WO2009016197A2 - Means of fixing a bearing - Google Patents

Means of fixing a bearing Download PDF

Info

Publication number
WO2009016197A2
WO2009016197A2 PCT/EP2008/059981 EP2008059981W WO2009016197A2 WO 2009016197 A2 WO2009016197 A2 WO 2009016197A2 EP 2008059981 W EP2008059981 W EP 2008059981W WO 2009016197 A2 WO2009016197 A2 WO 2009016197A2
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
shaft
inner ring
ring
fixation
Prior art date
Application number
PCT/EP2008/059981
Other languages
German (de)
French (fr)
Other versions
WO2009016197A3 (en
Inventor
Jörg Müller
Thomas Then
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2009016197A2 publication Critical patent/WO2009016197A2/en
Publication of WO2009016197A3 publication Critical patent/WO2009016197A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • F16C2226/16Force connections, e.g. clamping by wedge action, e.g. by tapered or conical parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators

Definitions

  • the invention relates to a device for fixing a bearing on a shaft, in particular on a shaft of an electric motor with a brake acting in the axial direction.
  • bearing in the art refers to the functional connection of machine parts. Bearings can transfer or direct forces and / or movements. Bearing for rotating parts, as e.g. occur in rotary electric motors, can be distinguished by the way in which direction the force acting on the rotating part is transmitted to the shaft. It must be recorded both the weight forces in the normal case (horizontal installation), the radial forces, and the axial forces. In a radial bearing, the force absorbed by the bearing acts perpendicular to the axis of rotation. Thrust bearings absorb forces in the direction of the shaft axis, thus axial forces.
  • the non-locating bearing is suitable only for a force perpendicular to the bearing points and thus perpendicular to the axis of rotation, thus allowing a certain longitudinal displaceability.
  • the fixed bearing also absorbs forces in the axial direction, so that the component, for example a brake disk of an electric motor, can not move laterally out of the bearings in an uncontrolled manner.
  • circlips are used in a variety of forms for the axial fixation of the bearing.
  • a certain play of this securing ring in a groove provided in the shaft is indispensable for the assembly, so that here too a slight displacement of the bearing can occur under axial impact load.
  • the object of the invention is to provide a suitable device for fixing a bearing, which ensures a fixed position of the bearing even in the event of an axial shock load, in particular during a braking operation.
  • a device for fixing a bearing on a shaft in particular a shaft of an electric motor with acting in the axial direction brake, wherein the inner ring of the bearing is held by at least two interacting ring elements and thereby forms a fixed bearing.
  • the force flow is now deflected from the axial direction in a radial direction.
  • the two ring elements facing each other have conical lateral surfaces, which deflects in the event of an axial force, for example due to a shock load in a braking process by the inclined surface of the cone of the outer ring of the bearing fixation in a force component perpendicular to the axis of rotation of the electric motor becomes.
  • This in turn ensures an increased contact pressure of the nenrings the bearing fixation on the shaft and thus leads to a sufficient axial bearing mounting.
  • This increased friction force counteracts the axially acting force and thus ensures that the bearing does not move axially.
  • This axially acting frictional component is in proportion to the axial force, i.
  • angles of inclination of the two ring elements i. the outer ring of the bearing fixing and the inner ring of the bearing fixation of the same design. This ensures production as well as power diversion in a simple manner.
  • FIG. 1 shows a shaft 1 with an axially stepped course, which is formed by different radii R 1 to R 4 of the shaft 1.
  • the transition between the radius R3 and radius R4 is formed by a stop 2, on which the inner ring 8 of a bearing 3 is pressed.
  • the bearing 3 also has an outer ring 7 which is positioned in a bearing shield, not shown.
  • the inner ring 8 of the bearing 3 is slightly above the transition between radius R2 and radius R3 (about 10 to 20% of the axial extent of the inner ring 8 of the bearing 3), so that the assembly of the device for fixing of the bearing 3 is facilitated.
  • the bearing 3 is now fixed by the fact that the outer ring 4 of the bearing fixation and the inner ring 5 of the bearing fixation cooperate.
  • the inner ring 5 is shrunk onto the shaft section with radius R2, wherein now under axial load, for example an axial impact load by a braking operation, the force component F a due to the cooperating conical lateral surfaces 6 in a radial force component F r is deflected perpendicular to the axis of rotation.
  • the additional force component F r acts. This now occurs between the outer ring 4 and the inner ring. 5 the bearing fixation a self-locking, which thus completely prevents an axial displacement of the inner ring 8 of the bearing 3.
  • a shaft section with radius Rl is advantageously still provided, which in turn is smaller than the shaft section R2, so that the AufschrumpfVorgang the inner ring 5 is simplified.
  • angles of the conical lateral surfaces are the same, in particular as an angle of inclination ⁇ between a parallel to the axis of rotation 9, which is denoted by 10 and an extension of the lateral surfaces 6 representing straight 11th
  • the two conical lateral surfaces 6 need not necessarily have the same angle ⁇ formed, they can also be designed differently, it is to be decided that occurs under axial load of the outer ring 4 via the inner ring 5, a self-locking.
  • the designed as ring elements inner ring 5 and outer ring 4 of the bearing fixation are thus cone-shaped, wherein the cone has the same or as stated above different inclination angle ⁇ .
  • These ring elements are preferably made of high-strength material in order to absorb the, in particular axial, forces and, due to the self-locking, to provide a corresponding opposing force without their own deformation, which would lead to an unintentional axial displacement of the inner ring 8 of the bearing 3.
  • Such bearing fixations are compared to conventional bearing fixings to use where even with axial shock loads it depends on a positionally accurate, positionally accurate fixation of the bearing 3.
  • These are in particular electric motors, which are provided with brakes, in particular disc brakes on one end face.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Braking Arrangements (AREA)

Abstract

The invention relates to a device for fixing a bearing (3) on a shaft (1), in particular a shaft (1) of an electric motor with a brake acting in the axial direction, wherein the inner ring (8) of the bearing (3) is held by at least two interacting annular elements (4, 5) and thereby forms a fixed bearing.

Description

Fixierung eines LagersFixation of a warehouse
Die Erfindung betrifft eine Vorrichtung zur Fixierung eines Lagers auf einer Welle, insbesondere auf einer Welle eines Elektromotors mit in axialer Richtung wirkenden Bremse.The invention relates to a device for fixing a bearing on a shaft, in particular on a shaft of an electric motor with a brake acting in the axial direction.
Als Lager bezeichnet man in der Technik die funktionelle Ver- bindung von Maschinenteilen. Lager können Kräfte und/oder Bewegungen übertragen bzw. leiten. Lager für rotierende Teile, wie sie z.B. bei rotatorischen Elektromotoren auftreten, lassen sich nach der Art unterscheiden, in welche Richtung die auf das drehende Teil wirkende Kraft auf die Welle übertragen wird. Es müssen dabei sowohl die Gewichtskräfte im Normalfall (horizontale Aufstellung) die radialen Kräfte, als auch die axialen Kräfte aufgenommen werden. Bei einem Radiallager wirkt die vom Lager aufgenommene Kraft senkrecht zur Drehachse. Axiallager nehmen Kräfte in Richtung der Wellenachse, al- so axiale Kräfte auf.The term "bearing" in the art refers to the functional connection of machine parts. Bearings can transfer or direct forces and / or movements. Bearing for rotating parts, as e.g. occur in rotary electric motors, can be distinguished by the way in which direction the force acting on the rotating part is transmitted to the shaft. It must be recorded both the weight forces in the normal case (horizontal installation), the radial forces, and the axial forces. In a radial bearing, the force absorbed by the bearing acts perpendicular to the axis of rotation. Thrust bearings absorb forces in the direction of the shaft axis, thus axial forces.
Bei dynamoelektrischen Maschinen, treten in der Regel Festlager und Loslager auf, wobei die Vielzahl der dort angreifenden Kräfte auf unterschiedliche Arten wirkt. Außer für den Ausgleich von Wärmedehnungen ist das Loslager nur für eine Kraft senkrecht zu den Lagerstellen und damit senkrecht zur Drehachse geeignet, es gestattet somit eine gewisse Längsver- schiebbarkeit . Das Festlager hingegen nimmt zusätzlich auch Kräfte in axialer Richtung auf, so dass sich das Bauteil bei- spielsweise eine Bremsscheibe eines Elektromotors nicht unkontrolliert seitlich aus den Lagern bewegen kann.In dynamoelectric machines, usually occur on bearings and floating bearings, the variety of forces acting there acts in different ways. Except for the compensation of thermal expansions, the non-locating bearing is suitable only for a force perpendicular to the bearing points and thus perpendicular to the axis of rotation, thus allowing a certain longitudinal displaceability. In contrast, the fixed bearing also absorbs forces in the axial direction, so that the component, for example a brake disk of an electric motor, can not move laterally out of the bearings in an uncontrolled manner.
Dies ist insbesondere bei dynamoelektrischen Maschinen, die mit einer Bremse ausgestattet sind äußerst wichtig, da be- reits eine minimale axiale Lagerverschiebung im Bereich von Bruchteilen eines Millimeters schon zu Funktionsausfällen, d.h. zu unkontrollierten Bremsvorgängen bei dieser dynamoelektrischen Maschine führen kann. Um dieses Lager zu fixieren, werden einerseits aufgepresste Hülsen verwendet, die aber durch ihre mangelnde Reibkraft auf der Welle durch verhältnismäßig geringe axiale Kräfte verschoben werden können.This is particularly important in dynamo-electric machines equipped with a brake, since even a minimal axial bearing displacement in the range of fractions of a millimeter can already lead to functional failures, ie to uncontrolled braking processes in this dynamoelectric machine. To fix this bearing, on the one hand pressed-sleeves are used, but can be moved by their lack of frictional force on the shaft by relatively small axial forces.
Andererseits werden Sicherungsringe in verschiedensten Formen zur axialen Fixierung der Lager eingesetzt. Für die Montage ist aber ein gewisses Spiel dieses Sicherungsrings in einer in der Welle vorgesehenen Nut unabdingbar, so dass auch hier eine leichte Verschiebung des Lagers bei axialer Stoßbelastung eintreten kann.On the other hand, circlips are used in a variety of forms for the axial fixation of the bearing. However, a certain play of this securing ring in a groove provided in the shaft is indispensable for the assembly, so that here too a slight displacement of the bearing can occur under axial impact load.
Des Weiteren schwächt eine derartige Nut die Welle, aufgrund von dadurch entstehenden Kerbwirkungen.Furthermore, such a groove weakens the shaft due to resulting notch effects.
Ausgehend davon, liegt der Erfindung die Aufgabe zugrunde, eine geeignete Vorrichtung zur Fixierung eines Lagers zu schaffen, die auch bei axialer Stoßbelastung, insbesondere bei einem Bremsvorgang eine ortsfeste Position des Lagers ge- währleistet.Proceeding from this, the object of the invention is to provide a suitable device for fixing a bearing, which ensures a fixed position of the bearing even in the event of an axial shock load, in particular during a braking operation.
Die Lösung der gestellten Aufgabe gelingt durch eine Vorrichtung zur Fixierung eines Lagers auf einer Welle, insbesondere einer Welle eines Elektromotors mit in axialer Richtung wir- kender Bremse, wobei der Innenring des Lagers durch zumindest zwei miteinander wechselwirkenden Ringelementen gehalten ist und dadurch ein Festlager bildet.The solution of the problem is achieved by a device for fixing a bearing on a shaft, in particular a shaft of an electric motor with acting in the axial direction brake, wherein the inner ring of the bearing is held by at least two interacting ring elements and thereby forms a fixed bearing.
Durch die miteinander wechselwirkenden Ringelemente, wird nunmehr der Kraftfluss aus der axialen Richtung in eine radiale Richtung umgelenkt. Dies gelingt insbesondere dadurch, dass die beiden Ringelemente einander zugewandte kegelige Mantelflächen aufweisen, die im Falle einer axialen Krafteinwirkung, beispielsweise aufgrund einer Stoßbelastung bei ei- nem Bremsvorgang durch die geneigte Oberfläche des Kegels des Außenrings der Lagerfixierung in eine Kraftkomponente senkrecht zur Drehachse des Elektromotors umgelenkt wird. Dies wiederum sorgt dadurch für eine erhöhte Anpresskraft des In- nenrings der Lagerfixierung auf die Welle und führt somit zu einer ausreichenden axialen Lagerbefestigung. Diese erhöhte Reibkraft wirkt der axial wirkenden Kraft entgegen und gewährleistet somit, dass sich das Lager axial nicht ver- schiebt.Due to the interacting ring elements, the force flow is now deflected from the axial direction in a radial direction. This is achieved in particular by the fact that the two ring elements facing each other have conical lateral surfaces, which deflects in the event of an axial force, for example due to a shock load in a braking process by the inclined surface of the cone of the outer ring of the bearing fixation in a force component perpendicular to the axis of rotation of the electric motor becomes. This in turn ensures an increased contact pressure of the nenrings the bearing fixation on the shaft and thus leads to a sufficient axial bearing mounting. This increased friction force counteracts the axially acting force and thus ensures that the bearing does not move axially.
Diese axial wirkende Reibkraftkomponente ist in Ihrem Betrag proportional der axial wirkenden Kraft, d.h. je größer die axial wirkende Kraft, desto größer wird, über den oben be- schriebenen Zusammenhang die axial wirkende Gegenkraft. Es tritt damit eine Selbsthemmung ein.This axially acting frictional component is in proportion to the axial force, i. The larger the axially acting force, the greater the axially acting counterforce via the above-described relationship. It thus enters a self-inhibition.
Vorteilhafterweise sind die Neigungswinkel der beiden Ringelemente, d.h. des Außenrings der Lagerfixierung und des In- nenrings der Lagerfixierung gleich ausgebildet. Damit wird in einfacher Art und Weise die Herstellung als auch die Kraftum- lenkung gewährleistet.Advantageously, the angles of inclination of the two ring elements, i. the outer ring of the bearing fixing and the inner ring of the bearing fixation of the same design. This ensures production as well as power diversion in a simple manner.
In dem die Welle unterschiedliche Radien aufweist, wird die Montage des Lagers als auch der Ringelemente vereinfacht. Es kann somit wesentlich einfacher die oben beschriebene Selbsthemmung eintreten.In which the shaft has different radii, the assembly of the bearing and the ring elements is simplified. It can thus be much easier to enter the self-locking described above.
Diese nunmehr spielfreie Montage des Lagers ermöglicht ein äußerst klar definiertes Festlager. Beispielsweise kann damit eine dynamoelektrische Maschine kompakter gebaut werden, da diese Art der Lagerfixierung vergleichsweise weniger axiale Baulänge in Anspruch nimmt als bisherige Ausführungen.This now play-free mounting of the bearing allows a very clearly defined fixed bearing. For example, so that a dynamoelectric machine can be made more compact, since this type of bearing fixation takes comparatively less axial length to complete than previous versions.
Des Weiteren muss weder die Welle noch die Lagerbohrung durch eine Nut oder zusätzliche Ausnehmungen geschwächt werden, die lediglich zu einer Kerbwirkung führen. Dadurch gestaltet sich auch die Bearbeitung beispielsweise der Welle einfacher und die zulässigen Querkräfte werden nicht negativ beeinträch- tigt. Die Erfindung sowie weiteren Ausgestaltungen der Erfindung gemäß Merkmalen der Unteransprüche, werden in der folgenden Figur prinzipiell dargestellt und erläutert.Furthermore, neither the shaft nor the bearing bore must be weakened by a groove or additional recesses, which merely lead to a notch effect. As a result, the machining of the shaft, for example, is simpler and the permissible transverse forces are not negatively affected. The invention and further embodiments of the invention according to features of the subclaims are shown and explained in principle in the following figure.
FIG 1 zeigt eine Welle 1 mit axial stufenförmigem Verlauf, der durch unterschiedliche Radien Rl bis R4 der Welle 1 gebildet wird. Der Übergang zwischen dem Radius R3 und Radius R4 wird durch einen Anschlag 2 gebildet, an dem der Innenring 8 eines Lagers 3 aufgepresst ist. Das Lager 3 weist außerdem einen Außenring 7 auf, der in einem nicht näher dargestellten Lagerschild positioniert ist.1 shows a shaft 1 with an axially stepped course, which is formed by different radii R 1 to R 4 of the shaft 1. The transition between the radius R3 and radius R4 is formed by a stop 2, on which the inner ring 8 of a bearing 3 is pressed. The bearing 3 also has an outer ring 7 which is positioned in a bearing shield, not shown.
Beim Drehen der Welle 1, im Betrieb der dynamoelektrischen Maschine um ihre Drehachse 9 dreht sich der Innenrings 8 des Lagers 3 mit gleicher Winkelgeschwindigkeit, wobei der Außenring 7 des Lagers 3 stationär ist. Die Bewegung wird dabei durch Lagerelemente zwischen dem Außenring 7 und dem Innenring 8 des Lagers 3 übertragen, wobei zwischen Außenring 7 und Innenring 8 Kugeln oder Wälzelemente vorgesehen sind.When rotating the shaft 1, during operation of the dynamoelectric machine about its axis of rotation 9, the inner ring 8 of the bearing 3 rotates at the same angular velocity, wherein the outer ring 7 of the bearing 3 is stationary. The movement is transmitted by bearing elements between the outer ring 7 and the inner ring 8 of the bearing 3, wherein between outer ring 7 and inner ring 8 balls or rolling elements are provided.
Vorteilhafterweise steht dabei in axialer Richtung der Innenring 8 des Lagers 3 etwas über den Übergang zwischen Radius R2 und Radius R3 (ca. 10 bis 20% der axialen Ausdehnung des Innenrings 8 des Lagers 3), so dass die Montage der Vorrich- tung zur Fixierung des Lagers 3 erleichtert wird.Advantageously, in the axial direction, the inner ring 8 of the bearing 3 is slightly above the transition between radius R2 and radius R3 (about 10 to 20% of the axial extent of the inner ring 8 of the bearing 3), so that the assembly of the device for fixing of the bearing 3 is facilitated.
Das Lager 3 wird nunmehr dadurch fixiert, dass der Außenring 4 der Lagerfixierung und der Innenring 5 der Lagerfixierung zusammenwirken. Der Innenring 5 ist auf den Wellenabschnitt mit Radius R2 aufgeschrumpft, wobei nunmehr bei axialer Belastung, beispielsweise einer axialen Stoßbelastung durch einen Bremsvorgang die Kraftkomponente Fa aufgrund der zusammenwirkenden kegeligen Mantelflächen 6 in eine radiale Kraftkomponente Fr senkrecht zur Drehachse 9 umgelenkt wird. Dem- zufolge wirkt zusätzlich zu der normalen Reibkraft aufgrund des AufschrumpfVorgangs des Innenrings 5 der Lagerfixierung auf die Welle 1, die zusätzliche Kraftkomponente Fr. Damit tritt nunmehr zwischen dem Außenring 4 und dem Innenring 5 der Lagerfixierung eine Selbsthemmung ein, die damit auch eine axiale Verschiebung des Innenrings 8 des Lagers 3 vollständig unterbindet.The bearing 3 is now fixed by the fact that the outer ring 4 of the bearing fixation and the inner ring 5 of the bearing fixation cooperate. The inner ring 5 is shrunk onto the shaft section with radius R2, wherein now under axial load, for example an axial impact load by a braking operation, the force component F a due to the cooperating conical lateral surfaces 6 in a radial force component F r is deflected perpendicular to the axis of rotation. Accordingly, in addition to the normal frictional force due to the shrinking operation of the inner ring 5 of the bearing fixation on the shaft 1, the additional force component F r acts. This now occurs between the outer ring 4 and the inner ring. 5 the bearing fixation a self-locking, which thus completely prevents an axial displacement of the inner ring 8 of the bearing 3.
In der vorliegenden Ausführungsform ist vorteilhafterweise noch ein Wellenabschnitt mit Radius Rl vorgesehen, der wiederum kleiner als der Wellenabschnitt R2 ist, so dass sich der AufschrumpfVorgang des Innenrings 5 vereinfacht.In the present embodiment, a shaft section with radius Rl is advantageously still provided, which in turn is smaller than the shaft section R2, so that the AufschrumpfVorgang the inner ring 5 is simplified.
Vorteilhafterweise sind die Winkel der kegeligen Mantelflächen gleich ausgebildet, insbesondere als Neigungswinkel α zwischen einer Parallelen zur Drehachse 9, die mit 10 bezeichnet wird und einem eine Verlängerung der Mantelflächen 6 darstellenden Geraden 11.Advantageously, the angles of the conical lateral surfaces are the same, in particular as an angle of inclination α between a parallel to the axis of rotation 9, which is denoted by 10 and an extension of the lateral surfaces 6 representing straight 11th
Die beiden kegeligen Mantelflächen 6 müssen aber nicht notwendigerweise den gleich ausgebildeten Winkel α aufweisen, sie können ebenso unterschiedlich ausgebildet sind, entscheiden ist, dass bei axialer Belastung des Außenrings 4 über den Innenring 5 eine Selbsthemmung eintritt.However, the two conical lateral surfaces 6 need not necessarily have the same angle α formed, they can also be designed differently, it is to be decided that occurs under axial load of the outer ring 4 via the inner ring 5, a self-locking.
Die als Ringelemente ausgeführten Innenring 5 und Außenring 4 der Lagerfixierung sind somit konusförmig ausgebildet, wobei der Konus gleiche oder wie oben ausgeführt unterschiedliche Neigungswinkel α aufweist.The designed as ring elements inner ring 5 and outer ring 4 of the bearing fixation are thus cone-shaped, wherein the cone has the same or as stated above different inclination angle α.
Diese Ringelemente sind vorzugsweise aus hochfestem Material, um die, insbesondere axialen Kräfte aufzunehmen, umzulenken und aufgrund der Selbsthemmung eine dementsprechende Gegen- kraft bereitzustellen ohne eigene Deformation, die zu einer ungewollten axialen Verschiebung des Innenrings 8 des Lagers 3 führen würde .These ring elements are preferably made of high-strength material in order to absorb the, in particular axial, forces and, due to the self-locking, to provide a corresponding opposing force without their own deformation, which would lead to an unintentional axial displacement of the inner ring 8 of the bearing 3.
Derartige Lagerfixierungen sind gegenüber herkömmlichen La- gerfixierungen dort zu verwenden, wo auch bei axialen Stoßbelastungen es auf eine positionsgenaue, lagegenaue Fixierung des Lagers 3 ankommt. Dies sind insbesondere Elektromotoren, die mit Bremsen, insbesondere Scheibenbremsen an einer Stirnseite versehen sind. Such bearing fixations are compared to conventional bearing fixings to use where even with axial shock loads it depends on a positionally accurate, positionally accurate fixation of the bearing 3. These are in particular electric motors, which are provided with brakes, in particular disc brakes on one end face.

Claims

Patentansprüche claims
1. Vorrichtung zur Fixierung eines Lagers (3) auf einer Welle (1), insbesondere einer Welle (1) eines Elektromotors mit in axialer Richtung wirkender Bremse, wobei der Innenring (8) des Lagers (3) durch zumindest zwei miteinander wechselwirkenden Ringelementen (4,5) gehalten ist und dadurch ein Festlager bildet.1. Device for fixing a bearing (3) on a shaft (1), in particular a shaft (1) of an electric motor with brake acting in the axial direction, wherein the inner ring (8) of the bearing (3) by at least two interacting ring elements ( 4,5) is held and thereby forms a fixed bearing.
2. Vorrichtung nach Anspruch 1, d a d u r c h g e k e n nz e i c h n e t, dass die beiden Ringelemente (4,5) einander zugewandte kegelige Mantelflächen (6) mit einem vorgebbaren Neigungswinkel α aufweisen, derart, dass durch Auftreten einer axialen Kraftkomponente (Fa) eine Selbsthemmung zwi- sehen den Ringelementen (4,5) eintritt und damit das Lager2. Device according to claim 1, dadurchgeken nz eichnet that the two ring elements (4,5) facing each other conical lateral surfaces (6) having a predetermined inclination angle α, such that by the occurrence of an axial force component (F a ) a self-locking between see the ring elements (4,5) enters and thus the bearing
(3), insbesondere der Innenring (8) des Lagers (3) axial unverrückbar ist.(3), in particular the inner ring (8) of the bearing (3) is axially immovable.
3. Vorrichtung nach Anspruch (2), d a d u r c h g e - k e n n z e i c h n e t , dass der Neigungswinkel α innerhalb eines vorgebbaren Intervalls von 3° bis 30° liegt.3. Apparatus according to claim (2), characterized in that the angle of inclination α is within a predeterminable interval of 3 ° to 30 °.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Nei- gungswinkel α von Außenring (4) und Innenring (5) der Lagerfixierung gleich sind.4. Device according to one of the preceding claims, d a d u r c h e c e n e c e in that the angles of inclination α of the outer ring (4) and inner ring (5) of the bearing fixation are the same.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die WeI- Ie (1) zumindest drei unterschiedliche Radien aufweist.5. Device according to one of the preceding claims, characterized in that the WeI- Ie (1) has at least three different radii.
6. Verfahren zur Fixierung eines Lagers auf einer Welle (1) durch folgende Schritte:6. Method for fixing a bearing on a shaft (1) by the following steps:
- Drehen der Welle auf mindesten drei unterschiedliche stu- fenförmige angeordnete Radien.- Rotate the shaft to at least three different step-shaped arranged radii.
- Positionieren eines Lagers (3) an einem Anschlag (2), aufstecken eines Außenrings (4) der Lagerfixierung und aufpressen des Innenrings (5) der Lagerfixierung unter die ke- gelige Mantelfläche (6) des Außenrings (4) der Lagerfixierung. - Positioning a bearing (3) on a stop (2), attaching an outer ring (4) of the bearing fixation and pressing the inner ring (5) of the bearing fixation under the ke Geliger lateral surface (6) of the outer ring (4) of the bearing fixation.
PCT/EP2008/059981 2007-08-01 2008-07-30 Means of fixing a bearing WO2009016197A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007036034.9 2007-08-01
DE102007036034A DE102007036034A1 (en) 2007-08-01 2007-08-01 Fixation of a warehouse

Publications (2)

Publication Number Publication Date
WO2009016197A2 true WO2009016197A2 (en) 2009-02-05
WO2009016197A3 WO2009016197A3 (en) 2009-07-23

Family

ID=40202983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059981 WO2009016197A2 (en) 2007-08-01 2008-07-30 Means of fixing a bearing

Country Status (2)

Country Link
DE (1) DE102007036034A1 (en)
WO (1) WO2009016197A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216135B4 (en) * 2013-08-14 2022-01-13 Robert Bosch Gmbh Gear assembly with the mounting sleeve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1813409A1 (en) * 1967-12-07 1969-07-03 Skf Svenska Kullagerfab Ab Device for maintaining the axial bearing play in roller bearing installations
JP2000283170A (en) * 1999-03-31 2000-10-13 Nisshin Steel Co Ltd Fixing method for inner ring in rolling bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3132442A1 (en) * 1981-08-17 1983-02-24 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt ARRANGEMENT FOR FASTENING MACHINE PARTS, IN PARTICULAR WITHOUT PLAYING OR PRESERVED ROLLER BEARINGS
DE3223683A1 (en) * 1982-06-25 1983-12-29 Stüwe GmbH & Co KG, 4320 Hattingen Frictional shaft/flange connection
DE3704924A1 (en) * 1987-02-17 1988-08-25 Gutehoffnungshuette Man Device and method for the frictional connection of components to shafts or axles
DE8913649U1 (en) * 1989-11-18 1990-01-04 China Bearing Co. Ltd., Taipeh/T`ai-pei Self-adjusting nut support of a shaft against a bearing
DE19845671C1 (en) * 1998-10-05 2000-04-13 Fag Automobiltechnik Ag Retaining circlip for roller bearing on shaft has trapezoidal section circlip retained in groove in shaft by outer spring ring
DE20113007U1 (en) * 2001-08-04 2001-11-29 Skf Ab Bearing arrangement
DE102005032529A1 (en) * 2005-07-12 2007-01-25 Siemens Ag Solid actuator-drive device e.g. piezo-ring-engine, has inner clamping unit lying axially-parallel to shaft within support wall, and outer clamping unit arranged between inner clamping unit and support wall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1813409A1 (en) * 1967-12-07 1969-07-03 Skf Svenska Kullagerfab Ab Device for maintaining the axial bearing play in roller bearing installations
JP2000283170A (en) * 1999-03-31 2000-10-13 Nisshin Steel Co Ltd Fixing method for inner ring in rolling bearing

Also Published As

Publication number Publication date
DE102007036034A1 (en) 2009-02-19
WO2009016197A3 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
EP2014396B1 (en) Centrifugal force assisted tool clamping system
WO2017063645A2 (en) Electromechanical actuator for motor vehicles
EP0222692A2 (en) Rolling bearing
DE4214936A1 (en) PIVOT TYPE TRACK ROLLER BEARING
DE2947091A1 (en) METHOD FOR PRODUCING LENGTHS OF AN ARROW-SHAPED SEPARATE JOINT BOLTED BEARING RINGS FOR ROLLER BEARINGS OR THE LIKE.
AT520949B1 (en) Fixing element for fixing the rotor shaft of an electric machine to the stator, and electric machine with such a fixing element
DE60206417T2 (en) SPINDLE DRIVE WITH FIXED NUT
EP0132567B1 (en) Clamping device for a ring wheel
DE102015014833B3 (en) Safety bearing system
WO2009016197A2 (en) Means of fixing a bearing
DE19755211B4 (en) Linear adjustment device
DE10333496A1 (en) Process for the production of a wheel suspension to reduce the inaccuracy of a track
DE2320115B2 (en) Fastening a brake disc of an axle hub for disc brakes in rail vehicles
DE102015221556A1 (en) Planetary roller screw (PWG) of an actuator
EP1167796B1 (en) Pressure ring and its method of production, bearing system for universal joint trunnion
DE102010021813B4 (en) Shockproof angular contact ball bearing
EP1314858A2 (en) Frangible bearing support for a turbomachine rotor
EP2019291B1 (en) Body with angle scaling and its use
DE3405556C1 (en) Clamping device for a cylinder wheel
DE2311307A1 (en) BRAKE DEVICE TO PREVENT A DRIVE SPINDLE FROM REVERSING
EP0589408B1 (en) Device for centering and preventing rotation of an annular brake disk on vehicles
EP0459490A1 (en) Electric machine with fast-loose bearing
WO2019057384A1 (en) Rotor for a turbocharger
DE1836832U (en) BRAKE DISC, IN PARTICULAR FOR RAIL VEHICLES.
DE3242474T1 (en) Process for the manufacture of bearings for the drive wheels of motor vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08786615

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08786615

Country of ref document: EP

Kind code of ref document: A2