WO2009010460A2 - Transgenic plants with increased stress tolerance and yield - Google Patents

Transgenic plants with increased stress tolerance and yield Download PDF

Info

Publication number
WO2009010460A2
WO2009010460A2 PCT/EP2008/059070 EP2008059070W WO2009010460A2 WO 2009010460 A2 WO2009010460 A2 WO 2009010460A2 EP 2008059070 W EP2008059070 W EP 2008059070W WO 2009010460 A2 WO2009010460 A2 WO 2009010460A2
Authority
WO
WIPO (PCT)
Prior art keywords
plant
seq
sequence
plants
protein
Prior art date
Application number
PCT/EP2008/059070
Other languages
French (fr)
Other versions
WO2009010460A3 (en
Inventor
Amber Shirley
Rodrigo Sarria-Millan
Piotr Puzio
Agnes Chardonnens
Ruoying Chen
Original Assignee
Basf Plant Science Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Plant Science Gmbh filed Critical Basf Plant Science Gmbh
Priority to AU2008277735A priority Critical patent/AU2008277735A1/en
Priority to CN200880024564A priority patent/CN101743314A/en
Priority to US12/668,665 priority patent/US8338661B2/en
Priority to BRPI0814689-6A2A priority patent/BRPI0814689A2/en
Priority to MX2009013648A priority patent/MX2009013648A/en
Priority to EP08786070A priority patent/EP2179043A2/en
Priority to CA 2692650 priority patent/CA2692650A1/en
Publication of WO2009010460A2 publication Critical patent/WO2009010460A2/en
Publication of WO2009010460A3 publication Critical patent/WO2009010460A3/en
Priority to US13/666,997 priority patent/US20130125255A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/63Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • This invention relates generally to transgenic plants which overexpress nucleic acid sequences encoding polypeptides capable of conferring increased stress tolerance and consequently, increased plant growth and crop yield, under normal or abiotic stress conditions. Additionally, the invention relates to novel isolated nucleic acid sequences encoding polypeptides that confer upon a plant increased tolerance under abiotic stress conditions, and/or increased plant growth and/or increased yield under normal or abiotic stress conditions.
  • BACKGROUND OF THE INVENTION [0002] Abiotic environmental stresses, such as drought, salinity, heat, and cold, are major limiting factors of plant growth and crop yield. Crop yield is defined herein as the number of bushels of relevant agricultural product (such as grain, forage, or seed) harvested per acre.
  • Water availability is an important aspect of the abiotic stresses and their effects on plant growth. Continuous exposure to drought conditions causes major alterations in the plant metabolism which ultimately lead to cell death and consequently to yield losses. Because high salt content in some soils results in less water being available for cell intake, high salt concentration has an effect on plants similar to the effect of drought on plants. Additionally, under freezing temperatures, plant cells lose water as a result of ice formation within the plant. Accordingly, crop damage from drought, heat, salinity, and cold stress, is predominantly due to dehydration.
  • WUE water use efficiency
  • a plant's response to desiccation, osmotic shock, and temperature extremes are also employed to determine the plant's tolerance or resistance to abiotic stresses.
  • the ability to standardize soil properties, temperature, water and nutrient availability and light intensity is an intrinsic advantage of greenhouse or plant growth chamber environments compared to the field.
  • WUE has been defined and measured in multiple ways. One approach is to calculate the ratio of whole plant dry weight, to the weight of water consumed by the plant throughout its life. Another variation is to use a shorter time interval when biomass accumulation and water use are measured. Yet another approach is to use measurements from restricted parts of the plant, for example, measuring only aerial growth and water use. WUE also has been defined as the ratio of CO2 uptake to water vapor loss from a leaf or portion of a leaf, often measured over a very short time period (e.g. seconds/minutes). The ratio of 13 C/ 12 C fixed in plant tissue, and measured with an isotope ratio mass-spectrometer, also has been used to estimate WUE in plants using C3 photosynthesis.
  • Concomitant with measurements of parameters that correlate with abiotic stress tolerance are measurements of parameters that indicate the potential impact of a transgene on crop yield.
  • the plant biomass correlates with the total yield.
  • other parameters have been used to estimate yield, such as plant size, as measured by total plant dry weight, above- ground dry weight, above-ground fresh weight, leaf area, stem volume, plant height, rosette diameter, leaf length, root length, root mass, tiller number, and leaf number.
  • Plant size at an early developmental stage will typically correlate with plant size later in development. A larger plant with a greater leaf area can typically absorb more light and carbon dioxide than a smaller plant and therefore will likely gain a greater weight during the same period.
  • Newly generated stress tolerant plants and/or plants with increased water use efficiency will have many advantages, such as an increased range in which the crop plants can be cultivated, by for example, decreasing the water requirements of a plant species.
  • Other desirable advantages include increased resistance to lodging, the bending of shoots or stems in response to wind, rain, pests, or disease.
  • the present inventors have discovered that transforming a plant with certain polynucleotides results in enhancement of the plant's growth and response to environmental stress, and accordingly the yield of the agricultural products of the plant is in- creased, when the polynucleotides are present in the plant as transgenes.
  • the polynucleotides capable of mediating such enhancements have been isolated from Arabidopsis thaliana, Capsicum annuum, Escherichia coli, Physcomitrella patens, Saccharomyces cere- visiae, Triticum aestivum, Zea mays, Glycine max, Linum usitatissimum, Triticum aestivum, Oryza sativa, Helianthus annuus, and Brassica napus and the sequences thereof are set forth in the Sequence Listing as indicated in Table 1. Table 1
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a CAAX amino terminal protease family protein.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a prenyl- dependent CAAX protease.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a SAR8.2 pro- tein precursor.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a putative membrane protein.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2C protein.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial carrier protein.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein kinase.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a peptidyl pro- IyI isomerase.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 1.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 2.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a ornithine decarboxylase.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a glutathione reductase.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 3.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2A protein.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MEK1 protein kinase.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a AP2 domain containing transcription factor.
  • the invention concerns a seed produced by the transgenic plant of the invention, wherein the seed is true breeding for a transgene comprising the polynucleotide described above. Plants derived from the seed of the invention demonstrate increased tolerance to an environmental stress, and/or increased plant growth, and/or increased yield, under normal or stress conditions as compared to a wild type variety of the plant.
  • the invention concerns products produced by or from the transgenic plants of the invention, their plant parts, or their seeds, such as a foodstuff, feedstuff, food supplement, feed supplement, cosmetic or pharmaceutical.
  • the invention further provides certain isolated polynucleotides identified in Table 1 , and certain isolated polypeptides identified in Table 1.
  • the invention is also embodied in recombinant vector comprising an isolated polynucleotide of the invention.
  • the invention concerns a method of producing the aforesaid transgenic plant, wherein the method comprises transforming a plant cell with an expression vector comprising an isolated polynucleotide of the invention, and generating from the plant cell a transgenic plant that expresses the polypeptide encoded by the polynucleotide. Expression of the polypeptide in the plant results in increased tolerance to an environmental stress, and/or growth, and/or yield under normal and/or stress conditions as compared to a wild type variety of the plant.
  • the invention provides a method of increasing a plant's tolerance to an environmental stress, and/or growth, and/or yield.
  • the method comprises the steps of transforming a plant cell with an expression cassette comprising an iso- lated polynucleotide of the invention, and generating a transgenic plant from the plant cell, wherein the transgenic plant comprises the polynucleotide.
  • Figure 1 shows an alignment of the disclosed amino acid sequences At- FACE-2 (SEQ ID NO:6), ZM57353913 (SEQ ID NO:8), and ZM59252659 (SEQ ID NO:10).
  • the alignment was generated using Align X of Vector NTI .
  • Figure 2 shows an alignment of the disclosed amino acid sequences EST564
  • Figure 3 shows an alignment of the disclosed amino acid sequences EST390
  • Figure 4 shows an alignment of the disclosed amino acid sequences EST257
  • ZM59202533 (SEQ ID NO:92), BN41901422 (SEQ ID NO:94), BN47868329 (SEQ ID NO:96), and ZM68416988 (SEQ ID NO:100).
  • the alignment was generated using Align X of Vector NTI .
  • the invention provides a transgenic plant that overex- presses an isolated polynucleotide identified in Table 1 , or a homolog thereof.
  • the transgenic plant of the invention demonstrates an increased tolerance to an environmental stress as compared to a wild type variety of the plant.
  • the overexpression of such isolated nucleic acids in the plant may optionally result in an increase in plant growth or in yield of associated agricultural products, under normal or stress conditions, as compared to a wild type variety of the plant.
  • a "transgenic plant” is a plant that has been altered using recombinant DNA technology to contain an isolated nucleic acid which would otherwise not be present in the plant.
  • the term "plant” includes a whole plant, plant cells, and plant parts. Plant parts include, but are not limited to, stems, roots, ovules, stamens, leaves, embryos, meristematic regions, callus tissue, gametophytes, sporophytes, pollen, microspores, and the like.
  • the transgenic plant of the invention may be male sterile or male fertile, and may further include transgenes other than those that comprise the isolated polynucleotides described herein.
  • the term "variety" refers to a group of plants within a species that share constant characteristics that separate them from the typical form and from other possible varieties within that species. While possessing at least one distinctive trait, a variety is also characterized by some variation between individuals within the variety, based primarily on the Mendelian segregation of traits among the progeny of succeeding generations. A variety is considered "true breeding" for a particular trait if it is genetically homozy- gous for that trait to the extent that, when the true-breeding variety is self-pollinated, a significant amount of independent segregation of the trait among the progeny is not observed.
  • the trait arises from the transgenic expression of one or more isolated polynucleotides introduced into a plant variety.
  • wild type variety refers to a group of plants that are analyzed for comparative purposes as a control plant, wherein the wild type variety plant is identical to the transgenic plant (plant transformed with an isolated polynucleotide in accordance with the invention) with the exception that the wild type variety plant has not been transformed with an isolated polynucleotide of the invention.
  • nucleic acid and “polynucleotide” are inter- changeable and refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof.
  • RNA/DNA hybrids also encompasses RNA/DNA hybrids.
  • An "isolated" nucleic acid molecule is one that is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid (i.e., sequences encoding other polypeptides). For example, a cloned nucleic acid is considered isolated. A nucleic acid is also considered isolated if it has been altered by human intervention, or placed in a locus or location that is not its natural site, or if it is introduced into a cell by transformation.
  • an isolated nucleic acid molecule such as a cDNA molecule
  • the term “environmental stress” refers to a sub-optimal condition associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, or oxidative stresses, or any combination thereof.
  • water use efficiency and “WUE” refer to the amount of organic matter produced by a plant divided by the amount of water used by the plant in producing it, i.e., the dry weight of a plant in relation to the plant's water use.
  • dry weight refers to everything in the plant other than water, and includes, for example, carbohydrates, proteins, oils, and mineral nutrients.
  • the transgenic plant of the invention may be a dicotyledonous plant or a monocotyledonous plant.
  • transgenic plants of the invention may be derived from any of the following diclotyledonous plant families: Leguminosae, including plants such as pea, alfalfa and soybean; Umbelliferae, including plants such as carrot and celery; Solanaceae, including the plants such as tomato, potato, aubergine, tobacco, and pepper; Cruciferae, particularly the genus Brassica, which includes plant such as oilseed rape, beet, cabbage, cauliflower and broccoli); and A.
  • Transgenic plants of the invention may be derived from monocotyledonous plants, such as, for example, wheat, barley, sorghum, millet, rye, triticale, maize, rice, oats and sugarcane.
  • Transgenic plants of the in- vention are also embodied as trees such as apple, pear, quince, plum, cherry, peach, nectarine, apricot, papaya, mango, and other woody species including coniferous and deciduous trees such as poplar, pine, sequoia, cedar, oak, and the like.
  • Arabidopsis thaliana thaliana
  • Nicotiana tabacum oilseed rape
  • soybean corn (maize)
  • wheat, linseed, potato and tagetes are particularly preferred.
  • Table 1 one embodiment of the invention is a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a CAAX amino terminal protease family protein.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a CAAX amino terminal protease family protein.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a CAAX amino terminal protease family protein having a sequence comprising amino acids 1 to 301 of SEQ ID NO:2; and a protein having a sequence comprising amino acids 1 to 293 of SEQ ID NO:4.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a prenyl- dependent CAAX protease.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a prenyl-dependent CAAX protease.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a prenyl-dependent CAAX protease hav- ing a sequence comprising amino acids 1 to 311 of SEQ ID NO:6; a protein having a sequence comprising amino acids 1 to 313 of SEQ ID NO:8; a protein having a sequence comprising amino acids 1 to 269 of SEQ ID NO:10.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a SAR8.2 protein precursor.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a SAR8.2 protein precursor.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a SAR8.2 protein precursor having a sequence comprising amino acids 1 to 86 of SEQ ID NO:12.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a putative membrane protein.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a putative membrane protein.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a putative membrane protein having a sequence compris- ing amino acids 1 to 696 of SEQ ID NO:14.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2C protein.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a protein phosphatase 2C protein.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a protein phosphatase 2C protein having a sequence comprising amino acids 1 to 284 of SEQ ID NO:16; a protein having a sequence comprising amino acids 1 to 384 of SEQ ID NO:18; a protein having a sequence comprising amino acids 1 to 346 of SEQ ID NO:20; a protein having a sequence comprising amino acids 1 to 375 of SEQ ID NO:22; a protein having a sequence comprising amino ac- ids 1 to 390 of SEQ ID NO:24; a protein having a sequence comprising amino acids 1 to 398 of SEQ ID NO:26; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:28; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:30; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:32; a protein having a sequence comprising amino acids 1
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial carrier protein.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a mitochondrial carrier protein.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a mitochondrial carrier protein having a sequence com- prising amino acids 1 to 303 of SEQ ID NO:36; a protein having a sequence comprising amino acids 1 to 315 of SEQ ID NO:38; a protein having a sequence comprising amino acids 1 to 289 of SEQ ID NO:40; a protein having a sequence comprising amino acids 1 to 303 of SEQ ID NO:42; a protein having a sequence comprising amino acids 1 to 299 of SEQ ID NO:44; a protein having a sequence comprising amino acids 1 to 299 of SEQ ID NO:46; a protein having a sequence comprising amino acids 1 to 31 1 of SEQ ID NO:48.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein kinase.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a protein kinase.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a protein kinase having a sequence comprising amino acids 1 to 356 of SEQ ID NO:50; a protein having a sequence comprising amino acids 1 to 364 of SEQ ID NO:52; a protein having a sequence comprising amino acids 1 to 361 of SEQ ID NO:54; a protein having a sequence comprising amino acids 1 to 370 of SEQ ID NO:56; a protein having a sequence comprising amino acids 1 to 377 of SEQ ID NO:58; a protein having a sequence comprising amino acids 1 to 382 of SEQ ID NO:60.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a peptidyl prolyl isomerase.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a peptidyl prolyl isomerase.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a peptidyl prolyl isomerase having a sequence comprising amino acids 1 to 523 of SEQ ID NO:62.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 1.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding an unknown protein 1.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a unknown protein 1 having a sequence comprising amino acids 1 to 1 1 1 of SEQ ID NO:64.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 2.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding an unknown protein 2.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a unknown protein 2 having a sequence comprising amino acids 1 to 104 of SEQ ID NO:66.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a ornithine decarboxylase.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a ornithine decarboxylase.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a ornithine decarboxylase having a sequence comprising amino acids 1 to 466 of SEQ ID NO:68.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a glutathione reductase.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a glutathione reductase.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a glutathione reductase having a sequence comprising amino acids 1 to 483 of SEQ ID NO:70.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 3.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a unknown protein 3.
  • the transgenic plant of this embodiment comprises a polynu- cleotide encoding a unknown protein 3 having a sequence comprising amino acids 1 to 129 of SEQ ID NO:72.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2A protein.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a protein phosphatase 2A protein.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a protein phosphatase 2A protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:74; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:76; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:78; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:80; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:82; a protein having a sequence comprising amino acids 1 to 307 of SEQ ID NO:84; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:86; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:88; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:90.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MEK1 protein kinase.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a MEK1 protein kinase.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a MEK1 protein kinase having a sequence comprising amino acids 1 to 355 of SEQ ID NO:92; a protein having a sequence comprising amino acids 1 to 355 of SEQ ID NO:94; a protein having a sequence comprising amino acids 1 to 338 of SEQ ID NO:96; a protein having a sequence comprising amino acids 1 to 350 of SEQ ID NO:100.
  • the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an AP2 domain containing transcription factor.
  • the transgenic plant of this embodiment may comprise any polynucleotide encoding a AP2 domain containing transcription factor.
  • the transgenic plant of this embodiment comprises a polynucleotide encoding a AP2 domain containing transcription factor having a sequence comprising amino acids 1 to 197 of SEQ ID NO:98.
  • the invention further provides a seed produced by a transgenic plant expressing polynucleotide listed in Table 1 , wherein the seed contains the polynucleotide, and wherein the plant is true breeding for increased growth and/or yield under normal or stress conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant.
  • the invention also provides a product produced by or from the transgenic plants expressing the polynucleotide, their plant parts, or their seeds.
  • the product can be obtained using various methods well known in the art.
  • the word "product” includes, but not limited to, a foodstuff, feedstuff, a food supplement, feed supplement, cosmetic or pharmaceutical.
  • Foodstuffs are regarded as compositions used for nutrition or for supplementing nutrition.
  • Animal feedstuffs and animal feed supplements, in particular, are regarded as foodstuffs.
  • the invention further provides an agricultural product produced by any of the transgenic plants, plant parts, and plant seeds.
  • Agricultural products include, but are not limited to, plant extracts, proteins, amino acids, carbohydrates, fats, oils, polymers, vitamins, and the like.
  • an isolated polynucleotide of the invention comprises a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences listed in Table 1. These polynucleotides may comprise se- quences of the coding region, as well as 5' untranslated sequences and 3' untranslated sequences.
  • a polynucleotide of the invention can be isolated using standard molecular biology techniques and the sequence information provided herein, for example, using an automated DNA synthesizer.
  • "Homologs” are defined herein as two nucleic acids or polypeptides that have similar, or substantially identical, nucleotide or amino acid sequences, respectively. Homologs include allelic variants, analogs, and orthologs, as defined below. As used herein, the term “analogs" refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms.
  • nucleic acid molecules refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation.
  • homolog further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Table 1 due to degeneracy of the genetic code and thus encode the same polypeptide.
  • a "naturally occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural polypeptide).
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one polypeptide for optimal alignment with the other polypeptide or nucleic acid).
  • the amino acid residues at corresponding amino acid positions are then compared. When a position in one sequence is occupied by the same amino acid residue as the corresponding position in the other sequence then the molecules are identical at that position. The same type of comparison can be made between two nucleic acid sequences.
  • the isolated amino acid homologs, analogs, and orthologs of the polypeptides of the present invention are at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99%, or more identical to an entire amino acid sequence identified in Table 1.
  • an isolated nucleic acid homolog of the invention comprises a nucleotide sequence which is at least about 40-60%, preferably at least about 60-70%, more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99%, or more identical to a nucleotide sequence shown in Table 1.
  • the percent sequence identity between two nucleic acid or polypeptide sequences is determined using the Vector NTI 9.0 (PC) software package (Invitrogen, 1600 Faraday Ave., Carlsbad, CA92008).
  • a gap opening penalty of 15 and a gap extension penalty of 6.66 are used for determining the percent identity of two nucleic acids.
  • a gap opening penalty of 10 and a gap extension penalty of 0.1 are used for determining the percent identity of two polypeptides. All other parameters are set at the default settings. For purposes of a multiple alignment (Clustal W algorithm), the gap opening penalty is 10, and the gap extension penalty is 0.05 with blosum62 matrix. It is to be understood that for the purposes of determining sequence identity when comparing a DNA sequence to an RNA sequence, a thymidine nucleotide is equivalent to a uracil nucleotide.
  • Nucleic acid molecules corresponding to homologs, analogs, and orthologs of the polypeptides listed in Table 1 can be isolated based on their identity to said polypeptides, using the polynucleotides encoding the respective polypeptides or primers based thereon, as hybridization probes according to standard hybridization techniques under stringent hybridization conditions.
  • stringent conditions refers to hybridization overnight at 60 0 C in 10X Denhart's solution, 6X SSC, 0.5% SDS, and 100 ⁇ g/ml denatured salmon sperm DNA.
  • Blots are washed sequentially at 62°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1X SSC/0.1 % SDS.
  • stringent conditions refers to hybridization in a 6X SSC solution at 65°C.
  • highly stringent conditions refers to hybridization overnight at 65°C in 10X Denhart's solution, 6X SSC, 0.5% SDS and 100 ⁇ g/ml denatured salmon sperm DNA.
  • Blots are washed sequentially at 65°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1 X SSC/0.1 % SDS.
  • Methods for performing nucleic acid hybridizations are well known in the art.
  • an isolated nucleic acid molecule of the invention that hybridizes under stringent or highly stringent conditions to a nucleotide sequence listed in Table 1 corresponds to a naturally occurring nucleic acid molecule.
  • Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene is then ligated into an appropriate expression vector.
  • Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential sequences.
  • Methods for synthesizing degenerate oligonucleotides are known in the art.
  • an optimized nucleic acid encodes a polypeptide that has a function similar to those of the polypeptides listed in Table 1 and/or modulates a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress, and more pref- erably increases a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress upon its overexpression in the plant.
  • “optimized” refers to a nucleic acid that is genetically engineered to increase its expression in a given plant or animal.
  • the DNA sequence of the gene can be modified to: 1) comprise codons preferred by highly expressed plant genes; 2) comprise an A+T content in nucleotide base composition to that substantially found in plants; 3) form a plant initiation sequence; 4) to eliminate sequences that cause destabilization, inappropriate polyadenylation, degradation and termination of RNA, or that form secondary structure hairpins or RNA splice sites; or 5) elimination of antisense open reading frames.
  • Increased expression of nucleic acids in plants can be achieved by utilizing the distribution frequency of codon usage in plants in general or in a particular plant. Methods for optimizing nucleic acid expression in plants can be found in EPA 0359472; EPA 0385962; PCT Application No.
  • An isolated polynucleotide of the invention can be optimized such that its distribution frequency of codon usage deviates, preferably, no more than 25% from that of highly expressed plant genes and, more preferably, no more than about 10%.
  • the XCG (where X is A, T, C, or G) nucleotide is the least preferred codon in dicots, whereas the XTA codon is avoided in both monocots and dicots.
  • Optimized nu- cleic acids of this invention also preferably have CG and TA doublet avoidance indices closely approximating those of the chosen host plant. More preferably, these indices deviate from that of the host by no more than about 10-15%.
  • the invention further provides an isolated recombinant expression vector comprising a polynucleotide as described above, wherein expression of the vector in a host cell results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the host cell.
  • the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed.
  • operatively linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in a bacterial or plant host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are well known in the art. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions.
  • the expression vectors of the invention can be introduced into host cells to thereby produce polypeptides encoded by nucleic acids as described herein.
  • Plant gene expression should be operatively linked to an appropriate promoter conferring gene expression in a timely, cell specific, or tissue specific manner.
  • Promoters useful in the expression cassettes of the invention include any promoter that is ca- pable of initiating transcription in a plant cell. Such promoters include, but are not limited to, those that can be obtained from plants, plant viruses, and bacteria that contain genes that are expressed in plants, such as Agrobacterium and Rhizobium.
  • the promoter may be constitutive, inducible, developmental stage-preferred, cell type-preferred, tissue-preferred, or organ-preferred. Constitutive promoters are active under most conditions. Examples of constitutive promoters include the CaMV 19S and 35S promoters, the sX CaMV 35S promoter, the Sep1 promoter, the rice actin promoter, the Arabidopsis actin promoter, the ubiquitan promoter, pEmu, the figwort mosaic virus 35S promoter, the Smas promoter, the super promoter (U.S. Patent No. 5, 955,646), the GRP1 - 8 promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Patent No.
  • promoters from the T-DNA of Agrobacterium such as mannopine synthase, nopaline synthase, and octopine synthase, the small subunit of ribulose biphosphate carboxylase (ssu- RUBISCO) promoter, and the like.
  • Inducible promoters are preferentially active under certain environmental conditions, such as the presence or absence of a nutrient or metabolite, heat or cold, light, pathogen attack, anaerobic conditions, and the like.
  • the hsp80 promoter from Brassica is induced by heat shock; the PPDK promoter is induced by light; the PR-1 promoters from tobacco, Arabidopsis, and maize are inducible by infection with a pathogen; and the Adh1 promoter is induced by hypoxia and cold stress.
  • Plant gene expression can also be facilitated via an inducible promoter (For a review, see Gatz, 1997, Annu. Rev. Plant Physiol. Plant MoI. Biol. 48:89-108).
  • Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner. Examples of such promoters are a salicylic acid inducible promoter (PCT Application No.
  • the inducible promoter is a stress-inducible promoter.
  • stress-inducible promoters are preferentially active under one or more of the following stresses: sub-optimal conditions associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, and oxidative stresses.
  • Stress inducible promoters include, but are not limited to, Cor78 (Chak et al., 2000, Planta 210:875-883; Hovath et al., 1993, Plant Physiol.
  • tissue and organ preferred promoters include those that are preferentially expressed in certain tissues or organs, such as leaves, roots, seeds, or xylem.
  • tissue-preferred and organ-preferred promoters include, but are not limited to fruit-preferred, ovule-preferred, male tissue-preferred, seed-preferred, integument- preferred, tuber-preferred, stalk-preferred, pericarp-preferred, leaf-preferred, stigma- preferred, pollen-preferred, anther-preferred, petal-preferred, sepal-preferred, pedicel- preferred, silique-preferred, stem-preferred, root-preferred promoters, and the like.
  • Seed- preferred promoters are preferentially expressed during seed development and/or germination.
  • seed-preferred promoters can be embryo-preferred, endosperm- preferred, and seed coat-preferred (See Thompson et al., 1989, BioEssays 10:108).
  • seed-preferred promoters include, but are not limited to, cellulose synthase (celA), Cim1 , gamma-zein, globulin-1 , maize 19 kD zein (cZ19B1 ), and the like.
  • Other suitable tissue-preferred or organ-preferred promoters include the napin-gene promoter from rapeseed (U.S. Patent No.
  • WO 91/13980 or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2(2): 233-9), as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice, etc.
  • Suitable promoters to note are the Ipt2 or Ipt1 -gene promoter from barley (PCT Application No. WO 95/15389 and PCT Application No. WO 95/23230) or those described in PCT Application No.
  • WO 99/16890 pro- moters from the barley hordein-gene, rice glutelin gene, rice oryzin gene, rice prolamin gene, wheat gliadin gene, wheat glutelin gene, oat glutelin gene, Sorghum kasirin-gene, and rye secalin gene).
  • promoters useful in the expression cassettes of the invention include, but are not limited to, the major chlorophyll a/b binding protein promoter, histone promoters, the Ap3 promoter, the ⁇ -conglycin promoter, the napin promoter, the soybean lectin promoter, the maize 15kD zein promoter, the 22kD zein promoter, the 27kD zein promoter, the g-zein promoter, the waxy, shrunken 1 , shrunken 2, and bronze promoters, the Zm13 promoter (U.S. Patent No. 5,086,169), the maize polygalacturonase promoters (PG) (U.S. Patent Nos. 5,412,085 and 5,545,546), and the SGB6 promoter (U.S. Patent No. 5,470,359), as well as synthetic or other natural promoters.
  • the major chlorophyll a/b binding protein promoter include, but are not limited to, the major chlorophyll
  • Additional flexibility in controlling heterologous gene expression in plants may be obtained by using DNA binding domains and response elements from heterologous sources (i.e., DNA binding domains from non-plant sources).
  • heterologous DNA binding domain is the LexA DNA binding domain (Brent and Ptashne, 1985, Cell 43:729-736).
  • the polynucleotides listed in Table 1 are expressed in plant cells from higher plants (e.g., the spermatophytes, such as crop plants).
  • a polynucleotide may be "introduced" into a plant cell by any means, including transfection, transformation or transduction, electroporation, particle bombardment, agroinfection, and the like. Suitable methods for transforming or transfecting plant cells are disclosed, for example, using particle bombardment as set forth in U.S. Pat. Nos. 4,945,050; 5,036,006; 5,100,792; 5,302,523; 5,464,765; 5,120,657; 6,084,154; and the like.
  • the transgenic corn seed of the invention may be made using Agrobacte- rium transformation, as described in U.S. Pat. Nos. 5,591 ,616; 5,731 ,179; 5,981 ,840; 5,990,387; 6,162,965; 6,420,630, U.S. patent application publication number 2002/0104132, and the like. Transformation of soybean can be performed using for exam- pie a technique described in European Patent No. EP 0424047, U.S. Patent No. 5,322,783, European Patent No.EP 0397 687, U.S. Patent No. 5,376,543, or U.S. Patent No. 5,169,770. A specific example of wheat transformation can be found in PCT Application No. WO 93/07256.
  • Cotton may be transformed using methods disclosed in U.S. Pat. Nos. 5,004,863; 5,159,135; 5,846,797, and the like. Rice may be transformed using methods disclosed in U.S. Pat. Nos. 4,666,844; 5,350,688; 6,153,813; 6,333,449; 6,288,312;
  • the introduced polynucleotide may be maintained in the plant cell stably if it is incorporated into a non-chromosomal autonomous replicon or integrated into the plant chromosomes.
  • the introduced polynucleotide may be present on an extra-chromosomal non-replicating vector and may be transiently expressed or transiently active.
  • Another aspect of the invention pertains to an isolated polypeptide having a sequence selected from the group consisting of the polypeptide sequences listed in Table 1.
  • An "isolated” or “purified” polypeptide is free of some of the cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
  • the language “substantially free of cellular material” includes preparations of a polypeptide in which the polypeptide is separated from some of the cellular components of the cells in which it is naturally or recombinantly produced.
  • the language "substantially free of cellular material” includes preparations of a polypeptide of the invention having less than about 30% (by dry weight) of contaminating polypeptides, more preferably less than about 20% of contaminating polypeptides, still more preferably less than about 10% of contaminating polypeptides, and most preferably less than about 5% contaminating polypeptides.
  • the determination of activities and kinetic parameters of enzymes is well es- tablished in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art.
  • the invention is also embodied in a method of producing a transgenic plant comprising at least one polynucleotide listed in Table 1 , wherein expression of the polynucleotide in the plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant comprising the steps of: (a) introducing into a plant cell an expression vector comprising at least one polynucleotide listed in Table 1 , and (b) generating from the plant cell a transgenic plant that expresses the polynucleotide, wherein expression of the polynucleotide in the transgenic plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to envi
  • the plant cell may be, but is not limited to, a protoplast, gamete producing cell, and a cell that regenerates into a whole plant.
  • transgenic refers to any plant, plant cell, callus, plant tissue, or plant part, that contains at least one recombinant polynucleotide listed in Table 1.
  • the recombinant polynucleotide is stably integrated into a chromo- some or stable extra-chromosomal element, so that it is passed on to successive generations.
  • the present invention also provides a method of increasing a plant's growth and/or yield under normal or water-limited conditions and/or increasing a plant's tolerance to an environmental stress comprising the steps of increasing the expression of at least one polynucleotide listed in Table 1 in the plant. Expression of a protein can be increased by any method known to those of skill in the art.
  • the effect of the genetic modification on plant growth and/or yield and/or stress tolerance can be assessed by growing the modified plant under normal and. or less than suitable conditions and then analyzing the growth characteristics and/or metabolism of the plant.
  • Such analysis techniques are well known to one skilled in the art, and include dry weight, wet weight, polypeptide synthesis, carbohydrate synthesis, lipid synthesis, evapotranspiration rates, general plant and/or crop yield, flowering, reproduction, seed setting, root growth, respiration rates, photosynthesis rates, metabolite composition, etc., using methods known to those of skill in biotechnology.
  • the invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof.
  • the polynucleotides of Table 1 are ligated into a binary vector containing a selectable marker.
  • the resulting recombinant vector contains the corresponding gene in the sense orientation under a constitutive promoter.
  • the recombinant vectors are transformed into an Agrobacterium tumefaciens strain according to standard conditions.
  • A. thaliana ecotype CoI-O or C24 are grown and transformed according to standard conditions.
  • T1 and T2 plants are screened for resistance to the selection agent conferred by the selectable marker gene.
  • T3 seeds are used in greenhouse or growth chamber experiments.
  • seeds are refrigerated for stratification. Seeds are then planted, fertilizer is applied and humidity is maintained using transpar- ent domes. Plants are grown in a greenhouse at 22°C with photoperiod of 16 hours light/8 hours dark. Plants are watered twice a week.
  • plant area, leaf area, biomass, color distribution, color intensity, and growth rate for each plant are measured using using a commercially available imaging system.
  • Biomass is calculated as the total plant leaf area at the last measuring time point.
  • Growth rate is calculated as the plant leaf area at the last measuring time point minus the plant leaf area at the first measuring time point divided by the plant leaf area at the first measuring time point.
  • Health index is calculated as the dark green leaf area divided by the total plant leaf area.
  • the polynucleotides of Table 1 are ligated into a binary vector containing a selectable marker.
  • the resulting recombinant vector contains the corresponding gene in the sense orientation under a constitutive promoter.
  • the recombinant vectors are trans- formed into an A. tumefaciens strain according to standard conditions.
  • A. thaliana ecotype CoI-O or C24 are grown and transformed according to standard conditions. T1 and T2 plants are screened for resistance to the selection agent conferred by the selectable marker gene.
  • Plants are grown in flats using a substrate that contains no organic compo- nents. Each flat is wet with water before seedlings resistant to the selection agent are transplanted onto substrate. Plants are grown in a growth chamber set to 22°C with a 55% relative humidity with photoperiod set at 16h light/ 8h dark. A controlled low or high nitrogen nutrient solution is added to waterings on Days 12, 15, 22 and 29. Watering without nutrient solution occurs on Days 18, 25, and 32. Images of all plants in a tray are taken on days 26, 30, and 33 using a commercially available imaging system. At each imaging time point, biomass and plant phenotypes for each plant are measured including plant area, leaf area, biomass, color distribution, color intensity, and growth rate.
  • Canola cotyledonary petioles of 4 day-old young seedlings are used as ex- plants for tissue culture and transformed according to EP1566443.
  • the commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can be used.
  • A. tumefaciens GV3101 :pMP90RK containing a binary vector is used for canola transformation.
  • the standard binary vector used for transformation is pSUN
  • a plant gene expression cassette comprising a selection marker gene, a plant promoter, and a polynucleotide of Table 1 is employed.
  • selection marker genes can be used including the mutated acetohydroxy acid synthase (AHAS) gene disclosed in US Pat. Nos. 5,767,366 and 6,225,105.
  • a suitable promoter is used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription.
  • Canola seeds are surface-sterilized in 70% ethanol for 2 min, incubated for 15 min in 55 0 C warm tap water and then in 1.5% sodium hypochlorite for 10 minutes, followed by three rinses with sterilized distilled water. Seeds are then placed on MS medium without hormones, containing Gamborg B5 vitamins, 3% sucrose, and 0.8% Oxoidagar. Seeds are germinated at 24 0 C for 4 days in low light ( ⁇ 50 ⁇ Mol/m 2 s, 16 hours light).
  • the cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacterium by dipping the cut end of the petiole explant into the bacterial suspension.
  • the explants are then cultured for 3 days on MS medium includ- ing vitamins containing 3.75 mg/l BAP, 3% sucrose, 0.5 g/l MES, pH 5.2, 0.5 mg/l GA3, 0.8% Oxoidagar at 24 0 C, 16 hours of light.
  • the petiole explants are transferred to regeneration medium containing 3.75 mg/l BAP, 0.5 mg/l GA3, 0.5 g/l MES, pH 5.2, 300 mg/l timentin and selection agent until shoot regeneration.
  • the explants start to develop shoots, they are transferred to shoot elongation medium (A6, containing full strength MS medium including vitamins, 2% sucrose, 0.5% Oxoidagar, 100 mg/l myo-inositol, 40 mg/l adenine sulfate, 0.5 g/l MES, pH 5.8, 0.0025 mg/l BAP, 0.1 mg/l IBA, 300 mg/l timentin and selection agent).
  • Samples from both in vitro and greenhouse material of the primary transgenic plants (TO) are analyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations.
  • Seed is produced from the primary transgenic plants by self-pollination.
  • the second-generation plants are grown in greenhouse conditions and self-pollinated.
  • the plants are analyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations.
  • Homozygous transgenic, heterozygous transgenic and azygous (null transgenic) plants are compared for their stress tolerance, for example, in the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
  • Transgenic rice plants comprising a polynucleotide of Table 1 are generated using known methods. Approximately 15 to 20 independent transformants (TO) are generated. The primary transformants are transferred from tissue culture chambers to a greenhouse for growing and harvest of T1 seeds. Five events of the T1 progeny segregated 3: 1 for presence/absence of the transgene are retained. For each of these events, 10 T1 seedlings containing the transgene (hetero- and homozygotes), and 10 T1 seedlings lacking the transgene (nullizygotes) are selected by visual marker screening. The selected T1 plants are transferred to a greenhouse. Each plant receives a unique barcode label to link unambiguously the phenotyping data to the corresponding plant.
  • Transgenic plants and the corresponding nullizygotes are grown side-by-side at random positions. From the stage of sowing until the stage of maturity, the plants are passed several times through a digital im- aging cabinet. At each time point digital, images (2048x1536 pixels, 16 million colours) of each plant are taken from at least 6 different angles. [00104] The data obtained in the first experiment with T1 plants are confirmed in a second experiment with T2 plants.
  • Lines that have the correct expression pattern are selected for further analysis. Seed batches from the positive plants (both hetero- and homo- zygotes) in T1 are screened by monitoring marker expression. For each chosen event, the heterozygote seed batches are then retained for T2 evaluation. Within each seed batch, an equal number of positive and negative plants are grown in the greenhouse for evaluation. [00105] Transgenic plants are screened for their improved growth and/or yield and/or stress tolerance, for example, using the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
  • the polynucleotides of Table 1 are transformed into soybean using the methods described in commonly owned copending international application number WO 2005/121345, the contents of which are incorporated herein by reference. [00107] The transgenic plants generated are then screened for their improved growth under water-limited conditions and/or drought, salt, and/or cold tolerance, for example, using the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
  • the polynucleotides of Table 1 are transformed into wheat using the method described by lshida et al., 1996, Nature Biotech. 14745-50. Immature embryos are co- cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and transgenic plants are recovered through organogenesis. This procedure provides a transformation efficiency between 2.5% and 20%. The transgenic plants are then screened for their improved growth and/or yield under water-limited conditions and/or stress tolerance, for example, is the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
  • the polynucleotides of Table 1 are transformed into immature embryos of corn using Agrobacterium. After imbibition, embryos are transferred to medium without se- lection agent. Seven to ten days later, embryos are transferred to medium containing selection agent and grown for 4 weeks (two 2-week transfers) to obtain transformed callus cells. Plant regeneration is initiated by transferring resistant calli to medium supplemented with selection agent and grown under light at 25-27 0 C for two to three weeks. Regenerated shoots are then transferred to rooting box with medium containing selection agent. Plant- lets with roots are transferred to potting mixture in small pots in the greenhouse and after acclimatization are then transplanted to larger pots and maintained in greenhouse till maturity.
  • each of these plants is uniquely labeled, sampled and analyzed for transgene copy number.
  • Trans- gene positive and negative plants are marked and paired with similar sizes for transplanting together to large pots. This provides a uniform and competitive environment for the trans- gene positive and negative plants.
  • the large pots are watered to a certain percentage of the field water capacity of the soil depending the severity of water-stress desired.
  • the soil water level is maintained by watering every other day.
  • Plant growth and physiology traits such as height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the growth period.
  • Plant growth and physiology traits such as WUE, height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the ex- periment. A comparison of WUE phenotype between the transgene positive and negative plants is then made.
  • a Taqman transgene copy number assay is used on leaf samples to differentiate the transgenics from null-segregant control plants. Plants that have been genotyped in this manner are also scored for a range of phenotypes related to drought-tolerance, growth and yield.
  • phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instru- mentation for field physiology, using the standard protocols provided by the manufacturers. Individual plants are used as the replicate unit per event.
  • a null segregant is progeny (or lines derived from the progeny) of a transgenic plant that does not contain the transgene due to Mendelian segregation. Additional replicated paired plots for a particular event are distributed around the trial. A range of phenotypes related to drought- tolerance, growth and yield are scored in the paired plots and estimated at the plot level. When the measurement technique could only be applied to individual plants, these are selected at random each time from within the plot.
  • phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry- weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water po- tential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis- silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers.
  • phenotypes included plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 up- take, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plots are used as the replicate unit per event.
  • At2g20725 cDNA is translated into the following amino acid sequence (SEQ ID NO:2):
  • At3g26085 cDNA is translated into the following amino acid sequence (SEQ ID NO:4):
  • AtFACE-2 cDNA is translated into the following amino acid sequence (SEQ ID NO:6):
  • cDNA sequence of ZM57353913 from corn (SEQ ID NO:7): CGAAGCCACGCGACCGACTGTGTTACGATCCCAAATCTTCACTCCCGACGAAATCTAG AATCCAATGAGCAATCTCGACTGACGCCTGCTTCACCAGATTATGGCGACGCCGGCG GGCCTCCTTCTCGCCTCGCCGCCGGTGATATCAGGTGTCGCGGCGATGGCGGCGTG CGCCGCAATGGCAGTATTCTACGTCGCTGTCCTCTATGC
  • the ZM57353913 cDNA is translated into the following amino acid sequence (SEQ ID NO:8):
  • the ZM59252659 cDNA is translated into the following amino acid sequence (SEQ ID NO:10):
  • the CASAR82A cDNA is translated into the following amino acid sequence (SEQ ID NO:12):
  • the b3358 cDNA is translated into the following amino acid sequence (SEQ ID NO:14): MWRRLIYHPDINYALRQTLVLCLPVAVGLMLGELRFGLLFSLVPACCNIAGLDTPHKRFFKR LIIGASLFATCSLLTQLLLAKDVPLPFLLTGLTLVLGVTAELGPLHAKLLPASLLAAIFTLSLAG YMPVWEPLLIYALGTLWYGLFNWFWFWIWREQPLRESLSLLYRELADYCEAKYSLLTQHT DPEKALPPLLVRQQKAVDLITQCYQQMHMLSAQNNTDYKRMLRIFQEALDLQEHISVSLHQ PEEVQKLVERSHAEEVIRWNAQTVAARLRVLADDILYHRLPTRFTMEKQIGALEKIARQHP DNPVGQFCYWHFSRIARVLRTQKPLYARDLLADKQRRMPLLPALKSYLSLKSPALRNAGR LSVMLSVASLMGTALHLPKSYWILMTVLLVTQNGYGA
  • the EST564 cDNA is translated into the following amino acid sequence (SEQ ID NO:16):
  • the BN49502266 cDNA is translated into the following amino acid sequence (SEQ ID NO:18):
  • the GM49788080 cDNA is translated into the following amino acid sequence (SEQ ID NO:20):
  • the GM53049821 cDNA is translated into the following amino acid sequence (SEQ ID NO:22):
  • the ZM58462719 cDNA is translated into the following amino acid sequence (SEQ ID NO:24):
  • the ZM61092633 cDNA is translated into the following amino acid sequence (SEQ ID NO:26): MLSALMDYLKSCWGPASPAGRPRKGSDATGRQDGLLWYKDGGQVVDGEFSMAVVQAN NLLEDHSQVESGPLSTSEPGLQGTFVGVYDGHGGPETARYINDHLFNHLRRFASEHKCMS ADVIRKAFRATEEGFISVVSNQWSLRPQLAAVGSCCLVGVVCSGTLYVANLGDSRAVLGR LVKGTGEVLAMQLSAEHNASYEEVRRELQASHPDDPHIVVLKHNVWRVKGIIQITRSIGDV YLKKPEFNREPLHSKFRLQETFRRPLLSSDPAITVHQIQPTDKFIIFASDGLWEHLSNQEVV DMVQSSPRNGIARKLVKSAVQEAAKKREMRYSDLKKVDRGVRRHFHDDITVIVVFFDSNA MTTAAWSRPSVSLRGGGFPIHSNTLAPFSVPTELNNS
  • the ZM62051019 cDNA is translated into the following amino acid sequence (SEQ ID NO:30):
  • the ZM65086957 cDNA is translated into the following amino acid sequence (SEQ ID NO:32):
  • the ZM68587657 cDNA is translated into the following amino acid sequence (SEQ ID NO:34):
  • the EST390 cDNA is translated into the following amino acid sequence (SEQ ID NO:36):
  • the BN51363030 cDNA is translated into the following amino acid sequence (SEQ ID NO:38):
  • the BN42986056 cDNA is translated into the following amino acid sequence (SEQ ID NO:40): MQLQGESASIQTNLRPALAFQTSSAVHAPSPPPRVGIITIGSRIIRQEGTCTLFSGISATSAT VLRQTLYSTTRMGLYDILKTKWTDPETKTIPLTRKLAAGFIAGGIGAAVGNPADVAMVRMQ ADGRLPVVDRRNYKSVLDAIAQMVRGEGVTSLWRGSSMTINRAMLVTASQLATYDSVKET ILEKGLMRDGLGTHVTSSFAAGFVASVASNPVDVIKTRVMNMKVEAGKTAPYKGAVDCAL KTVRAEGIMALYKGFLPTVSRQAPFTVIMFVTLEQVKKVFKDFDFDF
  • the BN49389066 cDNA is translated into the following amino acid sequence (SEQ ID NO:42):
  • the BN51339479 cDNA is translated into the following amino acid sequence (SEQ ID NO:44):
  • the ZM57651070 cDNA is translated into the following amino acid sequence (SEQ ID NO:46):
  • the ZM62073276 cDNA is translated into the following amino acid sequence (SEQ ID NO:
  • the EST257 cDNA is translated into the following amino acid sequence (SEQ ID NO:50):
  • the LU61665952 cDNA is translated into the following amino acid sequence (SEQ ID NO:52):
  • the ZM62026837 cDNA is translated into the following amino acid sequence (SEQ ID NO:56):
  • the ZM65457595 cDNA is translated into the following amino acid sequence (SEQ ID NO:58):
  • the ZM67230154 cDNA is translated into the following amino acid sequence (SEQ ID NO:60):
  • the EST465 cDNA is translated into the following amino acid sequence (SEQ ID NO:62):
  • the YBL109w cDNA is translated into the following amino acid sequence (SEQ ID NO:64):
  • the YBLI OOc cDNA is translated into the following amino acid sequence (SEQ ID NO:66):
  • the YKL184w cDNA is translated into the following amino acid sequence (SEQ ID NO:68): MSSTQVGNALSSSTTTLVDLSNSTVTQKKQYYKDGETLHNLLLELKNNQDLELLPHEQAHP KIFQALKARIGRINNETCDPGEENSFFICDLGEVKRLFNNWVKELPRIKPFYAVKCNPDTKV LSLLAELGVNFDCASKVEIDRVLSMNISPDRIVYANPCKVASFIRYAASKNVMKSTFDNVEE LHKIKKFHPESQLLLRIATDDSTAQCRLSTKYGCEMENVDVLLKAIKELGLNLAGVSFHVGS GASDFTSLYKAVRDARTVFDKAANEYGLPPLKILDVGGGFQFESFKESTAVLRLALEEFFP VGCGVDIIAEPGRYFVATAFTLASHVIAKRKLSENEAMIYTNDGVYGNMNCILFDHQEPHPR TLYHNLEFHYDDFESTTAVLDSINK
  • the YPL091w cDNA is translated into the following amino acid sequence (SEQ ID NO:70):
  • the TA54587433 cDNA is translated into the following amino acid sequence (SEQ ID NO:72):
  • the ZM68532504 cDNA is translated into the following amino acid sequence (SEQ ID NO:74):
  • the BN42856089 cDNA is translated into the following amino acid sequence (SEQ ID NO:76):
  • the BN43206527 cDNA is translated into the following amino acid sequence (SEQ ID NO:78):
  • the HA66872964 cDNA is translated into the following amino acid sequence (SEQ ID NO:80):
  • CATCTCTCTTTCTCTCTCTTCCATTTTCGTTCTTTTGAATCTCCGTTAGCCCTACAAATC CATCTCTCTTTCTCTCTCTTCCATTTTCGTTCTTTTGAATCTCCGTTAGCCCTACAAATC
  • CATGGTCATGGCCTGAGAGATAGAGGGATAGAGCTCAGTTCCTAATCACCTTAC CTGACCTAACCCCACGGACATATTATCGAAGGTCTGCGAGCAGGAGAGCGCAGGAGG AAGAGTGGGGCCAGGGTACGATGCCGTCCCACGCCGATCTGGACCGTCAGATCGAG CACTTGATGCAGTGCAAGCCACTTTCTGAGGCCGAAGTGAAGGCTCTCTCTGCGAGCAG GCCAGGGCCGTCCTCGTCGAGGAATGGAACGTCCAGCCGGTCAAGTGTCCGGTGACT GTCTGCGGCGACATCCACGGCCAGTTTCACGATCTTGTCGAGCTCTTTCGAATCGGAG GAAACGCCCCTGACACGAACTACCTCTTCATGGGCGACTATGTAGATCGA
  • the LU61662612 cDNA is translated into the following amino acid sequence (SEQ ID NO:82):
  • the OS32806943 cDNA is translated into the following amino acid sequence (SEQ ID NO:84):
  • the OS34738749 cDNA is translated into the following amino acid sequence (SEQ ID NO:86):
  • the ZM62132060 cDNA is translated into the following amino acid sequence (SEQ ID NO:90):
  • the ZM59202533 cDNA is translated into the following amino acid sequence (SEQ ID NO:92):
  • the BN41901422 cDNA is translated into the following amino acid sequence (SEQ ID NO:94):
  • the BN47868329 cDNA is translated into the following amino acid sequence (SEQ ID NO:96):
  • the ZM68416988 cDNA is translated into the following amino acid sequence (SEQ ID NO:100):

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Polynucleotides are disclosed which are capable of enhancing a growth, yield under water-limited conditions, and/or increased tolerance to an environmental stress of a plant transformed to contain such polynucleotides. Also provided are methods of using such polynucleotides and transgenic plants and agricultural products, including seeds, containing such polynucleotides as transgenes.

Description

TRANSGENIC PLANTS WITH INCREASED STRESS TOLERANCE AND YIELD
This application claims priority benefit of U.S. provisional patent application Serial Number 60/959346, filed July 13, 2007, the contents of which are hereby incorporated by reference.
FIELD OF THE INVENTION
[0001] This invention relates generally to transgenic plants which overexpress nucleic acid sequences encoding polypeptides capable of conferring increased stress tolerance and consequently, increased plant growth and crop yield, under normal or abiotic stress conditions. Additionally, the invention relates to novel isolated nucleic acid sequences encoding polypeptides that confer upon a plant increased tolerance under abiotic stress conditions, and/or increased plant growth and/or increased yield under normal or abiotic stress conditions. BACKGROUND OF THE INVENTION [0002] Abiotic environmental stresses, such as drought, salinity, heat, and cold, are major limiting factors of plant growth and crop yield. Crop yield is defined herein as the number of bushels of relevant agricultural product (such as grain, forage, or seed) harvested per acre. Crop losses and crop yield losses of major crops such as soybean, rice, maize (corn), cotton, and wheat caused by these stresses represent a significant economic and political factor and contribute to food shortages in many underdeveloped countries. [0003] Water availability is an important aspect of the abiotic stresses and their effects on plant growth. Continuous exposure to drought conditions causes major alterations in the plant metabolism which ultimately lead to cell death and consequently to yield losses. Because high salt content in some soils results in less water being available for cell intake, high salt concentration has an effect on plants similar to the effect of drought on plants. Additionally, under freezing temperatures, plant cells lose water as a result of ice formation within the plant. Accordingly, crop damage from drought, heat, salinity, and cold stress, is predominantly due to dehydration. [0004] Because plants are typically exposed to conditions of reduced water availabil- ity during their life cycle, most plants have evolved protective mechanisms against desiccation caused by abiotic stresses. However, if the severity and duration of desiccation conditions are too great, the effects on development, growth, plant size, and yield of most crop plants are profound. Developing plants efficient in water use is therefore a strategy that has the potential to significantly improve human life on a worldwide scale. [0005] Traditional plant breeding strategies are relatively slow and require abiotic stress-tolerant founder lines for crossing with other germplasm to develop new abiotic stress-resistant lines. Limited germplasm resources for such founder lines and incompatibility in crosses between distantly related plant species represent significant problems encountered in conventional breeding. Breeding for tolerance has been largely unsuccessful. [0006] Many agricultural biotechnology companies have attempted to identify genes that could confer tolerance to abiotic stress responses, in an effort to develop transgenic abiotic stress-tolerant crop plants. Although some genes that are involved in stress responses or water use efficiency in plants have been characterized, the characterization and cloning of plant genes that confer stress tolerance and/or water use efficiency remains largely incomplete and fragmented. To date, success at developing transgenic abiotic stress-tolerant crop plants has been limited, and no such plants have been commercialized. [0007] In order to develop transgenic abiotic stress-tolerant crop plants, it is neces- sary to assay a number of parameters in model plant systems, greenhouse studies of crop plants, and in field trials. For example, water use efficiency (WUE), is a parameter often correlated with drought tolerance. Studies of a plant's response to desiccation, osmotic shock, and temperature extremes are also employed to determine the plant's tolerance or resistance to abiotic stresses. When testing for the impact of the presence of a transgene on a plant's stress tolerance, the ability to standardize soil properties, temperature, water and nutrient availability and light intensity is an intrinsic advantage of greenhouse or plant growth chamber environments compared to the field.
[0008] WUE has been defined and measured in multiple ways. One approach is to calculate the ratio of whole plant dry weight, to the weight of water consumed by the plant throughout its life. Another variation is to use a shorter time interval when biomass accumulation and water use are measured. Yet another approach is to use measurements from restricted parts of the plant, for example, measuring only aerial growth and water use. WUE also has been defined as the ratio of CO2 uptake to water vapor loss from a leaf or portion of a leaf, often measured over a very short time period (e.g. seconds/minutes). The ratio of 13C/12C fixed in plant tissue, and measured with an isotope ratio mass-spectrometer, also has been used to estimate WUE in plants using C3 photosynthesis. [0009] An increase in WUE is informative about the relatively improved efficiency of growth and water consumption, but this information taken alone does not indicate whether one of these two processes has changed or both have changed. In selecting traits for im- proving crops, an increase in WUE due to a decrease in water use, without a change in growth would have particular merit in an irrigated agricultural system where the water input costs were high. An increase in WUE driven mainly by an increase in growth without a corresponding jump in water use would have applicability to all agricultural systems. In many agricultural systems where water supply is not limiting, an increase in growth, even if it came at the expense of an increase in water use (i.e. no change in WUE), could also increase yield. Therefore, new methods to increase both WUE and biomass accumulation are required to improve agricultural productivity.
[0010] Concomitant with measurements of parameters that correlate with abiotic stress tolerance are measurements of parameters that indicate the potential impact of a transgene on crop yield. For forage crops like alfalfa, silage corn, and hay, the plant biomass correlates with the total yield. For grain crops, however, other parameters have been used to estimate yield, such as plant size, as measured by total plant dry weight, above- ground dry weight, above-ground fresh weight, leaf area, stem volume, plant height, rosette diameter, leaf length, root length, root mass, tiller number, and leaf number. Plant size at an early developmental stage will typically correlate with plant size later in development. A larger plant with a greater leaf area can typically absorb more light and carbon dioxide than a smaller plant and therefore will likely gain a greater weight during the same period. This is in addition to the potential continuation of the micro-environmental or genetic advantage that the plant had to achieve the larger size initially. There is a strong genetic component to plant size and growth rate, and so for a range of diverse genotypes plant size under one environmental condition is likely to correlate with size under another. In this way a standard environment is used to approximate the diverse and dynamic environments encountered at different locations and times by crops in the field.
[001 1] Harvest index, the ratio of seed yield to above-ground dry weight, is relatively stable under many environmental conditions and so a robust correlation between plant size and grain yield is possible. Plant size and grain yield are intrinsically linked, because the majority of grain biomass is dependent on current or stored photosynthetic productivity by the leaves and stem of the plant. Therefore, selecting for plant size, even at early stages of development, has been used as to screen for for plants that may demonstrate increased yield when exposed to field testing. As with abiotic stress tolerance, measurements of plant size in early development, under standardized conditions in a growth chamber or green- house, are standard practices to measure potential yield advantages conferred by the presence of a transgene.
[0012] There is a need, therefore, to identify additional genes expressed in stress tolerant plants and/or plants that are efficient in water use that have the capacity to confer stress tolerance and/or increased water use efficiency to the host plant and to other plant species. Newly generated stress tolerant plants and/or plants with increased water use efficiency will have many advantages, such as an increased range in which the crop plants can be cultivated, by for example, decreasing the water requirements of a plant species. Other desirable advantages include increased resistance to lodging, the bending of shoots or stems in response to wind, rain, pests, or disease.
SUMMARY OF THE INVENTION
[0013] The present inventors have discovered that transforming a plant with certain polynucleotides results in enhancement of the plant's growth and response to environmental stress, and accordingly the yield of the agricultural products of the plant is in- creased, when the polynucleotides are present in the plant as transgenes. The polynucleotides capable of mediating such enhancements have been isolated from Arabidopsis thaliana, Capsicum annuum, Escherichia coli, Physcomitrella patens, Saccharomyces cere- visiae, Triticum aestivum, Zea mays, Glycine max, Linum usitatissimum, Triticum aestivum, Oryza sativa, Helianthus annuus, and Brassica napus and the sequences thereof are set forth in the Sequence Listing as indicated in Table 1. Table 1
Figure imgf000005_0001
Figure imgf000006_0001
[0014] In one embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a CAAX amino terminal protease family protein. [0015] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a prenyl- dependent CAAX protease.
[0016] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a SAR8.2 pro- tein precursor.
[0017] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a putative membrane protein.
[0018] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2C protein.
[0019] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial carrier protein. [0020] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein kinase.
[0021] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a peptidyl pro- IyI isomerase. [0022] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 1.
[0023] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 2.
[0024] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a ornithine decarboxylase. [0025] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a glutathione reductase.
[0026] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 3.
[0027] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2A protein. [0028] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MEK1 protein kinase.
[0029] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a AP2 domain containing transcription factor. [0030] In a further embodiment, the invention concerns a seed produced by the transgenic plant of the invention, wherein the seed is true breeding for a transgene comprising the polynucleotide described above. Plants derived from the seed of the invention demonstrate increased tolerance to an environmental stress, and/or increased plant growth, and/or increased yield, under normal or stress conditions as compared to a wild type variety of the plant.
[0031] In a still another aspect, the invention concerns products produced by or from the transgenic plants of the invention, their plant parts, or their seeds, such as a foodstuff, feedstuff, food supplement, feed supplement, cosmetic or pharmaceutical. [0032] The invention further provides certain isolated polynucleotides identified in Table 1 , and certain isolated polypeptides identified in Table 1. The invention is also embodied in recombinant vector comprising an isolated polynucleotide of the invention. [0033] In yet another embodiment, the invention concerns a method of producing the aforesaid transgenic plant, wherein the method comprises transforming a plant cell with an expression vector comprising an isolated polynucleotide of the invention, and generating from the plant cell a transgenic plant that expresses the polypeptide encoded by the polynucleotide. Expression of the polypeptide in the plant results in increased tolerance to an environmental stress, and/or growth, and/or yield under normal and/or stress conditions as compared to a wild type variety of the plant.
[0034] In still another embodiment, the invention provides a method of increasing a plant's tolerance to an environmental stress, and/or growth, and/or yield. The method comprises the steps of transforming a plant cell with an expression cassette comprising an iso- lated polynucleotide of the invention, and generating a transgenic plant from the plant cell, wherein the transgenic plant comprises the polynucleotide.
BRIEF DESCRIPTION OF THE DRAWINGS
[0035] Figure 1 shows an alignment of the disclosed amino acid sequences At- FACE-2 (SEQ ID NO:6), ZM57353913 (SEQ ID NO:8), and ZM59252659 (SEQ ID NO:10). The alignment was generated using Align X of Vector NTI .
[0036] Figure 2 shows an alignment of the disclosed amino acid sequences EST564
(SEQ ID NO:16), BN49502266 (SEQ ID NO:18), GM49788080 (SEQ ID NO:20), GM53049821 (SEQ ID NO:22), ZM58462719 (SEQ ID NO:24), ZM61092633 (SEQ ID NO:26), ZM62016485 (SEQ ID NO:28), ZM62051019 (SEQ ID NO:30), ZM65086957 (SEQ ID NO:32), and ZM68587657 (SEQ ID NO:34). The alignment was generated using Align X of Vector NTI.
[0037] Figure 3 shows an alignment of the disclosed amino acid sequences EST390
(SEQ ID NO:36), BN51363030 (SEQ ID NO:38), BN42986056 (SEQ ID NO:40), BN49389066 (SEQ ID NO:42), BN51339479 (SEQ ID NO:44), ZM57651070 (SEQ ID
NO:46), and ZM62073276 (SEQ ID NO:48). The alignment was generated using Align X of Vector NTI .
[0038] Figure 4 shows an alignment of the disclosed amino acid sequences EST257
(SEQ ID NO:50), LU61665952 (SEQ ID NO:52), TA56863186 (SEQ ID NO:54), ZM62026837 (SEQ ID NO:56), ZM65457595 (SEQ ID NO:58), ZM67230154 (SEQ ID NO:60). The alignment was generated using Align X of Vector NTI . [0039] Figure 5 shows an alignment of the disclosed amino acid sequences
ZM68532504 (SEQ ID NO:74), BN42856089 (SEQ ID NO:76), BN43206527 (SEQ ID NO:78), HA66872964 (SEQ ID NO:80), LU61662612 (SEQ ID NO:82), OS32806943 (SEQ ID NO:84), OS34738749 (SEQ ID NO:86), ZM59400933 (SEQ ID NO:88), and
ZM62132060 (SEQ ID NO:90). The alignment was generated using Align X of Vector NTI . [0040] Figure 6 shows an alignment of the disclosed amino acid sequences
ZM59202533 (SEQ ID NO:92), BN41901422 (SEQ ID NO:94), BN47868329 (SEQ ID NO:96), and ZM68416988 (SEQ ID NO:100). The alignment was generated using Align X of Vector NTI .
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0041] Throughout this application, various publications are referenced. The disclosures of all of these publications and those references cited within those publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains. The terminology used herein is for the purpose of describing specific embodiments only and is not intended to be limiting. As used herein, "a" or "an" can mean one or more, depending upon the context in which it is used. Thus, for example, reference to "a cell" can mean that at least one cell can be used.
[0042] In one embodiment, the invention provides a transgenic plant that overex- presses an isolated polynucleotide identified in Table 1 , or a homolog thereof. The transgenic plant of the invention demonstrates an increased tolerance to an environmental stress as compared to a wild type variety of the plant. The overexpression of such isolated nucleic acids in the plant may optionally result in an increase in plant growth or in yield of associated agricultural products, under normal or stress conditions, as compared to a wild type variety of the plant.
[0043] As defined herein, a "transgenic plant" is a plant that has been altered using recombinant DNA technology to contain an isolated nucleic acid which would otherwise not be present in the plant. As used herein, the term "plant" includes a whole plant, plant cells, and plant parts. Plant parts include, but are not limited to, stems, roots, ovules, stamens, leaves, embryos, meristematic regions, callus tissue, gametophytes, sporophytes, pollen, microspores, and the like. The transgenic plant of the invention may be male sterile or male fertile, and may further include transgenes other than those that comprise the isolated polynucleotides described herein. [0044] As used herein, the term "variety" refers to a group of plants within a species that share constant characteristics that separate them from the typical form and from other possible varieties within that species. While possessing at least one distinctive trait, a variety is also characterized by some variation between individuals within the variety, based primarily on the Mendelian segregation of traits among the progeny of succeeding generations. A variety is considered "true breeding" for a particular trait if it is genetically homozy- gous for that trait to the extent that, when the true-breeding variety is self-pollinated, a significant amount of independent segregation of the trait among the progeny is not observed. In the present invention, the trait arises from the transgenic expression of one or more isolated polynucleotides introduced into a plant variety. As also used herein, the term "wild type variety" refers to a group of plants that are analyzed for comparative purposes as a control plant, wherein the wild type variety plant is identical to the transgenic plant (plant transformed with an isolated polynucleotide in accordance with the invention) with the exception that the wild type variety plant has not been transformed with an isolated polynucleotide of the invention. [0045] As defined herein, the term "nucleic acid" and "polynucleotide" are inter- changeable and refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof. The term also encompasses RNA/DNA hybrids. An "isolated" nucleic acid molecule is one that is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid (i.e., sequences encoding other polypeptides). For example, a cloned nucleic acid is considered isolated. A nucleic acid is also considered isolated if it has been altered by human intervention, or placed in a locus or location that is not its natural site, or if it is introduced into a cell by transformation. Moreover, an isolated nucleic acid molecule, such as a cDNA molecule, can be free from some of the other cellular material with which it is naturally associated, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. While it may optionally encompass untranslated sequence located at both the 3' and 5' ends of the coding region of a gene, it may be preferable to remove the sequences which naturally flank the coding region in its naturally occurring replicon.
[0046] As used herein, the term "environmental stress" refers to a sub-optimal condition associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, or oxidative stresses, or any combination thereof. The terms "water use efficiency" and "WUE" refer to the amount of organic matter produced by a plant divided by the amount of water used by the plant in producing it, i.e., the dry weight of a plant in relation to the plant's water use. As used herein, the term "dry weight" refers to everything in the plant other than water, and includes, for example, carbohydrates, proteins, oils, and mineral nutrients. [0047] Any plant species may be transformed to create a transgenic plant in accordance with the invention. The transgenic plant of the invention may be a dicotyledonous plant or a monocotyledonous plant. For example and without limitation, transgenic plants of the invention may be derived from any of the following diclotyledonous plant families: Leguminosae, including plants such as pea, alfalfa and soybean; Umbelliferae, including plants such as carrot and celery; Solanaceae, including the plants such as tomato, potato, aubergine, tobacco, and pepper; Cruciferae, particularly the genus Brassica, which includes plant such as oilseed rape, beet, cabbage, cauliflower and broccoli); and A. thaliana; Com- positae, which includes plants such as lettuce; Malvaceae, which includes cotton; Fa- baceae, which includes plants such as peanut, and the like. Transgenic plants of the invention may be derived from monocotyledonous plants, such as, for example, wheat, barley, sorghum, millet, rye, triticale, maize, rice, oats and sugarcane. Transgenic plants of the in- vention are also embodied as trees such as apple, pear, quince, plum, cherry, peach, nectarine, apricot, papaya, mango, and other woody species including coniferous and deciduous trees such as poplar, pine, sequoia, cedar, oak, and the like. Especially preferred are Arabidopsis thaliana, Nicotiana tabacum, oilseed rape, soybean, corn (maize), wheat, linseed, potato and tagetes. [0048] As shown in Table 1 , one embodiment of the invention is a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a CAAX amino terminal protease family protein. The transgenic plant of this embodiment may comprise any polynucleotide encoding a CAAX amino terminal protease family protein. The transgenic plant of this embodiment comprises a polynucleotide encoding a CAAX amino terminal protease family protein having a sequence comprising amino acids 1 to 301 of SEQ ID NO:2; and a protein having a sequence comprising amino acids 1 to 293 of SEQ ID NO:4.
[0049] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a prenyl- dependent CAAX protease. The transgenic plant of this embodiment may comprise any polynucleotide encoding a prenyl-dependent CAAX protease. The transgenic plant of this embodiment comprises a polynucleotide encoding a prenyl-dependent CAAX protease hav- ing a sequence comprising amino acids 1 to 311 of SEQ ID NO:6; a protein having a sequence comprising amino acids 1 to 313 of SEQ ID NO:8; a protein having a sequence comprising amino acids 1 to 269 of SEQ ID NO:10.
[0050] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a SAR8.2 protein precursor. The transgenic plant of this embodiment may comprise any polynucleotide encoding a SAR8.2 protein precursor. The transgenic plant of this embodiment comprises a polynucleotide encoding a SAR8.2 protein precursor having a sequence comprising amino acids 1 to 86 of SEQ ID NO:12. [0051] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a putative membrane protein. The transgenic plant of this embodiment may comprise any polynucleotide encoding a putative membrane protein. The transgenic plant of this embodiment comprises a polynucleotide encoding a putative membrane protein having a sequence compris- ing amino acids 1 to 696 of SEQ ID NO:14.
[0052] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2C protein. The transgenic plant of this embodiment may comprise any polynucleotide encoding a protein phosphatase 2C protein. The transgenic plant of this embodiment comprises a polynucleotide encoding a protein phosphatase 2C protein having a sequence comprising amino acids 1 to 284 of SEQ ID NO:16; a protein having a sequence comprising amino acids 1 to 384 of SEQ ID NO:18; a protein having a sequence comprising amino acids 1 to 346 of SEQ ID NO:20; a protein having a sequence comprising amino acids 1 to 375 of SEQ ID NO:22; a protein having a sequence comprising amino ac- ids 1 to 390 of SEQ ID NO:24; a protein having a sequence comprising amino acids 1 to 398 of SEQ ID NO:26; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:28; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:30; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:32; a protein having a sequence comprising amino acids 1 to 276 of SEQ ID NO:34. [0053] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial carrier protein. The transgenic plant of this embodiment may comprise any polynucleotide encoding a mitochondrial carrier protein. The transgenic plant of this embodiment comprises a polynucleotide encoding a mitochondrial carrier protein having a sequence com- prising amino acids 1 to 303 of SEQ ID NO:36; a protein having a sequence comprising amino acids 1 to 315 of SEQ ID NO:38; a protein having a sequence comprising amino acids 1 to 289 of SEQ ID NO:40; a protein having a sequence comprising amino acids 1 to 303 of SEQ ID NO:42; a protein having a sequence comprising amino acids 1 to 299 of SEQ ID NO:44; a protein having a sequence comprising amino acids 1 to 299 of SEQ ID NO:46; a protein having a sequence comprising amino acids 1 to 31 1 of SEQ ID NO:48.
[0054] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein kinase. The transgenic plant of this embodiment may comprise any polynucleotide encoding a protein kinase. The transgenic plant of this embodiment comprises a polynucleotide encoding a protein kinase having a sequence comprising amino acids 1 to 356 of SEQ ID NO:50; a protein having a sequence comprising amino acids 1 to 364 of SEQ ID NO:52; a protein having a sequence comprising amino acids 1 to 361 of SEQ ID NO:54; a protein having a sequence comprising amino acids 1 to 370 of SEQ ID NO:56; a protein having a sequence comprising amino acids 1 to 377 of SEQ ID NO:58; a protein having a sequence comprising amino acids 1 to 382 of SEQ ID NO:60. [0055] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a peptidyl prolyl isomerase. The transgenic plant of this embodiment may comprise any polynucleotide encoding a peptidyl prolyl isomerase. The transgenic plant of this embodiment comprises a polynucleotide encoding a peptidyl prolyl isomerase having a sequence comprising amino acids 1 to 523 of SEQ ID NO:62. [0056] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 1. The transgenic plant of this embodiment may comprise any polynucleotide encoding an unknown protein 1. The transgenic plant of this embodiment comprises a polynucleotide encoding a unknown protein 1 having a sequence comprising amino acids 1 to 1 1 1 of SEQ ID NO:64.
[0057] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 2. The transgenic plant of this embodiment may comprise any polynucleotide encoding an unknown protein 2. The transgenic plant of this embodiment comprises a polynucleotide encoding a unknown protein 2 having a sequence comprising amino acids 1 to 104 of SEQ ID NO:66.
[0058] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a ornithine decarboxylase. The transgenic plant of this embodiment may comprise any polynucleotide encoding a ornithine decarboxylase. The transgenic plant of this embodiment comprises a polynucleotide encoding a ornithine decarboxylase having a sequence comprising amino acids 1 to 466 of SEQ ID NO:68.
[0059] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a glutathione reductase. The transgenic plant of this embodiment may comprise any polynucleotide encoding a glutathione reductase. The transgenic plant of this embodiment comprises a polynucleotide encoding a glutathione reductase having a sequence comprising amino acids 1 to 483 of SEQ ID NO:70. [0060] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 3. The transgenic plant of this embodiment may comprise any polynucleotide encoding a unknown protein 3. The transgenic plant of this embodiment comprises a polynu- cleotide encoding a unknown protein 3 having a sequence comprising amino acids 1 to 129 of SEQ ID NO:72.
[0061] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2A protein. The transgenic plant of this embodiment may comprise any polynucleotide encoding a protein phosphatase 2A protein. The transgenic plant of this embodiment comprises a polynucleotide encoding a protein phosphatase 2A protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:74; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:76; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:78; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:80; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:82; a protein having a sequence comprising amino acids 1 to 307 of SEQ ID NO:84; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:86; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:88; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:90.
[0062] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MEK1 protein kinase. The transgenic plant of this embodiment may comprise any polynucleotide encoding a MEK1 protein kinase. The transgenic plant of this embodiment comprises a polynucleotide encoding a MEK1 protein kinase having a sequence comprising amino acids 1 to 355 of SEQ ID NO:92; a protein having a sequence comprising amino acids 1 to 355 of SEQ ID NO:94; a protein having a sequence comprising amino acids 1 to 338 of SEQ ID NO:96; a protein having a sequence comprising amino acids 1 to 350 of SEQ ID NO:100. [0063] In another embodiment, the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an AP2 domain containing transcription factor. The transgenic plant of this embodiment may comprise any polynucleotide encoding a AP2 domain containing transcription factor. The transgenic plant of this embodiment comprises a polynucleotide encoding a AP2 domain containing transcription factor having a sequence comprising amino acids 1 to 197 of SEQ ID NO:98. [0064] The invention further provides a seed produced by a transgenic plant expressing polynucleotide listed in Table 1 , wherein the seed contains the polynucleotide, and wherein the plant is true breeding for increased growth and/or yield under normal or stress conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant. The invention also provides a product produced by or from the transgenic plants expressing the polynucleotide, their plant parts, or their seeds. The product can be obtained using various methods well known in the art. As used herein, the word "product" includes, but not limited to, a foodstuff, feedstuff, a food supplement, feed supplement, cosmetic or pharmaceutical. Foodstuffs are regarded as compositions used for nutrition or for supplementing nutrition. Animal feedstuffs and animal feed supplements, in particular, are regarded as foodstuffs. The invention further provides an agricultural product produced by any of the transgenic plants, plant parts, and plant seeds. Agricultural products include, but are not limited to, plant extracts, proteins, amino acids, carbohydrates, fats, oils, polymers, vitamins, and the like.
[0065] In a preferred embodiment, an isolated polynucleotide of the invention comprises a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences listed in Table 1. These polynucleotides may comprise se- quences of the coding region, as well as 5' untranslated sequences and 3' untranslated sequences.
[0066] A polynucleotide of the invention can be isolated using standard molecular biology techniques and the sequence information provided herein, for example, using an automated DNA synthesizer. [0067] "Homologs" are defined herein as two nucleic acids or polypeptides that have similar, or substantially identical, nucleotide or amino acid sequences, respectively. Homologs include allelic variants, analogs, and orthologs, as defined below. As used herein, the term "analogs" refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms. As used herein, the term "orthologs" refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation. The term homolog further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Table 1 due to degeneracy of the genetic code and thus encode the same polypeptide. As used herein, a "naturally occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural polypeptide).
[0068] To determine the percent sequence identity of two amino acid sequences
(e.g., one of the polypeptide sequences of Table 1 and a homolog thereof), the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one polypeptide for optimal alignment with the other polypeptide or nucleic acid). The amino acid residues at corresponding amino acid positions are then compared. When a position in one sequence is occupied by the same amino acid residue as the corresponding position in the other sequence then the molecules are identical at that position. The same type of comparison can be made between two nucleic acid sequences. [0069] Preferably, the isolated amino acid homologs, analogs, and orthologs of the polypeptides of the present invention are at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99%, or more identical to an entire amino acid sequence identified in Table 1. In another preferred embodiment, an isolated nucleic acid homolog of the invention comprises a nucleotide sequence which is at least about 40-60%, preferably at least about 60-70%, more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99%, or more identical to a nucleotide sequence shown in Table 1. [0070] For the purposes of the invention, the percent sequence identity between two nucleic acid or polypeptide sequences is determined using the Vector NTI 9.0 (PC) software package (Invitrogen, 1600 Faraday Ave., Carlsbad, CA92008). A gap opening penalty of 15 and a gap extension penalty of 6.66 are used for determining the percent identity of two nucleic acids. A gap opening penalty of 10 and a gap extension penalty of 0.1 are used for determining the percent identity of two polypeptides. All other parameters are set at the default settings. For purposes of a multiple alignment (Clustal W algorithm), the gap opening penalty is 10, and the gap extension penalty is 0.05 with blosum62 matrix. It is to be understood that for the purposes of determining sequence identity when comparing a DNA sequence to an RNA sequence, a thymidine nucleotide is equivalent to a uracil nucleotide. [0071] Nucleic acid molecules corresponding to homologs, analogs, and orthologs of the polypeptides listed in Table 1 can be isolated based on their identity to said polypeptides, using the polynucleotides encoding the respective polypeptides or primers based thereon, as hybridization probes according to standard hybridization techniques under stringent hybridization conditions. As used herein with regard to hybridization for DNA to a DNA blot, the term "stringent conditions" refers to hybridization overnight at 600C in 10X Denhart's solution, 6X SSC, 0.5% SDS, and 100 μg/ml denatured salmon sperm DNA. Blots are washed sequentially at 62°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1X SSC/0.1 % SDS. As also used herein, in a preferred embodiment, the phrase "stringent conditions" refers to hybridization in a 6X SSC solution at 65°C. In another embodiment, "highly stringent conditions" refers to hybridization overnight at 65°C in 10X Denhart's solution, 6X SSC, 0.5% SDS and 100 μg/ml denatured salmon sperm DNA. Blots are washed sequentially at 65°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1 X SSC/0.1 % SDS. Methods for performing nucleic acid hybridizations are well known in the art. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent or highly stringent conditions to a nucleotide sequence listed in Table 1 corresponds to a naturally occurring nucleic acid molecule. [0072] There are a variety of methods that can be used to produce libraries of poten- tial homologs from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene is then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential sequences. Methods for synthesizing degenerate oligonucleotides are known in the art.
[0073] Additionally, optimized nucleic acids can be created. Preferably, an optimized nucleic acid encodes a polypeptide that has a function similar to those of the polypeptides listed in Table 1 and/or modulates a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress, and more pref- erably increases a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress upon its overexpression in the plant. As used herein, "optimized" refers to a nucleic acid that is genetically engineered to increase its expression in a given plant or animal. To provide plant optimized nucleic acids, the DNA sequence of the gene can be modified to: 1) comprise codons preferred by highly expressed plant genes; 2) comprise an A+T content in nucleotide base composition to that substantially found in plants; 3) form a plant initiation sequence; 4) to eliminate sequences that cause destabilization, inappropriate polyadenylation, degradation and termination of RNA, or that form secondary structure hairpins or RNA splice sites; or 5) elimination of antisense open reading frames. Increased expression of nucleic acids in plants can be achieved by utilizing the distribution frequency of codon usage in plants in general or in a particular plant. Methods for optimizing nucleic acid expression in plants can be found in EPA 0359472; EPA 0385962; PCT Application No. WO 91/16432; U.S. Patent No. 5,380,831 ; U.S. Patent No. 5,436,391 ; Perlack et al., 1991 , Proc. Natl. Acad. Sci. USA 88:3324-3328; and Murray et al., 1989, Nucleic Acids Res. 17:477-498.
[0074] An isolated polynucleotide of the invention can be optimized such that its distribution frequency of codon usage deviates, preferably, no more than 25% from that of highly expressed plant genes and, more preferably, no more than about 10%. In addition, consideration is given to the percentage G+C content of the degenerate third base (monocotyledons appear to favor G+C in this position, whereas dicotyledons do not). It is also recognized that the XCG (where X is A, T, C, or G) nucleotide is the least preferred codon in dicots, whereas the XTA codon is avoided in both monocots and dicots. Optimized nu- cleic acids of this invention also preferably have CG and TA doublet avoidance indices closely approximating those of the chosen host plant. More preferably, these indices deviate from that of the host by no more than about 10-15%.
[0075] The invention further provides an isolated recombinant expression vector comprising a polynucleotide as described above, wherein expression of the vector in a host cell results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the host cell. The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. As used herein with respect to a recombinant expression vector, "operatively linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in a bacterial or plant host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are well known in the art. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce polypeptides encoded by nucleic acids as described herein. [0076] Plant gene expression should be operatively linked to an appropriate promoter conferring gene expression in a timely, cell specific, or tissue specific manner. Promoters useful in the expression cassettes of the invention include any promoter that is ca- pable of initiating transcription in a plant cell. Such promoters include, but are not limited to, those that can be obtained from plants, plant viruses, and bacteria that contain genes that are expressed in plants, such as Agrobacterium and Rhizobium.
[0077] The promoter may be constitutive, inducible, developmental stage-preferred, cell type-preferred, tissue-preferred, or organ-preferred. Constitutive promoters are active under most conditions. Examples of constitutive promoters include the CaMV 19S and 35S promoters, the sX CaMV 35S promoter, the Sep1 promoter, the rice actin promoter, the Arabidopsis actin promoter, the ubiquitan promoter, pEmu, the figwort mosaic virus 35S promoter, the Smas promoter, the super promoter (U.S. Patent No. 5, 955,646), the GRP1 - 8 promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Patent No. 5,683,439), promoters from the T-DNA of Agrobacterium, such as mannopine synthase, nopaline synthase, and octopine synthase, the small subunit of ribulose biphosphate carboxylase (ssu- RUBISCO) promoter, and the like. [0078] Inducible promoters are preferentially active under certain environmental conditions, such as the presence or absence of a nutrient or metabolite, heat or cold, light, pathogen attack, anaerobic conditions, and the like. For example, the hsp80 promoter from Brassica is induced by heat shock; the PPDK promoter is induced by light; the PR-1 promoters from tobacco, Arabidopsis, and maize are inducible by infection with a pathogen; and the Adh1 promoter is induced by hypoxia and cold stress. Plant gene expression can also be facilitated via an inducible promoter (For a review, see Gatz, 1997, Annu. Rev. Plant Physiol. Plant MoI. Biol. 48:89-108). Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner. Examples of such promoters are a salicylic acid inducible promoter (PCT Application No. WO 95/19443), a tetracycline inducible promoter (Gatz et al., 1992, Plant J. 2: 397-404), and an ethanol in- ducible promoter (PCT Application No. WO 93/21334).
[0079] In one preferred embodiment of the present invention, the inducible promoter is a stress-inducible promoter. For the purposes of the invention, stress-inducible promoters are preferentially active under one or more of the following stresses: sub-optimal conditions associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, and oxidative stresses. Stress inducible promoters include, but are not limited to, Cor78 (Chak et al., 2000, Planta 210:875-883; Hovath et al., 1993, Plant Physiol. 103:1047-1053), Cor15a (Artus et al., 1996, PNAS 93(23): 13404-09), Rci2A (Medina et al., 2001 , Plant Physiol. 125:1655-66; Nylander et al., 2001 , Plant MoI. Biol. 45:341 -52; Navarre and Goffeau, 2000, EMBO J. 19:2515-24; Capel et al., 1997, Plant Physiol. 115:569-76), Rd22 (Xiong et al., 2001 , Plant Cell 13:2063-83; Abe et al., 1997, Plant Cell 9:1859-68; Iwasaki et al., 1995, MoI. Gen. Genet. 247:391 -8), cDet6 (Lang and Palve, 1992, Plant MoI. Biol. 20:951 -62), ADH1 (Hoeren et al., 1998, Genetics 149:479-90), KAT1 (Nakamura et al., 1995, Plant Physiol. 109:371 -4), KST1 (Muller-Rδber et al., 1995, EMBO 14:2409-16), Rha1 (Terryn et al., 1993, Plant Cell 5:1761 -9; Terryn et al., 1992, FEBS Lett. 299(3):287-90), ARSK1 (At- kinson et al., 1997, GenBank Accession # L22302, and PCT Application No. WO
97/20057), PtxA (Plesch et al., GenBank Accession # X67427), SbHRGP3 (Ahn et al., 1996, Plant Cell 8:1477-90), GH3 (Liu et al., 1994, Plant Cell 6:645-57), the pathogen indu- cible PRP1 -gene promoter (Ward et al., 1993, Plant. MoI. Biol. 22:361 -366), the heat inducible hsp80-promoter from tomato (U.S. Patent No. 5187267), cold inducible alpha-amylase promoter from potato (PCT Application No. WO 96/12814), or the wound-inducible pinll- promoter (European Patent No. 375091). For other examples of drought, cold, and salt- inducible promoters, such as the RD29A promoter, see Yamaguchi-Shinozalei et al., 1993, MoI. Gen. Genet. 236:331 -340.
[0080] Developmental stage-preferred promoters are preferentially expressed at certain stages of development. Tissue and organ preferred promoters include those that are preferentially expressed in certain tissues or organs, such as leaves, roots, seeds, or xylem. Examples of tissue-preferred and organ-preferred promoters include, but are not limited to fruit-preferred, ovule-preferred, male tissue-preferred, seed-preferred, integument- preferred, tuber-preferred, stalk-preferred, pericarp-preferred, leaf-preferred, stigma- preferred, pollen-preferred, anther-preferred, petal-preferred, sepal-preferred, pedicel- preferred, silique-preferred, stem-preferred, root-preferred promoters, and the like. Seed- preferred promoters are preferentially expressed during seed development and/or germination. For example, seed-preferred promoters can be embryo-preferred, endosperm- preferred, and seed coat-preferred (See Thompson et al., 1989, BioEssays 10:108). Examples of seed-preferred promoters include, but are not limited to, cellulose synthase (celA), Cim1 , gamma-zein, globulin-1 , maize 19 kD zein (cZ19B1 ), and the like. [0081] Other suitable tissue-preferred or organ-preferred promoters include the napin-gene promoter from rapeseed (U.S. Patent No. 5,608,152), the USP-promoter from Vicia faba (Baeumlein et al., 1991 , MoI. Gen. Genet. 225(3): 459-67), the oleosin-promoter from Arabidopsis (PCT Application No. WO 98/45461 ), the phaseolin-promoter from Phaseolus vulgaris (U.S. Patent No. 5,504,200), the Bce4-promoter from Brassica (PCT Application No. WO 91/13980), or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2(2): 233-9), as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice, etc. Suitable promoters to note are the Ipt2 or Ipt1 -gene promoter from barley (PCT Application No. WO 95/15389 and PCT Application No. WO 95/23230) or those described in PCT Application No. WO 99/16890 (pro- moters from the barley hordein-gene, rice glutelin gene, rice oryzin gene, rice prolamin gene, wheat gliadin gene, wheat glutelin gene, oat glutelin gene, Sorghum kasirin-gene, and rye secalin gene).
[0082] Other promoters useful in the expression cassettes of the invention include, but are not limited to, the major chlorophyll a/b binding protein promoter, histone promoters, the Ap3 promoter, the β-conglycin promoter, the napin promoter, the soybean lectin promoter, the maize 15kD zein promoter, the 22kD zein promoter, the 27kD zein promoter, the g-zein promoter, the waxy, shrunken 1 , shrunken 2, and bronze promoters, the Zm13 promoter (U.S. Patent No. 5,086,169), the maize polygalacturonase promoters (PG) (U.S. Patent Nos. 5,412,085 and 5,545,546), and the SGB6 promoter (U.S. Patent No. 5,470,359), as well as synthetic or other natural promoters.
[0083] Additional flexibility in controlling heterologous gene expression in plants may be obtained by using DNA binding domains and response elements from heterologous sources (i.e., DNA binding domains from non-plant sources). An example of such a heterologous DNA binding domain is the LexA DNA binding domain (Brent and Ptashne, 1985, Cell 43:729-736).
[0084] In a preferred embodiment of the present invention, the polynucleotides listed in Table 1 are expressed in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). A polynucleotide may be "introduced" into a plant cell by any means, including transfection, transformation or transduction, electroporation, particle bombardment, agroinfection, and the like. Suitable methods for transforming or transfecting plant cells are disclosed, for example, using particle bombardment as set forth in U.S. Pat. Nos. 4,945,050; 5,036,006; 5,100,792; 5,302,523; 5,464,765; 5,120,657; 6,084,154; and the like. More preferably, the transgenic corn seed of the invention may be made using Agrobacte- rium transformation, as described in U.S. Pat. Nos. 5,591 ,616; 5,731 ,179; 5,981 ,840; 5,990,387; 6,162,965; 6,420,630, U.S. patent application publication number 2002/0104132, and the like. Transformation of soybean can be performed using for exam- pie a technique described in European Patent No. EP 0424047, U.S. Patent No. 5,322,783, European Patent No.EP 0397 687, U.S. Patent No. 5,376,543, or U.S. Patent No. 5,169,770. A specific example of wheat transformation can be found in PCT Application No. WO 93/07256. Cotton may be transformed using methods disclosed in U.S. Pat. Nos. 5,004,863; 5,159,135; 5,846,797, and the like. Rice may be transformed using methods disclosed in U.S. Pat. Nos. 4,666,844; 5,350,688; 6,153,813; 6,333,449; 6,288,312;
6,365,807; 6,329,571 , and the like. Other plant transformation methods are disclosed, for example, in U.S. Pat. Nos. 5,932,782; 6,153,811 ; 6,140,553; 5,969,213; 6,020,539, and the like. Any plant transformation method suitable for inserting a transgene into a particular plant may be used in accordance with the invention. [0085] According to the present invention, the introduced polynucleotide may be maintained in the plant cell stably if it is incorporated into a non-chromosomal autonomous replicon or integrated into the plant chromosomes. Alternatively, the introduced polynucleotide may be present on an extra-chromosomal non-replicating vector and may be transiently expressed or transiently active. [0086] Another aspect of the invention pertains to an isolated polypeptide having a sequence selected from the group consisting of the polypeptide sequences listed in Table 1. An "isolated" or "purified" polypeptide is free of some of the cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of a polypeptide in which the polypeptide is separated from some of the cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of a polypeptide of the invention having less than about 30% (by dry weight) of contaminating polypeptides, more preferably less than about 20% of contaminating polypeptides, still more preferably less than about 10% of contaminating polypeptides, and most preferably less than about 5% contaminating polypeptides. [0087] The determination of activities and kinetic parameters of enzymes is well es- tablished in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determi- nation of many enzyme activities are abundant and well known to one skilled in the art. [0088] The invention is also embodied in a method of producing a transgenic plant comprising at least one polynucleotide listed in Table 1 , wherein expression of the polynucleotide in the plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant comprising the steps of: (a) introducing into a plant cell an expression vector comprising at least one polynucleotide listed in Table 1 , and (b) generating from the plant cell a transgenic plant that expresses the polynucleotide, wherein expression of the polynucleotide in the transgenic plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to envi- ronmental stress as compared to a wild type variety of the plant. The plant cell may be, but is not limited to, a protoplast, gamete producing cell, and a cell that regenerates into a whole plant. As used herein, the term "transgenic" refers to any plant, plant cell, callus, plant tissue, or plant part, that contains at least one recombinant polynucleotide listed in Table 1. In many cases, the recombinant polynucleotide is stably integrated into a chromo- some or stable extra-chromosomal element, so that it is passed on to successive generations.
[0089] The present invention also provides a method of increasing a plant's growth and/or yield under normal or water-limited conditions and/or increasing a plant's tolerance to an environmental stress comprising the steps of increasing the expression of at least one polynucleotide listed in Table 1 in the plant. Expression of a protein can be increased by any method known to those of skill in the art.
[0090] The effect of the genetic modification on plant growth and/or yield and/or stress tolerance can be assessed by growing the modified plant under normal and. or less than suitable conditions and then analyzing the growth characteristics and/or metabolism of the plant. Such analysis techniques are well known to one skilled in the art, and include dry weight, wet weight, polypeptide synthesis, carbohydrate synthesis, lipid synthesis, evapotranspiration rates, general plant and/or crop yield, flowering, reproduction, seed setting, root growth, respiration rates, photosynthesis rates, metabolite composition, etc., using methods known to those of skill in biotechnology. [0091] The invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof.
EXAMPLE 1 Cloning of cDNAs [0092] cDNAs were isolated from proprietary libraries of the respective plant species using known methods. Sequences were processed and annotated using bioinformatics analyses. The degrees of amino acid identity and similarity of the isolated sequences to the respective closest known public sequences are indicated in Tables 2 through 18 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blo- sum62).
Table 2
Comparison of At2g20725 (SEQ ID NO: 2) to known CAAX amino terminal protease proteins
Figure imgf000021_0001
Table 3
Comparison of At3g26085 (SEQ ID NO: 4) to known CAAX amino terminal protease proteins
Figure imgf000021_0002
Table 4
Comparison of AtFACE-2 (SEQ ID NO: 6) to known prenyl-dependent CAAX proteases
Figure imgf000022_0001
Table 5
Comparison of CASAR82A (SEQ ID NO: 12) to known SAR8.2 protein precursors
Figure imgf000022_0002
Table 6 Comparison of b3358 (SEQ ID NO: 14) to known putative membrane proteins
Figure imgf000022_0003
Table 7
Comparison of EST564 (SEQ ID NO: 16) to known protein phosphatase 2C proteins
Figure imgf000023_0001
Table 8
Comparison of EST390 (SEQ ID NO:36) to known mitochondrial carrier proteins
Figure imgf000023_0002
Table 9
Comparison of EST257 (SEQ ID NO: 50) to known protein kinases
Figure imgf000023_0003
Table 10
Comparison of EST465 (SEQ ID NO: 62) to known peptidyl prolyl isomerases
Figure imgf000024_0001
Table 1 1
Comparison of YBL109w (SEQ ID NO: 64) to unknown protein 1
Figure imgf000024_0002
Table 12 Comparison of YBLIOOc (SEQ ID NO: 66) to unknown protein 2
Figure imgf000024_0003
Table 13
Comparison of YKL184w (SEQ ID NO: 68) to known ornithine decarboxylases
Figure imgf000024_0004
Table 14
Comparison of YPL091w (SEQ ID NO: 70) to known glutathione reductases
Figure imgf000025_0001
Table 15
Comparison of TA54587433 (SEQ ID NO: 72) to unknown protein 3
Figure imgf000025_0002
Table 16
Comparison of ZM68532504 (SEQ ID NO: 74) to known protein phosphatase 2A proteins
Figure imgf000025_0003
Table 17
Comparison of ZM59202533 (SEQ ID NO: 92) to known MEK1 protein kinases
Figure imgf000025_0004
Table 18
Comparison of BN42671700 (SEQ ID NO: 98) to known AP2 domain containing transcription factors
Figure imgf000026_0001
[0093] The full-length DNA sequence of the AtFACE-2 (SEQ ID NO: 5) was blasted against proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and wheat cDNAs at an e value of e"10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). All the contig hits were analyzed for the putative full length sequences, and the longest clones representing the putative full length contigs were fully sequenced. Two homologs from maize were identified. The degree of amino acid identity of these sequences to the closest known public sequences is indicated in Tables 19 and 20 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
Table 19
Comparison of ZM57353913 (SEQ ID NO: 8) to known prenyl-dependent CAAX proteases
Figure imgf000026_0002
Table 20 Comparison of ZM59252659 (SEQ ID NO: 10) to known prenyl-dependent CAAX proteases
Figure imgf000026_0003
[0094] The full-length DNA sequence of EST564 (SEQ ID NO: 15) was blasted against proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and wheat cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). All the contig hits were analyzed for the putative full length sequences, and the longest clones representing the putative full length contigs were fully sequenced. Six homologs from maize, two homologs from soybean, and one homolog from canola were identified. The degree of amino acid identity of these sequences to the closest known public sequences is indicated in Tables 21-29 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
Table 21
Comparison of BN49502266 (SEQ ID NO: 18) to known protein phosphatase 2C proteins
Figure imgf000027_0001
Table 22
Comparison of GM49788080 (SEQ ID NO: 20) to known protein phosphatase 2C proteins
Figure imgf000027_0002
Table 23
Comparison of GM53049821 (SEQ ID NO: 22) to known protein phosphatase 2C proteins
Figure imgf000027_0003
Table 24
Comparison of ZM58462719 (SEQ ID NO: 24) to known protein phosphatase 2C proteins
Figure imgf000028_0001
Table 25
Comparison of ZM61092633 (SEQ ID NO: 26) to known protein phosphatase 2C proteins
Figure imgf000028_0002
Table 26
Comparison of ZM62016485 (SEQ ID NO: 28) to known protein phosphatase 2C proteins
Figure imgf000028_0003
Table 27
Comparison of ZM62051019 (SEQ ID NO: 30) to known protein phosphatase 2C proteins
Figure imgf000028_0004
Table 28
Comparison of ZM65086957 (SEQ ID NO: 32) to known protein phosphatase 2C proteins
Figure imgf000029_0001
Table 29
Comparison of ZM68587657 (SEQ ID NO: 34) to known protein phosphatase 2C proteins
Figure imgf000029_0002
[0095] The full-length DNA sequence of the EST390 (SEQ ID NO: 35) was blasted against proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and wheat cDNAs at an e value of e"10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402).
All the contig hits were analyzed for the putative full length sequences, and the longest clones representing the putative full length contigs were fully sequenced. Four homologs from canola and two homologs from maize were identified. The degree of amino acid iden- tity of these sequences to the closest known public sequences is indicated in Tables 30-35
(Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
Table 30 Comparison of BN51363030 (SEQ ID NO: 38) to known mitochondrial carrier proteins
Figure imgf000029_0003
Table 31
Comparison of BN42986056 (SEQ ID NO: 40) to known mitochondrial carrier proteins
Figure imgf000030_0001
Table 32
Comparison of BN49389066 (SEQ ID NO: 42) to known mitochondrial carrier proteins
Figure imgf000030_0002
Table 33
Comparison of BN51339479 (SEQ ID NO: 44) to known mitochondrial carrier proteins
Figure imgf000030_0003
Table 34
Comparison of ZM57651070 (SEQ ID NO: 46) to known mitochondrial carrier proteins
Figure imgf000030_0004
Table 35
Comparison of Z M 62073276 (SEQ ID NO: 48) to known mitochondrial carrier proteins
Figure imgf000031_0001
[0096] The full-length DNA sequence of the EST257 (SEQ ID NO: 49) was blasted against proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and wheat cDNAs at an e value of e"10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). All the contig hits were analyzed for the putative full length sequences, and the longest clones representing the putative full length contigs were fully sequenced. Three homologs from maize, one homolog from linseed, and one sequence from wheat were identified. The degree of amino acid identity of these sequences to the closest known public sequences is indicated in Tables 36-40 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
Table 36
Comparison of LU61665952 (SEQ ID NO: 52) to known protein kinases
Figure imgf000031_0002
Table 37
Comparison of TA56863186 (SEQ ID NO: 54) to known protein kinases
Figure imgf000031_0003
Table 38
Comparison of ZM62026837 (SEQ ID NO:56) to known protein kinases
Figure imgf000032_0001
Table 39
Comparison of ZM65457595 (SEQ ID NO: 58) to known protein kinases
Figure imgf000032_0002
Table 40
Comparison of ZM67230154 (SEQ ID NO: 60) to known protein kinases
Figure imgf000032_0003
[0097] The full-length DNA sequence of the ZM68532504 (SEQ ID NO: 73) was blasted against proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and wheat cDNAs at an e value of e"10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389- 3402). All the contig hits were analyzed for the putative full length sequences, and the longest clones representing the putative full length contigs were fully sequenced. Two ho- mologs from canola, two homologs from maize, one homolog from linseed, two sequences from rice and one sequence from sunflower were identified. The degree of amino acid identity of these sequences to the closest known public sequences is indicated in Tables 41 -48 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
Table 41
Comparison of BN42856089 (SEQ ID NO: 76) to known protein phosphatase 2A proteins
Figure imgf000033_0001
Table 42
Comparison of BN43206527 (SEQ ID NO: 78) to known protein phosphatase 2A proteins
Figure imgf000033_0002
Table 43
Comparison of HA66872964 (SEQ ID NO: 80) to known protein phosphatase 2A proteins
Figure imgf000033_0003
Table 44
Comparison of LU61662612 (SEQ ID NO: 82) to known protein phosphatase 2A proteins
Figure imgf000034_0001
Table 45
Comparison of OS32806943 (SEQ ID NO: 84) to known protein phosphatase 2A proteins
Figure imgf000034_0002
Table 46
Comparison of OS34738749 (SEQ ID NO: 86) to known protein phosphatase 2A proteins
Figure imgf000034_0003
Table 47
Comparison of ZM59400933 (SEQ ID NO: 88) to known protein phosphatase 2A proteins
Figure imgf000035_0001
Table 48
Comparison of ZM62132060 (SEQ ID NO: 90) to known protein phosphatase 2A proteins
Figure imgf000035_0002
[0098] The full-length DNA sequence of the ZM59202533 (SEQ ID NO: 91 ) was blasted against proprietary databases of canola, soybean, rice, maize, linseed, sunflower, and wheat cDNAs at an e value of e-10 (Altschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). All the contig hits were analyzed for the putative full length sequences, and the longest clones representing the putative full length contigs were fully sequenced. Two homologs from canola and one homolog from maize were identified. The degree of amino acid identity of these sequences to the closest known public sequences is indicated in Tables 49-51 (Pairwise Comparison was used: gap penalty: 10; gap extension penalty: 0.1 ; score matrix: blosum62).
Table 49
Comparison of BN41901422 (SEQ ID NO: 94) to known MEK1 protein kinases
Figure imgf000035_0003
Table 50
Comparison of BN47868329 (SEQ ID NO: 96) to known MEK1 protein kinases
Figure imgf000036_0001
Table 51
Comparison of ZM68416988 (SEQ ID NO: 100) to known MEK1 protein kinases
Figure imgf000036_0002
EXAMPLE 2 Well-watered Arabidopsis plants
The polynucleotides of Table 1 are ligated into a binary vector containing a selectable marker. The resulting recombinant vector contains the corresponding gene in the sense orientation under a constitutive promoter. The recombinant vectors are transformed into an Agrobacterium tumefaciens strain according to standard conditions. A. thaliana ecotype CoI-O or C24 are grown and transformed according to standard conditions. T1 and T2 plants are screened for resistance to the selection agent conferred by the selectable marker gene. T3 seeds are used in greenhouse or growth chamber experiments.
Approximately 3-5 days prior to planting, seeds are refrigerated for stratification. Seeds are then planted, fertilizer is applied and humidity is maintained using transpar- ent domes. Plants are grown in a greenhouse at 22°C with photoperiod of 16 hours light/8 hours dark. Plants are watered twice a week.
At 19 and 22 days, plant area, leaf area, biomass, color distribution, color intensity, and growth rate for each plant are measured using using a commercially available imaging system. Biomass is calculated as the total plant leaf area at the last measuring time point. Growth rate is calculated as the plant leaf area at the last measuring time point minus the plant leaf area at the first measuring time point divided by the plant leaf area at the first measuring time point. Health index is calculated as the dark green leaf area divided by the total plant leaf area.
EXAMPLE 3
Nitrogen stress tolerant Arabidopsis plants
The polynucleotides of Table 1 are ligated into a binary vector containing a selectable marker. The resulting recombinant vector contains the corresponding gene in the sense orientation under a constitutive promoter. The recombinant vectors are trans- formed into an A. tumefaciens strain according to standard conditions. A. thaliana ecotype CoI-O or C24 are grown and transformed according to standard conditions. T1 and T2 plants are screened for resistance to the selection agent conferred by the selectable marker gene.
Plants are grown in flats using a substrate that contains no organic compo- nents. Each flat is wet with water before seedlings resistant to the selection agent are transplanted onto substrate. Plants are grown in a growth chamber set to 22°C with a 55% relative humidity with photoperiod set at 16h light/ 8h dark. A controlled low or high nitrogen nutrient solution is added to waterings on Days 12, 15, 22 and 29. Watering without nutrient solution occurs on Days 18, 25, and 32. Images of all plants in a tray are taken on days 26, 30, and 33 using a commercially available imaging system. At each imaging time point, biomass and plant phenotypes for each plant are measured including plant area, leaf area, biomass, color distribution, color intensity, and growth rate.
EXAMPLE 4 Stress-tolerant Rapeseed/Canola plants
[0099] Canola cotyledonary petioles of 4 day-old young seedlings are used as ex- plants for tissue culture and transformed according to EP1566443. The commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can be used. A. tumefaciens GV3101 :pMP90RK containing a binary vector is used for canola transformation. The standard binary vector used for transformation is pSUN
(WO02/00900), but many different binary vector systems have been described for plant transformation (e.g. An, G. in Agrobacterium Protocols, Methods in Molecular Biology vol 44, pp 47-62, Gartland KMA and MR Davey eds. Humana Press, Totowa, New Jersey). A plant gene expression cassette comprising a selection marker gene, a plant promoter, and a polynucleotide of Table 1 is employed. Various selection marker genes can be used including the mutated acetohydroxy acid synthase (AHAS) gene disclosed in US Pat. Nos. 5,767,366 and 6,225,105. A suitable promoter is used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription. [00100] Canola seeds are surface-sterilized in 70% ethanol for 2 min, incubated for 15 min in 550C warm tap water and then in 1.5% sodium hypochlorite for 10 minutes, followed by three rinses with sterilized distilled water. Seeds are then placed on MS medium without hormones, containing Gamborg B5 vitamins, 3% sucrose, and 0.8% Oxoidagar. Seeds are germinated at 240C for 4 days in low light (< 50 μMol/m2s, 16 hours light). The cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacterium by dipping the cut end of the petiole explant into the bacterial suspension. The explants are then cultured for 3 days on MS medium includ- ing vitamins containing 3.75 mg/l BAP, 3% sucrose, 0.5 g/l MES, pH 5.2, 0.5 mg/l GA3, 0.8% Oxoidagar at 240C, 16 hours of light. After three days of co-cultivation with Agrobacterium, the petiole explants are transferred to regeneration medium containing 3.75 mg/l BAP, 0.5 mg/l GA3, 0.5 g/l MES, pH 5.2, 300 mg/l timentin and selection agent until shoot regeneration. As soon as explants start to develop shoots, they are transferred to shoot elongation medium (A6, containing full strength MS medium including vitamins, 2% sucrose, 0.5% Oxoidagar, 100 mg/l myo-inositol, 40 mg/l adenine sulfate, 0.5 g/l MES, pH 5.8, 0.0025 mg/l BAP, 0.1 mg/l IBA, 300 mg/l timentin and selection agent). [00101] Samples from both in vitro and greenhouse material of the primary transgenic plants (TO) are analyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations.
[00102] Seed is produced from the primary transgenic plants by self-pollination. The second-generation plants are grown in greenhouse conditions and self-pollinated. The plants are analyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations. Homozygous transgenic, heterozygous transgenic and azygous (null transgenic) plants are compared for their stress tolerance, for example, in the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
EXAMPLE 5 Screening for stress-tolerant rice plants
[00103] Transgenic rice plants comprising a polynucleotide of Table 1 are generated using known methods. Approximately 15 to 20 independent transformants (TO) are generated. The primary transformants are transferred from tissue culture chambers to a greenhouse for growing and harvest of T1 seeds. Five events of the T1 progeny segregated 3: 1 for presence/absence of the transgene are retained. For each of these events, 10 T1 seedlings containing the transgene (hetero- and homozygotes), and 10 T1 seedlings lacking the transgene (nullizygotes) are selected by visual marker screening. The selected T1 plants are transferred to a greenhouse. Each plant receives a unique barcode label to link unambiguously the phenotyping data to the corresponding plant. The selected T1 plants are grown on soil in 10 cm diameter pots under the following environmental settings: photope- riod = 1 1.5 h, daylight intensity = 30,000 lux or more, daytime temperature = 280C or higher, night time temperature = 220C, relative humidity = 60-70%. Transgenic plants and the corresponding nullizygotes are grown side-by-side at random positions. From the stage of sowing until the stage of maturity, the plants are passed several times through a digital im- aging cabinet. At each time point digital, images (2048x1536 pixels, 16 million colours) of each plant are taken from at least 6 different angles. [00104] The data obtained in the first experiment with T1 plants are confirmed in a second experiment with T2 plants. Lines that have the correct expression pattern are selected for further analysis. Seed batches from the positive plants (both hetero- and homo- zygotes) in T1 are screened by monitoring marker expression. For each chosen event, the heterozygote seed batches are then retained for T2 evaluation. Within each seed batch, an equal number of positive and negative plants are grown in the greenhouse for evaluation. [00105] Transgenic plants are screened for their improved growth and/or yield and/or stress tolerance, for example, using the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
EXAMPLE 6
Stress-tolerant soybean plants
[00106] The polynucleotides of Table 1 are transformed into soybean using the methods described in commonly owned copending international application number WO 2005/121345, the contents of which are incorporated herein by reference. [00107] The transgenic plants generated are then screened for their improved growth under water-limited conditions and/or drought, salt, and/or cold tolerance, for example, using the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
EXAMPLE 7
Stress-tolerant wheat plants
[00108] The polynucleotides of Table 1 are transformed into wheat using the method described by lshida et al., 1996, Nature Biotech. 14745-50. Immature embryos are co- cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and transgenic plants are recovered through organogenesis. This procedure provides a transformation efficiency between 2.5% and 20%. The transgenic plants are then screened for their improved growth and/or yield under water-limited conditions and/or stress tolerance, for example, is the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
EXAMPLE 8
Stress-tolerant corn plants
[00109] The polynucleotides of Table 1 are transformed into immature embryos of corn using Agrobacterium. After imbibition, embryos are transferred to medium without se- lection agent. Seven to ten days later, embryos are transferred to medium containing selection agent and grown for 4 weeks (two 2-week transfers) to obtain transformed callus cells. Plant regeneration is initiated by transferring resistant calli to medium supplemented with selection agent and grown under light at 25-270C for two to three weeks. Regenerated shoots are then transferred to rooting box with medium containing selection agent. Plant- lets with roots are transferred to potting mixture in small pots in the greenhouse and after acclimatization are then transplanted to larger pots and maintained in greenhouse till maturity. [001 10] Using assays such as the assay described in Examples 2 and 3, each of these plants is uniquely labeled, sampled and analyzed for transgene copy number. Trans- gene positive and negative plants are marked and paired with similar sizes for transplanting together to large pots. This provides a uniform and competitive environment for the trans- gene positive and negative plants. The large pots are watered to a certain percentage of the field water capacity of the soil depending the severity of water-stress desired. The soil water level is maintained by watering every other day. Plant growth and physiology traits such as height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the growth period. After a period of growth, the above ground portion of the plants is harvested, and the fresh weight and dry weight of each plant are taken. A comparison of the drought tolerance phenotype between the transgene positive and negative plants is then made. [001 1 1] Using assays such as the assay described in Example 2 and 3, the pots are covered with caps that permit the seedlings to grow through but minimize water loss. Each pot is weighed periodically and water added to maintain the initial water content. At the end of the experiment, the fresh and dry weight of each plant is measured, the water consumed by each plant is calculated and WUE of each plant is computed. Plant growth and physiology traits such as WUE, height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the ex- periment. A comparison of WUE phenotype between the transgene positive and negative plants is then made.
[001 12] Using assays such as the assay described in Example 2 and 3, these pots are kept in an area in the greenhouse that has uniform environmental conditions, and cultivated optimally. Each of these plants is uniquely labeled, sampled and analyzed for trans- gene copy number. The plants are allowed to grow under theses conditions until they reach a predefined growth stage. Water is then withheld. Plant growth and physiology traits such as height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured as stress intensity increases. A comparison of the dessication tolerance phenotype between transgene positive and nega- tive plants is then made.
[001 13] Segregating transgenic corn seeds for a transformation event are planted in small pots for testing in a cycling drought assay. These pots are kept in an area in the greenhouse that has uniform environmental conditions, and cultivated optimally. Each of these plants is uniquely labeled, sampled and analyzed for transgene copy number. The plants are allowed to grow under theses conditions until they reach a predefined growth stage. Plants are then repeatedly watered to saturation at a fixed interval of time. This water/drought cycle is repeated for the duration of the experiment. Plant growth and physiology traits such as height, stem diameter, leaf rolling, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the growth period. At the end of the experiment, the plants are harvested for above-ground fresh and dry weight. A comparison of the cycling drought tolerance phenotype between transgene positive and negative plants is then made. [001 14] In order to test segregating transgenic corn for drought tolerance under rain- free conditions, managed-drought stress at a single location or multiple locations is used. Crop water availability is controlled by drip tape or overhead irrigation at a location which has less than 10cm rainfall and minimum temperatures greater than 50C expected during an average 5 month season, or a location with expected in-season precipitation intercepted by an automated "rain-out shelter" which retracts to provide open field conditions when not required. Standard agronomic practices in the area are followed for soil preparation, planting, fertilization and pest control. Each plot is sown with seed segregating for the presence of a single transgenic insertion event. A Taqman transgene copy number assay is used on leaf samples to differentiate the transgenics from null-segregant control plants. Plants that have been genotyped in this manner are also scored for a range of phenotypes related to drought-tolerance, growth and yield. These phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instru- mentation for field physiology, using the standard protocols provided by the manufacturers. Individual plants are used as the replicate unit per event.
[001 15] In order to test non-segregating transgenic corn for drought tolerance under rain-free conditions, managed-drought stress at a single location or multiple locations is used. Crop water availability is controlled by drip tape or overhead irrigation at a location which has less than 10cm rainfall and minimum temperatures greater than 50C expected during an average 5 month season, or a location with expected in-season precipitation intercepted by an automated "rain-out shelter" which retracts to provide open field conditions when not required. Standard agronomic practices in the area are followed for soil preparation, planting, fertilization and pest control. Trial layout is designed to pair a plot containing a non-segregating transgenic event with an adjacent plot of null-segregant controls. A null segregant is progeny (or lines derived from the progeny) of a transgenic plant that does not contain the transgene due to Mendelian segregation. Additional replicated paired plots for a particular event are distributed around the trial. A range of phenotypes related to drought- tolerance, growth and yield are scored in the paired plots and estimated at the plot level. When the measurement technique could only be applied to individual plants, these are selected at random each time from within the plot. These phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry- weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water po- tential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis- silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plots are used as the replicate unit per event. [001 16] To perform multi-location testing of transgenic corn for drought tolerance and yield, five to twenty locations encompassing major corn growing regions are selected. These are widely distributed to provide a range of expected crop water availabilities based on average temperature, humidity, precipitation and soil type. Crop water availability is not modified beyond standard agronomic practices. Trial layout is designed to pair a plot containing a non-segregating transgenic event with an adjacent plot of null-segregant controls. A range of phenotypes related to drought-tolerance, growth and yield are scored in the paired plots and estimated at the plot level. When the measurement technique could only be applied to individual plants, these are selected at random each time from within the plot. These phenotypes included plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 up- take, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plots are used as the replicate unit per event.
APPENDIX
cDNA sequence of At2g20725 from Arabidopsis (SEQ ID NO:1 ):
ATGATTCTAGGCCGATGGGTTTCCTTCAGTTGCGGAAACACGCCGGTGACTAATTGTT CCGAACGACGACGACATACGGAGTTTCGTCGTCTCTCCTCTGCTAGTACTTGTCGACC TTCTCTCATATGCTCTTGTCTCAAAAGCAAATCCTCCCAAGAAACTACTCAGATTGAACA GTTGGGGAATGGAGAAGGGTTCTCAGTTTTGGCATCAGAGATTCCATGGGAGGATGAT AACATATGGAGCACATTTGCTCTTTACATGTTCTCTCTGCATATTCCTCTCAGTTTTGGG GGTTTATCCATTGTTGCCAACATACTCCACCGGCAGGTTCTTGATCCTCAGACCCAAGT GCTATCACTTGTGGTTCTCCAAATGGTAGAACTTGCAGGGACAGTCTTGCTGCTGAGG ACCACAGCGAAGCCTCAGTGCAAATCAATCAACTTTCTAAAGGGTAATAACGAAACAA GGGAAGGAAGAAACTGTGTGGTTGGCTCAGCATTGGGTTTGGGATGTCTTGTGGGCTT TATCTTCGTCACGTCGCTTGTAGCTGATCAACTCTTTGGCCCTAAGGCTGTACATGAAT CAGAATTGGAGAAGATAATGGTGAGCGGGGAAGTGGCGAGAAGCGGATGTTTTGCTC TCTACTGCGTAGTAGCTCCCATCCTTGAGGAGATAGTGTACAGACGCTTTCTCCTGAC CTCCTTAGCGTCGAGAATGGAATGGTGGAAGGCACTAGTGATCAGCTCAGGAGTATTT GCTGCAGGTCACTTCTCAGGTGAGGATTTTGTGCAGCTGTTTGGGATAGGTTGCGGTC TCGGGTTATGTTACAGCTGGTCAGGGAACTTAGCCTCATCAGTGCTCGTCCACTCCTT GTACAATGCATTGACACTTCTCTTCTCTTAG
The At2g20725 cDNA is translated into the following amino acid sequence (SEQ ID NO:2):
MILGRWVSFSCGNTPVTNCSERRRHTEFRRLSSASTCRPSLICSCLKSKSSQETTQIEQLG NGEGFSVLASEIPWEDDNIWSTFALYMFSLHIPLSFGGLSIVANILHRQVLDPQTQVLSLVVL QMVELAGTVLLLRTTAKPQCKSINFLKGNNETREGRNCVVGSALGLGCLVGFIFVTSLVAD QLFGPKAVHESELEKIMVSGEVARSGCFAL YCVVAPILEEIVYRRFLLTSLASRMEWWKAL VISSGVFAAGHFSGEDFVQLFGIGCGLGLCYSWSGNLASSVLVHSLYNALTLLFS
cDNA sequence of At3g26085 from Arabidopsis (SEQ ID NO:3):
ATGGGTTCCATCGCTCTGCAATCTTGGAGCAGAGGAGCTTCAACTTCTCTTCATCTCCT TTTTCGTCCAGTTGGCTCGAACCCTAAGCTATATGATGCTCGAAGAGTACAATTTGATG TAAGAGCCTCTTCAAGTCGTAAATCACTTAAGAAACTCAAAAGAGAGTCACAACAAGGT AAAGACATAGGCTTAAGAAATGTTACAGATGAAGAAGTTTCTTCTCCAAGATTTGAGGA AGCTCAAGTTGATTCTTCAACTTCAAAGGACTCCATTGATGTTTTTGTTGCTGCTCCTC GAGACAAAGTGCTTCAGGCTTGCACTGTAACTTCCGGTTTGATGGCTGCACTAGGTCT GATCATCAGAAAGGCGTCTCATGTTGCTTCGACTGAAGGATTACTGGTTCCAGACTGC TCTATAGATGTACCATTTGGGTTTGAAACTTGGCATCTCGGTTTAATTGCTGGAATCGT TGTGTTTATATCGTCAAGTAGGTTCTTGCTACTTAAATCTTGGCCAGATTTTGCTGATTC TAGTGAAGCAGCAAACCGACAGATTCTCACTTCCCTCGAACCTCTAGATTACCTTGTTG TTGCAATGTTACCGGGAATAAGTGAGGAGCTGCTGTTTAGAGGTGCATTAATGCCTTT GTTCGGAACTAATTGGAATGGTATTGTAGCGGTTGGCCTCATTTTCGGTTTACTTCATC TCGGGAGCGGAAGAAAGTATTCTTTTGCAGTTTGGGCTTCGATTGTCGGTATAGTCTA CGGTTATGCAGCTGTTTTGTCGTCGAGTCTTATCGTTCCAATGGCCTCGCACGCACTC AACAATTTGGTGGGAGGTCTGTTGTGGCGATATAGTTCCAAGATCAAGTCATTGGAG- TAA
The At3g26085 cDNA is translated into the following amino acid sequence (SEQ ID NO:4):
MGSIALQSWSRGASTSLHLLFRPVGSNPKLYDARRVQFDVRASSSRKSLKKLKRESQQGK DIGLRNVTDEEVSSPRFEEAQVDSSTSKDSIDVFVAAPRDKVLQACTVTSGLMAALGLIIRK ASHVASTEGLLVPDCSIDVPFGFETWHLGLIAGIVVFISSSRFLLLKSWPDFADSSEAANRQI LTSLEPLDYLVVAMLPGISEELLFRGALMPLFGTNWNGIVAVGLIFGLLHLGSGRKYSFAVW ASIVGIVYGYAAVLSSSLIVPMASHALNNLVGGLLWRYSSKIKSLE
cDNA sequence of AtFACE-2 from Arabidopsis (SEQ ID NO:5):
ATGGCCACCGATGGCGAGAGTATCTCGATGTCGTTGGCGGTGGCTACCTGCGTCGCG ATGGCACTATTCTACGTTTTGATCCTTTACGTTCCCACCGTGATACTCCGTCTCCCGTC GGCTTCTTCTTACACCGAATTCATGATTCGGCGATTCATCTGCGCGGCCATTTGTACTG TAGCATCTCTCGTCTTCACAGCTTTTATACTTCCGATAAAAAGCTGGGAGGCCTCTTAT ATACTTGGAGTTTATGGCATAAGGAAAGATCATCTGTGGCAAGGAGTGGTGTATCCTCT TCTATTGACCTCGCTCGTTTATGCTGGGTCTTTGGTGTTGAAGTTGTTTACTCTCCTGG AATCATGGAAGGAAAATGGCGGAGGATGTAGTTCCTTTAATTACATCAGAAGCTTTTTC CAAACAATCCCTGCTTCGGTATTGACAAGTGCTTCTAATGTTTCCGTTTGGCGCAATTT TATCGTGGCACCAGTAACTGAGGAGCTGGTTTTCCGATCATGTATGATACCTTTGCTTC TGTGTGCTGGGTTTAGGATTAACACTGCCATCTTTCTGTGCCCAGTTCTCTTTAGCTTG GCTCACTTAAACCATTTTAGAGAGATGTACATCAGGCATAACCGCAGCTATCTCCGGG CTTCACTTATTGTTGGTCTTCAGCTTGGCTACACAGTCATTTTTGGTGCATATGCATCGT TTCTCTTCATCAGAACCGGACATCTTGCTGCTCCTTTGTTTGCTCATATATTTTGCAACT ACATGGGATTGCCTGTGCTATACGCAAATGGAAAAGGTTTGGTGAGTGCAGCGTTCTT AGGCGGTGTGGTTGGGTTCGTCTTACTTCTCTTTCCTTTAACAAAGCCTCTCATGTACA ACGATAGTACCAACGATTGTCCGTGTTGGCTTGGCTATTGTTTGTGGAATTGA
The AtFACE-2 cDNA is translated into the following amino acid sequence (SEQ ID NO:6):
MATDGESISMSLAVATCVAMALFYVLILYVPTVILRLPSASSYTEFMIRRFICAAICTVASLVF TAFILPIKSWEASYILGVYGIRKDHLWQGVVYPLLLTSLVYAGSLVLKLFTLLESWKENGGG CSSFNYIRSFFQTIPASVLTSASNVSVWRNFIVAPVTEELVFRSCMIPLLLCAGFRINTAIFLC PVLFSLAHLNHFREMYIRHNRSYLRASLIVGLQLGYTVIFGAYASFLFIRTGHLAAPLFAHIFC NYMGLPVLYANGKGLVSAAFLGGVVGFVLLLFPLTKPLMYNDSTNDCPCWLGYCLWN
cDNA sequence of ZM57353913 from corn (SEQ ID NO:7): CGAAGCCACGCGACCGACTGTGTTACGATCCCAAATCTTCACTCCCGACGAAATCTAG AATCCAATGAGCAATCTCGACTGACGCCTGCTTCACCAGATTATGGCGACGCCGGCG GGCCTCCTTCTCGCCTCGCCGCCGGTGATATCAGGTGTCGCGGCGATGGCGGCGTG CGCCGCAATGGCAGTATTCTACGTCGCTGTCCTCTATGC
CCCGACGGTCATCCTCCGGTTCCCACCCCCAACCTCACTCCGCACCTTCCTCCACCGT CGCTTCGCCTGTGCCGCCGTCGCATCCGCCGCCTCCGTCCTTGCCACTGCGTCCCTC CTCCGAGTCTGGAGCCTCAGCGACTTCGCTGATATGTTTGCTGTGTTCGGCATTAGGA AGGATCACTTGATTCAGGCCGTGGCTATTCCACTTCTCCTGACATCCCTAGTGTATGCT GGGTCATTCGTCGCTAGAGTGTGGCTCCTAGTGAGCTCGTGGGGCGGTGGCGATGAG GTGGAGATAGGCTGCGCACAGAGGCTTGCACAATGGATCCAAGCTGCTGTTGCGGAT GTTATGGTTTGGCGGAACTATGTAGTGGCACCATTTACTGAGGAGCTGGTTTTCAGGG CATGCATGATACCTCTTCTGCTCTGTGGGGGATTCAAAATGTCTACAATTATATTTCTGA GTCCAATCTTCTTCAGTCTAGCGCACTTGAACCATTTTTTCGAACTACACCAGCAGGGA TGTAACTTTATGAGAGCGCTATTGATTGTAGGTGTCCAGTTAGGCTACACTGTCATTTT TGGGTGGTATGCAACATTCTTGTTAATCCGAACAGGGAATCTGTTATGTCCAATTATTG CTCACGTCTTCTGTAATATGATGGGTTTACCTGTTTTCTCGTCACCACGAACAAAAGGA GCGGCATTGGTAGCGTTTCTGGCTGGTTCAATAGCCTTCTTTTGGCTGCTTTTCCCTGC AACAAGTCCTGAACTGTACAACAGCAGTTTTGATCGCTGCAGTTGCTGGCATGGCTTTT GCAATTGGAAATAACATAGAACTAGATTGGAAAGCAATGGGTCCTAACTTGAAGCTACT AACAATTGAAACCTCCAGGCCCTAGCTGACACTTCTGACGGATTTTCTATTTGCAGAAA CTCCATATGAATGTCTTAAAACGTTTTGTAGAAATGTGTCCCTTGTTTTAGCTTAAGACT CAAGAGCTTAAACTAGCAAAAGATTGTATTTTGCCACTTGTTAAATACGTGCTGATCAT GAAATCGCTGTCAATCCCTTCTCAAAGTGGAATTTGACTTTGTTGAGCTGCTTTTATTTA TATTGTGCTTGCTACTGCAGCGCCTAGAGTTTGTAGATTACACATCATGGACCCGTCTG ATATTGTAAACGAGAGACATGTTTCTAAGTTAATATGCTCCCTCCATTTATTTAAAAAAA AAAAAAA
The ZM57353913 cDNA is translated into the following amino acid sequence (SEQ ID NO:8):
MATPAGLLLASPPVISGVAAMAACAAMAVFYVAVLYAPTVILRFPPPTSLRTFLHRRFACAA VASAASVLATASLLRVWSLSDFADMFAVFGIRKDHLIQAVAIPLLLTSLVYAGSFVARVWLL VSSWGGGDEVEIGCAQRLAQWIQAAVADVMVWRNYVVAPFTEELVFRACMIPLLLCGGF KMSTIIFLSPIFFSLAHLNHFFELHQQGCNFMRALLIVGVQLGYTVIFGWYATFLLIRTGNLLC PIIAHVFCNMMGLPVFSSPRTKGAALVAFLAGSIAFFWLLFPATSPELYNSSFDRCSCWHG FCNWK
cDNA sequence of ZM59252659 from corn (SEQ ID NO:9):
CCCAAATCTTCATTTCCGACGAAATCGAGAATCCAATGTGCAATCTCGACTGACGCCTG CTTCAACAGATTATGGCGACGCGGTGGGTCTCCTTCTCGCCTCGCCGCCGGAATATCA GGGTCGCGCGATGGGTCGTGCGCCAACGGAAGGATTCTACGTCGCTGTCCTCTATGC CCCGACGGTCATCCTCCGGGTCCCACCCCCAAGCTCACTCCGCACCTTCCTCCACCG TCGCTTCGCCTGTGCCGCCGTCGCATCCGCCGCCTCCGTCCTTGCCACTGCGTCCCT CCTCCGAATCTGGAGCCTCAGCGACTTCGCTGATATGTTTGCTGTGTTCGGCATTAGG AAGGATCACTTGATTCAGGCCGTGGCTATTCCACTTCTCCTGACATCCCTAGTGTATGC TGGGTCATTCGTCGCTAGAGTGTGGCTCCTAGTGAGCTCGTGGGGCGGTGGCGATGA GGTGGAGATAGGCTGCGCACAGAGGCTTGCACAATGGATCCAAGCTGCTGTTGCGGA TGTTATGGTTTGGCGGAACTATGTAGTGGCACCATTTACTGAGGAGCTGGTTTTCAGG GCATGCATGATACCTCTTCTGCTCTGTGGGGGATTCAAAATGTCTACAATTATATTTCT GAGTCCAATCTTCTTCAGTCTAGGTGTCCAGTTAGGCTACACTGTCATTTTTGGGTGGT ATGCAACATTCTTGTTAATCCGAACAGGGAATCTGTTATGTCCAATTACTGCTCACGTC TTCTGTAATATGATGGGTTTACCTGTTTTCTCGTCACCACGAACAAAAGGAGCGGCATT GGTAGCGTTTCTGGCTGGTTCAATAGCCTTCTTTTGGCTGCTTTTCCCTGCAACAAGTC CTGAACTGTACAACAGCAGTTTTGATCGCTGCAGTTGCTGGCATGGCTTTTGCAATTG GAAATAACATAGAACTAGATTGGAAAGCAATGGGTCCTAACTTGAAGCTACTAACAATT GAAACCTCCAGGCCCTAGCTGACACTGCTGACGGATTTTCTATTTGCAGAAACTCCATA TGAATGTCTTAAAACGTTTTGTAGAAATGTGTCCCTTGTTTTAGCTTAAGACTCGAGCTT AAACTAGCAAAAGATTGTATTTTGCCACTTGTTAAATACGTGCTGATCATGAAATCGCT GTCAATCCCTTCTCAAAGTGGAATTTGACTTTGTTGTAAAAAAAAAAA
The ZM59252659 cDNA is translated into the following amino acid sequence (SEQ ID NO:10):
MGRAPTEGFYVAVLYAPTVILRVPPPSSLRTFLHRRFACAAVASAASVLATASLLRIWSLSD FADMFAVFGIRKDHLIQAVAIPLLLTSLVYAGSFVARVWLLVSSWGGGDEVEIGCAQRLAQ WIQAAVADVMVWRNYVVAPFTEELVFRACMIPLLLCGGFKMSTIIFLSPIFFSLGVQLGYTVI FGWYATFLLIRTGNLLCPITAHVFCNMMGLPVFSSPRTKGAAL VAFLAGSIAFFWLLFPATS PELYNSSFDRCSCWHGFCNWK
cDNA sequence of CASAR82A from pepper (SEQ ID NO:1 1 ):
ATGGTGTCTAAGTCCTCAATCTTCATTTGCCTGAGCCTTATCATCCTCGTGATCATGTC TACCCAGATCGTGGCTAGAGAGATGACCAGTGAAGCTTCTGCTTCACTCACACAGGCA ATGAACGGGAACAATATCTCTGAGACCAAGAAAGTGGGTCGTCACTTGGTGAAGGGCT TGGATAAGATCTTCAAGGCTGGAAAGGTGATCTACTGCAAGACCTGCAAAACCTGCCA CGGTCGCTGCGATTACTGTTGCGCC
The CASAR82A cDNA is translated into the following amino acid sequence (SEQ ID NO:12):
MVSKSSIFICLSLIILVIMSTQIVAREMTSEASASLTQAMNGNNISETKKVGRHLVKGLDKIFK AGKVIYCKTCKTCHGRCDYCCA cDNA sequence of b3358 from E.coli (SEQ ID NO:13):
ATGTGGCGCAGACTGATTTATCACCCCGATATCAACTATGCACTTCGACAAACGCTGG TGCTATGTTTGCCCGTGGCCGTTGGGTTAATGCTTGGCGAATTACGATTCGGTCTGCT CTTCTCCCTCGTTCCTGCCTGTTGCAATATTGCGGGCCTTGATA
CGCCTCATAAACGTTTTTTCAAACGCTTAATCATTGGTGCGTCGCTGTTTGCCACCTGT AGCTTGCTGACACAGCTACTACTGGCAAAAGATGTTCCCCTGCCCTTTTTGCTGACCG GATTAACGCTGGTACTTGGCGTCACTGCTGAGCTGGGGCCATTGCACGCAAAATTGCT TCCTGCATCGCTGCTCGCCGCCATTTTTACCCTCAGTTTGGCGGGATACATGCCGGTC TGGGAACCGTTGCTCATCTATGCGTTGGGCACTCTCTGGTACGGATTGTTTAACTGGT TTTGGTTCTGGATCTGGCGCGAACAACCGCTGCGCGAGTCACTAAGTCTGCTGTACCG TGAACTGGCAGATTATTGTGAAGCCAAATACAGCCTGCTTACCCAGCACACCGACCCT GAAAAAGCGCTGCCGCCGCTGCTGGTGCGCCAGCAAAAAGCGGTCGATCTAATTACC CAGTGCTATCAGCAAATGCATATGCTTTCCGCGCAAAATAATACTGACTACAAGCGGAT GCTGCGTATTTTCCAGGAGGCGCTGGATTTACAGGAACATATTTCGGTCAGTTTGCAT CAGCCGGAAGAGGTGCAAAAGCTGGTCGAGCGTAGCCATGCGGAAGAAGTTATCCGC TGGAATGCGCAAACCGTCGCCGCTCGCCTGCGCGTGCTGGCTGATGACATTCTTTAC CATCGCCTGCCAACGCGTTTTACGATGGAAAAGCAAATTGGCGCACTGGAAAAAATCG CCCGCCAGCATCCGGATAATCCGGTTGGGCAATTCTGCTACTGGCATTTCAGCCGCAT CGCCCGCGTGCTGCGCACCCAAAAACCGCTCTATGCCCGTGACTTACTGGCCGATAA ACAGCGGCGAATGCCATTACTTCCGGCGCTGAAAAGTTATCTGTCACTAAAGTCTCCG GCGCTACGCAATGCCGGACGACTCAGTGTGATGTTAAGCGTTGCCAGCCTGATGGGC ACCGCGCTGCATCTGCCGAAGTCGTACTGGATCCTGATGACGGTATTGCTGGTGACAC AAAATGGCTATGGCGCAACCCGTCTGAGGATTGTGAATCGCTCCGTGGGAACCGTGG TCGGGTTAATCATTGCGGGCGTGGCGCTGCACTTTAAAATTCCCGAAGGTTACACCCT GACGTTGATGCTGATTACCACCCTCGCCAGCTACCTGATATTGCGCAAAAACTACGGC TGGGCGACGGTCGGTTTTACTATTACCGCAGTGTATACCCTGCAACTATTGTGGTTGA ACGGCGAGCAATACATCCTTCCGCGTCTTATCGATACCATTATTGGTTGTTTAATTGCT TTCGGCGGTACTGTCTGGCTGTGGCCGCAGTGGCAGAGCGGGTTATTGCGTAAAAAC GCCCATGATGCTTTAGAAGCCTATCAGGAAGCGATTCGCTTGATTCTTAGCGAGGATC CGCAACCTACGCCACTGGCCTGGCAGCGAATGCGGGTAAATCAGGCACATAACACTC TGTATAACTCATTGAATCAGGCGATGCAGGAACCGGCGTTTAACAGCCATTATCTGGC AGATATGAAACTGTGGGTAACGCACAGCCAGTTTATTGTTGAGCATATTAATGCCATGA CCACGCTGGCGCGGGAACACCGGGCATTGCCACCTGAACTGGCACAAGAGTATTTAC AGTCTTGTGAAATCGCCATTCAGCGTTGTCAGCAGCGACTGGAGTATGACGAACCGGG TAGTTCTGGCGATGCCAATATCATGGATGCGCCGGAGATGCAGCCGCACGAAGGCGC GGCAGGTACGCTGGAGCAGCATTTACAGCGGGTTATTGGTCATCTGAACACCATGCAC ACCATTTCGTCGATGGCATGGCGTCAGCGACCGCATCACGGGATTTGGCTGAGTCGC AAGTTGCGGGATTCGAAGGCGTAA
The b3358 cDNA is translated into the following amino acid sequence (SEQ ID NO:14): MWRRLIYHPDINYALRQTLVLCLPVAVGLMLGELRFGLLFSLVPACCNIAGLDTPHKRFFKR LIIGASLFATCSLLTQLLLAKDVPLPFLLTGLTLVLGVTAELGPLHAKLLPASLLAAIFTLSLAG YMPVWEPLLIYALGTLWYGLFNWFWFWIWREQPLRESLSLLYRELADYCEAKYSLLTQHT DPEKALPPLLVRQQKAVDLITQCYQQMHMLSAQNNTDYKRMLRIFQEALDLQEHISVSLHQ PEEVQKLVERSHAEEVIRWNAQTVAARLRVLADDILYHRLPTRFTMEKQIGALEKIARQHP DNPVGQFCYWHFSRIARVLRTQKPLYARDLLADKQRRMPLLPALKSYLSLKSPALRNAGR LSVMLSVASLMGTALHLPKSYWILMTVLLVTQNGYGATRLRIVNRSVGTVVGLIIAGVALHF KIPEGYTLTLMLITTLASYLILRKNYGWATVGFTITAVYTLQLLWLNGEQYILPRLIDTIIGCLIA FGGTVWLWPQWQSGLLRKNAHDALEAYQEAIRLILSEDPQPTPLAWQRMRVNQAHNTLY NSLNQAMQEPAFNSHYLADMKL WVTHSQFIVEHINAMTTLAREHRALPPELAQEYLQSCEI AIQRCQQRLEYDEPGSSGDANIMDAPEMQPHEGAAGTLEQHLQRVIGHLNTMHTISSMA WRQRPHHGIWLSRKLRDSKA
cDNA sequence of EST564 from moss (SEQ ID NO:15):
ATGTCATGCGACGTTCTCTGCCAATCTTTCAAGGAGGTAGAGGGCAAGTTCTTGGAAA TCGTCGAAAGGGCTTGGGCCGTCAAGCCGCAAATTGCCGCTGTTGGATCTTGTTGTTT GGTGGGAGCCGTATGGGATTCCAAACTGTACATCGCTAGTCTTGGAGATTCTCGAGCT GTTTTAGGTAGTTGCTCTCGTGACACTGGCCTTCCAGTTGCTAAGCAAATTTCAACAGA GCACAACGCAAGCATCGAGTCTATCCGGAATGAGTTGTTCGCAAAGCATAGTGATGAT CCGCAGATCGTGGTTTTGAAGCATGGAGTGTGGCGTGTGAAGGGTATTATTCAGATTT CACGCTCAATTGGTGATTTTTACTTGAAGAAAGCCGAATTTAATCAGCCGCCTCTTATA GCCAGGTTCCGG
CTTCCAGATCCCCTCAAGAGACCTGTCATAAGCTCAGAGCCGGAGTGCAACGTCATTA CACTCGGCCCGGATGACGAATTCGTCATTTTTGCATCTGATGGCCTTTGGGAGCACTT GAGCAGCAAAGAGGCCGTAGACATTGTGTATAGTCATCCCCGGGCTGGGATTGCCAG GCGTCTGATCAAAGCTGCTCTTCAAAAAGCTGCTACTAAACGTGAAATGCGGTACTCT GATTTGAAAGGGATTGAGCGCGGGATACGACGGCATTTTCATGATGACATAACTGTTG TGGTTCTTTATTTGGACACTAAACTGCTCAACAGAGGTGGTAGTATTTCTAATCATATTT CTTCGAAATGTCCAATTGACATGCCAAAAGGCGATAACCCTCCGTCGTTAGTTAGCTCT AACATGAACTTAGCTTTTAACAAATAA
The EST564 cDNA is translated into the following amino acid sequence (SEQ ID NO:16):
MSCDVLCQSFKEVEGKFLEIVERAWAVKPQIAAVGSCCLVGAVWDSKLYIASLGDSRAVL GSCSRDTGLPVAKQISTEHNASIESIRNELFAKHSDDPQIVVLKHGVWRVKGIIQISRSIGDF YLKKAEFNQPPLIARFRLPDPLKRPVISSEPECNVITLGPDDEFVIFASDGLWEHLSSKEAV DIVYSHPRAGIARRLIKAALQKAATKREMRYSDLKGIERGIRRHFHDDITVVVLYLDTKLLNR GGSISNHISSKCPIDMPKGDNPPSLVSSNMNLAFNK cDNA sequence of BN49502266 from canola (SEQ ID NO: 17):
CCAATAATCAAATCAAAACCCTTTCGATCAGTTGTTNCAGGAAAAAAAAAAACCCTTTC GATCTCATTCCATTTCGAATCAGAAAACCCTAGCAATTGACGATGTTGCGAGCTTTAGC GCGGCCTCTCGAACGGTGTTTAGGAAGCAGAGCGAGCGGCGACGGTTTGCTCTGGCA ATCGGAGTTGAAACCACACGCCGGCGGAGATTACTCGATCGCGGTGGTTCAAGCCAA TTCTAGCCTAGAGGATCAGAGTCAGGTGTTCACGTCTTCCTCCGCTACTTACGTCGGC GTCTACGACGGCCATGGCGGACCCGAAGCTTCTAGATTCGTTAACAGACATCTCTTTC CTTATATTCAGAAGTTCGCAAAAGAACATGGAGGACTGTCTGCAGACGTTATTAAAAAA GCATTCAAAGAAACTGAAGAGGATTTTTGCGGTATGGTTAAACGCTCACTTCCCATGAA GCCACAGATGGCTACTGTAGGATCTTGCTGTCTCTTTGGTGCCATCTCTAACGGCACG CTCTATGTCGCGAATCTTGGAGACTCGAGAGCCGTTCTTGGGAGCGTTGTTGCAGGG GATGATAGTAATAGTAGTAACAAGGGTGCTGCAGCTGAACGGTTGTCCACTGATCATA ACGTTGCTGTTGAAGAAGTGAGGAAGGAGGTTAAGGAACTTAACCCGGATGATTCGCA GATCGTCATGTACATTCGTGGAGTTTGGAGGATTAAAGGCATTATTCAGGTATCTAGAT CAATTGGGGATGTTTACTTGAAGAAACCGGAGTTTTACAGGGATCCGATATTCCAGCAA CATGGAAATCACATTCCTTTGAGGAGACCCGCGATGACAGCTGAACCGTCCATTATAG TAAGGAAGCTTAAGCCGCAAGACTTGTTTCTGATATTTGCATCAGATGGTCTCTGGGAG CATCTTAGTGATGAAGCAGCAGTAGAAATTGTACTCAAACACCCAAGAACTGGGATTG CAAGAAAACTTGTAAGAGCAGCTCTTGAAGAAGCAGCAAGGAAGAGAGAAATGAGATA TGGAGATATAAAGAAAATAGCCAAAGGGGTTAGAAGACATTTCCATGACGACATAAGC GTCGTTGTAGTTTATCTTGATCAACAAAAAACCACTTCTTCATCGAATGATAGATTGATC CAGAAAGGAGGAATCACTGCTCCACCGGATATCTACTCGTTACGTTCAGATGAAGCTG AGCAACGACGGCTACTCAATGTGTTATATTGATACTCTCTGGTTAGAGGGATACAACTT GTTTACATATTTGTTTAATCTTTTACAAAGAATGTTTGTTCTTTTTTCTTTCTTTTTTTAAT ATTTGGAGTTGGATTTGTATATTCTTTTTACCAGCAAGGAACGAAAACCCTTCTCTTTTG GGGGCAAAACAGTTTTGGTTTTGACAAACAATATAAAGTGAAACCGTTTGCAAAAAAAA AAAAAAAAA
The BN49502266 cDNA is translated into the following amino acid sequence (SEQ ID NO:18):
MLRALARPLERCLGSRASGDGLLWQSELKPHAGGDYSIAVVQANSSLEDQSQVFTSSSAT YVGVYDGHGGPEASRFVNRHLFPYIQKFAKEHGGLSADVIKKAFKETEEDFCGMVKRSLP MKPQMATVGSCCLFGAISNGTLYVANLGDSRAVLGSVVAGDDSNSSNKGAAAERLSTDH NVAVEEVRKEVKELNPDDSQIVMYIRGVWRIKGIIQVSRSIGDVYLKKPEFYRDPIFQQHGN HIPLRRPAMTAEPSIIVRKLKPQDLFLIFASDGLWEHLSDEAAVEIVLKHPRTGIARKLVRAAL EEAARKREMRYGDIKKIAKGVRRHFHDDISVVVVYLDQQKTTSSSNDRLIQKGGITAPPDIY SLRSDEAEQRRLLNVLY
cDNA sequence of GM49788080 from soybean (SEQ ID NO:19): TCCCGGGTCGACGATTTCGTGGTTACGGGGCGGAAGGAAGGGCTGCTGTGGTACAAG GATGCGGGGCAGCACTTGTTTGGTGAATACTCAATGGCTGTTGTCCAGGCCAACAACC TGCTCGAGGACCAGAGCCAGATTGAGTCTGGTCCTCTCAGCCTGCTTGACACTGGCC CTTATGGGACCTTTGTTGGTGTATATGATGGACACGGTGGGCCCGAGACGTCGCGCTA CGTCTGTGATCATCTCTTCCAACATCTAAAACGATTTGCATCTGAGCAGAAGTCCATGT CTATGGAGGTTATTCGGAAGGCATACCAAGCCACAGAAGAAGGTTTTTTGTCAGTGGT TACCAAACAGTGGCCCATGAATCCCCAAATTGCTGCTGTGGGATCTTGTTGTTTGGTTG GTGTGATTTGTGGTGGTATCCTCTATATTGCTAACCTTGGTGATTCCCGTGCTGTGCTT GGCCGGGTGGTCAGAGCAACTGGGGAGGTTTTGGCGATCCAGCTTTCGTCAGAGCAT AATGTGGCCATAGAATCTGTGAGACAAGAGATGCATTCTTTGCATCCGGATGACTCAAA AATTGTGGTTCTAAAGCACAATGTATGGCGGGTGAAGGGTCTGATACAGATTTCTAGAT CCATTGGCGATGTATACCTAAAAAAGGCTGAATTTAACAAGGAACCGTTGTATGCTAAG TTTCGTGTGCGGGAAGGTTTTAAGAGGCCCATTTTGAGCTCTGACCCATCAATTTCTGT CCATGAACTTCAACAGCATGATCAATTTCTCATATTTGCTTCTGATGGTCTTTGGGAACA CCTTAGCAATCAGGATGCCGTTGATATAGTTCAAAACAACCCACACAATGGAATTGCTC GGAGGCTCATCAAAGCTGCGTTGCAAGAAGCAGCAAAAAAGAGAGAGATGAGGTACT CTGATTTGAAGAAAATTGACCGTGGTGTCCGCCGGCATTTCCATGATGACATCACAGTT GTAGTTGTATTTCTTGACTCCAATCTTGTCAGCAGAGCCAGCTCAGTAAGAGGTCCTCC TTTATCGGTGAGAGGAGGTGGTGTTCCCCTACCTTCTAGAACTTTGGCTCCCTGTGCT GCACCTATGGAAACTTAGTTCAGGTTGATGAAGCTGGCTGTATGATCTGTTATGCTTCT ATTTAGTGTTGTACCCTTAGCAGACATTGAGCTCTGGTGATCCACCAGATTGTATATCC AATTTAACAGAGATTGAAAAAATGTTCGTTCA
ATTAGTACAATGTTACAAGTGACTTGGGGTATGTAGCTTGCGTGAGTAAAGCATCATG- GAA
The GM49788080 cDNA is translated into the following amino acid sequence (SEQ ID NO:20):
MAVVQANNLLEDQSQIESGPLSLLDTGPYGTFVGVYDGHGGPETSRYVCDHLFQHLKRFA SEQKSMSMEVIRKAYQATEEGFLSVVTKQWPMNPQIAAVGSCCLVGVICGGILYIANLGDS RAVLGRVVRATGEVLAIQLSSEHNVAIESVRQEMHSLHPDDSKIVVLKHNVWRVKGLIQISR SIGDVYLKKAEFNKEPLYAKFRVREGFKRPILSSDPSISVHELQQHDQFLIFASDGLWEHLS NQDAVDIVQNNPHNGIARRLIKAALQEAAKKREMRYSDLKKIDRGVRRHFHDDITVVVVFL DSNLVSRASSVRGPPLSVRGGGVPLPSRTLAPCAAPMET
cDNA sequence of GM53049821 from soybean (SEQ ID NO:21 ):
TGCTCCTCTACCACCGAACACANCCCCGGCCACCACCGAACGCTAACGTGCGCCCCT TCCTTACCCTGCGCCTCGGCACTCTCCCTTATTCCCCCTCCTTCATAAGCTCCGCGTTA ACCGTCCTCTCTCTCTCTCTCTCTCGGATCGGAGCGAGACTGGCGGCTCCGGCGTTG GGGGCGTTAGGGTTAGGGTTAGGGTTTCCAAGAGATG TGGTATGCTCCAGGCATTGATGAATCTGTTCTCGCTGTGTTGGAAGCCATTTGGCCGC GATGCTGCTGATCGAATCGATTCCATCGGAGTTACCGGAAGAGAAGGCAAAGACGGC TTGCTTTGGTTCCGCGACGGCGGAAAATATGGCTCTGGCGATTTCTCCATGGCCGTCG TTCAGGCCAACCAGGTTCTCGAAGACCAGAGCCAGATCGAGTCTGGTCCTCTCGGCA CCTTCGTCGGCATCTACGACGGTCACGGAGGACCCGACGCCTCAAGATACGTTTGCG ATCACTTGTTTCGCCATTTTCAAGCAATATCAGCTGAGTCACGCGGGGTTGTGACAACT GAGACAATCGAAAGAGCATTTCGCCAAACAGAAGAGGGGTACATGGCCCTCGTGTCA GGCTCGTGGAATGCTCGACCTCATATTGCAAGTGCTGGGACCTGTTGTCTAGTTGGAG TGATATTTCAGCAGACACTCTTTGTGGCAAACGCTGGAGATTCCCGTGTTGTATTGGGT AAGAAAGTTGGCAACACTGGAGGTATGGCTGCAATTCAGCTGTCTACAGAACACAATG CAAATCTTGAGGCTGTTAGGCAGGAACTTAAAGAATTACATCCTCATGATCCCCAAATT GTTGTCCTCAAACATGGAGTGTGGAGAGTAAAAGGCATTATTCAGGTTTCTAGATCTAT AGGTGATGTATATTTGAAGCATGCACAGTTTAACCGAGAACCACTTAATGCAAAATTCA GACTTCCTGAACCGATGAACATGCCTATCTTGAGTGCTAATCCCACTATTCTTTCTCAT GCTCTCCAACCAAATGATTCCTTCCTTATATTTGCATCTGATGGTTTATGGGAGCATTTG AGTAACGAGAAAGCTGTGGATATTGTAAACAGCAATCCACATGCGGGTAGTGCCAAGA GACTTATCAAGGCTGCTCTCCATGAAGCAGCAAGAAAACGAGAAATGCGATATTCAGA CCTCCGTAAGATTGACAAGAAAGTTCGACGCCATTTTCATGATGATATATCCGTTATTG TTTTATTCTTAAATCACGACCTTATTTCCAGAGGCACAGTGCTAGACCCGACACTTTCA ATTCGAAGCGCTCTCGATCACTGACTTGTATCACTGTAAGCAGTCTTGTACGAGTTTTT GGCAACTGTACCGATACCTGAAGCATTGGTAGGTACCTGGCTATAATATGTCATTTCTA TGGCACATATGGCTTCTGGTACCGACATCATTCT
TGAGGCACGAGAATTTATTAAGTTATAACATATTATTAGAAATTTATTCATAAAGAGGAA AAAAATAAATACAAAAATATCTTATTCCCTTTTCTAACCTTATAGTTTTACCCGAAATACT GGATTTTATTTATTTGTTTGTTTTTTTGGCTGAACATAGCTAATCGAACAGCATGTTGAT TGAATTCAAAGTTATTTTACAACAAATTATATGGAAAAAAAAAAAAAAA
The GM53049821 cDNA is translated into the following amino acid sequence (SEQ ID NO:22):
MLQALMNLFSLCWKPFGRDAADRIDSIGVTGREGKDGLLWFRDGGKYGSGDFSMAVVQA NQVLEDQSQIESGPLGTFVGIYDGHGGPDASRYVCDHLFRHFQAISAESRGVVTTETIERA FRQTEEGYMALVSGSWNARPHIASAGTCCLVGVIFQQTLFVANAGDSRVVLGKKVGNTG GMAAIQLSTEHNANLEAVRQELKELHPHDPQIVVLKHGVWRVKGIIQVSRSIGDVYLKHAQ FNREPLNAKFRLPEPMNMPILSANPTILSHALQPNDSFLIFASDGLWEHLSNEKAVDIVNSN PHAGSAKRLIKAALHEAARKREMRYSDLRKIDKKVRRHFHDDISVIVLFLNHDLISRGTVLDP TLSIRSALDH
cDNA sequence of ZM58462719 from corn (SEQ ID NO:23):
CGTGGCGACGCCCAAATCGAGCGACCTGATCGAGGCCCCTCGCCCCTACTCGCTGAA TCCCAATCCGAGCCCGCCAATTGGGCGCCCCCCCCCGCCCACGCAAAGGACAGATAG AAGAAAATTATTGGCGCTCTGACAAATCCAACTGAGGTTTTCTTGGACTACAGATGAAG CGGGCTCGAAGGGCGTATGTGCAAGAGATGACTGATGAGGGATGCTAGTGAAATTGA TGAACTTGTTACGGGCGTGCTGGCGACCGTCATCGAACCGGCATGCCCGAACAGGCT CAGATGTTACCGGTAGGCAGGATGGACTTCTATGGTACAAGGACGCCGGGCAACATG TCAATGGGGAGTTCTCCATGGCTGTTGTTCAGGCAAATAACTTACTTGAGGACCAGTG TCAGATCGAGTCGGGCCCACTGAGTTTTCTAGATTCTGGACCATATGGCACTTTCGTT GGTGTTTACGATGGGCATGGTGGTCCAGAGACGGCCTGCTATATCAATGATCATCTTT TCCAGAATCTGAAAAGATTTGCATCTGAACAGAATGCAATGTCTGCTGATGTACTGAAG AAGGCATATGAAGCTACAGAAGATGGATTCTTCTCCATTGTTACCAAACAATGGCCTGT AAAGCCTCAGATAGCAGCTGTCGGCTCATGCTGCCTGGTCGGTGTAATTTGTGGTGGC ATGCTTTATGTTGCCAATGTTGGGGATTCCCGTGTCGTTTTAGGAAAACATGTTAAGGC CACTGGAGAAGTTTTGGCTGTCCAACTGTCAGCAGAACATAATGTTAGTATTGCGTCC GTGAGAAAAGAACTGCAGTCAATGCACCCAGAAGATAGGCACATTGTTGTTCTCAAGC ACAATGTTTGGCGTGTTAAAGGACTAATTCAGGTTTGTAGATCAATTGGTGATGCATAT CTCAAAAAGCAAGAGTTCAACAGGGAACCCCTATATGCAAAATTTCGCCTCCGTGAAC CTTTTCACAAGCCAATACTAAGTTCAGAACCATCAATCAGTGTGCAACCACTACAACCA CACGACCAGTTTCTCATATTTGCATCTGATGGACTTTGGGAGCAGTTAACCAACCAAGA GGCAGTTGATATTGTTCGAAGTAGCCCCCGCAGTGGCTGTGCTAGGAGGCTGATAAG AGCGGCACTGCAAGAGGCAGCCAAGAAAAGAGAGATGAGGTACTCGGACCTCAAGAA GATTGACCGCGGTGTTCGCCGCCACTTCCACGACGACATAACAGTCATAGTAGTGTTC CTTGACTCCGGCCTCGTAAGCCAGGCGAGCACACACCGAGGTCCAACTCTTTCCTTGC GAGGCGGTGGCGGCAGCGCTGGCCTGCGCAGCAACACACTTGCACCTACGTGACTAT AAAGTGCCTGGTGGAGTGGAGGCTACTGACTGAAGGTGGTTTTCTTTCCTTGTGTCGA ATGTGTTATATATGTACTTGTACCAGCCAAGATCATTCATCCCCCCCCCTAAAATGGTG TAAAGAAGTAGGAGAGGCGCCGAAGTTCCTCACCAGCGTATCTGAATGCCCTCAATGG TGTCAAGTTGTGGACTCAAGTGGATAGCTTCGCTGAATCTTCTGATGATGCTCTGTGGA AAGCTCGAATCCTTTCCACCTGAAAAAGCAAGTAATATGTCTTCCAGTGCTGGAATTAA CCCCTAGTGCATATATATATGTATGAAATAATAATAAGGCAAAAGGAGGAGTAACTTAT TTAACTAATGCTGTGAGGTGTATTTATGTTTTGTATGTGTACTGCTTTTGACTGCTACTG CATCTACTGTTGTTAATTGACCACTGGTGAAGTGAAATCACTGGTTTCGTAAAAAAAAA AAAAAA
The ZM58462719 cDNA is translated into the following amino acid sequence (SEQ ID NO:24):
MLVKLMNLLRACWRPSSNRHARTGSDVTGRQDGLLWYKDAGQHVNGEFSMAVVQANNL LEDQCQIESGPLSFLDSGPYGTFVGVYDGHGGPETACYINDHLFQNLKRFASEQNAMSAD VLKKAYEATEDGFFSIVTKQWPVKPQIAAVGSCCLVGVICGGMLYVANVGDSRVVLGKHV KATGEVLAVQLSAEHNVSIASVRKELQSMHPEDRHIVVLKHNVWRVKGLIQVCRSIGDAYL KKQEFNREPLYAKFRLREPFHKPILSSEPSISVQPLQPHDQFLIFASDGLWEQLTNQEAVDI VRSSPRSGCARRLIRAALQEAAKKREMRYSDLKKIDRGVRRHFHDDITVIVVFLDSGLVSQ ASTHRGPTLSLRGGGGSAGLRSNTLAPT cDNA sequence of ZM61092633 from corn (SEQ ID NO:25):
AGCTTCCTCCCTCTTCCCTGGTCTGGTCGCTTCTCCTGTAGCTGTAATTTTTGAGAGTC CCTCTCAAACTTTGCTTGCTTGCGCTCTCCATATATCCTGTGGATCGGAGAGGATGCTC TGATCTACCTGTCTGTTCTTCGATCGAGTCTGAGAGATTTGGGAGGAGGAGGGAAACA AAGCGAAAGAGCCCATCTTTTTTGTCTTTTTGGTTCGGTTTCGTGGTTGCTTCTTTTGG ACCCCGCGGAGGAGCCCACCGTTTCTACAAAAACCCAATCTTTGCTGCCTTCTCAGCG GTCGAGATCGATAGGTTTCCAGATCTGAGGCTCCGTGTTCTGGCTGTGAGATCGGAG GCGCAGCAATCCGAGCACGCAGCTAGTAGGGAAAGTATCCGAGAAAAGTTGCAGATT TTGCTGGGGGCAACGGAGCGAGAACAAGTTACTGCAGAAGGAAAGGGCAAAGGTGG GGGAGGCGCCGGAGATGAGGGATGCTATCAGCTCTGATGGATTATTTGAAATCTTGCT GGGGTCCGGCATCACCGGCTGGGCGTCCCCGCAAAGGATCGGATGCCACCGGCCGC CAGGACGGGCTCCTGTGGTACAAGGACGGCGGGCAGGTCGTCGATGGTGAGTTCTC CATGGCCGTGGTCCAGGCCAATAACCTATTGGAGGACCATAGCCAGGTTGAATCCGG GCCGCTTAGCACATCGGAGCCTGGACTGCAAGGCACCTTCGTCGGGGTCTACGATGG GCACGGTGGCCCGGAGACAGCGCGTTACATCAATGACCATCTCTTCAACCACTTGAG GAGATTCGCATCTGAGCACAAGTGCATGTCAGCGGATGTGATTCGGAAGGCATTCCGA GCGACTGAGGAGGGTTTCATTTCTGTGGTTAGTAACCAATGGTCATTGAGACCTCAATT AGCAGCTGTAGGCTCTTGCTGTCTAGTTGGTGTGGTTTGCAGCGGAACTCTATATGTT GCAAACCTTGGGGACTCCCGTGCTGTTCTGGGGAGACTTGTCAAGGGAACTGGGGAG GTTTTGGCAATGCAGCTCTCAGCAGAACACAATGCATCCTATGAGGAGGTTAGACGAG AGCTGCAGGCATCACATCCTGATGATCCCCATATTGTGGTCCTAAAACACAATGTTTGG CGTGTAAAGGGTATTATCCAGATAACAAGGTCAATTGGAGATGTGTATCTGAAGAAACC AGAATTTAATAGAGAACCTTTGCACAGCAAGTTTCGTCTTCAGGAAACTTTTAGGAGAC CACTTCTTAGTTCTGATCCAGCAATTACTGTCCACCAAATACAGCCAACTGATAAGTTC ATCATTTTTGCATCTGATGGACTCTGGGAACATCTTAGTAATCAGGAAGTGGTTGACAT GGTCCAAAGTAGCCCGCGTAATGGAATCGCACGAAAGTTAGTAAAGTCTGCAGTGCAG GAAGCAGCGAAGAAGAGGGAGATGCGGTATTCAGACCTCAAGAAAGTTGATCGGGGG GTGAGGCGGCACTTCCACGACGATATAACTGTCATTGTGGTATTTTTCGATTCAAACGC CATGACAACTGCTGCCTGGAGCAGACCCTCGGTCTCTCTCCGAGGGGGTGGGTTTCC AATCCATTCAAACACCCTTGCTCCATTCTCGGTTCCTACAGAGCTAAACAACTCCTACT GAAACCACGCGGTATGTGAAGGAGCCAGGCAAGAGGATAAAAAAAAAGTAAAGGAAA ACGGAGAAGGAAAAACAGCTGTTGTGATCAGTTGTAGTGTATTTCACCGTTCATGTTCA TTTAAAACATTTTTTAGATTCTCAAGTCTCAACCTGGTGACCAGTGCACTGATAGCAAG GTATAAGATTAGATTATTCTTAGCTTTTTTATCCTCTTTTTTTTTTCTCGTCCTTACCCTTT AGATTCACTCATGGGATATCCGATATCAGGTGCTTGTACATTCTTTGGTTCAACTTGTG ATAATAGTTCATCGCCCCCCTCTTTTCGCAAAAAAAAAAA
The ZM61092633 cDNA is translated into the following amino acid sequence (SEQ ID NO:26): MLSALMDYLKSCWGPASPAGRPRKGSDATGRQDGLLWYKDGGQVVDGEFSMAVVQAN NLLEDHSQVESGPLSTSEPGLQGTFVGVYDGHGGPETARYINDHLFNHLRRFASEHKCMS ADVIRKAFRATEEGFISVVSNQWSLRPQLAAVGSCCLVGVVCSGTLYVANLGDSRAVLGR LVKGTGEVLAMQLSAEHNASYEEVRRELQASHPDDPHIVVLKHNVWRVKGIIQITRSIGDV YLKKPEFNREPLHSKFRLQETFRRPLLSSDPAITVHQIQPTDKFIIFASDGLWEHLSNQEVV DMVQSSPRNGIARKLVKSAVQEAAKKREMRYSDLKKVDRGVRRHFHDDITVIVVFFDSNA MTTAAWSRPSVSLRGGGFPIHSNTLAPFSVPTELNNSY
cDNA sequence of ZM62016485 from corn (SEQ ID NO:27):
TGTCTTGCTGCTGGCGCGCCGGGGCTCCGATTGCGCTCCAGATCTGAGGCACCTGCT CGGTGGATTCCAGGAATCCGAGCACCAACTCGACAGGGGAGTTCTCAGGGTAAAGAG GCTGAGAGCGCGTTGGAGATTTGGACTATAAGAGCGAGCGAGCGAGCTGGGTGCCTT GCTGCCTTGAGGACGCCGTCAAGAAACCGCGTGGAGGGGAGGGCGATGAGATGAGG GATGCTGGCCGCGGTGATGGACTACTTCAGCACCTGCTGGGGCCCGCGGTCTCGTGC GGGGCACCGGGGCAAGGGCTCCGACGCCGCCGGCCGGCAGGACGGCCTCCTCTGG TACAAGGACGCCGGGCAGCTCGTCACCGGGGGGTTCTCCATGGCCGTGGTGCAGGC CAACCAGCTGCTTGAGGACCAGAGCCAGGTGGAGTCCGGATCGCTCTCCCTGGCTGA CTACGGCCCGCAGGGCACCTTCGTCGGCGTCTATGATGGCCATGGCGGCCCGGAGA CGTCCCGGTTCATCAATGACCACCTCTTCAACCATCTCAGGAGATTCGCAACTGAGCA CAAGTCCATGTCAGCAGACGTGATCCGGAAAGCTTTCCAAGAAACTGAGGAGGGCTTT CTTTCTCTAGTCATCAAGGAATGGTCTTTCAAGCCTCAGATTGCATCAGTTGGCTCCTG TTGCCTTGTTGGTGTAATCTGTGCTGGGACTCTCTATGTTGCAAACCTGGGCGACTCG CGTGCAGTTCTTGGAAGGCTTGTGAAAGCAACTGGAGAGGTTCTGGCCACTCAGTTGT CAGCGGAGCACAATGCATGCTATGAAGAAGTTAGACAAGAGCTGCAGTCATCACATCC TGATGATCCACGTATTGTGGTTCTCAAACATAACGTTTGGCGAGTGAAGGGTCTCATCC AGATCTCAAGATCTATCGGAGATGTATATCTAAAGAAACCGGAGTATAACAGAGAACCT CTTCACAGCAAGTTTCGGCTTCGAGAAACCTTCCAGAAGCCGATTCTTAGTTCTGAACC TCAAATTACTGAACACCGAATACAGCCAAACGATCAGTTTGTTATATTTGCTTCCGATG GTCTATGGGAGCACCTCAGCAATCAGGAAGCTGTTGACCTTGTCCAAAGTAGTCCCCG TAATGGAATCGCTCGGAGACTAGTGAAAGCCGCGATGCAAGAAGCTGCCAAGAAGAG GGAGATGAGATACTCAGACCTCAAGAAGATCGACCGTGGCGTGAGGAGGCATTTCCA CGACGATATAACCGTCGTCGTGGTGTTCCTCGACTCGGATGCCATGAGCAAAGCTAGC TGGAGCAAGAGCCCCTCGTTTTCTCTCCGAGGGGGCGGCGTCACCCTTCCCGCCAAG TCCCTCGCACCCTTCTCGGCTCCGGCACAGTTGAACGGCACCCACTGAAGCTGCTACT GCTCTTGAAAAGAAGGGCACAGTGCAGATCTGCTAGAGATGATGAGAGAAGCAGCAAT CAAGTGTAGCTGTTGCTCGTACACCTGCTGTGCTGTTGCTGTTTGCAAAGCTGCCGTC TTGACTCCGCCTGGTAATTAGTGTACTGATAGCGAGGTATAGAAATTAGGTTATTTGTT AGCGACGCAAATCCTTTCTTTTTTTTTCTTCTCCCTCTGTTCTTATCTCTTTTCTCTTCAT CATGGAGGAAACAGGTGGCTGTAAATTTGTCCAGAACATGTTTTCCCTAATAGCCCAAC AAAAAAAAAAA The ZM62016485 cDNA is translated into the following amino acid sequence (SEQ ID NO:28):
MLAAVMDYFSTCWGPRSRAGHRGKGSDAAGRQDGLLWYKDAGQLVTGGFSMAVVQAN QLLEDQSQVESGSLSLADYGPQGTFVGVYDGHGGPETSRFINDHLFNHLRRFATEHKSM SADVIRKAFQETEEGFLSLVIKEWSFKPQIASVGSCCLVGVICAGTLYVANLGDSRAVLGRL VKATGEVLATQLSAEHNACYEEVRQELQSSHPDDPRIVVLKHNVWRVKGLIQISRSIGDVY LKKPEYNREPLHSKFRLRETFQKPILSSEPQITEHRIQPNDQFVIFASDGLWEHLSNQEAVD LVQSSPRNGIARRLVKAAMQEAAKKREMRYSDLKKIDRGVRRHFHDDITVVVVFLDSDAM SKASWSKSPSFSLRGGGVTLPAKSLAPFSAPAQLNGTH
cDNA sequence of ZM62051019 from corn (SEQ ID NO:29):
TTTTCTCTTATCCAGCTTCTTAGCATGATTCTCTTTGATCCCGGAGAGCAGCCACCGGT CCAACTAGTCCTTGCTGTTGGTCTGCCGGAACTTTTGATTGCTCTCCAGATCTGAGGC ACCTGCTGGGTGGATTCCAGGAACCCGAGCACGAAGTTGACAGGTGAGTTCTCAGGG AAAAAGGGGAGGAAGGAAGAGGCTGAAAGGGCGGTG
GAGAGAGAAAGACTATAAGGGCGAGCTGAGTCCCTTGAGGATGCCGTCAAGAAACCG CGTGGAGAGGAGGGCGATGAGATGAGGGATGCTGGCCGCGGTGATGGACTACTTCA GCTCCTGCTGGGGCCCGCGATCGGGCGCCGGGCACCGGGGCAAGGGCTCCGACGC CGCCGGCCGGCAGGACGGTCTCCTCTGGTACAAGGACGCCGGCCAGCTCGTCACTG GGGAGTTCTCCATGGCCGTGGTGCAGGCCAACCAGCTCCTCGAGGACCAGAGCCAAG TAGAGTCCGGATCGCTCTCCCTGGCTGACCCGGGCCCACAGGGCACCTTCGTCGGCG TCTATGATGGCCATGGCGGCCCGGAGACGTCCCGGTTCATCAATGACCACCTCTTCAA CCATCTCAGAAGGTTTGCAACTGAGCACAAGTTTATGTCAGCGGACGTGATCCGGAAA GCTTTCCAAGCAACTGAGGAGGGCTTTCTTTCTCTAGTCAGCAAGGAATGGTCTTTGAA GCCTCAGATTGCTTCAGTGGGCTCCTGCTGCCTTGTTGGTGTAATCTGTGCTGGGACT CTCTATGTTGCAAACGTGGGCGACTCACGTGCAGTTCTTGGAAGGCTTGTTAAGGCAA CTGGAGAGGTTGTGGCCATGCAGTTGTCATCGGAGCACAATGCGTGCTATGAGGAAG TTAGACAAGAACTGCAGTCATCACATCCTGACGATCCACATATTGTGGTTCTCAAACAC AATGTTTGGCGAGTGAAGGGTCTCATCCAGATCTCAAGATCTATTGGAGATGTATATCT AAAGAAACCAGAGTACAACAGAGAACCACTTCACAGCAAGTTTCGGCTTCGAGAAACC TTCCAGAGGCCGACCCTTAGTTCTGAACCTCAAATTACTGAACATCGAATACAGCCGAA CGATCAATTTGTTATATTTGCTTCTGATGGTCTATGGGAGCACCTCAGCAATAAGGAAG CAGTTGACCTTGTCCAAAGTAGTCCCCGAAATGGAATCGCTCGGAGGCTAGTGAAAGC CGCGATGCAAGAAGCTGCCAAGAAGAGGGAGATGAGATACTCAGACCTCAAGAAGAT CGACCGTGGTGTGAGAAGGCATTTCCACGACGATATAACTGTCGTCGTGGTATTCCTC GATTCGGATGCCATGAGCAAAGCTAGCTGGAGCAAAAGCCCCTCGGTTTCTCTCCGAG GGGGCGGTGTCGCCCTCCCTGCGAAGTCCCTCGCACCTTTCTCAGCTCCGGCACGGC TGAACAGCACCTACTGAAGTTGCTACCACTCTTGAAAGGAAGAACACAGTGCAGATCT GCAGTGGTGAGAGAGAGAGAGAAAACAGCAACCAAGTGTAGCGTTACAGTTACACCT GCTGTGTTGTTGCTCTTTGCAAAACTACTGTCTAGACTCCGCCTGGTAATTAGTGTACT GATAGCGAGGTAAAAAAAGTTAGATTATTTGTTAGCGACACACATCCTTTCACCTTCTC TTCTCTCCCTCGATTCCTATCCCTTTTCTCTTCATCCTTGAGAGAACAGGTGGATGTAA ATTGTTCAGAACATGTTTTCCCTTATAGTCCATCATATCCCGCTTTTTTCGTGTTGAAAA AAAAAAAAAA
The ZM62051019 cDNA is translated into the following amino acid sequence (SEQ ID NO:30):
MLAAVMDYFSSCWGPRSGAGHRGKGSDAAGRQDGLLWYKDAGQLVTGEFSMAVVQAN QLLEDQSQVESGSLSLADPGPQGTFVGVYDGHGGPETSRFINDHLFNHLRRFATEHKFMS ADVIRKAFQATEEGFLSLVSKEWSLKPQIASVGSCCLVGVICAGTLYVANVGDSRAVLGRL VKATGEVVAMQLSSEHNACYEEVRQELQSSHPDDPHIVVLKHNVWRVKGLIQISRSIGDVY LKKPEYNREPLHSKFRLRETFQRPTLSSEPQITEHRIQPNDQFVIFASDGLWEHLSNKEAV DLVQSSPRNGIARRLVKAAMQEAAKKREMRYSDLKKIDRGVRRHFHDDITVVVVFLDSDA MSKASWSKSPSVSLRGGGVALPAKSLAPFSAPARLNSTY
cDNA sequence of ZM65086957 from corn (SEQ ID NO:31 ):
CTCTGTCTCCTTGGATTTGCGCTTGTGCTCGTCTGGCCGCATACTAGTATCCGCACCA GAGAGGAGACACCTCCGACTCCGACCTGCTCTTGCATATAGATTGGACAGAGAGTGA GGGAGAGAGAGAGCGCGCGCGCTGAAGGGGTGCCAAAGGGAGATTTTTTTTTTTTAAT CCAGCTTCTTAGCCTGACTGACTCTCTTTGATCCCGG
AGAGCAGCCGCCAGCCCAACTAATCCTTGCTGCTGGCGCGCCGGGGCTCTGATTGCG CTCCAGATCTGAGGCACCTGCTCGGTGGATTCCAGGAATCCGAGCACCAACTCGACA GGGAGAGTTCTCAGGGTAAAGGACGACGCTTGATGCACACGGGACGGGACAACGAGT TGGCCGCAAGTTTTGTTTGCACACGCACACGACCCACCAGCTCACGCGTTTTTTTTTTT TTTTTTGCTTCTTAACTCGCTTTGATTGCATCTGTTGTTTCGGAAGGAAGAGGCTGAGA GCGCGTTGGAGATTTGGACTATAAGAGCGAGCGAGCGAGCGAGCTGGGTGCCTTGAG GACGCCGTCAAGAAACCGCGTGGAGGGGAGGGCGATGAGATGAGGGATGCTGGCCG CGGTGATGGACTACTTCAGCACCTGCTGGGGCCCGCGGTCTCGTGCGGGGCACAGG GGCAAGGGCTCCGACGCCGCCGGCCGGCAGGACGGCCTCCTCTGGTACAAGGACGC CGGGCAGCTCGTCACCGGGGGGTTCTCCATGGCCGTGGTGCAGGCCAACCAGCTGC TTGAGGACCAGAGCCAGGTGGAGTCCGGATCGCTCTCCCTGGCTGACTACGGCCCGC AGGGCACCTTCGTCGGCGTCTATGATGGCCATGGCGGCCCGGAGACGTCCCGGTTCA TCAATGACCACCTCTTCAACCATCTCAGGAGATTTGCAACTGAGCACAAGTCCATGTCA GCAGACGTGATCCGGAAAGCTTTCCAAGAAACTGAGGAGGGCTTTCTTTCTCTAGTCA TCAAGGAATGGTCTTTCAAGCCTCAGATTGCATCAGTTGGCTCCTGTTGCCTTGTTGGT GTAATCTGTGCTGGGACTCTCTATGTTGCAAACCTGGGCGACTCCCGTGCAGTTCTTG GAAGGCTTGTTAAGGCAACTGGAGAGGTTCTGGCCACGCAGTTGTCAGCGGAGCACA ATGCATGCTATGAAGAAGTTAGACAAGAGCTGCAGTCATCACATCCTGATGATCCACG TATTGTGGTTCTAAAACATAACGTTTGGCGAGTGAAGGGTCTCATCCAGATCTCAAGAT CTATCGGAGATGTATATCTAAAGAAACCGGAGTATAACAGAGAACCTCTTCACAGCAA GTTTCGGCTTCGAGAAACCTTCCAGAAGCCGATTCTTAGTTCTGAACCTCAAATTACTG AACACCGAATACAGCCAAACGATCAGTTTGTTATATTTGCTTCTGATGGTCTATGGGAG CACCTCAGCAATCAGGAAGCTGTTGACCTTGTCCAAAGTAGTCCCCGTAATGGAATCG CTCGGAGACTAGTGAAAGCCGCGATGCAAGAAGCTGCCAAGAAGAGGGAGATGAGAT ACTCAGACCTCAAGAAGATCGACCGTGGCGTGAGGAGGCATTTCCACGACGATATAAC CGTCGTCGTGGTGTTCCTCGACTCGGATGCCATGAGCAAAGCTAGCTGGAGCAAGAG CCCCTCGGTTTCTCTCCGAGGGGGCGGCGTCACCCTTCCCGCCAAGTCCCTCGCACC CTTCTCGGCTCCGGCACAGTTGAACGGCACCCACTGAAGCTGCTACTGCTCTTGAAAA GGGGCACAGTGCAGATCTGCTAGAGATGATGAGAGAAGCAGCAATCAAGTCAAGTGT AGCTGTTGCTCGTACACCTGCTGTGCTGTTGCTGTTTGCAAAGCTGCCGTCTTGACTC CGCCTGGTAATTAGTGTACTGATAGCGAGGTATAGAAATTAGGTTATTTGTTAGCGACG CAAATCCTTTCTTTTTTTTCTTCTTCTCTCTCTGTTCTTATCCCTTTTCTCTTCATCATGG AGGAAACAGGTGGCTGTAAATTTGTCCAGAACGTGTTTTCCCTAATAGCCCATCATATC CCGCTATTTTTCTTGTTAAAAAAAAAA
The ZM65086957 cDNA is translated into the following amino acid sequence (SEQ ID NO:32):
MLAAVMDYFSTCWGPRSRAGHRGKGSDAAGRQDGLLWYKDAGQLVTGGFSMAVVQAN QLLEDQSQVESGSLSLADYGPQGTFVGVYDGHGGPETSRFINDHLFNHLRRFATEHKSM SADVIRKAFQETEEGFLSLVIKEWSFKPQIASVGSCCLVGVICAGTLYVANLGDSRAVLGRL VKATGEVLATQLSAEHNACYEEVRQELQSSHPDDPRIVVLKH NVWRVKGLIQISRSIGDVY LKKPEYNREPLHSKFRLRETFQKPILSSEPQITEHRIQPNDQFVIFASDGLWEHLSNQEAVD LVQSSPRNGIARRLVKAAMQEAAKKREMRYSDLKKIDRGVRRHFHDDITVVVVFLDSDAM SKASWSKSPSVSLRGGGVTLPAKSLAPFSAPAQLNGTH
cDNA sequence of ZM68587657 from corn (SEQ ID NO:33):
GGACGCCGGGCAACATGTCAATGGGGAGTTCTCCATGGCTGTTGTTCAGGCAAATAAC TTACTTGAGGACCAGTGTCAGATCGAGTCGGGCCCACTGAGTTTTCTAGATTCTGGAC CATATGGCACTTTCGTTGGTGTTTACGATGGGCATGGTGGTCCAGAGACGGCCTGCTA TATCAATGATCATCTTTTCCAGAATCTGAAAAGTAA
CTTGCTAACCTTTAAATCTGTGCAGTAGCACTATTCCCGTTTCTTAGCACTATATCTGCA TTTGGCTTTCAGTTTGCACATAAAGGAGATCATCCATTTTTTCATGGCTTGTATTTAGGA TTTGCATCTGAGCAGAATGCAATGTCTGCTGATGTACTGAAGAAGGCATATGAAGCTAC AGAAGATGGATTCTTCTCCATTGTTACCAAA
CAATGGCCTGTAAAGCCTCAGATAGCAGCTGTCGGCTCATGCTGCCTGGTCGGTGTAA TTTGTGGTGGCATGCTTTATGTTGCCAATGTTGGGGATTCCCGTGTCGTTTTAGGAAAA CATGTTAAGGCCACTGGAGAAGTTTTGGCTGTCCAACTGTCAGCAGAACATAATGTTA GTATTGCGTCCGTGAGAAAAGAACTGCAGTCAATG
CACCCAGAAGATAGGCACATTGTTGTTCTCAAGCACAATGTTTGGCGTGTTAAAGGACT AATTCAGGTTTGTAGATCAATTGGTGATGCATATCTCAAAAAGCAAGAGTTCAACAGGG AACCCCTATATGCAAAATTTCGCCTCCGTGAACCTTTTCACAAGCCAATACTAAGTTCA GAACCATCAATCAGTGTGCAACCACTACAACCA
CACGACCAGTTTCTCATATTTGCATCTGATGGACTTTGGGAGCAGTTAACCAACCAAGA GGCAGTTGATATTGTTCGAAGTAGCCCCCGCAGTGGCTGTGCTAGGAGGCTGATAAG AGCGGCACTGCAAGAGGCAGCCAAGAAAAGAGAGATGAGGTACTCGGACCTCAAGAA GATTGACCGCGGTGTTCGCCGCCACTTCCACGACGACATAACAGTCATAGTAGTGTTC CTTGACTCCGGCCTCGTAAGCCAGGCGAGCACACACCGAGGTCCAACTCTTTCCTTGC GAGGCGGTGGCGGCAGCGCTGGCCTGCGCAGCAACACACTTGCACCTACGTGACTAT AAAGTGCCTGGTGGAGTGGAGGCTACTGACTGAAGGTGGTTTTCTTTCCTTGTGTCGA ATGTGTTATATATGTACTTGTACCAGCCAAGATCATTCATCCCCCCCCCTAAAATGGTG TAAAGAAGTAGGAGAGGCGCCGAAGTTCCTCACCAGCGTATCTGAATGCCCTCAATGG TGTCAAGTTGTGGACTCAAGTGGATAGCTTCGCTGAATCTTCTGATGATGCTCTGTGGA AAGCTCGAATCCTTTCCACCTGAAAAAGCAAGTAATATGTCTTCCAGTGCTGGAATTAA CCCCTAGTGCATATATATATGTATGAAATAATAATAAGGCAAAAGGAGGAGTAACTTAT TTAACTAATGCTGTGAGGTGTATTTATGTTTTGTATGTGTACTGCTTTTGACTGCTACTG CATCTACTGTTGTTAATTGAAAAAAAAAAAAAAA
The ZM68587657 cDNA is translated into the following amino acid sequence (SEQ ID NO:34):
MSADVLKKAYEATEDGFFSIVTKQWPVKPQIAAVGSCCLVGVICGGMLYVANVGDSRVVL GKHVKATGEVLAVQLSAEHNVSIASVRKELQSMHPEDRHIVVLKHNVWRVKGLIQVCRSIG DAYLKKQEFNREPLYAKFRLREPFHKPILSSEPSISVQPLQPHDQFLIFASDGLWEQLTNQE AVDIVRSSPRSGCARRLIRAALQEAAKKREMRYSDLKKIDRGVRRHFHDDITVIVVFLDSGL VSQASTHRGPTLSLRGGGGSAGLRSNTLAPT
cDNA sequence of EST390 from moss (SEQ ID NO:35):
ATCCCGGGTGGAGCCCTTTCAAGCCTCACGCATTCTGGATTCGCTCCCGGCTTCGAAT GCTTGAGTGGTTCTAAGTGATGAGATAGCGCCGTCTAGGGAGAATTTCGAATTTGCGC TAGAACATGGGTGGTTATTCCATCAGTGTGGCAGCGCCCACAGATATTGCAGTGAAAG GTTGAACACAACGACCCAAGGACAACCTGCACCTTCCAACAGTCAGCGTGAGGTGAAA AGATAGGCCAGTTTTCAGCTGCACATAACCTTCACTTCTGCAGGCGCAGAACACGTGC GGTACTGAGCAATGGGGTCCTCTAAGGCAGAAGAGAATTTGGCCTTACGGCTGGGCC TCACTGCAGCGTCAGCCATGGCGTCGGAGTCTGTGACCTTCCCAATCGATATCACGAA AACCCGCCTGCAGCTCCAAGGCGAAATGGGTGCCACAGCTGGCGCACCCAAGCGAG GAGCGATCAGCATGGCGATCTCTATAGGCAAGGAGGAGGGCATTGCCGGTCTTTATA GGGGCCTTTCTCCGGCACTTTTGCGTCATGTATTTTACACAAGCATTCGTATTGTTGCG TATGAAAATCTACGTACCGCCCTCAGTCATGGCGAACACCCGGAAAATCTGTCCGTTG CAAAAAAGGCTTTCATCGGTGGCACTTCCGGTATTATTGGGCAGGTGATAGCGAGTCC AGCGGATTTGGTGAAGGTGCGCATGCAAGCGGATGGGAGGCTGGTGAAGCTTGGGC AGCAGCCACGCTACACCGGAGTAGCTGACGCATTCACCAAGATTGCCCGAGCCGAGG GTGTGACAGGGCTGTGGCGTGGAGTGGGACCCAATGCTCAACGTGCCTTCCTCGTCA ACATGGGGGAGCTTGCATGCTACGACCAGTCGAAGCAATGGATCATAGGACGCGGCA TTGCTGCCGACAACATCGGAGCTCACACGCTTGCATCAGTGATGTCTGGGTTATCAGC TACTATTCTGAGCTGCCCTGCCGATGTGGTGAAGACCCGGATGATGAACCAAGGCGCT GCAGGTGCCGTGTACCGCAACTCTCTGGATTGTCTCACCAAAACCGTGAAGGCTGAAG GCGTGATGGCGCTGTGGAAGGGCTTCTTCCCGACGTGGACAAGGCTGGGCCCTTGG CAATTCGTGTTTTGGGTCTCATATGAGCAGCTCCGCCGCATCAGCGGTCT ATCATCCTTCTAATAAGTAAAGCCTCGCAGTTGTTTTGGGTGTGAAACTTACATGGCAT TCAGCTCTTACAAAGATTTCACATGCTTGAAGATTTTGAGGTGCTGTTTTTTTTATCATT TTTGTTCCTTCTCTTTTCTGCCTCAATTGGATGTCATAGCT
GAGGCTATGAAGCTTAGTTTCATTGACAAATGTTTACATTTGTTAGCAATGTGTAGTAGT GCACTTGCGTTAACCG
The EST390 cDNA is translated into the following amino acid sequence (SEQ ID NO:36):
MGSSKAEENLALRLGLTAASAMASESVTFPIDITKTRLQLQGEMGATAGAPKRGAISMAISI GKEEGIAGLYRGLSPALLRHVFYTSIRIVAYENLRTALSHGEHPENLSVAKKAFIGGTSGIIG QVIASPADLVKVRMQADGRLVKLGQQPRYTGVADAFTKIARAEGVTGLWRGVGPNAQRA FLVNMGELACYDQSKQWIIGRGIAADNIGAHTLASVMSGLSATILSCPADVVKTRMMNQGA AGAVYRNSLDCLTKTVKAEGVMALWKGFFPTWTRLGPWQFVFWVSYEQLRRISGLSSF
cDNA sequence of BN51363030 from canola (SEQ ID NO:37):
AGAAAACAAATAAAAATCAAATCGTTACAGCAATGGGCGTCAAAAGTTTCGTGGAAGGT GGGATTGCCCCTGTAGTCGCCGGCTGCTCCACTCACCCTCTCGATCTCATCAAGGTTC GCCTTCAGCTCCACGGCGAAGCTTCCGCCGTCACTCTCCTCCGCCCAGCTCTCGCTTT CCACAATTCTCCCCCAGCTTTTCTGGAGACGACTC ATTCGGTCCCTAAAGTAGGACCCATCTCCCTCGGAATCAACCTCGTCAAAACCGAAGG CGCCGCCGCGCTTTTCTCCGGCGTCTCCGCCACACTCCTCCGTCAGACTCTCTACTCC ACCACCAGGATGGGTCTCTACGAGGTGTTGAAAAACAAATGGACTGATCCCGAGTCCG GTAAGCTGAGTCTCACTCGTAAAATCGCCGCGGGGCTAGTCGGTGGCGGGATCGGAG CCGCCGTCGGGAACCCAGCCGACGTGGCGATGGTAAGGATGCAAGCCGACGGGAGG CTTCCCGTGGCAGAGCGTCGTAACTACGCGGGCGTAGGAGACGCGATCAAGAGGATG GCGAAGCAAGAAGGCGTGGTGAGCCTGTGGCGCGGCTCGGCTCTGACGATCAACAG GGCGATGATAGTGACGGCGGCGCAGCTCGCGTCGTACGATCAGTTCAAGGAAGGGAT GGTGGAGAGCGGGGGGATGAAAGATGGGCTCGGGACTCACGTGGTGGCGAGCTTCG CGGCGGGGATCGTGGCGGCTGTTGCGTCGAATCCGGTGGATGTGATAAAGACGAGG GTGATGAATATGAAGGTGGATGCGCGTGGTGGGGAGGCTCAGTACAAAGGCGCGTGG GATTGTGCGGTGAAGACGGTTAGAGCTGAAGGACCGATGGCTCTTTATAAAGGGTTTG TTCCTACGGTTTGCAGGCAAGGACCTTTCACTGTTGTGCTCTTTGTTACGTTGGAGCAA GTCAAGAAGCTGCTTCGTGATTTTTGATTATCATTTGAAGGTTATGATGATGAGGACGA CTAAGAATAAGAATGCTAGTAGTATTGATTTGATAGGGATTTTTCGTATTGGGTTATTCA TTTTCG
The BN51363030 cDNA is translated into the following amino acid sequence (SEQ ID NO:38):
MGVKSFVEGGIAPVVAGCSTHPLDLIKVRLQLHGEASAVTLLRPALAFHNSPPAFLETTHSV PKVGPISLGINLVKTEGAAALFSGVSATLLRQTLYSTTRMGLYEVLKNKWTDPESGKLSLTR KIAAGLVGGGIGAAVGNPADVAMVRMQADGRLPVAERRNYAGVGDAIKRMAKQEGVVSL WRGSALTINRAMIVTAAQLASYDQFKEGMVESGGMKDGLGTHVVASFAAGIVAAVASNPV DVIKTRVMNMKVDARGGEAQYKGAWDCAVKTVRAEGPMALYKGFVPTVCRQGPFTVVLF VTLEQVKKLLRDF
cDNA sequence of BN42986056 from canola (SEQ ID NO:39):
TCTAAAAAAACTTTTTGTCTGAACGGCATATGTCTCAGAGACCTCAAGTTCCTCATTCTT CTTCTATAGCTTTCGGTCTCCATTCTCATCTCCTAATCTCCAGTGAGATCAGCTCCAATT CCAACTGGTCTCTCTAAGAAAAAAATAATCAAACCTTTTCAAAATTTTCTCTCGGATTTT CTCGGAATAAAAATCTAACCTTTCTGACTTTTTTGATTTTCGATTTGATAAAAACAAGAA ATGGGTCTTAAGGGTTTCGCTGAAGGAGGCATCGCATCGATCGTAGCGGGATGTTCG ACCCACCCGCTTGATCTAATCAAGGTCTGAATGCAGCTCCAAGGGGAATCAGCCTCGA TTCAGACAAATCTCCGACCAGCTCTTGCTTTCCAGACTTCCTCCGCCGTTCACGCGCC TTCGCCTCCTCCGCGCGTGGGTATAATCACCATCGGATCTCGCATCATCAGACAAGAA GGCACGTGCACTCTCTTCTCCGGCATCTCCGCCACCTCCGCCACCGTTCTCCGCCAG ACTCTCTACTCGACGACTCGCATGGGTCTATACGACATCCTGAAAACCAAATGGACCG ACCCGGAAACCAAAACCATACCTTTGACCCGCAAACTCGCCGCCGGGTTCATCGCCG GAGGTATCGGCGCCGCCGTCGGGAACCCGGCGGATGTCGCCATGGTGCGCATGCAA GCCGACGGGAGGCTCCCGGTGGTCGACCGGAGGAACTACAAGAGCGTTTTGGACGC GATCGCGCAGATGGTTCGCGGCGAAGGCGTCACGTCGCTGTGGAGAGGTTCGTCGAT GACGATCAACAGAGCGATGCTCGTGACG
GCGTCGCAGCTGGCTACGTACGACTCGGTGAAAGAGACGATTTTGGAGAAAGGGTTG ATGAGGGACGGGCTCGGGACTCACGTGACGTCGAGCTTCGCGGCGGGGTTTGTGGC TTCGGTCGCGTCGAACCCCGTGGATGTGATCAAGACGAGAGTGATGAATATGAAAGTG GAGGCGGGGAAAACGGCGCCGTATAAGGGAGCGGTTGATTGCGCGTTGAAGACGGT GAGAGCGGAAGGGATCATGGCTTTATACAAAGGGTTTCTGCCGACGGTGTCGAGACA AGCACCGTTCACGGTGATTATGTTTGTGACACTTGAACAAGTTAAGAAGGTGTTCAAGG ACTTTGACTTTTGAGACAAGAGTTAAAGATGATGGTGGCGATAATTTGCTTTAAACTAAA TAAATTTTGTTTTTTTTTATTGTATTTTCTTT
The BN42986056 cDNA is translated into the following amino acid sequence (SEQ ID NO:40): MQLQGESASIQTNLRPALAFQTSSAVHAPSPPPRVGIITIGSRIIRQEGTCTLFSGISATSAT VLRQTLYSTTRMGLYDILKTKWTDPETKTIPLTRKLAAGFIAGGIGAAVGNPADVAMVRMQ ADGRLPVVDRRNYKSVLDAIAQMVRGEGVTSLWRGSSMTINRAMLVTASQLATYDSVKET ILEKGLMRDGLGTHVTSSFAAGFVASVASNPVDVIKTRVMNMKVEAGKTAPYKGAVDCAL KTVRAEGIMALYKGFLPTVSRQAPFTVIMFVTLEQVKKVFKDFDF
cDNA sequence of BN49389066 from canola (SEQ ID NO:41 ):
CGACGATTTCGTTTAATATAAACATCACCAAGTGAATCTCTCCGCCTCTCTCTCTCTTTC TCTGCGGAATCTCTTCGTCTCGTTGCGTTCGAGAGTTCCGTACGATTCCCAACAAGAA AGGGAAGAGATGGCGGAGGAGAAGAAAGTAGCTCCGATTGGTATCTGGACTGCCGTG AAGCCTTTCGTCAATGGCGGTGCCTCTGGTATGCT
CGCCACTTGCGTTATCCAGCCTATTGACATGATCAAGGTGAGGATTCAACTAGGTCAG GGATCTGCAGCTAGTGTGACCACCACCATGTTGAAGAATGAAGGTATCGGTGCCTTCT ACAAGGGATTATCAGCTGGTTTGCTGAGGCAAGCAACTTACACCACAGCTCGTCTTGG ATCATTCAAGATGCTGACTGCGAAAGCAAGCGAGGCTAACGATGGGAAGCCACTACC GCTGTATCAAAAAGCTCTATGTGGTCTGACAGCTGGTGCTATCGGTGCCTGCGTTGGT AGTCCAGCCGATTTAGCGCTTATCAGAATGCAAGCTGATAACACTTTGCCGTTAGCTCA GCGCAGGAACTATACCAACGCCTTCCATGCGCTTTACCGTATTAGCGCTGATGAAGGA GTTTTGGCGCTTTGGAAAGGTTGTGGGCCAACTGTGGTCAGAGCAATGGCTTTGAACA TGGGGATGCTTGCGTCTTATGATCAAAGTGCTGAGTATATGAGAGATAATCTTGGTCTT GGGGAGACATCCACAGTCGTAGGAGCAAGTGCTGTTTTGGGATTCTGCGCTGCGGCT TGCAGTCTTCCATTTGACTTTGTCAAAACACAGATCCAAAAAATGCAACCCGACGCTCA GGGTAAATATCCATACACTGGTTCGCAGGACTGTGCGATGCAAAACAGGAGGACCTTT GAAATTCTACACAGGCTTTCCGGTATACTGCGTCAGGATCGCCCCTCACGTCATGGTG ACATGGATCTTCCTGAACCAGATTACAAAGTTCCAAAAGAACATTGGGATGTGATCTTC AAGCAAACCTTATGAAGTGCGCGGTG AAAATATGATGAGAAGAATTCATTTGCTTTTTAATCATATACATGATTAG
The BN49389066 cDNA is translated into the following amino acid sequence (SEQ ID NO:42):
MAEEKKVAPIGIWTAVKPFVNGGASGMLATCVIQPIDMIKVRIQLGQGSAASVTTTMLKNE GIGAFYKGLSAGLLRQATYTTARLGSFKMLTAKASEANDGKPLPLYQKALCGLTAGAIGAC VGSPADLALIRMQADNTLPLAQRRNYTNAFHALYRISADEGVLALWKGCGPTVVRAMALN MGMLASYDQSAEYMRDNLGLGETSTVVGASAVLGFCAAACSLPFDFVKTQIQKMQPDAQ GKYPYTGSQDCAMQNRRTFEILHRLSGILRQDRPSRHGDMDLPEPDYKVPKEHWD- VIFKQTL
cDNA sequence of BN51339479 from canola (SEQ ID NO:43): CTTTCTCCGCCTATCTCTTTCTCTCCGCGGATTCTCTTCTTCTCGTTTCGACTCCGTAC GATCCCCAAAGAAAAAAAGAGATGGCGGAAGAGAAAAAAGTAGCTCCGATTGGTGTCT GGAATACCGTGAAGCCCTTCGTCAATGGCGGTGCCTCCGGTATGCTCGCCACTTGCG TTATCCAGCCGATCGACATGATCAAGGTGAGGATTC AACTAGGTCAGGGATCTGCAGTCAGTGTGACCAAGAACATGTTGAAGAATGATGGTAT TGGTGCTTTCTACAAGGGATTGTCTGCTGGTTTGCTAAGGCAAGCAACTTACACCACA GCCCGTCTTGGATCCTTCAAGATGCTGACTGCAAAAGCAATTGAGGCTAACGATGGGA AGCCGCTACCTCTGTACCAGAAGGCTCTATGTGGTC TGACAGCTGGTGCAATCGGTGCTTGCGTTGGTAGTCCAGCTGACTTGGCGCTTATCAG AATGCAAGCTGATAACACCTTGCCGTTAGCTCAGCGCAGGAACTATACCAATGCCTTC CATGCGCTTTACCGTATTAGCGCTGATGAAGGAGTTTTGGCACTTTGGAAAGGTTGTG GTCCTACTGTGGTCAGAGCTATGGCTTTGAACATGG
GAATGCTTGCTTCTTATGATCAAAGTGCTGAGTACATGAGAGATAATCTCGGTCTTGGG GAGACTTCTACGGTCGTAGGAGCAAGTGCTGTTTCTGGATTCTGCGCTGCGGCTTGCA GTCTTCCATTTGACTTTGTCAAAACTCAGATCCAGAAGATGCAACCTGACGCTCAGGG GAAGTATCCATACACGGGTTCGCTTGACTGTGCCA
TGCAAACCTTGAAGTCAGGAGGACCTCTTAAATTCTACACAGGTTTCCCTGTTTACTGC GTCAGGATCGCCCCTCACGTCATGATGACATGGATCTTCCTGAACCAGATTACAAAGT TTCAAAAGACCATTGGTCTGTGAGCTTCAAGCATTGTGAAGTGCGCGCTGAGAATAAG TTGAAAACGAAAACGCAATTGGAATTGTGTTAGAT
TTGCTTTTTATTCAATATACATGATCGCATGCCTTAACGCATTATTTGAAGTGTTGGAGA CTTTA
The BN51339479 cDNA is translated into the following amino acid sequence (SEQ ID NO:44):
MAEEKKVAPIGVWNTVKPFVNGGASGMLATCVIQPIDMIKVRIQLGQGSAVSVTKNMLKND GIGAFYKGLSAGLLRQATYTTARLGSFKMLTAKAI EANDGKPLPLYQKALCGLTAGAIGACV GSPADLALIRMQADNTLPLAQRRNYTNAFHALYRISADEGVLALWKGCGPTVVRAMALNM GMLASYDQSAEYMRDNLGLGETSTVVGASAVSGFCAAACSLPFDFVKTQIQKMQPDAQG KYPYTGSLDCAMQTLKSGGPLKFYTGFPVYCVRIAPHVMMTWIFLNQITKFQKTIGL
cDNA sequence of ZM57651070 from corn (SEQ ID NO:45):
CTAGCACGTGAAAATTCCTTCGGCTCCAGTTATTACGGAGGATTAGGTTGGTGAACTG GTGACTGGAGCTGGAATCGCATTTCTTGCTCTTTGGTCTCTCCAGAATCATCCTCCGG CCAGCCGTTCTTGGAATCCTCCCGAGATTCGCTTGCCCGCCCTTTTCTTTTCAAGTGG ATCTGAACTTGGGAGGGAACCCCGATGCAGCCGCGG TACGGAGAAGCACGACAACCGCTGCCGGGGCGGTACGCGCTGTACCACTTCGGCAC CAGCGGCGCCGCCGTCGCCGCCGCCACCGCCGTGACCCATCCGTTCGATGTTATCAA AGTCAGGCTTCAAATGCAGCTTGCTGGGCAAAGAGGAAACTTAGTTGGAATGGGAACA ATATTTACACAAATGGTTGAAAGGGAAGGGACTCGGTCACTCTACCTGGGACTTGCAC CAGCGTTGGCGAGAGCTGTTGTCTATGGTGGCCTTCGGTTTGGACTGTATGAGCCCTG CAAGCATGTCTGCAGTTATGCATTTGGTTCAACAAACTTTGCTTTTAAATTTGCATCTGG AGTCATTGCTGGGGGCCTTGCAACTGCTTTAACAAATCCCATGGAAGTTTTGAAGGTG AGGCTGCAGATGAGTAAAAGCAGTACCAGTACAATAAGAGAGATGAGAAAAGTTATAG CGCACGAAGGGTTTAAAGCACTTTGGAAAGGAGTCGGCCCAGCAATGACAAGAGCAG GTTGCCTTACTGCATCACAAATGGCGACTTACGATGAGGCCAAACAGGCCTTAATGAA GTGGACACCACTTGAAGAAGGTTTTCAGTTACATCTCATCTCGAGTTTCATAGCTGGAA CAGCTGGTACTCTTGTGACCTCACCTGTAGACATGATCAAAACACGGTTAATGCTGCAA CAGGAGTCCAAAGGCGCCAGAGTATACAGGAACGGATTCCATTGTGCTTCCCAGGTTG TGGTGACAGAGGGTGTGAAATCACTTTATAAAGGTGGATTTGCCACATTCGCGAGAGT AGGCCCTCAGACAACGATTACCTTTATCGTGTGCGAGAAACTGCGCGAACTTGCAGGA ATGACTGCCATCTAGTGCCACCCCAAATTGCATAATGTGTGGGGTCCAACGGTTGAAC AGCATACTCTACCCGAGTTTTCACACCATTCTTTATTCACTATTCATGATGAGAAGGGA GAAGATAAGCACCCACTGGGATGTCTAAGGATTGGGAAGCCCAGAGCTCCTTCAGATT TATCATACCTCATTTGAAATTTCGAAATAGCGTGATTGTTCTTATGTTTGCTCTAAGACT TACTCATCATATCTCCAATCTCATCTTGTATTTCAAACTACACTCTACAAACAATACAGT CTGTAGTGTAAAAACATTATTTTGGGTGACCATATGGGTAACCTGCTGTA- CAAAAAAAAAA
The ZM57651070 cDNA is translated into the following amino acid sequence (SEQ ID NO:46):
MQPRYGEARQPLPGRYALYHFGTSGAAVAAATAVTHPFDVIKVRLQMQLAGQRGNLVGM GTIFTQMVEREGTRSLYLGLAPALARAVVYGGLRFGLYEPCKHVCSYAFGSTNFAFKFAS GVIAGGLATALTNPMEVLKVRLQMSKSSTSTIREMRKVIAHEGFKALWKGVGPAMTRAGC LTASQMATYDEAKQALMKWTPLEEGFQLHLISSFIAGTAGTLVTSPVDMIKTRLMLQQESK GARVYRNGFHCASQVVVTEGVKSLYKGGFATFARVGPQTTITFIVCEKLRELAGMTAI
cDNA sequence of ZM62073276 from corn (SEQ ID NO:47):
GCCGCCTCTCCTACTGCATCTCCCTCGCTCTCGTCGCCTCGTTCGCTTCGCCTCCGCC CCGCCCCGCCCCGAGCAGAGCGCAGCCCTATCCGGAGCTGGGATGGCGGACGCGAA GCAGCAGCAGCAGCAGCAGCAGCAGCCACAGCAGGCGGCAGCGGCAGCCACCGGC GTGTGGAAGACGGTCAAGCCCTTCGTTAACGGCGAGGCCTCTGGGATGCTCGCGACC TGCGTCATCCAGCCTATCGACATGGTCAAGGTGAGGATCCAGTTGGGTGAGGGCTCT GCTGGTCAGGTCACAAGGAACATGCTTGCAAATGAGGGTGTCCGTTCTTTCTACAAGG GTTTGTCCGCCGGATTGCTGAGGCAAGCGACGTACACGACTGCTCGTCTTGGATCCTT TAGGGTTCTAACTAACAAAGCAGTTGAAAAGAATGAAGGGAAGCCATTGCCTCTATTTC AGAAAGCTTTTATTGGTCTGACTGCTGGTGCAATTGGTGCTTGTGTTGGTAGTCCTGCT GATCTGGCACTCATTAGAATGCAAGCCGATTCGACCCTGCCAGTTGCACAACGACGCA ACTATAAGAATGCTTTCCATGCACTCTACCGTATCAGTGGTGATGAGGGAGTCCTTGC GCTTTGGAAGGGTGCAGGTCCAACTGTGGTGAGAGCTATGGCACTCAATATGGGTATG
CTTGCTTCCTATGACCAGAGTGTCGAGCTATTTAGGGACAAATTTGGCGCAGGAGAAA
TTTCTACTGTTGTTGGAGCCAGCGCTGTTTCTGGATTCTTTGCCTCAGCATGCAGTTTG
CCCTTTGACTATGTGAAGACACAGATTCAGAA GATGCAACCTGATGCGAATGGCAAGTACCCATACACAGGGTCTTTGGACTGTGCTGTG
AAGACCTTCAAGAGCGGTGGCCCATTCAAGTTCTACACTGGTTTCCCGGTGTACTGCG
TCAGGATTGCACCCCATGTCATGATGACCTGGATATTCTTGAATCAGATCCAGAAGTTT
GAGAAGAAGATCGGCATATAGGATTCCCATCGGAC
GGATACAGGGTTGACAGTTCTATGCTATTACTGCTTGACTCTGTAATAACATTCCAGCT GCTTTCGCACCATGGTAGTTGGTTTTGGTAGAGACAAGTCTGTTACAATTTTTTACCTTA
GCTTTCCAATTATTGTGTTGCAATAATCGAATTAATTGTTGCTGGGGGATTTTTTTGGGG
GGTTGGGAGGGTGGCATGCTTTTGTTGGCTG
GGATGTAGCCATAAGGAGAGGGGGATACTGCCTAGTTATGTCATTGAATGGAATTGGA
CCATATTTTATACAGATTTTTACCTTCAAAAAAAAAAAAAA
The ZM62073276 cDNA is translated into the following amino acid sequence (SEQ ID
NO:48):
MADAKQQQQQQQQPQQAAAAATGVWKTVKPFVNGEASGMLATCVIQPIDMVKVRIQLGE GSAGQVTRNMLANEGVRSFYKGLSAGLLRQATYTTARLGSFRVLTNKAVEKNEGKPLPLF QKAFIGLTAGAIGACVGSPADLALIRMQADSTLPVAQRRNYKNAFHALYRISGDEGVLALW KGAGPTVVRAMALNMGMLASYDQSVELFRDKFGAGEISTVVGASAVSGFFASACSLPFDY VKTQIQKMQPDANGKYPYTGSLDCAVKTFKSGGPFKFYTGFPVYCVRIAPHVMMTWIFLN QIQKFEKKIGI
cDNA sequence of EST257 from moss (SEQ ID NO:49):
CCCGGGGATTCAGCAGTACTTCACAAGAAGAATAGCATGGTGCGTGCAGATCTTGTCA ACCTTGCGGACTTAGATACTGCTCTAAACAGAGTTCATAATAAGCTACCTAATTCCATA GAAACAGCTAGTGCAGAGCCTCCTGCTCCTCCAGAAGAATGGGAAATAAATCCTCGAG AGATCACTTTGAAGCATATGATTGCGCGTGGCACCTTTGGGACTGTCCACAAAGGAGT GTACAAAGGTCAGGATGTCGCAGTTAAGCTACTTGAGTGGGGCGAGGAGAATACCAT GAAGAAAACAGAGGTTCAATACTACAGAAACCAATTCAGACAAGAGGTTGCTGTGTGG CATAAACTCGACCACCCTAATGTCACGAAGTTCATCGGAGCCTCGATGGGGAACTCAG ATTTGCGGATTCCCTCAGCCGTGGATGGTGATGATGGATTCCATCATGTGCCGAACAA TGCTTGTTGTGTTGTCGTTGAGTACCTTGCAGGCGGGACTCTTAAAGATCATCTCATTC GCAGCCGGCGGAAAAAACTCTCGTACAAGGTGGTCGTGCAATTAGCCTTGGATGTTTC TAGAGGGCTTGCATACCTCCATTCTCAGAAGATCGCTCATCGTGACGTGAAGACAGAG AACATGTTGCTCGATAAACAGATGAGGGTCAAAATTGCAGATTTCGGAGTTGCACGAG TGGAGGCATCCAATCCCAAGGACATGACTGGTGATACTGGTACCCCAGGATACATGGC TCCGGAGATTCTCGACGGCAAGCCCTACAACAAGAAGTGCGATGTGTACAGCTTCGG GATCTGTTTGTGGGAAGTTTATTGCTGCGACATGCCGTACTTGGACCTCTCCTTTGCG GACATGACATCGGCAGTTGTGCATCAGAATTTGAGACCCGAGGTGCCCAAGTGCTGC CCTCAGGGACTCGCGGATATCATGAGGCAGTGTTGGGATGCAAATCCTGAGAAACGG CCTGCCATGGCTGATGTGGTGCAGATGCTGGAGGCTCTAGACACCTCCAAAGGTGGA GGTATGATACCAACAGACGCCCAGCCGCATGGGTGTCTCTGTTTTGGGAGATTCAAGG GCCCATAGCACGTTTTTGGTTTTTTTTTTCCTTAATTGTGGTTTTACATTTTATTTATATTT TTCCCTTTTTTAATGTAGGGATGACATGATAATAAGTGTGCAAACATTTTGTTGTCTCCC CTGGTTTCGTTTCAAGCGTAGCTGCTTGACTTGCAATTTCAGTAACCTGGTGCAGGAC CCGTTAAC
The EST257 cDNA is translated into the following amino acid sequence (SEQ ID NO:50):
MVRADLVNLADLDTALNRVHNKLPNSIETASAEPPAPPEEWEINPREITLKHMIARGTFGTV HKGVYKGQDVAVKLLEWGEENTMKKTEVQYYRNQFRQEVAVWHKLDHPNVTKFIGASM GNSDLRIPSAVDGDDGFHHVPNNACCVVVEYLAGGTLKDHLIRSRRKKLSYKVVVQLALD VSRGLAYLHSQKIAHRDVKTENMLLDKQMRVKIADFGVARVEASNPKDMTGDTGTPGYM APEILDGKPYNKKCDVYSFGICLWEVYCCDMPYLDLSFADMTSAVVHQNLRPEVPKCCPQ GLADIMRQCWDANPEKRPAMADVVQMLEALDTSKGGGMIPTDAQPHGCLCFGRFKGP
cDNA sequence of LU61665952 from linseed (SEQ ID NO:51 ):
AGGGTGATCACGAGGGAGGTATGAATTCTAAGGTGAAGGGAAATGGAAGTGTTAGTA GAAAAGATATGATTTTTCGAGCGGATCGAATCGATTTGAAGATCCTGGATGTACAGCTA GAGAAGCACCTGAGTAGGGTGTGGTCGAGGAACACCACAGACAACGCTAAGCCTAAA GAAGAGTGGGAGATTGATTTGTCTAAGTTGGACATCAAAACCCAGATAGCTCGTGGTA CTTATGGCACTGTTTATAAAGGCACTTATGATAATCAAGATGTTGCAGTGAAAGTGTTG GATTGGGGGGAAGATGGTATGACTACAGTATCTGAAGCTGCTTCTCTTCGAGCATCAT TTCGTCAAGAGGTTGCTGTTTGGCATAAGCTTGACCATCCTAATGTTACCAAATTCGTT GGAGCATCGATGGGAACTTCAAATCTCAAGGTTTCAAATAATAAATCTGATGGTCAGCA TACTGCTAGAGCATGTTGTGTTGTGGTTGAGTATCAACCTGGTGGAACACTAAAGCAG TACTTGATAAGAAATAGGCGAAAGAAACTTCCTTATAAAGTTGTAATACAACTTGCTTTG GATCTCTCTAGGGGTTTGAGTTACCTACATTCGAAGAAAATTGTGCACCGTGATGTGAA GTCGGAAAACATGTTGCTTGATAATCATAGAAATCTTAGGATTGCGGATTTTGGTGTTG CTCGAGTCGAAGCTCAAAATCCAAGTGATATGACTGGTGAAACTGGTACCCTTGGATA CATGGCACCTGAGGTCCTTGATGGCAAGCCATATAACAGAAGGTGTGATGTTTATAGC TTCGGCATATGTTTATGGGAAATCTATTGTTGTGATATGCCATATCCAGATCTTAGCTTT GCTGATGTGACGTCCGCGGTTGTTCGACAAAACTTGAGGCCGGAGATTCCGAGATGTT GTCCAAGTTCACTAGGAAGCATCATGAAGAAATGTTGGGATGCACAATCAGAGAACCG TCCAGAAATGGCTGAAGTGGTGAAGATGTTGGAAGCCATTGATACAAGTAAAGGAGGA GGAATGATCCCTGAAGACCAGAACCCTGGTTGTTTCTGCTTCGCCCCAACCCGTGGCC CTTAAACCCCCTTATTAATTTACTCCCCAAACAGTCCTCATCCATCTATGTGTGCACAAA TTTCAATTTCTTTATATTTGAGTTGTTTTCTTTGTTTATCATTTTCTTGTGTTCTTCACTTC TGCACATATTTTGATTTTGAACTACCTAAAGGGAGTGAAAGGATTAATGTTATAAGTAAA AAAAAAAAAAAA
The LU61665952 cDNA is translated into the following amino acid sequence (SEQ ID NO:52):
MNSKVKGNGSVSRKDMIFRADRIDLKILDVQLEKHLSRVWSRNTTDNAKPKEEWEIDLSKL DIKTQIARGTYGTVYKGTYDNQDVAVKVLDWGEDGMTTVSEAASLRASFRQEVAVWHKL DHPNVTKFVGASMGTSNLKVSNNKSDGQHTARACCVVVEYQPGGTLKQYLIRNRRKKLP YKVVIQLALDLSRGLSYLHSKKIVHRDVKSENMLLDNHRNLRIADFGVARVEAQNPSDMTG ETGTLGYMAPEVLDGKPYNRRCDVYSFGICLWEIYCCDMPYPDLSFADVTSAVVRQNLRP EIPRCCPSSLGSIMKKCWDAQSENRPEMAEVVKMLEAIDTSKGGGMIPEDQNPGCFCFAP TRGP
cDNA sequence of TA56863186 from wheat (SEQ ID NO:53):
AGCACTGACAACTACAACCTCGCTGGTGGCTCCGTTACCATGTCAGTGGACAACAGCA GCGTGGGCTCGAACGAGTCCCGCACCGTCATACTTAAGCACCCGGGCCTCCGTGATG CTCCAACCGCAAGCTACTCGGTTGGCAACAGTGTCTTTCGTCCCAACCGTGTGGCTGC GCACACCCTAAATGAAGATGCATTGGCCAGGGTTCTGATGGACCCAAATCATCCAACA GAGATACTTAGCAAGTACCAGCAGTGGGCCATTGATCTGGGGAGGTTGGATATGGGG GTTCCCTTTGCACAGGGAGCCTTTGGGAAGCTGTACCGGGGAACATATATTGGAGAAG ATGTTGCCATTAAGCTGCTGGAGAAGCCTGACAATGATATCGAGAGAGCACAATCGTT GGAACAGCAGTTTGTGCAAGAAGTTATGATGTTATCTACCCTAAGGCACCCAAATATAG TAAGATTTATAGGGGCTTGCAGGAAGTCAATTGTGTGGTGCATTATTACTGAGTATGCA AAAGGTGGCTCAGTCAGGCAGTTCCTGGCAAAAAGGCAGAACAAGTCGGTACCTTTGA GGCTGGCTGTCAAACAAGCATTGGATGTAGCGAGGGGAATGGCGTATGTGCATGCTC TGGGATTTATCCATAGGGACCTGAAGTCGGATAATCTTCTAATTGCAGCAGACAGATCC ATTAAGATTGCTGACTTTGGAGTTGCTCGAATTGAAGTGAAAACAGAGGGGATGACAC CAGAGACAGGAACCTACCGCTGGATGGCACCGGAAATGATCCAGCACAGGCCTTATG ATCATAAGGTTGATGTCTACAGCTTTGGGATTGTCTTGTGGGAGCTTATAACTGGCATG CTTCCTTTCACAAACATGACAGCTGTTCAGGCGGCTTTTGCTGTTGTAAATAAGGGTGC TCGTCCAGCGATCCCACATGACTGCCTGCCTTCCCTAACCCACATCATGACGCGCTGT TGGGATGCAAACCCTGAAGTTCGCCCACCATTCACCGAGATCGTCTGCATGCTTGAGA ACGCCGAGATGGAGGTCGTGAGCCATGTCCGTAAAGCGCGCTTCCGCTGCTGCGTTG CTGAACCCATGACCACCGACTGAAACTAAAGCAGGTTAGACTATCGCAGCGGGCATTA GGGAAGAAAACAGGTAAGGATGAAGAAAAGAGGCAATGCCAATGTGTTCATCGTTGTC AGTGCGTGGGGTCTGTGTGCCTTTACCAGTGCGCATTCTGTCTTGTGTAAGTTGCACA CCTCAAGTAAAAGTAATTTCGTATAGATGTTGCCTTGTATGCTAACAAAGACCTAATGG AGCTTTTCCGTGTTAATAATATCCGCTTGCTCTTGTACTCGTGCAAGTTTGTGCCAAAA AAAAAAAAAAA The TA56863186 cDNA is translated into the following amino acid sequence (SEQ ID NO:54):
MSVDNSSVGSNESRTVILKHPGLRDAPTASYSVGNSVFRPNRVAAHTLNEDALARVLMDP NHPTEILSKYQQWAIDLGRLDMGVPFAQGAFGKLYRGTYIGEDVAIKLLEKPDNDIERAQSL EQQFVQEVMMLSTLRHPNIVRFIGACRKSIVWCIITEYAKGGSVRQFLAKRQNKSVPLRLA VKQALDVARGMAYVHALGFIHRDLKSDNLLIAADRSIKIADFGVARIEVKTEGMTPETGTYR WMAPEMIQHRPYDHKVDVYSFGIVLWELITGMLPFTNMTAVQAAFAVVNKGARPAIPHDC LPSLTHIMTRCWDANPEVRPPFTEIVCMLENAEMEVVSHVRKARFRCCVAEPMTTD
cDNA sequence of ZM62026837 from corn (SEQ ID NO:55):
CGCGCGGCCAAACTCCTGTTCTTCCACCTGCTGGCTGCTCCTGCCTCCCCTGCGCCC CAAACCCACCCGCCTCGCCGTCCCCGCAGGCCGCAGCCTGCTCTCGGCTCCCGCCG CCGTCTACCGCGTCCTGCGGCTGCGGTGTTGCGTCACCTCGGGTTCGCCTTAACTTC CACAATCCTCGCCGTCCTGGTGCTCCGCCGCCCCTCCCTT
TGTACTCGCGCTGGAGCTGCAGATCCACCGCGACCTGGCGACCAATTCCTCCTCCCG CTGAAGAATTGGCGACCTTGGCCTCCGCCCCCGCGGCGCGGAGGAGTCAACTGTGGT AGCAACCACCGCGGAGGCTGCAAGCCTTCGGTAAGGGAGGAAAGTTGACTTGTTGGA AGCCGGTCCAGGGCCGCGATGACGTCGACCGCCGCCGGCGCGTCGTCGTCGGCGG CGAAGAGCGAGTCCTACCTGCGGGCCGACAAGATCGACCTCGAGAGCCTGGACATCC AGCTGGAGAAGCAGCTGGCCAAGACCTGGGAGAAGCACAAGGGGTCGTACAACCAG GGGCCCAGGGAGGACTGGGAGATCGACCTCGCCAAGCTCGAGATTCGCTACGTCATA GCGCAGGGCACCTACGGCACGGTGTATCGCGGCACGTATGATGGGCAGGACGTCGC AGTAAAACTATTGGATTGGGGTGAAGATGGCTTTGCGTCAGAAACTGAAACTGCCACA CTGCGAGCATCATTTAAGCAGGAGGTTGCTGTCTGGCATGAGCTCAACCATCCGAATG TTACAAAGTTTGTTGGTGCATCAATGGGTACTACAGACCTTAAGATTCCAGCCAATAGT TCTAACAGTGGTGGGCGCACTGAGCTGCCGCCAAAAGCATGTTGTGTTGTGGTCGAAT ATCTCGCTGGAGGATCACTGAAGCAGTATTTAATAAAGAACAGGCGAAGGAAGCTTGC ATACAAGGTTGTTGTTCAGATAGCACTGGATCTTGCCAGAGGATTGAACTATCTACATT CAAGAAAGATAGTACATCGGGATGTAAAAACTGAAAATATGCTGCTCGATACACAGCG AAACCTTAAGATTGCTGATTTTGGTGTTGCTCGTGTTGAGGCTCAGAATCCAAAGGACA TGACAGGCGCGACTGGGACACTTGGCTACATGGCCCCAGAGGTGCTTGAAGGCAAGC CATACAACAGAAAGTGTGATGTCTACAGTTTTGGCATATGCTTATGGGAAATATACTGC TGTGACATGCCATATCCAGACCTCAGTTTTGCAGACGTCTCGTCCGCCGTCGTTCACC AGAACCTGCGGCCTGACATCCCTCGCTGCTGCCCAAGCCCAATGGCGAACATCATGC GGAAGTGCTGGGACGCAAACCCGGATAAGCGCCCTGACATGGACGACGTGGTGCGG TTCCTGGAGGCCCTCGACACGAGCAAGGGCGGTGGCATGATACCAGAAGGCCAGGC AGGCGGGTGCTTGTGTTTCTTCAGAGCCCGTGGTCCTTAGAACCAACCAACCCTTTCC AGCCATCCTCTACTTGTCTCTGCCATACTACAGTATTGGAGCCAGATGTAGGCCTTTGT TGTTCATCGGATAGGGGATTGCAGATAACTTGATGACAATCTTTGTGATTGGTTGACAC TTGTTATACGTTCTATAGTGATGTGAATACCAGTGAGGAGTCCATAATACAGAGTGAAA AAAAAAA
The ZM62026837 cDNA is translated into the following amino acid sequence (SEQ ID NO:56):
MTSTAAGASSSAAKSESYLRADKIDLESLDIQLEKQLAKTWEKHKGSYNQGPREDWEIDLA KLEIRYVIAQGTYGTVYRGTYDGQDVAVKLLDWGEDGFASETETATLRASFKQEVAVWHE LNHPNVTKFVGASMGTTDLKIPANSSNSGGRTELPPKACCVVVEYLAGGSLKQYLIKNRRR KLAYKVVVQIALDLARGLNYLHSRKIVHRDVKTENMLLDTQRNLKIADFGVARVEAQNPKD MTGATGTLGYMAPEVLEGKPYNRKCDVYSFGICLWEIYCCDMPYPDLSFADVSSAVVHQN LRPDIPRCCPSPMANIMRKCWDANPDKRPDMDDVVRFLEALDTSKGGGMIPEGQAGGCL CFFRARGP
cDNA sequence of ZM65457595 from corn (SEQ ID NO:57):
ACCTCGCCACCCTCCTGCCTCCTCCGCATCCGCGCCCCCTCGCTTAGCCTAAACCGC GGGGCAGCTAGTCTCGCCACCGCAGGCCGCACCGGTCATCACACCGAAGCGCACGC GGGGAGCCCCCGTAGAGTTCCGGGGCGACCAGGCCAACTAACGCCATGAAGGAGGA AGGCGGCGGCGGGGACGCGGGGTTCGTGCGGGCGGACCAGATCGACCTCAAGAGC CTGGACGAGCAGCTGGAGCGCCATCTCACCCGCGCCTGGACCATGGAGAAGCGCAA GGAGGAGGCCTCCGCCGGCGCTGGCGCCGGCGCCAGGCAGCACCAGCAGTCCCGG CGCCCGCGGAGGGAGGACTGGGAGATCGACCCCGCCAAGCTTGTCGTCAAGGGCGT CATCGCCCGCGGCACCTTTGGCACCGTCCACCGCGGCATCTACGACGCTCACGACGT CGCAGTGAAACTACTTGATTGGGGAGAGGATGGGCATAGATCAGAACAAGACATTGCA GCACTAAGAGCAGCTTTTTCACAAGAGGTCTCTGTTTGGCATAAGCTTGACCATCCAAA TGTAACCAAGTTTATTGGAGCTATAATGGGTGCAAGGGATCTGAATATTCAAACGGAAA ACGGCCACATTGGCATGCCAACTAATATCTGCTGTGTCGTTGTGGAGTACCTTCCTGG TGGTGCACTAAAATCATTTCTGATAAAGAACAGGAGAAAGAAGCTAGCTTTTAAGGTCG TTGTTCAAATCGCTCTTGACCTTGCCAGGGGATTAAGCTATCTCCATTCCAAGAAGATT GTGCACCGTGATGTGAAGACTGAAAATATGCTTCTTGACAAAACGAGAACCGTGAAGA TCGCTGATTTTGGTGTTGCTCGCCTTGAAGCTTCAAATCCCAGTGACATGACGGGCGA AACTGGAACGCTTGGTTACATGACACCTGAGGTTCTCAATGGAAATCCCTACAACAGG AAATGCGATGTTTACAGCTTCGGGATCTGTTTGTGGGAGATATACTGCTGTGATATGCC ATATCCTGACTTGAGCTTTTCTGAGGTCACGTCTGCGGTTGTCCGTCAGAACCTGAGG CCGGAGATACCACGCTGCTGCCCGAGCTCTCTATCGAACGTGATGAAGCGCTGCTGG GACGCCAACCCCGACAAGCGACCTGAGATGGCCGAGGCGGTGTCCATGCTGGAGGC GATCGACACGTCGAAGGGTGGAGGCATGATCCCTGTGGACCAGCGGCCAGGATGCCT TGCGTGCTTCCGGCAGTACAGAGGTCCATGACAGATAGGTGGAAACCTGTTGGAGCT GCGGCCTCTAGATCTCGTGGATGCCGATCGATCGCGTGTTGTTTTCTGGGGAAGCAAA CTGGTTAATGGAGCTAGCCCGCCTTACCGGCTCGTGTAAATCCTCTGTCCATCAATTCT GTAACTCTGTTTTATCGATTAATGAAAAGAACCGGGCTTGCTCGAAAAAAAAAAAAAAA
The ZM65457595 cDNA is translated into the following amino acid sequence (SEQ ID NO:58):
MKEEGGGGDAGFVRADQIDLKSLDEQLERHLTRAWTMEKRKEEASAGAGAGARQHQQS RRPRREDWEIDPAKLVVKGVIARGTFGTVHRGIYDAHDVAVKLLDWGEDGHRSEQDIAAL RAAFSQEVSVWHKLDHPNVTKFIGAIMGARDLNIQTENGHIGMPTNICCVVVEYLPGGALK SFLIKNRRKKLAFKVVVQIALDLARGLSYLHSKKIVHRDVKTENMLLDKTRTVKIADFGVARL EASNPSDMTGETGTLGYMTPEVLNGNPYNRKCDVYSFGICLWEIYCCDMPYPDLSFSEVT SAVVRQNLRPEIPRCCPSSLSNVMKRCWDANPDKRPEMAEAVSMLEAIDTSKGGGMIPV DQRPGCLACFRQYRGP
cDNA sequence of ZM67230154 from corn (SEQ ID NO:59):
CGGCAACCCACTATCTCATGCGCTCACATGGAGACTCCCGCACGAACTGGAATCATCT CCGCCTCGCCACCTCTTCATCTTCTTCCCCAGTAGCCGCCGCCACCACCACTGCAGCA GCCAAACCACGTGACACCTCCCGCGCCGCTCAACCCCACAGCATCCGTTGCCACCGC CGCTCACCTCCCCGGCGCTCCCGGCTACAACCACTGC
AAGCATGAGGCAGCCAACCAGCGCGGGCGGCGACGCTGGGTTCTTGCGCGCGGACC AGATCGACCTCAAGAGCCTGGACGAGCAGCTCGAGCGCCACCTCGGACATCCCGCG GAGCGGGTAGTTGGCCCAGTCTCTGGGACAGGGAGCCGCCGCGGCGAAACGGCCAA GCTGGGTCCGGAGGAGCTGACGCCACTGCAGCGGTGCCGTGAGGACTGGGAGATCG ACCCTACCAAGCTCATCATCAAGGGCGTCATCGCGCGCGGCACCTTTGGCACCGTCC ACCGCGGCGTCTACGACGGCCAGGACGTCGCTGTAAAATTGCTTGACTGGGGCGAAG ATGGCCATAGATCAGAACAAGAAATTGGTGCACTAAGAGCAGCGTTTGCACAAGAGGT CGCTGTCTGGCATAAGCTTGAGCATCCAAACGTTACTAAGTTTATTGGGGCTATAATGG GCGCAAGAGATTTAAATATACAAACGGAACATGGACAGCTTGGCATGCCAAGCAATAT TTGCTGTGTTGTTGTTGAGTACCTTGCTGGAGGTGCGCTGAAAAATTTTCTGATAAAGA ACAGGAGAAGGAAACTTGCCTTTAAAGTTGTGGTCCAAATAGCTCTTGACCTTGCCAG GGGATTATGCTACCTCCACTCAAAGAAAATAGTGCACCGTGATGTCAAGACTGAAAAC ATGCTTCTGGACAAGACGAGAACGGTAAAGATCGCTGATTTTGGTGTTGCTCGAGTCG AGGCTTCAAATCCTAGCGATATGACGGGAGAAACAGGGACGCTTGGTTACATGGCTCC TGAGGTTCTCAATGGCCATGCTTACAACAGGAAGTGTGACGTGTACAGCTTTGGGATC TGCCTGTGGGAGATATACTGCTGTGACATGCCGTACCCTGATCTCAGTTTTTCTGAGG TCACCTCTGCCGTCGTTCGCCAGAATCTGAGGCCTGAGATACCGCGCTGCTGCCCGA GCTCGCTAGCGAATGTGATGAAGCGATGCTGGGACGCGAACCCGGACAAGCGTCCCG AGATGGCGGAGGTGGTGTCCATGCTGGAGGCGATCGACACGTCCAAGGGTGGCGGC ATGATCCCTAAGGACCAGACGCAGGGCTGCCTCTCGTGCTTCCGCCAGTACCGAGGT CCCTAACGCAGGGTTGTTTATTTATACCCGGTGAAATGATGATATTGGTCTCTACACTA CAACTCAGTGTAATCTAATCGCAGAAGTGGCTATATAATGGAGAAGCTTATCATTGCTT GCCATGGGTGTAAATGGATGGGGCGGGGTGGTTGACGATTGGTGTGCTTGTATGCTC GCTTCGAGTTATAATGCTTGCTGTAAGTTAAGGTGTGGAAAAAAAAAAAAAA
The ZM67230154 cDNA is translated into the following amino acid sequence (SEQ ID NO:60):
MRQPTSAGGDAGFLRADQIDLKSLDEQLERHLGHPAERVVGPVSGTGSRRGETAKLGPE ELTPLQRCREDWEIDPTKLIIKGVIARGTFGTVHRGVYDGQDVAVKLLDWGEDGHRSEQEI GALRAAFAQEVAVWHKLEHPNVTKFIGAIMGARDLNIQTEHGQLGMPSNICCVVVEYLAG GALKNFLIKNRRRKLAFKVVVQIALDLARGLCYLHSKKIVHRDVKTENMLLDKTRTVKIADFG VARVEASNPSDMTGETGTLGYMAPEVLNGHAYNRKCDVYSFGICLWEIYCCDMPYPDLSF SEVTSAVVRQNLRPEIPRCCPSSLANVMKRCWDANPDKRPEMAEVVSMLEAIDTSKGGG MIPKDQTQGCLSCFRQYRGP
cDNA sequence of EST465 from moss (SEQ ID NO:61 ):
GGGCCTCCTTCCTAGCCTTCATCTGCTGCGACGATGGAGGAGCTCGCCTCATCTGATG
TTCCGAACAAGTTGAAGAAGAAGGAATCTAAGATGAAGAAGAGGGTTATAACTCCAGG
GGCCTTGCTGAAGGCAGTAGTAAGGTCTGGAGAGGGGACTAAACGTCCTGTAGAAGG TGATCAGATTATCTTCCATTATGTCACACGAACAAATCAGGGAGTGGTGGTTGAGACAT CGCGATCTGACTTTGGAGGAAAGGGAGTTCCTCTTAGACTTGTTCTGGGAAAAAGCAA AATGATTGCTGGATGGGAGGAAGGCATCACCACCATGGCCAAAGGTGAAATAGCTATG CTGAAAGTGCAACCTGAATTACATTATGGTGACCCGGAGTGTCCTGTACCAGTGCCCG AGAACTTTCCAGTTTCTGATGAGCTCCTTTACGAAGTGGAGTTGTTCAACTTCTGTAAG GCGAAGATTATCACAGAGGATCTTGGTGTGACAAAAGTGGTCTTAGAAGAGGGTGAGG GCTGGGAAACTGCAAGGCCTCCGTACGAGGTGAAGCTTTGGATTACAGGCCGGATCT TAGGTGGGTCCACATTTTTTACTCATAAAGAGTGCGATCCCATTCATGTTGAATTCGGC AAGGAACAGTTGCCAGAAGGACTTGAGAAGGCAGTCGGCACTATGACGAGGAAAGAA AAGTCAATTATCTACATTTCAAGTTCATACTGTACGAATTCTTCAAATGCATACAAATTG AATATATCTCCTCAAGCGCAAGAACTAGAATTTGAAGTGCAGTTGGTGCAGCTCATTCA GGTAAGAGACATGTTTGGAGATGGAGGATTGATTAAGAGACGCCTGCGAGACGGACT AGGTGAATTTCCTGTGGACTGTCCTCTGCAAGATAGTGTGCTTAGAGTCCACTATAAG GCTATGCTACCTGATGATGGCGGCAGAATATTTATTGACACCAGAAGTAATGGAGGGG AGCCTGTTGAGTTTGCTTCTGGTGAGGGTGTGGTACCAGAGGGACTTGAGGCAAGTTT GAGGTTGATGCTTCCGGGGGAGCTCGCACTGATCAACAGCGTCTCTAAGTACGCATAT GACAAATTTCAAAGGCCAGAGAGTGTTCCAGAGGGAGCTTCAGTCCAATGGGAAGTG GAATTACTGGAATTTGAGAGTGCAAAGGATTGGACGGGCCTTAATTTTCAAGAGATCAT GGCTGAAGCTGATTCCATAAAGACCACAGGTAACCGGTTATTTAAGGAGGGCAAGCAC GAGCTGGCTAAAGCTAAGTACGAAAAGGTGTTGAGGGATTTCAGACATGTAAACCCTG GCAGTGATGAAGAAGCAAAGGAACTACAAGACACCAATAACGCACTGCGGCTTAATGT AGCAGCTTGTTATCATAAACTCCATGAGTACATCAAATGCATAGAAACATGCAACAAGG TGCTAGAAGGTAACCCGCATCATGTCAAAGGGTTATTTCGCCGAGGAACTGCTTACAT GGAAACGGGGGACTTTGATGAAGCTAGAGCTGATTTCAAGCAGATGATAACAGTTGAC AAGGCTGTCACAGTTGATGCAACTGCTGCTTTACAGAAGCTCAAGCAAAAAGAACGGG AAGCTGAGCTGAAAGCTAAGAAACAGTTCAAAGGGCTATTTGACTTAAAACCTGGAGA ACTCTCTGAGGGGCTAGAAGAGGTAAAGCCCGTAAGCGAAATCCATGAGAAGACTGTT GTCAACGAGGAACTTCCGATAGCATCTATGGATCAACATCAACACTCAAAGCACGAAA CAGAGGAAGGGAGCCATGAATCGCCCAGGGCAAGCAGCCGATTGTTAAGACTTCTGA AAGGTGGAGAGCACCTGATAAGGACAGTCACTTTTGGGAAGTGTACGATTCTTTAATTT TTCATATTGCTACTGCTAGGATCTCCCCTTTTTACTGTACTGGTGACTACCTTATGCTCA TTTACATTTCTAAGCCGTTATAGCTGTTATTAACCATTCGATAATGTACTATGAACAATAT TCCACTAGCGTTTTATGGCTATTTTTCATTAAGTCCTCGTGCCGTTA
The EST465 cDNA is translated into the following amino acid sequence (SEQ ID NO:62):
MEELASSDVPNKLKKKESKMKKRVITPGALLKAVVRSGEGTKRPVEGDQIIFHYVTRTNQG VVVETSRSDFGGKGVPLRLVLGKSKMIAGWEEGITTMAKGEIAMLKVQPELHYGDPECPV PVPENFPVSDELLYEVELFNFCKAKIITEDLGVTKVVLEEGEGWETARPPYEVKLWITGRIL GGSTFFTHKECDPIHVEFGKEQLPEGLEKAVGTMTRKEKSIIYISSSYCTNSSNAYKLNISP QAQELEFEVQLVQLIQVRDMFGDGGLIKRRLRDGLGEFPVDCPLQDSVLRVHYKAMLPDD GGRIFIDTRSNGGEPVEFASGEGVVPEGLEASLRLMLPGELALINSVSKYAYDKFQRPESV PEGASVQWEVELLEFESAKDWTGLNFQEIMAEADSIKTTGNRLFKEGKHELAKAKYEKVL RDFRHVNPGSDEEAKELQDTNNALRLNVAACYHKLHEYIKCIETCNKVLEGNPHHVKGLFR RGTAYMETGDFDEARADFKQMITVDKAVTVDATAALQKLKQKEREAELKAKKQFKGLFDL KPGELSEGLEEVKPVSEIHEKTVVNEELPIASMDQHQHSKHETEEGSHESPRASSRLLRLL KGGEHLIRTVTFGKCTIL
cDNA sequence of YBL109w from yeast (SEQ ID NO:63):
ATGTCCCTACGGCCTTGTCTAACACCATCCAGCATGCAATACAGTGACATATATATATA CCCTAACACTACCCTAACCCTACCCTATTTCAACCCTTCCAACCTGTCTCTCAACTTAC CCTCACATTACCCTACCTCTCCACTTGTTACCCTGTCCCATTCAACCATACCACTCCCA ACCACCATCCATCCCTCTACTTACTACCACCAATCAACCGTCCACCATAACCGTTACCC TCCAATTAGCCATATTCAACTTCACTACCACTTACCCTGCCATTACTCTACCATCCACCA TCTGCTACTCACCATACTGTTGTTCTACCCTCCATATTAA
The YBL109w cDNA is translated into the following amino acid sequence (SEQ ID NO:64):
MSLRPCLTPSSMQYSDIYIYPNTTLTLPYFNPSNLSLNLPSHYPTSPLVTLSHSTIPLPTTIHP STYYHQSTVHHNRYPPISHIQLHYHLPCHYSTIHHLLLTILLFYPPY
cDNA sequence of YBL100c from yeast (SEQ ID NO:65): ATGTTGTTCAAACCAAAAACACGAGCAATACCATCACCGACTGCAAGAACTCTACCAGT TTCGTTCAAATTGGCCTCGTCGGACACACCCTTAATTCTTTCCTCTAAGATGGAGGAAA CTTCTGTGGGTTGTGCCTTGGTGGAAGCCAATCTTCTGGTGGAAGCCAAAGCAGCAGC GGCAGGTCTTGCGGCCTTGGTAGAGTTAATTAGAGTTCTCGATAGAGAACGAATAGCA GCAGTACGAGCCAACATTATTATATGTGCGTGTTTTTTTTATTTATTTTGTTACTGTTCTT GCGATAGTTATGAGAGCTAA
The YBLI OOc cDNA is translated into the following amino acid sequence (SEQ ID NO:66):
MLFKPKTRAIPSPTARTLPVSFKLASSDTPLILSSKMEETSVGCALVEANLLVEAKAAAAGL AALVELIRVLDRERIAAVRANIIICACFFYLFCYCSCDSYES
cDNA sequence of YKL184w from yeast (SEQ ID NO:67):
ATGTCTAGTACTCAAGTAGGAAATGCTCTATCTAGTTCCACTACTACTTTAGTGGACTT GTCTAATTCTACGGTTACCCAAAAGAAGCAATATTATAAAGATGGCGAGACGCTGCACA ATCTTTTGCTTGAACTAAAGAATAACCAAGATTTGGAACTTTTACCGCATGAACAAGCG CATCCTAAAATATTTCAAGCGCTCAAGGCTCGTATTGGTAGAATTAATAATGAAACGTG CGACCCCGGTGAGGAGAACTCGTTTTTCATATGCGATTTGGGAGAAGTCAAGAGATTA TTCAACAACTGGGTGAAGGAGCTTCCTAGAATTAAGCCATTTTATGCCGTCAAATGTAA TCCTGATACCAAGGTTTTGTCATTATTAGCAGAGTTGGGCGTTAATTTCGATTGCGCTT CCAAAGTGGAAATTGACAGAGTATTATCGATGAACATCTCGCCGGATAGAATTGTTTAC GCTAATCCTTGTAAAGTAGCATCTTTCATTAGATATGCAGCTTCAAAAAATGTAATGAAG TCTACTTTTGACAATGTAGAAGAATTGCATAAAATCAAAAAGTTTCATCCTGAGTCTCAG TTGTTATTAAGAATCGCTACCGATGACTCTACCGCTCAATGTCGACTTTCCACCAAATA TGGCTGTGAAATGGAAAACGTAGACGTTTTATTAAAGGCTATAAAGGAACTAGGTTTAA ACCTGGCTGGTGTTTCTTTCCACGTCGGTTCAGGCGCTTCTGATTTTACAAGCTTATAC AAAGCCGTTAGAGATGCAAGAACGGTATTTGACAAAGCTGCTAACGAATACGGGTTGC CCCCTTTGAAGATTTTGGATGTAGGTGGTGGATTTCAATTTGAATCCTTCAAAGAATCA ACTGCTGTTTTGCGTCTAGCGCTAGAGGAATTTTTCCCTGTAGGTTGTGGTGTTGATAT AATTGCAGAGCCTGGCAGATACTTTGTAGCTACAGCGTTCACTTTGGCATCTCATGTGA TTGCGAAGAGAAAACTGTCTGAGAATGAAGCAATGATTTACACTAACGATGGTGTATAC GGGAACATGAATTGTATTTTATTCGATCATCAAGAGCCCCATCCAAGAACCCTTTATCA TAATTTGGAATTTCATTACGACGATTTTGAATCCACTACTGCGGTCCTCGACTCTATCAA CAAAACAAGATCTGAGTATCCATATAAAGTTTCCATCTGGGGACCCACATGTGATGGTT TGGATTGTATTGCCAAAGAGTATTACATGAAGCATGATGTTATAGTCGGTGATTGGTTT TATTTTCCTGCCCTGGGTGCCTACACATCATCGGCGGCTACTCAATTCAACGGCTTTGA GCAGACTGCGGATATAGTATACATAGACTCTGAACTCGATTAA
The YKL184w cDNA is translated into the following amino acid sequence (SEQ ID NO:68): MSSTQVGNALSSSTTTLVDLSNSTVTQKKQYYKDGETLHNLLLELKNNQDLELLPHEQAHP KIFQALKARIGRINNETCDPGEENSFFICDLGEVKRLFNNWVKELPRIKPFYAVKCNPDTKV LSLLAELGVNFDCASKVEIDRVLSMNISPDRIVYANPCKVASFIRYAASKNVMKSTFDNVEE LHKIKKFHPESQLLLRIATDDSTAQCRLSTKYGCEMENVDVLLKAIKELGLNLAGVSFHVGS GASDFTSLYKAVRDARTVFDKAANEYGLPPLKILDVGGGFQFESFKESTAVLRLALEEFFP VGCGVDIIAEPGRYFVATAFTLASHVIAKRKLSENEAMIYTNDGVYGNMNCILFDHQEPHPR TLYHNLEFHYDDFESTTAVLDSINKTRSEYPYKVSIWGPTCDGLDCIAKEYYMKHDVIVGD WFYFPALGAYTSSAATQFNGFEQTADIVYIDSELD
cDNA sequence of YPL091w from yeast (SEQ ID NO:69):
ATGCTTTCTGCAACCAAACAAACATTTAGAAGTCTACAGATAAGAACTATGTCCACGAA CACCAAGCATTACGATTACCTCGTCATCGGGGGTGGCTCAGGGGGTGTTGCTTCCGC AAGAAGAGCTGCATCTTATGGTGCGAAGACATTACTAGTTGAAGCTAAGGCTCTTGGT GGTACCTGTGTTAACGTGGGTTGTGTTCCGAAGAAAGTCATGTGGTATGCTTCTGACC TCGCTACTAGAGTATCCCATGCAAATGAATATGGATTATATCAGAATCTTCCATTAGATA AAGAGCATTTGACTTTTAATTGGCCAGAATTTAAGCAGAAAAGGGATGCTTATGTCCAT AGGTTGAACGGTATATACCAGAAGAATTTAGAAAAAGAAAAAGTGGATGTTGTATTTGG ATGGGCTAGATTCAATAAGGACGGTAATGTTGAAGTTCAGAAAAGGGATAATACTACTG AAGTTTACTCCGCTAACCATATTTTAGTTGCGACCGGTGGAAAGGCTATTTTCCCCGAA AACATTCCAGGTTTCGAATTAGGTACTGATTCTGATGGGTTCTTTAGATTGGAAGAACA ACCTAAGAAAGTTGTTGTTGTTGGCGCTGGTTATATTGGTATTGAGCTAGCAGGTGTGT TCCATGGGCTGGGATCCGAAACGCACTTGGTAATTAGAGGTGAAACTGTCTTGAGAAA ATTTGATGAATGCATCCAGAACACTATTACTGACCATTACGTAAAGGAAGGCATCAACG TTCATAAACTATCCAAAATTGTTAAGGTGGAGAAAAATGTAGAAACTGACAAACTGAAA ATACATATGAATGACTCAAAGTCCATCGATGACGTTGACGAATTAATTTGGACAATTGG ACGTAAATCCCATCTAGGTATGGGTTCAGAAAATGTAGGTATAAAGCTGAACTCTCATG ACCAAATAATTGCTGATGAATATCAGAACACCAATGTTCCAAACATTTATTCTCTAGGTG ACGTTGTTGGAAAAGTTGAATTGACACCTGTCGCTATTGCAGCGGGCAGAAAGCTGTC TAATAGACTTTTTGGTCCAGAGAAATTCCGTAATGACAAACTAGATTACGAGAACGTCC CCAGCGTAATTTTCTCACATCCTGAAGCCGGTTCCATTGGTATTTCTGAGAAGGAAGCC ATTGAAAAGTACGGTAAGGAGAATATAAAGGTCTACAATTCCAAATTTACCGCCATGTA CTATGCTATGTTGAGTGAGAAATCACCCACAAGATATAAAATTGTTTGTGCGGGACCAA ATGAAAAGGTTGTCGGTCTGCACATTGTTGGTGATTCCTCTGCAGAAATCTTGCAAGG GTTCGGTGTTGCTATAAAGATGGGTGCCACTAAGGCTGATTTCGATAATTGTGTTGCTA TTCATCCGACTAGCGCAGAAGAATTGGTTACTATGAGATAA
The YPL091w cDNA is translated into the following amino acid sequence (SEQ ID NO:70):
MLSATKQTFRSLQIRTMSTNTKHYDYLVIGGGSGGVASARRAASYGAKTLLVEAKALGGT CVNVGCVPKKVMWYASDLATRVSHANEYGLYQNLPLDKEHLTFNWPEFKQKRDAYVHRL NGIYQKNLEKEKVDVVFGWARFNKDGNVEVQKRDNTTEVYSANHILVATGGKAIFPENIPG FELGTDSDGFFRLEEQPKKVVVVGAGYIGIELAGVFHGLGSETHLVIRGETVLRKFDECIQN TITDHYVKEGINVHKLSKIVKVEKNVETDKLKIHMNDSKSIDDVDELIWTIGRKSHLGMGSEN VGIKLNSHDQIIADEYQNTNVPNIYSLGDVVGKVELTPVAIAAGRKLSNRLFGPEKFRNDKL DYENVPSVIFSHPEAGSIGISEKEAIEKYGKENIKVYNSKFTAMYYAMLSEKSPTRYKIVCAG PNEKVVGLHIVGDSSAEILQGFGVAIKMGATKADFDNCVAIHPTSAEELVTMR
cDNA sequence of TA54587433 from wheat (SEQ ID NO:71 ):
ATGGCGGTCATGTCACGGTTGAAGAGGCTGGCGGCGCCCGCGCTGCTGGTGCTGCTT GCGCTGGCGGCGTCCGCGGCCGTGGCGGCGAAGACGACCCAGGACGGCGCGGAGG CGGCGCCGGGCAAGGATGAAGAGTCGTGGACGGGGTGGGCCAAGGACAAGATCTCC GAGGGGCTGGGGCTCAAGCACGACGCTGACGAGGAGGCCGCGCGCGAGACCGTCC AGCACACCGCCTCCGAGACGGGGAGTCAGGTGAGCGGCAAGGCAGCGGACGCCAAG GAGGCGGCCAAGGGAACGGTCGGGGAGAAGCTCGGGGAGGTGAAGGACAAGGTCA CCGGCGCAGCAGCCGACGGCAAGGACAAGACGCACCGCAAGGATGACTTGCTGTGA
The TA54587433 cDNA is translated into the following amino acid sequence (SEQ ID NO:72):
MAVMSRLKRLAAPALLVLLALAASAAVAAKTTQDGAEAAPGKDEESWTGWAKDKISEGLG LKHDADEEAARETVQHTASETGSQVSGKAADAKEAAKGTVGEKLGEVKDKVTGAAADGK DKTHRKDDLL
cDNA sequence of ZM68532504 from corn (SEQ ID NO:73):
ATGCCGTCGCACGGGGATCTGGACCGGCAGATCGCGCAGCTGCGCGACTGCAAGTA CCTGCCCGAGGCGGAGGTCAAGGCGCTCTGCGAGCAGGCCAAGGCCATCCTTATGG AGGAGTGGAACGTGCAGCCCGTGCGCTGTCCTGTCACCGTCTGTGGCGACATCCACG GCCAGTTCTATGACCTCATCGAGCTCTTCCGCATCGGCGGCGACGCTCCCGACACCA ACTACCTCTTCATGGGCGACTACGTCGATCGTGGGTACTATTCAGTTGAAACAGTTTCT CTGTTAGTGGCTTTGAAAGTCCGTTACAGAGATAGAATTACAATACTTAGAGGAAATCA TGAGAGCAGACAAATCACTCAAGTATATGGCTTCTATGATGAATGCTTAAGAAAGTATG GAAATGCAAATGTCTGGAAGTATTTTACAGACTTGTTTGATTTTTTGCCTCTCACAGCTC TTATAGAAAATCAGGTCTTCTGTCTTCACGGTGGCCTCTCTCCGTCATTGGACACGTTG GATAATATTCGTTCTCTTGATCGCGTACAGGAGGTTCCTCATGAAGGACCCATGTGTGA TCTTTTGTGGTCTGACCCAGATGACCGATGTGGATGGGGAATTTCACCAAGAGGAGCA GGTTACACATTTGGGCAAGACATTGCGCAGCAGTTCAACCATACAAATGGTCTTTCTCT CATTTCAAGGGCCCATCAACTTGTAATGGAAGGATTTAATTGGTGCCAGGATAAGAATG TAGTCACAGTCTTCAGCGCGCCTAATTATTGTTACCGCTGTGGTAACATGGCTGCTATT CTTGAAATCGGGGAAAACATGGACCAGAACTTCCTTCAATTCGACCCGGCACCTCGGC AAATTGAGCCAGACACAACTCGGAAAACCCCAGACTACTTTTTGTAA
The ZM68532504 cDNA is translated into the following amino acid sequence (SEQ ID NO:74):
MPSHGDLDRQIAQLRDCKYLPEAEVKALCEQAKAILMEEWNVQPVRCPVTVCGDIHGQFY DLIELFRIGGDAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKYFTDLFDFLPLTALIENQVFCLHGGLSPSLDTLDNIRSLDRV QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVM EGFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQIEPDTTRKTP DYFL
cDNA sequence of BN42856089 from canola (SEQ ID NO:75):
AAAACTCCAAAAACAAACCATTTTCCATCTCTCAGGCCAAAAAAACCAGAGATTTGATC TCTCTGGCGATTCATCATCCTCTTCATCCACCACACGCCGTATAAGTTAAAGGATCGGT GGTGGTCTCTCGATGCCGCCGAACGGAGATCTAGACCGTCAGATCTCCCAGCTGATG GAGTGTAAACCGCTATCTGAGGCCGATGTGAAGACGCTCTGCGATCAAGCGAGGGCC ATCCTCGTCGAGGAGTGGAACGTTCAGCCCGTGAAGTGTCCTGTCACCGTCTGCGGC GATATCCACGGACAGTTCTATGACCTTATCGAGCTCTTTCGAATCGGTGGGAATCCTC CGGATACTAACTACCTCTTCATGGGAGACTATGTAGACCGTGGCTACTATTCAGTAGAA ACAGTTTCTCTATTGGTGGCACTGAAAGTGCGATACAGGGATAGGATTACAATCTTGC GAGGGAATCACGAGAGTCGGCAGATTACTCAAGTCTATGGGTTTTATGATGAATGTTT GAGGAAGTATGGAAATGCAAATGTCTGGAAGTTTTTCACGGACCTTTTCGATTATCTTC CTCTTACTGCTCTCATAGAGAGTCAGGTTTTCTGCTTGCATGGAGGGCTTTCACCTTCT CTGGACACCCTTGATAATATCCGAAGCTTGGATCGTATACAAGAGGTTCCACATGAAG GACCAATGTGTGATTTATTATGGTCTGATCCCGATGATCGATGTGGGTGGGGAATATCT CCACGAGGTGCTGGTTATACATTTGGACAAGACATCGCAACTCAGTTTAATCACAACAA TGGACTCAGTCTCATATCAAGAGCACATCAACTTGTCATGGAAGGCTTTAACTGGTGTC AGGACAAAAATGTTGTGACGGTGTTTAGTGCACCAAACTATTGCTACCGGTGTGGAAA CATGGCAGCTATTCTAGAGATAGGAGAGAACATGGACCAGAACTTCCTCCAGTTCGAT CCAGCTCCTCGTCAAGTCGAACCAGATACTACCCGCAAGACCCCTGATTATTTTTTGTG ATTTATTTGCATTTTTTTTTCTTTTGTTCCCAACCATTTATAATTTTTAAAAAATCTGTTTT ATCTTGCTTATGAATAATCATTCTAGTGTCTCTTCAAAAAAAAAAAAAAA
The BN42856089 cDNA is translated into the following amino acid sequence (SEQ ID NO:76):
MPPNGDLDRQISQLMECKPLSEADVKTLCDQARAILVEEWNVQPVKCPVTVCGDIHGQFY DLIELFRIGGNPPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKFFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRIQ EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIATQFNHNNGLSLISRAHQLVME
GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQVEPDTTRKT-
PDYFL
cDNA sequence of BN43206527 from canola (SEQ ID NO:77):
CCAAAGACCATTTGATCTCTGGCGATTTCATCTTCCGATATGCCGCCGAACGGAGATC
TAGACCGTCAGATCGAGCATCTGATGGAGTGCAAACCTTTATCGGAGGAGGATGTGAG
GACGCTCTGCGATCAAGCTAAGGCCATCCTCGTCGAGGAATGGAACGTCCAGCCCGT GAAATGCCCCGTCACCGTCTGCGGCGATATCCACGGCCAGTTCTATGACCTTATCGAG CTTTTCCGAATCGGTGGTAACGCCCCCGATACGAATTACCTCTTCATGGGTGACTATGT AGACCGTGGCTACTATTCAGTGGAAACGGTTTCTTTATTGGTGGCATTGAAAGTCAGAT ACAGGGATAGGATTACAATCTTGCGAGGGAACCACGAGAGTCGTCAGATCACCCAAGT ATATGGTTTTTATGACGAGTGCTTGAGGAAGTACGGAAACGCAAATGTGTGGAAGTATT TCACAGACCTTTTCGATTATCTTCCTCTTACTGCTCTTATCGAGAGTCAGGTTTTCTGTT TGCATGGAGGGCTATCACCTTCTCTGGATACACTTGATAATATCCGAAGCTTGGATCGT ATACAAGAGGTTCCACACGAAGGACCAATGTGTGATTTACTATGGTCTGATCCAGATGA TCGATGCGGGTGGGGAATATCTCCAAGAGGTGCTGGTTATACATTTGGACAGGATATA GCAACTCAGTTTAATCACAACAATGGACTCAGTCTCATATCAAGAGCGCATCAGCTTGT CATGGAAGGTTTTAACTGGTGTCAGGATAAGAATGTGGTGACGGTGTTTAGTGCACCA AACTATTGCTACCGGTGTGGAAACATGGCAGCGATTCTAGAGATAAGTGAGAACATGG AGCAGAACTTCCTTCAGTTTGATCCAGCTCCAAGACAAGTCGAACCTGATACTACCCGT AAGACCCCTGATTATTTTTTGTGATTTTATTTGTATTTTTTTTTCTTCTAAGCGGAGTTCG AGTTTCCCTCAAAACGAAAGAAAGAAACAAACATCATTTTGTTGTTGTTGATGTGATTGC TGAGAACAAAGTTTGTAGTAGAAGCGTCTATATATAGAATAGTGTCTTCTCATTGTCATT TCACTTGTTACTGCATAGAGGAATGAGGTTTCGAACCCTGCCCGCCACTTTCATTTCAG TTTCATTTATAAAATATGAGTTTGATACCGAAAAAAAAAAAAAAA
The BN43206527 cDNA is translated into the following amino acid sequence (SEQ ID NO:78):
MPPNGDLDRQIEHLMECKPLSEEDVRTLCDQAKAILVEEWNVQPVKCPVTVCGDIHGQFY DLIELFRIGGNAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRIQ EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIATQFNHNNGLSLISRAHQLVME GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEISENMEQNFLQFDPAPRQVEPDTTRKT- PDYFL
cDNA sequence of HA66872964 from sunflower (SEQ ID NO:79):
CTAAAAATATCTTTAACCGCCGGCTGCCATGACGGAACCCTAAGCAACTTCTCCGGCG ACTCCGGCGGAGCTCCGTTCAACCTAAATGCGAATCATTCTTCCAGATCTTCAAATCCG AACACACAAATCACGTAACAATGCCGTCGCAATCGGATCTGGACCGTCAGATCGAGCA CTTGATGGACTGTAAACCGCTGCCGGAGGCGGAGGTGCGGACGTTGTGTGATCAGGC GAGGACGATTTTGGTCGAGGAGTGGAATGTGCAGCCGGTGAAGTGTCCGGTGACTGT TTGCGGTGATATTCATGGGCAGTTTCATGATTTGCTTGAGCTGTTTCGGATCGGAGGA AGTGCTCCGGACACGAATTACTTGTTTATGGGAGATTATGTTGATCGAGGCTATTACTC GGTGGAGACTGTTACGCTTCTTGTGGCATTGAAAGTTCGTTACAGAGATAGGATTACTA TTCTCAGAGGAAACCATGAGAGCAGGCAGATAACTCAAGTGTATGGATTTTACGATGA ATGCTTGAGGAAGTACGGAAACGCAAATGTATGGAAACATTTCACTGACCTTTTTGATT ATCTACCTCTCACTGCCCTTATCGAGAGTCAGATATTCTGTCTCCATGGTGGCTTGTCT CCATCTTTGGATACACTAGATAACATACGTGCTTTAGATCGCATACAAGAGGTTCCTCA TGAGGGGCCAATGTGTGACCTTTTGTGGTCTGATCCTGATGACCGGTGTGGTTGGGG AATATCTCCTCGTGGAGCCGGTTACACTTTCGGGCAGGATATAGCCGCACAGTTTAAC CATACAAACGGGCTCTCGCTTATTTCTCGGGCTCACCAGCTTGTCATGGAAGGTTACA ATTGGTCTCAGGAGAACAACGTTGTAACCATATTTAGTGCACCAAACTACTGCTATAGA TGCGGGAATATGGCTGCGATACTTGAGGTTGGAGAGAATATGGACCAGAATTTCTTAC AATTTGACCCAGCCCCTCGTCAGGTTGAGCCCGATGTTGCACGAAGAACTCCGGATTA CTTCCTGTAAATTTGTGTTGGATAATATGACCTTTGCATGCATCCTATTTATGTTGTTAT AGTTTTCGCTTTCCCCTGCTAGAGAGTCCCCCTATTCTTGAGAATTAAAGACAATATGT ATGATTGTTTGTCCCTTGTTCTATTTGAGATTATTTGTTTAAAAAAAAAAAAAAA
The HA66872964 cDNA is translated into the following amino acid sequence (SEQ ID NO:80):
MPSQSDLDRQIEHLMDCKPLPEAEVRTLCDQARTILVEEWNVQPVKCPVTVCGDIHGQFH DLLELFRIGGSAPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKHFTDLFDYLPLTALIESQIFCLHGGLSPSLDTLDNIRALDRIQ EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAAQFNHTNGLSLISRAHQLVME GYNWSQENNVVTIFSAPNYCYRCGNMAAILEVGENMDQNFLQFDPAPRQVEPDVARRT- PDYFL
cDNA sequence of LU61662612 from linseed (SEQ ID NO:81 ):
CATCTCTCTTTCTCTCTCTTCCATTTTCGTTCTTTTGAATCTCCGTTAGCCCTACAAATC CATGGTCATGGCCTGAGAGAGATAGAGGGATAGAGCTCTCAGTTCCTAATCACCTTAC CTGACCTAACCCCACGGACATATTATCGAAGGTCTGCGAGCAGGAGAGCGCAGGAGG AAGAGTGGGGCCAGGGTACGATGCCGTCCCACGCCGATCTGGACCGTCAGATCGAG CACTTGATGCAGTGCAAGCCACTTTCTGAGGCCGAAGTGAAGGCTCTCTGCGAGCAG GCCAGGGCCGTCCTCGTCGAGGAATGGAACGTCCAGCCGGTCAAGTGTCCGGTGACT GTCTGCGGCGACATCCACGGCCAGTTTCACGATCTTGTCGAGCTCTTTCGAATCGGAG GAAACGCCCCTGACACGAACTACCTCTTCATGGGCGACTATGTAGATCGAGGGTATTA TTCGGTGGAGACTGTCACCCTTCTAGTCGCCTTGAAAGTAAGATATAGAGATAGGATC ACAATTCTGAGAGGAAATCATGAAAGTCGTCAAATAACTCAAGTGTATGGATTCTATGA TGAGTGCTTGAGAAAATATGGAAATGCCAATGTGTGGAAACATTTTACCGATCTCTTTG ATTATCTACCACTTACAGCTCTGATTGAGAGTCAGGTCTTCTGCTTACATGGTGGACTT TCCCCTTCACTAGACACGCTAGACAACATTCGCTCCCTTGATCGTATCCAAGAGGTTCC GCACGAGGGTCCTATGTGCGACCTCCTATGGTCGGACCCGGATGACCGTTGCGGGTG GGGGATCTCTCCTCGTGGAGCTGGCTACACCTTTGGACAGGACATATCTCAACAGTTC AACCACACGAACGGCCTTTCTCTCATATCCAGAGCTCACCAGCTGGTCATGGAAGGTT ACAATTGGGCCCAGGACAAGAATGTGGTGACGGTGTTCAGCGCCCCGAACTACTGCT ACCGGTGTGGGAACATGGCGGCCATTCTCGAGATCGGAGAGAACATGGAGCAGAACT TCCTGCAGTTCGACCCAGCTCCTCGACAGATCGAACCGGAGACGACTCGCAGAACAC CCGATTATTTTTTGTGAAATGCATAGCTTCTTCTTCCTCCCTCCTTCTTGCTTGGAAATG GGATCCGTGTCCATTTTTTCTAATCGCCTGCCCTGCTATGTGCTTATGTTTTTTGTAGAT GCATTCATCATCATCATATCCAGAATAGAGAAGAAATTTTGGTGTTTGCTTTGATTGAGA AAAGGCGGGGAGGGAAAAATCGGCCTCTAGAGATGCTGGGTGTTGTCATTTTTCTTCT TCTTCTTCCTCCTTTTGGGATGGTTTCGTTTTTACTTTTTCTTTTGGGTTTCTATTGTTTA TCCTGCATTCATTTGAGTTTAACAAAGTTTATTATTTACAGTCTGGGTGTGTTATTAATAT TATTCACTGTGGTCTTGTACCAAAAAAAAAAAAAAA
The LU61662612 cDNA is translated into the following amino acid sequence (SEQ ID NO:82):
MPSHADLDRQIEHLMQCKPLSEAEVKALCEQARAVLVEEWNVQPVKCPVTVCGDIHGQF HDLVELFRIGGNAPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRDRITILRGNHESRQIT QVYGFYDECLRKYGNANVWKHFTDLFDYLPLTALIESQVFCLHGGLSPSLDTLDNIRSLDRI QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDISQQFNHTNGLSLISRAHQLVM EGYNWAQDKNVVTVFSAPNYCYRCGNMAAILEIGENMEQNFLQFDPAPRQIEPETTRRTP DYFL
cDNA sequence of OS32806943 from rice (SEQ ID NO:83):
GAGGCTTGAGCTCCACCTCCACCTCCTCCACCTCCAACCCCCGATCCCCCGCAAACC CTAGCCCTCTCCCCCACCCTCCTCGCCGGCGGCGAGCGGCGGCGGCGCGCGGCGG GACCCGGAGCCCCCAGTAGCGCCTCCTCCGTCCTCCCCTCCCTGAGGTGCGGGGGA GAGGATGCCGTCGTCGCACGGGGATCTGGACCGGCAGATCGCGCAGCTGCGGGAGT GCAAGCACCTGGCGGAGGGGGAGGTGAGGGCGCTGTGCGAGCAGGCGAAGGCCAT CCTCATGGAGGAGTGGAACGTGCAGCCGGTGCGGTGCCCCGTCACGGTCTGCGGCG ACATCCACGGCCAGTTCTACGACCTCATCGAGCTCTTCCGCATCGGCGGCGAGGCGC CCGACACCAACTACCTCTTCATGGGCGACTACGTCGACCGTGGCTACTACTCAGTGGA GACTGTTTCGTTGTTGGTGGCTTTGAAAGTACGCTACAGAGATCGAATTACAATATTGA GAGGAAATCATGAGAGCAGACAAATCACTCAAGTGTACGGCTTCTACGATGAATGCTT GAGAAAGTATGGAAATGCAAATGTATGGAAATACTTTACAGACTTGTTTGATTATTTGCC TCTCACAGCTCTTATAGAAAACCAGGTGTTCTGCCTTCACGGTGGTCTCTCTCCATCAT TGGATACTTTAGATAACATCCGTGCTCTTGATCGTATACAAGAGGTTCCTCATGAAGGA CCCATGTGTGATCTTTTGTGGTCTGACCCAGATGACAGATGCGGGTGGGGAATTTCAC CGAGAGGAGCAGGTTATACATTTGGGCAAGATATCGCTCAACAGTTTAACCATACAAAT GGTCTATCTCTCATCTCAAGGGCACATCAACTTGTAATGGAAGGATTTAATTGGTGTCA GGACAAGAATGTTGTGACGGTCTTCAGTGCACCAAACTACTGTTATCGCTGTGGTAAC ATGGCTGCAATTCTTGAGATTGGCGAAAACATGGATCAGAACTTCCTCCAATTTGATCC AGCTCCTCGGCAAATTGAACCAGACACAACACGCAAGACTCCCGACTACTTTTTGTAAT TTGTGGTGTTGACAATTTTAACTCACCTGTGTTGATGCTCCTCTCCTCCGCGGTGTCGG GGTCTGTAGATCTTCTGTCCTTAGATACGGGTTCCACGAGCCCGGCTGTATGTCTCTC AATTCTTTTGTTTGGAGATTTTGTTGCTGCTTCTCAACCTTTATACAAGACGTTAAAAGT TACATGCACTGGATTTTTTTCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAAA AAAAAAAAAAA
The OS32806943 cDNA is translated into the following amino acid sequence (SEQ ID NO:84):
MPSSHGDLDRQIAQLRECKHLAEGEVRALCEQAKAILMEEWNVQPVRCPVTVCGDIHGQF YDLIELFRIGGEAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQIT QVYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIENQVFCLHGGLSPSLDTLDNIRALDRI QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVM EGFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQIEPDTTRKTP DYFL
cDNA sequence of OS34738749 from rice (SEQ ID NO:85):
GGTCGACGCCGTCACCGTCGCGCCAACTGCCGCAAACCGAATAAACCGAATCGATCT GAGAGAAGAAGAAGAAGAAGACGCGATCTCGGAGGTGGGAGCGAAACGAAACGATG CCGTCTCACGCGGATCTGGAACGACAGATCGAGCAGCTGATGGAGTGCAAGCCTCTG TCGGAGTCGGAGGTGAAGGCGCTGTGTGATCAAGCGAGGGCGATTCTCGTGGAGGAA TGGAACGTGCAACCGGTGAAGTGCCCCGTCACCGTCTGCGGCGATATTCACGGCCAG TTTTACGATCTCATCGAGCTGTTTCGGATTGGAGGGAACGCACCCGATACCAATTATCT CTTCATGGGTGATTATGTAGATCGTGGATACTATTCAGTGGAGACTGTTACACTTTTGG TGGCTTTGAAAGTCCGTTACAGAGATAGAATCACAATTCTCAGGGGAAATCATGAAAGT CGTCAAATTACTCAAGTGTATGGCTTCTATGATGAATGCTTGAGAAAATATGGAAATGC CAATGTCTGGAAATACTTTACAGACTTGTTTGATTATTTACCTCTGACTGCCCTCATTGA GAGTCAGATTTTCTGCTTGCATGGAGGTCTCTCACCTTCTTTGGATACACTGGATAACA TCAGAGCATTGGATCGTATACAAGAGGTTCCACATGAAGGACCAATGTGTGATCTCTT GTGGTCTGACCCTGATGATCGCTGTGGATGGGGAATATCTCCACGTGGTGCAGGATA CACATTTGGACAGGATATAGCTGCTCAGTTTAATCATACCAATGGTCTCTCCCTGATAT CGAGAGCTCATCAGCTTGTTATGGAAGGATTCAATTGGTGCCAGGACAAAAATGTGGT GACTGTATTTAGTGCACCAAATTACTGTTACCGATGTGGGAATATGGCTGCTATACTAG AAATAGGAGAGAATATGGATCAGAATTTCCTTCAGTTTGATCCAGCGCCCAGGCAAATT GAGCCTGACACCACACGCAAGACTCCAGATTATTTTTTATAATTTCATTTATCTGCCTGT TTGTAGTTACTGCTCTCTGCCATTACTGTAGATGTGTCTTTAAGGAAAGGAGTTTTGCT GTTTAAGTGGAGGGTGGTCATCAACATAATTCTTTCTTTTGGAGTTTACCTCCTGCTGC TGCCGCTGCCGCTGCCTTATTTGTACAAGAAACCAATAGAACTGACACAAGCCACCAA TTGGGGTTGTATATTTTTGGGAGGAAGCGGTAATAACATGGTATATCTTGTTCTGTAAT CCTTTTTCTTTAAATTGAATCTCAAGTTAGAGAGCAAAAAAAAAAAAA
The OS34738749 cDNA is translated into the following amino acid sequence (SEQ ID NO:86):
MPSHADLERQIEQLMECKPLSESEVKALCDQARAILVEEWNVQPVKCPVTVCGDIHGQFY DLIELFRIGGNAPDTNYLFMGDYVDRGYYSVETVTLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIESQIFCLHGGLSPSLDTLDNIRALDRIQ EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAAQFNHTNGLSLISRAHQLVME GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFDPAPRQIEPDTTRKTP- DYFL
cDNA sequence of ZM59400933 from corn (SEQ ID NO:87):
CTGACCGCCAGCGGGCCCGCAGGCCGGAGAAGGAGTCGGAGTCGCCCCCACCCACC CACCCTCTGCCGCGGGCGGGGAGCGGGCGGCGGACGAGATGCCGTCGCACGGGGA TCTGGACCGGCAGATCGCGCAGCTGCGCGACTGCAAGTACCTGCCCGAGGCGGAGG TCAAGGTGCTCTGCGAGCAGGCCAAGGCCATCCTCATGGAGGAATGGAACGTGCAGC CCGTGCGCTGCCCCGTCACCGTCTGCGGCGACATCCACGGCCAGTTCTATGACCTCA TCGAGCTCTTCCGCATCGGCGGCGACTCTCCCGACACCAACTACCTCTTCATGGGCG ACTACGTCGATCGTGGCTATTATTCAGTTGAAACGGTTTCTCTGTTAGTGGCTTTGAAA GTCCGTTACAGAGATAGAATTACAATACTTCGAGGAAATCATGAGAGCAGACAAATCAC TCAAGTGTACGGCTTCTATGATGAATGCTTAAGAAAATATGGAAATGCAAATGTATGGA AGTATTTTACAGACTTGTTTGATTATTTGCCTCTCACAGCTCTTATAGAAAATCAGGTCT TCTGTCTTCATGGAGGCCTCTCTCCGTCATTGGACACATTGGATAACATTCGTTCTCTT GATCGCATACAGGAGGTACCTCATGAAGGACCCATGTGTGATCTTTTGTGGTCTGACC CAGATGACCGATGTGGGTGGGGAATTTCACCCAGAGGAGCAGGTTACACATTTGGGC AAGACATTGCACAGCAGTTCAACCATACAAATGGTCTCTCTCTCATTTCAAGGGCCCAT CAACTTGTAATGGAAGGATTTAATTGGTGCCAGGATAAGAATGTAGTCACAGTCTTCAG TGCGCCTAATTACTGTTACCGCTGTGGTAACATGGCTGCTATTCTTGAAATCGGGGAAA ACATGGACCAGAACTTCCTTCAATTCAACCCCGCACCTCGGCAAATTGAGCCAGACAC AACTCGCAAAACCCCAGACTACTTTCTGTAATTGTGGTGGTGACCTTAACTTTCTGGTG TTTGATGCTCCTCTCTTCCGCAGCATCAGGGTATGTAGATCTTGTCCTTAGATATGGGT CCCATGTGCCCGGCCTTAACGTCTCCCTATTCTTTTGTTTGGAGATTTTGTTTCTGCTT CTCGATCTTGATACAAGATGTTAGAAGTTGAATGCCAGTGTATTTTTTT- CAAAAAAAAAAA The ZM59400933 cDNA is translated into the following amino acid sequence (SEQ ID NO:88):
MPSHGDLDRQIAQLRDCKYLPEAEVKVLCEQAKAILMEEWNVQPVRCPVTVCGDIHGQFY DLIELFRIGGDSPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKYFTDLFDYLPLTALIENQVFCLHGGLSPSLDTLDNIRSLDRIQ EVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVME GFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGENMDQNFLQFNPAPRQIEPDTTRKTP- DYFL
cDNA sequence of ZM62132060 from corn (SEQ ID NO:89):
AATCGTCGCTCCACCTCCTCCTCGTCTATCGCCGATCTCCCCCAAACCCTAGCCCCGA CCTGACCGCCGGCGGGCCCGCCGGCCGGAGAAGGAGTCGCTCCCACCCATCCAACT TCTGCGGCGGAAGGGGAGCGGGCGGCGGACGAGATGCCGTCGCACGGGGATCTGG ACCGGCAGATCGCGCAGCTGCGCGACTGCAAGTACCTGCCCGAGGCGGAGGTCAAG GCGCTCTGCGAGCAGGCCAAGGCCATCCTTATGGAGGAGTGGAACGTGCAGCCCGT GCGCTGTCCTGTCACCGTCTGTGGCGACATCCACGGCCAGTTCTATGACCTCATCGAG CTCTTCCGCATCGGCGGCGACGCTCCCGACACCAACTACCTCTTCATGGGCGACTAC GTCGATCGTGGGTACTATTCAGTTGAAACAGTTTCTCTGTTAGTGGCTTTGAAAGTCCG TTACAGAGATAGAATTACAATACTTAGAGGAAATCATGAGAGCAGACAAATCACTCAAG TATATGGCTTCTATGATGAATGCTTAAGAAAGTATGGAAATGCAAATGTCTGGAAGTAT TTTACAGACTTGTTTGATTTTTTGCCTCTCACAGCTCTTATAGAAAATCAGGTCTTCTGT CTTCACGGTGGCCTCTCTCCGTCATTGGACACGTTGGATAATATTCGTTCTCTTGATCG CGTACAGGAGGTTCCTCATGAAGGACCCATGTGTGATCTTTTGTGGTCTGACCCAGAT GACCGATGTGGATGGGGAATTTCACCAAGAGGAGCAGGTTACACATTTGGGCAAGAC ATTGCGCAGCAGTTCAACCATACAAATGGTCTTTCTCTCATTTCAAGGGCCCATCAACT TGTAATGGAAGGATTTAATTGGTGCCAGGATAAGAATGTAGTCACAGTCTTCAGCGCG CCTAATTATTGTTACCGCTGTGGTAACATGGCTGCTATTCTTGAAATCGGGAAAAACAT GGACCAGAACTTCCTTCAATTCGACCCGGCACCTCGGCAAATTGAGCCAGACACAACT CGGAAAACCCCAGACTACTTTTTGTAATTGTGGTGGTGACATTAACTTACTGGTGTTGA TGCTCCTCTTTTCCGCAGCATCAGGGTCTGTAGATCATCTGTCCTTAGATATGGGTTCC ATGAGCCCGACCTGTACGTCTCCCAATTCTTTTGTTTGGAGATTTTGTTGCCGCTTAAC GATCTTTATACAATATGTTAAAAAGTTAAATGCCATTGGATTTTTCTCCAAAAAAAAAAA
The ZM62132060 cDNA is translated into the following amino acid sequence (SEQ ID NO:90):
MPSHGDLDRQIAQLRDCKYLPEAEVKALCEQAKAILMEEWNVQPVRCPVTVCGDIHGQFY DLIELFRIGGDAPDTNYLFMGDYVDRGYYSVETVSLLVALKVRYRDRITILRGNHESRQITQ VYGFYDECLRKYGNANVWKYFTDLFDFLPLTALIENQVFCLHGGLSPSLDTLDNIRSLDRV QEVPHEGPMCDLLWSDPDDRCGWGISPRGAGYTFGQDIAQQFNHTNGLSLISRAHQLVM EGFNWCQDKNVVTVFSAPNYCYRCGNMAAILEIGKNMDQNFLQFDPAPRQIEPDTTRKTP DYFL
cDNA sequence of ZM59202533 from corn (SEQ ID NO:91 ):
ATGAAGGGGAAGAAGCCGGTCAAGGAGCTCAAGCTCACCGTGCCGGCGCAGGAGAC CCCGGTAGACAAGTTCCTGACGGCAAGTGGCACGTTCAAGGATGGTGAGCTGAGGCT CAATCAGAGCGGCTTGCGGCTTATCTCTGAGGAAAACGGGGATGAAGATGAATCTACA AAGCTGAAGGTGGAAGATGTGCAGTTATCAATGGATGATCTTGAGATGATTCAAGTCAT TGGCAAAGGAAGCGGTGGTGTTGTCCAGCTAGTGAGGCACAAATGGGTGGGCACATT GTTTGCCTTAAAGGGTATTCAAATGAACATTCAGGAGTCAGTTCGTAAACAAATAGTAC AGGAGCTCAAAATAAACCAAGCAACACAGAGCCCTCATATAGTTATGTGCCATCAATCT TTTTACCACAATGGTGTAATATATCTTGTTCTTGAGTACATGGACCGTGGATCGCTTGC AGACATTGTTAAGCAAGTGAAGACTATTCTGGAGCCATACCTTGCAGTACTTTGTAAGC AGGTCTTGGAGGGTTTATTGTATCTTCATCATCAAAGGCACGTGATTCACAGGGACATA AAACCATCTAACTTGTTGGTCAACCGTAAAGGTGAAGTCAAGATTACCGACTTCGGAGT GAGTGCTGTGCTAGCAAGCTCAATAGGTCAGCGAGATACATTTGTTGGAACCTACAAC TATATGGCGCCTGAGCGGATTAGTGGTAGCACTTATGACTACAAAAGTGACATATGGA GTTTGGGCTTAGTTATACTTGAGTGTGCCATTGGCCGGTTCCCTTATATACCTTCGGAA GGTGAAGGTTGGTTAAGCTTTTATGAACTTCTGGAGGCCATTGTCGATCAGCCACCAC CTTCTGCACCTGCAGATCAGTTCTCTCCAGAATTCTGCTCATTTATCTCCTCTTGCATAC AGAAAGATCCGGCTCAGAGGATGTCTGCTTCAGAACTCTTGAATCACCCTTTTTTGAAG AAGTTCGAGGATAAGGACTTAAACCTGGGGATTCTTGTGGAGAACCTGGAACCTCCAA TGAATATACCCGAATAG
The ZM59202533 cDNA is translated into the following amino acid sequence (SEQ ID NO:92):
MKGKKPVKELKLTVPAQETPVDKFLTASGTFKDGELRLNQSGLRLISEENGDEDESTKLKV EDVQLSMDDLEMIQVIGKGSGGVVQLVRHKWVGTLFALKGIQMNIQESVRKQIVQELKINQ ATQSPHIVMCHQSFYHNGVIYLVLEYMDRGSLADIVKQVKTILEPYLAVLCKQVLEGLLYLH HQRHVIHRDIKPSNLLVNRKGEVKITDFGVSAVLASSIGQRDTFVGTYNYMAPERISGSTYD YKSDIWSLGLVILECAIGRFPYIPSEGEGWLSFYELLEAIVDQPPPSAPADQFSPEFCSFISS CIQKDPAQRMSASELLNHPFLKKFEDKDLNLGILVENLEPPMNIPE
cDNA sequence of BN41901422 from canola (SEQ ID NO:93):
GTCATTCTTCTAATTTCTCTGACCTCTGCTACTGTCTATCCGTTCGTGTTGCTTTGATCT CTCTAATCAGACATGAAGAGAGGCAGCTTGAGTCTTAATCCCATCTCTCTCCCTCCTCC TGAGCAATCCATCTCCAAATTCTTAACACAGAGCGGAACGTTCAAGGATGGAGACCTT CAAGTGAACAAAGATGGAATCCAGACAGTATCTCATTCTGAGCCTGGAGCTCCACCAC CTATTGATCCATTGGACAACCAGTTGAGTTTGGCTGACCTTGAAGTGATCAAAGTCATT GGCAAAGGAAGCAGTGGTAGTGTTCAGCTGGTTAAACACAAACTAACTCAACAGTTTTT CGCTACTAAGGTTATTCAGTTAAACACAGAAGAGTCCACATGTCGAGCCATTTCTCAGG AGCTGAGGATAAACTTGGCATCTCAATGTCCATATCTCGTCTCATGTTATCAGTCTTTCT ACCATAACGGTCTCGTCTCAATCGTAATGGAGTTCATGGACGGTGGATCTCTTTTGGAT TTGTTGAAGAAAGTCCAGAGAGTTCCTGAAAACATGCTCGCTGCCATCTCCAAGCGAG TGCTCCGAGGCTTGTGCTATATTCACGATGAGAGGCGAATCATTCACCGGGACTTGAA GCCTTCCAACTTGCTAATCAATCACAGAGGTGAAGTCAAGATCGCAGACTTTGGTGTC AGCAAGATCTTGTCTAGCACAAGCAGTCTAGCGCATACCTTCGTGGGCACAGACTTCT ATATGTCGCCAGAGAGAATCAGTGGGAAAGCGTATGGGAACAAGTGTGATATTTGGAG TTTGGGAGTGGTTCTGCTCGAATGTGCAACGGGTAAGTTTCCGTATACTCCTCCTGAA AACATGAAGGGATGGACTAGCATGTATGAGCTAGTTGACGCCATTGTTGAAAACCCGC CTCCTCGTGCACCTTCCCACCTGTTCTCTCCAGAGTTTTGCTCCTTCATCTCGCAATGT GTACAAAAAGATCCAAGGGACCGGAAATCAGCAATGGAGCTTCTGGACCATAGGTTCG TAAACATGTTTGAAGATGTGGATGTGGATCTCTCGTCTTACTTCACCGCCGCAGGATCT TTGATTCCCCCACTAGCCAACAGCTAGAACCGAGTTTGAACAATCCTTTTAACACCAAG TTATATATATGTATTTTATATCCACTGGAAGAGACGATATTTACGAGATGTTGCGACTTA TGAGAGAATTCTCTTGATAGACATTTATATTTTCAAGTATTGAAATTTATTTGGGTAAAAA AAAAAAAAAA
The BN41901422 cDNA is translated into the following amino acid sequence (SEQ ID NO:94):
MKRGSLSLNPISLPPPEQSISKFLTQSGTFKDGDLQVNKDGIQTVSHSEPGAPPPIDPLDN QLSLADLEVIKVIGKGSSGSVQLVKHKLTQQFFATKVIQLNTEESTCRAISQELRINLASQCP YLVSCYQSFYHNGLVSIVMEFMDGGSLLDLLKKVQRVPENMLAAISKRVLRGLCYIHDERRI IHRDLKPSNLLINHRGEVKIADFGVSKILSSTSSLAHTFVGTDFYMSPERISGKAYGNKCDIW SLGVVLLECATGKFPYTPPENMKGWTSMYELVDAIVENPPPRAPSHLFSPEFCSFISQCVQ KDPRDRKSAMELLDHRFVNMFEDVDVDLSSYFTAAGSLIPPLANS
cDNA sequence of BN47868329 from canola (SEQ ID NO:95):
CCAGATCGTTAAACCATAATCCAAACCAAGCTTGCAAAAACTTTTGATCCTAAACCGAG ATGAAACCAATCCAACCGCCACCAGGAGTAATCGGTCCGGTTAAGAACCGCCCTCGC CGCCGTCCAGACCTCTCCTTACCACTTCCTCACCGCGACGTTTCCCTCGCCGTACCTC TCCCCCTCCCACCAACTTCCGGCGGCGGTTCCACCACCTCAGAGCCTAAAAGCTACTC AGACTTAGTACGTGGCAACCGGATCGGAAGCGGAGCCGGTGGAACGGTTTACAGAGT AGTCCACCGTCCAACCTCCCGCGTATACGCACTCAAGATAATCAACGGTAACCACGAT GACACTGTTCGTGGCCAGATCTGCAGAGAGATCAAGATTCTCCGAGACGTGAATCACC CCAACGTGGTGAAATGCCACGAGATGTTCGATCAAAACGGAGAGATCCAGGTCTTGCT CGAGCTCATGGACCAAGGATCTTTAGAAGGTGCTCATATCTCGAACGAGCAACAGTTA TCTGACCTATCTCGTCAGATACTAAACGGTTTGGCTTATCTTCACGGCCGTCATATAGT CCATAGAGACATAAAGCCATCGAATCTACTTATAAACTCGGACAATAACGTCAAGATTG CTGATTTTGGAGTGAGCAGGGTCTTGGCTCAGACCCTGTCTCCGTGTAAGTCCTCTGT TGGGACTATTGCTTACATGAGTCCTGAGAGGATCAACACGGATTTGAATCAGGGGATG TATGATGGTTGCGCTGGGGATATTTGGAGCTTCGGTGTTAGTGTTCTTGAGTTTTTCTT GGGGAGGTTTCCTTTTAATGTGAATAGGCTAGGTGATTGGGCTAGTCTTATGTGTGCTA TTTGTATGTCTAAGCCGCCTGAAGCTCCTGCCACGGCGTCTCCGGAGTTTAGACACTT TGTTTCGTGTTGTTTGCAGAGAGAACCGGGGAGGAGGCAAACTGCTGTTCAGCTTTTG CAACATCCTTTTGTGCGTAGAGGGGCGATTCAGAGTCAGAATAGGTCTCCTCAGAATC TACATCAACTCTTGCCTCCTCCACACTAAAGGTTTAGTTTTGTCTGATAATGTTTCTACA CTAAAGGTTGATCATGTCTTGCTGTTTAGACAAACTATATCATTGTCTTGTACTTAGCTG AAAGCAAAGCGTATATAGTTTGAATCACTTTGCACCTCATGATGGTTAATTTCACTAAGT AATTCAGTAGTAGAGTCATTAAATGTAAAAAAAAAAAAAAA
The BN47868329 cDNA is translated into the following amino acid sequence (SEQ ID NO:96):
MKPIQPPPGVIGPVKNRPRRRPDLSLPLPHRDVSLAVPLPLPPTSGGGSTTSEPKSYSDLV RGNRIGSGAGGTVYRVVHRPTSRVYALKIINGNHDDTVRGQICREIKILRDVNHPNVVKCH EMFDQNGEIQVLLELMDQGSLEGAHISNEQQLSDLSRQILNGLAYLHGRHIVHRDIKPSNLL INSDNNVKIADFGVSRVLAQTLSPCKSSVGTIAYMSPERINTDLNQGMYDGCAGDIWSFGV SVLEFFLGRFPFNVNRLGDWASLMCAICMSKPPEAPATASPEFRHFVSCCLQREPGRRQT AVQLLQHPFVRRGAIQSQNRSPQNLHQLLPPPH
cDNA sequence of BN42671700 from canola (SEQ ID NO:97):
CTGCAAACTAAAATCTAGAACCGGAACAGATCTAAACCAAACCAAACCGAACCGGGTG TCTTTGTTTGTAACTCTCCAAATGGTGAAGAAAGCGATGAAGGAGGAAGAAGAAGCAG AGATGAGAAACTCGTCGATGCAGTCAAAGTACAAAGGCGTGAGGAAGAGGAAGTGGG GCAAATGGGTTTCGGAGATCAGACTTCCCAACAGCAGAGAGCGAATCTGGCTAGGCT CTTTCGACACTCCCGAGAAGGCGGCGCGTGCCTTCGACGCCGCCCAGTTTTGTCTCC GCGGCTGCCAATCCGGTTTCAATTTCCCCGATAATCCGCCGTCGATCTCCGGCGGAA GGTCGCTGACGCCTCCGGAGATCCGGGAAGCGGCTGCTCGATACGCAAACGCTCAG GACGACGATATTATCATCACCACCGGAGAAGAAGAATCGGTTTTGTCCGAAACCCGAC CGGAGTCTCCTTCAACAACCTCCGTGTCTGAAGCAGATACGTCGCTGGATTGCGATCT ATCGTTCTTAGACACGCTTCCTAATGATTTCGGGATGTTTTCTGTGTTTGATGACTTCTC CGACGGCTTCTCCGGCGATCAGTTTACAGAGGTTTTACCCGTTGAAGATTACGGAGAT GTGATTTTTGATGAGTCTCTGTTTCTTTGGGATTTTTAAATGTGTAAAGAGTTTTGAATT GTTGTTTATTCGGGTCATGGAGAGTAATCTGGATATTTTTGTAAGTCGGAGCTCCAGCG ACCCGGGAACTTGATCATTCTTGCTTTGGTTGATGATATCTATCATTCCTTCATTTTTTG TTGTTATTAATGAAAATATTTGGATAAAATAGCAATTACAGAAAAAAAAAAAAAAAAAA The BN42671700 cDNA is translated into the following amino acid sequence (SEQ ID NO:98):
MVKKAMKEEEEAEMRNSSMQSKYKGVRKRKWGKWVSEIRLPNSRERIWLGSFDTPEKA ARAFDAAQFCLRGCQSGFNFPDNPPSISGGRSLTPPEIREAAARYANAQDDDIIITTGEEES VLSETRPESPSTTSVSEADTSLDCDLSFLDTLPNDFGMFSVFDDFSDGFSGDQFTEVLPVE DYGDVIFDESLFLWDF
cDNA sequence of ZM68416988 from corn (SEQ ID NO:99):
CTCGCCTCGCCTTCCTCCGAGCCCCGGCGAGGAAGAGGAACCCGCCGCCGCCGCCG CCGGACGCACTTCCGATGGCGACGCCACGGAAGCCGATCAAGCTCACGCTGCCGTCC CACGAGACCACCATCGGCAAGTTCCTGACGCACAGCGGGACGTTCACGGACGGGGAT CTGCGCGTGAACAAGGACGGCCTCCGCATCGTCTCGCGGAGGGAGGGAGGCGAGGC TCCTCCTATAGAGCCGTTGGATAGTCAACTGAGCTTAGATGATCTAGACGTTATAAAAG TGATCGGGAAAGGTAGCAGCGGAAATGTGCAATTGGTCCGCCACAAATTTACTGGCCA GTTTTTTGCTCTGAAGGTTATTCAACTAAATATTGATGAGAGTATACGCAAACAGATTGC CAAGGAGTTGAAGATAAACTTATCAACACAGTGCCAATATGTTGTTGTGTTCTATCAGT GTTTCTATTTCAATGGTGCCATTTCTATTGTTTTGGAATACATGGATGGTGGCTCCCTTG CAGATTTCCTGAAGACTGTTAAAACCATTCCAGAGGCCTACCTCGCTGCTATCTGTACG CAGATGCTAAAAGGACTGATCTATTTGCATAACGAGAAGCGCGTTATACACCGAGATCT GAAACCATCAAATATATTGATAAATCATAGGGGTGAAGTAAAAATATCAGATTTTGGTGT GAGTGCCATTATATCTAGTTCCTCTTCGCAACGAGATACATTTATTGGCACACGCAACT ACATGGCGCCAGAAAGAATCGATGGAAAGAAACATGGTTCTATGAGTGATATCTGGAG TTTGGGACTAGTGATACTGGAATGTGCAACCGGCATCTTTCCATTTCCTCCTTGTGAAA GCTTCTACGAACTTCTCGTGGCTGTTGTTGATCAACCGCCACCTTCTGCGCCGCCGGA TCAGTTTTCACCAGAATTCTGTGGGTTCATTTCTGCATGTCTCCAGAAGGATGCTAATG ACAGGTCATCAGCCCAAGCCTTATTGGACCATCCGTTCCTGAGCATGTATGATGACCT GCATGTAGATCTTGCTTCGTACTTCACGACAGCAGGATCTCCTCTCGCCACCTTCAATT CCAGGCAACTCTAATTTTTTTGTCCTCCTTATTACGCGAACGGTGTGGCGACAAATTTC TCTTTTTGGACAAGGCTTGGATTGTGTACTGAGCTGTAATGATCTTGTGTGTGTCAGGT CGGTGATTGGCTCCATCACTTTACATATATGACATACATGTACAGCCTTTTAGGATAAA AATGAGCACTGAAGTTTTGCCTATCTGTATATCGGCAGCAAACGTTTGGTCATGTTTGT TTCACCTTGTAATGTATTGACTCAGATATGGGATTGGTCATTGTCTCTAAAAAAAAAAA
The ZM68416988 cDNA is translated into the following amino acid sequence (SEQ ID NO:100):
MATPRKPIKLTLPSHETTIGKFLTHSGTFTDGDLRVNKDGLRIVSRREGGEAPPIEPLDSQL SLDDLDVIKVIGKGSSGNVQLVRHKFTGQFFALKVIQLNIDESIRKQIAKELKINLSTQCQYVV VFYQCFYFNGAISIVLEYMDGGSLADFLKTVKTIPEAYLAAICTQMLKGLIYLHNEKRVIHRD LKPSNILINHRGEVKISDFGVSAIISSSSSQRDTFIGTRNYMAPERIDGKKHGSMSDIWSLGL
VILECATGIFPFPPCESFYELLVAVVDQPPPSAPPDQFSPEFCGFISACLQKDANDRSSAQA
LLDHPFLSMYDDLHVDLASYFTTAGSPLATFNSRQL

Claims

1. A transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a full-length polypeptide having a sequence as set forth in any one of SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100.
2. An isolated polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences set forth in Table 1.
3. An isolated polypeptide having a sequence selected from the group consisting of the polypeptide sequences set forth in Table 1.
4. A method of producing a transgenic plant comprising at least one polynucleotide listed in Table 1 , wherein expression of the polynucleotide in the plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant comprising the steps of: (a) introducing into a plant cell an expression vector comprising at least one polynucleotide listed in Table 1 , and
(b) generating from the plant cell a transgenic plant that expresses the polynucleotide, wherein expression of the polynucleotide in the transgenic plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the plant.
5. A method of increasing a plant's growth and/or yield under normal or water-limited conditions and/or increasing a plant's tolerance to an environmental stress comprising the steps of increasing the expression of at least one polynucleotide listed in Table 1 in the plant.
PCT/EP2008/059070 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield WO2009010460A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2008277735A AU2008277735A1 (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield
CN200880024564A CN101743314A (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield
US12/668,665 US8338661B2 (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield
BRPI0814689-6A2A BRPI0814689A2 (en) 2007-07-13 2008-07-11 TRANSGENIC PLANT, ISOLATED POLYNUCLEOTIDE, ISOLATED POLYPEPTIDE, AND METHODS FOR PRODUCING A TRANSGENIC PLANT AND FOR INCREASING THE INCOME AND / OR GROWTH UNDER NORMAL OR LIMITED WATER AND / OR TESTING PLANT CONDITIONS ENVIRONMENTAL
MX2009013648A MX2009013648A (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield.
EP08786070A EP2179043A2 (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield
CA 2692650 CA2692650A1 (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield
US13/666,997 US20130125255A1 (en) 2007-07-13 2012-11-02 Transgenic Plants With Increased Stress Tolerance and Yield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95934607P 2007-07-13 2007-07-13
US60/959,346 2007-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/666,997 Division US20130125255A1 (en) 2007-07-13 2012-11-02 Transgenic Plants With Increased Stress Tolerance and Yield

Publications (2)

Publication Number Publication Date
WO2009010460A2 true WO2009010460A2 (en) 2009-01-22
WO2009010460A3 WO2009010460A3 (en) 2009-04-09

Family

ID=39884732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/059070 WO2009010460A2 (en) 2007-07-13 2008-07-11 Transgenic plants with increased stress tolerance and yield

Country Status (9)

Country Link
US (2) US8338661B2 (en)
EP (5) EP2520655A3 (en)
CN (1) CN101743314A (en)
AR (1) AR067527A1 (en)
AU (1) AU2008277735A1 (en)
BR (1) BRPI0814689A2 (en)
CA (1) CA2692650A1 (en)
MX (1) MX2009013648A (en)
WO (1) WO2009010460A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722072B2 (en) 2010-01-22 2014-05-13 Bayer Intellectual Property Gmbh Acaricidal and/or insecticidal active ingredient combinations
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
US20160272996A1 (en) * 2012-11-13 2016-09-22 Basf Plant Science Company Gmbh Fungal resistant plants expressing casar
US9957522B2 (en) 2012-11-13 2018-05-01 Basf Plant Science Company Gmbh Fungal resistant plants expressing CASAR
WO2022043559A3 (en) * 2020-08-31 2022-05-27 Basf Se Plant yield improvement
WO2022263285A1 (en) * 2021-06-14 2022-12-22 Basf Se Yield improvement by gene combinations

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008002435T5 (en) 2007-09-18 2010-07-22 Basf Plant Science Gmbh Plants with increased yield
EP2594647A3 (en) * 2007-09-21 2013-07-24 BASF Plant Science GmbH Plants with increased yield
EP2240587A2 (en) * 2007-12-21 2010-10-20 BASF Plant Science GmbH Plants with increased yield (ko nue)
BRPI0917855A2 (en) * 2008-08-19 2015-08-18 Basf Plant Science Gmbh Methods for producing a transgenic plant cell, plant or part thereof, for producing an agricultural composition, for producing a transgenic plant, and for increasing yield, transgenic plant cell, plant or part thereof, seed, nucleic acid molecule isolated, nucleic acid construct, vector, host cell, processes for producing a polypeptide, and for identifying a compound, polypeptide, antibody, plant tissue, propagation material harvested or plant material, composition, and, use of a protein related to stress-related yield or protein.
KR101416506B1 (en) 2012-08-10 2014-07-09 연세대학교 산학협력단 Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof
CN105339380A (en) 2013-03-14 2016-02-17 先锋国际良种公司 Compositions and methods to control insect pests
EP2971000A4 (en) 2013-03-15 2016-11-23 Pioneer Hi Bred Int Phi-4 polypeptides and methods for their use
CN105189754A (en) * 2013-05-31 2015-12-23 创世纪种业有限公司 Cotton PP2Ac-type protein phosphatase PP2Ac-7, coding gene of same, and application thereof
EA030896B1 (en) 2013-08-16 2018-10-31 Пайонир Хай-Бред Интернэшнл, Инк. Insecticidal proteins and methods for their use
MX359027B (en) 2013-09-13 2018-09-12 Pioneer Hi Bred Int INSECTICIDAL PROTEINS and METHODS FOR THEIR USE.
EP3102592B1 (en) 2014-02-07 2020-05-20 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
WO2016044092A1 (en) 2014-09-17 2016-03-24 Pioneer Hi Bred International Inc Compositions and methods to control insect pests
EP3207143B1 (en) 2014-10-16 2023-11-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN108064233B (en) 2015-05-19 2022-07-15 先锋国际良种公司 Insecticidal proteins and methods of use thereof
EP3310803A1 (en) 2015-06-16 2018-04-25 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CN109475096B (en) 2015-08-06 2022-08-23 先锋国际良种公司 Plant-derived insecticidal proteins and methods of use thereof
US11236347B2 (en) 2015-08-28 2022-02-01 Pioneer Hi-Bred International, Inc. Ochrobactrum-mediated transformation of plants
EP3390431A1 (en) 2015-12-18 2018-10-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
EP3960863A1 (en) 2016-05-04 2022-03-02 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CA3022858A1 (en) 2016-06-16 2017-12-21 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
US11155829B2 (en) 2016-07-01 2021-10-26 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
WO2018013333A1 (en) 2016-07-12 2018-01-18 Pioneer Hi-Bred International, Inc. Compositions and methods to control insect pests
CN107805632B (en) * 2016-09-06 2019-08-30 中国科学院微生物研究所 OsMKK6 albumen and encoding gene are in the regulation developmental application of vegetable seeds
EP3535285B1 (en) 2016-11-01 2022-04-06 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CA3066470A1 (en) * 2017-06-23 2018-12-27 Yield10 Bioscience, Inc. Methods and genes for producing land plants with increased expression of mitochondrial metabolite transporter and/or plastidial dicarboxylate transporter genes
CN107746851B (en) * 2017-10-30 2019-12-13 齐齐哈尔大学 Sphagnum protein phosphatase 2C gene RcPP2C and encoding protein and application thereof
EP3764796A4 (en) 2018-03-14 2021-12-22 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
WO2019178042A1 (en) 2018-03-14 2019-09-19 Pioneer Hi-Bred International, Inc. Insecticidal proteins from plants and methods for their use
EP4182466A2 (en) 2020-07-14 2023-05-24 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use
CN113150089A (en) * 2021-02-05 2021-07-23 山东农业大学 Application of GhMKK6 gene and encoding protein thereof in cotton dwarf breeding
CN115927392A (en) * 2023-01-14 2023-04-07 中国农业科学院深圳农业基因组研究所 Target gene for improving corn broad-spectrum pest genetic resistance and application thereof
CN118421591A (en) * 2024-05-28 2024-08-02 中国农业科学院棉花研究所 MAP4K13 gene of cotton and application thereof in salt tolerance and drought resistance

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064612A1 (en) * 1998-06-11 1999-12-16 University Of Guelph Enhanced storage organ production in plants
WO2000067558A1 (en) * 1999-05-06 2000-11-16 Michael Timko Regulation of gene expression in tobacco for manipulation of plant growth and secondary metabolism
WO2003012116A2 (en) * 2001-08-01 2003-02-13 Performance Plants, Inc. Caax prenyl protease nucleic acids and polypeptides and methods of use thereof
US20040216190A1 (en) * 2003-04-28 2004-10-28 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
WO2004099415A1 (en) * 2003-05-07 2004-11-18 Korea Research Institute Of Bioscience And Biotechnology A new stress-resistance transcription factor (capf1) gene, its protein and a transfected plant by the gene
WO2006069201A2 (en) * 2004-12-20 2006-06-29 Mendel Biotechnology, Inc. Plant stress tolerance from modified ap2 transcription factors
WO2006134162A2 (en) * 2005-06-17 2006-12-21 Basf Plant Science Gmbh Lecitin-like protein kinase stress-related polypeptides and methods of use in plants

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504200A (en) 1983-04-15 1996-04-02 Mycogen Plant Science, Inc. Plant gene expression
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4666844A (en) 1984-09-07 1987-05-19 Sungene Technologies Corporation Process for regenerating cereals
US5100792A (en) 1984-11-13 1992-03-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues
US5036006A (en) 1984-11-13 1991-07-30 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
US5420034A (en) 1986-07-31 1995-05-30 Calgene, Inc. Seed-specific transcriptional regulation
US5187073A (en) 1986-06-30 1993-02-16 The University Of Toledo Process for transforming gramineae and the products thereof
US5004863B2 (en) 1986-12-03 2000-10-17 Agracetus Genetic engineering of cotton plants and lines
US5120657A (en) 1986-12-05 1992-06-09 Agracetus, Inc. Apparatus for genetic transformation
DE3889546T2 (en) 1987-12-21 1994-09-08 Univ Toledo TRANSFORMATION OF Germinating PLANT SEEDS WITH THE HELP OF AGROBACTERIUM.
US5614395A (en) 1988-03-08 1997-03-25 Ciba-Geigy Corporation Chemically regulatable and anti-pathogenic DNA sequences and uses thereof
US5350688A (en) 1988-03-31 1994-09-27 Kirin Beer Kabushiki Kaisha Method for regeneration of rice plants
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
NZ230375A (en) 1988-09-09 1991-07-26 Lubrizol Genetics Inc Synthetic gene encoding b. thuringiensis insecticidal protein
DE3843628A1 (en) 1988-12-21 1990-07-05 Inst Genbiologische Forschung Wound-inducible and potato-tuber-specific transcriptional regulation
BR9007159A (en) * 1989-02-24 1991-12-10 Monsanto Co SYNTHETIC GENES OF PLANTS AND PROCESS FOR THE PREPARATION OF THE SAME
US5086169A (en) 1989-04-20 1992-02-04 The Research Foundation Of State University Of New York Isolated pollen-specific promoter of corn
US5302523A (en) 1989-06-21 1994-04-12 Zeneca Limited Transformation of plant cells
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
EP0472712B1 (en) 1990-03-16 2001-09-12 Calgene LLC Novel sequences preferentially expressed in early seed development and methods related thereto
EP0528819A1 (en) 1990-04-18 1993-03-03 Plant Genetic Systems, N.V. Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells
US5187267A (en) 1990-06-19 1993-02-16 Calgene, Inc. Plant proteins, promoters, coding sequences and use
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
US5767366A (en) 1991-02-19 1998-06-16 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants
ATE207126T1 (en) 1991-05-15 2001-11-15 Monsanto Technology Llc METHOD FOR CREATION OF A TRANSFORMED RICE PLANT
WO1993007256A1 (en) 1991-10-07 1993-04-15 Ciba-Geigy Ag Particle gun for introducing dna into intact cells
TW261517B (en) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
PT637339E (en) 1992-04-13 2002-03-28 Syngenta Ltd DNA BUILDINGS AND PLANS THAT INCORPORATE THEM
EP0604662B1 (en) 1992-07-07 2008-06-18 Japan Tobacco Inc. Method of transforming monocotyledon
DK0651814T3 (en) 1992-07-09 1997-06-30 Pioneer Hi Bred Int Maize pollen-specific polygalacturonase gene
US5470353A (en) 1993-10-20 1995-11-28 Hollister Incorporated Post-operative thermal blanket
AU687961B2 (en) 1993-11-19 1998-03-05 Biotechnology Research And Development Corporation Chimeric regulatory regions and gene cassettes for expression of genes in plants
GB9324707D0 (en) 1993-12-02 1994-01-19 Olsen Odd Arne Promoter
ATE362527T1 (en) 1993-12-08 2007-06-15 Japan Tobacco Inc METHOD FOR TRANSFORMING PLANTS AND A VECTOR THEREOF
GB9403512D0 (en) 1994-02-24 1994-04-13 Olsen Odd Arne Promoter
US5470359A (en) 1994-04-21 1995-11-28 Pioneer Hi-Bred Internation, Inc. Regulatory element conferring tapetum specificity
GB9421286D0 (en) 1994-10-21 1994-12-07 Danisco Promoter
US5846797A (en) 1995-10-04 1998-12-08 Calgene, Inc. Cotton transformation
GB9524395D0 (en) 1995-11-29 1996-01-31 Nickerson Biocem Ltd Promoters
JPH10117776A (en) 1996-10-22 1998-05-12 Japan Tobacco Inc Transformation of indica rice
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
CA2252612C (en) 1997-02-20 2010-01-05 Plant Genetic Systems, N.V. Improved transformation method for plants
US5977436A (en) 1997-04-09 1999-11-02 Rhone Poulenc Agrochimie Oleosin 5' regulatory region for the modification of plant seed lipid composition
US6162965A (en) 1997-06-02 2000-12-19 Novartis Ag Plant transformation methods
EP1019517B2 (en) 1997-09-30 2014-05-21 The Regents of The University of California Production of proteins in plant seeds
US6153813A (en) 1997-12-11 2000-11-28 Mississippi State University Methods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds
US6153811A (en) 1997-12-22 2000-11-28 Dekalb Genetics Corporation Method for reduction of transgene copy number
US6333449B1 (en) 1998-11-03 2001-12-25 Plant Genetic Systems, N.V. Glufosinate tolerant rice
US6420630B1 (en) 1998-12-01 2002-07-16 Stine Biotechnology Methods for tissue culturing and transforming elite inbreds of Zea mays L.
EP1586645A3 (en) * 1999-02-25 2006-02-22 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
DE60141547D1 (en) * 2000-04-07 2010-04-22 Basf Plant Science Gmbh Stress-linked protein phosphatase and its use in plants
CA2413425A1 (en) 2000-06-28 2002-12-19 Sungene Gmbh & Co. Kgaa Binary vectors for improved transformation of plant systems
DE10036671A1 (en) * 2000-07-27 2002-02-21 Frommer Wolf Bernd New nucleic acid encoding mitochondrial transporter, useful for preparing transgenic plants with e.g. altered protein content and improved germination
FR2817883B1 (en) 2000-12-12 2003-02-28 Pascal Rossignol DEVICE FOR PRODUCING NON-PARALLEL CONTINUOUS FIBER MATERIALS AND MANUFACTURING CHAIN ADOPTING SUCH A DEVICE
ES2381031T3 (en) * 2001-09-05 2012-05-22 Basf Plant Science Gmbh Polypeptides related to stress regulated by protein phosphatase and methods of use in plants
EP1566443A1 (en) 2004-02-23 2005-08-24 SunGene GmbH &amp; Co.KgaA Improved transformation of brassica species
EP1756282B1 (en) 2004-06-07 2009-04-08 BASF Plant Science GmbH Improved transformation of soybean
WO2006083399A2 (en) * 2004-12-14 2006-08-10 University Of Maryland Biotechnology Institute Plants with reduced expression of phosphatase type 2c gene for enhanced pathogen resistance
PT1827078E (en) * 2004-12-21 2014-05-26 Monsanto Technology Llc Transgenic plants with enhanced agronomic traits
EP2392662A3 (en) * 2007-04-23 2012-03-14 Basf Se Plant productivity enhancement by combining chemical agents with transgenic modifications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064612A1 (en) * 1998-06-11 1999-12-16 University Of Guelph Enhanced storage organ production in plants
WO2000067558A1 (en) * 1999-05-06 2000-11-16 Michael Timko Regulation of gene expression in tobacco for manipulation of plant growth and secondary metabolism
WO2003012116A2 (en) * 2001-08-01 2003-02-13 Performance Plants, Inc. Caax prenyl protease nucleic acids and polypeptides and methods of use thereof
US20040216190A1 (en) * 2003-04-28 2004-10-28 Kovalic David K. Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
WO2004099415A1 (en) * 2003-05-07 2004-11-18 Korea Research Institute Of Bioscience And Biotechnology A new stress-resistance transcription factor (capf1) gene, its protein and a transfected plant by the gene
WO2006069201A2 (en) * 2004-12-20 2006-06-29 Mendel Biotechnology, Inc. Plant stress tolerance from modified ap2 transcription factors
WO2006134162A2 (en) * 2005-06-17 2006-12-21 Basf Plant Science Gmbh Lecitin-like protein kinase stress-related polypeptides and methods of use in plants

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRACHA KEREN ET AL: "The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 33, 16 August 2002 (2002-08-16), pages 29856-29864, XP002502721 ISSN: 0021-9258 *
BRACHA-DRORI KEREN ET AL: "Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting." PLANT PHYSIOLOGY SEP 2008, vol. 148, no. 1, September 2008 (2008-09), pages 119-131, XP002502723 ISSN: 0032-0889 *
CADINANOS JUAN ET AL: "AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, no. 43, 24 October 2003 (2003-10-24), pages 42091-42097, XP002502722 ISSN: 0021-9258 *
DATABASE EMBL [Online] 1 May 2001 (2001-05-01), "Arabidopsis thaliana unknown protein (At2g20725) mRNA, complete cds." XP002502725 retrieved from EBI accession no. EMBL:AF370273 Database accession no. AF370273 & DATABASE UniProt [Online] 1 December 2001 (2001-12-01), "SubName: Full=Putative uncharacterized protein At2g20725 (Putative uncharacterized protein At2g20725/F5H14.3) (Predicted protein);" retrieved from EBI accession no. UNIPROT:Q94K61 Database accession no. Q94K61 *
DATABASE EMBL [Online] 28 November 2001 (2001-11-28), "Arabidopsis thaliana unknown protein (At2g20725) mRNA, complete cds." XP002502724 retrieved from EBI accession no. EMBL:AY063007 Database accession no. AY063007 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722072B2 (en) 2010-01-22 2014-05-13 Bayer Intellectual Property Gmbh Acaricidal and/or insecticidal active ingredient combinations
US9265252B2 (en) 2011-08-10 2016-02-23 Bayer Intellectual Property Gmbh Active compound combinations comprising specific tetramic acid derivatives
US20160272996A1 (en) * 2012-11-13 2016-09-22 Basf Plant Science Company Gmbh Fungal resistant plants expressing casar
US9957522B2 (en) 2012-11-13 2018-05-01 Basf Plant Science Company Gmbh Fungal resistant plants expressing CASAR
US10041088B2 (en) 2012-11-13 2018-08-07 Basf Plant Science Company Gmbh Fungal resistant plants expressing CASAR
US10941413B2 (en) 2012-11-13 2021-03-09 Basf Plant Science Company Gmbh Fungal resistant plants expressing CASAR
WO2022043559A3 (en) * 2020-08-31 2022-05-27 Basf Se Plant yield improvement
WO2022263285A1 (en) * 2021-06-14 2022-12-22 Basf Se Yield improvement by gene combinations

Also Published As

Publication number Publication date
US20130125255A1 (en) 2013-05-16
EP2520655A2 (en) 2012-11-07
MX2009013648A (en) 2010-01-27
EP2520656A2 (en) 2012-11-07
WO2009010460A3 (en) 2009-04-09
EP2179043A2 (en) 2010-04-28
EP2520656A3 (en) 2013-05-01
US8338661B2 (en) 2012-12-25
CA2692650A1 (en) 2009-01-22
EP2390336A2 (en) 2011-11-30
CN101743314A (en) 2010-06-16
US20100170003A1 (en) 2010-07-01
EP2390336A3 (en) 2012-07-18
EP2505653A3 (en) 2013-05-01
AU2008277735A1 (en) 2009-01-22
EP2520655A3 (en) 2012-12-26
BRPI0814689A2 (en) 2014-10-07
AR067527A1 (en) 2009-10-14
EP2505653A2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
US8338661B2 (en) Transgenic plants with increased stress tolerance and yield
US9328354B2 (en) Transgenic plant with increased stress tolerance and yield
US20100199388A1 (en) Transgenic Plants with Increased Stress Tolerance and Yield
US20100333234A1 (en) Transgenic Plants with Increased Stress Tolerance and Yield
US20130139281A1 (en) Transgenic Plants with Increased Stress Tolerance and Yield
EP2304036B1 (en) Methods and means of increasing the water use efficiency of plants
US20180155735A1 (en) Identification of transcription factors that improve nitrogen and sulphur use efficiency in plants
US20140230099A1 (en) Transgenic Plants With Increased Stress Tolerance and Yield
AU2013202535A1 (en) Transgenic plants with increased stress tolerance and yield

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880024564.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08786070

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008786070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/013648

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2692650

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12668665

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008277735

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 786/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2008277735

Country of ref document: AU

Date of ref document: 20080711

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0814689

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100108