WO2009010460A2 - Transgenic plants with increased stress tolerance and yield - Google Patents
Transgenic plants with increased stress tolerance and yield Download PDFInfo
- Publication number
- WO2009010460A2 WO2009010460A2 PCT/EP2008/059070 EP2008059070W WO2009010460A2 WO 2009010460 A2 WO2009010460 A2 WO 2009010460A2 EP 2008059070 W EP2008059070 W EP 2008059070W WO 2009010460 A2 WO2009010460 A2 WO 2009010460A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- seq
- sequence
- plants
- protein
- Prior art date
Links
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 119
- 230000001965 increasing effect Effects 0.000 title claims abstract description 39
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 123
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 123
- 239000002157 polynucleotide Substances 0.000 claims abstract description 123
- 230000012010 growth Effects 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 32
- 230000006353 environmental stress Effects 0.000 claims abstract description 18
- 230000014509 gene expression Effects 0.000 claims description 64
- 229920001184 polypeptide Polymers 0.000 claims description 36
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 36
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 36
- 230000008635 plant growth Effects 0.000 claims description 17
- 239000013604 expression vector Substances 0.000 claims description 10
- 108700019146 Transgenes Proteins 0.000 abstract description 22
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 325
- 239000002299 complementary DNA Substances 0.000 description 101
- 108090000623 proteins and genes Proteins 0.000 description 62
- 150000001413 amino acids Chemical group 0.000 description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 58
- 125000003275 alpha amino acid group Chemical group 0.000 description 57
- 240000008042 Zea mays Species 0.000 description 49
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 48
- 102000004169 proteins and genes Human genes 0.000 description 45
- 235000018102 proteins Nutrition 0.000 description 44
- 210000004027 cell Anatomy 0.000 description 41
- 150000007523 nucleic acids Chemical group 0.000 description 41
- 102000039446 nucleic acids Human genes 0.000 description 37
- 108020004707 nucleic acids Proteins 0.000 description 37
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 28
- 235000005822 corn Nutrition 0.000 description 28
- 235000006008 Brassica napus var napus Nutrition 0.000 description 25
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 25
- 240000000385 Brassica napus var. napus Species 0.000 description 24
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 23
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 23
- 230000035882 stress Effects 0.000 description 22
- 239000013598 vector Substances 0.000 description 21
- 240000007594 Oryza sativa Species 0.000 description 20
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 20
- 235000009973 maize Nutrition 0.000 description 20
- 235000007164 Oryza sativa Nutrition 0.000 description 18
- 241000209140 Triticum Species 0.000 description 17
- 235000009566 rice Nutrition 0.000 description 17
- 244000068988 Glycine max Species 0.000 description 16
- 235000021307 Triticum Nutrition 0.000 description 16
- 235000010469 Glycine max Nutrition 0.000 description 15
- 102000006831 Protein phosphatase 2C Human genes 0.000 description 14
- 108010047313 Protein phosphatase 2C Proteins 0.000 description 14
- 235000013339 cereals Nutrition 0.000 description 14
- 108091005804 Peptidases Proteins 0.000 description 13
- 102000006478 Protein Phosphatase 2 Human genes 0.000 description 13
- 108010058956 Protein Phosphatase 2 Proteins 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 230000001939 inductive effect Effects 0.000 description 13
- 235000004431 Linum usitatissimum Nutrition 0.000 description 12
- 240000006240 Linum usitatissimum Species 0.000 description 12
- 235000004426 flaxseed Nutrition 0.000 description 12
- 102000016647 Mitochondrial carrier proteins Human genes 0.000 description 11
- 108050006262 Mitochondrial carrier proteins Proteins 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 239000004365 Protease Substances 0.000 description 11
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 11
- 239000002773 nucleotide Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 230000009466 transformation Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 102000001253 Protein Kinase Human genes 0.000 description 10
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 10
- 230000036579 abiotic stress Effects 0.000 description 10
- 229930002875 chlorophyll Natural products 0.000 description 10
- 235000019804 chlorophyll Nutrition 0.000 description 10
- 108060006633 protein kinase Proteins 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 9
- 244000020551 Helianthus annuus Species 0.000 description 9
- 235000003222 Helianthus annuus Nutrition 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 230000024346 drought recovery Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000029553 photosynthesis Effects 0.000 description 9
- 238000010672 photosynthesis Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 241000219194 Arabidopsis Species 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002028 Biomass Substances 0.000 description 8
- 108020004635 Complementary DNA Proteins 0.000 description 8
- 102000002576 MAP Kinase Kinase 1 Human genes 0.000 description 8
- 108010068342 MAP Kinase Kinase 1 Proteins 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 8
- 230000001419 dependent effect Effects 0.000 description 8
- 239000003550 marker Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 239000002689 soil Substances 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 7
- 244000038559 crop plants Species 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000003204 osmotic effect Effects 0.000 description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 108700001094 Plant Genes Proteins 0.000 description 6
- 229920002494 Zein Polymers 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000009395 breeding Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229940093612 zein Drugs 0.000 description 6
- 239000005019 zein Substances 0.000 description 6
- 240000002791 Brassica napus Species 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 108010063907 Glutathione Reductase Proteins 0.000 description 5
- 102100036442 Glutathione reductase, mitochondrial Human genes 0.000 description 5
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 5
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 5
- 101710201576 Putative membrane protein Proteins 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 108091023040 Transcription factor Proteins 0.000 description 5
- 102000040945 Transcription factor Human genes 0.000 description 5
- 101710137025 Unknown protein 1 Proteins 0.000 description 5
- 101710137021 Unknown protein 2 Proteins 0.000 description 5
- 101710137023 Unknown protein 3 Proteins 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 210000002257 embryonic structure Anatomy 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000001717 pathogenic effect Effects 0.000 description 5
- 125000001844 prenyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 4
- 101000824526 Arabidopsis thaliana CAAX prenyl protease 2 Proteins 0.000 description 4
- 230000004568 DNA-binding Effects 0.000 description 4
- 235000007340 Hordeum vulgare Nutrition 0.000 description 4
- 240000005979 Hordeum vulgare Species 0.000 description 4
- 102000009658 Peptidylprolyl Isomerase Human genes 0.000 description 4
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000037039 plant physiology Effects 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000003259 recombinant expression Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 4
- 229940088594 vitamin Drugs 0.000 description 4
- 235000013343 vitamin Nutrition 0.000 description 4
- 239000011782 vitamin Substances 0.000 description 4
- 229930003231 vitamin Natural products 0.000 description 4
- 235000011331 Brassica Nutrition 0.000 description 3
- 241000219198 Brassica Species 0.000 description 3
- 108020004705 Codon Proteins 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 241000209510 Liliopsida Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 244000082988 Secale cereale Species 0.000 description 3
- 235000007238 Secale cereale Nutrition 0.000 description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 description 3
- 244000061456 Solanum tuberosum Species 0.000 description 3
- 244000062793 Sorghum vulgare Species 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 241000607479 Yersinia pestis Species 0.000 description 3
- 230000009418 agronomic effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000000306 component Substances 0.000 description 3
- 241001233957 eudicotyledons Species 0.000 description 3
- 239000006052 feed supplement Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000006870 ms-medium Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000035479 physiological effects, processes and functions Effects 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 241000219195 Arabidopsis thaliana Species 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 208000005156 Dehydration Diseases 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 108010068370 Glutens Proteins 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 240000004658 Medicago sativa Species 0.000 description 2
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 239000006002 Pepper Substances 0.000 description 2
- 235000016761 Piper aduncum Nutrition 0.000 description 2
- 240000003889 Piper guineense Species 0.000 description 2
- 235000017804 Piper guineense Nutrition 0.000 description 2
- 235000008184 Piper nigrum Nutrition 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000012707 chemical precursor Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000008645 cold stress Effects 0.000 description 2
- 239000002537 cosmetic Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 235000015872 dietary supplement Nutrition 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004720 fertilization Effects 0.000 description 2
- 239000004459 forage Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 230000036542 oxidative stress Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- -1 temperature Substances 0.000 description 2
- 229940027257 timentin Drugs 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- MKPCNMXYTMQZBE-UHFFFAOYSA-N 7h-purin-6-amine;sulfuric acid;dihydrate Chemical compound O.O.OS(O)(=O)=O.NC1=NC=NC2=C1NC=N2.NC1=NC=NC2=C1NC=N2 MKPCNMXYTMQZBE-UHFFFAOYSA-N 0.000 description 1
- 108010000700 Acetolactate synthase Proteins 0.000 description 1
- 101150021974 Adh1 gene Proteins 0.000 description 1
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 241000208173 Apiaceae Species 0.000 description 1
- 240000007087 Apium graveolens Species 0.000 description 1
- 235000015849 Apium graveolens Dulce Group Nutrition 0.000 description 1
- 235000010591 Appio Nutrition 0.000 description 1
- 101100519039 Arabidopsis thaliana PBL12 gene Proteins 0.000 description 1
- 101100194010 Arabidopsis thaliana RD29A gene Proteins 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000208838 Asteraceae Species 0.000 description 1
- 235000007319 Avena orientalis Nutrition 0.000 description 1
- 244000075850 Avena orientalis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- 101000972350 Bombyx mori Lebocin-4 Proteins 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 235000011293 Brassica napus Nutrition 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 101710151786 CAAX prenyl protease 2 Proteins 0.000 description 1
- 102100022359 CAAX prenyl protease 2 Human genes 0.000 description 1
- 101100223920 Caenorhabditis elegans rha-1 gene Proteins 0.000 description 1
- 235000002567 Capsicum annuum Nutrition 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000009467 Carica papaya Nutrition 0.000 description 1
- 240000006432 Carica papaya Species 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 108010061190 Cinnamyl-alcohol dehydrogenase Proteins 0.000 description 1
- 235000017788 Cydonia oblonga Nutrition 0.000 description 1
- 102100034032 Cytohesin-3 Human genes 0.000 description 1
- 101710160297 Cytohesin-3 Proteins 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 241001057636 Dracaena deremensis Species 0.000 description 1
- 241000220485 Fabaceae Species 0.000 description 1
- 241000701484 Figwort mosaic virus Species 0.000 description 1
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 1
- 108010061711 Gliadin Proteins 0.000 description 1
- 101710186901 Globulin 1 Proteins 0.000 description 1
- 102100021467 Histone acetyltransferase type B catalytic subunit Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 1
- 101000898976 Homo sapiens Histone acetyltransferase type B catalytic subunit Proteins 0.000 description 1
- 101000740215 Homo sapiens Sodium/myo-inositol cotransporter 2 Proteins 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 101710094902 Legumin Proteins 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- 241000219071 Malvaceae Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 101100409013 Mesembryanthemum crystallinum PPD gene Proteins 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 101150101414 PRP1 gene Proteins 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 241000195887 Physcomitrella patens Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 108010059820 Polygalacturonase Proteins 0.000 description 1
- 241000219000 Populus Species 0.000 description 1
- 108010078762 Protein Precursors Proteins 0.000 description 1
- 102000014961 Protein Precursors Human genes 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000006029 Prunus persica var nucipersica Nutrition 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 244000017714 Prunus persica var. nucipersica Species 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 101100437728 Rattus norvegicus Bloc1s2 gene Proteins 0.000 description 1
- 101100368710 Rattus norvegicus Tacstd2 gene Proteins 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 241000589180 Rhizobium Species 0.000 description 1
- 101100342406 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRS1 gene Proteins 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241001116459 Sequoia Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 102100037202 Sodium/myo-inositol cotransporter 2 Human genes 0.000 description 1
- 241000208292 Solanaceae Species 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 235000012308 Tagetes Nutrition 0.000 description 1
- 241000736851 Tagetes Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical class O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical class O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- 101001036768 Zea mays Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic/amyloplastic Proteins 0.000 description 1
- 101000662549 Zea mays Sucrose synthase 1 Proteins 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000001511 capsicum annuum Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 108010040093 cellulose synthase Proteins 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 229930002868 chlorophyll a Natural products 0.000 description 1
- 229930002869 chlorophyll b Natural products 0.000 description 1
- NSMUHPMZFPKNMZ-VBYMZDBQSA-M chlorophyll b Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C=O)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 NSMUHPMZFPKNMZ-VBYMZDBQSA-M 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- NEKNNCABDXGBEN-UHFFFAOYSA-L disodium;4-(4-chloro-2-methylphenoxy)butanoate;4-(2,4-dichlorophenoxy)butanoate Chemical compound [Na+].[Na+].CC1=CC(Cl)=CC=C1OCCCC([O-])=O.[O-]C(=O)CCCOC1=CC=C(Cl)C=C1Cl NEKNNCABDXGBEN-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012877 elongation medium Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 108010050792 glutenin Proteins 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 238000005213 imbibition Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 108010083942 mannopine synthase Proteins 0.000 description 1
- 230000000442 meristematic effect Effects 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000021232 nutrient availability Nutrition 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 108090000021 oryzin Proteins 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 238000003976 plant breeding Methods 0.000 description 1
- 210000000745 plant chromosome Anatomy 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 101150063097 ppdK gene Proteins 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108060006613 prolamin Proteins 0.000 description 1
- 230000009979 protective mechanism Effects 0.000 description 1
- 229940070376 protein Drugs 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000024917 response to desiccation Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000002786 root growth Effects 0.000 description 1
- 229940081969 saccharomyces cerevisiae Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000008117 seed development Effects 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000010153 self-pollination Effects 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 108010048090 soybean lectin Proteins 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012250 transgenic expression Methods 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/63—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- This invention relates generally to transgenic plants which overexpress nucleic acid sequences encoding polypeptides capable of conferring increased stress tolerance and consequently, increased plant growth and crop yield, under normal or abiotic stress conditions. Additionally, the invention relates to novel isolated nucleic acid sequences encoding polypeptides that confer upon a plant increased tolerance under abiotic stress conditions, and/or increased plant growth and/or increased yield under normal or abiotic stress conditions.
- BACKGROUND OF THE INVENTION [0002] Abiotic environmental stresses, such as drought, salinity, heat, and cold, are major limiting factors of plant growth and crop yield. Crop yield is defined herein as the number of bushels of relevant agricultural product (such as grain, forage, or seed) harvested per acre.
- Water availability is an important aspect of the abiotic stresses and their effects on plant growth. Continuous exposure to drought conditions causes major alterations in the plant metabolism which ultimately lead to cell death and consequently to yield losses. Because high salt content in some soils results in less water being available for cell intake, high salt concentration has an effect on plants similar to the effect of drought on plants. Additionally, under freezing temperatures, plant cells lose water as a result of ice formation within the plant. Accordingly, crop damage from drought, heat, salinity, and cold stress, is predominantly due to dehydration.
- WUE water use efficiency
- a plant's response to desiccation, osmotic shock, and temperature extremes are also employed to determine the plant's tolerance or resistance to abiotic stresses.
- the ability to standardize soil properties, temperature, water and nutrient availability and light intensity is an intrinsic advantage of greenhouse or plant growth chamber environments compared to the field.
- WUE has been defined and measured in multiple ways. One approach is to calculate the ratio of whole plant dry weight, to the weight of water consumed by the plant throughout its life. Another variation is to use a shorter time interval when biomass accumulation and water use are measured. Yet another approach is to use measurements from restricted parts of the plant, for example, measuring only aerial growth and water use. WUE also has been defined as the ratio of CO2 uptake to water vapor loss from a leaf or portion of a leaf, often measured over a very short time period (e.g. seconds/minutes). The ratio of 13 C/ 12 C fixed in plant tissue, and measured with an isotope ratio mass-spectrometer, also has been used to estimate WUE in plants using C3 photosynthesis.
- Concomitant with measurements of parameters that correlate with abiotic stress tolerance are measurements of parameters that indicate the potential impact of a transgene on crop yield.
- the plant biomass correlates with the total yield.
- other parameters have been used to estimate yield, such as plant size, as measured by total plant dry weight, above- ground dry weight, above-ground fresh weight, leaf area, stem volume, plant height, rosette diameter, leaf length, root length, root mass, tiller number, and leaf number.
- Plant size at an early developmental stage will typically correlate with plant size later in development. A larger plant with a greater leaf area can typically absorb more light and carbon dioxide than a smaller plant and therefore will likely gain a greater weight during the same period.
- Newly generated stress tolerant plants and/or plants with increased water use efficiency will have many advantages, such as an increased range in which the crop plants can be cultivated, by for example, decreasing the water requirements of a plant species.
- Other desirable advantages include increased resistance to lodging, the bending of shoots or stems in response to wind, rain, pests, or disease.
- the present inventors have discovered that transforming a plant with certain polynucleotides results in enhancement of the plant's growth and response to environmental stress, and accordingly the yield of the agricultural products of the plant is in- creased, when the polynucleotides are present in the plant as transgenes.
- the polynucleotides capable of mediating such enhancements have been isolated from Arabidopsis thaliana, Capsicum annuum, Escherichia coli, Physcomitrella patens, Saccharomyces cere- visiae, Triticum aestivum, Zea mays, Glycine max, Linum usitatissimum, Triticum aestivum, Oryza sativa, Helianthus annuus, and Brassica napus and the sequences thereof are set forth in the Sequence Listing as indicated in Table 1. Table 1
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a CAAX amino terminal protease family protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a prenyl- dependent CAAX protease.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a SAR8.2 pro- tein precursor.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a putative membrane protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2C protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial carrier protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein kinase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a peptidyl pro- IyI isomerase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 1.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 2.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a ornithine decarboxylase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a glutathione reductase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a unknown protein 3.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2A protein.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MEK1 protein kinase.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a AP2 domain containing transcription factor.
- the invention concerns a seed produced by the transgenic plant of the invention, wherein the seed is true breeding for a transgene comprising the polynucleotide described above. Plants derived from the seed of the invention demonstrate increased tolerance to an environmental stress, and/or increased plant growth, and/or increased yield, under normal or stress conditions as compared to a wild type variety of the plant.
- the invention concerns products produced by or from the transgenic plants of the invention, their plant parts, or their seeds, such as a foodstuff, feedstuff, food supplement, feed supplement, cosmetic or pharmaceutical.
- the invention further provides certain isolated polynucleotides identified in Table 1 , and certain isolated polypeptides identified in Table 1.
- the invention is also embodied in recombinant vector comprising an isolated polynucleotide of the invention.
- the invention concerns a method of producing the aforesaid transgenic plant, wherein the method comprises transforming a plant cell with an expression vector comprising an isolated polynucleotide of the invention, and generating from the plant cell a transgenic plant that expresses the polypeptide encoded by the polynucleotide. Expression of the polypeptide in the plant results in increased tolerance to an environmental stress, and/or growth, and/or yield under normal and/or stress conditions as compared to a wild type variety of the plant.
- the invention provides a method of increasing a plant's tolerance to an environmental stress, and/or growth, and/or yield.
- the method comprises the steps of transforming a plant cell with an expression cassette comprising an iso- lated polynucleotide of the invention, and generating a transgenic plant from the plant cell, wherein the transgenic plant comprises the polynucleotide.
- Figure 1 shows an alignment of the disclosed amino acid sequences At- FACE-2 (SEQ ID NO:6), ZM57353913 (SEQ ID NO:8), and ZM59252659 (SEQ ID NO:10).
- the alignment was generated using Align X of Vector NTI .
- Figure 2 shows an alignment of the disclosed amino acid sequences EST564
- Figure 3 shows an alignment of the disclosed amino acid sequences EST390
- Figure 4 shows an alignment of the disclosed amino acid sequences EST257
- ZM59202533 (SEQ ID NO:92), BN41901422 (SEQ ID NO:94), BN47868329 (SEQ ID NO:96), and ZM68416988 (SEQ ID NO:100).
- the alignment was generated using Align X of Vector NTI .
- the invention provides a transgenic plant that overex- presses an isolated polynucleotide identified in Table 1 , or a homolog thereof.
- the transgenic plant of the invention demonstrates an increased tolerance to an environmental stress as compared to a wild type variety of the plant.
- the overexpression of such isolated nucleic acids in the plant may optionally result in an increase in plant growth or in yield of associated agricultural products, under normal or stress conditions, as compared to a wild type variety of the plant.
- a "transgenic plant” is a plant that has been altered using recombinant DNA technology to contain an isolated nucleic acid which would otherwise not be present in the plant.
- the term "plant” includes a whole plant, plant cells, and plant parts. Plant parts include, but are not limited to, stems, roots, ovules, stamens, leaves, embryos, meristematic regions, callus tissue, gametophytes, sporophytes, pollen, microspores, and the like.
- the transgenic plant of the invention may be male sterile or male fertile, and may further include transgenes other than those that comprise the isolated polynucleotides described herein.
- the term "variety" refers to a group of plants within a species that share constant characteristics that separate them from the typical form and from other possible varieties within that species. While possessing at least one distinctive trait, a variety is also characterized by some variation between individuals within the variety, based primarily on the Mendelian segregation of traits among the progeny of succeeding generations. A variety is considered "true breeding" for a particular trait if it is genetically homozy- gous for that trait to the extent that, when the true-breeding variety is self-pollinated, a significant amount of independent segregation of the trait among the progeny is not observed.
- the trait arises from the transgenic expression of one or more isolated polynucleotides introduced into a plant variety.
- wild type variety refers to a group of plants that are analyzed for comparative purposes as a control plant, wherein the wild type variety plant is identical to the transgenic plant (plant transformed with an isolated polynucleotide in accordance with the invention) with the exception that the wild type variety plant has not been transformed with an isolated polynucleotide of the invention.
- nucleic acid and “polynucleotide” are inter- changeable and refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof.
- RNA/DNA hybrids also encompasses RNA/DNA hybrids.
- An "isolated" nucleic acid molecule is one that is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid (i.e., sequences encoding other polypeptides). For example, a cloned nucleic acid is considered isolated. A nucleic acid is also considered isolated if it has been altered by human intervention, or placed in a locus or location that is not its natural site, or if it is introduced into a cell by transformation.
- an isolated nucleic acid molecule such as a cDNA molecule
- the term “environmental stress” refers to a sub-optimal condition associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, or oxidative stresses, or any combination thereof.
- water use efficiency and “WUE” refer to the amount of organic matter produced by a plant divided by the amount of water used by the plant in producing it, i.e., the dry weight of a plant in relation to the plant's water use.
- dry weight refers to everything in the plant other than water, and includes, for example, carbohydrates, proteins, oils, and mineral nutrients.
- the transgenic plant of the invention may be a dicotyledonous plant or a monocotyledonous plant.
- transgenic plants of the invention may be derived from any of the following diclotyledonous plant families: Leguminosae, including plants such as pea, alfalfa and soybean; Umbelliferae, including plants such as carrot and celery; Solanaceae, including the plants such as tomato, potato, aubergine, tobacco, and pepper; Cruciferae, particularly the genus Brassica, which includes plant such as oilseed rape, beet, cabbage, cauliflower and broccoli); and A.
- Transgenic plants of the invention may be derived from monocotyledonous plants, such as, for example, wheat, barley, sorghum, millet, rye, triticale, maize, rice, oats and sugarcane.
- Transgenic plants of the in- vention are also embodied as trees such as apple, pear, quince, plum, cherry, peach, nectarine, apricot, papaya, mango, and other woody species including coniferous and deciduous trees such as poplar, pine, sequoia, cedar, oak, and the like.
- Arabidopsis thaliana thaliana
- Nicotiana tabacum oilseed rape
- soybean corn (maize)
- wheat, linseed, potato and tagetes are particularly preferred.
- Table 1 one embodiment of the invention is a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a CAAX amino terminal protease family protein.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a CAAX amino terminal protease family protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a CAAX amino terminal protease family protein having a sequence comprising amino acids 1 to 301 of SEQ ID NO:2; and a protein having a sequence comprising amino acids 1 to 293 of SEQ ID NO:4.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a prenyl- dependent CAAX protease.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a prenyl-dependent CAAX protease.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a prenyl-dependent CAAX protease hav- ing a sequence comprising amino acids 1 to 311 of SEQ ID NO:6; a protein having a sequence comprising amino acids 1 to 313 of SEQ ID NO:8; a protein having a sequence comprising amino acids 1 to 269 of SEQ ID NO:10.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a SAR8.2 protein precursor.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a SAR8.2 protein precursor.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a SAR8.2 protein precursor having a sequence comprising amino acids 1 to 86 of SEQ ID NO:12.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a putative membrane protein.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a putative membrane protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a putative membrane protein having a sequence compris- ing amino acids 1 to 696 of SEQ ID NO:14.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2C protein.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a protein phosphatase 2C protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a protein phosphatase 2C protein having a sequence comprising amino acids 1 to 284 of SEQ ID NO:16; a protein having a sequence comprising amino acids 1 to 384 of SEQ ID NO:18; a protein having a sequence comprising amino acids 1 to 346 of SEQ ID NO:20; a protein having a sequence comprising amino acids 1 to 375 of SEQ ID NO:22; a protein having a sequence comprising amino ac- ids 1 to 390 of SEQ ID NO:24; a protein having a sequence comprising amino acids 1 to 398 of SEQ ID NO:26; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:28; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:30; a protein having a sequence comprising amino acids 1 to 399 of SEQ ID NO:32; a protein having a sequence comprising amino acids 1
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a mitochondrial carrier protein.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a mitochondrial carrier protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a mitochondrial carrier protein having a sequence com- prising amino acids 1 to 303 of SEQ ID NO:36; a protein having a sequence comprising amino acids 1 to 315 of SEQ ID NO:38; a protein having a sequence comprising amino acids 1 to 289 of SEQ ID NO:40; a protein having a sequence comprising amino acids 1 to 303 of SEQ ID NO:42; a protein having a sequence comprising amino acids 1 to 299 of SEQ ID NO:44; a protein having a sequence comprising amino acids 1 to 299 of SEQ ID NO:46; a protein having a sequence comprising amino acids 1 to 31 1 of SEQ ID NO:48.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein kinase.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a protein kinase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a protein kinase having a sequence comprising amino acids 1 to 356 of SEQ ID NO:50; a protein having a sequence comprising amino acids 1 to 364 of SEQ ID NO:52; a protein having a sequence comprising amino acids 1 to 361 of SEQ ID NO:54; a protein having a sequence comprising amino acids 1 to 370 of SEQ ID NO:56; a protein having a sequence comprising amino acids 1 to 377 of SEQ ID NO:58; a protein having a sequence comprising amino acids 1 to 382 of SEQ ID NO:60.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a peptidyl prolyl isomerase.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a peptidyl prolyl isomerase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a peptidyl prolyl isomerase having a sequence comprising amino acids 1 to 523 of SEQ ID NO:62.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 1.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding an unknown protein 1.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a unknown protein 1 having a sequence comprising amino acids 1 to 1 1 1 of SEQ ID NO:64.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 2.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding an unknown protein 2.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a unknown protein 2 having a sequence comprising amino acids 1 to 104 of SEQ ID NO:66.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a ornithine decarboxylase.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a ornithine decarboxylase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a ornithine decarboxylase having a sequence comprising amino acids 1 to 466 of SEQ ID NO:68.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a glutathione reductase.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a glutathione reductase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a glutathione reductase having a sequence comprising amino acids 1 to 483 of SEQ ID NO:70.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an unknown protein 3.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a unknown protein 3.
- the transgenic plant of this embodiment comprises a polynu- cleotide encoding a unknown protein 3 having a sequence comprising amino acids 1 to 129 of SEQ ID NO:72.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a protein phosphatase 2A protein.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a protein phosphatase 2A protein.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a protein phosphatase 2A protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:74; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:76; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:78; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:80; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:82; a protein having a sequence comprising amino acids 1 to 307 of SEQ ID NO:84; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:86; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:88; a protein having a sequence comprising amino acids 1 to 306 of SEQ ID NO:90.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding a MEK1 protein kinase.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a MEK1 protein kinase.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a MEK1 protein kinase having a sequence comprising amino acids 1 to 355 of SEQ ID NO:92; a protein having a sequence comprising amino acids 1 to 355 of SEQ ID NO:94; a protein having a sequence comprising amino acids 1 to 338 of SEQ ID NO:96; a protein having a sequence comprising amino acids 1 to 350 of SEQ ID NO:100.
- the invention provides a transgenic plant transformed with an expression cassette comprising an isolated polynucleotide encoding an AP2 domain containing transcription factor.
- the transgenic plant of this embodiment may comprise any polynucleotide encoding a AP2 domain containing transcription factor.
- the transgenic plant of this embodiment comprises a polynucleotide encoding a AP2 domain containing transcription factor having a sequence comprising amino acids 1 to 197 of SEQ ID NO:98.
- the invention further provides a seed produced by a transgenic plant expressing polynucleotide listed in Table 1 , wherein the seed contains the polynucleotide, and wherein the plant is true breeding for increased growth and/or yield under normal or stress conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant.
- the invention also provides a product produced by or from the transgenic plants expressing the polynucleotide, their plant parts, or their seeds.
- the product can be obtained using various methods well known in the art.
- the word "product” includes, but not limited to, a foodstuff, feedstuff, a food supplement, feed supplement, cosmetic or pharmaceutical.
- Foodstuffs are regarded as compositions used for nutrition or for supplementing nutrition.
- Animal feedstuffs and animal feed supplements, in particular, are regarded as foodstuffs.
- the invention further provides an agricultural product produced by any of the transgenic plants, plant parts, and plant seeds.
- Agricultural products include, but are not limited to, plant extracts, proteins, amino acids, carbohydrates, fats, oils, polymers, vitamins, and the like.
- an isolated polynucleotide of the invention comprises a polynucleotide having a sequence selected from the group consisting of the polynucleotide sequences listed in Table 1. These polynucleotides may comprise se- quences of the coding region, as well as 5' untranslated sequences and 3' untranslated sequences.
- a polynucleotide of the invention can be isolated using standard molecular biology techniques and the sequence information provided herein, for example, using an automated DNA synthesizer.
- "Homologs” are defined herein as two nucleic acids or polypeptides that have similar, or substantially identical, nucleotide or amino acid sequences, respectively. Homologs include allelic variants, analogs, and orthologs, as defined below. As used herein, the term “analogs" refers to two nucleic acids that have the same or similar function, but that have evolved separately in unrelated organisms.
- nucleic acid molecules refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation.
- homolog further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in Table 1 due to degeneracy of the genetic code and thus encode the same polypeptide.
- a "naturally occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural polypeptide).
- the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one polypeptide for optimal alignment with the other polypeptide or nucleic acid).
- the amino acid residues at corresponding amino acid positions are then compared. When a position in one sequence is occupied by the same amino acid residue as the corresponding position in the other sequence then the molecules are identical at that position. The same type of comparison can be made between two nucleic acid sequences.
- the isolated amino acid homologs, analogs, and orthologs of the polypeptides of the present invention are at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99%, or more identical to an entire amino acid sequence identified in Table 1.
- an isolated nucleic acid homolog of the invention comprises a nucleotide sequence which is at least about 40-60%, preferably at least about 60-70%, more preferably at least about 70-75%, 75-80%, 80-85%, 85-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99%, or more identical to a nucleotide sequence shown in Table 1.
- the percent sequence identity between two nucleic acid or polypeptide sequences is determined using the Vector NTI 9.0 (PC) software package (Invitrogen, 1600 Faraday Ave., Carlsbad, CA92008).
- a gap opening penalty of 15 and a gap extension penalty of 6.66 are used for determining the percent identity of two nucleic acids.
- a gap opening penalty of 10 and a gap extension penalty of 0.1 are used for determining the percent identity of two polypeptides. All other parameters are set at the default settings. For purposes of a multiple alignment (Clustal W algorithm), the gap opening penalty is 10, and the gap extension penalty is 0.05 with blosum62 matrix. It is to be understood that for the purposes of determining sequence identity when comparing a DNA sequence to an RNA sequence, a thymidine nucleotide is equivalent to a uracil nucleotide.
- Nucleic acid molecules corresponding to homologs, analogs, and orthologs of the polypeptides listed in Table 1 can be isolated based on their identity to said polypeptides, using the polynucleotides encoding the respective polypeptides or primers based thereon, as hybridization probes according to standard hybridization techniques under stringent hybridization conditions.
- stringent conditions refers to hybridization overnight at 60 0 C in 10X Denhart's solution, 6X SSC, 0.5% SDS, and 100 ⁇ g/ml denatured salmon sperm DNA.
- Blots are washed sequentially at 62°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1X SSC/0.1 % SDS.
- stringent conditions refers to hybridization in a 6X SSC solution at 65°C.
- highly stringent conditions refers to hybridization overnight at 65°C in 10X Denhart's solution, 6X SSC, 0.5% SDS and 100 ⁇ g/ml denatured salmon sperm DNA.
- Blots are washed sequentially at 65°C for 30 minutes each time in 3X SSC/0.1 % SDS, followed by 1X SSC/0.1 % SDS, and finally 0.1 X SSC/0.1 % SDS.
- Methods for performing nucleic acid hybridizations are well known in the art.
- an isolated nucleic acid molecule of the invention that hybridizes under stringent or highly stringent conditions to a nucleotide sequence listed in Table 1 corresponds to a naturally occurring nucleic acid molecule.
- Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene is then ligated into an appropriate expression vector.
- Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential sequences.
- Methods for synthesizing degenerate oligonucleotides are known in the art.
- an optimized nucleic acid encodes a polypeptide that has a function similar to those of the polypeptides listed in Table 1 and/or modulates a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress, and more pref- erably increases a plant's growth and/or yield under normal and/or water-limited conditions and/or tolerance to an environmental stress upon its overexpression in the plant.
- “optimized” refers to a nucleic acid that is genetically engineered to increase its expression in a given plant or animal.
- the DNA sequence of the gene can be modified to: 1) comprise codons preferred by highly expressed plant genes; 2) comprise an A+T content in nucleotide base composition to that substantially found in plants; 3) form a plant initiation sequence; 4) to eliminate sequences that cause destabilization, inappropriate polyadenylation, degradation and termination of RNA, or that form secondary structure hairpins or RNA splice sites; or 5) elimination of antisense open reading frames.
- Increased expression of nucleic acids in plants can be achieved by utilizing the distribution frequency of codon usage in plants in general or in a particular plant. Methods for optimizing nucleic acid expression in plants can be found in EPA 0359472; EPA 0385962; PCT Application No.
- An isolated polynucleotide of the invention can be optimized such that its distribution frequency of codon usage deviates, preferably, no more than 25% from that of highly expressed plant genes and, more preferably, no more than about 10%.
- the XCG (where X is A, T, C, or G) nucleotide is the least preferred codon in dicots, whereas the XTA codon is avoided in both monocots and dicots.
- Optimized nu- cleic acids of this invention also preferably have CG and TA doublet avoidance indices closely approximating those of the chosen host plant. More preferably, these indices deviate from that of the host by no more than about 10-15%.
- the invention further provides an isolated recombinant expression vector comprising a polynucleotide as described above, wherein expression of the vector in a host cell results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to environmental stress as compared to a wild type variety of the host cell.
- the recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed.
- operatively linked is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in a bacterial or plant host cell when the vector is introduced into the host cell).
- regulatory sequence is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are well known in the art. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions.
- the expression vectors of the invention can be introduced into host cells to thereby produce polypeptides encoded by nucleic acids as described herein.
- Plant gene expression should be operatively linked to an appropriate promoter conferring gene expression in a timely, cell specific, or tissue specific manner.
- Promoters useful in the expression cassettes of the invention include any promoter that is ca- pable of initiating transcription in a plant cell. Such promoters include, but are not limited to, those that can be obtained from plants, plant viruses, and bacteria that contain genes that are expressed in plants, such as Agrobacterium and Rhizobium.
- the promoter may be constitutive, inducible, developmental stage-preferred, cell type-preferred, tissue-preferred, or organ-preferred. Constitutive promoters are active under most conditions. Examples of constitutive promoters include the CaMV 19S and 35S promoters, the sX CaMV 35S promoter, the Sep1 promoter, the rice actin promoter, the Arabidopsis actin promoter, the ubiquitan promoter, pEmu, the figwort mosaic virus 35S promoter, the Smas promoter, the super promoter (U.S. Patent No. 5, 955,646), the GRP1 - 8 promoter, the cinnamyl alcohol dehydrogenase promoter (U.S. Patent No.
- promoters from the T-DNA of Agrobacterium such as mannopine synthase, nopaline synthase, and octopine synthase, the small subunit of ribulose biphosphate carboxylase (ssu- RUBISCO) promoter, and the like.
- Inducible promoters are preferentially active under certain environmental conditions, such as the presence or absence of a nutrient or metabolite, heat or cold, light, pathogen attack, anaerobic conditions, and the like.
- the hsp80 promoter from Brassica is induced by heat shock; the PPDK promoter is induced by light; the PR-1 promoters from tobacco, Arabidopsis, and maize are inducible by infection with a pathogen; and the Adh1 promoter is induced by hypoxia and cold stress.
- Plant gene expression can also be facilitated via an inducible promoter (For a review, see Gatz, 1997, Annu. Rev. Plant Physiol. Plant MoI. Biol. 48:89-108).
- Chemically inducible promoters are especially suitable if gene expression is wanted to occur in a time specific manner. Examples of such promoters are a salicylic acid inducible promoter (PCT Application No.
- the inducible promoter is a stress-inducible promoter.
- stress-inducible promoters are preferentially active under one or more of the following stresses: sub-optimal conditions associated with salinity, drought, nitrogen, temperature, metal, chemical, pathogenic, and oxidative stresses.
- Stress inducible promoters include, but are not limited to, Cor78 (Chak et al., 2000, Planta 210:875-883; Hovath et al., 1993, Plant Physiol.
- tissue and organ preferred promoters include those that are preferentially expressed in certain tissues or organs, such as leaves, roots, seeds, or xylem.
- tissue-preferred and organ-preferred promoters include, but are not limited to fruit-preferred, ovule-preferred, male tissue-preferred, seed-preferred, integument- preferred, tuber-preferred, stalk-preferred, pericarp-preferred, leaf-preferred, stigma- preferred, pollen-preferred, anther-preferred, petal-preferred, sepal-preferred, pedicel- preferred, silique-preferred, stem-preferred, root-preferred promoters, and the like.
- Seed- preferred promoters are preferentially expressed during seed development and/or germination.
- seed-preferred promoters can be embryo-preferred, endosperm- preferred, and seed coat-preferred (See Thompson et al., 1989, BioEssays 10:108).
- seed-preferred promoters include, but are not limited to, cellulose synthase (celA), Cim1 , gamma-zein, globulin-1 , maize 19 kD zein (cZ19B1 ), and the like.
- Other suitable tissue-preferred or organ-preferred promoters include the napin-gene promoter from rapeseed (U.S. Patent No.
- WO 91/13980 or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2(2): 233-9), as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice, etc.
- Suitable promoters to note are the Ipt2 or Ipt1 -gene promoter from barley (PCT Application No. WO 95/15389 and PCT Application No. WO 95/23230) or those described in PCT Application No.
- WO 99/16890 pro- moters from the barley hordein-gene, rice glutelin gene, rice oryzin gene, rice prolamin gene, wheat gliadin gene, wheat glutelin gene, oat glutelin gene, Sorghum kasirin-gene, and rye secalin gene).
- promoters useful in the expression cassettes of the invention include, but are not limited to, the major chlorophyll a/b binding protein promoter, histone promoters, the Ap3 promoter, the ⁇ -conglycin promoter, the napin promoter, the soybean lectin promoter, the maize 15kD zein promoter, the 22kD zein promoter, the 27kD zein promoter, the g-zein promoter, the waxy, shrunken 1 , shrunken 2, and bronze promoters, the Zm13 promoter (U.S. Patent No. 5,086,169), the maize polygalacturonase promoters (PG) (U.S. Patent Nos. 5,412,085 and 5,545,546), and the SGB6 promoter (U.S. Patent No. 5,470,359), as well as synthetic or other natural promoters.
- the major chlorophyll a/b binding protein promoter include, but are not limited to, the major chlorophyll
- Additional flexibility in controlling heterologous gene expression in plants may be obtained by using DNA binding domains and response elements from heterologous sources (i.e., DNA binding domains from non-plant sources).
- heterologous DNA binding domain is the LexA DNA binding domain (Brent and Ptashne, 1985, Cell 43:729-736).
- the polynucleotides listed in Table 1 are expressed in plant cells from higher plants (e.g., the spermatophytes, such as crop plants).
- a polynucleotide may be "introduced" into a plant cell by any means, including transfection, transformation or transduction, electroporation, particle bombardment, agroinfection, and the like. Suitable methods for transforming or transfecting plant cells are disclosed, for example, using particle bombardment as set forth in U.S. Pat. Nos. 4,945,050; 5,036,006; 5,100,792; 5,302,523; 5,464,765; 5,120,657; 6,084,154; and the like.
- the transgenic corn seed of the invention may be made using Agrobacte- rium transformation, as described in U.S. Pat. Nos. 5,591 ,616; 5,731 ,179; 5,981 ,840; 5,990,387; 6,162,965; 6,420,630, U.S. patent application publication number 2002/0104132, and the like. Transformation of soybean can be performed using for exam- pie a technique described in European Patent No. EP 0424047, U.S. Patent No. 5,322,783, European Patent No.EP 0397 687, U.S. Patent No. 5,376,543, or U.S. Patent No. 5,169,770. A specific example of wheat transformation can be found in PCT Application No. WO 93/07256.
- Cotton may be transformed using methods disclosed in U.S. Pat. Nos. 5,004,863; 5,159,135; 5,846,797, and the like. Rice may be transformed using methods disclosed in U.S. Pat. Nos. 4,666,844; 5,350,688; 6,153,813; 6,333,449; 6,288,312;
- the introduced polynucleotide may be maintained in the plant cell stably if it is incorporated into a non-chromosomal autonomous replicon or integrated into the plant chromosomes.
- the introduced polynucleotide may be present on an extra-chromosomal non-replicating vector and may be transiently expressed or transiently active.
- Another aspect of the invention pertains to an isolated polypeptide having a sequence selected from the group consisting of the polypeptide sequences listed in Table 1.
- An "isolated” or “purified” polypeptide is free of some of the cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
- the language “substantially free of cellular material” includes preparations of a polypeptide in which the polypeptide is separated from some of the cellular components of the cells in which it is naturally or recombinantly produced.
- the language "substantially free of cellular material” includes preparations of a polypeptide of the invention having less than about 30% (by dry weight) of contaminating polypeptides, more preferably less than about 20% of contaminating polypeptides, still more preferably less than about 10% of contaminating polypeptides, and most preferably less than about 5% contaminating polypeptides.
- the determination of activities and kinetic parameters of enzymes is well es- tablished in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art.
- the invention is also embodied in a method of producing a transgenic plant comprising at least one polynucleotide listed in Table 1 , wherein expression of the polynucleotide in the plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to an environmental stress as compared to a wild type variety of the plant comprising the steps of: (a) introducing into a plant cell an expression vector comprising at least one polynucleotide listed in Table 1 , and (b) generating from the plant cell a transgenic plant that expresses the polynucleotide, wherein expression of the polynucleotide in the transgenic plant results in the plant's increased growth and/or yield under normal or water-limited conditions and/or increased tolerance to envi
- the plant cell may be, but is not limited to, a protoplast, gamete producing cell, and a cell that regenerates into a whole plant.
- transgenic refers to any plant, plant cell, callus, plant tissue, or plant part, that contains at least one recombinant polynucleotide listed in Table 1.
- the recombinant polynucleotide is stably integrated into a chromo- some or stable extra-chromosomal element, so that it is passed on to successive generations.
- the present invention also provides a method of increasing a plant's growth and/or yield under normal or water-limited conditions and/or increasing a plant's tolerance to an environmental stress comprising the steps of increasing the expression of at least one polynucleotide listed in Table 1 in the plant. Expression of a protein can be increased by any method known to those of skill in the art.
- the effect of the genetic modification on plant growth and/or yield and/or stress tolerance can be assessed by growing the modified plant under normal and. or less than suitable conditions and then analyzing the growth characteristics and/or metabolism of the plant.
- Such analysis techniques are well known to one skilled in the art, and include dry weight, wet weight, polypeptide synthesis, carbohydrate synthesis, lipid synthesis, evapotranspiration rates, general plant and/or crop yield, flowering, reproduction, seed setting, root growth, respiration rates, photosynthesis rates, metabolite composition, etc., using methods known to those of skill in biotechnology.
- the invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof.
- the polynucleotides of Table 1 are ligated into a binary vector containing a selectable marker.
- the resulting recombinant vector contains the corresponding gene in the sense orientation under a constitutive promoter.
- the recombinant vectors are transformed into an Agrobacterium tumefaciens strain according to standard conditions.
- A. thaliana ecotype CoI-O or C24 are grown and transformed according to standard conditions.
- T1 and T2 plants are screened for resistance to the selection agent conferred by the selectable marker gene.
- T3 seeds are used in greenhouse or growth chamber experiments.
- seeds are refrigerated for stratification. Seeds are then planted, fertilizer is applied and humidity is maintained using transpar- ent domes. Plants are grown in a greenhouse at 22°C with photoperiod of 16 hours light/8 hours dark. Plants are watered twice a week.
- plant area, leaf area, biomass, color distribution, color intensity, and growth rate for each plant are measured using using a commercially available imaging system.
- Biomass is calculated as the total plant leaf area at the last measuring time point.
- Growth rate is calculated as the plant leaf area at the last measuring time point minus the plant leaf area at the first measuring time point divided by the plant leaf area at the first measuring time point.
- Health index is calculated as the dark green leaf area divided by the total plant leaf area.
- the polynucleotides of Table 1 are ligated into a binary vector containing a selectable marker.
- the resulting recombinant vector contains the corresponding gene in the sense orientation under a constitutive promoter.
- the recombinant vectors are trans- formed into an A. tumefaciens strain according to standard conditions.
- A. thaliana ecotype CoI-O or C24 are grown and transformed according to standard conditions. T1 and T2 plants are screened for resistance to the selection agent conferred by the selectable marker gene.
- Plants are grown in flats using a substrate that contains no organic compo- nents. Each flat is wet with water before seedlings resistant to the selection agent are transplanted onto substrate. Plants are grown in a growth chamber set to 22°C with a 55% relative humidity with photoperiod set at 16h light/ 8h dark. A controlled low or high nitrogen nutrient solution is added to waterings on Days 12, 15, 22 and 29. Watering without nutrient solution occurs on Days 18, 25, and 32. Images of all plants in a tray are taken on days 26, 30, and 33 using a commercially available imaging system. At each imaging time point, biomass and plant phenotypes for each plant are measured including plant area, leaf area, biomass, color distribution, color intensity, and growth rate.
- Canola cotyledonary petioles of 4 day-old young seedlings are used as ex- plants for tissue culture and transformed according to EP1566443.
- the commercial cultivar Westar (Agriculture Canada) is the standard variety used for transformation, but other varieties can be used.
- A. tumefaciens GV3101 :pMP90RK containing a binary vector is used for canola transformation.
- the standard binary vector used for transformation is pSUN
- a plant gene expression cassette comprising a selection marker gene, a plant promoter, and a polynucleotide of Table 1 is employed.
- selection marker genes can be used including the mutated acetohydroxy acid synthase (AHAS) gene disclosed in US Pat. Nos. 5,767,366 and 6,225,105.
- a suitable promoter is used to regulate the trait gene to provide constitutive, developmental, tissue or environmental regulation of gene transcription.
- Canola seeds are surface-sterilized in 70% ethanol for 2 min, incubated for 15 min in 55 0 C warm tap water and then in 1.5% sodium hypochlorite for 10 minutes, followed by three rinses with sterilized distilled water. Seeds are then placed on MS medium without hormones, containing Gamborg B5 vitamins, 3% sucrose, and 0.8% Oxoidagar. Seeds are germinated at 24 0 C for 4 days in low light ( ⁇ 50 ⁇ Mol/m 2 s, 16 hours light).
- the cotyledon petiole explants with the cotyledon attached are excised from the in vitro seedlings, and inoculated with Agrobacterium by dipping the cut end of the petiole explant into the bacterial suspension.
- the explants are then cultured for 3 days on MS medium includ- ing vitamins containing 3.75 mg/l BAP, 3% sucrose, 0.5 g/l MES, pH 5.2, 0.5 mg/l GA3, 0.8% Oxoidagar at 24 0 C, 16 hours of light.
- the petiole explants are transferred to regeneration medium containing 3.75 mg/l BAP, 0.5 mg/l GA3, 0.5 g/l MES, pH 5.2, 300 mg/l timentin and selection agent until shoot regeneration.
- the explants start to develop shoots, they are transferred to shoot elongation medium (A6, containing full strength MS medium including vitamins, 2% sucrose, 0.5% Oxoidagar, 100 mg/l myo-inositol, 40 mg/l adenine sulfate, 0.5 g/l MES, pH 5.8, 0.0025 mg/l BAP, 0.1 mg/l IBA, 300 mg/l timentin and selection agent).
- Samples from both in vitro and greenhouse material of the primary transgenic plants (TO) are analyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations.
- Seed is produced from the primary transgenic plants by self-pollination.
- the second-generation plants are grown in greenhouse conditions and self-pollinated.
- the plants are analyzed by qPCR using TaqMan probes to confirm the presence of T-DNA and to determine the number of T-DNA integrations.
- Homozygous transgenic, heterozygous transgenic and azygous (null transgenic) plants are compared for their stress tolerance, for example, in the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
- Transgenic rice plants comprising a polynucleotide of Table 1 are generated using known methods. Approximately 15 to 20 independent transformants (TO) are generated. The primary transformants are transferred from tissue culture chambers to a greenhouse for growing and harvest of T1 seeds. Five events of the T1 progeny segregated 3: 1 for presence/absence of the transgene are retained. For each of these events, 10 T1 seedlings containing the transgene (hetero- and homozygotes), and 10 T1 seedlings lacking the transgene (nullizygotes) are selected by visual marker screening. The selected T1 plants are transferred to a greenhouse. Each plant receives a unique barcode label to link unambiguously the phenotyping data to the corresponding plant.
- Transgenic plants and the corresponding nullizygotes are grown side-by-side at random positions. From the stage of sowing until the stage of maturity, the plants are passed several times through a digital im- aging cabinet. At each time point digital, images (2048x1536 pixels, 16 million colours) of each plant are taken from at least 6 different angles. [00104] The data obtained in the first experiment with T1 plants are confirmed in a second experiment with T2 plants.
- Lines that have the correct expression pattern are selected for further analysis. Seed batches from the positive plants (both hetero- and homo- zygotes) in T1 are screened by monitoring marker expression. For each chosen event, the heterozygote seed batches are then retained for T2 evaluation. Within each seed batch, an equal number of positive and negative plants are grown in the greenhouse for evaluation. [00105] Transgenic plants are screened for their improved growth and/or yield and/or stress tolerance, for example, using the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
- the polynucleotides of Table 1 are transformed into soybean using the methods described in commonly owned copending international application number WO 2005/121345, the contents of which are incorporated herein by reference. [00107] The transgenic plants generated are then screened for their improved growth under water-limited conditions and/or drought, salt, and/or cold tolerance, for example, using the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
- the polynucleotides of Table 1 are transformed into wheat using the method described by lshida et al., 1996, Nature Biotech. 14745-50. Immature embryos are co- cultivated with Agrobacterium tumefaciens that carry "super binary" vectors, and transgenic plants are recovered through organogenesis. This procedure provides a transformation efficiency between 2.5% and 20%. The transgenic plants are then screened for their improved growth and/or yield under water-limited conditions and/or stress tolerance, for example, is the assays described in Examples 2 and 3, and for yield, both in the greenhouse and in field studies.
- the polynucleotides of Table 1 are transformed into immature embryos of corn using Agrobacterium. After imbibition, embryos are transferred to medium without se- lection agent. Seven to ten days later, embryos are transferred to medium containing selection agent and grown for 4 weeks (two 2-week transfers) to obtain transformed callus cells. Plant regeneration is initiated by transferring resistant calli to medium supplemented with selection agent and grown under light at 25-27 0 C for two to three weeks. Regenerated shoots are then transferred to rooting box with medium containing selection agent. Plant- lets with roots are transferred to potting mixture in small pots in the greenhouse and after acclimatization are then transplanted to larger pots and maintained in greenhouse till maturity.
- each of these plants is uniquely labeled, sampled and analyzed for transgene copy number.
- Trans- gene positive and negative plants are marked and paired with similar sizes for transplanting together to large pots. This provides a uniform and competitive environment for the trans- gene positive and negative plants.
- the large pots are watered to a certain percentage of the field water capacity of the soil depending the severity of water-stress desired.
- the soil water level is maintained by watering every other day.
- Plant growth and physiology traits such as height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the growth period.
- Plant growth and physiology traits such as WUE, height, stem diameter, leaf rolling, plant wilting, leaf extension rate, leaf water status, chlorophyll content and photosynthesis rate are measured during the ex- periment. A comparison of WUE phenotype between the transgene positive and negative plants is then made.
- a Taqman transgene copy number assay is used on leaf samples to differentiate the transgenics from null-segregant control plants. Plants that have been genotyped in this manner are also scored for a range of phenotypes related to drought-tolerance, growth and yield.
- phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instru- mentation for field physiology, using the standard protocols provided by the manufacturers. Individual plants are used as the replicate unit per event.
- a null segregant is progeny (or lines derived from the progeny) of a transgenic plant that does not contain the transgene due to Mendelian segregation. Additional replicated paired plots for a particular event are distributed around the trial. A range of phenotypes related to drought- tolerance, growth and yield are scored in the paired plots and estimated at the plot level. When the measurement technique could only be applied to individual plants, these are selected at random each time from within the plot.
- phenotypes include plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry- weight, leaf conductance to water vapor, leaf CO2 uptake, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water po- tential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis- silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers.
- phenotypes included plant height, grain weight per plant, grain number per plant, ear number per plant, above ground dry-weight, leaf conductance to water vapor, leaf CO2 up- take, leaf chlorophyll content, photosynthesis-related chlorophyll fluorescence parameters, water use efficiency, leaf water potential, leaf relative water content, stem sap flow rate, stem hydraulic conductivity, leaf temperature, leaf reflectance, leaf light absorptance, leaf area, days to flowering, anthesis-silking interval, duration of grain fill, osmotic potential, osmotic adjustment, root size, leaf extension rate, leaf angle, leaf rolling and survival. All measurements are made with commercially available instrumentation for field physiology, using the standard protocols provided by the manufacturers. Individual plots are used as the replicate unit per event.
- At2g20725 cDNA is translated into the following amino acid sequence (SEQ ID NO:2):
- At3g26085 cDNA is translated into the following amino acid sequence (SEQ ID NO:4):
- AtFACE-2 cDNA is translated into the following amino acid sequence (SEQ ID NO:6):
- cDNA sequence of ZM57353913 from corn (SEQ ID NO:7): CGAAGCCACGCGACCGACTGTGTTACGATCCCAAATCTTCACTCCCGACGAAATCTAG AATCCAATGAGCAATCTCGACTGACGCCTGCTTCACCAGATTATGGCGACGCCGGCG GGCCTCCTTCTCGCCTCGCCGCCGGTGATATCAGGTGTCGCGGCGATGGCGGCGTG CGCCGCAATGGCAGTATTCTACGTCGCTGTCCTCTATGC
- the ZM57353913 cDNA is translated into the following amino acid sequence (SEQ ID NO:8):
- the ZM59252659 cDNA is translated into the following amino acid sequence (SEQ ID NO:10):
- the CASAR82A cDNA is translated into the following amino acid sequence (SEQ ID NO:12):
- the b3358 cDNA is translated into the following amino acid sequence (SEQ ID NO:14): MWRRLIYHPDINYALRQTLVLCLPVAVGLMLGELRFGLLFSLVPACCNIAGLDTPHKRFFKR LIIGASLFATCSLLTQLLLAKDVPLPFLLTGLTLVLGVTAELGPLHAKLLPASLLAAIFTLSLAG YMPVWEPLLIYALGTLWYGLFNWFWFWIWREQPLRESLSLLYRELADYCEAKYSLLTQHT DPEKALPPLLVRQQKAVDLITQCYQQMHMLSAQNNTDYKRMLRIFQEALDLQEHISVSLHQ PEEVQKLVERSHAEEVIRWNAQTVAARLRVLADDILYHRLPTRFTMEKQIGALEKIARQHP DNPVGQFCYWHFSRIARVLRTQKPLYARDLLADKQRRMPLLPALKSYLSLKSPALRNAGR LSVMLSVASLMGTALHLPKSYWILMTVLLVTQNGYGA
- the EST564 cDNA is translated into the following amino acid sequence (SEQ ID NO:16):
- the BN49502266 cDNA is translated into the following amino acid sequence (SEQ ID NO:18):
- the GM49788080 cDNA is translated into the following amino acid sequence (SEQ ID NO:20):
- the GM53049821 cDNA is translated into the following amino acid sequence (SEQ ID NO:22):
- the ZM58462719 cDNA is translated into the following amino acid sequence (SEQ ID NO:24):
- the ZM61092633 cDNA is translated into the following amino acid sequence (SEQ ID NO:26): MLSALMDYLKSCWGPASPAGRPRKGSDATGRQDGLLWYKDGGQVVDGEFSMAVVQAN NLLEDHSQVESGPLSTSEPGLQGTFVGVYDGHGGPETARYINDHLFNHLRRFASEHKCMS ADVIRKAFRATEEGFISVVSNQWSLRPQLAAVGSCCLVGVVCSGTLYVANLGDSRAVLGR LVKGTGEVLAMQLSAEHNASYEEVRRELQASHPDDPHIVVLKHNVWRVKGIIQITRSIGDV YLKKPEFNREPLHSKFRLQETFRRPLLSSDPAITVHQIQPTDKFIIFASDGLWEHLSNQEVV DMVQSSPRNGIARKLVKSAVQEAAKKREMRYSDLKKVDRGVRRHFHDDITVIVVFFDSNA MTTAAWSRPSVSLRGGGFPIHSNTLAPFSVPTELNNS
- the ZM62051019 cDNA is translated into the following amino acid sequence (SEQ ID NO:30):
- the ZM65086957 cDNA is translated into the following amino acid sequence (SEQ ID NO:32):
- the ZM68587657 cDNA is translated into the following amino acid sequence (SEQ ID NO:34):
- the EST390 cDNA is translated into the following amino acid sequence (SEQ ID NO:36):
- the BN51363030 cDNA is translated into the following amino acid sequence (SEQ ID NO:38):
- the BN42986056 cDNA is translated into the following amino acid sequence (SEQ ID NO:40): MQLQGESASIQTNLRPALAFQTSSAVHAPSPPPRVGIITIGSRIIRQEGTCTLFSGISATSAT VLRQTLYSTTRMGLYDILKTKWTDPETKTIPLTRKLAAGFIAGGIGAAVGNPADVAMVRMQ ADGRLPVVDRRNYKSVLDAIAQMVRGEGVTSLWRGSSMTINRAMLVTASQLATYDSVKET ILEKGLMRDGLGTHVTSSFAAGFVASVASNPVDVIKTRVMNMKVEAGKTAPYKGAVDCAL KTVRAEGIMALYKGFLPTVSRQAPFTVIMFVTLEQVKKVFKDFDFDF
- the BN49389066 cDNA is translated into the following amino acid sequence (SEQ ID NO:42):
- the BN51339479 cDNA is translated into the following amino acid sequence (SEQ ID NO:44):
- the ZM57651070 cDNA is translated into the following amino acid sequence (SEQ ID NO:46):
- the ZM62073276 cDNA is translated into the following amino acid sequence (SEQ ID NO:
- the EST257 cDNA is translated into the following amino acid sequence (SEQ ID NO:50):
- the LU61665952 cDNA is translated into the following amino acid sequence (SEQ ID NO:52):
- the ZM62026837 cDNA is translated into the following amino acid sequence (SEQ ID NO:56):
- the ZM65457595 cDNA is translated into the following amino acid sequence (SEQ ID NO:58):
- the ZM67230154 cDNA is translated into the following amino acid sequence (SEQ ID NO:60):
- the EST465 cDNA is translated into the following amino acid sequence (SEQ ID NO:62):
- the YBL109w cDNA is translated into the following amino acid sequence (SEQ ID NO:64):
- the YBLI OOc cDNA is translated into the following amino acid sequence (SEQ ID NO:66):
- the YKL184w cDNA is translated into the following amino acid sequence (SEQ ID NO:68): MSSTQVGNALSSSTTTLVDLSNSTVTQKKQYYKDGETLHNLLLELKNNQDLELLPHEQAHP KIFQALKARIGRINNETCDPGEENSFFICDLGEVKRLFNNWVKELPRIKPFYAVKCNPDTKV LSLLAELGVNFDCASKVEIDRVLSMNISPDRIVYANPCKVASFIRYAASKNVMKSTFDNVEE LHKIKKFHPESQLLLRIATDDSTAQCRLSTKYGCEMENVDVLLKAIKELGLNLAGVSFHVGS GASDFTSLYKAVRDARTVFDKAANEYGLPPLKILDVGGGFQFESFKESTAVLRLALEEFFP VGCGVDIIAEPGRYFVATAFTLASHVIAKRKLSENEAMIYTNDGVYGNMNCILFDHQEPHPR TLYHNLEFHYDDFESTTAVLDSINK
- the YPL091w cDNA is translated into the following amino acid sequence (SEQ ID NO:70):
- the TA54587433 cDNA is translated into the following amino acid sequence (SEQ ID NO:72):
- the ZM68532504 cDNA is translated into the following amino acid sequence (SEQ ID NO:74):
- the BN42856089 cDNA is translated into the following amino acid sequence (SEQ ID NO:76):
- the BN43206527 cDNA is translated into the following amino acid sequence (SEQ ID NO:78):
- the HA66872964 cDNA is translated into the following amino acid sequence (SEQ ID NO:80):
- CATCTCTCTTTCTCTCTCTTCCATTTTCGTTCTTTTGAATCTCCGTTAGCCCTACAAATC CATCTCTCTTTCTCTCTCTTCCATTTTCGTTCTTTTGAATCTCCGTTAGCCCTACAAATC
- CATGGTCATGGCCTGAGAGATAGAGGGATAGAGCTCAGTTCCTAATCACCTTAC CTGACCTAACCCCACGGACATATTATCGAAGGTCTGCGAGCAGGAGAGCGCAGGAGG AAGAGTGGGGCCAGGGTACGATGCCGTCCCACGCCGATCTGGACCGTCAGATCGAG CACTTGATGCAGTGCAAGCCACTTTCTGAGGCCGAAGTGAAGGCTCTCTCTGCGAGCAG GCCAGGGCCGTCCTCGTCGAGGAATGGAACGTCCAGCCGGTCAAGTGTCCGGTGACT GTCTGCGGCGACATCCACGGCCAGTTTCACGATCTTGTCGAGCTCTTTCGAATCGGAG GAAACGCCCCTGACACGAACTACCTCTTCATGGGCGACTATGTAGATCGA
- the LU61662612 cDNA is translated into the following amino acid sequence (SEQ ID NO:82):
- the OS32806943 cDNA is translated into the following amino acid sequence (SEQ ID NO:84):
- the OS34738749 cDNA is translated into the following amino acid sequence (SEQ ID NO:86):
- the ZM62132060 cDNA is translated into the following amino acid sequence (SEQ ID NO:90):
- the ZM59202533 cDNA is translated into the following amino acid sequence (SEQ ID NO:92):
- the BN41901422 cDNA is translated into the following amino acid sequence (SEQ ID NO:94):
- the BN47868329 cDNA is translated into the following amino acid sequence (SEQ ID NO:96):
- the ZM68416988 cDNA is translated into the following amino acid sequence (SEQ ID NO:100):
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008277735A AU2008277735A1 (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield |
CN200880024564A CN101743314A (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield |
US12/668,665 US8338661B2 (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield |
BRPI0814689-6A2A BRPI0814689A2 (en) | 2007-07-13 | 2008-07-11 | TRANSGENIC PLANT, ISOLATED POLYNUCLEOTIDE, ISOLATED POLYPEPTIDE, AND METHODS FOR PRODUCING A TRANSGENIC PLANT AND FOR INCREASING THE INCOME AND / OR GROWTH UNDER NORMAL OR LIMITED WATER AND / OR TESTING PLANT CONDITIONS ENVIRONMENTAL |
MX2009013648A MX2009013648A (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield. |
EP08786070A EP2179043A2 (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield |
CA 2692650 CA2692650A1 (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield |
US13/666,997 US20130125255A1 (en) | 2007-07-13 | 2012-11-02 | Transgenic Plants With Increased Stress Tolerance and Yield |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US95934607P | 2007-07-13 | 2007-07-13 | |
US60/959,346 | 2007-07-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/666,997 Division US20130125255A1 (en) | 2007-07-13 | 2012-11-02 | Transgenic Plants With Increased Stress Tolerance and Yield |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009010460A2 true WO2009010460A2 (en) | 2009-01-22 |
WO2009010460A3 WO2009010460A3 (en) | 2009-04-09 |
Family
ID=39884732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/059070 WO2009010460A2 (en) | 2007-07-13 | 2008-07-11 | Transgenic plants with increased stress tolerance and yield |
Country Status (9)
Country | Link |
---|---|
US (2) | US8338661B2 (en) |
EP (5) | EP2520655A3 (en) |
CN (1) | CN101743314A (en) |
AR (1) | AR067527A1 (en) |
AU (1) | AU2008277735A1 (en) |
BR (1) | BRPI0814689A2 (en) |
CA (1) | CA2692650A1 (en) |
MX (1) | MX2009013648A (en) |
WO (1) | WO2009010460A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
US20160272996A1 (en) * | 2012-11-13 | 2016-09-22 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing casar |
US9957522B2 (en) | 2012-11-13 | 2018-05-01 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing CASAR |
WO2022043559A3 (en) * | 2020-08-31 | 2022-05-27 | Basf Se | Plant yield improvement |
WO2022263285A1 (en) * | 2021-06-14 | 2022-12-22 | Basf Se | Yield improvement by gene combinations |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112008002435T5 (en) | 2007-09-18 | 2010-07-22 | Basf Plant Science Gmbh | Plants with increased yield |
EP2594647A3 (en) * | 2007-09-21 | 2013-07-24 | BASF Plant Science GmbH | Plants with increased yield |
EP2240587A2 (en) * | 2007-12-21 | 2010-10-20 | BASF Plant Science GmbH | Plants with increased yield (ko nue) |
BRPI0917855A2 (en) * | 2008-08-19 | 2015-08-18 | Basf Plant Science Gmbh | Methods for producing a transgenic plant cell, plant or part thereof, for producing an agricultural composition, for producing a transgenic plant, and for increasing yield, transgenic plant cell, plant or part thereof, seed, nucleic acid molecule isolated, nucleic acid construct, vector, host cell, processes for producing a polypeptide, and for identifying a compound, polypeptide, antibody, plant tissue, propagation material harvested or plant material, composition, and, use of a protein related to stress-related yield or protein. |
KR101416506B1 (en) | 2012-08-10 | 2014-07-09 | 연세대학교 산학협력단 | Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof |
CN105339380A (en) | 2013-03-14 | 2016-02-17 | 先锋国际良种公司 | Compositions and methods to control insect pests |
EP2971000A4 (en) | 2013-03-15 | 2016-11-23 | Pioneer Hi Bred Int | Phi-4 polypeptides and methods for their use |
CN105189754A (en) * | 2013-05-31 | 2015-12-23 | 创世纪种业有限公司 | Cotton PP2Ac-type protein phosphatase PP2Ac-7, coding gene of same, and application thereof |
EA030896B1 (en) | 2013-08-16 | 2018-10-31 | Пайонир Хай-Бред Интернэшнл, Инк. | Insecticidal proteins and methods for their use |
MX359027B (en) | 2013-09-13 | 2018-09-12 | Pioneer Hi Bred Int | INSECTICIDAL PROTEINS and METHODS FOR THEIR USE. |
EP3102592B1 (en) | 2014-02-07 | 2020-05-20 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
WO2016044092A1 (en) | 2014-09-17 | 2016-03-24 | Pioneer Hi Bred International Inc | Compositions and methods to control insect pests |
EP3207143B1 (en) | 2014-10-16 | 2023-11-22 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CN108064233B (en) | 2015-05-19 | 2022-07-15 | 先锋国际良种公司 | Insecticidal proteins and methods of use thereof |
EP3310803A1 (en) | 2015-06-16 | 2018-04-25 | Pioneer Hi-Bred International, Inc. | Compositions and methods to control insect pests |
CN109475096B (en) | 2015-08-06 | 2022-08-23 | 先锋国际良种公司 | Plant-derived insecticidal proteins and methods of use thereof |
US11236347B2 (en) | 2015-08-28 | 2022-02-01 | Pioneer Hi-Bred International, Inc. | Ochrobactrum-mediated transformation of plants |
EP3390431A1 (en) | 2015-12-18 | 2018-10-24 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
EP3960863A1 (en) | 2016-05-04 | 2022-03-02 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CA3022858A1 (en) | 2016-06-16 | 2017-12-21 | Pioneer Hi-Bred International, Inc. | Compositions and methods to control insect pests |
US11155829B2 (en) | 2016-07-01 | 2021-10-26 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
WO2018013333A1 (en) | 2016-07-12 | 2018-01-18 | Pioneer Hi-Bred International, Inc. | Compositions and methods to control insect pests |
CN107805632B (en) * | 2016-09-06 | 2019-08-30 | 中国科学院微生物研究所 | OsMKK6 albumen and encoding gene are in the regulation developmental application of vegetable seeds |
EP3535285B1 (en) | 2016-11-01 | 2022-04-06 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CA3066470A1 (en) * | 2017-06-23 | 2018-12-27 | Yield10 Bioscience, Inc. | Methods and genes for producing land plants with increased expression of mitochondrial metabolite transporter and/or plastidial dicarboxylate transporter genes |
CN107746851B (en) * | 2017-10-30 | 2019-12-13 | 齐齐哈尔大学 | Sphagnum protein phosphatase 2C gene RcPP2C and encoding protein and application thereof |
EP3764796A4 (en) | 2018-03-14 | 2021-12-22 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
WO2019178042A1 (en) | 2018-03-14 | 2019-09-19 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins from plants and methods for their use |
EP4182466A2 (en) | 2020-07-14 | 2023-05-24 | Pioneer Hi-Bred International, Inc. | Insecticidal proteins and methods for their use |
CN113150089A (en) * | 2021-02-05 | 2021-07-23 | 山东农业大学 | Application of GhMKK6 gene and encoding protein thereof in cotton dwarf breeding |
CN115927392A (en) * | 2023-01-14 | 2023-04-07 | 中国农业科学院深圳农业基因组研究所 | Target gene for improving corn broad-spectrum pest genetic resistance and application thereof |
CN118421591A (en) * | 2024-05-28 | 2024-08-02 | 中国农业科学院棉花研究所 | MAP4K13 gene of cotton and application thereof in salt tolerance and drought resistance |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999064612A1 (en) * | 1998-06-11 | 1999-12-16 | University Of Guelph | Enhanced storage organ production in plants |
WO2000067558A1 (en) * | 1999-05-06 | 2000-11-16 | Michael Timko | Regulation of gene expression in tobacco for manipulation of plant growth and secondary metabolism |
WO2003012116A2 (en) * | 2001-08-01 | 2003-02-13 | Performance Plants, Inc. | Caax prenyl protease nucleic acids and polypeptides and methods of use thereof |
US20040216190A1 (en) * | 2003-04-28 | 2004-10-28 | Kovalic David K. | Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement |
WO2004099415A1 (en) * | 2003-05-07 | 2004-11-18 | Korea Research Institute Of Bioscience And Biotechnology | A new stress-resistance transcription factor (capf1) gene, its protein and a transfected plant by the gene |
WO2006069201A2 (en) * | 2004-12-20 | 2006-06-29 | Mendel Biotechnology, Inc. | Plant stress tolerance from modified ap2 transcription factors |
WO2006134162A2 (en) * | 2005-06-17 | 2006-12-21 | Basf Plant Science Gmbh | Lecitin-like protein kinase stress-related polypeptides and methods of use in plants |
Family Cites Families (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5504200A (en) | 1983-04-15 | 1996-04-02 | Mycogen Plant Science, Inc. | Plant gene expression |
US5380831A (en) | 1986-04-04 | 1995-01-10 | Mycogen Plant Science, Inc. | Synthetic insecticidal crystal protein gene |
US4666844A (en) | 1984-09-07 | 1987-05-19 | Sungene Technologies Corporation | Process for regenerating cereals |
US5100792A (en) | 1984-11-13 | 1992-03-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues |
US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US4945050A (en) | 1984-11-13 | 1990-07-31 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
US5420034A (en) | 1986-07-31 | 1995-05-30 | Calgene, Inc. | Seed-specific transcriptional regulation |
US5187073A (en) | 1986-06-30 | 1993-02-16 | The University Of Toledo | Process for transforming gramineae and the products thereof |
US5004863B2 (en) | 1986-12-03 | 2000-10-17 | Agracetus | Genetic engineering of cotton plants and lines |
US5120657A (en) | 1986-12-05 | 1992-06-09 | Agracetus, Inc. | Apparatus for genetic transformation |
DE3889546T2 (en) | 1987-12-21 | 1994-09-08 | Univ Toledo | TRANSFORMATION OF Germinating PLANT SEEDS WITH THE HELP OF AGROBACTERIUM. |
US5614395A (en) | 1988-03-08 | 1997-03-25 | Ciba-Geigy Corporation | Chemically regulatable and anti-pathogenic DNA sequences and uses thereof |
US5350688A (en) | 1988-03-31 | 1994-09-27 | Kirin Beer Kabushiki Kaisha | Method for regeneration of rice plants |
US5990387A (en) | 1988-06-10 | 1999-11-23 | Pioneer Hi-Bred International, Inc. | Stable transformation of plant cells |
NZ230375A (en) | 1988-09-09 | 1991-07-26 | Lubrizol Genetics Inc | Synthetic gene encoding b. thuringiensis insecticidal protein |
DE3843628A1 (en) | 1988-12-21 | 1990-07-05 | Inst Genbiologische Forschung | Wound-inducible and potato-tuber-specific transcriptional regulation |
BR9007159A (en) * | 1989-02-24 | 1991-12-10 | Monsanto Co | SYNTHETIC GENES OF PLANTS AND PROCESS FOR THE PREPARATION OF THE SAME |
US5086169A (en) | 1989-04-20 | 1992-02-04 | The Research Foundation Of State University Of New York | Isolated pollen-specific promoter of corn |
US5302523A (en) | 1989-06-21 | 1994-04-12 | Zeneca Limited | Transformation of plant cells |
US5550318A (en) | 1990-04-17 | 1996-08-27 | Dekalb Genetics Corporation | Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof |
US5322783A (en) | 1989-10-17 | 1994-06-21 | Pioneer Hi-Bred International, Inc. | Soybean transformation by microparticle bombardment |
EP0472712B1 (en) | 1990-03-16 | 2001-09-12 | Calgene LLC | Novel sequences preferentially expressed in early seed development and methods related thereto |
EP0528819A1 (en) | 1990-04-18 | 1993-03-03 | Plant Genetic Systems, N.V. | Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells |
US5187267A (en) | 1990-06-19 | 1993-02-16 | Calgene, Inc. | Plant proteins, promoters, coding sequences and use |
US5932782A (en) | 1990-11-14 | 1999-08-03 | Pioneer Hi-Bred International, Inc. | Plant transformation method using agrobacterium species adhered to microprojectiles |
US5767366A (en) | 1991-02-19 | 1998-06-16 | Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College | Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants |
ATE207126T1 (en) | 1991-05-15 | 2001-11-15 | Monsanto Technology Llc | METHOD FOR CREATION OF A TRANSFORMED RICE PLANT |
WO1993007256A1 (en) | 1991-10-07 | 1993-04-15 | Ciba-Geigy Ag | Particle gun for introducing dna into intact cells |
TW261517B (en) | 1991-11-29 | 1995-11-01 | Mitsubishi Shozi Kk | |
PT637339E (en) | 1992-04-13 | 2002-03-28 | Syngenta Ltd | DNA BUILDINGS AND PLANS THAT INCORPORATE THEM |
EP0604662B1 (en) | 1992-07-07 | 2008-06-18 | Japan Tobacco Inc. | Method of transforming monocotyledon |
DK0651814T3 (en) | 1992-07-09 | 1997-06-30 | Pioneer Hi Bred Int | Maize pollen-specific polygalacturonase gene |
US5470353A (en) | 1993-10-20 | 1995-11-28 | Hollister Incorporated | Post-operative thermal blanket |
AU687961B2 (en) | 1993-11-19 | 1998-03-05 | Biotechnology Research And Development Corporation | Chimeric regulatory regions and gene cassettes for expression of genes in plants |
GB9324707D0 (en) | 1993-12-02 | 1994-01-19 | Olsen Odd Arne | Promoter |
ATE362527T1 (en) | 1993-12-08 | 2007-06-15 | Japan Tobacco Inc | METHOD FOR TRANSFORMING PLANTS AND A VECTOR THEREOF |
GB9403512D0 (en) | 1994-02-24 | 1994-04-13 | Olsen Odd Arne | Promoter |
US5470359A (en) | 1994-04-21 | 1995-11-28 | Pioneer Hi-Bred Internation, Inc. | Regulatory element conferring tapetum specificity |
GB9421286D0 (en) | 1994-10-21 | 1994-12-07 | Danisco | Promoter |
US5846797A (en) | 1995-10-04 | 1998-12-08 | Calgene, Inc. | Cotton transformation |
GB9524395D0 (en) | 1995-11-29 | 1996-01-31 | Nickerson Biocem Ltd | Promoters |
JPH10117776A (en) | 1996-10-22 | 1998-05-12 | Japan Tobacco Inc | Transformation of indica rice |
US5981840A (en) | 1997-01-24 | 1999-11-09 | Pioneer Hi-Bred International, Inc. | Methods for agrobacterium-mediated transformation |
CA2252612C (en) | 1997-02-20 | 2010-01-05 | Plant Genetic Systems, N.V. | Improved transformation method for plants |
US5977436A (en) | 1997-04-09 | 1999-11-02 | Rhone Poulenc Agrochimie | Oleosin 5' regulatory region for the modification of plant seed lipid composition |
US6162965A (en) | 1997-06-02 | 2000-12-19 | Novartis Ag | Plant transformation methods |
EP1019517B2 (en) | 1997-09-30 | 2014-05-21 | The Regents of The University of California | Production of proteins in plant seeds |
US6153813A (en) | 1997-12-11 | 2000-11-28 | Mississippi State University | Methods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds |
US6153811A (en) | 1997-12-22 | 2000-11-28 | Dekalb Genetics Corporation | Method for reduction of transgene copy number |
US6333449B1 (en) | 1998-11-03 | 2001-12-25 | Plant Genetic Systems, N.V. | Glufosinate tolerant rice |
US6420630B1 (en) | 1998-12-01 | 2002-07-16 | Stine Biotechnology | Methods for tissue culturing and transforming elite inbreds of Zea mays L. |
EP1586645A3 (en) * | 1999-02-25 | 2006-02-22 | Ceres Incorporated | Sequence-determined DNA fragments and corresponding polypeptides encoded thereby |
DE60141547D1 (en) * | 2000-04-07 | 2010-04-22 | Basf Plant Science Gmbh | Stress-linked protein phosphatase and its use in plants |
CA2413425A1 (en) | 2000-06-28 | 2002-12-19 | Sungene Gmbh & Co. Kgaa | Binary vectors for improved transformation of plant systems |
DE10036671A1 (en) * | 2000-07-27 | 2002-02-21 | Frommer Wolf Bernd | New nucleic acid encoding mitochondrial transporter, useful for preparing transgenic plants with e.g. altered protein content and improved germination |
FR2817883B1 (en) | 2000-12-12 | 2003-02-28 | Pascal Rossignol | DEVICE FOR PRODUCING NON-PARALLEL CONTINUOUS FIBER MATERIALS AND MANUFACTURING CHAIN ADOPTING SUCH A DEVICE |
ES2381031T3 (en) * | 2001-09-05 | 2012-05-22 | Basf Plant Science Gmbh | Polypeptides related to stress regulated by protein phosphatase and methods of use in plants |
EP1566443A1 (en) | 2004-02-23 | 2005-08-24 | SunGene GmbH & Co.KgaA | Improved transformation of brassica species |
EP1756282B1 (en) | 2004-06-07 | 2009-04-08 | BASF Plant Science GmbH | Improved transformation of soybean |
WO2006083399A2 (en) * | 2004-12-14 | 2006-08-10 | University Of Maryland Biotechnology Institute | Plants with reduced expression of phosphatase type 2c gene for enhanced pathogen resistance |
PT1827078E (en) * | 2004-12-21 | 2014-05-26 | Monsanto Technology Llc | Transgenic plants with enhanced agronomic traits |
EP2392662A3 (en) * | 2007-04-23 | 2012-03-14 | Basf Se | Plant productivity enhancement by combining chemical agents with transgenic modifications |
-
2008
- 2008-07-11 AU AU2008277735A patent/AU2008277735A1/en not_active Abandoned
- 2008-07-11 CN CN200880024564A patent/CN101743314A/en active Pending
- 2008-07-11 US US12/668,665 patent/US8338661B2/en not_active Expired - Fee Related
- 2008-07-11 EP EP12169203A patent/EP2520655A3/en not_active Withdrawn
- 2008-07-11 EP EP11174782A patent/EP2390336A3/en not_active Withdrawn
- 2008-07-11 BR BRPI0814689-6A2A patent/BRPI0814689A2/en not_active Application Discontinuation
- 2008-07-11 EP EP12169205.7A patent/EP2520656A3/en not_active Withdrawn
- 2008-07-11 EP EP12169206.5A patent/EP2505653A3/en not_active Withdrawn
- 2008-07-11 MX MX2009013648A patent/MX2009013648A/en not_active Application Discontinuation
- 2008-07-11 AR ARP080103006A patent/AR067527A1/en not_active Application Discontinuation
- 2008-07-11 CA CA 2692650 patent/CA2692650A1/en not_active Abandoned
- 2008-07-11 EP EP08786070A patent/EP2179043A2/en not_active Withdrawn
- 2008-07-11 WO PCT/EP2008/059070 patent/WO2009010460A2/en active Application Filing
-
2012
- 2012-11-02 US US13/666,997 patent/US20130125255A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999064612A1 (en) * | 1998-06-11 | 1999-12-16 | University Of Guelph | Enhanced storage organ production in plants |
WO2000067558A1 (en) * | 1999-05-06 | 2000-11-16 | Michael Timko | Regulation of gene expression in tobacco for manipulation of plant growth and secondary metabolism |
WO2003012116A2 (en) * | 2001-08-01 | 2003-02-13 | Performance Plants, Inc. | Caax prenyl protease nucleic acids and polypeptides and methods of use thereof |
US20040216190A1 (en) * | 2003-04-28 | 2004-10-28 | Kovalic David K. | Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement |
WO2004099415A1 (en) * | 2003-05-07 | 2004-11-18 | Korea Research Institute Of Bioscience And Biotechnology | A new stress-resistance transcription factor (capf1) gene, its protein and a transfected plant by the gene |
WO2006069201A2 (en) * | 2004-12-20 | 2006-06-29 | Mendel Biotechnology, Inc. | Plant stress tolerance from modified ap2 transcription factors |
WO2006134162A2 (en) * | 2005-06-17 | 2006-12-21 | Basf Plant Science Gmbh | Lecitin-like protein kinase stress-related polypeptides and methods of use in plants |
Non-Patent Citations (5)
Title |
---|
BRACHA KEREN ET AL: "The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity" JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 33, 16 August 2002 (2002-08-16), pages 29856-29864, XP002502721 ISSN: 0021-9258 * |
BRACHA-DRORI KEREN ET AL: "Functional analysis of Arabidopsis postprenylation CaaX processing enzymes and their function in subcellular protein targeting." PLANT PHYSIOLOGY SEP 2008, vol. 148, no. 1, September 2008 (2008-09), pages 119-131, XP002502723 ISSN: 0032-0889 * |
CADINANOS JUAN ET AL: "AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 278, no. 43, 24 October 2003 (2003-10-24), pages 42091-42097, XP002502722 ISSN: 0021-9258 * |
DATABASE EMBL [Online] 1 May 2001 (2001-05-01), "Arabidopsis thaliana unknown protein (At2g20725) mRNA, complete cds." XP002502725 retrieved from EBI accession no. EMBL:AF370273 Database accession no. AF370273 & DATABASE UniProt [Online] 1 December 2001 (2001-12-01), "SubName: Full=Putative uncharacterized protein At2g20725 (Putative uncharacterized protein At2g20725/F5H14.3) (Predicted protein);" retrieved from EBI accession no. UNIPROT:Q94K61 Database accession no. Q94K61 * |
DATABASE EMBL [Online] 28 November 2001 (2001-11-28), "Arabidopsis thaliana unknown protein (At2g20725) mRNA, complete cds." XP002502724 retrieved from EBI accession no. EMBL:AY063007 Database accession no. AY063007 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722072B2 (en) | 2010-01-22 | 2014-05-13 | Bayer Intellectual Property Gmbh | Acaricidal and/or insecticidal active ingredient combinations |
US9265252B2 (en) | 2011-08-10 | 2016-02-23 | Bayer Intellectual Property Gmbh | Active compound combinations comprising specific tetramic acid derivatives |
US20160272996A1 (en) * | 2012-11-13 | 2016-09-22 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing casar |
US9957522B2 (en) | 2012-11-13 | 2018-05-01 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing CASAR |
US10041088B2 (en) | 2012-11-13 | 2018-08-07 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing CASAR |
US10941413B2 (en) | 2012-11-13 | 2021-03-09 | Basf Plant Science Company Gmbh | Fungal resistant plants expressing CASAR |
WO2022043559A3 (en) * | 2020-08-31 | 2022-05-27 | Basf Se | Plant yield improvement |
WO2022263285A1 (en) * | 2021-06-14 | 2022-12-22 | Basf Se | Yield improvement by gene combinations |
Also Published As
Publication number | Publication date |
---|---|
US20130125255A1 (en) | 2013-05-16 |
EP2520655A2 (en) | 2012-11-07 |
MX2009013648A (en) | 2010-01-27 |
EP2520656A2 (en) | 2012-11-07 |
WO2009010460A3 (en) | 2009-04-09 |
EP2179043A2 (en) | 2010-04-28 |
EP2520656A3 (en) | 2013-05-01 |
US8338661B2 (en) | 2012-12-25 |
CA2692650A1 (en) | 2009-01-22 |
EP2390336A2 (en) | 2011-11-30 |
CN101743314A (en) | 2010-06-16 |
US20100170003A1 (en) | 2010-07-01 |
EP2390336A3 (en) | 2012-07-18 |
EP2505653A3 (en) | 2013-05-01 |
AU2008277735A1 (en) | 2009-01-22 |
EP2520655A3 (en) | 2012-12-26 |
BRPI0814689A2 (en) | 2014-10-07 |
AR067527A1 (en) | 2009-10-14 |
EP2505653A2 (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8338661B2 (en) | Transgenic plants with increased stress tolerance and yield | |
US9328354B2 (en) | Transgenic plant with increased stress tolerance and yield | |
US20100199388A1 (en) | Transgenic Plants with Increased Stress Tolerance and Yield | |
US20100333234A1 (en) | Transgenic Plants with Increased Stress Tolerance and Yield | |
US20130139281A1 (en) | Transgenic Plants with Increased Stress Tolerance and Yield | |
EP2304036B1 (en) | Methods and means of increasing the water use efficiency of plants | |
US20180155735A1 (en) | Identification of transcription factors that improve nitrogen and sulphur use efficiency in plants | |
US20140230099A1 (en) | Transgenic Plants With Increased Stress Tolerance and Yield | |
AU2013202535A1 (en) | Transgenic plants with increased stress tolerance and yield |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880024564.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08786070 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008786070 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/013648 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2692650 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12668665 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008277735 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 786/CHENP/2010 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2008277735 Country of ref document: AU Date of ref document: 20080711 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0814689 Country of ref document: BR Kind code of ref document: A2 Effective date: 20100108 |