes ensembles de fibres unidirectionnelles formant un angle sensiblement de -30 degrés par rapport à l'axe circonférentiel du cadre, les premiers et les deuxièmes ensembles étant régulièrement répartis sur l'épaisseur de la partie principale .
Cette orientation des ensembles de fibres unidirectionnelles de la partie principale du cadre permet d' augmenter la rigidité dans le sens circonférentiel de la partie principale par rapport à la rigidité obtenue pour des orientations de fibres à +45 degrés et -45 degrés par rapport à l'axe circonférentiel du cadre telles qu'utilisées dans l'art antérieur. De plus, cette disposition des ensembles de fibres unidirectionnelles de la partie principale du cadre permet de maintenir un flux critique de flambage à une valeur sensiblement identique à celle d'un flux critique de flambage obtenue dans le cas d'une disposition des ensembles de fibres à +45 degrés et selon -45 degrés par rapport à l'axe circonférentiel du cadre. Enfin, le cadre selon l'invention présente une simplicité de réalisation puisque seule la valeur de l'angle non nul formé par les ensembles de fibres unidirectionnelles par rapport à l'axe circonférentiel de la partie principale est modifiée. La disposition de fibres formant un angle de 0 degré par rapport à l'axe circonférentiel de la partie principale et parallèles entre elle nécessite de changer de technique de réalisation, ce qui présente des difficultés techniques et augmente les coûts de production.
Dans le mode de réalisation préféré de l'invention, le cadre comporte une partie secondaire reliée à un bord périphérique extérieur de la partie principale et s' étendant sensiblement perpendiculairement à la partie principale .
Avantageusement, la partie principale comporte des troisièmes ensembles de fibres unidirectionnelles formant un angle de 90 degrés par rapport à l'axe circonférentiel du cadre, disposés de façon alternée avec les premiers et les deuxièmes ensembles, ce qui permet d'augmenter la résistance au flambage.
Avantageusement, la partie secondaire comporte des fibres unidirectionnelles disposées sensiblement dans le sens circonférentiel du cadre, ce qui permet d' augmenter la rigidité du cadre dans le sens circonférentiel .
Les ensembles de fibres unidirectionnelles de la partie principale peuvent être disposés sous forme d'empilement de nappes ou disposés sous forme de tissus . Dans le mode de réalisation préféré de l'invention, une deuxième partie secondaire est disposée sur un bord périphérique intérieur de la partie principale et s'étend sensiblement perpendiculairement à la partie principale. De manière à augmenter la rigidité du cadre dans le sens circonférentiel, la deuxième partie secondaire comporte des fibres unidirectionnelles disposées sensiblement dans le sens circonférentiel du cadre . L'invention concerne également un fuselage d'aéronef, comprenant une ossature et un revêtement extérieur fixé sur celle-ci, l'ossature comportant des cadres de structure présentant les caractéristiques qui viennent d'être définies.
BRÈVE DESCRIPTION DES DESSINS
On décrira à présent, à titre d'exemple non limitatif, un mode de réalisation préféré de l'invention, en se référant aux dessins annexés, dans lesquels :
La figure 1 est une vue en perspective représentant schématiquement un tronçon de fuselage d' aéronef intégrant des cadres réalisés conformément à 1' invention ;
La figure 2 est une vue en perspective montrant un secteur de cadre selon un mode de réalisation préféré de l'invention, sur lequel est fixé le revêtement extérieur du fuselage. La figure 3 est une vue en perspective d'un secteur de cadre selon un mode de réalisation préféré de 1' invention .
La figure 4 illustre l'évolution du module d' Young de la partie principale du cadre de structure en fonction de la valeur de l'angle formé par les ensembles de fibres unidirectionnelles de la partie principale par rapport à l'axe circonférentiel du cadre . La figure 5 illustre l'évolution du flux critique de flambage de la partie principale du cadre de structure en fonction de la valeur de l'angle formé par les ensembles de fibres unidirectionnelles de la partie principale par rapport à l'axe circonférentiel du cadre.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Comme l'illustre schématiquement la figure 1, le fuselage 10 d'un aéronef comprend une ossature sur laquelle est fixé un revêtement extérieur 11 renforcé par des longerons 12. Le fuselage 10 peut être de forme et de dimensions variables selon le type d'aéronef, sans sortir du cadre de l'invention.
L'ossature du fuselage 10 est formée principalement de cadres de structure 13. Les cadres de structure 13 sont régulièrement répartis sur toute la longueur du fuselage. Chacun d'entre eux est disposé selon une section du fuselage, perpendiculairement à l'axe longitudinal I-I du fuselage, et présente globalement une forme circulaire sensiblement annulaire ou ovale, ou présentant deux ou trois lobes, ou encore tout autre forme du même type. Un repère orthogonal direct en coordonnées cylindriques (eR,eτ,eL) est présenté dans la figure 1. eR donne la direction radiale d'un point appartenant au fuselage, eτ la direction tangentielle ou circonférentielle et eL est la direction longitudinale, eL coïncidant avec l'axe longitudinal I-I du fuselage.
La figure 2 présente un secteur de cadre de structure 13 selon un mode de réalisation préféré de l'invention. Le cadre de structure 13 supporte le revêtement extérieur 11 du fuselage. Le revêtement extérieur 11 du fuselage est renforcé sur sa face intérieure par des longerons 12 disposés parallèlement à l'axe longitudinal I-I du fuselage et régulièrement espacés le long du périmètre du fuselage.
La figure 3 présente en détail un secteur de cadre de structure 13 selon un mode de réalisation préféré de l'invention. Dans ce mode de réalisation, le cadre de structure 13 comprend une partie principale 31, une partie secondaire extérieure 32 et une partie secondaire intérieure 33. Ainsi, ce mode de réalisation concerne un cadre de structure dont la section est approximativement en forme de C. Dans un autre mode de réalisation non représenté, la partie secondaire intérieure 33 n'existe pas et le cadre de structure 13 présente alors une section sensiblement en forme de L.
La partie principale 31 du cadre de structure 13 est constituée par une plaque sensiblement plane, de forme annulaire, dont le plan médian est sensiblement perpendiculaire à l'axe longitudinal I-I du fuselage. La partie principale 31 présente une forme courbe le long d'une ligne circonférentielle médiane II-II. La direction eτ est tangente en chaque point à la ligne II-II et définit ainsi en chaque point de la ligne II- II l'axe circonférentiel du cadre 13. Le cadre de structure 13 est réalisé en matériau composite. Il est réalisé selon les techniques habituellement utilisées pour la fabrication de pièces de ce type. Parmi ces techniques, on citera notamment les techniques de drapage qui consistent à superposer des ensembles de fibres unidirectionnelles ou de tissus pré-imprégnés de résine, puis à polymériser la résine.
La partie principale 31 comporte plusieurs ensembles de fibres unidirectionnelles qui s'étendent sur toute la largeur de la partie principale 31, entre ses bords périphériques intérieur 40 et extérieur 39.
Ces ensembles comprennent plusieurs premiers ensembles de fibres unidirectionnelles 34 qui forment un angle non nul prédéterminé 37 avec l'axe circonférentiel du cadre 13. Conformément à l'invention, l'angle 37 est compris dans l'intervalle allant de +20 degrés à +40 degrés. Il est de préférence compris dans l'intervalle allant de +25 degrés à +35 degrés et avantageusement sensiblement égal à +30 degrés . Les ensembles de fibres unidirectionnelles de la partie principale 31 comprennent également plusieurs seconds ensembles de fibres unidirectionnelles 35 formant un angle non nul prédéterminé 38 avec l'axe circonférentiel du cadre 13. Conformément à l'invention, cet angle 38 est compris dans l'intervalle allant de -40 degrés à -20 degrés. Il est de préférence compris dans l'intervalle allant de -35 degrés à -25 degrés et avantageusement sensiblement égal à -30 degrés .
Les ensembles de fibres 34 et les ensembles de fibres 35 sont régulièrement répartis sur l'épaisseur de la partie principale 31, c'est-à-dire selon l'axe I- I du fuselage 10.
Dans le mode de réalisation préféré de l'invention, les fibres unidirectionnelles des premiers ensembles de fibres 34 et des deuxièmes ensembles de fibres 35 sont disposées de manière sensiblement symétrique par rapport à l'axe circonférentiel du cadre 13, de sorte que les angles 37 et 38 sont sensiblement égaux en valeur absolue. De façon facultative, des troisièmes ensembles de fibres unidirectionnelles 36 peuvent être disposés dans la partie principale 31 sensiblement perpendiculairement à l'axe circonférentiel du cadre 13, c'est-à-dire selon la direction radiale eR du fuselage. Dans ce cas, les premiers, deuxièmes et troisièmes ensembles de fibres sont régulièrement répartis sur l'épaisseur de la partie principale 31, c'est-à-dire selon l'axe I-I du fuselage 10.
Dans le mode de réalisation préféré illustré sur les figures 2 et 3, le cadre de structure 13 comporte un partie secondaire extérieure 32 reliée à un bord périphérique extérieur 39 de la partie principale 31. La partie secondaire extérieure 32 a la forme d'une plaque qui s'étend sensiblement perpendiculairement à la partie principale 31, c'est-à-dire dans le sens longitudinal eL du fuselage 10, sur toute la longueur du bord périphérique extérieur 39.
De façon facultative, la partie secondaire extérieure 32 peut comporter des ensembles de fibres unidirectionnelles 41 disposés dans le sens circonférentiel du cadre 13. Cette partie secondaire extérieure 32 permet de fixer le cadre de structure 13 au revêtement extérieur 11 du fuselage 10, par exemple par rivetage. La présence des ensembles de fibres unidirectionnelles 41 disposés dans la direction décrite permet d' augmenter la rigidité du cadre de structure 13.
Selon le mode de réalisation préféré de l'invention, le cadre de structure 13 comporte également une partie secondaire intérieure 33 reliée à un bord périphérique intérieur 40 de la partie principale 31 et qui s'étend sensiblement perpendiculairement à la partie principale 31, c'est-à- dire dans le sens longitudinal eL du fuselage. La partie secondaire intérieure 33 peut également comporter des ensembles de fibres unidirectionnelles 42 disposés dans le sens circonférentiel du cadre 13. La présence des ensembles de fibres unidirectionnelles 42 disposés dans la direction décrite permet d'augmenter la rigidité du cadre de structure 13.
Les ensembles de fibres unidirectionnelles 34, 35 et éventuellement 36 de la partie principale 31 sont réalisés sous forme d'empilement de nappes ou de tissus. Lorsqu'ils existent, les ensembles de fibres unidirectionnelles 41, 42 des parties secondaires 32, 33 sont réalisés sous forme de nappes empilées. La nature des fibres utilisées dans les différents ensembles de fibres 34, 35 et éventuellement 36, 41, 42 des parties principale 31 et secondaires 32, 33 ainsi que la nature de la résine dans laquelle sont noyées les fibres sont choisies selon l'application envisagée parmi les fibres et les résines utilisées habituellement dans le domaine des matériaux composites. Ainsi, les fibres peuvent être des fibres de carbone, des fibres de verre ou des fibres aramides et la résine une résine thermodurcissable telle qu'une résine phénolique ou de type époxy.
Les figures 4 et 5 donnent un exemple de l'influence de l'orientation des ensembles de fibres unidirectionnelles de la partie principale 31 du cadre 13 par rapport à l'axe circonférentiel du cadre 13 sur les performances mécaniques de la partie principale 31 du cadre 13. La figure 4 illustre l'évolution du module d' Young de la partie principale 31 Eτ (en MPa) mesuré dans le sens circonférentiel du cadre 13, en fonction de l'angle θ (en degrés) d'orientation des fibres par rapport à l'axe circonférentiel du cadre. La figure 5 montre l'évolution du flux critique de flambage de la partie principale 31 Nτ (en N/mm) mesuré dans le sens circonférentiel du cadre 13, en fonction de l'angle θ (en degrés) d'orientation des fibres par rapport à l'axe circonférentiel du cadre.
Dans cet exemple, +θ correspond à l'angle 37 et -θ correspond à l'angle 38. Une plaque plane de 150 mm de long et de 70 mm de haut et formée par drapage d'une succession de 8 ensembles de fibres unidirectionnelles orientées suivant -θ/90 ° /+Θ/-Θ/+Θ/+Θ/90 ° /-Θ est considérée dans le cadre de cet exemple. L'angle θ varie de 10 degrés à 45 degrés. La figure 4 montre que, sans surprise, le module d'Young Eτ augmente continûment à mesure que l'angle θ diminue. Sa valeur pour θ=30° est ainsi deux fois plus importante que pour θ=45°. La figure 5 montre que, de manière surprenante, l'évolution du flux critique de flambage Nτ présente un maximum pour θ=30° environ. De plus, pour un angle θ sensiblement compris entre 25 degrés et 45 degrés, Nτ est sensiblement égal ou supérieur à sa valeur correspondant à θ=45°. Il est donc avantageux d'orienter les ensembles de fibres unidirectionnelles 34 et 35 de la partie principale 31 suivant un angle compris entre +25 degrés et +35 degrés pour l'angle 37 et entre -35 degrés et -25 degrés pour l'angle 38. En effet, les performances mécaniques de la partie principale 31 du cadre 13 sont améliorées tout en gardant une simplicité de réalisation.
Le cadre de structure 13 conforme à l'invention est réalisé à partir d'une technique de drapage connue de l'homme du métier. Notons toutefois que les parties secondaires extérieure 32 et intérieure 33 peuvent être réalisées selon la technique décrite dans le document WO2007/074179, différente des techniques classiques selon lesquelles les parties secondaires sont liées à la partie principale par adjonction de films de colle entre ces éléments lors de la polymérisation en autoclave. Dans la technique décrite dans le document WO2007/074179, les parties secondaires du cadre de structure correspondent aux bordures d'un ensemble monolithique comprenant la partie principale et présentant la forme voulue. Les parties secondaires sont obtenues par déformation sous vide et à haute température .

Claims

REVENDICATIONS
1. Cadre de structure (13) en matériau composite, notamment pour fuselage (10) d'aéronef, comprenant une partie principale (31) annulaire sensiblement plane, caractérisé en ce que la partie principale (31) comporte des premiers ensembles de fibres unidirectionnelles (34) formant un angle (37) sensiblement compris entre 25 degrés et 35 degrés par rapport l'axe circonférentiel du cadre (13), et des deuxièmes ensembles de fibres unidirectionnelles (35) formant un angle (38) sensiblement compris entre -35 degrés et -25 degrés par rapport à l'axe circonférentiel du cadre (13), les premiers et les deuxièmes ensembles étant régulièrement répartis sur l'épaisseur de la partie principale.
2. Cadre de structure (13) en matériau composite selon la revendication 1, caractérisé en ce que l'orientation des premiers (34) et deuxièmes (35) ensembles de fibres unidirectionnelles présente une symétrie par rapport à l'axe circonférentiel du cadre (13) .
3. Cadre de structure (13) en matériau composite selon l'une quelconque des revendications 1 à 2, caractérisé en ce que la partie principale (31) comporte des premiers ensembles de fibres unidirectionnelles (34) formant un angle (37) sensiblement de 30 degrés par rapport à l'axe circonférentiel du cadre (13), et des deuxièmes ensembles de fibres unidirectionnelles (35) formant un angle (38) sensiblement de -30 degrés par rapport à l'axe circonférentiel du cadre (13) .
4. Cadre de structure (13) en matériau composite selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le cadre comporte une partie secondaire (32) située sur un bord périphérique extérieur (39) de la partie principale (31) et s' étendant sensiblement perpendiculairement à la partie principale (31) .
5. Cadre de structure (13) en matériau composite selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la partie principale (31) comporte des troisièmes ensembles de fibres unidirectionnelles (36) formant un angle sensiblement de 90 degrés par rapport à l'axe circonférentiel du cadre (13) .
6. Cadre de structure (13) en matériau composite selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la partie secondaire (32) comporte des ensembles de fibres unidirectionnelles (41) disposés sensiblement dans le sens circonférentiel du cadre (13) .
7. Cadre de structure (13) en matériau composite selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le cadre comporte une deuxième partie secondaire (33) disposée sur un bord périphérique intérieur (40) de la partie principale (31) et qui s'étend sensiblement perpendiculairement à la partie principale (31) .
8. Cadre de structure en matériau composite selon la revendication 7, caractérisé en ce que la deuxième partie secondaire (33) comporte des ensembles de fibres unidirectionnelles (42) disposés sensiblement dans le sens circonférentiel du cadre (13) .
9. Fuselage d'aéronef, comprenant une ossature (10) et un revêtement extérieur (11) fixé sur celle-ci, l'ossature (10) comportant au moins un cadre de structure (13) selon l'une quelconque des revendications précédentes.
PCT/EP2008/061703 2007-09-07 2008-09-04 Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre WO2009030731A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/676,725 US8556213B2 (en) 2007-09-07 2008-09-04 Structural frame made of a composite material and aircraft fuselage comprising such a frame
CN2008801057438A CN101795850B (zh) 2007-09-07 2008-09-04 由合成材料制成的结构框架及包括该结构框架的飞行器机身
CA2698617A CA2698617C (fr) 2007-09-07 2008-09-04 Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre
JP2010523504A JP5314024B2 (ja) 2007-09-07 2008-09-04 複合材料から形成される構造フレーム及び該構造フレームを備えている航空機の胴体
BRPI0816483 BRPI0816483A2 (pt) 2007-09-07 2008-09-04 Quadro de estrutura material compósito, notadamente para fuselagem de aeronave,e, fuselagem de aeronave
RU2010113382/05A RU2469853C2 (ru) 2007-09-07 2008-09-04 Шпангоут из композитного материала и фюзеляж летательного аппарата с таким шпангоутом
EP08803673A EP2185345B1 (fr) 2007-09-07 2008-09-04 Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757431 2007-09-07
FR0757431A FR2920743B1 (fr) 2007-09-07 2007-09-07 Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre

Publications (1)

Publication Number Publication Date
WO2009030731A1 true WO2009030731A1 (fr) 2009-03-12

Family

ID=39301300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/061703 WO2009030731A1 (fr) 2007-09-07 2008-09-04 Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre

Country Status (9)

Country Link
US (1) US8556213B2 (fr)
EP (1) EP2185345B1 (fr)
JP (1) JP5314024B2 (fr)
CN (1) CN101795850B (fr)
BR (1) BRPI0816483A2 (fr)
CA (1) CA2698617C (fr)
FR (1) FR2920743B1 (fr)
RU (1) RU2469853C2 (fr)
WO (1) WO2009030731A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2340991A2 (fr) 2009-12-30 2011-07-06 Airbus Operations S.L. Cadre de fuselage d'avion en matériau composite avec des nervures de stabilisation
EP2343237A2 (fr) 2009-12-30 2011-07-13 Airbus Operations S.L. Cadre de fuselage d'avion dans un matériau composite avec une âme stabilisée
WO2012045871A1 (fr) * 2010-10-08 2012-04-12 Airbus Operations Gmbh Composite, aéronef ou engin spatial et procédé
CN102596547A (zh) * 2009-10-01 2012-07-18 空中客车运营简化股份公司 用于自动生产干纤维预成型件的方法及设备
EP2599711A1 (fr) 2011-12-01 2013-06-05 Airbus Operations S.L. Cadre fortement chargé d'un fuselage d'avion doté d'un réseau structuré de treillis

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006026168A1 (de) 2006-06-06 2008-01-31 Airbus Deutschland Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
DE102006026169B4 (de) * 2006-06-06 2012-06-21 Airbus Operations Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
DE102006026170B4 (de) 2006-06-06 2012-06-21 Airbus Operations Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
US8038099B2 (en) * 2008-04-30 2011-10-18 The Boeing Company Bonded metal fuselage and method for making the same
US7967250B2 (en) * 2008-05-12 2011-06-28 EMBRAER—Empresa Brasileira de Aeronáutica Hybrid aircraft fuselage structural components and methods of making same
US8709576B2 (en) 2008-11-21 2014-04-29 Airbus Operations (Sas) Curved structural part made of composite material and a process for manufacturing such a part
ES2382765B1 (es) * 2009-06-29 2013-05-03 Airbus Operations, S.L. Diseño de cuadernas de aeronave
ES2400771B1 (es) * 2011-03-30 2014-02-14 Airbus Operations S.L. Fuselaje de aeronave con cuadernas altamente resistentes.
US9545757B1 (en) 2012-02-08 2017-01-17 Textron Innovations, Inc. Composite lay up and method of forming
US9289949B2 (en) * 2012-06-08 2016-03-22 The Boeing Company Optimized cross-ply orientation in composite laminates
US10099765B2 (en) 2012-08-08 2018-10-16 The Boeing Company Monolithic composite structures for vehicles
FR3000019B1 (fr) 2012-12-21 2015-01-30 Airbus Operations Sas Raidisseur de fuselage d'aeronef forme a l'aide d'une tole repliee sur elle-meme
DE102014103438A1 (de) * 2013-07-16 2015-01-22 Airbus Operations Gmbh Spritzgussverfahren zur Herstellung eines Primärstrukturverbindungselements
EP2910365B1 (fr) 2014-02-21 2017-04-26 Airbus Operations GmbH Élément structural composite et caisson de torsion
EP3119577A1 (fr) * 2014-03-17 2017-01-25 GTM-Advanced Products B.V. Élément de raccordement de structure primaire pour aéronef et procédé de fabrication de l'élément de raccordement
EP2942269B1 (fr) * 2014-05-06 2018-09-26 Airbus Operations GmbH Procédé de fabrication d'une structure de support de charge et une telle structure de support de charge
US20160288931A1 (en) * 2015-03-31 2016-10-06 Worldvu Satellites Limited Satellite frame and method of making a satellite
FR3040014B1 (fr) * 2015-08-14 2017-09-08 Conseil & Technique Procede de fabrication d’un cadre de forme annulaire
US10005267B1 (en) 2015-09-22 2018-06-26 Textron Innovations, Inc. Formation of complex composite structures using laminate templates
EP3372396A1 (fr) 2017-03-06 2018-09-12 Airbus Operations, S.L. Pièce composite incurvée et son procédé de fabrication
DE102018104122A1 (de) 2018-02-23 2019-08-29 Airbus Operations Gmbh Verbundstrukturelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171510A (en) * 1988-06-08 1992-12-15 Aerospatiale Societe Nationale Industrielle Method of producing a frame made of a composite material, especially for the fuselage of an aircraft
US20050042410A1 (en) * 2002-08-12 2005-02-24 Hideki Sakonjo Preform precursor for fiber-reinforced composite material, preform for fiber-reinforced composite material, and method of manufacturing the precursor and the preform
WO2005115839A1 (fr) * 2004-05-24 2005-12-08 Airbus Deutschland Gmbh Encadrement de hublot pour avion
US20060048890A1 (en) * 2004-09-06 2006-03-09 Honda Motor Co., Ltd. Production method of annular, fiber-reinforced composite structure, and annular frame constituted by such structure for aircraft fuselages

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1237465A1 (ru) * 1984-05-04 1986-06-15 Ленинградский Ордена Трудового Красного Знамени Технологический Институт Холодильной Промышленности Устройство дл изготовлени изделий из композиционных материалов
JPS6170103U (fr) * 1984-10-15 1986-05-13
JPS6219440A (ja) * 1985-07-19 1987-01-28 Hitachi Zosen Corp 飛行機の胴体成形方法
JPH0780257B2 (ja) * 1987-04-20 1995-08-30 帝人株式会社 複合材料梁桁材の製造方法
US4976587A (en) * 1988-07-20 1990-12-11 Dwr Wind Technologies Inc. Composite wind turbine rotor blade and method for making same
RU2096678C1 (ru) * 1993-05-31 1997-11-20 Центральный научно-исследовательский институт специального машиностроения Защитная оболочка из композиционных материалов
CN1164201A (zh) * 1994-11-22 1997-11-05 陶氏联合技术复合制品有限公司 低树脂量定向纤维带
DE69840845D1 (de) * 1998-10-12 2009-07-02 Nitto Boseki Co Ltd Verfahren zur herstellung eines verstärkten fasersubstrats für einen verbundwerkstoff
JP4318381B2 (ja) * 2000-04-27 2009-08-19 本田技研工業株式会社 繊維強化複合材からなる胴体構造体の製造方法、及びそれにより製造される胴体構造体
JP4502579B2 (ja) * 2001-01-12 2010-07-14 株式会社ブリヂストン タイヤ構成部材の製造方法及びその装置
US7153096B2 (en) * 2004-12-02 2006-12-26 Siemens Power Generation, Inc. Stacked laminate CMC turbine vane
US8632653B2 (en) * 2005-05-03 2014-01-21 The Boeing Company Method of manufacturing curved composite structural elements
ES2560660T3 (es) 2005-12-29 2016-02-22 Airbus Operations S.L. Procedimiento y útiles para la fabricación de cuadernas de material compuesto

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171510A (en) * 1988-06-08 1992-12-15 Aerospatiale Societe Nationale Industrielle Method of producing a frame made of a composite material, especially for the fuselage of an aircraft
US20050042410A1 (en) * 2002-08-12 2005-02-24 Hideki Sakonjo Preform precursor for fiber-reinforced composite material, preform for fiber-reinforced composite material, and method of manufacturing the precursor and the preform
WO2005115839A1 (fr) * 2004-05-24 2005-12-08 Airbus Deutschland Gmbh Encadrement de hublot pour avion
US20060048890A1 (en) * 2004-09-06 2006-03-09 Honda Motor Co., Ltd. Production method of annular, fiber-reinforced composite structure, and annular frame constituted by such structure for aircraft fuselages

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596547A (zh) * 2009-10-01 2012-07-18 空中客车运营简化股份公司 用于自动生产干纤维预成型件的方法及设备
CN102596547B (zh) * 2009-10-01 2014-12-03 空中客车运营简化股份公司 用于自动生产干纤维预成型件的方法及设备
EP2340991A2 (fr) 2009-12-30 2011-07-06 Airbus Operations S.L. Cadre de fuselage d'avion en matériau composite avec des nervures de stabilisation
EP2343237A2 (fr) 2009-12-30 2011-07-13 Airbus Operations S.L. Cadre de fuselage d'avion dans un matériau composite avec une âme stabilisée
EP2340991A3 (fr) * 2009-12-30 2013-07-10 Airbus Operations S.L. Cadre de fuselage d'avion en matériau composite avec des nervures de stabilisation
US8597771B2 (en) 2009-12-30 2013-12-03 Airbus Operations S.L. Aircraft fuselage frame in composite material with stabilized web
WO2012045871A1 (fr) * 2010-10-08 2012-04-12 Airbus Operations Gmbh Composite, aéronef ou engin spatial et procédé
US9315252B2 (en) 2010-10-08 2016-04-19 Airbus Operations Gmbh Composite, aircraft or spacecraft, and method
EP2599711A1 (fr) 2011-12-01 2013-06-05 Airbus Operations S.L. Cadre fortement chargé d'un fuselage d'avion doté d'un réseau structuré de treillis

Also Published As

Publication number Publication date
US20100308165A1 (en) 2010-12-09
EP2185345A1 (fr) 2010-05-19
FR2920743B1 (fr) 2009-12-18
CN101795850A (zh) 2010-08-04
JP5314024B2 (ja) 2013-10-16
CA2698617C (fr) 2016-10-04
JP2010537889A (ja) 2010-12-09
US8556213B2 (en) 2013-10-15
CN101795850B (zh) 2013-08-07
RU2469853C2 (ru) 2012-12-20
BRPI0816483A2 (pt) 2015-03-17
CA2698617A1 (fr) 2009-03-12
FR2920743A1 (fr) 2009-03-13
RU2010113382A (ru) 2011-10-20
EP2185345B1 (fr) 2012-07-04

Similar Documents

Publication Publication Date Title
EP2185345B1 (fr) Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre
EP0714792B1 (fr) Jante de vélo et roue comprenant une telle jante
CA2781829C (fr) Roue composite, notamment pour un cycle, et procede de fabrication d'une telle roue
FR2915458A1 (fr) Assemblage de panneaux de fuselage d'un avion
EP0942174B1 (fr) Roue de ventilation centrifuge en matériaux composites
FR2550663A1 (fr) Structure de reflecteur de rayonnement electromagnetique
EP2946033B1 (fr) Structure fibreuse pour pièce axisymétrique en matériau composite a diamètre évolutif et pièce la comportant
FR2918134A1 (fr) Bielle structurale en materiau composite et procede de realisation d'une bielle en materiau composite
EP2334546B1 (fr) Assemblage de panneaux pour fuselage d'aeronef
EP1541464A1 (fr) Dispositif d'assemblage par rivetage de plusieurs éléments et procédé d'assemblage de panneaux notamment de fuselage d'aéronef à l'aide dudit dispositif
EP2723558A1 (fr) Ame de materiau structural feuille et procede d'assemblage
EP0962742B1 (fr) Dispositif de découpe de pièces non metalliques au moyen d'un tube à expansion pyrotechnique
FR2922537A1 (fr) Pieces bombees en materiau composite avec raidisseurs
EP2572874B1 (fr) Composites, leur procédé de préparation et les voiles de vol les comprenant
FR3077270A1 (fr) Dispositif pliable/deployable comprenant au moins quatre secteurs gauches relies par des charnieres
FR2863185A1 (fr) Dispositif d'equipement d'un trou dans un panneau et panneau ainsi equipe
BE1016042A5 (fr) Corps de support pour une lame et lame munie de celui-ci.
FR2970897A1 (fr) Structure fibreuse formant une bride et une contre-bride
CA2977890C (fr) Reflecteur d'antenne, en particulier pour engin spatial
FR2974819A1 (fr) Fil textile de renfort pour une voile gonflable, ainsi que voile de greement comportant de tels fils textiles de renfort
FR3066146A3 (fr) Pneumatique avec un sommet comportant une couche de rigidification et une bande de roulement a forte adherence
FR2983264A1 (fr) Piece d'assemblage
FR2974307A1 (fr) Raquette en bois de nouvelle generation
FR3087388A3 (fr) Pneumatique comprenant des elements de renfort sous forme de bandelettes multicouches
FR2981998A1 (fr) Cage massive allegee pour unite de roulement.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880105743.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08803673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008803673

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010523504

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2698617

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010113382

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12676725

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0816483

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100305