WO2009015890A2 - Catalytically active magnetic nanoparticles - Google Patents

Catalytically active magnetic nanoparticles Download PDF

Info

Publication number
WO2009015890A2
WO2009015890A2 PCT/EP2008/006313 EP2008006313W WO2009015890A2 WO 2009015890 A2 WO2009015890 A2 WO 2009015890A2 EP 2008006313 W EP2008006313 W EP 2008006313W WO 2009015890 A2 WO2009015890 A2 WO 2009015890A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
nanoparticles according
carbon layer
carbon
catalytically active
Prior art date
Application number
PCT/EP2008/006313
Other languages
German (de)
French (fr)
Other versions
WO2009015890A3 (en
Inventor
Peter Wilharm
Original Assignee
Dws Synthesetechnik Dr. Peter Wilharm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dws Synthesetechnik Dr. Peter Wilharm filed Critical Dws Synthesetechnik Dr. Peter Wilharm
Publication of WO2009015890A2 publication Critical patent/WO2009015890A2/en
Publication of WO2009015890A3 publication Critical patent/WO2009015890A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/10Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person
    • A61K41/13Inactivation or decontamination of a medicinal preparation prior to administration to an animal or a person by ultrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • B01J35/23
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to catalytically active magnetic nanoparticles for chemical, in particular oleochemical reactions.
  • the nanoparticles consist of a magnetic core surrounded by a carbon shell.
  • the carbon shell is densely covered with acidic or basic functional groups.
  • Biodiesel production relies on low-cost raw materials. Therefore, in addition to low-cost waste oils, one also uses fatty acid methyl ester mixtures, which are obtained from production residues by acid-catalyzed esterification.
  • Such production residues arise, for example, in fat refining and in biodiesel production.
  • sulfuric acid or p-toluenesulfonic acid is usually used as the acidic catalyst.
  • a disadvantage of the use of such catalysts is that they can be separated from the reaction mixture obtained after the end of the reaction only consuming. In practice, the separation is omitted and the reaction mixture is added directly to the transesterification stage of biodiesel production (see, for example, [Mittelbach 2004]).
  • the usual catalysts used are sodium hydroxide, potassium hydroxide or sodium methoxide.
  • catalytic layered silicates e.g. sulfuric acid treated montmorillonites
  • Nanoparticles of carbon such as carbon nanotubes (SWNT single-walled nanotubes or multi-walled nanotubes MWNT), whose surface has been functionalized, are generally known (see, for example, [Krüger 2007]).
  • carbon soot particles which are nano-particles, have been functionalized on the surface.
  • US Pat. No. 5,851,280 describes the preparation of water-dispersible carbon black particles bearing sulfonic acid groups on the surface.
  • JP 10110112 (Toyo, 07.10.1996) describes the preparation of carbon black dispersible in water and solvents by sulfonation or chlorosulfonation.
  • the patent DE 102 42 875 also describes the sulfonation of Carbon black particles to increase the dispersibility in water. None of the cited patents mention the use of the functionalized particles as catalysts for chemical reactions. The application of such functionalized carbon particles as catalysts for chemical reactions also offers no advantages, because
  • End reaction is a separation from the reaction mixture consuming.
  • Patent WO 2007/028267 describes the preparation and use of magnetic nanoparticles coated with a functionalized carbon layer.
  • This carbon layer can be versatile functionalized by reaction with Aryldiazonium- compounds.
  • the object of the invention is to provide nanoparticles for chemical, in particular oleochemical, processes which are to have the following properties:
  • the object is achieved by providing catalytically active magnetic nanoparticles, consisting of a magnetic core and an outer carbon layer, which are functionalized with acidic or basic-acting groups.
  • the catalytically active nanoparticles according to the invention have the following basic structure:
  • the carbon layer is occupied by functional groups X, wherein the functional groups are covalently linked directly or by means of an anchor group A with the carbon layer.
  • the functional groups X1, X2 and X3, which are the same or different, are for use in acid catalysis
  • R is a linear or branched C 1 to C 12 -alkyl radical, preferably a methyl or ethyl radical.
  • A is a divalent radical
  • n is an integer between 1 and 18.
  • Magnetic cores are all ferri- or ferromagnetic materials in question. Such materials are known and their suitability for the production of magnetic nanoparticles described in detail (see, for example, [Jun 2008]).
  • the carbon layer consists of layers of covalently linked carbon atoms, the layer thickness being between 0.5 and 5 nm, preferably between 1 and 2 nm.
  • thermo-resistance up to 200 0 C see, eg. As [Grass 2007]
  • Production method also have dense carbon layers defects. Such defects show increased reactivity and facilitate the subsequent functionalization of the nanoparticles, but have no appreciable influence on the chemical resistance.
  • the preparation of the catalytically active nanoparticles according to the invention can in principle be carried out by two different methods which are already known per se:
  • Magnetic nanoparticles are first coated with a multilayer carbon layer and functionalized in a second step with catalytically active groups.
  • CVD chemical Vapor Deposition
  • Method B Magnetic nanoparticles with a multilayer carbon layer are prepared in one stage by means of reducing flame spray pyrolysis (see, for example, [Stark 2006]).
  • particles of different sizes are usually obtained, which are described by a distribution function to let.
  • distribution function can be determined by laser spectroscopic method.
  • the diameter of the catalytically active nanoparticles according to the invention is 1 to 200 nm, preferably 2 to 100 nm, more preferably 2 to 50 nm.
  • Superparamagnetic nanoparticles can be readily dispersed in liquids and easily quantitatively separated after the reaction by the action of an external magnetic field. After separation, the nanoparticles can be redispersed in a reaction mixture.
  • Catalytically active nanoparticles according to the invention which exhibit residual magnetization without an external magnetic field, can likewise be used without problems as catalysts in chemical reactions if the uniform dispersion in the reaction medium is ensured by the application of shear forces.
  • the processes for the functionalization of a carbon layer are known per se.
  • the functionalized nanoparticles prepared in this way can be used in a variety of ways for chemical, in particular oleochemical reactions. Examples of these are:
  • Acid-catalyzed esterification of montan wax acids with alcohols preferably lower alcohols, particularly preferably with ethylene glycol, pentaerythritol and glycerol,
  • catalyzed transesterification of triglycerides with alcohols preferably lower alcohols, more preferably with methanol and ethanol.
  • the particular advantage of the catalytically active nanoparticles according to the invention is that the combination of high specific surface area and high density catalytic effective functional groups leads to a reaction acceleration, which is otherwise observed only in homogeneous catalysis.
  • the catalyst can be well separated by the application of a magnetic field after the end of the reaction.
  • the described chemical, in particular oleochemical reactions can be used as batch or continuous processes, preferably in batch processes.
  • the suspension was poured onto 400 g flake ice, the nanoparticles separated by means of a glass-coated electromagnetic immersion probe and washed neutral with distilled water.
  • the further reaction was stopped by completely separating all the suspended catalyst particles with a glass-coated electromagnetic immersion probe with stirring within 10 minutes and removing them from the reaction mixture.
  • Particle diameters of 5 nm prepared by CVD coating as described in [He 2006] were suspended at 5 ° C in a solution of 50 ml of distilled water, 8.6 g of sulfanilic acid and 10.4 g of sodium nitrite in an ultrasonic bath. For this purpose, 20 ml of concentrated hydrochloric acid was added within 15 min.
  • the suspension Under the action of ultrasound, the suspension was heated to 50 ° C. and stirred at this temperature for 4 hours.
  • the reaction solution was poured onto 400 g flake ice, the nanoparticles separated by means of a glass-coated electromagnetic immersion probe and washed neutral with distilled water.
  • reaction mixture was heated to boiling for 24 h, and the reaction was carried out in vacuo
  • reaction mixture was worked up by distillation and gave 115 g of phenylacetic acid ethyl ester.
  • Iron-containing nanoparticles their preparation and use in

Abstract

Disclosed are catalytically active magnetic nanoparticles for chemical, particularly oleochemical reactions. Said nanoparticles comprise a magnetic core and an external carbon layer which are functionalized with acidic or basic groups.

Description

Katalytisch wirkende magnetische Nanopartikel Catalytically active magnetic nanoparticles
Die Erfindung betrifft katalytisch wirkende magnetische Nanopartikel für chemische, insbesondere oleochemische Umsetzungen. Dabei bestehen die Nanopartikel aus einem magnetischen Kern, der von einer Kohlenstoffschale umschlossen ist. Die Kohlenstoffschale ist mit sauer oder basisch wirkenden funktionellen Gruppen dicht belegt.The invention relates to catalytically active magnetic nanoparticles for chemical, in particular oleochemical reactions. The nanoparticles consist of a magnetic core surrounded by a carbon shell. The carbon shell is densely covered with acidic or basic functional groups.
Bei der Biodieselherstellung ist man auf kostengünstige Rohstoffe angewiesen. Neben preisgünstigen Altfetten setzt man deshalb auch Fettsäuremethylestergemische ein, die aus Produktionsrückständen durch sauer katalysierte Veresterung gewonnen werden.Biodiesel production relies on low-cost raw materials. Therefore, in addition to low-cost waste oils, one also uses fatty acid methyl ester mixtures, which are obtained from production residues by acid-catalyzed esterification.
Solche Produktionsrückstände fallen beispielsweise bei der Fettraffination und bei der Biodiesel-Produktion an.Such production residues arise, for example, in fat refining and in biodiesel production.
Bei der Veresterung wird als saurer Katalysator üblicherweise Schwefelsäure oder p-Toluolsulfonsäure eingesetzt.In the esterification, sulfuric acid or p-toluenesulfonic acid is usually used as the acidic catalyst.
Nachteilig bei der Verwendung solcher Katalysatoren ist, dass sie sich aus dem erhaltenen Reaktionsgemisch nach Reaktionsende nur aufwendig abtrennen lassen. In der Praxis verzichtet man auf eine Abtrennung und setzt das Reaktionsgemisch direkt der Umesterungsstufe der Biodieselherstellung zu (siehe z.B. [Mittelbach 2004]). !n der Umesterungsstufe der Biodieselherstellung verwendet man üblicherweise als Katalysatoren Natriumhydroxid, Kaliumhydroxid oder Natriummethanolat.A disadvantage of the use of such catalysts is that they can be separated from the reaction mixture obtained after the end of the reaction only consuming. In practice, the separation is omitted and the reaction mixture is added directly to the transesterification stage of biodiesel production (see, for example, [Mittelbach 2004]). In the transesterification stage of biodiesel production, the usual catalysts used are sodium hydroxide, potassium hydroxide or sodium methoxide.
Es ist offensichtlich, dass durch den Zusatz eines Reaktionsgemisches, das noch saure Katalysatorreste enthält, zu der Biodiesel-Umesterungsstufe, einen Teil des basischen Katalysators durch Neutralisation unerwünscht verbraucht wird.It is apparent that by the addition of a reaction mixture which still contains acidic catalyst residues to the biodiesel transesterification stage, part of the basic catalyst is undesirably consumed by neutralization.
Es wurden daher in der Vergangenheit Versuche unternommen, Fettsäuregemische aus Produktionsrückständen durch heterogene Katalysatoren zu verestern.Attempts have therefore been made in the past to esterify fatty acid mixtures of production residues by heterogeneous catalysts.
Rαlcniαlo für enlrho
Figure imgf000003_0001
l^ataK/βatΛrcv/cforno cjriH • makroporöse, stark saure lonen-Austauscherharze,
Rαlcniαlo for enlrho
Figure imgf000003_0001
l ^ ataK / βatΛrcv / cforno cjriH • macroporous, strongly acidic ion exchange resins,
• katalytische wirkende Schichtsilikate, wie z.B. schwefelsäurebehandelte Montmorillonite• catalytic layered silicates, e.g. sulfuric acid treated montmorillonites
In der Praxis zeigen solche Heterogen-Katalysatoren durch Oberflächenbelegung oder "Fouling" nachlassende Reaktivität und müssen entweder ersetzt oder aufwendig regeneriert werden. Der Begriff "Fouling" beschreibt das Zusetzen der Porenkanäle von Austauscherharzen durch Nebenprodukte der Umsetzung.In practice, such heterogeneous catalysts show surface activity or "fouling" decreasing reactivity and must either be replaced or regenerated consuming. The term "fouling" describes the clogging of the pore channels of exchange resins by by-products of the reaction.
Allgemein bekannt sind Nanoteilchen aus Kohlenstoff, wie z.B. Kohlenstoff- Nanoröhrchen (SWNT Single-Walled Nanotubes oder Multi-Walled Nanotubes MWNT), deren Oberfläche funktionalisiert worden ist (siehe z. B. [Krüger 2007]). Ebenso wurden Kohlenstoff-Rußpartikel, die Nano-Partikel darstellen, an der Oberfläche funktionalisiert. Beipielsweise beschreibt die Patentschrift US 5,851 ,280 die Herstellung von in wasserdispergierbaren Rußteilchen, die an der Oberfläche Sulfonsäure-Gruppen tragen. Die Patentschrift JP 10110112 (Toyo, 07.10.1996) beschreibt die Herstellung von in Wasser und Lösemitteln dispergierbaren Rußteilchen durch Sulfonierung oder Chlorsulfonierung. Die Patentschrift DE 102 42 875 beschreibt ebenfalls die Sulfonierung von Rußteilchen, um die Dispergierbarkeit in Wasser zu erhöhen. Keine der angeführten Patentschriften erwähnt die Anwendung der funktionalisierten Teilchen als Katalysatoren für chemische Umsetzungen. Die Anwendung solcher funktionalisierter Kohlenstoffpartikel als Katalysatoren für chemische Umsetzungen bietet auch keine Vorteile, weil nachNanoparticles of carbon, such as carbon nanotubes (SWNT single-walled nanotubes or multi-walled nanotubes MWNT), whose surface has been functionalized, are generally known (see, for example, [Krüger 2007]). Likewise, carbon soot particles, which are nano-particles, have been functionalized on the surface. For example, US Pat. No. 5,851,280 describes the preparation of water-dispersible carbon black particles bearing sulfonic acid groups on the surface. JP 10110112 (Toyo, 07.10.1996) describes the preparation of carbon black dispersible in water and solvents by sulfonation or chlorosulfonation. The patent DE 102 42 875 also describes the sulfonation of Carbon black particles to increase the dispersibility in water. None of the cited patents mention the use of the functionalized particles as catalysts for chemical reactions. The application of such functionalized carbon particles as catalysts for chemical reactions also offers no advantages, because
Reaktionsende eine Abtrennung aus dem Reaktionsgemisch aufwendig ist.End reaction is a separation from the reaction mixture consuming.
Funktionalisierte magnetische Nanoteilchen und deren Anwendung in der medizinischen Diagnostik sind bekannt (siehe z. B. [Jun 2008], [Fredriksson 2000], [Kresse 1994]).Functionalized magnetic nanoparticles and their use in medical diagnostics are known (see, for example, [Jun 2008], [Fredriksson 2000], [Kresse 1994]).
Die Patentschrift WO 2007/028267 beschreibt Herstellung und Anwendung magnetischer Nanoteilchen, die mit einer funktionalisierten Kohlenstoffschicht umhüllt sind.Patent WO 2007/028267 describes the preparation and use of magnetic nanoparticles coated with a functionalized carbon layer.
Weiterhin beschreiben die Autoren in der Veröffentlichung [Grass 2007] die Herstellung und Anwendung von luftstabilen magnetischen Cobalt- Nanoteilchen, die mit einer festhaftenden Kohlenstoffschicht umhüllt sind.Furthermore, the authors describe in the publication [Grass 2007] the production and application of air-stable magnetic cobalt nanoparticles, which are covered with a firmly adhering carbon layer.
Diese Kohlenstoffschicht läßt sich durch Umsetzung mit Aryldiazonium- Verbindungen vielseitig funktionalisieren.This carbon layer can be versatile functionalized by reaction with Aryldiazonium- compounds.
Das Anwendungspotential dieser Nanoteilchen definieren die Autoren folgendermaßen: "... Die hohe Kapazität für die Ligandenbindung und das schnelleThe application potential of these nanoparticles is defined by the authors as follows: "... the high capacity for ligand binding and the fast binding
Entfernen aus Reaktionsmischungen empfehlen diese funktionalisierten Nanomagnete für Anwendungen in der organischen Synthese und Biotechnologie."Removal from reaction mixtures recommends these functionalized nanomagnets for applications in organic synthesis and biotechnology. "
Die Nutzung dieser Nanoteilchen als Katalysatoren in der organischenThe use of these nanoparticles as catalysts in the organic
Synthese, insbesondere für oleochemische Umwandlungen, ist somit nicht geoffenbart. Der Erfindung liegt die Aufgabe zugrunde, Nanoteilchen für chemische, insbesondere oleochemische Prozesse, bereitzustellen, die folgende Eigenschaften aufweisen sollen:Synthesis, especially for oleochemical transformations, is thus not disclosed. The object of the invention is to provide nanoparticles for chemical, in particular oleochemical, processes which are to have the following properties:
• hohe Oberflächenbeladung mit katalytisch wirksamen funktionellen• high surface loading with catalytically effective functional
Gruppen,Groups,
• Magnetisierbarkeit für die leichte Abtrennbarkeit nach Reaktionsende,Magnetisability for easy separability after the end of the reaction,
• hohe Beständigkeit in chemisch aggressiver Umgebung.• high resistance in a chemically aggressive environment.
Die Aufgabe wird gelöst durch Bereitstellung von katalytisch wirkenden magnetischen Nanopartikeln, bestehend aus einem magnetischen Kern und einer äußeren Kohlenstoffschicht, die mit sauren oder basisch wirkenden Gruppen funktionalisiert sind.The object is achieved by providing catalytically active magnetic nanoparticles, consisting of a magnetic core and an outer carbon layer, which are functionalized with acidic or basic-acting groups.
Die erfindungsgemäßen katalytisch wirkenden Nanoteilchen haben folgenden prinzipiellen Aufbau:The catalytically active nanoparticles according to the invention have the following basic structure:
Funktionalisierung
Figure imgf000005_0001
functionalization
Figure imgf000005_0001
Die Kohlenstoffschicht ist mit funktionellen Gruppen X belegt, wobei die funktionellen Gruppen direkt oder mittels einer Ankergruppe A mit der Kohlenstoffschicht kovalent verknüpft sind.The carbon layer is occupied by functional groups X, wherein the functional groups are covalently linked directly or by means of an anchor group A with the carbon layer.
Die funktionellen Gruppen X1 , X2 und X3, die gleich oder verschieden sind, stehen für die Anwendung bei der sauren Katalyse fürThe functional groups X1, X2 and X3, which are the same or different, are for use in acid catalysis
-SO3H1 -CF2SO3H1 -PO3H, -CF2COOH-SO 3 H 1 -CF 2 SO 3 H 1 -PO 3 H, -CF 2 COOH
und für die Anwendung bei der basischen Katalyse für -N ®R3 OH Θ ,
Figure imgf000006_0001
and for use in basic catalysis for -N®R 3 OH Θ,
Figure imgf000006_0001
wobei R für einen linearen oder verzweigten C1- bis C12-Alkylrest, bevorzugt für einen Methyl- oder Ethyl-Rest steht.where R is a linear or branched C 1 to C 12 -alkyl radical, preferably a methyl or ethyl radical.
Wenn die funktionelle Gruppe X mittels einer Ankergruppe A mit der Kohlenstoffschicht verbunden ist, steht A für einen divalenten RestWhen the functional group X is connected to the carbon layer by means of an anchor group A, A is a divalent radical
-(CH2)- , — c-
Figure imgf000006_0002
- (CH 2 ) -, - c-
Figure imgf000006_0002
wobei n eine ganze Zahl zwischen 1 und 18 bedeutet.where n is an integer between 1 and 18.
oder für den Restor for the rest
Figure imgf000006_0003
Figure imgf000006_0003
wobei wenigstens eines der Sauerstoffatome mit der Kohlenstoffschicht kovalent verknüpft ist.wherein at least one of the oxygen atoms is covalently linked to the carbon layer.
Als magnetische Kerne kommen alle ferri- oder ferromagnetische Werkstoffe in Frage. Solche Werkstoffe sind bekannt und ihre Eignung zur Herstellung von magnetischen Nanopartikel ausführlich beschrieben (siehe z. B. [Jun 2008]).Magnetic cores are all ferri- or ferromagnetic materials in question. Such materials are known and their suitability for the production of magnetic nanoparticles described in detail (see, for example, [Jun 2008]).
Die Kohlenstoffschicht besteht aus Lagen kovalent verknüpfter Kohlenstoffatome, wobei die Schichtdicke zwischen 0,5 und 5 nm, bevorzugt zwischen 1 und 2 nm beträgt.The carbon layer consists of layers of covalently linked carbon atoms, the layer thickness being between 0.5 and 5 nm, preferably between 1 and 2 nm.
Es ist bekannt, dass unbeschichtete Metallnanopulver häufig pyrophore Eigenschaften aufweisen. Die Kohlenstoffschicht schützt den magnetischen Kern vor oxidativem oder korrosivem Abbau. Solche kohlenstoffbeschichteten Nanoteilchen sind in chemischen Reaktionsmedien gut einsetzbar, weil sie eine Kombination folgender vorteilhafter Eigenschaften besitzen:It is known that uncoated metal nanopowders often have pyrophoric properties. The carbon layer protects the magnetic Core from oxidative or corrosive degradation. Such carbon-coated nanoparticles can be used well in chemical reaction media because they have a combination of the following advantageous properties:
• thermooxidative Beständigkeit bis ca. 200 0C (siehe z. B. [Grass 2007]),• thermo-resistance up to 200 0 C (see, eg. As [Grass 2007]),
• Beständigkeit gegen alle gängigen Lösemittel,• Resistance to all common solvents,
• Beständigkeit gegenüber wässrigen stark sauren oder basischen Reaktionsmedien.• Resistance to aqueous strongly acidic or basic reaction media.
Dem Fachmann ist aber auch bekannt, dass in Abhängigkeit vomThe skilled person is also known that, depending on
Herstellverfahren auch dichte Kohlenstoffschichten Defekte aufweisen. Solche Defekte zeigen erhöhte Reaktivität und erleichtern die nachfolgende Funktionalisierung der Nanoteilchen, haben aber keinen merklichen Einfluß auf die chemische Beständigkeit.Production method also have dense carbon layers defects. Such defects show increased reactivity and facilitate the subsequent functionalization of the nanoparticles, but have no appreciable influence on the chemical resistance.
Herstellung der kohlenstoffbeschichteten NanoteilchenPreparation of carbon-coated nanoparticles
Die Herstellung der erfindungsgemäßen katalytisch wirkenden Nanoteilchen kann prinzipiell nach zwei unterschiedlichen, bereits an sich bekannten Verfahren erfolgen:The preparation of the catalytically active nanoparticles according to the invention can in principle be carried out by two different methods which are already known per se:
Verfahren A: Magnetische Nanopartikel werden zuerst mit einer mehrlagigen Kohlenstoffschicht beschichtet und in einem zweiten Schritt mit katalytisch wirkenden Gruppen funktionalisiert. Beispielsweise wird in [He 2006] die CVD- Beschichtung (CVD Chemical Vapour Deposition) von Ni-Nanoteilchen beschrieben [siehe auch [Seo 2006]).Method A: Magnetic nanoparticles are first coated with a multilayer carbon layer and functionalized in a second step with catalytically active groups. For example, in [He 2006], the CVD (CVD Chemical Vapor Deposition) coating of Ni nanoparticles is described [see also [Seo 2006]).
Verfahren B: Magnetische Nanoteilchen mit einer mehrlagigen Kohlenstoffschicht werden einstufig mittels reduzierender Flammensprühpyrolyse hergestellt (siehe z. B. [Stark 2006]).Method B: Magnetic nanoparticles with a multilayer carbon layer are prepared in one stage by means of reducing flame spray pyrolysis (see, for example, [Stark 2006]).
In Abhängigkeit vom Herstellungsverfahren erhält man in der Regel Teilchen unterschiedlicher Größe, die sich durch eine Verteilungsfunktion beschreiben lassen. Solche Verteilungsfunktion lassen sich durch laserspektroskopische Verfahren ermitteln.Depending on the manufacturing process, particles of different sizes are usually obtained, which are described by a distribution function to let. Such distribution function can be determined by laser spectroscopic method.
Sowohl Verfahren A als auch Verfahren B eignen sich in gleicher Weise zur Herstellung der erfindungsgemäßen katalytisch wirksamen Nanoteilchen.Both process A and process B are suitable in the same way for the preparation of the catalytically active nanoparticles according to the invention.
Der Durchmesser der erfindungsgemäßen katalytisch wirksamen Nanoteilchen beträgt 1 bis 200 nm, bevorzugt 2 bis 100 nm, besonders bevorzugt 2 bis 50 nm.The diameter of the catalytically active nanoparticles according to the invention is 1 to 200 nm, preferably 2 to 100 nm, more preferably 2 to 50 nm.
Besonders vorteilhaft ist eine besondere Ausführungsform des Erfindungsgedankens, bei der eine Kombination aus Teilchengröße und Werkstoffwahl zu superparamagnetischem Verhalten der Nanoteilchen führt. Es iot olln.arri.air» Kol/orint rlαeo ΛΛo+Ωr.oliΛr.
Figure imgf000008_0002
Figure imgf000008_0001
superparamagnetisches Verhalten zeigen, wenn das Volumen der magnetischen Kristalle eine kritische Größe unterschreitet. So zeigen beispielsweise erfindungsgemäße Nanoteilchen, deren Kern aus Magnetit oder Maghemit besteht, mit einem Durchmesser von 2 bis 20 nm ausgeprägtes superparamagnetisches Verhalten.
Particularly advantageous is a particular embodiment of the inventive concept, in which a combination of particle size and choice of material leads to superparamagnetic behavior of the nanoparticles. It iot olln.arri.air »Kol / orint rlαeo ΛΛo + Ωr.oliΛr.
Figure imgf000008_0002
Figure imgf000008_0001
show superparamagnetic behavior when the volume of magnetic crystals falls below a critical size. For example, nanoparticles according to the invention, whose core consists of magnetite or maghemite, have a pronounced superparamagnetic behavior with a diameter of 2 to 20 nm.
Superparamagnetische Nanoteilchen lassen sich in Flüssigkeiten leicht dispergieren und nach Reaktionsende durch Einwirkung eines äußeren Magnetfeldes leicht quantitativ abtrennen. Nach der Abtrennung können die Nanopartikel erneut in einem Reaktionsansatz dispergiert werden.Superparamagnetic nanoparticles can be readily dispersed in liquids and easily quantitatively separated after the reaction by the action of an external magnetic field. After separation, the nanoparticles can be redispersed in a reaction mixture.
Erfindungsgemäße katalytisch wirksamen Nanoteilchen, die ohne äußeres Magnetfeld eine Restmagnetisierung zeigen, sind ebenfalls problemlos als Katalysatoren bei chemischen Reaktionen verwendbar, wenn durch Anwendung von Scherkräften die gleichmäßige Dispergierung im Reaktionsmedium sichergestellt ist.Catalytically active nanoparticles according to the invention, which exhibit residual magnetization without an external magnetic field, can likewise be used without problems as catalysts in chemical reactions if the uniform dispersion in the reaction medium is ensured by the application of shear forces.
Die Verfahren zur Funktionalisierung einer Kohlenstoffschicht sind an sich bekannt. Als Beispiele für Verfahren zur Herstellung der erfindungsgemäßen katalytisch wirksamen Nanoteilchen seien genannt: 1 ) Herstellung von Nanopartikeln mit Sulfonsäuregruppen (X = -SO3H) durch Umsetzung der Kohlenstoffschicht mit: a) Chlorsulfonsäure und anschließender Verseifung (siehe z. B. [Toshifumi 1996]) b) rauchender Schwefelsäure, c) konzentrierter Schwefelsäure unter Zusatz von Thionylchlorid, d) Diazonium-Salzen von aromatischen Sulfonsäuren (siehe z. B. [Belmont 1995])The processes for the functionalization of a carbon layer are known per se. Examples of processes for the preparation of the catalytically active nanoparticles according to the invention include: 1) Production of Nanoparticles with Sulfonic Acid Groups (X = -SO 3 H) by Reaction of the Carbon Layer with: a) Chlorosulfonic Acid and Subsequent Saponification (see, eg [Toshifumi 1996]) b) fuming sulfuric acid, c) concentrated sulfuric acid with addition of thionyl chloride, d) diazonium salts of aromatic sulfonic acids (see eg [Belmont 1995])
2) Herstellung von Nanopartikeln mit Pyridylgruppen durch Umsetzung der Kohlenstoffschicht mit: a) Diazonium-Salzen basierend auf aminosubstituierten Pyridinen,2) Preparation of nanoparticles with pyridyl groups by reacting the carbon layer with: a) diazonium salts based on amino-substituted pyridines,
wenn die Kohlenstoffschicht mit einem Oxidationsmittel vorbehandelt wurde.when the carbon layer has been pretreated with an oxidizing agent.
Anwendungapplication
Die so hergestellten funktionalisierten Nanoteilchen können vielseitig für chemische, insbesondere oleochemische Reaktionen eingesetzt werden. Beipiele hierfür sind:The functionalized nanoparticles prepared in this way can be used in a variety of ways for chemical, in particular oleochemical reactions. Examples of these are:
• sauer katalysierte Veresterung von Fettsäuren und Fettsäuregemischen mit Alkoholen, bevorzugt niederen Alkoholen, besonders bevorzugt mit Methanol und Ethanol,Acid-catalyzed esterification of fatty acids and fatty acid mixtures with alcohols, preferably lower alcohols, more preferably with methanol and ethanol,
• sauer katalysierte Veresterung von Montanwachssäuren mit Alkoholen, bevorzugt niederen Alkoholen, besonders bevorzugt mit Ethylenglykol, Pentaerythrit und Glycerin,Acid-catalyzed esterification of montan wax acids with alcohols, preferably lower alcohols, particularly preferably with ethylene glycol, pentaerythritol and glycerol,
• basisch katalysierte Umesterung von Triglyceriden mit Alkoholen, bevorzugt niederen Alkoholen, besonders bevorzugt mit Methanol und Ethanol. Der besondere Vorteil der erfindungsgemäßen katalytisch wirkenden Nanoteilchen liegt darin, dass die Kombination aus hoher spezifischer Oberfläche und hoher Dichte katalytischer wirksamer funktioneller Gruppen zu einer Reaktionsbeschleunigung führt, wie sie sonst nur bei der homogen Katalyse zu beobachten ist. Im Vergleich zur homogenen Katalyse läßt sich der Katalysator nach Reaktionsende durch Anwendung eines Magnetfeldes gut abtrennen.Basically catalyzed transesterification of triglycerides with alcohols, preferably lower alcohols, more preferably with methanol and ethanol. The particular advantage of the catalytically active nanoparticles according to the invention is that the combination of high specific surface area and high density catalytic effective functional groups leads to a reaction acceleration, which is otherwise observed only in homogeneous catalysis. Compared to homogeneous catalysis, the catalyst can be well separated by the application of a magnetic field after the end of the reaction.
Die beschriebenen chemischen, insbesondere oleochemischen Reaktionen können als Batch- oder Konti-Verfahren, bevorzugt in Batch-Verfahren angewendet werden.The described chemical, in particular oleochemical reactions can be used as batch or continuous processes, preferably in batch processes.
Beispiel 1example 1
Katalysator-HerstellungCatalyst Preparation
10 g kohlenstoffbeschichtete Co-Nanopartikel (hergestellt gemäß Beispiel 14 aus [Stark 2006] mit einem mittleren Teilchendurchmesser von 15 nm wurden bei 5°C mit 30 ml rauchender Schwefelsäure versetzt und anschließend 10 min im Ultraschallbad behandelt. Anschließend ließ man die Suspension noch 12 h rühren.10 g of carbon-coated Co nanoparticles (prepared according to Example 14 from [Stark 2006] having a mean particle diameter of 15 nm were mixed with 5 ml of fuming sulfuric acid at 5 ° C. and then treated for 10 minutes in an ultrasound bath, after which the suspension was left for a further 12 hours stir.
Zur Aufarbeitung wurde die Suspension auf 400 g Scherbeneis gegossen, die Nanopartikel mittels einer glasummantelten elektromagnetischen Tauchsonde abgetrennt und mit destilliertem Wasser neutral gewaschen.For workup, the suspension was poured onto 400 g flake ice, the nanoparticles separated by means of a glass-coated electromagnetic immersion probe and washed neutral with distilled water.
VeresterungsversuchVeresterungsversuch
In einem thermostatisierten 1 -Liter-Doppelmantel-Rührkessel mit aufgesetztem Rückflusskühler wurden 366 g Rapsfettsäure, 146 g Methanol und 29 g 80%- iges Rohglycerin (aus der Biodieselproduktion) vorgelegt. Zu dieser Mischung gab man die Gesamtmenge des oben hergestellten Katalysators und dispergierte die Teilchen mit einem Dispergator der Firma ART, Typ Miccra D-9 bei 11000 Upm für δ min. Die Reaktionsmischung mit dem suspendierten Katalysator wurde bis zum beginnenden Sieden aufgeheizt und insgesamt für 90 min gerührt.In a thermostatically controlled 1-liter double-walled stirred tank with attached reflux condenser, 366 g of rapeseed fatty acid, 146 g of methanol and 29 g of 80% crude glycerol (from biodiesel production) were initially charged. To this mixture, the total amount of the catalyst prepared above was added and the particles were dispersed with a ART dispersing agent type Miccra D-9 at 11000 rpm for δ min. The reaction mixture with the suspended catalyst was heated until incipient boiling and stirred for a total of 90 minutes.
In Abständen von 5 min wurde ca. 4 ml Reaktionslösung entnommen und die Säurezahl bestimmt, um den Veresterungsverlauf zu verfolgen. Dabei zeigte sich, dass die anfängliche Säurezahl 145 innerhalb von 90 min auf einen Wert von 28 absinkt. Das ist in der anliegenden Grafik dargestellt.At intervals of 5 min, about 4 ml of reaction solution was taken and the acid number was determined in order to follow the course of the esterification. It was found that the initial acid number 145 drops to a value of 28 within 90 min. This is shown in the attached graphic.
Die weitere Reaktion wurde gestoppt, indem man mit einer glasummantelten elektromagnetischen Tauchsonde unter Rühren innerhalb von 10 min alle suspendierten Katalysatorteilchen vollständig abtrennte und aus der Reaktionsmischung entfernte.The further reaction was stopped by completely separating all the suspended catalyst particles with a glass-coated electromagnetic immersion probe with stirring within 10 minutes and removing them from the reaction mixture.
Jeweils eine Probe der Ausgangslösung und Reaktionslösung nach Abtrennung der Katalysatorteilchen wurde mittels ICP-OES (Varian Vista Pro) spurenanalytisch untersucht. Der ermittelte Cobalt-Gehalt betrug jeweils < 500 μg/kg und zeigte, dass der Katalysator vollständig abgetrennt worden war.In each case a sample of the starting solution and reaction solution after removal of the catalyst particles was analyzed by ICP-OES (Varian Vista Pro) trace analysis. The determined cobalt content was in each case <500 μg / kg and showed that the catalyst had been completely separated off.
Beispiel 2Example 2
Katalysator-HerstellungCatalyst Preparation
10 g kohlenstoffbeschichtete Magnetit-Nanopartikel mit einem mittleren10 g of carbon-coated magnetite nanoparticles with a middle
Teilchendurchmesser von 5 nm, hergestellt durch CVD-Beschichtung wie in [He 2006] beschrieben, wurden bei 5°C in einer Lösung von 50 ml destilliertem Wasser, 8,6 g Sulfanilsäure und 10,4 g Natriumnitrit im Ultraschallbad suspendiert. Dazu wurde innerhalb 15 min 20 ml konzentrierte Salzsäure gegeben.Particle diameters of 5 nm, prepared by CVD coating as described in [He 2006], were suspended at 5 ° C in a solution of 50 ml of distilled water, 8.6 g of sulfanilic acid and 10.4 g of sodium nitrite in an ultrasonic bath. For this purpose, 20 ml of concentrated hydrochloric acid was added within 15 min.
Unter Ultraschalleinwirkung erwärmte man die Suspension auf 500C und rührte bei dieser Temperatur für 4h. Zur Aufarbeitung wurde die Reaktionslösung auf 400 g Scherbeneis gegossen, die Nanopartikel mittels einer glasummantelten elektromagnetischen Tauchsonde abgetrennt und mit destilliertem Wasser neutral gewaschen.Under the action of ultrasound, the suspension was heated to 50 ° C. and stirred at this temperature for 4 hours. For workup, the reaction solution was poured onto 400 g flake ice, the nanoparticles separated by means of a glass-coated electromagnetic immersion probe and washed neutral with distilled water.
VeresterunqsversuchVeresterunqsversuch
In einem 500 ml-Dreihalskolben mit aufgesetztem Wasserabscheider und mechanischem Rührer wurde zu einer Mischung aus 136 g Phenylsessigsäure, 140 ml Ethanol und 100 ml Toloul die Gesamtmenge des Katalysators gegeben. Unter Rühren wurde bis zum Sieden erhitzt. Dabei wurde der Katalysator gleichmäßig dispergiert.In a 500 ml three-necked flask fitted with a water separator and mechanical stirrer was added to a mixture of 136 g of phenylacetic acid, 140 ml of ethanol and 100 ml of toluene, the total amount of the catalyst. While stirring, it was heated to boiling. The catalyst was uniformly dispersed.
Die Reaktionsmischung wurde für 24 h zum Sieden erhitzt und das dabei pntctphpnHp RpnktinnQwasspr a^pntrnn ahπpsr.hipHpnThe reaction mixture was heated to boiling for 24 h, and the reaction was carried out in vacuo
Anschließend ließ man abkühlen und der Katalysator wurde mit einer glasummantelten elektromagnetischen Tauchsonde unter Rühren innerhalb von 15 min vollständig entfernt.The mixture was then allowed to cool and the catalyst was completely removed with a glass-coated electromagnetic immersion probe with stirring within 15 min.
Das Reaktionsgemisch wurde destillativ aufgearbeitet und man erhielt 115 g Phenylessigsäure-Ethylester. The reaction mixture was worked up by distillation and gave 115 g of phenylacetic acid ethyl ester.
Literaturliterature
In der Erfindungsbeschreibung zitierte LiteraturLiterature cited in the description of the invention
[Belmont 1995] US 5,851 ,280 (Cabot Corp., 14.12.1995)[Belmont 1995] US 5,851,280 (Cabot Corp., Dec. 14, 1995)
Reaction of Cabon Black with Diazonium Salts, Resultant Cabon Black Products and Their UsesReaction of Cabon Black with Diazonium Salts, Resultant Cabon Black Products and Their Uses
[Fredriksson 2000] DE 600 29 330 (European Institute of Science AB, 07.09.2000)[Fredriksson 2000] DE 600 29 330 (European Institute of Science AB, 07.09.2000)
Selektiv bindende und magnetische NanopartikelSelective binding and magnetic nanoparticles
[Grass 2007][Grass 2007]
R N. Grass, E. K. Athanassiou, W.ü. Stark Magnetische Trennung von organischen Verbindungen durch kovalent funktionalisierte Cobaltnanopartikel Angew. Chem., Band 119, Seite 4996, Jahr 2007R N. Grass, E.K. Athanassiou, W.U. Strong Magnetic Separation of Organic Compounds by Covalently Functionalized Cobalt Nanoparticles Angew. Chem., Vol. 119, page 4996, year 2007
[He 2006] CN. He, X.W. Du, J. Ding, CS. Shi, JJ. Li, N.Q. Zhao und L. Cui[He 2006] CN. He, X.W. You, J. Ding, CS. Shi, JJ. Li, N.Q. Zhao and L. Cui
Low-temperature CVD synthesis of carbon-encapsulated magnetic Ni- nanoparticles with a narrow distribution of diameters Carbon, Band 44, Seite 2330, Jahr 2006Low-temperature CVD synthesis of carbon-encapsulated magnetic nanoparticles with a narrow distribution of carbon diameters, Volume 44, page 2330, year 2006
[Jun 2008][Jun 2008]
Y.-W. Jun, J.-H. Lee, J. CheonY.-W. Jun, J.-H. Lee, J. Cheon
Cemisches Design von leistungsfähigen Nanosonden für dieCemic design of powerful nanoprobes for the
KernspintomographieMRI
Angew. Chem., Band 120, Seite 5200, Jahr 2008Angew. Chem., Vol. 120, page 5200, year 2008
[Kresse 1994][Cress 1994]
DE 44 28 851 (Institut für Diagnostikforschung, 04.08.1994)DE 44 28 851 (Institute for Diagnostic Research, 04.08.1994)
Eisen enthaltende Nanopartikel, ihre Herstellung und Anwendung inIron-containing nanoparticles, their preparation and use in
Diagnostik und Therapie [Knothe 2005]Diagnostics and therapy [Knothe 2005]
G. Knothe, J. Van Gerpen, J. Krahl The Biodiesel Handbook AOCS Press, Urbana USA (2005)G. Knothe, J. Van Gerpen, J. Krahl The Biodiesel Handbook AOCS Press, Urbana USA (2005)
[Krüger 2007| A. Krüger[Kruger 2007 | A. Kruger
Neue Kohlenstoffmaterialien B. G. Teubner Verlag, Wiesbaden 2007 (ISBN 978-3-519-00510-0)New Carbon Materials B.G. Teubner Verlag, Wiesbaden 2007 (ISBN 978-3-519-00510-0)
[Mittelbach 2004][Mittelbach 2004]
Biodiesel - The Comprehensive HandbookBiodiesel - The Comprehensive Handbook
Martin Mitelharh fPnhliςhPiΛ Cra? C?nnΔ\Martin Mitelharh fPnhliςhPiΛ Cra? C? NnΔ \
[Seo 2006][Seo 2006]
W. S. SEO, J. H. LEE, X. SUN, Y. SUZUKI, D. Mann, Z. LIU, M.W.S. SEO, J.H. LEE, X. SUN, Y. SUZUKI, D. Mann, Z. LIU, M.
TERASHIMA1 P. C. YANG, M. V. MCCONNELL, D. G. NISHIMURA und H. DAI FeCo/graphitic-shell nanocrystals as advancedmagnetic-resonance- imagingand near-infrared agentsTERASHIMA 1 PC YANG, MV MCCONNELL, DG NISHIMURA and H. DAI FeCo / graphitic-shell nanocrystals as advancedmagnetic-resonance-imagingand near-infrared agents
Nature Materials, Band 5, Seite 971 , Jahr 2006Nature Materials, Volume 5, page 971, year 2006
[Stark 2006] WO 2007/028267 (ETH, Zürich, 04.09.2006)[Stark 2006] WO 2007/028267 (ETH, Zurich, 04.09.2006)
Methods and Devices for Flame Spray PyrolysisMethods and Devices for Flame Spray Pyrolysis
[Toshifumi 1996][Toshifumi 1996]
JP 10110112 (Toyo, 07.10.1996) Surface-Treated Carbon Black And its Production JP 10110112 (Toyo, 07.10.1996) Surface-Treated Carbon Black And Its Production

Claims

Patentansprüche claims
1. Katalytisch wirkende magnetische Nanopartikel für chemische, insbesondere oleochemische Umsetzungen, bestehend aus einem magnetischen Kern und einer äußeren Kohlenstoffschicht, die mit sauren oder basisch wirkenden Gruppen funktionalisiert ist.1. Catalytically active magnetic nanoparticles for chemical, in particular oleochemical reactions, consisting of a magnetic core and an outer carbon layer, which is functionalized with acidic or basic groups acting.
2. Nanopartikel nach Anspruch 1. wobei die funktionellen Gruppen direkt oder mittels einer Ankergruppe mit der Kohlenstoffschicht kovalent verknüpft sind.2. nanoparticles according to claim 1 wherein the functional groups are covalently linked directly or by means of an anchor group with the carbon layer.
3. Nanopartikel nach Anspruch 1 oder 2, wobei die funktionellen Gruppen gleich oder verschieden sind.3. Nanoparticles according to claim 1 or 2, wherein the functional groups are the same or different.
4. Nanopartikel nach einem der Ansprüche 1 bis 3, wobei der Durchmesser der Nanopartikel 1 bis 200 nm beträgt.4. Nanoparticle according to one of claims 1 to 3, wherein the diameter of the nanoparticles is 1 to 200 nm.
5. Nanopartikel nach Anspruch 4, deren Durchmesser 2 bis 100 nm beträgt.5. nanoparticles according to claim 4, whose diameter is 2 to 100 nm.
6. Nanopartikel nach Anspruch 5, deren Durchmesser 2 bis 50 nm beträgt.6. nanoparticles according to claim 5, whose diameter is 2 to 50 nm.
7. Nanopartikel nach einem der Ansprüche I bis 3, deren Kern aus Magnetit oder Maghemit besteht.7. nanoparticles according to any one of claims I to 3, whose core consists of magnetite or maghemite.
8. Nanopartikel nach einem der Ansprüche 1 bis 3, wobei die Kohlenstoffschicht aus Lagen kovalent verknüpfter Kohlenstoffatome besteht. 8. A nanoparticle according to any one of claims 1 to 3, wherein the carbon layer consists of layers of covalently linked carbon atoms.
9. Nanopartikel nach Anspruch 8, wobei die Schichtdicke der Kohlenstoffschicht 0,5 bis 5 nm beträgt.9. nanoparticles according to claim 8, wherein the layer thickness of the carbon layer is 0.5 to 5 nm.
10. Nanopartikel nach Anspruch 9, wobei die Schichtdicke der Kohlenstoffschicht 1 bis 2 nm beträgt.10. nanoparticles according to claim 9, wherein the layer thickness of the carbon layer is 1 to 2 nm.
11. Nanopartikel nach Anspruch 1 zur Anwendung bei der sauren Katalyse, wobei die funktionellen Gruppen aus den folgenden Gruppen ausgewählt sind:11. Nanoparticles according to claim 1 for use in acid catalysis, wherein the functional groups are selected from the following groups:
-SO3H1 -CF2SO3H1 -PO3H1 -CF2COOH-SO 3 H 1 -CF 2 SO 3 H 1 -PO 3 H 1 -CF 2 COOH
12. Nanopartikel nach Anspruch 1 zur Anwendung bei der basischen Katalyse, wobei die funktionellen Gruppen aus den folgenden Gruppen ausgewählt sind:
Figure imgf000016_0001
12. Nanoparticles according to claim 1 for use in basic catalysis, wherein the functional groups are selected from the following groups:
Figure imgf000016_0001
wobei R für einen linearen oder verzweigten C1- bis C12-Alkylrest steht.wherein R is a linear or branched C1 to C12 alkyl radical.
13. Nanopartikel nach Anspruch 12, wobei R für einen Methyl- oder Ethyl-Rest steht.13. Nanoparticles according to claim 12, wherein R stands for a methyl or ethyl radical.
14. Nanopartikel nach Anspruch 1 , wobei, wenn eine funktionelle Gruppe mittels einer Ankergruppe mit der Kohlenstoffschicht verbunden ist, die14. The nanoparticle according to claim 1, wherein when a functional group is connected to the carbon layer by means of an anchor group, the
Ankergruppe durch einen der folgenden divalenten Reste gebildet ist:Anchor group is formed by one of the following divalent radicals:
-(CH2)- , — C-
Figure imgf000016_0002
- (CH 2 ) -, - C-
Figure imgf000016_0002
wobei n eine ganze Zahl zwischen 1 und 18 bedeutet.where n is an integer between 1 and 18.
15. Nanopartikel nach Anspruch 1 , wobei die Ankergruppe gebildet ist durch den Rest:
Figure imgf000017_0001
wobei wenigstens eines der Sauerstoffatome mit der Kohlenstoffschicht kovalent verknüpft ist.
15. Nanoparticles according to claim 1, wherein the anchor group is formed by the rest:
Figure imgf000017_0001
wherein at least one of the oxygen atoms is covalently linked to the carbon layer.
PCT/EP2008/006313 2007-07-31 2008-07-31 Catalytically active magnetic nanoparticles WO2009015890A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007036327.5 2007-07-31
DE102007036327 2007-07-31

Publications (2)

Publication Number Publication Date
WO2009015890A2 true WO2009015890A2 (en) 2009-02-05
WO2009015890A3 WO2009015890A3 (en) 2009-03-19

Family

ID=40277126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006313 WO2009015890A2 (en) 2007-07-31 2008-07-31 Catalytically active magnetic nanoparticles

Country Status (1)

Country Link
WO (1) WO2009015890A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114807B2 (en) 2010-03-05 2012-02-14 Cem Corporation Synthesis and use of intermetallic iron palladium nanoparticle compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547748A (en) * 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
WO1999046782A2 (en) * 1998-03-09 1999-09-16 Universiteit Utrecht Ferromagnetic particles
WO2003057626A1 (en) * 2002-01-07 2003-07-17 The University Of Reading Microparticles and methods of making them
US6841509B1 (en) * 2003-07-21 2005-01-11 Industrial Technology Research Institute Carbon nanocapsule supported catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547748A (en) * 1994-01-14 1996-08-20 Sri International Carbon nanoencapsulates
WO1999046782A2 (en) * 1998-03-09 1999-09-16 Universiteit Utrecht Ferromagnetic particles
WO2003057626A1 (en) * 2002-01-07 2003-07-17 The University Of Reading Microparticles and methods of making them
US6841509B1 (en) * 2003-07-21 2005-01-11 Industrial Technology Research Institute Carbon nanocapsule supported catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN-HUI LU ET AL: "Nanoengineering of a Magnetically Separable Hydrogenation Catalyst" ANGEWANDTE CHEMIE INTERNATIONAL EDITION,, Bd. 43, Nr. 33, 13. August 2004 (2004-08-13), Seiten 4303-4306, XP002479993 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114807B2 (en) 2010-03-05 2012-02-14 Cem Corporation Synthesis and use of intermetallic iron palladium nanoparticle compositions

Also Published As

Publication number Publication date
WO2009015890A3 (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Zhang et al. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid
Ngu et al. Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification
WO2017084969A1 (en) Gold-based catalyst for oxidative esterification of aldehydes to carboxylic acid esters
CH690720A5 (en) Nanotubes, use of such nanotubes as well as methods for their preparation.
DE102010050644A1 (en) Process for the preparation of carbon-protected superparamagnetic or magnetic nanospheres
EP2200739A2 (en) Sintering resistant catalyst for use in hydrogenation and dehydrogenation reactions and method for producing the same
DE4335360A1 (en) Activated metal fixed bed catalyst according to Raney and process for its preparation
DE19821968A1 (en) Production of transition metal colloid for use e.g. as coating, catalyst, fuel cell component and in ink jet printing, laser etching, information storage and cell labeling and cell separation
WO2010063388A2 (en) Catalyst for oxidation reactions in the presence of hydrogen chloride and/or chlorine and method the production thereof, and the use thereof
Cuentas-Gallegos et al. Design of hybrid materials based on carbon nanotubes and polyoxometalates
Niju et al. Optimization of acid catalyzed esterification and mixed metal oxide catalyzed transesterification for biodiesel production from Moringa oleifera oil
DE60315424T2 (en) METHOD FOR IMPROVING A CATALYST
Rezvani et al. Synthesis of (Gly) 3PMo12O40@ MnFe2O4 organic/inorganic hybrid nanocomposite as an efficient and magnetically recoverable catalyst for oxidative desulfurization of liquid fuels
WO2011073179A1 (en) Method for electrochemical oxygen reduction in alkaline media
WO2009015890A2 (en) Catalytically active magnetic nanoparticles
EP2055383A1 (en) Amphoteric ion exchanger
DE102004035803B4 (en) Process for the preparation of water-dispersed iron oxide nanoparticles and their use
DE69813283T2 (en) CARBON COATED WITH ALUMINUM LAYER AND METHOD FOR THE PRODUCTION THEREOF
DE102012012510B4 (en) Graphite-containing shaped catalyst body, its production method and use
EP0023265A1 (en) Finely divided solids, their preparation and use
KR101807908B1 (en) Method for fabricating nano particles supported on hydrophobic carrier and nano particles supported on carrier fabricated by the method
DE10025964A1 (en) Heterogeneous catalyst based on magnetic carrier, useful in oxidation of organic compounds, e.g. epoxidation, allows easy catalyst separation
CN111874956B (en) Fe (Fe) 3 O 4 @Fe 2 O 3 Preparation method of magnetic composite nano rod
DE4339139A1 (en) Magnetically separable catalysts
DE102013004755B4 (en) Composite material containing a bismuth-molybdenum-nickel mixed oxide or a bismuth-molybdenum-cobalt mixed oxide and SiO 2

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08785255

Country of ref document: EP

Kind code of ref document: A2