WO2009021988A1 - Procédé de dépôt de nanoparticules sur un support - Google Patents

Procédé de dépôt de nanoparticules sur un support Download PDF

Info

Publication number
WO2009021988A1
WO2009021988A1 PCT/EP2008/060676 EP2008060676W WO2009021988A1 WO 2009021988 A1 WO2009021988 A1 WO 2009021988A1 EP 2008060676 W EP2008060676 W EP 2008060676W WO 2009021988 A1 WO2009021988 A1 WO 2009021988A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
support
plasma
gold
deposition
Prior art date
Application number
PCT/EP2008/060676
Other languages
English (en)
Inventor
François RENIERS
Frédéric Demoisson
Jean-Jacques Pireaux
Original Assignee
Universite Libre De Bruxelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP08151463A external-priority patent/EP2093305A1/fr
Application filed by Universite Libre De Bruxelles filed Critical Universite Libre De Bruxelles
Priority to EP08787216.4A priority Critical patent/EP2179071B1/fr
Priority to US12/673,437 priority patent/US20120003397A1/en
Priority to JP2010520582A priority patent/JP2010535624A/ja
Priority to CA2696081A priority patent/CA2696081A1/fr
Priority to CN200880111576A priority patent/CN101821421A/zh
Publication of WO2009021988A1 publication Critical patent/WO2009021988A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes

Definitions

  • the present invention relates to a method of depositing and fixing nanoparticles on any support.
  • nanoparticle describes an aggregate of small molecules, or an assembly of a few tens to a few thousand atoms, forming a particle whose dimensions are of the order of one nanometer. that is less than 1000 ⁇ m (l ⁇ ), preferably less than 100 nm. Because of their size, these particles possess particular physical, electrical, chemical and magnetic properties and give the supports on which they are applied new physical, electrical, chemical, magnetic and mechanical properties.
  • Nanoparticles have a growing interest because of their involvement in the development of many devices used in very different fields, such as for example the detection of biological or chemical compounds, the detection of gas or chemical vapors, the elaboration fuel cells or hydrogen storage devices, the production of electronic or optical nanostructures, new chemical catalysts, bio-sensors, or so-called intelligent coatings, such as self-cleaning coatings or which have a particular biological activity, antibacterial for example.
  • intelligent coatings such as self-cleaning coatings or which have a particular biological activity, antibacterial for example.
  • the deposition of nanoparticles usually comprises a step of activation of the support, which, in the techniques described above, requires a pretreatment which is often complex and may take several hours or even days.
  • all these techniques pose environmental problems for solution chemistry and electrochemistry, particularly because of the use of solvents and chemical pollutants, and problems of high energy consumption, as regards the vacuum techniques using a plasma.
  • the document WO2007 / 122256 describes the deposition of nanoporous layers by spraying a colloidal solution in a jet of thermal plasma, a plasma whose neutral species, ionized species and electrons have the same temperature.
  • the particles of the colloidal solution are at least partially melted in order to adhere to the substrate.
  • the plasma jet described has a gas temperature of between 5000 ° K and 15000 ° K. A not insignificant thermal effect will therefore be noted on both the substrate and the soil particles.
  • the present invention provides a method of depositing nanoparticles on a support which does not have the disadvantages of the state of the art.
  • the present invention provides a rapid process, inexpensive and easy implementation.
  • the present invention also proposes to minimize the thermal stresses both on the substrate and on the nanoparticles.
  • the present invention also provides a deposition method which improves the homogeneity of the deposit, and, more particularly, the dispersion of the nanoparticles on the substrate.
  • the present invention discloses a method using a colloidal solution (or suspension) of nanoparticles for the deposition of nanoparticles on a support, and using an atmospheric plasma for the deposition of nanoparticles on a support.
  • the present invention relates to a method for depositing nanoparticles on a support comprising the following steps:
  • nanoparticle an aggregate of small molecules, or an assembly of a few hundred to a few thousand atoms, forming a particle whose dimensions are of the order of one nanometer, generally less than 100 nm.
  • colloidal solution means a homogeneous suspension of particles in which the solvent is a liquid and the solute a solid homogeneously disseminated in the form of very fine particles.
  • Colloidal solutions can take various forms, liquid, gel or paste. Colloidal solutions are intermediate between suspensions, which are heterogeneous media comprising microscopic particles dispersed in a liquid, and true solutions, in which the solute or solutes are in the state of molecular division in the solvent. In liquid form, colloidal solutions are sometimes also called "soil”.
  • the atmospheric plasma is an atmospheric non-thermal plasma.
  • non-thermal plasma or “cold plasma” a partially or totally ionized gas which comprises electrons, ions (molecular or atomic), atoms or molecules, and radicals, outside the thermodynamic equilibrium, whose electron temperature (temperature of several thousands or tens of thousands of Kelvin) is significantly higher than that of ions and neutrons (temperature close to room temperature up to a few hundred Kelvin).
  • Atmospheric plasma or “non-thermal atmospheric plasma” or “atmospheric cold plasma” means a partially or totally ionized gas which comprises electrons, ions (molecular or atomic), atoms or molecules , and radicals, out of thermodynamic equilibrium, whose electron temperature is significantly higher than that of ions and neutrals (the temperatures are similar to those described for a "cold plasma"), and whose pressure is between about 1 mbar and about 1200 mbar, preferably between about 800 and about 1200 mbar.
  • the method comprises one or more of the following characteristics: the plasma comprises a plasmagenic gas and the macroscopic temperature of said plasma gas in said plasma can vary between about -20 0 C and about 600 0 C, preferably between -10 0 C and about 400 0 C and preferably between room temperature and about 400 0 C; the method further comprises a step of activating the surface of the support by subjecting said surface of said support to atmospheric plasma; the activation of the surface of the support and the nebulization of the colloidal solution are concomitant; activation of the surface of the support is preceded by a step of cleaning said surface of said support; the nebulization of the colloidal solution of nanoparticles is done in the discharge zone or in the post-discharge zone of the atmospheric plasma; the plasma is generated by an atmospheric plasma torch; the nebulization of the colloidal solution of nanoparticles is in a direction substantially parallel to the surface of the support;
  • the nanoparticles are nanoparticles of a metal, of a metal oxide, of a metal alloy or of their mixture;
  • the nanoparticles are nanoparticles of at least one transition metal, its corresponding oxide, a transition metal alloy or a mixture thereof; the nanoparticles are chosen from the group formed by magnesium (Mg), strontium (Sr), titanium (Ti), zirconium (Zr), lanthanum (La), vanadium (V), niobium (Nb) ), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), manganese (Mn), rhenium (Re), iron (Fe), ruthenium (Ru), osmium (Os), cobalt
  • the nanoparticles are chosen from the group formed by titanium dioxide (titanium (TiO 2 )), copper oxide (CuO), ferrous oxide (FeO), ferric oxide (Fe 2 O 3), oxide iron (Fe3 ⁇ 4), iridium dioxide (IrO 2), zirconium dioxide (ZrO 2), aluminum oxide (Al2O3);
  • the nanoparticles are chosen from the group formed by a gold / platinum (AuPt), platinum / ruthenium (PtRu), cadmium / sulfur (CdS) or lead / sulfur (PbS) alloy;
  • the support is a solid support, a gel or a nano-structured material;
  • the support is selected from the group consisting of a carbon support, carbon nanotubes, a metal, a metal alloy, a metal oxide, a zeolite, a semiconductor, a polymer, glass and / or ceramic;
  • the support is silica, carbon, titanium, alumina or multi-walled carbon nanotubes;
  • the atmospheric plasma is generated from a plasmagenic gas chosen from the group formed by argon, helium, nitrogen, hydrogen, oxygen, carbon dioxide, air or their mixed ;
  • the colloidal solution comprises a surfactant.
  • surfactant a compound modifying the surface tension between two surfaces.
  • the surfactant compounds are amphiphilic molecules, that is to say that they have two parts of different polarity, one lipophilic and apolar, and the other, hydrophilic and polar. This type of molecule helps stabilize colloids.
  • cationic surfactants anionic, amphoteric or nonionic.
  • An example of such a surfactant is sodium citrate.
  • the present invention also discloses the use of a colloidal solution of nanoparticles for depositing nanoparticles on a support using an atmospheric plasma.
  • the use of the colloidal nanoparticle solution comprises one or more of the following characteristics: the colloidal solution is nebulized in the discharge or post-discharge zone of the atmospheric plasma; the atmospheric plasma is generated by an atmospheric plasma torch.
  • the present invention also describes the use of an atmospheric plasma for the deposition of nanoparticles on a support, said nanoparticles being in the form of a colloidal solution of nanoparticles, and said colloidal solution being nebulized on the surface of said support in said atmospheric plasma.
  • FIG. 1 represents the size distribution of the gold particles of a colloidal solution.
  • FIG. 2 represents an image obtained by transmission electron microscopy (TEM) of a colloidal solution of the gold particles.
  • Figure 3 schematically shows an atmospheric plasma torch.
  • FIG. 4 represents X-ray photoelectron spectroscopy (XPS) spectra of the HOPG graphite surface after plasma gold nanoparticle deposition according to the process of the present invention, (a) spectrum. global, (b) deconvolved spectrum of the Au 4f level, (c) deconvolved spectrum of the Is level, (d) deconvolved spectrum of the C Is level.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 5 represents atomic force microscopy (AFM) images of a HOPG graphite sample a) before, and b) after deposition of gold nanoparticles according to the method of the present invention.
  • FIG. 6 represents high-resolution electron microscopy images of secondary electrons (FEG-SEM) of a HOPG graphite sample a) before, b) and c) after deposition of gold nanoparticles according to the method of FIG. the present invention, (a) magnification x 2000, (b) magnification x 25000, (c) magnification x 80000.
  • EDS Energy dispersive analysis
  • FIG. 7 represents the comparison of the experimental XPS spectrum of the Au 4f level presented in FIG. 4 (b) and of the modeled spectrum using a Volmer-Weber type growth model.
  • FIG. 8 represents an X-ray photoelectron spectroscopy spectrum (XPS) of the HOPG graphite surface after deposition of gold nanoparticles without the use of a plasma (comparative).
  • FIG. 9 represents a high-resolution electron microscopy image of the secondary electrons (FEG-SEM) of a HOPG graphite sample after the deposition of gold nanoparticles without the use of a plasma (comparative).
  • FIG. 8 represents an X-ray photoelectron spectroscopy spectrum (XPS) of the HOPG graphite surface after deposition of gold nanoparticles without the use of a plasma (comparative).
  • FIG. 9 represents a high-resolution electron microscopy image of the secondary electrons (FEG-SEM) of a HOPG graphite sample after
  • FIG. 10 represents an image (magnification x 100000) obtained by high resolution electron microscopy of the secondary electrons (FEG-SEM) of a steel sample after deposition of gold nanoparticles according to the method of the present invention.
  • FIG. 11 represents an image (magnification ⁇ 3000) obtained by high-resolution electron microscopy of the secondary electrons (FEG-SEM) of a glass sample after deposition of gold nanoparticles according to the process of the present invention.
  • FIG. 12 represents an image (magnification ⁇ 50000) obtained by high-resolution electron microscopy of the secondary electrons (FEG-SEM) of a sample of PVC polymer after deposition of gold nanoparticles according to the process of the present invention. .
  • FIG. 13 represents an image (magnification x 10000) obtained by high-resolution electron microscopy of secondary electrons (FEG-SEM) of a sample of HDPE polymer after deposition of gold nanoparticles according to the method of the present invention. .
  • FIG. 14 represents an image (magnification ⁇ 10000) obtained by high resolution electron microscopy of the secondary electrons.
  • FIG. 15 represents an image obtained by transmission electron microscopy (TEM) of a sample of carbon nanotubes before (a) and after deposition of gold nanoparticles according to the process of the present invention (b).
  • TEM transmission electron microscopy
  • FIG. 16 represents an X-ray photoelectron spectroscopy (XPS) spectrum of the surface of the carbon nanotubes after deposition of gold nanoparticles according to the process of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 17 represents an image obtained by transmission electron microscopy (TEM) of a sample of carbon nanotubes after deposit of platinum nanoparticles according to the process of the present invention.
  • TEM transmission electron microscopy
  • FIG. 18 represents an X-ray photoelectron spectroscopy (XPS) spectrum of the surface of the carbon nanotubes after deposition of platinum nanoparticles according to the process of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 19 represents an image
  • FIG. 20 represents an X-ray photoelectron spectroscopy (XPS) spectrum of the HOPG graphite surface after deposition of rhodium nanoparticles according to the method of the present invention.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 21 represents an image (magnification x 100000) of secondary electron electron microscopy (FEG-SEM) of a steel sample after the deposition of platinum nanoparticles according to the process of the present invention.
  • FEG-SEM secondary electron electron microscopy
  • FIG. 22 represents an image (magnification x 100000) of secondary electron electron microscopy (FEG-SEM) of a PVC sample after the deposition of rhodium nanoparticles according to the process of the present invention.
  • FEG-SEM secondary electron electron microscopy
  • FIG. 23 represents an image (magnification x 100000) of secondary electron electron microscopy (FEG-SEM) of a sample of HDPE after the deposition of rhodium nanoparticles according to the method of the present invention.
  • FEG-SEM secondary electron electron microscopy
  • the nanoparticle deposition method according to the invention involves a colloidal solution or suspension of nanoparticles which is deposited on any support with the aid of an atmospheric plasma, said atmospheric plasma being able to be generated by any device adequate use of an atmospheric plasma.
  • This method has many advantages. For example, it allows a so-called “clean” deposit, that is to say without the use of solvents called “pollutant”.
  • the deposition of nanoparticles according to the invention uses only a low energy consumption.
  • the deposition of nanoparticles is rapid because the activation of the support and the nebulization of the nanoparticles, and possibly also the prior cleaning of the support, are carried out in the atmospheric plasma, or in the flow of the atmospheric plasma, in a single step or one continuous process.
  • the method according to the invention allows a strong adhesion of the nanoparticles to the support.
  • This technique makes it possible to control the properties of the interface and to adjust the deposition of the nanoparticles on the support.
  • this method does not require expensive installations and is easily implemented industrially.
  • the colloidal solution of nanoparticles can be prepared by any technique and / or any suitable means.
  • the support, on which the colloidal solution of nanoparticles is deposited is any suitable material that can be covered with nanoparticles, any material whatever its nature and / or its shape.
  • he it is a solid support, a gel or a nano-structured material.
  • the plasma is any suitable atmospheric plasma. It is a plasma generated at a pressure of between about 1 mbar and about 1200 mbar, preferably between 800 and 1200 mbar. Preferably, it is an atmospheric plasma whose macroscopic temperature of the gas can vary for example between room temperature and about 400 ° C. Preferably, the plasma is generated by an atmospheric plasma torch.
  • An atmospheric plasma does not use vacuum, which can be inexpensive and easy maintenance.
  • the atmospheric plasma makes it possible to clean and activate the surface of the support, either by functionalizing it, for example by creating oxygen, nitrogen, sulfur, and / or hydrogenated groups, or by creating surface defects, for example gaps, steps, and / or stings.
  • These surface groups can for example comprise very reactive radicals and having a short life.
  • the nanoparticles themselves can be activated by plasma, either directly by radical formation from the water of hydration, or by reactions with a surfactant attached to the surface of the nanoparticle.
  • the activation of the support and the nebulization of the colloidal solution are concomitant, namely in the plasma, or in the plasma flow, generated by a device use of an atmospheric plasma.
  • the nebulization of the colloidal solution occurs at the same time, or immediately after, the activation of the support by the atmospheric plasma.
  • the nebulization of the colloidal solution can be done either in the discharge zone or in the post-discharge zone of the atmospheric plasma.
  • the nebulization of the colloidal solution is in the post-discharge area of the plasma because, in some cases, this may have additional advantages. This may not contaminate the device generating the plasma. This may make it possible to facilitate the treatment of polymeric supports, to avoid the degradation of the support to be coated, and also, for example, not to cause melting, oxidation, degradation and / or aggregation of the nanoparticles.
  • the nebulization of the colloidal solution is any nebulization and can be done in any direction (orientation) relative to the surface of the support.
  • the nebulization is in a direction substantially parallel to the support, but it can also be done for example at an angle of about 45 °, or for example at an angle of about 75 ° relative to the surface of the support treat.
  • EXAMPLE 1 Gold nanoparticles were deposited on highly oriented pyrolytic graphite (HOPG), a support which has chemical properties similar to those of multiwall carbon nanotubes (MWCNTs).
  • HOPG highly oriented pyrolytic graphite
  • MWCNTs multiwall carbon nanotubes
  • Highly oriented pyrolytic graphite (HOPG) is commercially available (MikroMasch
  • this graphite With a ZYB quality, this graphite, with a size of 10 mm x 10 mm x 1 mm, has an angle called "mosaic spread angle" of 0.8 ° ⁇ 0.2 ° and a size of "lateral grain” greater than 1 mm. Few layers of The surface of the graphite is previously detached with adhesive tape, before the graphite sample is immersed in an ethanol solution for 5 minutes, under ultrasonication. The colloidal suspension is prepared for example by the method of thermal reduction of citrate as described in the article by Turkevich et al. J. Faraday Discuss. Chem. Soc.
  • This method of thermal reduction of the citrate makes it possible to obtain a stable dispersion of gold particles, whose gold concentration is 134 mM, and whose particles have an average diameter of approximately 10 nm and approximately 10% of polydispersity (Figure 1).
  • the diffuser of the plasma torch comprises two perforated aluminum electrodes 33 mm in diameter and separated by a gap of 1.6 mm wide.
  • the diffuser is placed inside an airtight chamber, under argon atmosphere at room temperature.
  • the upper electrode 1 of the plasma source is connected to a radio frequency generator, for example 13.56 MHz, while the lower electrode 2 is grounded.
  • the plasma torch operates at 80 W and the plasma 3 is formed by feeding the torch upstream of the electrodes with argon 4 at a rate of 30 L / min.
  • the space between the sample of graphite HOPG resting on a sample holder 7 and the lower electrode 2 is 6 ⁇ 1 mm. This space is under atmospheric pressure.
  • the graphite support Before the deposition of the nanoparticles, the graphite support is subjected to the plasma stream of the plasma torch, for example about 2 minutes, which allows to clean and activate the support.
  • 3 to 5 ml of colloidal suspension is nebulized in the post-discharge area of the plasma torch and in a direction 6 substantially parallel to the sample ( Figure 3).
  • the colloidal suspension is injected for about 5 minutes, by periodic pulsations of about one second, spaced about 15 seconds apart.
  • the samples are then washed in ethanol solution under ultrasonication for about 5 minutes.
  • X-ray photoelectron spectroscopy (XPS) analysis of the surface of the HOPG graphite coated with nanoparticles was carried out on a ThermoVG Microlab 350 apparatus, with an analytical chamber at a pressure of 10 -9 mbar and a radiation source.
  • X Al Ka (h ⁇ 1486.6 eV) operating at 300 W.
  • the spectra were measured with a recording angle of 90 ° and were recorded with a passing energy in the analyzer of 100 eV and a beam size of X-rays of 2 mm x 5 mm.
  • the determination of the chemical state was made, with a passing energy in the analyzer of 20 eV.
  • FIG. 4 a shows the presence of carbon at a percentage of 77.8%, oxygen at a percentage of 14, 9%, potassium at a percentage of 3.2% and gold at a percentage of 1.0%. Traces of silica were also detected; these are impurities incorporated in the HOPG graphite samples.
  • the graphite samples are previously deposited on a copper strip of a sample holder before being introduced into the analysis chamber under a pressure of about 10 ⁇ 8 mbar.
  • Figure 6a in the initial state, several steps are observable at a magnification of 20000 times.
  • Figure 6 b) many clusters, represented by bright spots, and having a homogeneous distribution, are present on the surface of the graphite after the deposition of nanoparticles according to the method of the invention.
  • a larger magnification (80000 times, Figure 6c) it is easy to see isolated aggregates and nanoparticles with a diameter of about 10 nm.
  • the growth mode is of the Volmer-Weber type (3D structure in islands) Table 1:
  • the height of the gold islands (h) varies between 9.2 and 10.6 nm, values substantially identical to the average diameter of the nanoparticles of the colloidal suspension ( Figure 1).
  • a gold coverage percentage of about 10% is in agreement with the recovery rate determined by atomic force microscopy and scanning electron microscopy.
  • the analysis of the Au 4f spectral curve by the QUASES software shows a good correlation between experimental and theoretical data.
  • a deposit of gold nanoparticles on HOPG according to the method of Example 1 is carried out, with the exception of the step of nanoparticle deposition that is carried out without the use of an atmospheric plasma ( Figures 8 and 9). After the deposition of the nanoparticles and before analysis, the samples obtained are washed with ethanol for about 5 minutes with ultrasound.
  • Example 4 the method used is that described in Example 1, only the supports (substrates) used and the nature of the colloidal solutions are different.
  • Example 4 the method used is that described in Example 1, only the supports (substrates) used and the nature of the colloidal solutions are different.
  • Gold nanoparticles were deposited on a steel support according to the method described in Example 1, with ultrasonic cleaning. Note in Figure 10 the presence of nanoparticles.
  • Example 5
  • Gold nanoparticles were deposited on a glass support according to the method described in Example 1. It can be seen from Figure 11 the presence of nanoparticles after ultrasonic cleaning.
  • Gold nanoparticles were deposited on a PVC support according to the method described in Example 1, with ultrasonic cleaning.
  • the microscopy image of FIG. 12 was obtained after covering the sample with a metal layer. Note in Figure 12 the presence of nanoparticles.
  • Gold nanoparticles were deposited on an HDPE support (FIG. 13) according to the method described in example 1, with ultrasonic cleaning.
  • the microscopy image of FIG. 13 was obtained after covering the sample with a metal layer. Note in Figure 13 the presence of nanoparticles.
  • Gold nanoparticles were deposited on a carbon nanotube support according to the method described in Example 1, with ultrasonic cleaning. Note in Figure 15 the presence of spherical nanoparticles of about 10 nm after ultrasonic cleaning. This presence of gold is confirmed by the XPS spectrum in FIG. 16.
  • colloidal solutions of platinum and rhodium provided by GA Somorjai provided by GA Somorjai (Department of Chemistry, University of California, Berkeley (USA) ) were used (RM Rioux, H. Song, JD Hoefelmeyer, Yang P. and GA Somorjai, J. Phys Chem B 2005, 109, 2192-2202, Yuan Wang, Jiawen Ren, Kai Deng, Lin Gui, and Youqi Tang, Chem Materials 2000, 12, 1622-1627.).
  • Platinum nanoparticles were deposited on a carbon nanotube support according to the method described in US Pat. Example 1. It is noted in Figure 17 the presence of spherical nanoparticles of about 10 nm. This presence of platinum is confirmed by the XPS spectrum in FIG. 18.
  • Example 10 Rhodium nanoparticles were deposited on a HOPG carbon support according to the process described in Example 1. It is noted in FIG. presence of spherical nanoparticles of around 10 nm after ultrasonic cleaning. This presence of rhodium is confirmed by the XPS spectrum in Figure 20.
  • Rhodium nanoparticles were deposited on a PVC support according to the method described in Example 1, with ultrasonic cleaning.
  • the microscopy image of FIG. 22 was obtained after covering the sample with a metal layer. Note in Figure 22 the presence of nanoparticles.
  • the microscopy image of FIG. 23 was obtained after covering 1 sample with a metal layer. Note in Figure 23 the presence of nanoparticles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

La présente invention se rapporte à un procédé de dépôt de nanoparticules sur un support qui comprend les étapes suivantes : - Prendre une solution colloïdale de nanoparticules - Nébuliser la solution colloïdale de nanoparticules sur une surface du support dans un plasma atmosphérique.

Description

Procédé de dépôt de nanoparticules sur un support
Objet de l'invention
[0001] La présente invention se rapporte à un procédé de dépôt et de fixation de nanoparticules sur un support quelconque.
Etat de la technique
[0002] II est généralement admis que le terme « nanoparticule » décrit un agrégat de petites molécules, ou un assemblage de quelques dizaines à quelques milliers d'atomes, formant une particule dont les dimensions sont de l'ordre du nanomètre, c'est-à-dire inférieures à lOOOnm (lμ), de préférence inférieures à 100 nm. De par leur taille, ces particules possèdent des propriétés physiques, électriques, chimiques et magnétiques particulières et confèrent aux supports sur lesquels elles sont appliquées de nouvelles propriétés physiques, électriques, chimiques, magnétiques et mécaniques.
[0003] Les nanoparticules présentent un intérêt grandissant du fait de leur implication dans le développement de nombreux dispositifs utilisés dans des domaines très différents, comme par exemple la détection de composés biologiques ou chimiques, la détection de gaz ou de vapeurs chimiques, l'élaboration de piles à combustible ou de dispositifs de stockage d'hydrogène, la réalisation de nanostructures électroniques ou optiques, de nouveaux catalyseurs chimiques, de bio-senseurs, ou de revêtements dits intelligents, tels des revêtements autonettoyants ou qui possèdent une activité biologique particulière, antibactérienne par exemple. [0004] II existe de nombreuses techniques permettant le dépôt de nanoparticules de différente nature, sur divers supports. Il existe des procédés de chimie en solution comme décrits par exemple dans l'article « Déposition of PbS particles from a nonaqueous chemical bath at room température » de T. Chaudhuri et al. Materials Letters
(2005), 59 (17) pp 2191-2193, et l'article « Déposition of gold nanoparticles on silica sphères by electroless métal plating technique » de Y. Kobayashi et al., Journal of Colloid and Interface Science (2005), 283 (2) pp 601-604.
[0005] II existe également des procédés d' électrochimie comme décrit par exemple dans l'article « Déposition of clusters and nanoparticles onto boron-doped diamond électrodes for electrocatalysis » de G. Sine et al., Journal of Applied Electrochemistry, (2006) 36 (8) pp 847-862, et dans l'article « Déposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cell » de M. Waje et al., Nanotechnology (2005), 16 (7) pp 395-400. [0006] II peut s'agir également de techniques de dépôt sous vide faisant intervenir un plasma comme décrit en particulier dans l'article « Platinum nanoparticles interaction with chemically modified highly oriented pyrolytic graphite surfaces » de D. Yang et al., Chemistry of materials (2006) 18 (7) pp 1811-1816, et dans l'article « Au nanoparticles supported on HOPG: An XPS characterization », de D. Barreca et al. Surface Science Spectra (2005) 10 pp 164-169. [0007] Ces techniques présentent de nombreux inconvénients, qui peuvent être par exemple des problèmes liés à la reproductibilité du procédé utilisé, des problèmes de distribution, d'homogénéité et de régularité du dépôt de nanoparticules. Ces techniques sont également d'une mise en œuvre complexe. Elles sont, d'une manière générale, onéreuses, du fait, entre autre, de la nécessité de générer un vide même partiel, et sont difficilement applicables à une échelle industrielle. De plus, le dépôt de nanoparticules comprend habituellement une étape d' activation du support, qui, dans les techniques décrites précédemment, requiert un traitement préalable qui est bien souvent complexe et qui peut prendre plusieurs heures, voire des jours. [0008] En outre, toutes ces techniques posent des problèmes environnementaux, pour la chimie en solution ainsi que l' électrochimie, du fait notamment de l'utilisation de solvants et de réactifs chimiques polluant, et des problèmes de forte consommation d'énergie, pour ce qui concerne les techniques sous vide utilisant un plasma.
[0009] En particulier, le document WO2007/122256 décrit le dépôt de couches nanoporeuses par projection d'une solution colloïdale dans un jet de plasma thermique, un plasma dont les espèces neutres, les espèces ionisées et les électrons présentent une même température. Dans ce document, il est précisé que les particules de la solution colloïdale sont au moins partiellement fondues pour pouvoir adhérer au substrat. En particulier, le jet plasma décrit présente une température de gaz comprise entre 50000K à 15000°K. On notera donc un effet thermique non négligeable tant sur le substrat que sur les particules du sol.
Buts de l ' invention
[0010] La présente invention propose un procédé de dépôt de nanoparticules sur un support qui ne présente pas les inconvénients de l'état de la technique.
[0011] La présente invention propose un procédé rapide, peu onéreux et d'une mise en œuvre facilitée. [0012] La présente invention propose aussi de minimiser les contraintes thermiques tant sur le substrat que sur les nanoparticules .
[0013] La présente invention propose également un procédé de dépôt qui améliore l'homogénéité du dépôt, et, plus particulièrement, la dispersion des nanoparticules sur le substrat.
Résumé de l ' invention [0014] La présente invention divulgue un procédé utilisant une solution (ou une suspension) colloïdale de nanoparticules pour le dépôt de nanoparticules sur un support, et utilisant un plasma atmosphérique pour le dépôt de nanoparticules sur un support. [0015] La présente invention concerne un procédé de dépôt de nanoparticules sur un support comprenant les étapes suivantes :
- prendre une solution (ou une suspension) colloïdale de nanoparticules et, - nébuliser ladite solution (ou une suspension) colloïdale de nanoparticules sur une surface dudit support dans un plasma atmosphérique.
[0016] On entend par « nanoparticule » un agrégat de petites molécules, ou un assemblage de quelques centaines à quelques milliers d'atomes, formant une particule dont les dimensions sont de l'ordre du nanomètre, généralement inférieures à lOOnm.
[0017] On entend par « solution colloïdale » une suspension homogène de particules dans laquelle le solvant est un liquide et le soluté un solide disséminé de manière homogène sous forme de très fines particules. Les solutions colloïdales peuvent prendre des formes diverses, liquide, gel ou pâte. Les solutions colloïdales sont intermédiaires entre les suspensions, qui sont des milieux hétérogènes comprenant des particules microscopiques dispersées dans un liquide, et les solutions vraies, dans lesquelles le ou les solutés sont à l'état de division moléculaire dans le solvant. Sous forme liquide, les solutions colloïdales sont parfois aussi appelées des « sol ».
[0018] Dans une forme préférée de réalisation de la présente invention, le plasma atmosphérique est un plasma non-thermique atmosphérique. [0019] On entend par « plasma non-thermique », ou « plasma froid », un gaz partiellement ou totalement ionisé qui comprend des électrons, des ions (moléculaires ou atomiques) , des atomes ou molécules, et des radicaux, hors de l'équilibre thermodynamique, dont la température des électrons (température de plusieurs milliers ou plusieurs dizaines de milliers de Kelvin) est significativement supérieure à celle des ions et des neutres (température proche de la température ambiante jusqu'à quelques centaines de Kelvin) . [0020] On entend par « plasma atmosphérique » ou, « plasma non-thermique atmosphérique » ou encore « plasma froid atmosphérique », un gaz partiellement ou totalement ionisé qui comprend des électrons, des ions (moléculaires ou atomiques), des atomes ou molécules, et des radicaux, hors de l'équilibre thermodynamique, dont la température des électrons est significativement supérieure à celle des ions et des neutres (les températures sont similaires à celles décrites pour un « plasma froid ») , et dont la pression est comprise entre environ 1 mbar et environ 1200 mbar, de préférence entre environ 800 et environ 1200 mbar. [0021] Selon une forme particulière de réalisation de l'invention, le procédé comporte l'une ou plusieurs des caractéristiques suivantes : le plasma comprend un gaz plasmagène et que la température macroscopique dudit gaz plasmagène dans ledit plasma peut varier entre environ -200C et environ 6000C, de préférence entre -100C et environ 4000C et de préférence entre la température ambiante et environ 4000C; le procédé comprend en outre une étape d' activation de la surface du support en soumettant ladite surface dudit support au plasma atmosphérique ; l' activation de la surface du support et la nébulisation de la solution colloïdale sont concomitantes ; l' activation de la surface du support est précédée par une étape de nettoyage de ladite surface dudit support ; la nébulisation de la solution colloïdale de nanoparticules se fait dans la zone décharge ou dans la zone post-décharge du plasma atmosphérique ; le plasma est généré par une torche à plasma atmosphérique ; la nébulisation de la solution colloïdale de nanoparticules se fait dans une direction sensiblement parallèle à la surface du support ;
- les nanoparticules sont des nanoparticules d'un métal, d'un oxyde métallique, d'un alliage métallique ou de leur mélange ;
- les nanoparticules sont des nanoparticules d' au moins un métal de transition, de son oxyde correspondant, d'un alliage de métaux de transition ou de leur mélange ; - les nanoparticules sont choisies dans le groupe formé par le magnésium (Mg) , le strontium (Sr) , le titane (Ti) , le zirconium (Zr), le lanthane (La), le vanadium (V), le niobium (Nb) , le tantale (Ta) , le chrome (Cr) , le molybdène (Mo) , le tungstène (W) , le manganèse (Mn) , le rhénium (Re) , le fer (Fe), le ruthénium (Ru), l'osmium (Os), le cobalt
(Co), le rhodium (Rh), l'iridium (Ir), le nickel (Ni), le palladium (Pd), le platine (Pt), le cuivre (Cu), l'argent
(Ag), l'or (Au), le zinc (Zn), le cadmium (Cd), l'aluminium (Al), l'iridium (In), l'étain (Sn), le plomb (Pb), leurs oxydes correspondants, ou un alliage de ces métaux ;
- les nanoparticules sont choisies dans le groupe formé par le dioxyde de titane (titane (TiO2)), l'oxyde de cuivre (CuO), l'oxyde ferreux (FeO), l'oxyde ferrique (Fe2Û3) , l'oxyde de fer (Fe3θ4), le dioxyde d'iridium (IrO2), de dioxyde de zirconium (ZrO2), l'oxyde d'aluminium (AI2O3) ;
- les nanoparticules sont choisies dans le groupe formé par un alliage or/platine (AuPt) , platine/ruthénium (PtRu) , cadmium/soufre (CdS) , ou plomb/souffre (PbS) ;
- le support est un support solide, un gel ou un matériau nano-structuré ; le support est choisi parmi le groupe formé par un support carboné, des nanotubes de carbone, un métal, un alliage métallique, un oxyde métallique, une zéolite, un semi-conducteur, un polymère, du verre et/ou de la céramique ;
- le support est de la silice, du carbone, du titane, de l'alumine, ou des nanotubes de carbone multi-parois ; - le plasma atmosphérique est généré à partir d'un gaz plasmagène choisi parmi le groupe formé par l'argon, l'hélium, l'azote, l'hydrogène, l'oxygène, du dioxyde de carbone, de l'air ou leur mélange ; [0022] Dans une forme préférée de réalisation de la présente invention, la solution colloïdale comprend un surfactant .
[0023] On entend par « surfactant », « tensioactif » ou « agent de surface », un composé modifiant la tension superficielle entre deux surfaces. Les composés tensioactifs sont des molécules amphiphiles, c'est-à-dire qu'elles présentent deux parties de polarité différente, l'une lipophile et apolaire, et, l'autre, hydrophile et polaire. Ce type de molécules permet de stabiliser les colloïdes. Il existe des tensioactifs cationiques, anioniques, amphotères ou non ioniques. Un exemple de tel tensioactif est le citrate de sodium.
[0024] La présente invention divulgue par ailleurs l'utilisation d'une solution colloïdale de nanoparticules pour le dépôt de nanoparticules sur un support à l'aide d'un plasma atmosphérique.
[0025] Selon des formes particulières de réalisation, l'utilisation de la solution colloïdale de nanoparticule comporte l'une ou plusieurs des caractéristiques suivantes : la solution colloïdale est nébulisée dans la zone décharge ou post-décharge du plasma atmosphérique ; le plasma atmosphérique est généré par une torche à plasma atmosphérique. [0026] La présente invention décrit également l'utilisation d'un plasma atmosphérique pour le dépôt de nanoparticules sur un support, lesdites nanoparticules étant sous la forme d'une solution colloïdale de nanoparticules, et ladite solution colloïdale étant nébulisée à la surface dudit support dans la ledit plasma atmosphérique .
Brève description des figures [0027] La figure 1 représente la distribution en taille des particules d'or d'une solution colloïdale.
[0028] La figure 2 représente une image obtenue par microscopie électronique à transmission (MET) d'une solution colloïdale des particules d'or. [0029] La figure 3 représente schématiquement une torche à plasma atmosphérique.
[0030] La figure 4 représente des spectres de spectroscopie de photoélectrons X (XPS) de la surface du graphite HOPG après dépôt de nanoparticules d' or par plasma selon le procédé de la présente invention, (a) spectre global, (b) spectre déconvolué du niveau Au 4f, (c) spectre déconvolué du niveau 0 Is, (d) spectre déconvolué du niveau C Is.
[0031] La figure 5 représente des images de microscopie à force atomique (AFM) d'un échantillon de graphite HOPG a) avant, et b) après dépôt de nanoparticules d'or selon le procédé de la présente invention. [0032] La figure 6 représente des images de microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de graphite HOPG a) avant, b) et c) après dépôt de nanoparticules d'or selon le procédé de la présente invention, (a) grossissement x 2000, (b) grossissement x 25000, (c) grossissement x 80000. L'analyse par dispersion d'énergie (EDS) est collectée sur des nanoparticules.
[0033] La figure 7 représente la comparaison du spectre XPS expérimental du niveau Au 4f présenté en figure 4 (b) et du spectre modélisé en utilisant un modèle de croissance de type Volmer-Weber . [0034] La figure 8 représente un spectre de spectroscopie de photoélectrons X (XPS) de la surface du graphite HOPG après dépôt de nanoparticules d' or sans l'utilisation d'un plasma (comparatif) . [0035] La figure 9 représente une image de microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de graphite HOPG après le dépôt de nanoparticules d'or sans l'utilisation d'un plasma (comparatif) . [0036] La figure 10 représente une image (grossissement x 100000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon d'acier après dépôt de nanoparticules d' or selon le procédé de la présente invention . [0037] La figure 11 représente une image (grossissement x 3000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de verre après dépôt de nanoparticules d'or selon le procédé de la présente invention.
[0038] La figure 12 représente une image (grossissement x 50000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de polymère PVC après dépôt de nanoparticules d' or selon le procédé de la présente invention .
[0039] La figure 13 représente une image (grossissement x 10000) obtenue par microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de polymère HDPE après dépôt de nanoparticules d' or selon le procédé de la présente invention .
[0040] La figure 14 représente une image (grossissement x 10000) obtenue par microscopie électronique à haute résolution des électrons secondaires
(FEG-SEM) d'un échantillon d'acier après dépôt de nanoparticules d'or, en absence de plasma (comparatif) .
[0041] La figure 15 représente une image obtenue par microscopie électronique à transmission (TEM) d'un échantillon de nanotubes de carbones avant (a) et après dépôt de nanoparticules d' or selon le procédé de la présente invention (b) .
[0042] La figure 16 représente un spectre de spectroscopie de photoélectrons X (XPS) de la surface des nanotubes de carbones après dépôt de nanoparticules d'or selon le procédé de la présente invention.
[0043] La figure 17 représente une image obtenue par microscopie électronique à transmission (TEM) d'un échantillon de nanotubes de carbones après dépôt de nanoparticules de platine selon le procédé de la présente invention .
[0044] La figure 18 représente un spectre de spectroscopie de photoélectrons X (XPS) de la surface des nanotubes de carbones après dépôt de nanoparticules de platine selon le procédé de la présente invention.
[0045] La figure 19 représente une image
(grossissement x 120000) de microscopie électronique à haute résolution des électrons secondaires (FEG-SEM) d'un échantillon de graphite HOPG après le dépôt de nanoparticules de rhodium selon le procédé de la présente invention .
[0046] La figure 20 représente un spectre de spectroscopie de photoélectrons X (XPS) de la surface de graphite HOPG après dépôt de nanoparticules de rhodium selon le procédé de la présente invention.
[0047] La figure 21 représente une image (grossissement x 100000) de microscopie électronique des électrons secondaires (FEG-SEM) d'un échantillon d'acier après le dépôt de nanoparticules de platine selon le procédé de la présente invention.
[0048] La figure 22 représente une image (grossissement x 100000) de microscopie électronique des électrons secondaires (FEG-SEM) d'un échantillon de PVC après le dépôt de nanoparticules de rhodium selon le procédé de la présente invention.
[0049] La figure 23 représente une image (grossissement x 100000) de microscopie électronique des électrons secondaires (FEG-SEM) d'un échantillon de HDPE après le dépôt de nanoparticules de rhodium selon le procédé de la présente invention. Description détaillée de plusieurs formes d/ exécution de 1 ' invention
[0050] Le procédé de dépôt de nanoparticules selon l'invention fait intervenir une solution, ou suspension, colloïdale de nanoparticules qui est déposée sur un support quelconque à l'aide d'un plasma atmosphérique, ledit plasma atmosphérique pouvant être généré par tout dispositif adéquat faisant usage d'un plasma atmosphérique. [0051] Ce procédé présente de nombreux avantages. Par exemple, il permet d'effectuer un dépôt dit «propre», c'est-à-dire sans utilisation de solvants dits «polluant». Avantageusement, le dépôt de nanoparticules selon l'invention ne fait appel qu'à une faible consommation d'énergie. De manière surprenante, le dépôt de nanoparticules est rapide car l'activation du support et la nébulisation des nanoparticules, éventuellement également le nettoyage préalable du support, sont réalisés dans le plasma atmosphérique, ou dans le flux du plasma atmosphérique, en une seule étape ou un seul processus continu.
[0052] De manière surprenante, le procédé selon l'invention permet une forte adhésion des nanoparticules au support. Cette technique permet de contrôler les propriétés de l'interface et d'ajuster le dépôt des nanoparticules sur le support. De plus, ce procédé ne requiert pas d'installations onéreuses et il est facilement mis en œuvre industriellement .
[0053] La solution colloïdale de nanoparticules peut être préparée par toute technique et/ou tout moyen adéquat. [0054] Dans le procédé selon l'invention, le support, sur lequel la solution colloïdale de nanoparticules est déposée, est tout matériau adéquat pouvant être recouvert de nanoparticules, tout matériau quel que soit sa nature et/ou sa forme. De préférence, il s'agit d'un support solide, d'un gel ou d'un matériau nano- structuré .
[0055] Dans le procédé selon l'invention, le plasma est tout plasma atmosphérique adéquat. Il s'agit d'un plasma généré à une pression comprise entre environ 1 mbar et environ 1200 mbar, de préférence entre 800 et 1200 mbar. De préférence, il s'agit d'un plasma atmosphérique dont la température macroscopique du gaz peut varier par exemple entre la température ambiante et environ 4000C. De préférence, le plasma est généré par une torche à plasma atmosphérique .
[0056] Un plasma atmosphérique ne fait pas appel au vide, ce qui permet d'être peu onéreux et d'un entretien facilité. Le plasma atmosphérique permet de nettoyer et d'activer la surface du support, soit en la fonctionnalisant, en créant par exemple des groupements oxygénés, azotés, soufrés, et/ou hydrogénés, soit en créant des défauts en surface, par exemple des lacunes, des marches, et/ou des piqûres. Ces groupements de surfaces peuvent par exemple comprendre des radicaux très réactifs et ayant une courte durée de vie.
[0057] Ces groupements réactifs à la surface du substrat peuvent alors réagir avec la surface des nanoparticules, ou, avec les surfactants présents à leurs surfaces. Les nanoparticules elles même peuvent être activées par le plasma, soit directement par formation de radicaux à partir de l'eau d'hydratation, soit par réactions avec un surfactant fixé à la surface de la nanoparticule . [0058] De préférence, dans le procédé selon l'invention, l'activation du support et la nébulisation de la solution colloïdale se font de manière concomitante, à savoir dans le plasma, ou dans le flux du plasma, généré par un dispositif faisant usage d'un plasma atmosphérique. Ainsi la nébulisation de la solution colloïdale se produit en même temps, ou bien immédiatement après, l'activation du support par le plasma atmosphérique.
[0059] La nébulisation de la solution colloïdale peut se faire soit dans la zone décharge ou dans la zone post décharge du plasma atmosphérique. De préférence, la nébulisation de la solution colloïdale se fait dans la zone post décharge du plasma car, dans certains cas, cela peut présenter des avantages supplémentaires. Cela peut permettre de ne pas contaminer le dispositif générant le plasma. Cela peut permettre de faciliter le traitement de supports polymériques, d'éviter la dégradation du support à recouvrir, et aussi, par exemple, ne pas causer la fusion, l'oxydation, la dégradation et/ou l'agrégation des nanoparticules .
[0060] La nébulisation de la solution colloïdale est toute nébulisation adéquate et peut se faire sous n' importe quelle direction (orientation) par rapport à la surface du support. De préférence, la nébulisation se fait dans une direction sensiblement parallèle au support, mais elle peut également se faire par exemple sous un angle d'environ 45°, ou par exemple sous un angle d'environ 75°par rapport à la surface du support à traiter. [0061] Exemple 1 : Des nanoparticules d' or ont été déposées sur du graphite pyrolytique hautement orienté (HOPG) , un support qui présente des propriétés chimiques similaires à celles des nanotubes de carbone multiparois (MWCNTs) . [0062] Le graphite pyrolytique hautement orienté (HOPG) est commercialement disponible (MikroMasch
Axesstech, France) . D'une qualité ZYB, ce graphite, d'une taille de 10 mm x 10 mm x 1 mm, présente un angle appelé « mosaic spread angle » de 0,8°±0,2° et une taille de « latéral grain » supérieur à 1 mm. Quelques couches de surface du graphite sont préalablement détachées à l'aide de ruban adhésif, avant que l'échantillon de graphite ne soit immergé dans une solution d'éthanol pendant 5 minutes, sous ultrasonication . [0063] La suspension colloïdale est préparée par exemple selon la méthode de réduction thermique du citrate comme décrite dans l'article de Turkevich et al. J. Faraday Discuss. Chem. Soc. (1951), 11 page 55, d'après la réaction suivante : 6 HAuCl4 + K3C6H5O7 + 5 H2O → 6 Au + 6 CO2 + 21 HCl + 3 KCl, dans laquelle le citrate agissant comme réducteur et comme stabilisant. Classiquement, une solution d'or est préparée en additionnant 95 mL d'une solution aqueuse à 134 mM d'acide tetrachloroaurique (HAuCl4, 3H2O, Merck) et 5 mL d'une solution aqueuse à 34 mM de citrate trisodique
(C6H8O7Na3, 2H2O, Merck) avec 900 mL d'eau distillée. La solution ainsi obtenue est alors portée à ébullition pendant 15 minutes. D'une couleur jaune pâle, la solution d'or passe alors à une couleur rouge en l'espace d'une à trois minutes.
[0064] Cette méthode de réduction thermique du citrate permet d'obtenir une dispersion stable de particules d'or, dont la concentration en or est de 134mM, et dont les particules ont un diamètre moyen d'environ 10 nm et environ 10 % de polydispersité (Figure 1) .
[0065] Le dépôt de la suspension colloïdale d'or sur le graphite pyrolytique hautement orienté s'effectue à l'aide d'une source plasma AtomfloTM-250 (Surfx Technologies LLC) . Comme décrit à la figure 3, le diffuseur de la torche à plasma comprend deux électrodes perforées en aluminium, de 33 mm de diamètre, et séparées par un espace de 1,6 mm de large. Dans cet exemple précis, le diffuseur est placé à l'intérieur d'une chambre hermétique, sous atmosphère d'argon, à température ambiante. L'électrode supérieure 1 de la source plasma est connectée à un générateur de radiofréquence, par exemple de 13,56MHz, alors que l'électrode inférieure 2 est mise à la terre. [0066] La torche à plasma fonctionne à 80 W et le plasma 3 est formé en alimentant la torche en amont des électrodes avec de l'argon 4 à un débit de 30 L/min. L'espace entre l'échantillon 5 de graphite HOPG reposant sur un porte échantillon 7 et l'électrode inférieure 2 est de 6 ± 1 mm. Cet espace est sous pression atmosphérique.
[0067] Avant le dépôt des nanoparticules, le support graphite est soumis au flux de plasma de la torche à plasma, pendant par exemple environ 2 minutes, ce qui permet de nettoyer et d'activer le support. 3 à 5 ml de suspension colloïdale, est nébulisée, dans la zone postdécharge de la torche à plasma et dans une direction 6 sensiblement parallèlement à l'échantillon (Figure 3) . La suspension colloïdale est injectée pendant environ 5 minutes, par pulsations périodiques d'environ une seconde, espacées d'environ 15 secondes. Les échantillons 5 sont ensuite lavés dans une solution d'éthanol sous ultrasonication pendant environ 5 minutes.
[0068] Une analyse par spectroscopie de photoélectrons X (XPS) de la surface du graphite HOPG recouvert de nanoparticules a été réalisée sur un appareil ThermoVG Microlab 350, avec une chambre analytique à une pression de 10~9 mbar et une source de rayons-X Al Ka (hγ =1486.6 eV) fonctionnant à 300 W. Les spectres ont été mesurés avec un angle d'enregistrement de 90° et ont été enregistrés avec une énergie de passage dans l'analyseur de 100 eV et une taille de faisceau de rayons-X de 2 mm x 5 mm. La détermination de l'état chimique a été faite, quant à elle, avec une énergie de passage dans l'analyseur de 20 eV. Les effets de charge sur les positions de l'énergie de liaison mesurées ont été corrigés en fixant l'énergie de liaison de l'enveloppe spectrale du carbone, C(Is), à 284,6 eV, une valeur généralement admise pour une contamination accidentelle de la surface du carbone. Les spectres du carbone, de l'oxygène et de l'or ont été déconvolués en utilisant un modèle de ligne de base de Shirley et un modèle Gaussien-Lorentzien . [0069] Les spectres XPS de la surface du graphite HOPG recouvert de nanoparticules sont représentés à la figure 4. La figure 4 a) montre la présence de carbone à un pourcentage de 77,8%, d'oxygène à un pourcentage de 14,9%, de potassium à un pourcentage de 3,2% et d'or à un pourcentage de 1,0%. Des traces de silice ont été également détectées ; il s'agit d'impuretés incorporées aux échantillons de graphite HOPG. Cette analyse indique une forte adhésion de l'or sur le graphite HOPG bien que les échantillons aient été lavés dans une solution d'éthanol sous ultrasonication . Il est à noter qu'avec ou sans l'étape de nettoyage à l'éthanol par ultrasons, la quantité d'or déposée sur le graphite HOPG est similaire. [0070] Le spectre de l'or, Au(4f) (Figure 4 b), a été déconvolué par rapport aux doublets spin-orbite Au4f5/2- Au4f7/2 avec un rapport d'intensité fixe de 0,75:1 et avec une énergie de séparation de 3,7 eV. La composante unique Au4f7/2 est localisée à 83,7 eV, ce qui permet de l'attribuer sans ambiguité à de l'or métallique. Cela signifie que les amas d'or n'ont pas été significativement oxydés durant le traitement avec le plasma. [0071] Le spectre du carbone, C(Is), représenté à la Figure 4 d) comprend un pic principal à 283,7 eV qui est attribué à une liaison carbone-carbone (sp2) . Les pics localisés à 284,6 eV, 285,8 eV et 288,6 eV peuvent être attribués respectivement aux liaisons C-C (sp3) , C-O, et O- C=O. La présence de liaisons C-O et 0-C=O observées provient probablement, soit de la brève exposition des échantillons à l'oxygène ambiant durant leur manipulation, soit de la présence d'une faible quantité d'oxygène durant le traitement plasma comme le suggère la caractérisation post-décharge par spectrométrie optique d'émission (données non représentées) . Cette explication est en accord avec le spectre de l'oxygène, 0(ls), qui montre la présence de liaisons 0-C (533,5 eV) et O=C (531,9 eV) . [0072] La morphologie de la surface du graphite HOPG recouvert de nanoparticules a été étudiée en réalisant des images de microscopie à force atomique (AFM) enregistrées à l'aide d'un appareil PicoSPM® LE avec un contrôleur Nanoscope IHa (Digital Instruments, Veeco) fonctionnant dans les conditions du milieu ambiant. Le microscope est équipé d'un analyseur de 25 μm et fonctionne en mode contact. Le cantilever utilisé est une sonde silice basse fréquence NC-AFM Pointprobe® de Nanosensors (Wetzlar- Blankenfeld, Germany) ayant une extrémité pyramidale intégrée avec un rayon de courbure de 110 nm. La constante de ressort du cantilever se situe entre 30 et 70 N m"1 et sa mesure de fréquence de résonnance libre est de 163,1 kHz. Les images ont été enregistrées à des fréquences de balayage de 0,5 à 1 ligne par seconde. [0073] Les images de microscopie à force atomique
(lμm x lμm) avant et après le dépôt des nanoparticules par traitement plasma sont représentées en figure 5. Comme le montre la figure 5 b), le graphite est recouvert d'amas, ou d'ilôts, d'or qui sont soit isolés, et qui ont un diamètre supérieur à 0,01μm (10 nm) , soit ramifiés. Ces îlots sont dispersés de façon homogène avec un taux de recouvrement d' environ 12% .
[0074] Afin de confirmer la nature des ilôts et afin d'en obtenir des images à fort grossissement, des images de microscopie électronique à balayage couplée à un spectromètre rayons-X à dispersion d'énergie (EDS) ont été réalisées grâce à un appareil JEOL JSM-7000F équipé d'un spectromètre (EDS, JED-2300F) . Cet instrument, en fonctionnant à une tension d'accélération de 15kV et avec un grossissement de 80000 fois, permet non seulement d'analyser la morphologie des structures de surface, qui peuvent être ainsi observées avec un contraste optimal, mais aussi de déterminer la distribution de la taille des ilôts. L'analyse par spectrométrie rayons-X à dispersion d'énergie (EDS) permet, quant à elle, d'appréhender leur composition chimique.
[0075] Avant leur analyse, les échantillons de graphite sont préalablement déposés sur une bande de cuivre d'un porte échantillon avant d'être introduits dans la chambre d'analyse sous une pression d'environ 10~8 mbar. [0076] Comme le montre la figure 6a, à l'état initial, plusieurs marches sont observables à un grossissement de 20000 fois. De plus, comme le montre la figure 6 b) de nombreux amas, représentés par des points brillants, et ayant une distribution homogène, sont présents à la surface du graphite après le dépôt de nanoparticules selon le procédé de l'invention. A un grossissement plus important (80000 fois, Figure 6c)) il est facile d'apercevoir des agrégats et des nanoparticules isolées d'un diamètre d'environ 10 nm. Une analyse par spectrométrie rayons-X à dispersion d'énergie (Figure 6 d) ) confirme que les points brillants sont des nanoparticules d'or. Il est également important de noter que les agrégats sont organisés en paquet de grappes de nanoparticules d'or qui ont le même diamètre de particule que celles de la suspension colloïdale initiale (Figure 1) .
[0077] La morphologie du dépôt, à une résolution de profondeur de l'ordre du nanomètre, a également été quantifiée par l'analyse du signal du pic Au 4f (Figure 7), une méthode proposée par Tougaard et collaborateurs dans un article de J. Vac . Sci . Technol (1996) 14 page 1415. [0078] Le tableau 1 résume les caractéristiques de la structure des ilôts d'or sur le graphite HOPG résultant de l'analyse de trois spectres Au4f par le logiciel QUASES- Tougaard, qui s'expriment en taux de recouvrement (t = épaisseur de la couche de C de contamination) et hauteur des ilôts d'or (h) . Le mode de croissance est de type Volmer-Weber (structure 3D en ilôts) Tableau 1 :
Figure imgf000022_0001
[0079] De façon surprenante, la hauteur des ilôts d'or (h) varie entre 9,2 et 10,6 nm, des valeurs sensiblement identiques au diamètre moyen des nanoparticules de la suspension colloïdale (Figure 1) . De plus, il apparaît qu'environ 12 % de la surface du support est recouvert avec des ilôts d'or d'environ lOnm. Il convient de noter qu'un pourcentage de couverture en or d'environ 10% est en accord avec le taux de recouvrement déterminé par microscopie à force atomique et par microscopie électronique à balayage. Ainsi, l'analyse de la courbe spectrale Au 4f par le logiciel QUASES met en évidence une bonne corrélation entre données expérimentales et théoriques.
[0080] Exemple 2 (comparatif) :
Un dépôt de nanoparticules d' or sur HOPG selon le procédé de l'exemple 1 est effectué, à l'exception de l'étape de dépôt de nanoparticule qui s'effectue sans l'utilisation d'un plasma atmosphérique (Figures 8 et 9) . Après le dépôt des nanoparticules et avant analyse, les échantillons obtenus sont lavés à l'éthanol pendant environ 5 minutes aux ultrasons.
[0081] Comme le montre la figure 8, comparée à la figure 4a, le spectre XPS de l'échantillon obtenu après la nébulisation de la solution colloïdale d'or sans l'utilisation d'un plasma atmosphérique, démontre la présence de carbone et d'oxygène, et l'absence d'or ; ce qui est confirmé par l'image de microscopie à force atomique (AFM) de l'échantillon en question (figure 9 comparée aux figures 5b ou 6b) . [0082] Exemple 3 (comparatif) : Un dépôt de nanoparticules d'or sur de l'acier selon le procédé de l'exemple 1 est effectué, à l'exception de l'étape de dépôt de nanoparticule qui s'effectue sans l'utilisation d'un plasma atmosphérique. Après le dépôt des nanoparticules et avant analyse, les échantillons obtenus sont lavés à l'éthanol pendant environ 5 minutes aux ultrasons. On remarque à la figure 14 l'absence de nanoparticules à la surface de l'acier.
[0083] Dans les exemples qui suivent, le procédé utilisé est celui décrit à l'exemple 1, seul les supports (substrats) utilisés et la nature des solutions colloïdales sont différents. [0084] Exemple 4 :
Des nanoparticules d' or ont été déposées sur un support en acier selon la méthode décrite à l'exemple 1, avec nettoyage aux ultrasons. On remarque à la figure 10 la présence de nanoparticules. [0085] Exemple 5 :
Des nanoparticules d' or ont été déposées sur un support en verre selon le procédé décrit à l'exemple 1. On remarque à la figure 11 la présence de nanoparticules après nettoyage aux ultrasons.
[0086] Exemple 6 :
Des nanoparticules d' or ont été déposées sur un support en PVC selon le procédé décrit à l'exemple 1, avec nettoyage aux ultrasons. L'image de microscopie de la figure 12 a été obtenue après avoir recouvert l'échantillon d'une couche métallique. On remarque à la figure 12 la présence de nanoparticules . [0087] Exemple 7 :
Des nanoparticules d' or ont été déposées sur un support en HDPE (Figure 13) selon le procédé décrit à l'exemple 1, avec nettoyage aux ultrasons. L'image de microscopie de la figure 13 a été obtenue après avoir recouvert l'échantillon d'une couche métallique. On remarque à la figure 13 la présence de nanoparticules. [0088] Exemple 8 :
Des nanoparticules d' or ont été déposées sur un support en nanotubes de carbone selon le procédé décrit à l'exemple 1, avec nettoyage aux ultrasons. On remarque à la figure 15 la présence de nanoparticules sphériques d'environs lOnm après nettoyage aux ultrasons. Cette présence d'or est confirmée par le spectre XPS à la figure 16. [0089] Dans les exemples qui suivent, des solutions colloïdales de platine et de rhodium fournies par G. A. Somorjai (Department of Chemistry, University of California, Berkeley (USA) ) ont été utilisées (R. M. Rioux, H. Song, J. D. Hoefelmeyer, P. Yang and G. A. Somorjai, J. Phys. Chem. B 2005, 109, 2192-2202 ; Yuan Wang, Jiawen Ren, Kai Deng, Linlin Gui, and Youqi Tang, Chem. Mater. 2000, 12, 1622-1627.) . [0090] Exemple 9 :
Des nanoparticules de platine ont été déposées sur un support en nanotubes de carbone selon le procédé décrit à l'exemple 1. On remarque à la figure 17 la présence de nanoparticules sphériques d'environs lOnm. Cette présence de platine est confirmée par le spectre XPS à la figure 18. [0091] Exemple 10 : Des nanoparticules de rhodium ont été déposées sur un support carbone HOPG selon le procédé décrit à l'exemple 1. On remarque à la figure 19 la présence de nanoparticules sphériques d'environs lOnm après nettoyage aux ultrasons. Cette présence de rhodium est confirmée par le spectre XPS à la figure 20.
[0092] Exemple 11 :
Des nanoparticules de rhodium ont été déposées sur un support en PVC selon le procédé décrit à l'exemple 1, avec nettoyage aux ultrasons. L'image de microscopie de la figure 22 a été obtenue après avoir recouvert l'échantillon d'une couche métallique. On remarque à la figure 22 la présence de nanoparticules. [0093] Exemple 12 : Des nanoparticules d' or ont été déposées sur un support en HDPE selon le procédé décrit à l'exemple 1, avec nettoyage aux ultrasons. L'image de microscopie de la figure 23 et a été obtenue après avoir recouvert 1 échantillon d'une couche métallique. On remarque à la figure 23 la présence de nanoparticules.

Claims

REVENDICATIONS
1. Un procédé de dépôt de nanoparticules sur un support comprenant les étapes suivantes : - prendre une solution ou une suspension colloïdale de nanoparticules, et
- nébuliser ladite solution ou une suspension colloïdale de nanoparticules sur une surface dudit support dans un plasma atmosphérique .
2. Le procédé selon la revendication 1, dans lequel le plasma atmosphérique est un plasma non-thermique atmosphérique .
3. Le procédé selon la revendication 2, dans lequel le plasma comprend un gaz plasmagène et que la température macroscopique dudit gaz plasmagène dans ledit plasma peut varier entre -200C et 6000C.
4. Le procédé selon la revendication l'une quelconque des revendications précédentes comprenant en outre une étape d' activation de la surface du support en soumettant ladite surface dudit support au plasma atmosphérique .
5. Le procédé selon la revendication 4, dans lequel l' activation de la surface du support et la nébulisation de la solution ou de la suspension colloïdale sont concomitantes.
6. Le procédé selon l'une quelconque des revendications 4 ou 5, dans lequel l' activation de la surface du support est précédée par un nettoyage de ladite surface dudit support.
7. Le procédé selon l'une quelconque des revendications précédentes, dans lequel l'étape de nébulisation de la solution ou suspension colloïdale de nanoparticules se fait dans la zone décharge ou dans la zone post-décharge du plasma atmosphérique.
8. Le procédé selon l'une quelconque des revendications précédentes, dans lequel le plasma est généré par une torche à plasma atmosphérique.
9. Le procédé selon l'une quelconque des revendications précédentes dans lequel la nébulisation de la solution ou suspension colloïdale de nanoparticules se fait dans une direction sensiblement parallèle à la surface du support.
10. Le procédé selon l'une quelconque des revendications précédentes, dans lequel les nanoparticules sont des nanoparticules d'un métal, d'un oxyde métallique d'un alliage métallique ou leur mélange.
11. Le procédé selon l'une quelconque des revendications précédentes, dans lequel les nanoparticules sont des nanoparticules d'au moins un métal de transition, de son oxyde correspondant, d'un alliage de métaux de transition ou leur mélange.
12. Le procédé selon l'une quelconque des revendications précédentes, dans lequel le support est un support solide, un gel ou un matériau nano-structuré .
13. Le procédé selon l'une quelconque des revendications précédentes, dans lequel le support est choisi parmi le groupe formé par un support carboné, des nanotubes de carbone, un métal, un alliage métallique, un oxyde métallique, une zéolite, un semi-conducteur, un polymère, du verre et/ou de la céramique.
14. Le procédé selon l'une quelconque des revendications précédentes, dans lequel le plasma atmosphérique est généré à partir d'un gaz plasmagène choisi parmi le groupe formé par l'argon, l'hélium, l'azote, l'hydrogène, l'oxygène, du dioxyde de carbone, de l'air ou leur mélange.
PCT/EP2008/060676 2007-08-14 2008-08-14 Procédé de dépôt de nanoparticules sur un support WO2009021988A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08787216.4A EP2179071B1 (fr) 2007-08-14 2008-08-14 Procédé de dépôt de nanoparticules sur un support
US12/673,437 US20120003397A1 (en) 2007-08-14 2008-08-14 Method for depositing nanoparticles on a support
JP2010520582A JP2010535624A (ja) 2007-08-14 2008-08-14 支持体上にナノ粒子を付着するための方法
CA2696081A CA2696081A1 (fr) 2007-08-14 2008-08-14 Procede de depot de nanoparticules sur un support
CN200880111576A CN101821421A (zh) 2007-08-14 2008-08-14 在载体上沉积纳米微粒的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07114344 2007-08-14
EP07114344.0 2007-08-14
EP08151463A EP2093305A1 (fr) 2008-02-14 2008-02-14 Procédé de dépôt de nanoparticules sur un support
EP08151463.0 2008-02-14

Publications (1)

Publication Number Publication Date
WO2009021988A1 true WO2009021988A1 (fr) 2009-02-19

Family

ID=39800555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/060676 WO2009021988A1 (fr) 2007-08-14 2008-08-14 Procédé de dépôt de nanoparticules sur un support

Country Status (7)

Country Link
US (1) US20120003397A1 (fr)
EP (1) EP2179071B1 (fr)
JP (1) JP2010535624A (fr)
KR (1) KR20100072184A (fr)
CN (1) CN101821421A (fr)
CA (1) CA2696081A1 (fr)
WO (1) WO2009021988A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840852A (zh) * 2010-04-02 2010-09-22 中国科学院半导体研究所 在图形化的半导体衬底上制作有序半导体纳米结构的方法
WO2011020851A1 (fr) * 2009-08-18 2011-02-24 Siemens Aktiengesellschaft Revêtements remplis de particules, procédé de production et utilisations
WO2012028695A3 (fr) * 2010-09-01 2013-03-28 Facultes Universitaires Notre-Dame De La Paix Procédé de dépôt de nanoparticules sur des substrats
WO2016099013A1 (fr) * 2014-12-19 2016-06-23 (주)바이오니아 Membrane nanoporeuse de nanostructure de carbone couplée à un liant et son procédé de fabrication

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983224B1 (ko) * 2008-04-10 2010-09-20 김선휘 흑연의 미세입자 및 흑연 콜로이드 제조방법
KR101127121B1 (ko) * 2009-06-12 2012-03-20 한국과학기술원 공기 분사를 이용하여 목표 기판에 금속 나노입자층을 형성시키는 방법
CN102258921A (zh) * 2011-05-27 2011-11-30 安徽南风环境工程技术有限公司 一种油烟吸附过滤网及其制备方法
EP2736837B1 (fr) * 2011-07-26 2021-09-29 OneD Material, Inc. Procédé pour produire des nanofils de silicium
US9963345B2 (en) * 2013-03-15 2018-05-08 The United States Of America As Represented By The Administrator Of Nasa Nanoparticle hybrid composites by RF plasma spray deposition
WO2015016638A1 (fr) * 2013-08-01 2015-02-05 주식회사 엘지화학 Procédé pour produire un complexe de nanoparticules de métal-porteur carbone et complexe de nanoparticules de métal-porteur carbone produit au moyen du procédé
EP2937890B1 (fr) * 2014-04-22 2020-06-03 Europlasma nv Appareil de revêtement au plasma avec un diffuseur de plasma et procédé prévenant la décoloration d'un substrat
CN104711568B (zh) * 2015-02-27 2017-11-14 南京邮电大学 一种在金属丝上包裹碳纳米材料的制备方法及其装置
US20180248199A1 (en) * 2015-08-27 2018-08-30 Osaka University Method for manufacturing metal nanoparticles, method for manufacturing metal nanoparticle-loaded carrier, and metal nanoparticle-loaded carrier
CN105369180A (zh) * 2015-12-02 2016-03-02 广州有色金属研究院 一种致密氧离子-电子混合导体氧化物涂层的制备方法
ES2913682T3 (es) 2016-07-15 2022-06-03 Oned Mat Inc Procedimiento de fabricación para la fabricación de nanocables de silicio en polvos a base de carbono para su uso en baterías
KR101957234B1 (ko) * 2017-03-10 2019-06-19 경북대학교 산학협력단 플라즈마 발생장치
MX2021004744A (es) * 2018-10-24 2021-08-24 Atmospheric Plasma Solutions Inc Fuente de plasma y método para preparar y recubrir superficies usando ondas de presión de plasma atmosférico.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035496A2 (fr) * 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article a structure nano-proportionnee et procede de fabrication associe
US20050031876A1 (en) * 2003-07-18 2005-02-10 Songwei Lu Nanostructured coatings and related methods
FR2877015A1 (fr) * 2004-10-21 2006-04-28 Commissariat Energie Atomique Revetement nanostructure et procede de revetement.
DE102006005775A1 (de) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermisches Spritzverfahren mit kolloidaler Suspension

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141017B2 (fr) * 1972-12-26 1976-11-08
JPH0941251A (ja) * 1995-07-28 1997-02-10 Kyodo Kumiai Zou Shudan 撥水布に合成樹脂立体模様の形成付着方法
JP3511128B2 (ja) * 1998-03-02 2004-03-29 日立造船株式会社 金属微粒子の製造方法および同微粒子の多孔質担体への担持方法
JP3256741B2 (ja) * 1998-07-24 2002-02-12 独立行政法人産業技術総合研究所 超微粒子成膜法
JP2002237480A (ja) * 2000-07-28 2002-08-23 Sekisui Chem Co Ltd 放電プラズマ処理方法
JP2002121024A (ja) * 2000-10-12 2002-04-23 Seiko Epson Corp 酸化チタン膜の製造方法、酸化チタン膜および太陽電池
JP2003007497A (ja) * 2001-06-19 2003-01-10 Pearl Kogyo Kk 大気圧プラズマ処理装置
DE10211701A1 (de) * 2002-03-16 2003-09-25 Studiengesellschaft Kohle Mbh Verfahren zur in situ Immobilisierung von wasserlöslichen nanodispergierten Metalloxid-Kolloiden
GB0208263D0 (en) * 2002-04-10 2002-05-22 Dow Corning Protective coating composition
JP2006515708A (ja) * 2003-01-31 2006-06-01 ダウ・コーニング・アイルランド・リミテッド プラズマ発生アセンブリ
JP2004356558A (ja) * 2003-05-30 2004-12-16 Toshio Goto コーティング装置およびコーティング方法
CH696811A5 (de) * 2003-09-26 2007-12-14 Michael Dvorak Dr Ing Dipl Phy Verfahren zur Beschichtung einer Substratoberfläche unter Verwendung eines Plasmastrahles.
JP2005163117A (ja) * 2003-12-03 2005-06-23 Ainobekkusu Kk 金属コロイドの製造方法及びこの方法によって製造された金属コロイド
JP4177244B2 (ja) * 2003-12-15 2008-11-05 日信工業株式会社 多孔質複合金属材料の製造方法
JP4300105B2 (ja) * 2003-12-19 2009-07-22 株式会社コーセー 抗酸化剤
WO2006048650A1 (fr) * 2004-11-05 2006-05-11 Dow Corning Ireland Limited Systeme a plasma

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035496A2 (fr) * 2002-07-19 2004-04-29 Ppg Industries Ohio, Inc. Article a structure nano-proportionnee et procede de fabrication associe
US20050031876A1 (en) * 2003-07-18 2005-02-10 Songwei Lu Nanostructured coatings and related methods
FR2877015A1 (fr) * 2004-10-21 2006-04-28 Commissariat Energie Atomique Revetement nanostructure et procede de revetement.
DE102006005775A1 (de) * 2006-02-07 2007-08-09 Forschungszentrum Jülich GmbH Thermisches Spritzverfahren mit kolloidaler Suspension

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DE-QUANG Y. , EDWARD SACHER: "PLATINUM NANOPARTICLE INTERACTION WITH CHEMICALLY MODIFIED HIGHLY ORIENTED PYROLITC GRAPHITE SURFACES", CHEMISTRY OF MATERIALS, vol. 18, no. 7, 2006, XP002504556 *
XIANGHUI H. , KWANG-LEONG C.: "PROCESSING AND APPLICATIONS OF AEROSOL ASSISTED CHEMICAL VAPOR DEPOSITION", CHEMICAL VAPOR DEPOSITION, vol. 12, 1 December 2006 (2006-12-01), pages 583 - 596, XP002504382 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020851A1 (fr) * 2009-08-18 2011-02-24 Siemens Aktiengesellschaft Revêtements remplis de particules, procédé de production et utilisations
CN101840852A (zh) * 2010-04-02 2010-09-22 中国科学院半导体研究所 在图形化的半导体衬底上制作有序半导体纳米结构的方法
WO2012028695A3 (fr) * 2010-09-01 2013-03-28 Facultes Universitaires Notre-Dame De La Paix Procédé de dépôt de nanoparticules sur des substrats
WO2016099013A1 (fr) * 2014-12-19 2016-06-23 (주)바이오니아 Membrane nanoporeuse de nanostructure de carbone couplée à un liant et son procédé de fabrication

Also Published As

Publication number Publication date
US20120003397A1 (en) 2012-01-05
KR20100072184A (ko) 2010-06-30
CN101821421A (zh) 2010-09-01
JP2010535624A (ja) 2010-11-25
EP2179071A1 (fr) 2010-04-28
EP2179071B1 (fr) 2016-04-13
CA2696081A1 (fr) 2009-02-19

Similar Documents

Publication Publication Date Title
EP2179071B1 (fr) Procédé de dépôt de nanoparticules sur un support
CN107313046B (zh) 一种sers基底及其制备方法
Achour et al. Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films
Luo et al. Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol electrooxidation
US20040129570A1 (en) Method of forming a nano-supported catalyst on a substrate for nanotube growth
Dudin et al. Electro-oxidation of hydrazine at gold nanoparticle functionalised single walled carbon nanotube network ultramicroelectrodes
Ahmad et al. Self-assembly and wetting properties of gold nanorod–CTAB molecules on HOPG
Zhu et al. Two-dimensional surface enhanced Raman mapping of differently prepared gold substrates with an azobenzene self-assembled monolayer
EP3180810B1 (fr) Procédé de synthèse de nanocomposites à base de tio2 et de nanostructures carbonées
Chen et al. Sonochemical and mechanical stirring synthesis of liquid metal nanograss structures for low‐cost SERS substrates
EP2396447A1 (fr) Procede de traitement par un faisceau d'ions d'une couche metallique deposee sur un substrat
Kobiela et al. The influence of gas phase composition on the process of Au–Hg amalgam formation
EP2093305A1 (fr) Procédé de dépôt de nanoparticules sur un support
EP2850223B1 (fr) Procede de fabrication d'un materiau composite
Rao et al. Reversal and control the tip-enhanced Raman scattering efficiency of rough plasmonic probes fabricated using UV-ozone and hydrazine
Tabet-Aoul et al. Rhodium thin film-carbon nanotube nanostructures: Synthesis, characterization and electron transfer properties
Kordás et al. Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates
US20190217382A1 (en) Methods for synthesizing silver nanowires
Yoshida et al. The patterned Au oxide layer formation on Au surfaces by F2 laser irradiation under the atmospheric conditions
Xu et al. Detection of layer‐by‐layer self‐assembly multilayer films by low‐temperature plasma mass spectrometry
Gatin et al. Effect of the electric potential on the interaction of gold nanoparticles deposited on a graphite substrate with molecular hydrogen
FR2918214A1 (fr) Dispersion de materiaux composites, notamment pour des piles a combustible
Bao et al. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy
Lkhamsuren et al. Fabrication of mechanically stable Au-coatings on probes of atomic force microscopes for nano-mechanical and-optical measurements
Chen et al. Large-scale Uniformly Hybrid Micro-nano Structure Wetting Solid Substrate for Surface-enhanced Raman Spectroscopy

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880111576.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787216

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2696081

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010520582

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008787216

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107005411

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12673437

Country of ref document: US