WO2009028724A1 - Method for producing phenol dimer - Google Patents
Method for producing phenol dimer Download PDFInfo
- Publication number
- WO2009028724A1 WO2009028724A1 PCT/JP2008/065921 JP2008065921W WO2009028724A1 WO 2009028724 A1 WO2009028724 A1 WO 2009028724A1 JP 2008065921 W JP2008065921 W JP 2008065921W WO 2009028724 A1 WO2009028724 A1 WO 2009028724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- group
- transition metal
- phenol
- line
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a method for producing a phenol dimer.
- Phenolic dimers obtained by oxidative pulling of phenols such as phenol are used in a wide range of fields as synthetic raw materials for engineering plastics, epoxy resins, photoresists, antioxidants, and the like.
- a method using a transition metal compound is generally an inexpensive and useful method. At this time, the transition metal compound is used as an oxidizing agent or a catalyst.
- the phenol dimer produced is more easily oxidized than phenols, and even if the phenol dimer is formed, it immediately becomes a high molecular weight. there were.
- Patent Document 1 discloses a method in which these are stirred and oxidatively coupled.
- this document also discloses that the yield of phenol dimers is low when a homogeneous solvent mixture of methanol and water is used.
- Patent Document 1 Japanese Patent Laid-Open No. 2 00 0-2 3 9 2 0 3 (Table 2) Disclosure of Invention
- the present inventors examined the production method and found that the yield of the phenol dimer can be improved by mixing the transition metal compound and the phenol by a certain method. That is, the present invention provides the following [1] to [5].
- a first line for supplying a first solution containing phenols represented by the following formula (I), a second line for supplying a second solution containing a transition metal compound, a first line and A phenolic dimer comprising a step of mixing the first solution and the second solution using an internal collision mixer having at least a discharge line for discharging the liquid supplied from the second line. Manufacturing method.
- R 1 to R 5 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. And at least one group of R 1 , R 3 and R 5 is a hydrogen atom.
- FIG. 1 is a schematic diagram showing a schematic configuration of a reaction apparatus used in the production method of the present embodiment.
- FIG. 2 is a cross-sectional view of the center of the internal collision mixer in the reaction apparatus shown in FIG. 1 cut from the paper surface direction.
- weight is treated as a synonym for “mass”
- weight% is treated as a synonym for “mass%”.
- a to B indicating the range indicates A or more and B or less.
- reaction rate of the two phenols used in this specification is:
- Reaction rate (%) (1— (unreacted phenols [mo 1] Z amount of phenols [mo 1])) X 1 00
- FIG. 1 is a schematic diagram showing an example of a schematic configuration of a reaction apparatus used in the production method of the present invention.
- FIG. 2 is an example of a cross-sectional view in which the center of the internal collision type mixer 1 in the reaction apparatus is cut from the paper surface direction.
- the method for producing a phenol dimer according to the present invention uses a transition metal compound to convert a phenol represented by the formula (I) (hereinafter sometimes referred to as a phenol) into an oxidized cutlet.
- a method for producing a phenol dimer that undergoes a pulling reaction the first line supplying a first solution containing the phenols, the second line supplying a second solution containing the transition metal compound, and In an internal collision type mixer having at least a discharge line for discharging the liquid supplied from the first line and the second line, the first solution and the second solution are caused to collide with each other. Includes steps.
- the internal collision mixer 1 includes at least one outlet lc and two inlets 1a and 1b, and the inlet la has a pump 2a.
- the first solution is supplied at a predetermined flow rate
- the second solution is supplied to the inlet 1b at a predetermined speed by the pump 2b, and the supplied first solution and the second solution collide internally. It is mixed and collided inside the mold mixer 1 and discharged from the outlet lc to the discharge line.
- the flow velocity in the discharge line is u. ut (m / s), where d (m) is the inner diameter of the discharge line, the following equation is satisfied.
- u. ut Zd ⁇ 1 0, 000 (s—)
- the “inner diameter of the discharge line flow path” is the diameter when the cross-sectional shape of the discharge line flow path is circular, and is not circular
- For hydrodynamic equivalent diameter ( 4 X cross-sectional area of flow Z dip length [wetting edge length of cross-sectional area of flow]) (for example, “Theory and Calculation of Chemical Mechanical (2nd Edition)” Ed., Toei Sakae, p. 48, 1977, published in industrial books)).
- U above. ut Zd is more preferably in the range of 10 , 000 to 100, 000 (s- 1 ), particularly preferably in the range of 10 , 000 to 70, 000 (s- 1 ).
- the angle of collision of the liquids flowing in from the two inlets is preferably in the range of 45 to: 180 °, more preferably in the range of 90 to 180 °, and 150 to 1 A range of 80 ° is particularly preferred.
- Examples of internal collision type mixers include internal collision type micro mixers, T-tubes, and IMM's Standard Slit Interdigital Micro Mixer, Cem. Eng. Te canol. 2005, 28, No. 3, p324-330 Center collision type mixer described in 1), T-union made by Swagelok, and Mu mixer of Mu Company Limited.
- pumps 2a and 2b conventionally known pumps can be used.
- the concentration of phenols in the first solution is usually in the range of 0.01 to 500 g / L, preferably in the range of 0.05 to 300 gZL, particularly preferably Within the range of 0.1 to 200 g / L.
- the concentration of the transition metal compound in the second solution is usually in the range of 0.5 to 3 mol, preferably in the range of 0.6 to 2 mol, with respect to 1 mol of phenols. And particularly preferably in the range of 0.7 to 1.5 mol.
- the temperature at the time of mixing the first solution and the second solution is a temperature at which the first solution and the second solution both show a liquid, and the boiling point is higher than the boiling point of the organic solvent or water.
- the reaction may be performed under pressure.
- a preferable temperature range is 0 to 100 ° C., more preferably 5 to 80 ° C., and further preferably 10 to 60 ° C.
- the mixing ratio (flow rate ratio) between the first solution and the second solution is usually set to be within the range of the molar ratio of the transition metal and the phenols.
- the first solution containing the phenols and the second solution containing the transition metal compound are mixed and collided with each other. More preferably, the reaction is completed by aging under or under stirring.
- the aging time is usually in the range of about 0.1 to 24 hours, preferably in the range of 1 to 5 hours.
- the temperature at the time of standing can be performed within a range of 10 to 30 ° C., for example.
- an oxidative coupling reaction of a phenol represented by the formula (I) is performed using a transition metal compound.
- R 1 to R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
- examples of the hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, and a nonyl group;
- a cycloalkyl group having about 3 to 10 carbon atoms having a cyclic structure such as a cyclopropyl group, a cyclobutyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclonyl group; an ethenyl group, a probe 1— Nyl group, probe-2-nyl group, prop-3-nyl group, 3 1-but-1-yl group, 2-but-1-yl group, 2-pent-1-yl group, 2 — Hexane 1-nyl group, 2-
- phenylmethyl group 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-1-propyl group, 1-phenyl-2-propyl group, 2-phenyl-2-propyl group, 1-phenyl group
- examples thereof include aralkyl groups having about 7 to 10 carbon atoms such as a 2-luo 3-propyl group and a 1-phenyl 4-butyl group.
- the hydrocarbon group is preferably a hydrocarbon group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Group, more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group.
- At least one group of R 1 , R 3 and R 5 is a hydrogen atom, and preferably R 3 is a hydrogen atom.
- the phenols include phenol, o-cresol, m-cresol, ⁇ -cresol, 2,6-dimethylphenol, 2,4-dimethylphenol and the like.
- the transition metal compound used in the present invention for example, a transition metal compound described in Japanese Patent Application Laid-Open No. 2000-233920, a transition metal compound that can be used as an oxidizing agent, and the like can be used. The transition metal compound acts as an oxidant or catalyst.
- the transition metal compound is a compound of a group 3 to 12 element of the periodic table (I UPAC Inorganic Chemical Nomenclature Revised Edition 1 989).
- the transition element include scandium, titanium, vanadium, chromium, manganone, iron, cobalt, nickel, copper, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cerium, platinum, gold, etc. It can be illustrated.
- the transition metal compound only needs to have the ability to oxidize the phenols, and the standard oxidation-reduction potential (25 ° C) is usually 0 V or more.
- Transition metals whose standard electrode potential (2 5 :) is 0 V or more in aqueous solution as shown in Table 1
- Examples thereof include compounds containing compounds and transition metal ions.
- Preferred examples include transitions such as pentavalent vanadium ions, trivalent manganese ions, trivalent iron ions, trivalent cobalt ions, divalent copper ions, monovalent silver ions, monovalent gold ions, and tetravalent cerium ions.
- Metal ions fluoride ions, chloride ions, bromide ions, iodide ions, sulfate ions, nitrate ions, carbonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphies Ion ion, methanesulfonate ion, trifluoromethanesulfonate ion, toluenesulfonate ion, acetate ion, trifluoroacetate ion, propionate ion, benzoate ion, hydroxide ion, oxide ion, methoxide ion, ethoxide ion Counteranions such as alkali metal ions, alkaline earth metal ions Down, counter evening one cationic or Ranaru transition metal compound such as ammonium Niu beam ions.
- the standard oxidation-reduction potential (25 ° C) of the transition metal compound is preferably not less than 0.01 V, more preferably not less than 0.05 V, and further preferably not less than 0.1 V.
- the amount of the transition metal compound used is usually 0.5 to 3 mol, preferably 0.6 to 2 mol, particularly preferably 0.7 to 1.5 mol, relative to 1 mol of the phenol. Is a mole.
- transition metal compounds used as catalysts include monodentate ligands / transition metal complexes described in JP-A-10-53649; bidentate ligands described in JP-A-10-168 179 Z transition metal complexes: Tridentate ligands / transition metal complexes described in JP-A-9-144449, JP-A-10-45904, JP-A-9-324040; JP-A-9-324042 A tetradentate or pentadentate ligand Z-transition metal complex described above; a hexadentate or higher ligand Z-transition metal complex described in JP-A-9324043; Can be mentioned.
- the reaction may be performed in the presence of a normal oxidizing agent in addition to the transition metal compound.
- a normal oxidizing agent in addition to the transition metal compound.
- the oxidant to be coexistent include oxygen or peroxide.
- the oxygen may be a mixture with an inert gas or air.
- peroxides include hydrogen peroxide, t-butyl halide peroxide, di-t-butyl peroxide, cumene octaoxide, dicumyl peroxide, peracetic acid, perbenzoic acid and the like. Monkey.
- the amount of the transition metal compound used as a catalyst is not particularly limited, but is preferably within the range of 0.00000 1 to 1.0 mole per mole of the phenol, 0.0 000 1 It is more preferably within a range of ⁇ 0.3 mol, and still more preferably within a range of 0.0001 to 0.2 mol.
- the reaction may be performed in the presence of a normal oxidant.
- the transition metal compound is used as a catalyst, the reaction is performed in the presence of a normal oxidant.
- Examples of the oxidizing agent to be coexisted include oxygen and peroxide.
- Oxygen may be a mixture with an inert gas or air.
- Examples of peroxides include hydrogen peroxide, tert-butyl hydride peroxide, di-tert-butyl peroxide, cumene octide peroxide, dicumyl peroxide, peracetic acid, perbenzoic acid, and the like. Can show.
- the amount of the oxidizing agent used is usually 0.15 mol or more in excess of 1 mol of the phenols when oxygen is used, and usually 1 mol of the phenols when peroxide is used. 0. Use within the range of 3 to 1 mole.
- the present invention includes a step of mixing and colliding a first solution containing phenols with a second solution containing a transition metal compound.
- the solvent of the first solution (hereinafter referred to as “first solvent”) is inactive with respect to the phenols and the transition metal compound, and is a liquid in the collision step, and dissolves the phenols. Can do.
- first solvent is a solvent that is uniformly mixed without causing phase separation when mixed with the solvent of the second solution (hereinafter referred to as “second solvent”).
- the second solvent is inactive with respect to the phenols and the transition metal compound. It is a liquid in the collision process and can dissolve the transition metal compound. Preferably, the solvent is mixed uniformly without causing phase separation when mixed with the first solvent.
- the first solvent include aromatic hydrocarbons having about 6 to 10 carbon atoms such as benzene, toluene, xylene, mesitylene, ethylbenzene, cumene, and 1-butylbenzene; pentane, hexane, heptane, and octane.
- Aliphatic hydrocarbons having about 5 to 10 carbon atoms such as cycloaliphatic hydrocarbons having about 5 to 10 carbon atoms such as cycloheptane and cyclohexane, dichloromethane, chloroform, carbon tetrachloride, chlorobenzene, 1,2-Dichloro-necked benzene, 1_chloronaphthalene and other octahalogenated hydrocarbons having about 1 to 10 carbon atoms; dimethyl ether, jetyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, etc.
- ethers ⁇ 10 ethers; acetone, methyl ethyl ketone, methyl butyl ketone, cyclohexanone, Ketones having 3 to 10 carbon atoms such as tophenone; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, n-propyl alcohol, is 0-propyl alcohol; dioxane, terahydrofuran, ethylene Ethers such as glycol dimethyl ether; Amides such as N, N-dimethylformamide and N-methylpyrrolidone; Two-necked compounds such as nitromethane and ditrobenzene; Water and the like. These can be used alone or as a mixture.
- polar solvents that are uniform even if they contain a large amount of water such as alcohols having 1 to 3 carbon atoms such as methanol, ethanol, n-propanol, and isopropanol, tetrahydrofuran, and aceton are preferable.
- water is usually used, and it may be water containing a polar solvent that is uniform even if it contains a large amount of water such as alcohol having 1 to 3 carbon atoms and acetone.
- the phenol dimer can be obtained in high yield by the production method of the present invention.
- the phenol dimers include p, p′-biphenol, p, o′—biphenol, o, o′—piphenol, etc. (dioxybiphenol), o-phenoxyphenol, p —Phenoxyphenols such as phenoxyphenol. Separation of phenol dimers from each other can be carried out by a conventionally known method, for example, purification methods such as distillation, sublimation, reprecipitation, extraction, chromatography and the like alone or in combination.
- the method for producing a phenol dimer according to the present invention can produce a phenol dimer in high yield.
- phenolic dimers have excellent selectivity. Therefore, it can be applied to the production of various phenol dimers from lab scale to plant scale. According to the present invention, a phenol dimer can be produced with high yield.
- the selectivity of the phenol dimer is determined based on the five types of phenol dimers (p, p '-biphenol, p, o' -biphenol, o, o, — biphenol, o-phenol) Biphenyl in the reaction mixture was determined as an internal standard based on each calibration curve for siphenol and -phenoxyphenol) and the calibration curve for pifenyl.
- T-shaped fitting for chromatograph (trade name: low dead polyyumu type uni ti, model number: SS— 1 F 0— 3 GC, inner diameter at branch: 0.33 mm, manufactured by Swage 1 ok ) was used as an internal collision type mixer, two opposing channels were used as inlet channels, and the remaining one channel was used as an outlet channel.
- Phenol 3 76.4 mg (4.00 mmo 1) as phenols and pifenyl 10 Omg as an internal standard substance were dissolved in 100 ml of methanol to prepare a first solution. Further, Ce (NH 4 ) 2 (N0 3 ) 61.93 g (3.52 mmo 1) was dissolved in 20 ml of distilled water to prepare a second solution.
- the first solution was fed at a flow rate of 50 ml / min, and the second solution was fed at a flow rate of 10 ml lmin.
- a liquid pump unit for large-scale preparative liquid chromatography manufactured by Shimadzu Corporation
- LC-1 8 A, LC-10 A, L C-11 A, etc. were used to mix each solution, and the mixture was allowed to stand for 24 hours without stirring.
- Table 1 shows the analysis results of the resulting mixture.
- Example 3 A dimerization reaction of phenols was performed in the same manner as in Example 1 except that the methanol in the first solution was changed to tetrahydrofuran (THF). Table 1 shows the analysis results of the resulting mixture.
- Example 3 A dimerization reaction of phenols was performed in the same manner as in Example 1 except that the methanol in the first solution was changed to tetrahydrofuran (THF). Table 1 shows the analysis results of the resulting mixture.
- Example 3 A dimerization reaction of phenols was performed in the same manner as in Example 1 except that the methanol in the first solution was changed to tetrahydrofuran (THF). Table 1 shows the analysis results of the resulting mixture.
- THF tetrahydrofuran
- Example 1 with the exception that the methanol in the first solution was changed to acetone. The same operation was performed to carry out a dimerization reaction of phenols. Table 1 shows the results of analysis of the resulting mixture.
- Example 4
- a dimerization reaction of phenols was performed in the same manner as in Example 1 except that the distilled water in the second solution was changed to methanol. Table 1 shows the analysis results of the obtained mixture.
- the phenol dimerization reaction was performed in the same manner as in Example 1, except that the flow rate of the first solution was changed to 15 ml lmin and the flow rate of the second solution was changed to 3 ml zmin. It was. Table 1 shows the analysis results of the resulting mixture.
- the phenol dimerization reaction was performed in the same manner as in Example 1 except that the flow rate of the first solution was changed to 100 ml lmin and the flow rate of the second solution was changed to 20 ml / min. It was. Table 1 shows the analysis results of the resulting mixture.
- the dimerization reaction of phenols was carried out in the same manner as in Example 1 except that the flow rate of the first solution was changed to 5 m 1 / min and the flow rate of the second solution was changed to 1 m 1 / min. went.
- Table 1 shows the analysis results of the resulting mixture.
- Example 1 Perform the same process as in Example 1 except that the flow rate of the first solution was changed to 10 ml / min and the flow rate of the second solution was changed to 2 ml / min. It was. Table 1 shows the analysis results of the resulting mixture.
- the yield of the phenol dimer can be improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Disclosed is a method for producing a phenol dimer, which comprises a step for mixing a first solution and a second solution by using an internal collision-type mixer which comprises at least a first line for supplying the first solution containing a phenol (I), a second line for supplying the second solution containing a transition metal compound, and a discharge line for discharging the liquid supplied from the first line and the second line.
Description
明 細 書 フエノ一ル類二量体の製造方法 技術分野 Description Method for producing phenolic dimers Technical Field
本発明は、 フエノール類二量体の製造方法に関する。 背景技術 The present invention relates to a method for producing a phenol dimer. Background art
フエノ一ル等のフェノ一ル類の酸化力ップリングにより得られるフエノール類 二量体は、 エンジニアリングプラスチック、 エポキシ樹脂、 フォトレジスト、 酸 化防止剤等の合成原料として幅広い分野に応用されている。 Phenolic dimers obtained by oxidative pulling of phenols such as phenol are used in a wide range of fields as synthetic raw materials for engineering plastics, epoxy resins, photoresists, antioxidants, and the like.
フエノール類の酸化カツプリング法としては、 一般に遷移金属化合物を用い る方法が安価で有用な方法である。 この際、 遷移金属化合物は酸化剤又は触媒 として使用される。 しかし、 フエノール類二量体の製造においては、 一般に生 成したフエノール類二量体がフエノール類よりも酸化され易く、 フエノール類 二量体が生成してもすぐに高分子量化してしまうという問題があった。 As an oxidation coupling method for phenols, a method using a transition metal compound is generally an inexpensive and useful method. At this time, the transition metal compound is used as an oxidizing agent or a catalyst. However, in the production of phenol dimers, generally, the phenol dimer produced is more easily oxidized than phenols, and even if the phenol dimer is formed, it immediately becomes a high molecular weight. there were.
かかる問題を解決するために、 有機溶媒と水との二相系混合溶媒を用い、 有 機溶媒にはフエノールを溶解させ、 水には C e ( N H 4 ) 2 ( N 0 3 ) 6 を溶 解させて、 これらを攪拌して酸化カップリングする方法が、 特許文献 1に開示さ れている。 また、 同文献には、 メタノールと水との均相系混合溶媒を用いと、 フエノール類二量体の収率が低いことも開示されている。 In order to solve such a problem, a two-phase mixed solvent of an organic solvent and water is used, phenol is dissolved in the organic solvent, and Ce (NH 4 ) 2 (N 0 3 ) 6 is dissolved in the water. In other words, Patent Document 1 discloses a method in which these are stirred and oxidatively coupled. In addition, this document also discloses that the yield of phenol dimers is low when a homogeneous solvent mixture of methanol and water is used.
[特許文献 1 ] 特開 2 0 0 0— 2 3 9 2 0 3号公報 (表 2 ) 発明の開示 [Patent Document 1] Japanese Patent Laid-Open No. 2 00 0-2 3 9 2 0 3 (Table 2) Disclosure of Invention
このような状況下、 均相系混合溶媒を用いた場合でもフエノール類二量体の 収率を向上し得るフエノール類二量体の製造方法の開発が望まれていた。 本発 明者らは、 当該製造方法について検討したところ、 遷移金属化合物とフエノー ル類とをある種の方法で混合することによりフエノール類二量体の収率を向上し 得ることを見出した。 即ち、 本発明は、 以下の [ 1 ] 〜 [ 5 ] を提供するものである。 Under such circumstances, it has been desired to develop a method for producing a phenol dimer that can improve the yield of the phenol dimer even when a phase-mixed solvent is used. The present inventors examined the production method and found that the yield of the phenol dimer can be improved by mixing the transition metal compound and the phenol by a certain method. That is, the present invention provides the following [1] to [5].
[ 1 ] . 下記式 ( I ) で表されるフエノール類を含む第一の溶液を供給する第 一ラインと、 遷移金属化合物を含む第二の溶液を供給する第二ラインと、 第一 ライン及び第二ラインから供給された液を排出する排出ラインとを少なくとも 備えた内部衝突型ミキサーを用いて、 第一の溶液と第二の溶液とを混合するェ 程を含むフエノ一ル類ニ量体の製造方法。 [1]. A first line for supplying a first solution containing phenols represented by the following formula (I), a second line for supplying a second solution containing a transition metal compound, a first line and A phenolic dimer comprising a step of mixing the first solution and the second solution using an internal collision mixer having at least a discharge line for discharging the liquid supplied from the second line. Manufacturing method.
(式 ( I ) 中、 R 1〜R 5 は、 水素原子又は炭素数 1〜 1 0の炭化水素基であ
り、 R1 、 R3 および R5 の少なくとも 1つの基は水素原子である。 ) (In the formula (I), R 1 to R 5 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. And at least one group of R 1 , R 3 and R 5 is a hydrogen atom. )
[2] . 排出ラインにおける流速を u。 u t (m/s) 、 排出ラインの流路の 内径 d (m) とした場合、 下記式を充足する [1] 記載の製造方法。 [2]. The flow velocity in the discharge line is u. The production method according to [1], wherein ut (m / s) and the inner diameter d (m) of the discharge line flow path satisfy the following formula.
u。 u t / ά ≥ 10, 000 ( s - 1 ) u. ut / ά ≥ 10, 000 (s- 1 )
[3] . 第一の溶液、 第二の溶液、 又は第一の溶液と第二の溶液の両方の溶液 が、 水を含む溶液である [1] 又は [2] 記載の製造方法。 [3] The method according to [1] or [2], wherein the first solution, the second solution, or both the first solution and the second solution are water-containing solutions.
[4] . 第一の溶液が、 炭素数 1〜3のアルコール及びアセトンからなる群か ら選ばれる少なくとも 1種の溶媒を含む溶液である [1] ~ [3] のいずれか 記載の製造方法。 [4]. The production method according to any one of [1] to [3], wherein the first solution is a solution containing at least one solvent selected from the group consisting of alcohols having 1 to 3 carbon atoms and acetone. .
[5] . 遷移金属化合物が、 C e (NH4 ) 2 (N03 ) 6 である [1] ~ [ 4] のいずれか記載の製造方法。 図面の簡単な説明 [5] The production method according to any one of [1] to [4], wherein the transition metal compound is Ce (NH 4 ) 2 (N0 3 ) 6 . Brief Description of Drawings
[図 1 ] 本実施の形態の製造方法で用いる反応装置の概略構成を示す模式 図である。 FIG. 1 is a schematic diagram showing a schematic configuration of a reaction apparatus used in the production method of the present embodiment.
[図 2] 図 1に示す反応装置における内部衝突型ミキサーの中心を紙面方 向から切断した断面図である。 2 is a cross-sectional view of the center of the internal collision mixer in the reaction apparatus shown in FIG. 1 cut from the paper surface direction.
[符号の説明] [Explanation of symbols]
1 内部衝突型ミキサー 1 Internal collision type mixer
1 a 入口 1 a entrance
1 b 入口 1 b entrance
1 c 出口 1 c exit
2 a ポンプ 2 a pump
2 b ポンプ 2b pump
5 反応容器 5 Reaction vessel
D 内部衝突型ミキサーの分岐部分における出口側流路の内径 (d) 発明を実施するための形態 D Inner diameter of outlet-side flow path at branch of internal collision type mixer (d) Mode for carrying out the invention
以下、 本発明を詳しく説明する。 尚、 本明細書では、 「重量」 は 「質量」 と 同義語として扱い、 「重量%」 は 「質量%」 と同義語として扱う。 また、 範囲 を示す 「A〜B」 は、 A以上 B以下であることを示す。 また、 本明細書中で用いるフエノール類二 体の反応率とは、 Hereinafter, the present invention will be described in detail. In this specification, “weight” is treated as a synonym for “mass”, and “weight%” is treated as a synonym for “mass%”. In addition, “A to B” indicating the range indicates A or more and B or less. Also, the reaction rate of the two phenols used in this specification is:
反応率 (%) = (1— (未反応フエノール類 [mo 1 ] Z仕込みフエノール 類量 [mo 1 ] ) ) X 1 00 Reaction rate (%) = (1— (unreacted phenols [mo 1] Z amount of phenols [mo 1])) X 1 00
を意味し、 フエノール類二量体の選択率とは And the selectivity for phenol dimers
選択率 (%) = (2 X生成したフエノール類 量体の量 [mo 1 ] Z反応した フエノ一ル類量 [m ο 1 ] ) X 100 Selectivity (%) = (2 X Amount of phenolic monomer produced [mo 1] Amount of phenol reacted with Z [m ο 1]) X 100
を意味する。 図 1は、 本発明の製造方法で用いる反応装置の概略構成の一例を示す模式図 である。 また、 図 2は、 上記反応装置における内部衝突型ミキサー 1の中心を 紙面方向から切断した断面図の例示である。 本発明のフエノール類二量体の製造方法は、 遷移金属化合物を用い式 ( I ) で表されるフエノール類 (以下、 フエノール類ということがある) を酸化カツ
プリング反応させるフエノール類二量体の製造方法であり、 上記フヱノール類 を含む第一の溶液を供給する第一ラインと、 上記遷移金属化合物を含む第二の 溶液を供給する第二ラインと、 上記第一ライン及び上記第二ラインから供給さ れた液を排出する排出ラインとを少なくとも備えた内部衝突型ミキサ一にて、 上記第一の溶液及び上記第二の溶液を混合することにより衝突させる工程を含 む。 Means. FIG. 1 is a schematic diagram showing an example of a schematic configuration of a reaction apparatus used in the production method of the present invention. FIG. 2 is an example of a cross-sectional view in which the center of the internal collision type mixer 1 in the reaction apparatus is cut from the paper surface direction. The method for producing a phenol dimer according to the present invention uses a transition metal compound to convert a phenol represented by the formula (I) (hereinafter sometimes referred to as a phenol) into an oxidized cutlet. A method for producing a phenol dimer that undergoes a pulling reaction, the first line supplying a first solution containing the phenols, the second line supplying a second solution containing the transition metal compound, and In an internal collision type mixer having at least a discharge line for discharging the liquid supplied from the first line and the second line, the first solution and the second solution are caused to collide with each other. Includes steps.
具体的には、 図 1及び図 2に例示するように、 内部衝突型ミキサー 1は、 1 つの出口 l cと、 2つの入口 1 a及び 1 bとを少なくとも備え、 当該入口 l a にはポンプ 2 aにより所定の流速で第一の溶液が供給され、 当該入口 1 bには ポンプ 2 bにより所定の速度で第二の溶液が供給され、 供給された第一の溶液 及び第二の溶液は内部衝突型ミキサー 1の内部で混合、 衝突され、 出口 l cか ら排出ラインへと排出される。 ここで、 上記内部衝突型ミキサー 1では、 上記排出ラインにおける流速を u 。 u t (m/s ) 、 上記排出ラインの流路の内径を d (m) とした場合、 下記 式を充足する。 Specifically, as illustrated in FIGS. 1 and 2, the internal collision mixer 1 includes at least one outlet lc and two inlets 1a and 1b, and the inlet la has a pump 2a. The first solution is supplied at a predetermined flow rate, the second solution is supplied to the inlet 1b at a predetermined speed by the pump 2b, and the supplied first solution and the second solution collide internally. It is mixed and collided inside the mold mixer 1 and discharged from the outlet lc to the discharge line. Here, in the internal collision mixer 1, the flow velocity in the discharge line is u. ut (m / s), where d (m) is the inner diameter of the discharge line, the following equation is satisfied.
u。 u t Zd ≥ 1 0, 000 (s— ェ ) ここで、 「排出ラインの流路の内径」 とは、 排出ラインの流路の断面形状が 円形である場合はその直径であり、 円形ではない場合には水力相当直径 (=4 X流れの断面積 Z浸辺長 [流れの断面積のぬれ縁の長さ] ) を用いる (例えば 、 「化学機械の理論と計算 (第 2版) 」 (水科、 桐栄編、 p 48、 1 97 5年 出版、 産業図書) 参照) 。 上記 u。 u t Zdは、 より好ましくは 1 0, 000〜 1 00, 000 (s— 1 ) の範囲内であり、 特に好ましくは 1 0, 000〜 70, 000 ( s - 1 ) の範囲内である。 上記内部衝突型ミキサーにおける 2つの入口から流入する各液体の衝突する 角度は、 45〜: 1 8 0° の範囲内が好ましく、 90〜 1 80 ° の範囲内が更に 好ましく、 1 5 0〜 1 80 ° の範囲内であることが特に好ましい。 内部衝突型ミキサーとしては、 例えば、 内部衝突タイプのマイクロミキサー 、 T字管、 IMM社の Standard Slit Interdigi tal Micro Mixer, C em. Eng. Te c nol. 2005, 28, No.3, p324-330に記載の中心衝突型ミキサー、 Swagelok製 の T一ユニオン、 (株) ミューカンパニーリミテドのミューミキサー等が挙げ られる。 上記ポンプ 2 a及び 2 bとしては、 従来公知のポンプを使用することができ 、 例えば、 脈動のない Kd Scientific社製のマイクロシリンジポンプや脈動は 少しあるものの、 高圧で大流量が供給可能な大量分取用高速液体クロマトグラ フ用送液ュニットを挙げることができる。 上記第一の溶液中のフエノール類の濃度は、 通常、 0. 0 1〜 500 g/L の範囲内であり、 好ましくは、 0. 0 5〜300 gZLの範囲内であり、 特に 好ましくは、 0. 1 ~ 200 g/Lの範囲内である。
また、 上記第二の溶液中の遷移金属化合物の濃度は、 通常、 フエノール類 1 モルに対して 0 . 5 ~ 3モルの範囲内であり、 好ましくは、 0 . 6〜2モルの 範囲内であり、 特に好ましくは、 0 . 7 ~ 1 . 5モルの範囲内である。 上記第一の溶液と上記第二の溶液との混合時の温度は、 上記第一の溶液と上 記第二の溶液とがいずれも液体を示す温度であり、 有機溶媒または水の沸点以 上の場合には加圧下で反応を行えばよい。 好ましい温度範囲は 0〜 1 0 0 °Cで あり、 より好ましくは 5〜8 0 °Cであり、 さらに好ましくは 1 0〜6 0でであ る。 上記第一の溶液と上記第二の溶液との混合比 (流速比) は、 通常、 上記遷移 金属と上記フエノール類とのモル比の範囲内となるように設定される。 本実施の形態では、 上記フエノール類を含む第一の溶液と遷移金属化合物を 含む第二の溶液とを混合、 衝突させる工程を経由した溶液を反応容器 5に受け た後、 一定の時間無攪拌下若しくは攪拌下で熟成させることにより反応を完結 させることがより好ましい。 熟成する時間は、 通常、 0 . 1〜2 4時間程度の 範囲内行われ、 好ましくは 1 ~ 5時間の範囲内で行う。 静置する際の温度は、 例えば、 1 0〜3 0 °Cの範囲内で行うことができる。 本実施の形態に係るフエノール類二量体の製造方法では、 遷移金属化合物を 用いて式 ( I ) で表されるフエノール類の酸化カップリング反応を行う。 式 ( I ) 中、 R 1 ~ R 5 は、 それぞれ独立に、 水素原子又は炭素数 1〜 1 0 の炭化水素基である。 ここで、 炭化水素基としては、 例えば、 メチル基、 ェチ ル基、 プロピル基、 イソプロピル基、 ブチル基、 イソブチル基、 t—ブチル基 、 ペンチル基、 へキシル基、 ノニル基等のアルキル基; シクロプロピル基、 シ クロブチル基、 シクロブチル基、 シクロペンチル基、 シクロへキシル基、 シク ロノニル基等の環状構造を持つ炭素数 3〜 1 0程度のシクロアルキル基;ェテ ニル基、 プロべ— 1—ニル基、 プロべ— 2—ニル基、 プロぺ— 3—ニル基、 3 一ブテ— 1一二ル基、 2—ブテ— 1—ニル基、 2—ペンテ一 1—ニル基、 2— へキセ— 1—ニル基、 2—ノネ一 1一二ル基等の炭素数 2〜 1 0程度のァルケ ニル基;ェチニル基、 プロピ— 1一二ル基、 プロピ— 2—ニル基、 3—プチ一 1—ニル基、 2—プチ— 1一二ル基、 2—ペンチ一 1一二ル基、 2—へキシー 1一二ル基、 2—ノニー 1一二ル基等の炭素数 2〜 1 0程度のアルキニル基; フエニル基、 1 一ナフチル基、 2—ナフチル基、 2—メチルフエニル基、 3 - メチルフエニル基、 4—メチルフエニル基、 4—ェチルフエニル基、 4一プロ ピルフエニル基、 4 _イソプロピルフエニル基、 4—ブチルフエニル基、 4— t 一ブチルフエニル基等の炭素数 6〜 1 0程度のァリール基; フエニルメチル 基、 1—フエ二レンェチル基、 2一フエニルェチル基、 1一フエニル— 1ープ 口ピル基、 1一フエニル— 2—プロピル基、 2—フエ二ルー 2—プロピル基、 1—フエ二ルー 3—プロピル基、 1—フエ二ルー 4—ブチル基等の炭素数 7〜 1 0程度のァラルキル基が挙げられる。 該炭化水素基として、 好ましくは炭素 原子数 1〜 6の炭化水素基であり、 より好ましくは炭素原子数 1 ~ 6のアルキ
ル基であり、 更に好ましくは炭素原子数 1〜4のアルキル基であり、 特に好ま しくはメチル基である。 また、 R1 、 R3 および R5 の少なくとも 1つの基は水素原子であり、 好ま しくは、 R3 が水素原子である。 上記フエノール類の具体例としては、 フエノール、 o—クレゾール、 m—ク レゾール、 ρ—クレゾール、 2, 6ージメチルフエノール、 2, 4—ジメチル フエノール等が挙げられる。 本発明に用いられる遷移金属化合物としては、 例えば、 特開 2000— 2 3 9203号公報に記載されている遷移金属化合物、 自ら酸化剤となり得る遷移 金属化合物などを用いることができる。 尚、 遷移金属化合物は酸化剤又は触媒 として作用する。 ここで遷移金属化合物とは周期表 ( I UPAC無機化学命名 法改訂版 1 989) の第 3〜12族の元素の化合物である。 上記遷移元素としてはスカンジウム、 チタン、 バナジウム、 クロム、 マンガ ン、 鉄、 コバルト、 ニッケル、 銅、 イットリウム、 ジルコニウム、 ニオブ、 モ リブデン、 テクネチウム、 ルテニウム、 ロジウム、 パラジウム、 銀、 セリウム 、 白金、 金等を例示することができる。 上記遷移金属化合物としては、 上記フエノール類を酸化する能力があればよ く、 通常標準酸化還元電位 (2 5°C) が 0V以上であればよい。 具体的には、 日本化学会編 「改訂 4版化学便覧基礎編 I I」 P 46 5— 468表 1 2 · 40 記載の水溶液中における標準電極電位 (2 5 :) が 0 V以上である遷移金属化 合物及び遷移金属イオンを含む化合物等が挙げられる。 好ましい具体例としては、 5価バナジウムイオン、 3価マンガンイオン、 3 価鉄イオン、 3価コバルトイオン、 2価銅イオン、 1価銀イオン、 1価金ィォ ン、 4価セリウムイオン等の遷移金属イオンと、 フッ化物イオン、 塩化物ィォ ン、 臭化物イオン、 ヨウ化物イオン、 硫酸イオン、 硝酸イオン、 炭酸イオン、 過塩素酸イオン、 テトラフルォロボーレ一トイオン、 へキサフルォロホスフエ イトイオン、 メタンスルホン酸イオン、 トリフルォロメタンスルホン酸イオン 、 トルエンスルホン酸イオン、 酢酸イオン、 トリフルォロ酢酸イオン、 プロピ オン酸イオン、 安息香酸イオン、 水酸化物イオン、 酸化物イオン、 メトキサイ ドイオン、 ェトキサイドイオン等のカウンターァニオンと、 アルカリ金属ィォ ン、 アル力リ土類金属イオン、 アンモニゥムイオン等のカウン夕一カチオンか らなる遷移金属化合物が挙げられる。 上記遷移金属化合物の標準酸化還元電位 (2 5°C) は、 好ましくは 0. 0 1 V以上であり、 より好ましくは 0. 05 V以上であり、 更に好ましくは 0. 1 V以上である。 上記遷移金属化合物の使用量は、 通常、 上記フエノール類 1モルに対して 0 . 5〜 3モルであり、 好ましくは、 0. 6〜2モルであり、 特に好ましく、 0 . 7 ~ 1. 5モルである。
触媒として用いられる遷移金属化合物の例としては、 特開平 1 0— 5364 9号公報記載の単座配位子/遷移金属錯体;特開平 1 0— 1 68 1 79号公報 記載の二座配位子 Z遷移金属錯体;特開平 9一 144449号公報、 特開平 1 0 - 459 04号公報、 特開平 9一 324040号公報記載の三座配位子/選 移金属錯体;特開平 9 - 324042号公報記載の四座又は五座配位子 Z遷移 金属錯体;特開平 9一 324043号公報記載の六座以上の配位子 Z遷移金属 錯体;特開平 9一 324045号公報記載のメタ口セン錯体等が挙げられる。 本実施の形態に係る方法では、 上記遷移金属化合物に加えて、 通常の酸化剤 を共存させて反応を行ってもよい。 共存させる上記酸化剤としては、 酸素又は パーォキサイドが挙げられる。 酸素は不活性ガスとの混合物であってもよく、 空気でもよい。 またパーオキサイドの例としては、 過酸化水素、 t—プチルハ イド口パーオキサイド、 ジー t—プチルパ一オキサイド、 クメン八イド口パー オキサイド、 ジクミルパ一オキサイド、 過酢酸、 過安息香酸等を示すことがで さる。 上記遷移金属化合物を触媒として用いる場合の使用量に特に制限はないが、 上記フエノール類 1モルに対して 0. 000 00 1〜1. 0モルの範囲内が好 ましく、 0. 0 000 1〜0. 3モルの範囲内がより好ましく、 0. 000 1 〜0. 2モルの範囲内が更に好ましい。 上記遷移金属化合物を用いる場合に、 通常の酸化剤を共存させて反応を行つ てもよく、 上記遷移金属化合物を触媒として用いる場合は、 通常の酸化剤を共 存させて反応を行う。 u. ut Zd ≥ 1 0, 000 (s—) Here, the “inner diameter of the discharge line flow path” is the diameter when the cross-sectional shape of the discharge line flow path is circular, and is not circular For hydrodynamic equivalent diameter (= 4 X cross-sectional area of flow Z dip length [wetting edge length of cross-sectional area of flow]) (for example, “Theory and Calculation of Chemical Mechanical (2nd Edition)” Ed., Toei Sakae, p. 48, 1977, published in industrial books)). U above. ut Zd is more preferably in the range of 10 , 000 to 100, 000 (s- 1 ), particularly preferably in the range of 10 , 000 to 70, 000 (s- 1 ). In the internal collision type mixer, the angle of collision of the liquids flowing in from the two inlets is preferably in the range of 45 to: 180 °, more preferably in the range of 90 to 180 °, and 150 to 1 A range of 80 ° is particularly preferred. Examples of internal collision type mixers include internal collision type micro mixers, T-tubes, and IMM's Standard Slit Interdigital Micro Mixer, Cem. Eng. Te canol. 2005, 28, No. 3, p324-330 Center collision type mixer described in 1), T-union made by Swagelok, and Mu mixer of Mu Company Limited. As the above pumps 2a and 2b, conventionally known pumps can be used. For example, there is a pulsation-free micro syringe pump made by Kd Scientific or a large amount capable of supplying a large flow rate at a high pressure. A liquid feeding unit for preparative high performance liquid chromatography can be mentioned. The concentration of phenols in the first solution is usually in the range of 0.01 to 500 g / L, preferably in the range of 0.05 to 300 gZL, particularly preferably Within the range of 0.1 to 200 g / L. In addition, the concentration of the transition metal compound in the second solution is usually in the range of 0.5 to 3 mol, preferably in the range of 0.6 to 2 mol, with respect to 1 mol of phenols. And particularly preferably in the range of 0.7 to 1.5 mol. The temperature at the time of mixing the first solution and the second solution is a temperature at which the first solution and the second solution both show a liquid, and the boiling point is higher than the boiling point of the organic solvent or water. In this case, the reaction may be performed under pressure. A preferable temperature range is 0 to 100 ° C., more preferably 5 to 80 ° C., and further preferably 10 to 60 ° C. The mixing ratio (flow rate ratio) between the first solution and the second solution is usually set to be within the range of the molar ratio of the transition metal and the phenols. In the present embodiment, the first solution containing the phenols and the second solution containing the transition metal compound are mixed and collided with each other. More preferably, the reaction is completed by aging under or under stirring. The aging time is usually in the range of about 0.1 to 24 hours, preferably in the range of 1 to 5 hours. The temperature at the time of standing can be performed within a range of 10 to 30 ° C., for example. In the method for producing a phenol dimer according to the present embodiment, an oxidative coupling reaction of a phenol represented by the formula (I) is performed using a transition metal compound. In formula (I), R 1 to R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. Here, examples of the hydrocarbon group include alkyl groups such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, a hexyl group, and a nonyl group; A cycloalkyl group having about 3 to 10 carbon atoms having a cyclic structure such as a cyclopropyl group, a cyclobutyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclonyl group; an ethenyl group, a probe 1— Nyl group, probe-2-nyl group, prop-3-nyl group, 3 1-but-1-yl group, 2-but-1-yl group, 2-pent-1-yl group, 2 — Hexane 1-nyl group, 2-none 1 1 1 2 yl group and the like alkenyl group having about 2 to 10 carbon atoms; ethynyl group, prop 1 1 1 1 2 group, prop 1 -2-nyl group, 3—petit 1 1-nyl group, 2—petit 1 1 1 2 group, 2—pent 1 1 1 2 1 Alkenyl group having about 2 to 10 carbon atoms, such as 2-hexyl 1 12-yl group, 2-nonyl 1 12-yl group, etc .; phenyl group, 1 1-naphthyl group, 2-naphthyl group, 2-methylphenyl group, 3-arylphenyl group, 4-methylphenyl group, 4-ethylphenyl group, 4-propylphenyl group, 4-isopropylphenyl group, 4-butylphenyl group, 4-t-butylphenyl group, etc. Groups: phenylmethyl group, 1-phenylethyl group, 2-phenylethyl group, 1-phenyl-1-propyl group, 1-phenyl-2-propyl group, 2-phenyl-2-propyl group, 1-phenyl group Examples thereof include aralkyl groups having about 7 to 10 carbon atoms such as a 2-luo 3-propyl group and a 1-phenyl 4-butyl group. The hydrocarbon group is preferably a hydrocarbon group having 1 to 6 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Group, more preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group. In addition, at least one group of R 1 , R 3 and R 5 is a hydrogen atom, and preferably R 3 is a hydrogen atom. Specific examples of the phenols include phenol, o-cresol, m-cresol, ρ-cresol, 2,6-dimethylphenol, 2,4-dimethylphenol and the like. As the transition metal compound used in the present invention, for example, a transition metal compound described in Japanese Patent Application Laid-Open No. 2000-233920, a transition metal compound that can be used as an oxidizing agent, and the like can be used. The transition metal compound acts as an oxidant or catalyst. Here, the transition metal compound is a compound of a group 3 to 12 element of the periodic table (I UPAC Inorganic Chemical Nomenclature Revised Edition 1 989). Examples of the transition element include scandium, titanium, vanadium, chromium, manganone, iron, cobalt, nickel, copper, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, silver, cerium, platinum, gold, etc. It can be illustrated. The transition metal compound only needs to have the ability to oxidize the phenols, and the standard oxidation-reduction potential (25 ° C) is usually 0 V or more. Specifically, the Chemical Society of Japan “Revised 4th edition, Chemical Handbook Fundamentals II” P 46 5— 468 Transition metals whose standard electrode potential (2 5 :) is 0 V or more in aqueous solution as shown in Table 1 Examples thereof include compounds containing compounds and transition metal ions. Preferred examples include transitions such as pentavalent vanadium ions, trivalent manganese ions, trivalent iron ions, trivalent cobalt ions, divalent copper ions, monovalent silver ions, monovalent gold ions, and tetravalent cerium ions. Metal ions, fluoride ions, chloride ions, bromide ions, iodide ions, sulfate ions, nitrate ions, carbonate ions, perchlorate ions, tetrafluoroborate ions, hexafluorophosphies Ion ion, methanesulfonate ion, trifluoromethanesulfonate ion, toluenesulfonate ion, acetate ion, trifluoroacetate ion, propionate ion, benzoate ion, hydroxide ion, oxide ion, methoxide ion, ethoxide ion Counteranions such as alkali metal ions, alkaline earth metal ions Down, counter evening one cationic or Ranaru transition metal compound such as ammonium Niu beam ions. The standard oxidation-reduction potential (25 ° C) of the transition metal compound is preferably not less than 0.01 V, more preferably not less than 0.05 V, and further preferably not less than 0.1 V. The amount of the transition metal compound used is usually 0.5 to 3 mol, preferably 0.6 to 2 mol, particularly preferably 0.7 to 1.5 mol, relative to 1 mol of the phenol. Is a mole. Examples of transition metal compounds used as catalysts include monodentate ligands / transition metal complexes described in JP-A-10-53649; bidentate ligands described in JP-A-10-168 179 Z transition metal complexes: Tridentate ligands / transition metal complexes described in JP-A-9-144449, JP-A-10-45904, JP-A-9-324040; JP-A-9-324042 A tetradentate or pentadentate ligand Z-transition metal complex described above; a hexadentate or higher ligand Z-transition metal complex described in JP-A-9324043; Can be mentioned. In the method according to the present embodiment, the reaction may be performed in the presence of a normal oxidizing agent in addition to the transition metal compound. Examples of the oxidant to be coexistent include oxygen or peroxide. The oxygen may be a mixture with an inert gas or air. Examples of peroxides include hydrogen peroxide, t-butyl halide peroxide, di-t-butyl peroxide, cumene octaoxide, dicumyl peroxide, peracetic acid, perbenzoic acid and the like. Monkey. The amount of the transition metal compound used as a catalyst is not particularly limited, but is preferably within the range of 0.00000 1 to 1.0 mole per mole of the phenol, 0.0 000 1 It is more preferably within a range of ˜0.3 mol, and still more preferably within a range of 0.0001 to 0.2 mol. When the transition metal compound is used, the reaction may be performed in the presence of a normal oxidant. When the transition metal compound is used as a catalyst, the reaction is performed in the presence of a normal oxidant.
共存させる上記酸化剤としては、 酸素又はパーォキサイドが挙げられる。 酸素 は不活性ガスとの混合物であってもよく、 空気でもよい。 またパ一オキサイド の例としては、 過酸化水素、 t一ブチルハイド口パーオキサイド、 ジー t—ブ チルパーオキサイド、 クメン八イド口パーオキサイド、 ジクミルパーォキサイ ド、 過酢酸、 過安息香酸等を示すことができる。 上記酸化剤の使用量は、 酸素を用いる場合は上記フエノール類 1モルに対し て通常、 0. 1 5モル以上過剰に使用し、 パーオキサイドを用いる場合は上記 フエノール類 1モルに対して通常、 0. 3〜 1モルの範囲内で使用する。 遷移金属化合物としては、 自ら酸化剤となり得る遷移金属化合物が好ましく 、 特に C e (NH4 ) 2 (N03 ) 6 が好ましい。 本発明は、 フエノール類を含む第一の溶液と、 遷移金属化合物を含む第二の 溶液とを混合、 衝突させる工程を有する。 第一の溶液の溶媒 (以下、 「第一の 溶媒」 と記す) は、 上記フエノール類及び上記遷移金属化合物に対し不活性で あり、 衝突させる工程において液体であり、 上記フエノール類を溶解すること ができる。 好ましくは、 第二の溶液の溶媒 (以下、 「第二の溶媒」 と記す) と 混合した際に相分離を生じることなく均一に混ざり合う溶媒である。 また、 第二の溶媒は、 上記フエノール類及び上記遷移金属化合物に対し不活
性であり、 衝突させる工程において液体であり、 遷移金属化合物を溶解するこ とができる。 好ましくは、 第一の溶媒と混合した際に相分離を生じることなく 均一に混ざり合う溶媒である。 上記第一の溶媒としては、 例えば、 ベンゼン、 トルエン、 キシレン、 メシチ レン、 ェチルベンゼン、 クメン、 1—プチルベンゼン等の炭素数 6〜 1 0程度 の芳香族炭化水素;ペンタン、 へキサン、 ヘプタン、 オクタン等の炭素数 5〜 1 0程度の脂肪族炭化水素; シクロヘプタン、 シクロへキサン等の炭素数 5〜 1 0程度の脂環式炭化水素; ジクロロメタン、 クロ口ホルム、 四塩化炭素、 ク ロロベンゼン、 1, 2—ジクロ口ベンゼン、 1 _クロロナフタレン等の炭素数 1〜 1 0程度の八ロゲン化炭化水素;ジメチルエーテル、 ジェチルエーテル、 ジイソプロピルエーテル、 ジブチルエーテル、 t 一ブチルメチルエーテル等の 炭素数 2〜 1 0程度のェ一テル類; アセトン、 メチルェチルケトン、 メチルブ チルケトン、 シクロへキサノン、 ァセトフエノン等の炭素数 3〜 1 0のケトン 類; ァセトニトリル、 ベンゾニトリル等の二トリル類; メタノール、 エタノー ル、 n—プロピルアルコール、 i s 0—プロピルアルコール等のアルコール類 ; ジォキサン、 テ卜ラヒドロフラン、 エチレングリコールジメチルエーテル等 のエーテル類; N, N—ジメチルホルムアミ ド、 N—メチルピロリ ドン等のァ ミド類;ニトロメタン、 二トロベンゼン等の二ト口化合物類;水等がそれぞれ 挙げられる。 これらは単独あるいは混合物として使用することができる。 これ らの中では、 メタノール、 エタノール、 n—プロパノール、 イソプロパノール などの炭素数 1〜 3のアルコール、 テトラヒドロフラン、 ァセトン等の水を多 く含有してもと均一化する極性溶媒が好ましく、 特に、 炭素数 1〜 3のアルコ ール及びァセトンからなる群から選ばれる少なくとも 1種の溶媒が好ましい。 上記第二の溶媒としては、 通常、 水が用いられ、 炭素数 1〜3のアルコール 及びアセトンなどの水を多く含有してもと均一化する極性溶媒を含有する水で あってもよい。 Examples of the oxidizing agent to be coexisted include oxygen and peroxide. Oxygen may be a mixture with an inert gas or air. Examples of peroxides include hydrogen peroxide, tert-butyl hydride peroxide, di-tert-butyl peroxide, cumene octide peroxide, dicumyl peroxide, peracetic acid, perbenzoic acid, and the like. Can show. The amount of the oxidizing agent used is usually 0.15 mol or more in excess of 1 mol of the phenols when oxygen is used, and usually 1 mol of the phenols when peroxide is used. 0. Use within the range of 3 to 1 mole. As the transition metal compound, a transition metal compound capable of being an oxidizing agent by itself is preferable, and Ce (NH 4 ) 2 (N0 3 ) 6 is particularly preferable. The present invention includes a step of mixing and colliding a first solution containing phenols with a second solution containing a transition metal compound. The solvent of the first solution (hereinafter referred to as “first solvent”) is inactive with respect to the phenols and the transition metal compound, and is a liquid in the collision step, and dissolves the phenols. Can do. Preferably, it is a solvent that is uniformly mixed without causing phase separation when mixed with the solvent of the second solution (hereinafter referred to as “second solvent”). The second solvent is inactive with respect to the phenols and the transition metal compound. It is a liquid in the collision process and can dissolve the transition metal compound. Preferably, the solvent is mixed uniformly without causing phase separation when mixed with the first solvent. Examples of the first solvent include aromatic hydrocarbons having about 6 to 10 carbon atoms such as benzene, toluene, xylene, mesitylene, ethylbenzene, cumene, and 1-butylbenzene; pentane, hexane, heptane, and octane. Aliphatic hydrocarbons having about 5 to 10 carbon atoms such as cycloaliphatic hydrocarbons having about 5 to 10 carbon atoms such as cycloheptane and cyclohexane, dichloromethane, chloroform, carbon tetrachloride, chlorobenzene, 1,2-Dichloro-necked benzene, 1_chloronaphthalene and other octahalogenated hydrocarbons having about 1 to 10 carbon atoms; dimethyl ether, jetyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, etc. ~ 10 ethers; acetone, methyl ethyl ketone, methyl butyl ketone, cyclohexanone, Ketones having 3 to 10 carbon atoms such as tophenone; nitriles such as acetonitrile and benzonitrile; alcohols such as methanol, ethanol, n-propyl alcohol, is 0-propyl alcohol; dioxane, terahydrofuran, ethylene Ethers such as glycol dimethyl ether; Amides such as N, N-dimethylformamide and N-methylpyrrolidone; Two-necked compounds such as nitromethane and ditrobenzene; Water and the like. These can be used alone or as a mixture. Among these, polar solvents that are uniform even if they contain a large amount of water such as alcohols having 1 to 3 carbon atoms such as methanol, ethanol, n-propanol, and isopropanol, tetrahydrofuran, and aceton are preferable. Preference is given to at least one solvent selected from the group consisting of alcohols and acetones of the numbers 1 to 3. As the second solvent, water is usually used, and it may be water containing a polar solvent that is uniform even if it contains a large amount of water such as alcohol having 1 to 3 carbon atoms and acetone.
また、 上記第一の溶媒及び第二の溶媒の少なくとも一方が水を含んでいるこ とが更に好ましく、 上記第一の溶媒及び第二の溶媒の両方が水を含んでいても よい。 本発明の製造方法によりフエノール類二量体を高収率で得ることができる。 ここでフエノール類二量体としては、 p, p ' ービフエノール、 p , o ' —ビ フエノール、 o , o ' —ピフエノール等のビフエノール類 (ジォキシビフエ二 ル類) 及び、 o—フエノキシフエノール、 p—フエノキシフエノール等のフエ ノキシフエノ一ル類が挙げられる。 フエノ一ル類ニ量体の相互の分離は従来公 知の方法により、 例えば蒸留、 昇華、 再沈殿化、 抽出、 クロマトグラフィー等 の精製法を単独又は組み合わせて行うことができる。 本発明のフェノ一ル類ニ量体の製造方法は、 フエノ一ル類二量体を高い収率 で製造することができる。 また、 フエノール類二量体も選択性も優れている。 このため、 ラボスケールからプラントスケールまでの様々なフエノール類二量 体の製造に適用できる。 本発明によれば、 収率よくフエノール類二量体を製造することが可能となる。
実施例 Further, it is more preferable that at least one of the first solvent and the second solvent contains water, and both the first solvent and the second solvent may contain water. The phenol dimer can be obtained in high yield by the production method of the present invention. Here, the phenol dimers include p, p′-biphenol, p, o′—biphenol, o, o′—piphenol, etc. (dioxybiphenol), o-phenoxyphenol, p —Phenoxyphenols such as phenoxyphenol. Separation of phenol dimers from each other can be carried out by a conventionally known method, for example, purification methods such as distillation, sublimation, reprecipitation, extraction, chromatography and the like alone or in combination. The method for producing a phenol dimer according to the present invention can produce a phenol dimer in high yield. In addition, phenolic dimers have excellent selectivity. Therefore, it can be applied to the production of various phenol dimers from lab scale to plant scale. According to the present invention, a phenol dimer can be produced with high yield. Example
以下、 本発明を実施例に基づいてより詳細に説明するが、 本発明が以下の実 施例に限定されるものではないことは言うまでもない。 尚、 実施例の各反応は 特に断りのない限り常圧下、 室温 (約 2 5 ) で行った。 Hereinafter, the present invention will be described in more detail based on examples, but it goes without saying that the present invention is not limited to the following examples. Each reaction in the examples was performed at normal pressure and room temperature (about 25) unless otherwise specified.
〔フエノール類の反応率及びフエノール類二量体の選択率〕 [Reaction rate of phenols and selectivity of phenol dimers]
反応混合物に、 メタノール 1 00m 1を加え、 不溶物をろ過し、 そのろ液を 高速液体クロマトグラフィー (製品名 : LC一 1 0A、 島津製作所製、 検出波 長: 2 7 8 n m、 カラム: 丫 〇社製〇0 S - AM (AM— 3 04) 、 展開溶 媒: メタノール/水) で分析した。 本実施例におけるフエノール類の反応率は、 予め作成した、 フエノール及び ビフエ二ルの各検量線に基づき、 反応混合物中のピフエ二ルを内部標準として 求めた。 同様に、 フエノール類二量体の選択率は、 予め作成した、 5種類のフエノー ル類ニ量体 (p, p ' ービフエノール、 p, o ' ービフエノール、 o, o, — ビフエノール、 o—フエノキシフエノール、 —フエノキシフエノール) の各 検量線及び上記ピフエニルの検量線に基づいて、 反応混合物中のビフエニルを 内部標準として求めた。 Methanol 100 ml is added to the reaction mixture, insoluble matter is filtered, and the filtrate is subjected to high performance liquid chromatography (Product name: LC-1 10A, manufactured by Shimadzu Corporation, detection wavelength: 2 78 nm, column: 丫○ Analyzed with 0 S-AM (AM-3 04), developed solvent: methanol / water) manufactured by 〇 company. The reaction rate of phenols in this example was determined based on the phenol and biphenyl calibration curves prepared in advance, and pifenyl in the reaction mixture was used as an internal standard. Similarly, the selectivity of the phenol dimer is determined based on the five types of phenol dimers (p, p '-biphenol, p, o' -biphenol, o, o, — biphenol, o-phenol) Biphenyl in the reaction mixture was determined as an internal standard based on each calibration curve for siphenol and -phenoxyphenol) and the calibration curve for pifenyl.
〔実施例 1〕 Example 1
クロマトグラフ用 T字型継手 (商品名 : ロー ·デッド ·ポリユーム型ュニォ ン ·ティ一、 型番: S S— 1 F 0— 3 GC、 分岐部分における内径: 0. 33 mm、 Swa g e 1 o k社製) を内部衝突型ミキサーとして用い、 対向する 2 つの流路を入口用流路として用い、 残りの 1つの流路を出口用流路として用い た。 フエノール類としてフエノール 3 76. 4mg (4. 00 mmo 1 ) 及び内 部標準物質としてピフエ二ル 1 0 Omgをメタノール 1 00m lに溶解させ、 第一の溶液を作製した。 また、 C e (NH4 ) 2 (N03 ) 6 1. 93 g (3 . 52 mmo 1 ) を蒸留水 2 0 m 1に溶解させ、 第二の溶液を作製した。 そし て、 第一の溶液を 50m l /m i nの流速で、 第二の溶液を 1 0m l Zm i n の流速でそれぞれ大量分取用液体クロマトグラフ用送液ポンプユニット (島津 製作所 (株) 製、 例えば、 L C一 8 A、 L C— 1 0 A、 L C- 1 1 A等) を用 いて流し、 各溶液を混合させ、 当該混合液を 24時間無攪拌下で静置させた。 得られた混合液の分析結果を表 1に示す。 〔実施例 2〕 T-shaped fitting for chromatograph (trade name: low dead polyyumu type uni ti, model number: SS— 1 F 0— 3 GC, inner diameter at branch: 0.33 mm, manufactured by Swage 1 ok ) Was used as an internal collision type mixer, two opposing channels were used as inlet channels, and the remaining one channel was used as an outlet channel. Phenol 3 76.4 mg (4.00 mmo 1) as phenols and pifenyl 10 Omg as an internal standard substance were dissolved in 100 ml of methanol to prepare a first solution. Further, Ce (NH 4 ) 2 (N0 3 ) 61.93 g (3.52 mmo 1) was dissolved in 20 ml of distilled water to prepare a second solution. The first solution was fed at a flow rate of 50 ml / min, and the second solution was fed at a flow rate of 10 ml lmin. A liquid pump unit for large-scale preparative liquid chromatography (manufactured by Shimadzu Corporation) For example, LC-1 8 A, LC-10 A, L C-11 A, etc.) were used to mix each solution, and the mixture was allowed to stand for 24 hours without stirring. Table 1 shows the analysis results of the resulting mixture. Example 2
第一の溶液におけるメタノールをテトラヒドロフラン (THF) に変更した こと以外は実施例 1と同様の操作を行い、 フエノール類の二量化反応を行った 。 得られた混合液の分析結果を表 1に示す。 〔実施例 3〕 A dimerization reaction of phenols was performed in the same manner as in Example 1 except that the methanol in the first solution was changed to tetrahydrofuran (THF). Table 1 shows the analysis results of the resulting mixture. Example 3
第一の溶液におけるメタノールをアセトンに変更したこと以外は実施例 1と
同様の操作を行い、 フエノール類の二量化反応を行った。 得られた混合液の分 析結果を表 1に示す。 〔実施例 4〕 Example 1 with the exception that the methanol in the first solution was changed to acetone. The same operation was performed to carry out a dimerization reaction of phenols. Table 1 shows the results of analysis of the resulting mixture. Example 4
第二の溶液における蒸留水をメタノールに変更したこと以外は実施例 1と同 様の操作を行い、 フエノール類の二量化反応を行った。 得られた混合液の分析 結果を表 1に示す。 A dimerization reaction of phenols was performed in the same manner as in Example 1 except that the distilled water in the second solution was changed to methanol. Table 1 shows the analysis results of the obtained mixture.
〔実施例 5〕 Example 5
第一の溶液の流速を 1 5m l Zm i nに、 第二の溶液の流速を 3 m 1 Zm i nに変更したこと以外は実施例 1と同様の操作を行い、 フエノール類の二量化 反応を行った。 得られた混合液の分析結果を表 1に示す。 The phenol dimerization reaction was performed in the same manner as in Example 1, except that the flow rate of the first solution was changed to 15 ml lmin and the flow rate of the second solution was changed to 3 ml zmin. It was. Table 1 shows the analysis results of the resulting mixture.
〔実施例 6〕 Example 6
第一の溶液の流速を 1 00m l Zm i nに、 第二の溶液の流速を 2 0m l / m i nに変更したこと以外は実施例 1と同様の操作を行い、 フエノール類の二 量化反応を行った。 得られた混合液の分析結果を表 1に示す。 The phenol dimerization reaction was performed in the same manner as in Example 1 except that the flow rate of the first solution was changed to 100 ml lmin and the flow rate of the second solution was changed to 20 ml / min. It was. Table 1 shows the analysis results of the resulting mixture.
〔実施例 7〕 Example 7
第一の溶液の流速を 5 m 1 /m i nに、 第二の溶液の流速を 1 m 1 /m i n に変更したこと以外は実施例 1と同様の操作を行い、 フエノール類の二量化反 応を行った。 得られた混合液の分析結果を表 1に示す。 The dimerization reaction of phenols was carried out in the same manner as in Example 1 except that the flow rate of the first solution was changed to 5 m 1 / min and the flow rate of the second solution was changed to 1 m 1 / min. went. Table 1 shows the analysis results of the resulting mixture.
〔実施例 8〕 Example 8
第一の溶液の流速を 1 0m l /m i nに、 第二の溶液の流速を 2 m 1 /m i nに変更したこと以外は実施例 1と同様の操作を行い、 フエノール類の二量化 反応を行った。 得られた混合液の分析結果を表 1に示す。 Perform the same process as in Example 1 except that the flow rate of the first solution was changed to 10 ml / min and the flow rate of the second solution was changed to 2 ml / min. It was. Table 1 shows the analysis results of the resulting mixture.
[¾1] [¾1]
本発明は上述した各実施形態に限定されるものではなく、 請求項に示した範 囲で種々の変更が可能であり、 異なる実施形態にそれぞれ開示された技術的手 段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含ま れる。 産業上の利用可能性 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the invention can be obtained by appropriately combining technical means disclosed in different embodiments. Embodiments are also included in the technical scope of the present invention. Industrial applicability
本発明のフエノール類二量体の製造方法によれば、 フエノール類二量体の収 率を向上させることができる。
According to the method for producing a phenol dimer of the present invention, the yield of the phenol dimer can be improved.
Claims
1. 下記式 ( I) で表されるフエノール類を含む第一の溶液を供給する第一ラ インと、 遷移金属化合物を含む第二の溶液を供給する第二ラインと、 第一ライ ン及び第二ラインから供給された液を排出する排出ラインとを少なくとも備え た内部衝突型ミキサーを用いて、 第一の溶液と第二の溶液とを混合する工程を 含むフエノール類二量体の製造方法。 1. a first line for supplying a first solution containing a phenol represented by the following formula (I), a second line for supplying a second solution containing a transition metal compound, a first line and A method for producing a phenol dimer comprising a step of mixing a first solution and a second solution using an internal collision mixer having at least a discharge line for discharging the liquid supplied from the second line .
(式 ( I ) 中、 R1 〜R5 は、 水素原子又は炭素数 1〜 1 0の炭化水素基であ り、 R1 、 R3 および R5 の少なくとも 1つの基は水素原子である。 ) (In formula (I), R 1 to R 5 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and at least one group of R 1 , R 3 and R 5 is a hydrogen atom. )
2. 排出ラインにおける流速を u。 u t (m/s) 、 排出ラインの流路の内径 d (m) とした場合、 下記式を充足するクレーム 1記載の製造方法。 2. u the flow velocity in the discharge line. The manufacturing method according to claim 1, wherein ut (m / s) and inner diameter d (m) of the flow path of the discharge line satisfy the following formula.
u。 u t /d ≥ 1 0, 000 ( s - 1 ) u. ut / d ≥ 1 0, 000 (s- 1 )
3. 第一の溶液、 第二の溶液、 又は第一の溶液と第二の溶液の両方の溶液が、 水を含む溶液であるクレーム 1又は 2記載の製造方法。 3. The production method according to claim 1 or 2, wherein the first solution, the second solution, or both the first solution and the second solution are water-containing solutions.
4. 第一の溶液が、 炭素数 1〜 3のアルコール及びアセトンからなる群から選 ばれる少なくとも 1種の溶媒を含む溶液であるクレーム 1〜 3のいずれか記載 の製造方法。 4. The production method according to any one of claims 1 to 3, wherein the first solution is a solution containing at least one solvent selected from the group consisting of an alcohol having 1 to 3 carbon atoms and acetone.
5. 遷移金属化合物が、 C e (NH4 ) 2 (N03 ) 6 であるクレーム 1〜4 のいずれか記載の製造方法。
5. Transition metal compound, C e (NH 4) 2 (N0 3) 6 The method according to any one of claims 1 to 4 is.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007226356 | 2007-08-31 | ||
JP2007-226356 | 2007-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009028724A1 true WO2009028724A1 (en) | 2009-03-05 |
Family
ID=40387422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/065921 WO2009028724A1 (en) | 2007-08-31 | 2008-08-28 | Method for producing phenol dimer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009073824A (en) |
WO (1) | WO2009028724A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000239203A (en) * | 1999-02-18 | 2000-09-05 | Agency Of Ind Science & Technol | Production of phenol condensate |
JP2000281606A (en) * | 1999-03-25 | 2000-10-10 | Sumitomo Chem Co Ltd | Production of 2,2'-dihydroxybiphenyls |
JP2004149498A (en) * | 2002-11-01 | 2004-05-27 | Honshu Chem Ind Co Ltd | METHOD FOR CONTINUOUSLY PRODUCING 3,3',5,5'-TETRA-t-BUTYL-4.4'-BIPHENOL |
JP2008081450A (en) * | 2006-09-28 | 2008-04-10 | Dainippon Ink & Chem Inc | Method for preparing phenolic dimer |
-
2008
- 2008-08-28 JP JP2008220118A patent/JP2009073824A/en not_active Withdrawn
- 2008-08-28 WO PCT/JP2008/065921 patent/WO2009028724A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000239203A (en) * | 1999-02-18 | 2000-09-05 | Agency Of Ind Science & Technol | Production of phenol condensate |
JP2000281606A (en) * | 1999-03-25 | 2000-10-10 | Sumitomo Chem Co Ltd | Production of 2,2'-dihydroxybiphenyls |
JP2004149498A (en) * | 2002-11-01 | 2004-05-27 | Honshu Chem Ind Co Ltd | METHOD FOR CONTINUOUSLY PRODUCING 3,3',5,5'-TETRA-t-BUTYL-4.4'-BIPHENOL |
JP2008081450A (en) * | 2006-09-28 | 2008-04-10 | Dainippon Ink & Chem Inc | Method for preparing phenolic dimer |
Also Published As
Publication number | Publication date |
---|---|
JP2009073824A (en) | 2009-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Steves et al. | Process development of CuI/ABNO/NMI-catalyzed aerobic alcohol oxidation | |
Kargar et al. | Novel oxovanadium and dioxomolybdenum complexes of tridentate ONO-donor Schiff base ligand: Synthesis, characterization, crystal structures, Hirshfeld surface analysis, DFT computational studies and catalytic activity for the selective oxidation of benzylic alcohols | |
EP1726577B1 (en) | Method of catalytic reaction using micro-reactor | |
Wu et al. | Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor | |
CN103232365A (en) | Schiff base compound, and synthesis method and application thereof | |
CN110878077A (en) | Method for continuously preparing ethylene carbonate | |
CN104130112A (en) | Method and equipment for preparing aldehyde or ketone through continuous oxidization by oxygen | |
Hazra et al. | A tetranuclear diphenyltin (IV) complex and its catalytic activity in the aerobic Baeyer-Villiger oxidation of cyclohexanone | |
US9850184B2 (en) | Triphasic flow millireactors | |
CN103418434B (en) | Homogeneous phase molybdenum basic ring oxidation catalyst | |
JP2014513041A (en) | Process for hydroxylation of phenol and phenol ether | |
WO2015028028A1 (en) | Process for functionalizing biomass using molybdenum catalysts | |
Ramaswamy et al. | A continuous protocol for the epoxidation of olefins, monocyclic terpenes, and Alpha Beta Unsaturated Carbonyl Synthons using eco-friendly Flow Reactor Conditions | |
CN103864549A (en) | Method for preparing diphenyl ketone compound | |
CN102794198A (en) | Preparation method of catalyst for synthesizing propionic acid by ethanol carbonylation, and application thereof | |
WO2009028724A1 (en) | Method for producing phenol dimer | |
CN106607090B (en) | Green oxidation bifunctional catalyst and the preparation method and application thereof | |
JP2009263240A (en) | Process for producing peracetic acid and process for producing epoxy compound using the peracetic acid | |
CN103977839B (en) | A kind of ionic organic metal tungstates epoxidation catalyst and preparation method thereof | |
CN109574898A (en) | The method that microchannel oxidizing process prepares aromatic series hyperis compound | |
CN107922302B (en) | Method for producing 2-hydroxy-1, 4-naphthoquinone | |
Gomez-Lor et al. | A diamine copper (I) complex stabilized in situ within the ferrierite framework. Catalytic properties | |
CN112679335B (en) | System and method for preparing fatty alcohol polyether carboxylic acid through catalytic oxidation | |
CN101121650A (en) | Method for synthesizing methoxyacetone by 1-methoxy-2-propanol gas phase oxidation dehydrogenation | |
Kurbah et al. | Supramolecular bimetallic vanadium (V) complex driven by hydrogen bonding and O∙∙∙ O chalcogen bonding interaction: Oxidation of cyclohexane and its application toward CH bond activation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08828160 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08828160 Country of ref document: EP Kind code of ref document: A1 |