WO2009005687A1 - Purine derivatives and their use as modulators of toll-like receptor 7 - Google Patents

Purine derivatives and their use as modulators of toll-like receptor 7 Download PDF

Info

Publication number
WO2009005687A1
WO2009005687A1 PCT/US2008/007955 US2008007955W WO2009005687A1 WO 2009005687 A1 WO2009005687 A1 WO 2009005687A1 US 2008007955 W US2008007955 W US 2008007955W WO 2009005687 A1 WO2009005687 A1 WO 2009005687A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
alkyl
carbocyclylalkyl
heterocyclylalkyl
group
Prior art date
Application number
PCT/US2008/007955
Other languages
French (fr)
Inventor
Michael Graupe
Randall L. Halcomb
Original Assignee
Gilead Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39789972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009005687(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to SI200831437T priority Critical patent/SI2170888T1/en
Priority to BRPI0813952A priority patent/BRPI0813952A2/en
Priority to EP20080779791 priority patent/EP2170888B1/en
Priority to CN2008801043261A priority patent/CN101784548B/en
Priority to MX2009013832A priority patent/MX2009013832A/en
Priority to JP2010514814A priority patent/JP5395068B2/en
Priority to UAA200913908A priority patent/UA98334C2/en
Application filed by Gilead Sciences, Inc. filed Critical Gilead Sciences, Inc.
Priority to ES08779791.6T priority patent/ES2541434T3/en
Priority to EA200971081A priority patent/EA021463B1/en
Priority to AU2008271127A priority patent/AU2008271127C1/en
Priority to NZ582090A priority patent/NZ582090A/en
Priority to AP2009005072A priority patent/AP2706A/en
Priority to CA2691444A priority patent/CA2691444C/en
Priority to PL08779791T priority patent/PL2170888T3/en
Publication of WO2009005687A1 publication Critical patent/WO2009005687A1/en
Priority to IL202622A priority patent/IL202622A/en
Priority to HK10109535.1A priority patent/HK1143145A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/18Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 one oxygen and one nitrogen atom, e.g. guanine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • A61K31/522Purines, e.g. adenine having oxo groups directly attached to the heterocyclic ring, e.g. hypoxanthine, guanine, acyclovir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • This application relates generally to compounds and pharmaceutical compositions which selectively activates toll-like receptor 7 (TLRT), and methods of making and using them.
  • TLRT toll-like receptor 7
  • the innate immune system provides the body with a first line defense against invading pathogens.
  • an invading pathogen is recognized by a germline-encoded receptor, the activation of which initiates a signaling cascade that leads to the induction of cytokine expression.
  • Innate immune system receptors have broad specificity, recognizing molecular structures that are highly conserved among different pathogens.
  • One family of these receptors is known as Toll-like receptors (TLRs), due to their homology with receptors that were first identified and named in Drosophila, and are present in cells such as macrophages, dendritic cells, and epithelial cells.
  • TLR2 is activated by the lipoprotein of bacteria (e.g., E. coli.)
  • TLR3 is activated by double-stranded RNA
  • TLR4 is activated by lipopolysaccharide (i.e., LPS or endotoxin) of Gram-negative bacteria (e.g., Salmonella and E. coli O157:H7)
  • TLR5 is activated by flagellin of motile bacteria (e.g., Listeria)
  • TLR7 recognizes and responds to imiquimod
  • TLR9 is activated by unmethylated CpG sequences of pathogen DNA.
  • NF- ⁇ B transcription factor- ⁇ B
  • IL-1 interleukin-1
  • the present invention is based, in part, on the discovery by the applicants that a number of small molecules can alter TLR-mediated immunostimulatory signaling. Accordingly, the present application is directed to compounds and pharmaceutical compositions, and methods for use in preventing or treating diseases or conditions associated with Toll-like receptor 7 (TLR7) activity in patients.
  • TLR7 Toll-like receptor 7
  • the invention comprises a compound of formula I or II:
  • X 1 is -NH-, -O-, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, carbocyclylene, substituted carbocyclylene, heterocyclylene, or substituted heterocyclylene;
  • D is carbocyclylene or heterocyclylene; each L 1 is independently alkylene or substituted alkylene; each R 1 is independently -NR 4 R 5 ; m is 1 or 2; L 2 is a covalent bond, -NH-, -O-, or -S-; R 2 is H, halo, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R 6 , -C(O)OR 6 , -C(O)NR 7 R 8 , -S(O)OR 7 , -S(O)NR 7 R 8 , -S(O) 2 R 7 , -S(O)R 7 ,
  • L 3 is -NH-, -O-, -S-, -N(R 9 )C(O) -, -S(O) 2 -, -S(O) -, or a covalent bond;
  • R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3 , -S(O) 2 R 3 , -C(O)OR 3 , or - C(O)NR 7 R 8 ; or R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
  • R 6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylal
  • R 10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 5; and with the following proviso: (a) When X 1 is -CH 2 -, D is 1,4-phenylene, R 3 -L 3 - is CH3CH2CH2CH2O- or CH 3 -
  • NR 4 R 5 is not: (1) a 4-substituted or 4,4- disubstiruted piperidine or piperazine (2) -NHCH3;
  • Formula I can be represented by Formula Ia:
  • R 1 is -NR 4 R 5 ;
  • R 2 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R 6 , - C(O)OR 6 , -C(O)NR 7 R 8 , -S(O) 2 OR 7 , or -S(O) 2 NR 7 R 8 ;
  • L 3 is -NH-, -O-, -S-, -N(R 9 )C(O)-, -S(O) 2 -, -S(O) -, or a covalent bond;
  • R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl,
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3 , -S(O) 2 R 3 , -C(O)OR 3 , or - C(O)NR 7 R 8 ; or
  • R 4 and R 5 taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle
  • R 6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 7 and R 8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R 7 and R 8 , taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R 9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocydylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R 10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalky
  • Formula II can be represented by Formula Ha:
  • R 1 is -NR 4 R 5 ;
  • R 2 is H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R 6 , -C(O)OR 6 , -C(O)NR 7 R 8 , -S(O) 2 OR 7 , or - S(O) 2 NR 7 R 8 ;
  • L 3 is -NH-, -O-, -S-, -N(R 9 )C(O)-, -S(O) 2 -, -S(O) -, or a covalent bond;
  • R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3 , -S(O) 2 R 3 , -C(O)OR 3 , or - C(O)NR 7 R 8 ; or R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
  • R 6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocydyl, substituted carbocyclyl, carbocyclyl
  • R 7 and R 8 taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle
  • R 9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety;
  • R 10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is 0, 1, 2, or 3.
  • the present application provides for a pharmaceutical composition
  • a pharmaceutical composition comprising at least one compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; and a pharmaceutically acceptable carrier or excipient.
  • the present application provides for a pharmaceutical composition
  • a pharmaceutical composition comprising at least one compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; at least one additional active agent; and a pharmaceutically acceptable carrier or exipient.
  • the present application provides for a method for treating or preventing a viral infection comprising administering, to a patient in need thereof, a therapeutically effective amount of at least one compound of
  • Formula I or II or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
  • the present application provides for a combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • a first pharmaceutical composition comprising a compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof
  • a compound of the invention or "a compound of formula I or II” means a compound of formula I or ⁇ , or a pharmaceutically acceptable salt, solvate, ester or physiologically functional derivative thereof.
  • Compounds of the invention also include tautomeric forms thereof, e.g., tautomeric "enols” as described herein.
  • the phrase “a compound of formula (number)” means a compound of that formula and pharmaceutically acceptable salts, solvates and physiologically functional derivatives thereof.
  • Alkyl is hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms.
  • an alkyl group can have 1 to 20 carbon atoms (i.e, C1-C20 alkyl), 1 to 10 carbon atoms (i.e., C1-C10 alkyl), or 1 to 6 carbon atoms (i.e., C1-C.6 alkyl).
  • alkyl groups include, but are not limited to, methyl (Me, -CHs), ethyl (Et, -CH2CH3), 1-propyl (n-Pr, n-propyl, -CH2CH2CH3), 2-propyl (i-Pr, i-propyl, -CH(CHs) 2 ), 1-butyl (n-Bu, n-butyl, -CH2CH2CH2CH3), 2-methy 1-1 -propyl (i- Bu, i-butyl, -CH 2 CH(CHs) 2 ), 2-butyl (s-Bu, s-butyl, -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2- propyl (t-Bu, t-butyl, -C(CHs) 3 ), 1-pentyl (n-pentyl, -CH 2 CH 2 CH 2 CH 2 CH 3 ), 2-pentyl (-CH(CH 3 ), 2-
  • Alkoxy means a group having the formula -O-alkyl, in which an alkyl group, as defined above, is attached to the parent molecule via an oxygen atom.
  • the alkyl portion of an alkoxy group can have 1 to 20 carbon atoms (i.e., Ci-C 20 alkoxy), 1 to 12 carbon atoms (i.e., Ci-Ci 2 alkoxy), or 1 to 6 carbon atoms(/.e., Ci-C ⁇ alkoxy).
  • alkoxy groups include, but are not limited to, methoxy (-O-CHs or -OMe), ethoxy (-OCH 2 CH 3 or -OEt), t-butoxy (-O-C(CH 3 ) 3 or -OtBu) and the like.
  • Haloalkyl is an alkyl group, as defined above, in which one or more hydrogen atoms of the alkyl group is replaced with a halogen atom.
  • the alkyl portion of a haloalkyl group can have 1 to 20 carbon atoms (i.e., Ci-C 20 haloalkyl), 1 to 12 carbon atoms(/.e., Ci-Ci 2 haloalkyl), or 1 to 6 carbon atoms(z.e., Ci-C ⁇ alkyl).
  • suitable haloalkyl groups include, but are not limited to, -CFs, -CHF 2 , -CFH 2 , -CH 2 CFs, and the like.
  • Alkenyl is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp 2 double bond.
  • an alkenyl group can have 2 to 20 carbon atoms (i.e., Q-Oo alkenyl), 2 to 12 carbon atoms (i.e., C 2 -Ci 2 alkenyl), or 2 to 6 carbon atoms (i.e., C 2 -Ce alkenyl).
  • Alkynyl is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond.
  • an alkynyl group can have 2 to 20 carbon atoms (i.e., C 2 -C 20 alkynyl), 2 to 12 carbon atoms (i.e., C 2 -Ci 2 alkyne,), or 2 to 6 carbon atoms (i.e., C 2 -CO alkynyl).
  • suitable alkynyl groups include, but are not limited to, acetylenic (-C ⁇ CH), propargyl (-CHaC ⁇ CH), and the like.
  • Alkylene refers to a saturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane.
  • an alkylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms.
  • Typical alkylene radicals include, but are not limited to, methylene (-CH 2 -), 1,1-ethyl (-CH(CH 3 )-), 1,2-ethyl (-CH2CH2-), 1,1-propyl (-CH(CH 2 CH 3 )-), 1,2-propyl (-CH 2 CH(CH 3 )-), 1,3-propyl (-CH 2 CH 2 CH 2 -), 1,4-butyl (-CH 2 CH 2 CH 2 CH 2 -), and the like.
  • Alkenylene refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene.
  • alkenylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms.
  • Alkynylene refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne.
  • an alkynylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms.
  • Aminoalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an amino radical.
  • “Amidoalkyl” refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a -NR a COR b group where R a is hydrogen or alkyl and R b is alkyl, substituted alkyl, aryl, or substituted aryl as defined herein, e.g., -(Ct ⁇ -NHC(O)CHs, -(CH>)3-
  • Aryl means a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
  • an aryl group can have 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 12 carbon atoms.
  • Typical aryl groups include, but are not limited to, radicals derived from benzene (e.g., phenyl), substituted benzene, naphthalene, anthracene, biphenyl, and the like.
  • Arylene refers to an aryl as ced above having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent aryl.
  • Typical arylene radicals include, but are not limited to, phenylene.
  • Arylalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl radical.
  • Typical arylalkyl groups include, but are not limited to, benzyl,
  • the arylalkyl group can comprise 6 to 20 carbon atoms, e.g., the alkyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to
  • Arylalkenyl refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, but also an sp 2 carbon atom, is replaced with an aryl radical.
  • the aryl portion of the arylalkenyl can include, for example, any of the aryl groups disclosed herein, and the alkenyl portion of the arylalkenyl can include, for example, any of the alkenyl groups disclosed herein.
  • the arylalkenyl group can comprise 6 to 20 carbon atoms, e.g., the alkenyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.
  • “Arylalkynyl” refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, but also an sp carbon atom, is replaced with an aryl radical.
  • the aryl portion of the arylalkynyl can include, for example, any of the aryl groups disclosed herein, and the alkynyl portion of the arylalkynyl can include, for example, any of the alkynyl groups disclosed herein.
  • the arylalkynyl group can comprise 6 to 20 carbon atoms, e.g., the alkynyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.
  • substituted in reference to alkyl, alkylene, aryl, arylalkyl, heterocyclyl, etc.
  • substituted alkyl for example, "substituted alkyl”, “substituted alkylene”, “substituted aryl”, “substituted arylalkyl”, “substituted heterocyclyl”, and "substituted carbocyclyl” means alkyl, alkylene, aryl, arylalkyl, heterocyclyl, carbocyclyl respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent.
  • substituted or are shown diagrammatically to be substituted (or optionally substituted, e.g., when the number of substituents ranges from zero to a positive integer), then the terms “alkyl”, “aryl”, “heterocydyl”, etc. are understood to be interchangeable with “alkylene”, “arylene”, “heterocyclylene”, etc.
  • prodrug refers to any compound that when administered to a biological system generates the drug substance, i.e., active ingredient, as a result of spontaneous chemical reaction(s), enzyme catalyzed chemical reaction(s), photolysis, and/or metabolic chemical reaction(s).
  • a prodrug is thus a covalently modified analog or latent form of a therapeutically active compound.
  • Heteroalkyl refers to an alkyl group where one or more carbon atoms have been replaced with a heteroatom, such as, O, N, or S.
  • a heteroatom e.g., O, N, or S
  • the resulting heteroalkyl groups are, respectively, an alkoxy group (e.g., -OCH3, etc.), an amine (e.g., -NHCH3, -N(CH3)2, etc.), or a thioalkyl group (e.g., -SCH3).
  • a non-terminal carbon atom of the alkyl group which is not attached to the parent molecule is replaced with a heteroatom (e.g., O, N, or S) and the resulting heteroalkyl groups are, respectively, an alkyl ether (e.g., -CH2CH2-O-CH3, etc.), an alkyl amine (e.g., -CH2NHCH3, -CH-N(CH 3 ) ⁇ etc.), or a thioalkyl ether (e.g. ,-CHi-S-CFb).
  • a heteroatom e.g., O, N, or S
  • the resulting heteroalkyl groups are, respectively, a hydroxyalkyl group (e.g., -CH2CH2-OH), an aminoalkyl group (e.g., -CH2NH2), or an alkyl thiol group (e.g., -CH2CH2-SH).
  • a heteroalkyl group can have, for example, 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms.
  • a Ci-Ce heteroalkyl group means a heteroalkyl group having 1 to 6 carbon atoms.
  • Heterocycle or “heterocyclyl” as used herein includes by way of example and not limitation those heterocycles described in Paquette, Leo A.; Principles of Modern Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and /. Am. Chem. Soc. (1960) 82:5566.
  • heterocycle includes a "carbocycle” as defined herein, wherein one or more (e.g.
  • heterocycle or “heterocyclyl” includes saturated rings, partially unsaturated rings, and aromatic rings (i.e., heteroaromatic rings).
  • Substituted heterocyclyls include, for example, heterocyclic rings substituted with any of the substituents disclosed herein including carbonyl groups.
  • a non- limiting example of a carbonyl substituted heterocyclyl is:
  • heterocycles include by way of example and not limitation pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4- piperidonyl, pyrrolidinyl, azetidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl,
  • carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline. ⁇ Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl,
  • nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3- pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazolone, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, IH- indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or ⁇ -carboline.
  • nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.
  • Heterocyclylene refers to a heterocyclyl, as defined herein, derived by replacing a hydrogen atom from a carbon atom or heteroatom of a heterocyclyl, with an open valence.
  • heteroarylene refers to an aromatic heterocyclylene.
  • Heterocyclylalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkylene- moiety).
  • Typical heterocyclyl alkyl groups include, but are not limited to heterocyclyl-CH ⁇ -, 2-
  • heterocyclyl (heterocyclyl)ethan-l-yl, and the like, wherein the "heterocyclyl” portion includes any of the heterocyclyl groups described above, including those described in Principles of Modern Heterocyclic Chemistry.
  • the heterocyclyl group can be attached to the alkyl portion of the heterocyclyl alkyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable.
  • the heterocyclyl alkyl group comprises 2 to 20 carbon atoms, e.g., the alkyl portion of the arylalkyl group comprises 1 to 6 carbon atoms and the heterocyclyl moiety comprises 1 to 14 carbon atoms.
  • heterocyclylalkyls include by way of example and not limitation 5-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as thiazolylmethyl, 2-thiazolylethan-l-yl, imidazolylmethyl, oxazolylmethyl, thiadiazolylmethyl, etc., 6-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyridinylmethyl, pyridizylmethyl, pyrimidylmethyl, pyrazinylmethyl, etc.
  • heterocycles such as thiazolylmethyl, 2-thiazolylethan-l-yl, imidazolylmethyl, oxazolylmethyl, thiadiazolylmethyl, etc.
  • 6-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyridinyl
  • Heterocyclylalkenyl refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, but also a sp 2 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl- alkenylene- moiety).
  • the heterocyclyl portion of the heterocyclyl alkenyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modern Heterocyclic Chemistry, and the alkenyl portion of the heterocyclyl alkenyl group includes any of the alkenyl groups disclosed herein.
  • heterocyclyl group can be attached to the alkenyl portion of the heterocyclyl alkenyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable.
  • the heterocyclyl alkenyl group comprises 2 to 20 carbon atoms, e.g., the alkenyl portion of the heterocyclyl alkenyl group comprises 1 to 6 carbon atoms and the heterocyclyl moiety comprises 1 to 14 carbon atoms.
  • Heterocyclylalkynyl refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, but also an sp carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkynylene- moiety).
  • the heterocyclyl portion of the heterocyclyl alkynyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modern Heterocyclic Chemistry, and the alkynyl portion of the heterocyclyl alkynyl group includes any of the alkynyl groups disclosed herein.
  • heterocyclyl group can be attached to the alkynyl portion of the heterocyclyl alkynyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable.
  • the heterocyclyl alkynyl group comprises 2 to 20 carbon atoms, e.g., the alkynyl portion of the heterocyclyl alkynyl group comprises 1 to 6 carbon atoms and the heterocyclyl moiety comprises 1 to 14 carbon atoms.
  • Heteroaryl refers to a monovalent aromatic heterocyclyl having at least one heteroatom in the ring.
  • suitable heteroatoms which can be included in the aromatic ring include oxygen, sulfur, and nitrogen.
  • suitable heteroatoms which can be included in the aromatic ring include oxygen, sulfur, and nitrogen.
  • suitable heteroaryl rings include all of those listed in the definition of "heterocyclyl", including pyridinyl, pyrrolyl, oxazolyl, indolyl, isoindolyl, purinyl, furanyl, thienyl, benzofuranyl, benzothiophenyl, carbazolyl, imidazolyl, thiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, quinolyl, isoquinolyl, pyridazyl, pyrimidyl, pyrazyl, etc.
  • Carbocycle or “carbocyclyl” refers to a saturated, partially unsaturated or aromatic ring having 3 to 7 carbon atoms as a monocycle, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle.
  • Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms.
  • Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicyclo (4,5), (5,5), (5,6) or (6,6) system, or 9 or 10 ring atoms arranged as a bicyclo (5,6) or (6,6) system.
  • Examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-l- enyl, l-cyclopent-2-enyl, l-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-l-enyl, 1- cyclohex-2-enyl, l-cyclohex-3-enyl, phenyl, etc.
  • Carbocydylene refers to a carbocyclyl or carbocycle as defined above having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent carbocyclyl.
  • Typical carbocydylene radicals include, but are not limited to, phenylene.
  • Arylheteroalkyl refers to a heteroalkyl as defined herein, in which a hydrogen atom (which may be attached either to a carbon atom or a heteroatom) has been replaced with an aryl group as defined herein.
  • the aryl groups may be bonded to a carbon atom of the heteroalkyl group, or to a heteroatom of the heteroalkyl group, provided that the resulting arylheteroalkyl group provides a chemically stable moiety.
  • an arylheteroalkyl group can have the general formulae -alkylene-O-aryl, -alkylene-O-alkylene-aryl, -alkylene-NH-aryl, -alkylene-NH- alkylene-aryl, -alkylene-S-aryl, -alkylene-S-alkylene-aryl, etc.
  • any of the alkylene moieties in the general formulae above can be further substituted with any of the substituents defined or exemplified herein.
  • Heteroarylalkyl refers to an alkyl group, as defined herein, in which a hydrogen atom has been replaced with a heteroaryl group as defined herein.
  • Non- limiting examples of heteroaryl alkyl include -CH2-pyridinyl, -CH ⁇ -pyrrolyl, -CH2- oxazolyl, -CH ⁇ -indolyl, -CH ⁇ -isoindolyl, -CH2-purinyl, -CH2-furanyl, -CH2-thienyl / - CH2-benzofuranyl, -CHa-benzothiophenyl, -CH2-carbazolyl / -CHb-imidazolyl, -CH2- thiazolyl, -CH ⁇ -isoxazolyl, -CH2-pyrazolyl, -CH ⁇ -isothiazolyl, -CH2-quinolyl, -CH2- isoquinolyl, -CH2-pyrid
  • esters in reference to a particular moiety of the compound of Formula I (e.g., an optionally substituted aryl group) refers to a moiety having 0, 1, 2, or more substituents.
  • "Ester thereof” means any ester of a compound in which any of the --COOH functions of the molecule is replaced by a -C(O)OR function, or in which any of the - OH functions of the molecule are replaced with a -OC(O)R function, in which the R moiety of the ester is any carbon-containing group which forms a stable ester moiety, including but not limited to alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl and substituted derivatives thereof.
  • Esters can also include esters - as described above - of "tautomeric enols", e.g. as shown below:
  • esters thereof includes but is not limited to pharmaceutically acceptable esters thereof.
  • chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • Enantiomers refer to two stereoisomers of a compound which are non- superimposable mirror images of one another.
  • d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory.
  • a compound prefixed with (+) or d is dextrorotatory.
  • these stereoisomers are identical except that they are mirror images of one another.
  • a specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • a 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
  • racemic mixture and racemate refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • protecting groups include prodrug moieties and chemical protecting groups.
  • Protecting groups are available, commonly known and used, and are optionally used to prevent side reactions with the protected group during synthetic procedures, i.e. routes or methods to prepare the compounds of the invention. For the most part the decision as to which groups to protect, when to do so, and the nature of the chemical protecting group "PG" will be dependent upon the chemistry of the reaction to be protected against ⁇ e.g., acidic, basic, oxidative, reductive or other conditions) and the intended direction of the synthesis. The PG groups do not need to be, and generally are not, the same if the compound is substituted with multiple PG. In general, PG will be used to protect functional groups such as carboxyl, hydroxyl, thio, or amino groups and to thus prevent side reactions or to otherwise facilitate the synthetic efficiency. The order of deprotection to yield free, deprotected groups is dependent upon the intended direction of the synthesis and the reaction conditions to be encountered, and may occur in any order as determined by the artisan.
  • protecting groups for -OH groups include “ether- or ester-forming groups”.
  • Ether- or ester-forming groups are capable of functioning as chemical protecting groups in the synthetic schemes set forth herein.
  • some hydroxyl and thio protecting groups are neither ether- nor ester-forming groups, as will be understood by those skilled in the art, and are included with amides, discussed below.
  • Ester-forming groups include: (1) phosphonate ester-forming groups, such as phosphonamidate esters, phosphorothioate esters, phosphonate esters, and phosphon-bis-amidates; (2) carboxyl ester-forming groups, and (3) sulphur ester- forming groups, such as sulphonate, sulfate, and sulfinate.
  • phosphonate ester-forming groups such as phosphonamidate esters, phosphorothioate esters, phosphonate esters, and phosphon-bis-amidates
  • carboxyl ester-forming groups such as sulphonate, sulfate, and sulfinate.
  • the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof.
  • Such products typically are identified by preparing a radiolabeled (e.g., C 14 or H 3 ) compound of the invention, administering it parenterally in a detectable dose (e.g., greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples.
  • a detectable dose e.g., greater than about 0.5 mg/kg
  • an animal such as rat, mouse, guinea pig, monkey, or to man
  • sufficient time for metabolism to occur typically about 30 seconds to 30 hours
  • isolating its conversion products from the urine, blood or other biological samples typically isolating its conversion products from the urine, blood or other biological samples.
  • the metabolite structures are determined in conventional fashion, e.g., by MS or NMR analysis.
  • the present application provides compounds according to Formula I or II, as described herein.
  • NR 4 R 5 is not: (1) a 4-substituted or 4,4- disubstiruted piperidine or piperazine (2) -NHCH3;
  • X 1 is alkylene or substituted alkylene; wherein the substituted alkylene comprises an alkylene substituted with one or more substituents selected from the group consisting of halo, hydroxyl, amino, heteroalkyl, substituted heteroalkyl, cyano, azido, nitro, alkyl, substituted alkyl, and combinations thereof.
  • m is 1.
  • L 1 is -CFI2- or -CFI2CH2-.
  • R 1 is independently -NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
  • R 1 is independently -NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 8- membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S; or a 8- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O 7 and S.
  • R 1 is independently -NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heteroaryl.
  • R 1 is independently -NR 4 R 5 ; and R 4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and R 5 is aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -C(O)OR 3 , or -C(O)NR 7 R 8 .
  • R 1 is independently -NR 4 R 5 ;
  • R 4 is H or carbocyclylalkyl; and
  • R 5 is alkyl, substituted alkyl, carbocyclylalkyl, or substituted carbocyclylalkyl.
  • D is arylene or heteroarylene.
  • L 2 is -O-.
  • -L 2 -R 2 is -OH.
  • L 2 is -O-; and R 2 is -C(O)R 6 , - C(O)OR 6 , -C(O)NR 7 R 8 , -S(O)OR 7 , -S(O)NR 7 R 8 , -S(O) 2 OR 7 , or -S(O) 2 NR 7 R 8 .
  • R 2 is -C(O)OCH 3 , -C(O)OCH 2 CH 3 , - C(O)OCH(CHs) 2 , -C(O)NHCH 3 , -C(O)NHCH 2 CH 3 , -C(O)NHCH(CH 3 ).
  • L 2 is -O-; and R 2 is alkyl, substituted alkyl, cyclylalkyl, substituted cyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
  • R 2 is methyl, ethyl, n-propyl, isopropyl, n-butyl, cyclopropyl, methylcyclopropyl, cyclopropylmethylene, benzyl, or methoxybezyl.
  • L 3 is -O-.
  • R 3 is alkyl, substituted alkyl, heteroalkyl, or substituted heteroalkyl.
  • -L 3 -R 3 is -O-alkyl or -O-alkylene- O-alkyl.
  • -L 3 -R 3 is -OCH2CH2OCH3 or -
  • R 4 and R 5 are not each simultaneously H or alkyl.
  • Formula I is represented by
  • R 1 is -NR 4 R 5 ;
  • R 2 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R 6 , - C(O)OR 6 , -C(O)NR 7 R 8 , -S(O) 2 OR 7 , or -S(O) 2 NR 7 R 8 ;
  • L 3 is -NH-, -O-, -S-, -N(R 9 )C(O)-, -S(O) 2 -, -S(O) -, or a covalent bond;
  • R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3 , -S(O) 2 R 3 , -C(O)OR 3 , or -
  • R 4 and R 5 taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
  • R 6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 7 and R 8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R 7 and R 8 , taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R 9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R 10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl,
  • R 1 is NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
  • R 1 is NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 8-membered monocyclic fully saturated, partially unsaturated, or heteroaryl ring containing at least one hetero atom selected from N, O, and S; or a 8- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
  • heterocycle is selected from the group consisting of:
  • R 1 is NR 4 R 5 ;
  • R 4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and
  • R 5 is carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -C(O)OR 3 , or -C(O)NR 7 R 8 .
  • R 4 is H, methyl, ethyl, n-propyl, iso- propyl, n-butyl, cyclopropyl, or cyclopropylmethylenyl
  • R 5 is phenyl, pyridinyl, - C(O)CH 3 , -C(O)OCH 3 , -C(O)CH 2 CH 3 , or -C(O)OCH 2 CH 3
  • R 1 is NR 4 R 5 ;
  • R 4 is H; and R 5 is alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl.
  • R 1 is independently -NR 4 R 5 ;
  • R 4 is H; and
  • R 5 is alkyl, substituted alkyl, carbocyclylalkyl, or substituted carbocyclylalkyl.
  • R 1 is independently -NR 4 R 5 ; R 4 is H; and R 5 is selected from the group consisting of
  • R 2 is H. In another embodiment of Formula Ia, R 2 is -C(O)R 6 , -C(O)OR 6 , -C(O)NR 7 R 8 , -
  • R 2 is -C(O)OCHs, -C(O)OCH 2 CHs, - C(O)OCH(CHs) 2 , -C(O)NHCH 3 , -C(O)NHCH 2 CH 3 , -C(O)NHCH(CHs) 2 .
  • R 2 is alkyl, substituted alkyl, cyclylalkyl, substituted cyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
  • R 2 is methyl, ethyl, n-propyl, isopropyl, n-butyl, cyclopropyl, methylcyclopropyl, cyclopropylmethylene, benzyl, or methoxybezyl.
  • L 3 is -O-.
  • -I ⁇ R 3 is -O-alkyl, -O-(substituted alkyl), -O-carbocyclyl, -O-heterocyclyl, -O-carbocyclylalkyl, -O-heterocyclylalkyl, or -O-alkylene-O-alkyl.
  • R 2 is H.
  • R 1 is NR 4 R 5 and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
  • -IAR 3 is -OCH 2 CH 2 OCH 3 , - OCH 2 CH 2 CH 2 CH 3 , -OCH 2 CH 2 CF 3 , -OCH 2 CF 2 CF 3 , -OCH 2 CH(CHs) 2 , -OCH 2 CF 3 ,
  • R 2 is H. It is further preferred that R 1 is NR 4 R 5 and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
  • R 1 is -NR 4 R 5 ;
  • R 2 is H, -C(O)R 6 , - C(O)OR 6 , -C(O)NR 7 R 8 , -S(O) 2 OR 7 , or -S(O) 2 NR 7 R 8 ;
  • L 3 is -O-;
  • R 3 is alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, heterocyclyl, carbocyclylalkyl, heterocyclylalkyl;
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3
  • R 4 and R 5 are not each simultaneously H or alkyl.
  • -IAR 3 is -OCH2CH2OCH3, -OCH2CH2CH3, -OCH2CH2CH2CH3, -Oi-butyl, -Oc-butyl, -Oc- pentyl, -OCH 2 c-propyl, -OCH 2 c-butyl, -OCH2CH 2 c-propyl, -OCH2CH2CH2CH2OH, - OCH2CF3, -OCH2CH2CF3, -OCH2CH2CH2CF3, or (tetrahydrofuran-2-yl)methoxy.
  • -IAR 3 is as defined immediately previously, R 2 is H, and R 1 is NR 4 R 5 and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
  • -L 3 -R 3 is -OCH 2 CH 2 CH 2 CH 3 , -OCH 2 CH 2 OCH 3 , -OCH 2 CH 2 CF 3 , -OCH 2 CH 2 CH 2 CH 2 OH, or - OCH ⁇ c-propyl.
  • -IAR 3 is as defined immediately previously, R 2 is H, and R 1 is NR 4 R 5 and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
  • -IAR 3 is -OCH 2 CH 2 CH 2 CH 3 .
  • Formula II is represented by Formula Ha:
  • R 1 is -NR 4 R 5 ;
  • R 2 is H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R 6 , -C(O)OR 6 , -C(O)NR 7 R 8 , -S(O) 2 OR 7 , or - S(O) 2 NR 7 R 8 ;
  • L 3 is -NH-, -O-, -S-, -N(R 9 )C(O)-, -S(O) 2 -, -S(O) -, or a covalent bond;
  • R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3 , -S(O) 2 R 3 , -C(O)OR 3 , or - C(O)NR 7 R 8 ; or
  • R 4 and R 5 taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle
  • R 6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 7 and R 8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R 7 and R 8 , taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R 9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R 10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl,
  • R 1 is NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstiruted heterocycle.
  • R 1 is NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstiruted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S; or a 10- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
  • heterocycle is selected from the group consisting of:
  • R 1 is NR 4 R 5 ;
  • R 4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and
  • R 5 is carbocyclyl, substituted carbocydyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -C(O)OR 3 , or -C(O)NR 7 R 8 .
  • R 2 is -C(O)R 6 , -C(O)OR 6 , -C(O)NR 7 R 8 , -S(O)OR 7 , -S(O)NR 7 R 8 , -S(O) 2 OR 7 , or -S(O) 2 NR 7 R 8 .
  • R 4 is H, methyl, ethyl, n-propyl, iso- propyl, n-butyl, cyclopropyl, or cyclopropylmethylenyl
  • R 5 is phenyl, pyridinyl, - C(O)CH 3 , -C(O)OCH 3 , -C(O)CH 2 CH 3 , or -C(O)OCH 2 CH 3 .
  • R 2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
  • R 2 is methyl, ethyl, n-propyl, isopropyl, n-butyl, allyl, cyclopropyl, methylcyclopropyl, cyclopropylmethylene, benzyl, or methoxybezyl.
  • L 3 is -O-.
  • -L 3 -R 3 is -O-alkyl or -O-alkylene-O- alkyl.
  • -I ⁇ R 3 is -OCH 2 CH 2 OCH 3 or - OCH 2 CH 2 CH 2 CH 3 .
  • R 1 is -NR 4 R 5 ;
  • R 2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, cyclylalkyl, substituted cyclylalkyl, cyclylalkylalkyl, substituted cyclylalkylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • L 3 is -O-;
  • R 3 is alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl; and
  • R 4 and R 5 taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
  • L 2 is a covalent bond, and R 2 is hydrogen or halogen. That is, Formula I is represented by Formula Ib: Ib wherein: R 1 is -NR 4 R 5 ; R 2 is H or halo;
  • L 3 is -NH-, -O 7 -S-, -N(R 9 )C(O)-, -S(O) 2 -, -S(O) -, or a covalent bond;
  • R 3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
  • R 4 and R 5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R 3 , -S(O)R 3 , -S(O) 2 R 3 , -C(O)OR 3 , or -
  • R 10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 4;
  • R 1 is NR 4 R 5 ; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
  • the heterocycle can be selected from the group consisting of:
  • -L 3 -R 3 is -O-alkyl or -O-alkylene-O-alkyl.
  • -I ⁇ R 3 is -OCH2CH2OCH3 or -OCH2CH2CH2CH3.
  • R 1 is NR 4 R 5 ; -L 3 -R 3 is -O-alkyl or -O- alkylene-O-alkyl; and R 4 and R 5 , taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
  • the compound is selected from the group consisting of:
  • the present application provides compounds according to Formula Ia:
  • -I ⁇ R 3 is -OCH 2 CH 2 OCH 3 , -OCH 2 CH 2 CH 3 , -OCH 2 CH 2 CH 2 CH 3 , -Oi-butyl, -Oc- butyl, -Oc-pentyl, -OCH 2 c-propyl, -OCH ⁇ c-butyl, -OCH 2 CH 2 C- propyl, -OCH 2 CH 2 CH 2 CH 2 OH, -OCH 2 CF 3 , -
  • -L 3 -R 3 is -
  • -IAR 3 is -OCH 2 CH 2 CH 2 CH 3 , -OCH 2 CH 2 OCH 3 , -OCH 2 CH 2 CF 3 , -OCH 2 CH 2 CH 2 CH 2 OH, or - OCH 2 c-propyl.
  • -IAR 3 is -OCH 2 CH 2 CH 2 CH 3 .
  • R 4 and R 5 taken together with the nitrogen to which they are both attached form a heterocycle selected from the group consisting of:
  • the compounds of Formula I and II are named below in tabular format (Table 5) as compounds of general Formula III:
  • Tl, T2, T3 and T4 moieties
  • Tables A-D show, respectively, the structures of the Tl, T2, T3 and T4 moieties, with the point(s) of attachment to neighboring moieties.
  • Each moiety Tl, T2, T3 and T4 in Tables A-D is represented by a "code” comprising letters and numbers.
  • Each structure of a compound of Formula III can be designated in tabular form by combining the "code" representing each structural moiety using the following syntax: T1.T2.T3.T4.
  • T1A.T2A.T3A.T4A represents the following structure:
  • X, A, Y, and Z are defined in Tables 6-9, below.
  • Each compound is designated in tabular form by combining the "code” representing each structural moiety using the following syntax: X.A.Y.Z.
  • Xl .Al .Yl .Zl represents the following structure:
  • Table 10 List of Compound Structures of Formula III Xl.Al.Yl.Zl, Xl.Al.Yl.Z2, Xl.Al.Yl.Z3, Xl.Al.Yl.Z4, Xl.Al.Yl.Z5, Xl.Al.Yl.Z6, Xl.Al.Yl.Z7, Xl.Al.Yl.Z8, X1.A1.Y2.Z1, X1.A1.Y2.Z2, X1.A1.Y2.Z3, X1.A1.Y2.Z4, X1.A1.Y2.Z5, X1.A1.Y2.Z6, X1.A1.Y2.Z7, X1.A1.Y2.Z8, X1.A1.Y3.Z1, X1.A1.Y3.Z2, X1.A1.Y3.Z3, X1.A1.Y3.Z4, X1.A1.Y3.Z5, X1.A1.Y3.Z6, X1.A1.Y3.Z7, X1.A1.Y3.Z
  • compositions are formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice. Tablets will contain excipients, glidants, fillers, binders and the like. Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the Handbook of Pharmaceutical Excipients (1986), herein incorporated by reference in its entirety. Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like. The pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.
  • the formulations of the invention both for veterinary and for human use, comprise at least one active ingredient, together with one or more acceptable carriers and optionally other therapeutic ingredients.
  • the carrier(s) must be "acceptable” in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.
  • the formulations include those suitable for the foregoing administration routes.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
  • Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
  • Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion.
  • the active ingredient may also be administered as a bolus, electuary or paste.
  • a tablet is made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient.
  • a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent.
  • the tablets may optionally be coated or scored and optionally are formulated so
  • the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc.), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w.
  • the active ingredients may be employed with either a paraffinic or a water-miscible ointment base.
  • the active ingredients may be formulated in a cream with an oil-in-water cream base.
  • the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof.
  • the topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulphoxide and related analogs.
  • the oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat.
  • Emulgents and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
  • the choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties.
  • the cream should preferably be a non-greasy, non- staining and washable product with suitable consistency to avoid leakage from tubes or other containers.
  • Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters.
  • compositions according to the present invention comprise one or more compounds of the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents.
  • Pharmaceutical formulations containing the active ingredient may be in any form suitable for the intended method of administration. When used for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs may be prepared.
  • compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation.
  • Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable.
  • excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as cellulose, microcrystalline cellulose, starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.
  • inert diluents such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmel
  • Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as peanut oil, liquid paraffin or olive oil.
  • Aqueous suspensions of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • Such excipients include a suspending agent, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate).
  • a suspending agent such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyr
  • the aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-hydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.
  • Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
  • the oral suspensions may contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents, such as those set forth herein, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.
  • Dispersible powders and granules of the invention suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present.
  • the pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions.
  • the oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these.
  • Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate.
  • the emulsion may also contain sweetening and flavoring agents. Syrups and elixirs may be formulated with sweetening agents, such as glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.
  • compositions of the invention may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension.
  • a sterile injectable preparation such as a sterile injectable aqueous or oleaginous suspension.
  • This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned herein.
  • the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butane-diol or prepared as a lyophilized powder.
  • a non-toxic parenterally acceptable diluent or solvent such as a solution in 1,3-butane-diol or prepared as a lyophilized powder.
  • acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile fixed oils may conventionally be employed as a solvent or suspending medium.
  • any bland fixed oil may be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid may likewise be used in the preparation of injectables.
  • the amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
  • a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weightrweight).
  • the pharmaceutical composition can be prepared to provide easily measurable amounts for administration.
  • an aqueous solution intended for intravenous infusion may contain from about 3 to 500 ⁇ g of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
  • Formulations suitable for administration to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient.
  • the active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% particularly about 1.5% w/w.
  • Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
  • Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 ⁇ m (including particle sizes in a range between 0.1 and 500 ⁇ m in increments such as 0.5 ⁇ m, 1 ⁇ m, 30 ⁇ m, 35 ⁇ m, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs.
  • Suitable formulations include aqueous or oily solutions of the active ingredient.
  • Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of infections as described herein.
  • Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.
  • Formulations suitable for parenteral administration include aqueous and nonaqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use.
  • Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described.
  • Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
  • formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
  • the invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier.
  • Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route. Compounds of the invention can also be formulated to provide controlled release of the active ingredient to allow less frequent dosing or to improve the pharmacokinetic or toxicity profile of the active ingredient. Accordingly, the invention also provided compositions comprising one or more compounds of the invention formulated for sustained or controlled release.
  • the effective dose of an active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylacrically (lower doses) or against an active disease or condition, the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies.
  • the effective dose can be expected to be from about 0.0001 to about 10 mg/kg body weight per day, typically from about 0.001 to about 1 mg/kg body weight per day, more typically from about 0.01 to about 1 mg/kg body weight per day, even more typically from about 0.05 to about 0.5 mg/kg body weight per day.
  • the daily candidate dose for an adult human of approximately 70 kg body weight will range from about 0.05 mg to about 100 mg, or between about 0.1 mg and about 25 mg, or between about 0.4 mg and about 4 mg, and may take the form of single or multiple doses.
  • compositions comprising a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and a pharmaceutically acceptable carrier or exipient.
  • compositions comprising a compound of Formula I, Ia, Ib, II, Ha, HI, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent, and a pharmaceutically acceptable carrier or exipient.
  • compositions comprising a compound of Formula I, Ia, Ib, II, Ila, HI, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent, and a pharmaceutically acceptable carrier or exipient.
  • additional active agent also include, but are not limited to interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • one or more compounds of the present invention may be combined with one or more compounds selected from the group consisting of:
  • interferons selected from the group consisting of pegylated rlFN-alpha 2b (PEG-Intron), pegylated rlFN-alpha 2a (Pegasys), rlFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG-
  • ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
  • HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
  • alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof; (5) hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof;
  • nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of R1626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
  • non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
  • HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
  • TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof;
  • cyclophillin inhibitors selected from the group consisting of DEBIO-025,
  • HCV IRES inhibitors selected from the group consisting of MCI-067,
  • pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and (13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BF/N-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (
  • the present application provides a combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of Formula I, Ia, Ib, II, Ua, in, or IV, or a pharmaceutically acceptable salt, solvate, or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • a first pharmaceutical composition comprising a compound of Formula I, Ia, Ib, II, Ua
  • One or more compounds of the invention are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with for example the condition of the recipient.
  • An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.
  • the compounds of the present invention are used in combination with other active therapeutic ingredients or agents.
  • Combinations of the compounds of Formula I, Ia, Ib, II, Ha, III, or IV, and additional active agents may be selected to treat patients with a viral infection, e.g., HBV, HCV, or HIV infection.
  • the other active therapeutic ingredients or agents are interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • HCV NS3 protease inhibitors alpha-glucosidase 1 inhibitors
  • hepatoprotectants nucleoside or nucleotide inhibitors of HCV NS5B polymerase
  • non-nucleoside inhibitors of HCV NS5B polymerase HCV NS5A inhibitors
  • TLR-7 agonists cyclophillin inhibitors
  • Combinations of the compounds of Formula I, Ia, Ib, II, Ha, in, or IV are typically selected based on the condition to be treated, cross-reactivities of ingredients and pharmaco-properties of the combination.
  • an infection e.g., HCV
  • the compositions of the invention are combined with other active agents (such as those described herein).
  • Suitable active agents or ingredients which can be combined with the compounds of Formula I, Ia, Ib, II, Ila, in, or IV can include one or more compounds selected from the group consisting of:
  • interferons selected from the group consisting of pegylated rIFN-alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative,
  • interferon alfacon-1 Infergen
  • interferon alpha-nl Wellferon
  • interferon alpha-n3 Alferon
  • interferon-beta Avonex, DL-8234
  • interferon-omega omega DUROS, Biomed 510
  • albinterferon alpha-2b Albuferon
  • IFN alpha-2b XL IFN alpha-2b XL
  • BLX-883 Licteron
  • DA-3021 glycosylated interferon alpha-2b (AVI-005)
  • PEG- Infergen PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof;
  • ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
  • HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof; (4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof;
  • hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof;
  • nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of R1626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
  • non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
  • HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
  • TLR-7 agonists selected from the group consisting of ANA-975, SM-
  • cyclophillin inhibitors selected from the group consisting of DEBIO-025, SCY-635, NIM811, and mixtures thereof;
  • HCV IRES inhibitors selected from the group consisting of MCI-067
  • pharmacokinetic enhancers selected from the group consisting of BAS-
  • VGX-410C EMZ-702, AVI 4065, BMS-650032, BMS-791325, Baviruximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
  • compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent, and a pharmaceutically acceptable carrier or exipient.
  • the active agent used in combination with the compound of the present invention can be any agent having a therapeutic effect when used in combination with the compound of the present invention.
  • the active agent used in combination with the compound of the present invention can be interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • the present application provides pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent selected from the group consisting
  • interferons selected from the group consisting of pegylated rIFN-alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVf-005), PEG
  • PEGylated interferon lambda-1 PEGylated IL-29
  • belerofon and mixtures thereof
  • ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
  • HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-T), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-101, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
  • alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof;
  • hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof;
  • nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of Rl 626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
  • non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708,
  • HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
  • TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof;
  • cyclophillin inhibitors selected from the group consisting of DEBIO-025, SCY-635, NIM811, and mixtures thereof;
  • HCV IRES inhibitors selected from the group consisting of MCI-067,
  • pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and (13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (mer
  • the present application provides a combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • a first pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, or ester thereof
  • a second pharmaceutical composition compris
  • any compound of the invention with one or more other active agents in a unitary dosage form for simultaneous or sequential administration to a patient.
  • the combination therapy may be administered as a simultaneous or sequential regimen.
  • the combination When administered sequentially, the combination may be administered in two or more administrations.
  • Co-administration of a compound of the invention with one or more other active agents generally refers to simultaneous or sequential administration of a compound of the invention and one or more other active agents, such that therapeutically effective amounts of the compound of the invention and one or more other active agents are both present in the body of the patient.
  • Co-administration includes administration of unit dosages of the compounds of the invention before or after administration of unit dosages of one or more other active agents, for example, administration of the compounds of the invention within seconds, minutes, or hours of the administration of one or more other active agents.
  • a unit dose of a compound of the invention can be administered first, followed within seconds or minutes by administration of a unit dose of one or more other active agents.
  • a unit dose of one or more other active agents can be administered first, followed by administration of a unit dose of a compound of the invention within seconds or minutes.
  • the combination therapy may provide "synergy" and "synergistic effect", i.e.
  • a synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen.
  • a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g., in separate tablets, pills or capsules, or by different injections in separate syringes.
  • an effective dosage of each active ingredient is administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together.
  • the present application provides for methods of treating a viral infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
  • the present application provides for methods of treating a viral infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active agent.
  • the present application provides for methods of treating HCV in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or FV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
  • the present application provides for methods of treating HCV in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or FV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active agent which inhibits HCV polymerase.
  • the present application provides for methods of treating HCV in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
  • additional active agent selected from the group consisting of interferons, ribavirin or its analogs,
  • the present application provides for the use of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, for the preparation of a medicament for treating a viral infection, e.g., an HBV/HCV infection.
  • a viral infection e.g., an HBV/HCV infection.
  • the present application provides a method for treating or preventing a viral infection comprising co-administering, to a patient in need thereof, a therapeutically effective amount of at least one compound of
  • interferons selected from the group consisting of pegylated rlFN- alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative,
  • interferon alfacon-1 Infergen
  • interferon alpha-nl Wellferon
  • interferon alpha-n3 Alferon
  • interferon-beta Avonex, DL-8234
  • interferon-omega omega DUROS, Biomed 510
  • albinterferon alpha-2b Albuferon
  • IFN alpha-2b XL IFN alpha-2b XL
  • BLX-883 Licteron
  • DA-3021 glycosylated interferon alpha-2b (AVI-005)
  • PEG- Infergen PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof;
  • ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
  • HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
  • alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof; (5) hepatoprotectants selected from the group consisting of IDN-6556, ME
  • nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of Rl 626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
  • non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708,
  • HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
  • TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof;
  • cyclophillin inhibitors selected from the group consisting of DEBIO-025, SCY-635, NIM811, and mixtures thereof;
  • HCV IRES inhibitors selected from the group consisting of MCI-067,
  • pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof;
  • the present application provides a method for modulating toll-like receptor 7, comprising contacting a cell having a toll-like receptor 7 with an effective amount of a compound of Formula I, Ia, Ib, II, Ha, HI, or rv or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
  • modulating refers to contacting the toll-like receptor 7 with a compound of Formula I, Ia, Ib, ⁇ , III, or IV which is e.g., an agonist or partial agonist of toll-like receptor 7.
  • the present application provides a method for inducing interferon (or IFN-a) production in a patient in need thereof, comprising administering to the patient, a therapeutically effective amount of at least one compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
  • Examples B, C, D, E, F, G, H, I, J, K, L, M, and N were prepared using procedures similar to those used to prepare Example A except that pyrrolidine was replaced with the appropriate amine for each of these examples.
  • Examples R, S, T, U, and V were prepared using procedures similar to those used to prepare Example Q except that ethyl chloroformate was replaced with isopropyl chloroformate and the appropriate starting material was utilized for each of these examples.
  • Example W was prepared from Compound 6 using procedures similar to those used to prepare Example A.
  • Example D (40 mg, 0.100 mmol) was dissolved in dichloromethane (2 mL) and cooled to 0 0 C. Diisopropylethylamine (0.1 mL) and then methanesulfonyl chloride (0.012 mL, 0.154 mmol) was added sequentially. After stirring for 1 hour at 0 0 C, the reaction mixture was quenched with water (1 mL) and evaporated to dryness. Purification by reverse phase preparative HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example X (23 mg).
  • Example A (30 mg, 0.075 mmol) was dissolved in dichloromethane (2 mL). Diisopropylethylamine (0.1 mL) and then ethyl isocyanate (0.05 mL) was added. After stirring at ambient temperature overnight, the reaction mixture was evaporated to dryness under vacuum. Purification by reverse phase preparative HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example Y (23 mg) as a white solid as the HCl salt.
  • Example D (40 mg, 0.10 mmol) was dissolved in dichloromethane (2 mL). N,N-diisopropylethylamine (0.1 mL) was added and the mixture was cooled to 0 0 C. Ethylchloroformate (0.021 mL, 0.22 mmol) was added. After stirring for 30 minutes, the reaction was quenched with water and concentrated under vacuum. Purification by preparative reverse phase HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example Z (17 mg) as a white solid.
  • Example D (40 mg, 0.10 mmol) was dissolved in dichloromethane (2 mL). N,N-diisopropylethylamine (0.1 mL) was added and then ethyl isocyanate (0.05 mL).
  • Example AB (6.5 mg) as white solids.
  • Example AA 1 H-NMR (DMSO) ⁇ : 9.93 (s, IH), 7.30-7.09 (m, 4H), 6.44 (br, 2H), 6.30
  • the crude product (11) was dissolved in methanol (1 mL) and acetic acid (0.5 mL). Pyrrolidine (0.1 mL) was added followed by sodium triacetoxy borohydride (100 mg). The mixture was stirred for 1 hour at ambient temperature and then evaporated to dryness. The residue was dissolved in aqueous HCl/acetonitrile and purified by preparative reverse phase HPLC (5-60% acetonitrile/40 mM aqueous HCl) which gave Example AC (9 mg) as the HCl salt as a colorless glass.
  • Example AD was prepared from Compound 13 using procedures similar to those used to prepare Example AC except that Compound 10 was replaced with Compound 13.
  • Examples AE, AF, AG and AH were prepared using procedures similar to those used to prepare Example AD except that the appropriate iodide was used during the 7-N alkylation step to make the corresponding compounds.
  • Example AI was prepared using the procedures shown in Scheme 12, and similar to those used to prepare Example AC.
  • the spectral data of the intermediates and Example AC are shown below.
  • Example AJ was prepared using the procedures shown in scheme 13, and similar to those used to prepare Example AC.
  • the spectral data of the intermediates and Example AJ are listed below.
  • Example AK and Example AL were prepared using the procedures shown in Scheme 14, and similar to those used to prepare Example AC.
  • the bromide (23) used in the first step was made by treating the corresponding benzenemethyl compound with NBS in acetonitrile at room temperature or at 40 0 C.
  • the spectral data of intermediates and Example AK and Example AL are listed below.
  • Example AM was prepared using the procedures shown in Scheme 15, and similar to the procedures used to prepare Example AC.
  • the spectral data of the intermediates and Example AM are listed below.
  • Example AN was prepared using the procedures shown in Scheme 16, and similar to those used to prepare Example AC.
  • the spectral data of intermediates and Example AN are listed below.
  • Example AO was prepared using procedures similar to those used to prepare Example AM (Scheme 15), except that in the first step, l-bromo-(3- cyanophenyl)ethane was used to alkylate Compound 1. The product obtained from the first step was then taken through the remaining steps described in Scheme 15 to give Example AO. l-Bromo-(3-cyanophenyl)ethane was synthesized using a two- step procedure by fisrt reducing 3-acetylbenzonitrile to l-(3-cyanophenyl)-ethanol, followed by conversion to l-bromo-(3-cyanophenyl)ethane.
  • Examples AP, AQ, AR, and AS were prepared using procedures similar to those used to prepare Example AN (Scheme 16) by using an appropriate bromide in the first alkylation step.
  • Na(CN)3BH was used instead of Na(OAc)3BH during the reductive amination.
  • the structure and spectral data of these compounds are listed below.
  • Example AT was prepared using procedures similar to those used to prepare Example W except that NMP was used as the solvent and different alcohols were used instead of butanol.
  • Example AT the first step was conducted at 200 °C.
  • Example AX was prepared using procedures similar to those used to prepare
  • Example AC except Compound 1 was replaced with Compound 6.
  • Examples AY, AZ and BA were prepared using the procedures similar to those used to prepare Example A, except that pyrrolidine was replaced with an appropriate amine. For example, pyrrolidine was replaced with cyclohexylmethanamine in Example AZ.
  • Example AY
  • Examples BE and BF were prepared using procedures similar to those used to prepare Example BD, except that the appropriate amine was used for different examples and that the reductive amination step to make example BF was conducted at 80 ° C.
  • Example BE 1 H NMR PMSO ⁇ : 0.88 (t, 3H), 1.33-1.40 (m, 2H), 1.59-1.68 (m, 2H), 2.26-2.38 (m, 2H), 3.87-3.99 (m, 4H), 4.28 (t, 2H), 4.91 (s, 2H), 7.30-7.42 (m, 4H), 11.01 (bs, IH), 11.13 (s, IH); MS: 383 (MH + ).
  • Example BG was prepared from Compound 34 using procedures similar to those used to prepare Example AI.
  • IH NMR 300 MHz 7 d 6 DMSO
  • MS 397 (MH + ).
  • Example BH was prepared using procedures similar to those used to prepare
  • Example BG except that 3,3,3-trifluoropropan-l-ol was used in the first step and that the mixture reacted in a sealed tube at 94 0 C for 2.5h.
  • Example BJ was prepared using procedures similar to those used to prepare
  • Example BG except that tetrahydrofuran-3-ol was used in the first step and the reaction mixture was reacted at 94 0 C for 2hrs.
  • Example BK was prepared using procedures similar to those used to prepare Example BG, except that (tetrahydrofuran-2-yl)methanol was used in the first step and that the reaction mixture reacted in a sealed tube at 94 "C for 2hrs.
  • Example BL was prepared using procedures similar to those used to prepare Example BG, except that 2,2,3,3,3-pentafluropropanol was used in the first step and that the reaction mixture reacted in a sealed tube at 95 0 C for 9 hrs.
  • Example BM was prepared using procedures similar to those used to prepare
  • Example BG except that cyclopentanol was used in the first step.
  • Example BN was prepared using procedures similar to those used to prepare Example A, except that Compound 2 was reacted directly with 1-methylpiperazine (i.e., bromination of the 8-position of the puring ring was not carried out).
  • Example BO was prepared using procedures similar to those used to prepare Example A, except that Compound 2 was reacted directly with pyrrolidine (and bromination of the 8-position of the puring ring was not carried out).
  • Examples BP, BQ, BR, BS, and BT were prepared using procedures similar to those used to prepare Example A except that pyrrolidine was replaced with the appropriate amine for each of these examples.
  • Example AC except that 4-(bromomethyl)benzonitrile is used to alkylate Compound 1 instead of S- ⁇ romomethytybenzonitrile, and subsequently, the corresponding analog of Compound 8 was hydrolyzed to 4-((6-amino-8-hydroxy-2-(2- methoxyethoxy)-9H-purin-9-yl)methyl)benzonitrile without reaction with ethyl iodide, and the corresponding 4-((6-amino-8-hydroxy-2-(2-methoxyethoxy)-9H- purin-9-yl)methyl)benzaldehyde was the reacted with pyrrolidine.
  • HEK293 cells stably transfected with the human TLR7 gene and a pNiFtyTM NF-kB inducible luciferase reporter plasmid were obtained from Invivogen (San Diego, CA).
  • DMEM/F12 medium, fetal bovine serum (FBS), Penicillin-Streptomycin (Pen-Strep), Blasticidin and Zeocine were from Invitrogen (Carlsbad, CA).
  • the HEK293/TLR7/Luciferase cell line was constructed by transfecting stably the HEK293/TLR7 cells with the pNiFty plasmid. Cells were grown in the DMEM/F12 medium with 10% heat-inactivated FBS, supplemented with IX Pen-Strep, 10 ⁇ g/mL Blasticidin and 5 ⁇ g/mL Zeocin.
  • EC50 and Emax values of TLR7 agonists in the reporter assay 20 ⁇ L of 2X test concentration of serial diluted compound in cell culture medium was added to each well of a white, clear-bottomed 384-well cell culture plate from Corning (Corning, NY). To this plate, 20 ⁇ L of cell culture medium containing 12,000 HEK293/TLR7/Luciferase cells was dispensed to each well. The plate was then placed in incubator (37 °C and 5% CO2) and incubated for 2 days. After the incubation, 40 ⁇ L of the pre-mixed lysis buffer/luciferase substrate solution was dispensed into each well.
  • the lysis buffer (5X) and luciferase substrate was obtained from Promega (Madison, WI) and they were mixed at 2:3 (v/v) ratio immediately prior to use. After 10 minutes of incubation at room temperature, the luminescence signal was measured using a VictorLight plate reader (Perkin Elmer, Wellesley, MA) with an integration time of 0.1 seconds per sample.
  • the compounds of the present invention have HCV EC50 values ( ⁇ M) in the range of about 0.01 to about 1000, or about 0.1 to about 500, or about 0.1 to about 300, or about 0.1 to about 200, or about 0.1 to about 100, or about 0.1 to about 50, or less than about 500, or less than about 400, or less than about 300, or less than about 200, or less than about 100, or less than about 50, or less than about 20, or less than about 10.
  • HCV EC50 values ⁇ M in the range of about 0.01 to about 1000, or about 0.1 to about 500, or about 0.1 to about 300, or about 0.1 to about 200, or about 0.1 to about 100, or about 0.1 to about 50, or less than about 500, or less than about 400, or less than about 300, or less than about 200, or less than about 100, or less than about 50, or less than about 20, or less than about 10.
  • Assays were conducted to determine cytokine stimulation at 24 hours from human Peripheral Blood Mononuclear Cell (PMBC) using the compounds of the present invention. The assays were run in duplicate, with 8-point, half-log dilution curves. The compounds of the present invention were diluted from 10 ⁇ M DMSO solution. Cell supernatants are assayed directly for IFN ⁇ and 1:10 dilution for
  • TNF ⁇ TNF ⁇ .
  • the assays were performed in a similar fashion as described in Bioorg. Med. Chem. Lett. 16, 4559, (2006). Specifically, cryo-preserved PBMCs were thawed and seeded 96 well plates with 750,000 cells/well in 190 ⁇ L/well cell media. The PBMCs were then incubated for 1 hour at 37 0 C at 5% CO2. Then, the compounds of the present invention were added in lO ⁇ L cell media at 8 point, half -log dilution titration.
  • the compounds of the present invention have IFN ECmax values (nM) in the range of about 0.1 to about 10,000, or about 0.1 to about 1,000, or about 0.1 to about 300, or about 0.1 to about 100, or about 0.1 to about 10, or about 0.1 to about 5, or about 0.1 to about 1, or less than about 5000, or less than about 3000, or less than about 1000, or less than about 500, or less than about 400, or less than about 300, or less than about 200, or less than about 100, or less than about 50, or less than about 20, or less than about 10, or less than about 5, or less than about 1.
  • Examples A, C, D, F, J, N, R, W, Y, AI, AJ, AQ, AS, AU, AV, AW, AZ, BE, BG, BH, and BM have IFN ECmax values (nM) of less than about 5.

Abstract

The present application includes purine compounds of Formula I or II: or a pharmaceutically acceptable salt, solvate, and/or ester thereof, compositions containing such compounds, therapeutic methods that include the administration of such compounds, and therapeutic methods that include the administration of such compounds with at least one additional active agent. Said compounds are used as modulators of Toll -like receptor 7.

Description

PURINE DERIVATIVES AND THEIR USE AS MODULATORS OF TOLL-LIKE RECEPTOR 7
FIELD OF THE INVENTION
This application relates generally to compounds and pharmaceutical compositions which selectively activates toll-like receptor 7 (TLRT), and methods of making and using them.
BACKGROUND OF THE INVENTION
The innate immune system provides the body with a first line defense against invading pathogens. In an innate immune response, an invading pathogen is recognized by a germline-encoded receptor, the activation of which initiates a signaling cascade that leads to the induction of cytokine expression. Innate immune system receptors have broad specificity, recognizing molecular structures that are highly conserved among different pathogens. One family of these receptors is known as Toll-like receptors (TLRs), due to their homology with receptors that were first identified and named in Drosophila, and are present in cells such as macrophages, dendritic cells, and epithelial cells.
There are at least ten different TLRs in mammals. Ligands and corresponding signaling cascades have been identified for some of these receptors. For example, TLR2 is activated by the lipoprotein of bacteria (e.g., E. coli.), TLR3 is activated by double-stranded RNA, TLR4 is activated by lipopolysaccharide (i.e., LPS or endotoxin) of Gram-negative bacteria (e.g., Salmonella and E. coli O157:H7), TLR5 is activated by flagellin of motile bacteria (e.g., Listeria), TLR7 recognizes and responds to imiquimod and TLR9 is activated by unmethylated CpG sequences of pathogen DNA. The stimulation of each of these receptors leads to activation of the transcription factor NF-κB, and other signaling molecules that are involved in regulating the expression of cytokine genes, including those encoding tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-I), and certain chemokines.
SUMMARY OF THE INVENTION
The present invention is based, in part, on the discovery by the applicants that a number of small molecules can alter TLR-mediated immunostimulatory signaling. Accordingly, the present application is directed to compounds and pharmaceutical compositions, and methods for use in preventing or treating diseases or conditions associated with Toll-like receptor 7 (TLR7) activity in patients. In one embodiment, the invention comprises a compound of formula I or II:
Figure imgf000003_0001
I II or a pharmaceutically acceptable salt thereof, wherein: X1 is -NH-, -O-, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, carbocyclylene, substituted carbocyclylene, heterocyclylene, or substituted heterocyclylene;
D is carbocyclylene or heterocyclylene; each L1 is independently alkylene or substituted alkylene; each R1 is independently -NR4R5; m is 1 or 2; L2 is a covalent bond, -NH-, -O-, or -S-; R2 is H, halo, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)OR7, -S(O)NR7R8, -S(O)2R7, -S(O)R7,
-S(O)2OR7, or -S(O)2NR7R8;
L3 is -NH-, -O-, -S-, -N(R9)C(O) -, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocydylalkyl, or substituted heterocyclylalkyl;
R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 5; and with the following proviso: (a) When X1 is -CH2-, D is 1,4-phenylene, R3-L3- is CH3CH2CH2CH2O- or CH3-
0-CH2CH2-O, n=0, m=l, then NR4R5 is not: (1) a 4-substituted or 4,4- disubstiruted piperidine or piperazine (2) -NHCH3;
(b) When X1 is -CH2-, D is 1,4-phenylene or 1,4-piperidinylene, R3-L3- is CH3CH2CH2CH2O- or CH3-O-CH2CH2-O, n=0, m=l, then neither R4 nor R5 are substituted alkyl, substituted heterocycyl, or substituted benzyl; and
(c) When X1 is -CH2-, D is 2,5-pyridylene, R3-L3- is CH3CH2CH2CH2O- or CH3- 0-CH2CH2-O, n=0, m=l, then NR4R5 is not pyrrolyl, piperazyl, or N(CHs)2.
In another embodiment, Formula I can be represented by Formula Ia:
Figure imgf000005_0001
Ia or a pharmaceutically acceptable salt thereof, wherein: R1 is -NR4R5;
R2 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, - C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8; L3 is -NH-, -O-, -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocydylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 4.
In another embodiment, Formula II can be represented by Formula Ha:
Figure imgf000007_0001
Ha or a pharmaceutically acceptable salt thereof, wherein: R1 is -NR4R5;
R2 is H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or - S(O)2NR7R8;
L3 is -NH-, -O-, -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocydyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or
R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle;
R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is 0, 1, 2, or 3.
In another embodiment, the present application provides for a pharmaceutical composition comprising at least one compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; and a pharmaceutically acceptable carrier or excipient.
In another embodiment, the present application provides for a pharmaceutical composition comprising at least one compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; at least one additional active agent; and a pharmaceutically acceptable carrier or exipient.
In another embodiment, the present application provides for a method for treating or preventing a viral infection comprising administering, to a patient in need thereof, a therapeutically effective amount of at least one compound of
Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
In another embodiment, the present application provides for a combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of Formula I or II, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
DETAILED DESCRIPTION Reference will now be made in detail to certain claims of the invention, examples of which are illustrated in the accompanying structures and formulas. While the invention will be described in conjunction with the enumerated claims, it will be understood that they are not intended to limit the invention to those claims. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalents, which may be included within the scope of the present invention as defined by the claims.
All documents referenced herein are each incorporated by reference in their entirety for all purposes. Definitions
Unless stated otherwise, the following terms and phrases as used herein are intended to have the following meanings: When trade names are used herein, applicants intend to independently include the tradename product and the active pharmaceutical ingredient(s) of the tradename product.
As used herein, "a compound of the invention" or "a compound of formula I or II" means a compound of formula I or π, or a pharmaceutically acceptable salt, solvate, ester or physiologically functional derivative thereof. Compounds of the invention also include tautomeric forms thereof, e.g., tautomeric "enols" as described herein. Similarly, with respect to isolatable intermediates such as for example, compounds of formula (2), the phrase "a compound of formula (number)" means a compound of that formula and pharmaceutically acceptable salts, solvates and physiologically functional derivatives thereof.
"Alkyl" is hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. For example, an alkyl group can have 1 to 20 carbon atoms (i.e, C1-C20 alkyl), 1 to 10 carbon atoms (i.e., C1-C10 alkyl), or 1 to 6 carbon atoms (i.e., C1-C.6 alkyl). Examples of suitable alkyl groups include, but are not limited to, methyl (Me, -CHs), ethyl (Et, -CH2CH3), 1-propyl (n-Pr, n-propyl, -CH2CH2CH3), 2-propyl (i-Pr, i-propyl, -CH(CHs)2), 1-butyl (n-Bu, n-butyl, -CH2CH2CH2CH3), 2-methy 1-1 -propyl (i- Bu, i-butyl, -CH2CH(CHs)2), 2-butyl (s-Bu, s-butyl, -CH(CH3)CH2CH3), 2-methyl-2- propyl (t-Bu, t-butyl, -C(CHs)3), 1-pentyl (n-pentyl, -CH2CH2CH2CH2CH3), 2-pentyl (-CH(CH3)CH2CH2CHs), 3-pentyl (-CH(CH2CHs)2), 2-methyl-2-butyl (-C(CHs)2CH2CHs), 3-methyl-2-butyl (-CH(CH3)CH(CHs)2), 3-methyl- 1-butyl (-CH2CH2CH(CHs)2), 2-methyl-l-butyl (-CH2CH(CHs)CH2CH3), 1-hexyl (-CH2CH2CH2CH2CH2CHS), 2-hexyl (-CH(CHS)CH2CH2CH2CH3), 3-hexyl (- CH(CH2CH3)(CH2CH2CHS)), 2-methyl-2-pentyl (-C(CHs)2CH2CH2CHs), 3-methyl-2- pentyl (-CH(CH3)CH(CH3)CH2CH3), 4-methyl-2-pentyl (-CH(CH3)CH2CH(CHs)2), 3- methyl-3-pentyl (-C(CH3)(CH2CHs)2), 2-methyl-3-pentyl (-CH(CH2CH3)CH(CHs)2), 2,3-dimethyl-2-butyl (-C(CHs)2CH(CHs)2), 3,3-dimethyl-2-butyl (-CH(CHs)C(CHs)3, and octyl (-(CH2)7CH3). "Alkoxy" means a group having the formula -O-alkyl, in which an alkyl group, as defined above, is attached to the parent molecule via an oxygen atom. The alkyl portion of an alkoxy group can have 1 to 20 carbon atoms (i.e., Ci-C20 alkoxy), 1 to 12 carbon atoms (i.e., Ci-Ci2 alkoxy), or 1 to 6 carbon atoms(/.e., Ci-Cβ alkoxy). Examples of suitable alkoxy groups include, but are not limited to, methoxy (-O-CHs or -OMe), ethoxy (-OCH2CH3 or -OEt), t-butoxy (-O-C(CH3)3 or -OtBu) and the like.
"Haloalkyl" is an alkyl group, as defined above, in which one or more hydrogen atoms of the alkyl group is replaced with a halogen atom. The alkyl portion of a haloalkyl group can have 1 to 20 carbon atoms (i.e., Ci-C20 haloalkyl), 1 to 12 carbon atoms(/.e., Ci-Ci2 haloalkyl), or 1 to 6 carbon atoms(z.e., Ci-Cβ alkyl). Examples of suitable haloalkyl groups include, but are not limited to, -CFs, -CHF2, -CFH2, -CH2CFs, and the like.
"Alkenyl" is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp2 double bond. For example, an alkenyl group can have 2 to 20 carbon atoms (i.e., Q-Oo alkenyl), 2 to 12 carbon atoms (i.e., C2-Ci2 alkenyl), or 2 to 6 carbon atoms (i.e., C2-Ce alkenyl). Examples of suitable alkenyl groups include, but are not limited to, ethylene, vinyl (-CH=CH2), allyl (-CH2CH=CH2), cyclopentenyl (-CsH7), and 5- hexenyl (-CH2CH2CH2CH2CH=CH2).
"Alkynyl" is a hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond. For example, an alkynyl group can have 2 to 20 carbon atoms (i.e., C2-C20 alkynyl), 2 to 12 carbon atoms (i.e., C2-Ci2 alkyne,), or 2 to 6 carbon atoms (i.e., C2-CO alkynyl). Examples of suitable alkynyl groups include, but are not limited to, acetylenic (-C≡CH), propargyl (-CHaC≡CH), and the like.
"Alkylene" refers to a saturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane. For example, an alkylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. Typical alkylene radicals include, but are not limited to, methylene (-CH2-), 1,1-ethyl (-CH(CH3)-), 1,2-ethyl (-CH2CH2-), 1,1-propyl (-CH(CH2CH3)-), 1,2-propyl (-CH2CH(CH3)-), 1,3-propyl (-CH2CH2CH2-), 1,4-butyl (-CH2CH2CH2CH2-), and the like.
" Alkenylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene. For example, and alkenylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. Typical alkenylene radicals include, but are not limited to, 1,2-ethylene (-CH=CH-).
" Alkynylene" refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne. For example, an alkynylene group can have 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. Typical alkynylene radicals include, but are not limited to, acetylene (-C≡C-), propargyl (-CH∑C≡C-), and 4-pentynyl (-CH2CH2CH2C=CH-).
"Aminoalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an amino radical.
"Amidoalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a -NRaCORb group where Ra is hydrogen or alkyl and Rb is alkyl, substituted alkyl, aryl, or substituted aryl as defined herein, e.g., -(Ct^-NHC(O)CHs, -(CH>)3-
NH-C(O)-CH3, and the like.
"Aryl" means a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. For example, an aryl group can have 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 12 carbon atoms. Typical aryl groups include, but are not limited to, radicals derived from benzene (e.g., phenyl), substituted benzene, naphthalene, anthracene, biphenyl, and the like.
"Arylene" refers to an aryl as denned above having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent aryl. Typical arylene radicals include, but are not limited to, phenylene.
"Arylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with an aryl radical. Typical arylalkyl groups include, but are not limited to, benzyl,
2-phenylethan-l-yl, naphthylmethyl, 2-naphthylethan-l-yl, naphthobenzyl,
2-naphthophenylethan-l-yl and the like. The arylalkyl group can comprise 6 to 20 carbon atoms, e.g., the alkyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to
14 carbon atoms. "Arylalkenyl" refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also an sp2 carbon atom, is replaced with an aryl radical. The aryl portion of the arylalkenyl can include, for example, any of the aryl groups disclosed herein, and the alkenyl portion of the arylalkenyl can include, for example, any of the alkenyl groups disclosed herein. The arylalkenyl group can comprise 6 to 20 carbon atoms, e.g., the alkenyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms. "Arylalkynyl" refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also an sp carbon atom, is replaced with an aryl radical. The aryl portion of the arylalkynyl can include, for example, any of the aryl groups disclosed herein, and the alkynyl portion of the arylalkynyl can include, for example, any of the alkynyl groups disclosed herein. The arylalkynyl group can comprise 6 to 20 carbon atoms, e.g., the alkynyl moiety is 1 to 6 carbon atoms and the aryl moiety is 6 to 14 carbon atoms.
The term "substituted" in reference to alkyl, alkylene, aryl, arylalkyl, heterocyclyl, etc. , for example, "substituted alkyl", "substituted alkylene", "substituted aryl", "substituted arylalkyl", "substituted heterocyclyl", and "substituted carbocyclyl" means alkyl, alkylene, aryl, arylalkyl, heterocyclyl, carbocyclyl respectively, in which one or more hydrogen atoms are each independently replaced with a non-hydrogen substituent. Typical subsrituents include, but are not limited to, -X, -R, -O, =O, -OR, -SR, -S", -NR2, -N+Ra, =NR, -CX3, -CN, -OCN, -SCN, -N=C=O, -NCS, -NO, -NO2,
=N2, -N3, -NHC(O)R, -C(O)NRR -S(O)2O", -S(O)2OH, -S(O)2R, -OS(O)2OR, -S(O) 2NR, -S(O)R, -OP(O)(OR)2, -P(O)(OR)2, -P(O)(O )2, -P(O)(OH)2, -P(O)(OR)(O ), -C( O)R, -C(S)R, -C(O)OR, -C(O)O-, -C(S)OR, -C(O)SR, -C(S)SR, -C(O)NRR, -C(S)NRR, - C(=NR)NRR, where each X is independently a halogen: F, Cl, Br, or I; and each R is independently H, alkyl, aryl, arylalkyl, a heterocycle, or a protecting group or prodrug moiety. Alkylene, alkenylene, and alkynylene groups may also be similarly substituted.
Those skilled in the art will recognize that when moieties such as "alkyl", "aryl", "heterocyclyl", etc. are substituted with one or more subsrituents, they could alternatively be referred to as "alkylene", "arylene", "heterocydylene", etc. moieties (i.e., indicating that at least one of the hydrogen atoms of the parent "alkyl", "aryl", "heterocyclyl" moieties has been replaced with the indicated substituent(s)). When moieties such as "alkyl", "aryl", "heterocydyl", etc. are referred to herein as "substituted" or are shown diagrammatically to be substituted (or optionally substituted, e.g., when the number of substituents ranges from zero to a positive integer), then the terms "alkyl", "aryl", "heterocydyl", etc. are understood to be interchangeable with "alkylene", "arylene", "heterocyclylene", etc.
The term "prodrug" as used herein refers to any compound that when administered to a biological system generates the drug substance, i.e., active ingredient, as a result of spontaneous chemical reaction(s), enzyme catalyzed chemical reaction(s), photolysis, and/or metabolic chemical reaction(s). A prodrug is thus a covalently modified analog or latent form of a therapeutically active compound.
One skilled in the art will recognize that substituents and other moieties of the compounds of Formula I or II should be selected in order to provide a compound which is sufficiently stable to provide a pharmaceutically useful compound which can be formulated into an acceptably stable pharmaceutical composition. Compounds of Formula I or II which have such stability are contemplated as falling within the scope of the present invention.
"Heteroalkyl" refers to an alkyl group where one or more carbon atoms have been replaced with a heteroatom, such as, O, N, or S. For example, if the carbon atom of the alkyl group which is attached to the parent molecule is replaced with a heteroatom (e.g., O, N, or S) the resulting heteroalkyl groups are, respectively, an alkoxy group (e.g., -OCH3, etc.), an amine (e.g., -NHCH3, -N(CH3)2, etc.), or a thioalkyl group (e.g., -SCH3). If a non-terminal carbon atom of the alkyl group which is not attached to the parent molecule is replaced with a heteroatom (e.g., O, N, or S) and the resulting heteroalkyl groups are, respectively, an alkyl ether (e.g., -CH2CH2-O-CH3, etc.), an alkyl amine (e.g., -CH2NHCH3, -CH-N(CH3)^ etc.), or a thioalkyl ether (e.g. ,-CHi-S-CFb). If a terminal carbon atom of the alkyl group is replaced with a heteroatom (e.g., O, N, or S), the resulting heteroalkyl groups are, respectively, a hydroxyalkyl group (e.g., -CH2CH2-OH), an aminoalkyl group (e.g., -CH2NH2), or an alkyl thiol group (e.g., -CH2CH2-SH). A heteroalkyl group can have, for example, 1 to 20 carbon atoms, 1 to 10 carbon atoms, or 1 to 6 carbon atoms. A Ci-Ce heteroalkyl group means a heteroalkyl group having 1 to 6 carbon atoms.
"Heterocycle" or "heterocyclyl" as used herein includes by way of example and not limitation those heterocycles described in Paquette, Leo A.; Principles of Modern Heterocyclic Chemistry (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; The Chemistry of Heterocyclic Compounds, A Series of Monographs" (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; and /. Am. Chem. Soc. (1960) 82:5566. In one specific embodiment of the invention "heterocycle" includes a "carbocycle" as defined herein, wherein one or more (e.g. 1, 2, 3, or 4) carbon atoms have been replaced with a heteroatom (e.g. O, N, or S). The terms "heterocycle" or "heterocyclyl" includes saturated rings, partially unsaturated rings, and aromatic rings (i.e., heteroaromatic rings). Substituted heterocyclyls include, for example, heterocyclic rings substituted with any of the substituents disclosed herein including carbonyl groups. A non- limiting example of a carbonyl substituted heterocyclyl is:
Figure imgf000016_0001
Examples of heterocycles include by way of example and not limitation pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4- piperidonyl, pyrrolidinyl, azetidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H-l,2,5-thiadiazinyl, 2H,6H-1,5,2- dithiazinyl, thienyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, lH-indazoly, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH- carbazolyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, isatinoyl, and bis- tetrahydrofuranyl:
Figure imgf000017_0001
By way of example and not limitation, carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline.^ Still more typically, carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3- pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4- pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6- pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.
By way of example and not limitation, nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3- pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazolone, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, IH- indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or β-carboline. Still more typically, nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.
"Heterocyclylene" refers to a heterocyclyl, as defined herein, derived by replacing a hydrogen atom from a carbon atom or heteroatom of a heterocyclyl, with an open valence. Similarly, "heteroarylene" refers to an aromatic heterocyclylene.
"Heterocyclylalkyl" refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkylene- moiety). Typical heterocyclyl alkyl groups include, but are not limited to heterocyclyl-CH∑-, 2-
(heterocyclyl)ethan-l-yl, and the like, wherein the "heterocyclyl" portion includes any of the heterocyclyl groups described above, including those described in Principles of Modern Heterocyclic Chemistry. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkyl portion of the heterocyclyl alkyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclyl alkyl group comprises 2 to 20 carbon atoms, e.g., the alkyl portion of the arylalkyl group comprises 1 to 6 carbon atoms and the heterocyclyl moiety comprises 1 to 14 carbon atoms. Examples of heterocyclylalkyls include by way of example and not limitation 5-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as thiazolylmethyl, 2-thiazolylethan-l-yl, imidazolylmethyl, oxazolylmethyl, thiadiazolylmethyl, etc., 6-membered sulfur, oxygen, and/or nitrogen containing heterocycles such as piperidinylmethyl, piperazinylmethyl, morpholinylmethyl, pyridinylmethyl, pyridizylmethyl, pyrimidylmethyl, pyrazinylmethyl, etc. "Heterocyclylalkenyl" refers to an acyclic alkenyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also a sp2 carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl- alkenylene- moiety). The heterocyclyl portion of the heterocyclyl alkenyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modern Heterocyclic Chemistry, and the alkenyl portion of the heterocyclyl alkenyl group includes any of the alkenyl groups disclosed herein. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkenyl portion of the heterocyclyl alkenyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclyl alkenyl group comprises 2 to 20 carbon atoms, e.g., the alkenyl portion of the heterocyclyl alkenyl group comprises 1 to 6 carbon atoms and the heterocyclyl moiety comprises 1 to 14 carbon atoms. "Heterocyclylalkynyl" refers to an acyclic alkynyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp3 carbon atom, but also an sp carbon atom, is replaced with a heterocyclyl radical (i.e., a heterocyclyl-alkynylene- moiety). The heterocyclyl portion of the heterocyclyl alkynyl group includes any of the heterocyclyl groups described herein, including those described in Principles of Modern Heterocyclic Chemistry, and the alkynyl portion of the heterocyclyl alkynyl group includes any of the alkynyl groups disclosed herein. One skilled in the art will also understand that the heterocyclyl group can be attached to the alkynyl portion of the heterocyclyl alkynyl by means of a carbon-carbon bond or a carbon-heteroatom bond, with the proviso that the resulting group is chemically stable. The heterocyclyl alkynyl group comprises 2 to 20 carbon atoms, e.g., the alkynyl portion of the heterocyclyl alkynyl group comprises 1 to 6 carbon atoms and the heterocyclyl moiety comprises 1 to 14 carbon atoms.
"Heteroaryl" refers to a monovalent aromatic heterocyclyl having at least one heteroatom in the ring. Non-limiting examples of suitable heteroatoms which can be included in the aromatic ring include oxygen, sulfur, and nitrogen. Non-limiting examples of heteroaryl rings include all of those listed in the definition of "heterocyclyl", including pyridinyl, pyrrolyl, oxazolyl, indolyl, isoindolyl, purinyl, furanyl, thienyl, benzofuranyl, benzothiophenyl, carbazolyl, imidazolyl, thiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, quinolyl, isoquinolyl, pyridazyl, pyrimidyl, pyrazyl, etc.
"Carbocycle" or "carbocyclyl" refers to a saturated, partially unsaturated or aromatic ring having 3 to 7 carbon atoms as a monocycle, 7 to 12 carbon atoms as a bicycle, and up to about 20 carbon atoms as a polycycle. Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms. Bicyclic carbocycles have 7 to 12 ring atoms, e.g., arranged as a bicyclo (4,5), (5,5), (5,6) or (6,6) system, or 9 or 10 ring atoms arranged as a bicyclo (5,6) or (6,6) system. Examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-l- enyl, l-cyclopent-2-enyl, l-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-l-enyl, 1- cyclohex-2-enyl, l-cyclohex-3-enyl, phenyl, etc.
"Carbocydylene" refers to a carbocyclyl or carbocycle as defined above having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent carbocyclyl. Typical carbocydylene radicals include, but are not limited to, phenylene.
"Arylheteroalkyl" refers to a heteroalkyl as defined herein, in which a hydrogen atom (which may be attached either to a carbon atom or a heteroatom) has been replaced with an aryl group as defined herein. The aryl groups may be bonded to a carbon atom of the heteroalkyl group, or to a heteroatom of the heteroalkyl group, provided that the resulting arylheteroalkyl group provides a chemically stable moiety. For example, an arylheteroalkyl group can have the general formulae -alkylene-O-aryl, -alkylene-O-alkylene-aryl, -alkylene-NH-aryl, -alkylene-NH- alkylene-aryl, -alkylene-S-aryl, -alkylene-S-alkylene-aryl, etc. In addition, any of the alkylene moieties in the general formulae above can be further substituted with any of the substituents defined or exemplified herein.
"Heteroarylalkyl" refers to an alkyl group, as defined herein, in which a hydrogen atom has been replaced with a heteroaryl group as defined herein. Non- limiting examples of heteroaryl alkyl include -CH2-pyridinyl, -CH∑-pyrrolyl, -CH2- oxazolyl, -CH∑-indolyl, -CH∑-isoindolyl, -CH2-purinyl, -CH2-furanyl, -CH2-thienyl/ - CH2-benzofuranyl, -CHa-benzothiophenyl, -CH2-carbazolyl/ -CHb-imidazolyl, -CH2- thiazolyl, -CH∑-isoxazolyl, -CH2-pyrazolyl, -CH∑-isothiazolyl, -CH2-quinolyl, -CH2- isoquinolyl, -CH2-pyridazyl, -CH∑-pyrimidyl, -CH∑-pyrazyl, -CH(CH3)-pyridinyl, - CH(CH3)-pyrrolyl, -CH(CHs)-OXaZoIyI, -CH(CHs)-UIdOIyI, -CH(CH3)-isoindolyl, - CH(CH3)-purinyl, -CH(CH3)-furanyl, -CH(CH3)-thienyl, -CH(CH3)-benzofuranyl, - CH(CH3)-benzothiophenyl, -CH(CH3)-carbazolyl, -CH(CH3)-imidazolyl, -CH(CH3)- thiazolyl, -CH(CH3)-isoxazolyl, -CH(CH3)-pyrazolyl, -CH(CH3)-isothiazolyl, - CH(CH3)-quinolyl, -CH(CH3)-isoquinolyl, -CH(CH3)-pyridazyl, -CH(CH3)- pyrimidyl, -CH(CH3)-pyrazyl, etc.
The term "optionally substituted" in reference to a particular moiety of the compound of Formula I (e.g., an optionally substituted aryl group) refers to a moiety having 0, 1, 2, or more substituents. "Ester thereof" means any ester of a compound in which any of the --COOH functions of the molecule is replaced by a -C(O)OR function, or in which any of the - OH functions of the molecule are replaced with a -OC(O)R function, in which the R moiety of the ester is any carbon-containing group which forms a stable ester moiety, including but not limited to alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyl and substituted derivatives thereof. Esters can also include esters - as described above - of "tautomeric enols", e.g. as shown below:
Figure imgf000021_0001
The term "ester thereof" includes but is not limited to pharmaceutically acceptable esters thereof.
The term "chiral" refers to molecules which have the property of non- superimposability of the mirror image partner, while the term "achiral" refers to molecules which are superimposable on their mirror image partner.
The term "stereoisomers" refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
"Diastereomer" refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g., melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
"Enantiomers" refer to two stereoisomers of a compound which are non- superimposable mirror images of one another.
Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., Stereochemistry of Organic Compounds (1994) John Wiley & Sons, Inc., New York. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane- polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center (s). The prefixes d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The terms "racemic mixture" and "racemate" refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
Protecting Groups
In the context of the present invention, protecting groups include prodrug moieties and chemical protecting groups.
Protecting groups are available, commonly known and used, and are optionally used to prevent side reactions with the protected group during synthetic procedures, i.e. routes or methods to prepare the compounds of the invention. For the most part the decision as to which groups to protect, when to do so, and the nature of the chemical protecting group "PG" will be dependent upon the chemistry of the reaction to be protected against {e.g., acidic, basic, oxidative, reductive or other conditions) and the intended direction of the synthesis. The PG groups do not need to be, and generally are not, the same if the compound is substituted with multiple PG. In general, PG will be used to protect functional groups such as carboxyl, hydroxyl, thio, or amino groups and to thus prevent side reactions or to otherwise facilitate the synthetic efficiency. The order of deprotection to yield free, deprotected groups is dependent upon the intended direction of the synthesis and the reaction conditions to be encountered, and may occur in any order as determined by the artisan.
Various functional groups of the compounds of the invention may be protected. For example, protecting groups for -OH groups (whether hydroxyl, carboxylic acid, phosphonic acid, or other functions) include "ether- or ester-forming groups". Ether- or ester-forming groups are capable of functioning as chemical protecting groups in the synthetic schemes set forth herein. However, some hydroxyl and thio protecting groups are neither ether- nor ester-forming groups, as will be understood by those skilled in the art, and are included with amides, discussed below.
A very large number of hydroxyl protecting groups and amide-forming groups and corresponding chemical cleavage reactions are described in Protective Groups in Organic Synthesis, Theodora W. Greene and Peter G. M. Wuts (John Wiley & Sons, Inc., New York, 1999, ISBN 0-471-16019-9) ("Greene"). See also Kodenski, Philip J.; Protecting Groups (Georg Thieme Verlag Stuttgart, New York, 1994), which is incorporated by reference in its entirety herein. In particular Chapter 1, Protecting Groups: An Overview, pages 1-20, Chapter 2, Hydroxyl Protecting Groups, pages 21-94, Chapter 3, Diol Protecting Groups, pages 95-117, Chapter 4, Carboxyl Protecting Groups, pages 118-154, Chapter 5, Carbonyl Protecting Groups, pages 155-184. For protecting groups for carboxylic acid, phosphonic acid, phosphonate, sulfonic acid and other protecting groups for acids see Greene as set forth below. Such groups include by way of example and not limitation, esters, amides, hydrazides, and the like.
Ether- and Ester-forming protecting groups
Ester-forming groups include: (1) phosphonate ester-forming groups, such as phosphonamidate esters, phosphorothioate esters, phosphonate esters, and phosphon-bis-amidates; (2) carboxyl ester-forming groups, and (3) sulphur ester- forming groups, such as sulphonate, sulfate, and sulfinate.
Metabolites of the Compounds of the Invention
Also falling within the scope of this invention are the in vivo metabolic products of the compounds described herein. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabeled (e.g., C14 or H3) compound of the invention, administering it parenterally in a detectable dose (e.g., greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g., by MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well-known to those skilled in the art. The conversion products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention even if they possess no anti- infective activity of their own. Compounds of Formula I or II
In one embodiment, the present application provides compounds according to Formula I or II, as described herein.
In each of the embodiments herein, the following provisos apply when applicable:
(a) When X1 is -CH2-, D is 1,4-phenylene, R3-IA is CH3CH2CH2CH2O- or CH3- O-CH2CH2-O, n=0, m=l, then NR4R5 is not: (1) a 4-substituted or 4,4- disubstiruted piperidine or piperazine (2) -NHCH3;
(b) When X1 is -CH2-, D is 1,4-phenylene or 1,4-piperidinylene, R3-IA is CH3CH2CH2CH2O- or CH3-O-CH2CH2-O, n=0, m=l, then neither R4 nor R5 are substituted alkyl, substituted heterocycyl, or substituted benzyl; and
(c) When X1 is -CH2-, D is 2,5-pyridylene, R3-IA is CH3CH2CH2CH2O- or CH3- O-CH2CH2-O, n=0, m=l, then NR4R5 is not pyrrolyl, piperazyl, or N(CHs)2. The compounds of the present invention do not include any of the compounds disclosed in WO 07/034817, WO 07/034917, U.S. Patent Application Publication 2006/0052403, JP 2005/089334, or US 6,329,381, each of which is incorporated by reference in its entirety. The definitions and substituents for various genus and subgenus of the present compounds are described and illustrated herein. It should be understood by one skilled in the art that any combination of the definitions and substituents described above should not result in an inoperable species or compound. "Inoperable species or compounds" means compound structures that violates relevant scientific principles (such as, for example, a carbon atom connecting to more than four covalent bonds) or compounds too unstable to permit isolation and formulation into pharmaceutically acceptable dosage forms. For example, it is understood to one skilled in the art that the definition of L2 as a covalent bond only applies to Formula I, and not to Formula II. Similarly, the skilled artisan will understand that when L2 is -NH-, -O- , or -S-, in Formula II, L2 defines a =NH (imine), =O (carbonyl), or =S (thiocarbonyl) group. In one embodiment of Formula I or II, X1 is alkylene or substituted alkylene; wherein the substituted alkylene comprises an alkylene substituted with one or more substituents selected from the group consisting of halo, hydroxyl, amino, heteroalkyl, substituted heteroalkyl, cyano, azido, nitro, alkyl, substituted alkyl, and combinations thereof.
In another embodiment of Formula I or II, m is 1. In another embodiment of Formula I or II, L1 is -CFI2- or -CFI2CH2-. In another embodiment of Formula I or II, R1 is independently -NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
In another embodiment of Formula I or II, R1 is independently -NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 8- membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S; or a 8- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O7 and S.
In another embodiment of Formula I or II, R1 is independently -NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heteroaryl.
In another embodiment of Formula I or II, R1 is independently -NR4R5; and R4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and R5 is aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -C(O)OR3, or -C(O)NR7R8.
In another embodiment of Formula I or II, R1 is independently -NR4R5; R4 is H or carbocyclylalkyl; and R5 is alkyl, substituted alkyl, carbocyclylalkyl, or substituted carbocyclylalkyl.
In another embodiment of Formula I or II, D is arylene or heteroarylene. In another embodiment of Formula I or II, L2 is -O-. In one embodiment of Formula I, -L2-R2 is -OH.
In another embodiment of Formula I or II, L2 is -O-; and R2 is -C(O)R6, - C(O)OR6, -C(O)NR7R8, -S(O)OR7, -S(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8.
In another embodiment of Formula I or II, R2 is -C(O)OCH3, -C(O)OCH2CH3, - C(O)OCH(CHs)2, -C(O)NHCH3, -C(O)NHCH2CH3, -C(O)NHCH(CH3)..
In another embodiment of Formula I or II, L2 is -O-; and R2 is alkyl, substituted alkyl, cyclylalkyl, substituted cyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
In another embodiment of Formula I or II, R2 is methyl, ethyl, n-propyl, isopropyl, n-butyl, cyclopropyl, methylcyclopropyl, cyclopropylmethylene, benzyl, or methoxybezyl. In another embodiment of Formula I or II, L3 is -O-. In another embodiment of Formula I or II, R3 is alkyl, substituted alkyl, heteroalkyl, or substituted heteroalkyl.
In another embodiment of Formula I or II, -L3-R3 is -O-alkyl or -O-alkylene- O-alkyl.
In another embodiment of Formula I or II, -L3-R3 is -OCH2CH2OCH3 or -
Figure imgf000028_0001
In another embodiment of Formula I, R4 and R5 are not each simultaneously H or alkyl. In another embodiment of the present invention, Formula I is represented by
Formula Ia:
Figure imgf000028_0002
Ia or a pharmaceutically acceptable salt thereof, wherein: R1 is -NR4R5;
R2 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, - C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8; L3 is -NH-, -O-, -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond;
R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 4.
In one embodiment of Formula Ia, R1 is NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle. In another embodiment of Formula Ia7 R1 is NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 8-membered monocyclic fully saturated, partially unsaturated, or heteroaryl ring containing at least one hetero atom selected from N, O, and S; or a 8- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
In another embodiment of Formula Ia, the heterocycle is selected from the group consisting of:
Figure imgf000030_0001
In another embodiment of Formula Ia, R1 is NR4R5; R4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and R5 is carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -C(O)OR3, or -C(O)NR7R8.
In another embodiment of Formula Ia, R4 is H, methyl, ethyl, n-propyl, iso- propyl, n-butyl, cyclopropyl, or cyclopropylmethylenyl, R5 is phenyl, pyridinyl, - C(O)CH3, -C(O)OCH3, -C(O)CH2CH3, or -C(O)OCH2CH3. In another embodiment of Formula Ia, R1 is NR4R5; R4 is H; and R5 is alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl.
In another embodiment of Formula Ia, R1 is independently -NR4R5; R4 is H; and R5 is alkyl, substituted alkyl, carbocyclylalkyl, or substituted carbocyclylalkyl.
In another embodiment of Formula Ia, R1 is independently -NR4R5; R4 is H; and R5 is selected from the group consisting of
Figure imgf000031_0001
In another embodiment of Formula Ia, R2 is H. In another embodiment of Formula Ia, R2 is -C(O)R6, -C(O)OR6, -C(O)NR7R8, -
S(O)OR7, -S(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8.
In another embodiment of Formula Ia, R2 is -C(O)OCHs, -C(O)OCH2CHs, - C(O)OCH(CHs)2, -C(O)NHCH3, -C(O)NHCH2CH3, -C(O)NHCH(CHs)2.
In another embodiment of Formula Ia, R2 is alkyl, substituted alkyl, cyclylalkyl, substituted cyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
In another embodiment of Formula Ia, R2 is methyl, ethyl, n-propyl, isopropyl, n-butyl, cyclopropyl, methylcyclopropyl, cyclopropylmethylene, benzyl, or methoxybezyl. In another embodiment of Formula Ia, L3 is -O-.
In another embodiment of Formula Ia, -IΛR3 is -O-alkyl, -O-(substituted alkyl), -O-carbocyclyl, -O-heterocyclyl, -O-carbocyclylalkyl, -O-heterocyclylalkyl, or -O-alkylene-O-alkyl. In this embodiment, it is preferred that R2 is H. It is further preferred that R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000032_0001
In another embodiment of Formula Ia, -IAR3 is -OCH2CH2OCH3, - OCH2CH2CH2CH3, -OCH2CH2CF3, -OCH2CF2CF3, -OCH2CH(CHs)2, -OCH2CF3,
Figure imgf000032_0002
In this embodiment, it is preferred that R2 is H. It is further preferred that R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000032_0003
In another embodiment of Formula Ia, R1 is -NR4R5; R2 is H, -C(O)R6, - C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8; L3 is -O-; R3 is alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, heterocyclyl, carbocyclylalkyl, heterocyclylalkyl; and R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
In another embodiment of Formula Ia, R4 and R5 are not each simultaneously H or alkyl.
In another embodiment of Formula Ia, -IAR3 is -OCH2CH2OCH3, -OCH2CH2CH3, -OCH2CH2CH2CH3, -Oi-butyl, -Oc-butyl, -Oc- pentyl, -OCH2c-propyl, -OCH2c-butyl, -OCH2CH2c-propyl, -OCH2CH2CH2CH2OH, - OCH2CF3, -OCH2CH2CF3, -OCH2CH2CH2CF3, or (tetrahydrofuran-2-yl)methoxy.
In another embodiment of Formula Ia, -L3-R3 is -
OCH2CH2OCH3, -OCH2CH2CH2CH3, -OCH2CH2CF3, -OCH2CH2CH2CH2OH, -Oi- butyl, -OCH2CH2C-propyl, or -OCH2C-propyl. In still another embodiment, -IAR3 is as defined immediately previously, R2 is H, and R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000033_0001
In another embodiment of Formula Ia, -L3-R3 is -OCH2CH2CH2CH3, -OCH2CH2OCH3, -OCH2CH2CF3, -OCH2CH2CH2CH2OH, or - OCH∑c-propyl. In still another embodiment, -IAR3 is as defined immediately previously, R2 is H, and R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000034_0001
In a further embodiment -IAR3 is -OCH2CH2CH2CH3.
In one embodiment of the present invention, Formula II is represented by Formula Ha:
Figure imgf000034_0002
Ha or a pharmaceutically acceptable salt thereof, wherein:
R1 is -NR4R5;
R2 is H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or - S(O)2NR7R8;
L3 is -NH-, -O-, -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is 0, 1, 2, or 3.
In one embodiment of Formula Ha, R1 is NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstiruted heterocycle.
In another embodiment of Formula Ha, R1 is NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstiruted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S; or a 10- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
In another embodiment of Formula Ha, the heterocycle is selected from the group consisting of:
Figure imgf000036_0001
In another embodiment of Formula Ha, R1 is NR4R5; R4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and R5 is carbocyclyl, substituted carbocydyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -C(O)OR3, or -C(O)NR7R8.
In another embodiment of Formula Ha, R2 is -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)OR7, -S(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8. In another embodiment of Formula Ha, R4 is H, methyl, ethyl, n-propyl, iso- propyl, n-butyl, cyclopropyl, or cyclopropylmethylenyl, R5 is phenyl, pyridinyl, - C(O)CH3, -C(O)OCH3, -C(O)CH2CH3, or -C(O)OCH2CH3.
In another embodiment of Formula Ha, R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
In another embodiment of Formula Ha, R2 is methyl, ethyl, n-propyl, isopropyl, n-butyl, allyl, cyclopropyl, methylcyclopropyl, cyclopropylmethylene, benzyl, or methoxybezyl. In another embodiment of Formula Ha, L3 is -O-.
In another embodiment of Formula Ha, -L3-R3 is -O-alkyl or -O-alkylene-O- alkyl.
In another embodiment of Formula Ha, -IΛR3 is -OCH2CH2OCH3 or - OCH2CH2CH2CH3. In another embodiment of Formula Ha, R1 is -NR4R5; R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, cyclylalkyl, substituted cyclylalkyl, cyclylalkylalkyl, substituted cyclylalkylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl; L3 is -O-; R3 is alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
In one embodiment of Formula I, L2 is a covalent bond, and R2 is hydrogen or halogen. That is, Formula I is represented by Formula Ib:
Figure imgf000038_0001
Ib wherein: R1 is -NR4R5; R2 is H or halo;
L3 is -NH-, -O7 -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or -
C(O)NR7R8; or R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety;
R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 4; and
In one embodiment of Formula Ib, R1 is NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S. In this embodiment, the heterocycle can be selected from the group consisting of:
Figure imgf000039_0001
Figure imgf000039_0002
and pXp
Figure imgf000039_0003
In one embodiment of Formula Ib, -L3-R3 is -O-alkyl or -O-alkylene-O-alkyl.
It is preferred that -IΛR3 is -OCH2CH2OCH3 or -OCH2CH2CH2CH3.
In one embodiment of Formula Ib, R1 is NR4R5; -L3-R3 is -O-alkyl or -O- alkylene-O-alkyl; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
In another embodiment of formula (I) or (II), the compound is selected from the group consisting of:
Figure imgf000040_0001
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000048_0003
Figure imgf000048_0004
Figure imgf000048_0002
Figure imgf000049_0001
or pharmaceutically acceptable salts, solvates, and/or esters thereof.
In one embodiment, the present application provides compounds according to Formula Ia:
Figure imgf000049_0002
Ia or a pharmaceutically acceptable salt, solvate, and/or ester thereof, wherein: -IΛR3 is -OCH2CH2OCH3, -OCH2CH2CH3, -OCH2CH2CH2CH3, -Oi-butyl, -Oc- butyl, -Oc-pentyl, -OCH2c-propyl, -OCH∑c-butyl, -OCH2CH2C- propyl, -OCH2CH2CH2CH2OH, -OCH2CF3, -
OCH2CH2CF3, -OCH2CH2CH2CF3, or (tetrahydrofuran-2-yl)methoxy; R2 is H; n is O; R1 is -NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000050_0001
In one embodiment of Formula Ia, -L3-R3 is -
OCH2CH2OCH3, -OCH2CH2CH2CH3, -OCH2CH2CF3, -OCH2CH2CH2CH2OH, -Oi- butyl, -OCH2CH2c-propyl, or -OCH∑c-propyl.
In one embodiment of Formula Ia, -IAR3 is -OCH2CH2CH2CH3, -OCH2CH2OCH3, -OCH2CH2CF3, -OCH2CH2CH2CH2OH, or - OCH2c-propyl.
In one embodiment of Formula Ia, -IAR3 is -OCH2CH2CH2CH3. In one embodiment of Formula Ia, R4 and R5, taken together with the nitrogen to which they are both attached form a heterocycle selected from the group consisting of:
Figure imgf000050_0002
In still yet another embodiment, the compounds of Formula I and II are named below in tabular format (Table 5) as compounds of general Formula III:
Figure imgf000051_0001
Formula III.
Compounds of general Formula III are depicted as four moieties Tl, T2, T3 and T4 attached in the manner shown above. Tables A-D show, respectively, the structures of the Tl, T2, T3 and T4 moieties, with the point(s) of attachment to neighboring moieties. Each moiety Tl, T2, T3 and T4 in Tables A-D is represented by a "code" comprising letters and numbers. Each structure of a compound of Formula III can be designated in tabular form by combining the "code" representing each structural moiety using the following syntax: T1.T2.T3.T4. Thus, for example, T1A.T2A.T3A.T4A represents the following structure:
Figure imgf000051_0002
wherein the terms "alkylene", "arylene", "alkyl", "cycloalkylalkyl", "heteroarylene", "carboxcyclylene", "carbocyclyl", "heterocyclyl", etc. are as defined herein. Table 1: Tl Structures
Figure imgf000051_0003
Table 2: T2 Structures
Figure imgf000052_0001
Table 3: T3 Structures
Figure imgf000052_0002
Table 4: T4 Structures
Figure imgf000052_0003
Figure imgf000053_0001
Table 5: List of Compound Structures of Formula III
T1A.T2A.T3A.T4A, T1A.T2A.T3A.T4B, T1A.T2A.T3A.T4C, T1A.T2A.T3A.T4D, T1A.T2A.T3A.T4E, T1A.T2A.T3A.T4F, T1A.T2A.T3A.T4G, T1A.T2A.T3A.T4H, T1A.T2A.T3B.T4A, T1A.T2A.T3B.T4B, T1A.T2A.T3B.T4C, T1A.T2A.T3B.T4D, T1A.T2A.T3B.T4E, T1A.T2A.T3B.T4F, T1A.T2A.T3B.T4G, T1A.T2A.T3B.T4H, T1A.T2A.T3CT4A, T1A.T2A.T3C.T4B, T1A.T2A.T3C.T4C, T1A.T2A.T3CT4D, T1A.T2A.T3C.T4E, T1A.T2A.T3C.T4F, T1A.T2A.T3C.T4G, T1A.T2A.T3C.T4H, T1A.T2A.T3D.T4A, T1A.T2A.T3D.T4B, T1A.T2A.T3D.T4C, T1A.T2A.T3D.T4D, T1A.T2A.T3D.T4E, T1A.T2A.T3D.T4F, T1A.T2A.T3D.T4G, T1A.T2A.T3D.T4H, T1A.T2B.T3A.T4A, T1A.T2B.T3A.T4B, T1A.T2B.T3A.T4Q T1A.T2B.T3A.T4D, T1A.T2B.T3A.T4E, T1A.T2B.T3A.T4F, T1A.T2B.T3A.T4G, T1A.T2B.T3A.T4H, T1A.T2B.T3B.T4A, T1A.T2B.T3B.T4B, T1A.T2B.T3B.T4C, T1A.T2B.T3B.T4D, T1A.T2B.T3B.T4E, T1A.T2B.T3B.T4F, T1A.T2B.T3B.T4Q T1A.T2B.T3B.T4H, T1A.T2B.T3C.T4A, T1A.T2B.T3C.T4B, T1A.T2B.T3C.T4C, T1A.T2B.T3C.T4D, T1A.T2B.T3C.T4E, T1A.T2B.T3C.T4F, T1A.T2B.T3C.T4G, T1A.T2B.T3C.T4H, T1A.T2B.T3D.T4A, T1A.T2B.T3D.T4B, T1A.T2B.T3D.T4Q T1A.T2B.T3D.T4D, T1A.T2B.T3D.T4E, T1A.T2B.T3D.T4F, T1A.T2B.T3D.T4G, T1A.T2B.T3D.T4H, T1A.T2C.T3A.T4A, T1A.T2C.T3A.T4B, T1A.T2C.T3A.T4Q T1A.T2C.T3A.T4D, T1A.T2C.T3A.T4E, T1A.T2C.T3A.T4F, T1A.T2C.T3A.T4G, T1A.T2C.T3A.T4H, T1A.T2C.T3B.T4A, T1A.T2C.T3B.T4B, T1A.T2CT3B.T4C, T1A.T2C.T3B.T4D, T1A.T2C.T3B.T4E, T1A.T2C.T3B.T4F, T1A.T2C.T3B.T4G, T1A.T2C.T3B.T4H, T1A.T2C.T3C.T4A, T1A.T2C.T3C.T4B, T1A.T2C.T3C.T4C, T1A.T2C.T3C.T4D, T1A.T2C.T3C.T4E, T1A.T2C.T3C.T4F, T1A.T2C.T3C.T4G, T1A.T2C.T3C.T4H, T1A.T2C.T3D.T4A, T1A.T2C.T3D.T4B, T1A.T2C.T3D.T4C, T1A.T2C.T3D.T4D, T1A.T2C.T3D.T4E, T1A.T2C.T3D.T4F, T1A.T2C.T3D.T4G, T1A.T2C.T3D.T4H, T1A.T2D.T3A.T4A, T1A.T2D.T3A.T4B, T1A.T2D.T3A.T4C, T1A.T2D.T3A.T4D, T1A.T2D.T3A.T4E, T1A.T2D.T3A.T4F, T1A.T2D.T3A.T4G, T1A.T2D.T3A.T4H, T1A.T2D.T3B.T4A, T1A.T2D.T3B.T4B, T1A.T2D.T3B.T4Q T1A.T2D.T3B.T4D, T1A.T2D.T3B.T4E, T1A.T2D.T3B.T4F, T1A.T2D.T3B.T4G, T1A.T2D.T3B.T4H, T1A.T2D.T3C.T4A, T1A.T2D.T3C.T4B, T1A.T2D.T3C.T4C, T1A.T2D.T3C.T4D, T1A.T2D.T3C.T4E, T1A.T2D.T3C.T4F, T1A.T2D.T3C.T4G, T1A.T2D.T3C.T4H, T1A.T2D.T3D.T4A, T1A.T2D.T3D.T4B, T1A.T2D.T3D.T4C, T1A.T2D.T3D.T4D, T1A.T2D.T3D.T4E, T1A.T2D.T3D.T4F, T1A.T2D.T3D.T4G, T1A.T2D.T3D.T4H, T1B.T2A.T3A.T4A, T1B.T2A.T3A.T4B, T1B.T2A.T3A.T4C, T1B.T2A.T3A.T4D, T1B.T2A.T3A.T4E, T1B.T2A.T3A.T4F, T1B.T2A.T3A.T4G, T1B.T2A.T3A.T4H, T1B.T2A.T3B.T4A, T1B.T2A.T3B.T4B, T1B.T2A.T3B.T4C, T1B.T2A.T3B.T4D, T1B.T2A.T3B.T4E, T1B.T2A.T3B.T4F, T1B.T2A.T3B.T4G, T1B.T2A.T3B.T4H, T1B.T2A.T3C.T4A, T1B.T2A.T3C.T4B, T1B.T2A.T3C.T4C T1B.T2A.T3C.T4D, T1B.T2A.T3C.T4E, T1B.T2A.T3C.T4F, T1B.T2A.T3C.T4G, T1B.T2A.T3C.T4H, T1B.T2A.T3D.T4A, T1B.T2A.T3D.T4B, T1B.T2A.T3D.T4C, T1B.T2A.T3D.T4D, T1B.T2A.T3D.T4E, T1B.T2A.T3D.T4F, T1B.T2A.T3D.T4G, T1B.T2A.T3D.T4H, T1B.T2B.T3A.T4A, T1B.T2B.T3A.T4B, T1B.T2B.T3A.T4C, T1B.T2B.T3A.T4D, T1B.T2B.T3A.T4E, T1B.T2B.T3A.T4F, T1B.T2B.T3A.T4G, T1B.T2B.T3A.T4H, T1B.T2B.T3B.T4A, T1B.T2B.T3B.T4B, T1B.T2B.T3B.T4C, T1B.T2B.T3B.T4D, T1B.T2B.T3B.T4E, T1B.T2B.T3B.T4F, T1B.T2B.T3B.T4G, T1B.T2B.T3B.T4H, T1B.T2B.T3C.T4A, T1B.T2B.T3C.T4B, T1B.T2B.T3C.T4C T1B.T2B.T3C.T4D, T1B.T2B.T3C.T4E, T1B.T2B.T3C.T4F, T1B.T2B.T3C.T4G, T1B.T2B.T3C.T4H, T1B.T2B.T3D.T4A, T1B.T2B.T3D.T4B, T1B.T2B.T3D.T4Q T1B.T2B.T3D.T4D, T1B.T2B.T3D.T4E, T1B.T2B.T3D.T4F, T1B.T2B.T3D.T4G, T1B.T2B.T3D.T4H, T1B.T2C.T3A.T4A, T1B.T2C.T3A.T4B, T1B.T2C.T3A.T4C, T1B.T2C.T3A.T4D, T1B.T2C.T3A.T4E, T1B.T2C.T3A.T4F, T1B.T2C.T3A.T4G, T1B.T2C.T3A.T4H, T1B.T2C.T3B.T4A, T1B.T2C.T3B.T4B, T1B.T2C.T3B.T4Q T1B.T2C.T3B.T4D, T1B.T2C.T3B.T4E, T1B.T2C.T3B.T4F, T1B.T2C.T3B.T4G, T1B.T2C.T3B.T4H, T1B.T2C.T3C.T4A, T1B.T2C.T3C.T4B, T1B.T2C.T3C.T4C, T1B.T2C.T3C.T4D, T1B.T2C.T3C.T4E, T1B.T2C.T3C.T4F, T1B.T2C.T3C.T4G, T1B.T2C.T3C.T4H, T1B.T2C.T3D.T4A, T1B.T2C.T3D.T4B, T1B.T2C.T3D.T4Q T1B.T2C.T3D.T4D, T1B.T2C.T3D.T4E, T1B.T2C.T3D.T4F, T1B.T2C.T3D.T4G, T1B.T2C.T3D.T4H, T1B.T2D.T3A.T4A, T1B.T2D.T3A.T4B, T1B.T2D.T3A.T4Q T1B.T2D.T3A.T4D, T1B.T2D.T3A.T4E, T1B.T2D.T3A.T4F, T1B.T2D.T3A.T4G, T1B.T2D.T3A.T4H, T1B.T2D.T3B.T4A, T1B.T2D.T3B.T4B, T1B.T2D.T3B.T4Q T1B.T2D.T3B.T4D, T1B.T2D.T3B.T4E, T1B.T2D.T3B.T4F, T1B.T2D.T3B.T4G, T1B.T2D.T3B.T4H, T1B.T2D.T3C.T4A, T1B.T2D.T3C.T4B, T1B.T2D.T3C.T4C, T1B.T2D.T3C.T4D, T1B.T2D.T3C.T4E, T1B.T2D.T3C.T4F, T1B.T2D.T3C.T4G, T1B.T2D.T3C.T4H, T1B.T2D.T3D.T4A, T1B.T2D.T3D.T4B, T1B.T2D.T3D.T4C, T1B.T2D.T3D.T4D, T1B.T2D.T3D.T4E, T1B.T2D.T3D.T4F, T1B.T2D.T3D.T4G, T1B.T2D.T3D.T4H, T1C.T2A.T3A.T4A, T1C.T2A.T3A.T4B, T1C.T2A.T3A.T4C, T1C.T2A.T3A.T4D, T1C.T2A.T3A.T4E, T1C.T2A.T3A.T4F, T1C.T2A.T3A.T4G, T1C.T2A.T3A.T4H, T1C.T2A.T3B.T4A, T1C.T2A.T3B.T4B, T1C.T2A.T3B.T4C, T1C.T2A.T3B.T4D, T1C.T2A.T3B.T4E, T1C.T2A.T3B.T4F, T1C.T2A.T3B.T4G, T1C.T2A.T3B.T4H, T1C.T2A.T3C.T4A, T1C.T2A.T3C.T4B, T1C.T2A.T3C.T4C, T1C.T2A.T3C.T4D, T1C.T2A.T3C.T4E, T1C.T2A.T3C.T4F, T1C.T2A.T3C.T4G, T1C.T2A.T3C.T4H, T1C.T2A.T3D.T4A, T1C.T2A.T3D.T4B, T1C.T2A.T3D.T4C, T1C.T2A.T3D.T4D, T1C.T2A.T3D.T4E, T1C.T2A.T3D.T4F, T1C.T2A.T3D.T4G, T1C.T2A.T3D.T4H, T1CT2B.T3A.T4A, T1C.T2B.T3A.T4B, T1C.T2B.T3A.T4C, T1C.T2B.T3A.T4D, T1C.T2B.T3A.T4E, T1C.T2B.T3A.T4F, T1C.T2B.T3A.T4G, T1C.T2B.T3A.T4H, T1C.T2B.T3B.T4A, T1C.T2B.T3B.T4B, T1C.T2B.T3B.T4C, T1C.T2B.T3B.T4D, T1C.T2B.T3B.T4E, T1C.T2B.T3B.T4F, T1C.T2B.T3B.T4G, T1C.T2B.T3B.T4H, T1C.T2B.T3C.T4A, T1C.T2B.T3C.T4B, T1C.T2B.T3C.T4C, T1C.T2B.T3C.T4D, T1C.T2B.T3C.T4E, T1C.T2B.T3C.T4F, T1C.T2B.T3C.T4G, T1C.T2B.T3C.T4H, T1C.T2B.T3D.T4A, T1C.T2B.T3D.T4B, T1C.T2B.T3D.T4C, T1C.T2B.T3D.T4D, T1C.T2B.T3D.T4E, T1C.T2B.T3D.T4F, T1C.T2B.T3D.T4G, T1C.T2B.T3D.T4H, T1C.T2C.T3A.T4A, T1C.T2C.T3A.T4B, T1C.T2C.T3A.T4C, T1C.T2C.T3A.T4D, T1C.T2C.T3A.T4E, T1C.T2C.T3A.T4F, T1C.T2C.T3A.T4G, T1C.T2C.T3A.T4H, T1C.T2C.T3B.T4A, T1C.T2C.T3B.T4B, T1C.T2C.T3B.T4C, T1C.T2C.T3B.T4D, T1C.T2C.T3B.T4E, T1C.T2C.T3B.T4F, T1C.T2C.T3B.T4G, T1C.T2C.T3B.T4H, T1C.T2C.T3C.T4A, T1C.T2C.T3C.T4B, T1C.T2C.T3C.T4C, T1C.T2C.T3C.T4D, T1C.T2C.T3C.T4E, T1C.T2C.T3C.T4F, T1C.T2C.T3C.T4G, T1C.T2C.T3C.T4H, T1C.T2C.T3D.T4A, T1C.T2C.T3D.T4B, T1C.T2C.T3D.T4C, T1C.T2C.T3D.T4D, T1C.T2C.T3D.T4E, T1C.T2C.T3D.T4F, T1C.T2C.T3D.T4G, T1C.T2C.T3D.T4H, T1C.T2D.T3A.T4A, T1C.T2D.T3A.T4B, T1C.T2D.T3A.T4C, T1C.T2D.T3A.T4D, T1C.T2D.T3A.T4E, T1C.T2D.T3A.T4F, T1C.T2D.T3A.T4G, T1C.T2D.T3A.T4H, T1C.T2D.T3B.T4A, T1C.T2D.T3B.T4B, T1C.T2D.T3B.T4C, T1C.T2D.T3B.T4D, T1C.T2D.T3B.T4E, T1C.T2D.T3B.T4F, T1C.T2D.T3B.T4G, T1C.T2D.T3B.T4H, T1C.T2D.T3C.T4A, T1C.T2D.T3C.T4B, T1C.T2D.T3C.T4C, T1C.T2D.T3C.T4D, T1C.T2D.T3C.T4E, T1C.T2D.T3C.T4F, T1C.T2D.T3C.T4G, T1C.T2D.T3C.T4H, T1C.T2D.T3D.T4A, T1C.T2D.T3D.T4B, T1C.T2D.T3D.T4C, T1C.T2D.T3D.T4D, T1C.T2D.T3D.T4E, T1C.T2D.T3D.T4F, T1C.T2D.T3D.T4G, T1C.T2D.T3D.T4H, T1D.T2A.T3A.T4A, T1D.T2A.T3A.T4B, T1D.T2A.T3A.T4C, T1D.T2A.T3A.T4D, T1D.T2A.T3A.T4E, T1D.T2A.T3A.T4F, T1D.T2A.T3A.T4G, T1D.T2A.T3A.T4H, T1D.T2A.T3B.T4A, T1D.T2A.T3B.T4B, T1D.T2A.T3B.T4C, T1D.T2A.T3B.T4D, T1D.T2A.T3B.T4E, T1D.T2A.T3B.T4F, T1D.T2A.T3B.T4G, T1D.T2A.T3B.T4H, T1D.T2A.T3C.T4A, T1D.T2A.T3C.T4B, T1D.T2A.T3C.T4C, T1D.T2A.T3C.T4D, T1D.T2A.T3C.T4E, T1D.T2A.T3C.T4F, T1D.T2A.T3C.T4G, T1D.T2A.T3C.T4H, T1D.T2A.T3D.T4A, T1D.T2A.T3D.T4B, T1D.T2A.T3D.T4C, T1D.T2A.T3D.T4D, T1D.T2A.T3D.T4E, T1D.T2A.T3D.T4F, T1D.T2A.T3D.T4G, T1D.T2A.T3D.T4H, T1D.T2B.T3A.T4A, T1D.T2B.T3A.T4B, T1D.T2B.T3A.T4C, T1D.T2B.T3A.T4D, T1D.T2B.T3A.T4E, T1D.T2B.T3A.T4F, T1D.T2B.T3A.T4G, T1D.T2B.T3A.T4H, T1D.T2B.T3B.T4A, T1D.T2B.T3B.T4B, T1D.T2B.T3B.T4C, T1D.T2B.T3B.T4D, T1D.T2B.T3B.T4E, T1D.T2B.T3B.T4F, T1D.T2B.T3B.T4G, T1D.T2B.T3B.T4H, T1D.T2B.T3C.T4A, T1D.T2B.T3C.T4B, T1D.T2B.T3C.T4C, T1D.T2B.T3C.T4D, T1D.T2B.T3C.T4E, T1D.T2B.T3C.T4F, T1D.T2B.T3C.T4G, T1D.T2B.T3C.T4H, T1D.T2B.T3D.T4A, T1D.T2B.T3D.T4B, T1D.T2B.T3D.T4C, T1D.T2B.T3D.T4D, T1D.T2B.T3D.T4E, T1D.T2B.T3D.T4F, T1D.T2B.T3D.T4G, T1D.T2B.T3D.T4H, T1D.T2C.T3A.T4A, T1D.T2C.T3A.T4B, T1D.T2C.T3A.T4C, T1D.T2C.T3A.T4D, T1D.T2C.T3A.T4E, T1D.T2C.T3A.T4F, T1D.T2C.T3A.T4G, T1D.T2C.T3A.T4H, T1D.T2C.T3B.T4A, T1D.T2CT3B.T4B, T1D.T2C.T3B.T4C, T1D.T2C.T3B.T4D, T1D.T2C.T3B.T4E, T1D.T2C.T3B.T4F, T1D.T2C.T3B.T4G, T1D.T2C.T3B.T4H, T1D.T2C.T3C.T4A, T1D.T2C.T3C.T4B, T1D.T2C.T3C.T4C, T1D.T2C.T3C.T4D, T1D.T2C.T3C.T4E, T1D.T2C.T3C.T4F, T1D.T2C.T3C.T4G, T1D.T2C.T3C.T4H, T1D.T2C.T3D.T4A, T1D.T2C.T3D.T4B, T1D.T2C.T3D.T4C, T1D.T2C.T3D.T4D, T1D.T2C.T3D.T4E, T1D.T2C.T3D.T4F, T1D.T2C.T3D.T4G, T1D.T2C.T3D.T4H, T1D.T2D.T3A.T4A, T1D.T2D.T3A.T4B, T1D.T2D.T3A.T4C, T1D.T2D.T3A.T4D, T1D.T2D.T3A.T4E, T1D.T2D.T3A.T4F, T1D.T2D.T3A.T4G, T1D.T2D.T3A.T4H, T1D.T2D.T3B.T4A, T1D.T2D.T3B.T4B, T1D.T2D.T3B.T4Q T1D.T2D.T3B.T4D, T1D.T2D.T3B.T4E, T1D.T2D.T3B.T4F, T1D.T2D.T3B.T4G, T1D.T2D.T3B.T4H, T1D.T2D.T3C.T4A, T1D.T2D.T3C.T4B, T1D.T2D.T3C.T4Q T1D.T2D.T3C.T4D, T1D.T2D.T3C.T4E, T1D.T2D.T3C.T4F, T1D.T2D.T3C.T4G, T1D.T2D.T3C.T4H, T1D.T2D.T3D.T4A, T1D.T2D.T3D.T4B, T1D.T2D.T3D.T4Q T1D.T2D.T3D.T4D, T1D.T2D.T3D.T4E, T1D.T2D.T3D.T4F, T1D.T2D.T3D.T4Q T1D.T2D.T3D.T4H, T1E.T2A.T3A.T4A, T1E.T2A.T3A.T4B, T1E.T2A.T3A.T4C, T1E.T2A.T3A.T4D, T1E.T2A.T3A.T4E, T1E.T2A.T3A.T4F, T1E.T2A.T3A.T4G, T1E.T2A.T3A.T4H, T1E.T2A.T3B.T4A, T1E.T2A.T3B.T4B, T1E.T2A.T3B.T4C, T1E.T2A.T3B.T4D, T1E.T2A.T3B.T4E, T1E.T2A.T3B.T4F, T1E.T2A.T3B.T4G, T1E.T2A.T3B.T4H, T1E.T2A.T3C.T4A, T1E.T2A.T3C.T4B, T1E.T2A.T3C.T4C, T1E.T2A.T3C.T4D, T1E.T2A.T3C.T4E, T1E.T2A.T3C.T4F, T1E.T2A.T3C.T4G, T1E.T2A.T3C.T4H, T1E.T2A.T3D.T4A, T1E.T2A.T3D.T4B, T1E.T2A.T3D.T4C, T1E.T2A.T3D.T4D, T1E.T2A.T3D.T4E, T1E.T2A.T3D.T4F, T1E.T2A.T3D.T4G, T1E.T2A.T3D.T4H, T1E.T2B.T3A.T4A, T1E.T2B.T3A.T4B, T1E.T2B.T3A.T4Q T1E.T2B.T3A.T4D, T1E.T2B.T3A.T4E, T1E.T2B.T3A.T4F, T1E.T2B.T3A.T4G, T1E.T2B.T3A.T4H, T1E.T2B.T3B.T4A, T1E.T2B.T3B.T4B, T1E.T2B.T3B.T4C, T1E.T2B.T3B.T4D, T1E.T2B.T3B.T4E, T1E.T2B.T3B.T4F, T1E.T2B.T3B.T4G, T1E.T2B.T3B.T4H, T1E.T2B.T3C.T4A, T1E.T2B.T3C.T4B, T1E.T2B.T3C.T4C, T1E.T2B.T3C.T4D, T1E.T2B.T3C.T4E, T1E.T2B.T3C.T4F, T1E.T2B.T3C.T4G, T1E.T2B.T3C.T4H, T1E.T2B.T3D.T4A, T1E.T2B.T3D.T4B, T1E.T2B.T3D.T4Q T1E.T2B.T3D.T4D, T1E.T2B.T3D.T4E, T1E.T2B.T3D.T4F, T1E.T2B.T3D.T4G, T1E.T2B.T3D.T4H, T1E.T2C.T3A.T4A, T1E.T2C.T3A.T4B, T1E.T2C.T3A.T4Q T1E.T2C.T3A.T4D, T1E.T2C.T3A.T4E, T1E.T2C.T3A.T4F, T1E.T2C.T3A.T4G, T1E.T2C.T3A.T4H, T1E.T2C.T3B.T4A, T1E.T2C.T3B.T4B, T1E.T2C.T3B.T4C, T1E.T2C.T3B.T4D, T1E.T2C.T3B.T4E, T1E.T2C.T3B.T4F, T1E.T2C.T3B.T4G, T1E.T2C.T3B.T4H, T1E.T2C.T3C.T4A, T1E.T2C.T3C.T4B, T1E.T2C.T3C.T4C, T1E.T2C.T3C.T4D, T1E.T2C.T3C.T4E, T1E.T2C.T3C.T4F, T1E.T2C.T3C.T4G, T1E.T2C.T3C.T4H, T1E.T2C.T3D.T4A, T1E.T2C.T3D.T4B, T1E.T2C.T3D.T4Q T1E.T2C.T3D.T4D, T1E.T2C.T3D.T4E, T1E.T2C.T3D.T4F, T1E.T2C.T3D.T4G, T1E.T2C.T3D.T4H, T1E.T2D.T3A.T4A, T1E.T2D.T3A.T4B, T1E.T2D.T3A.T4Q T1E.T2D.T3A.T4D, T1E.T2D.T3A.T4E, T1E.T2D.T3A.T4F, T1E.T2D.T3A.T4G, T1E.T2D.T3A.T4H, T1E.T2D.T3B.T4A, T1E.T2D.T3B.T4B, T1E.T2D.T3B.T4C, T1E.T2D.T3B.T4D, T1E.T2D.T3B.T4E, T1E.T2D.T3B.T4F, T1E.T2D.T3B.T4G, T1E.T2D.T3B.T4H, T1E.T2D.T3C.T4A, T1E.T2D.T3C.T4B, T1E.T2D.T3C.T4C, T1E.T2D.T3C.T4D, T1E.T2D.T3C.T4E, T1E.T2D.T3C.T4F, T1E.T2D.T3C.T4G, T1E.T2D.T3C.T4H, T1E.T2D.T3D.T4A, T1E.T2D.T3D.T4B, T1E.T2D.T3D.T4C, T1E.T2D.T3D.T4D, T1E.T2D.T3D.T4E, T1E.T2D.T3D.T4F, T1E.T2D.T3D.T4G, T1E.T2D.T3D.T4H, T1F.T2A.T3A.T4A, T1F.T2A.T3A.T4B, T1F.T2A.T3A.T4C, T1F.T2A.T3A.T4D, T1F.T2A.T3A.T4E, T1F.T2A.T3A.T4F, T1F.T2A.T3A.T4G, T1F.T2A.T3A.T4H, T1F.T2A.T3B.T4A, T1F.T2A.T3B.T4B, T1F.T2A.T3B.T4C, T1F.T2A.T3B.T4D, T1F.T2A.T3B.T4E, T1F.T2A.T3B.T4F, T1F.T2A.T3B.T4G, T1F.T2A.T3B.T4H, T1F.T2A.T3CT4A, T1F.T2A.T3CT4B, T1F.T2A.T3C.T4C, T1F.T2A.T3C.T4D, T1F.T2A.T3C.T4E, T1F.T2A.T3C.T4F, T1F.T2A.T3C.T4G, T1F.T2A.T3C.T4H, T1F.T2A.T3D.T4A, T1F.T2A.T3D.T4B, T1F.T2A.T3D.T4C, T1F.T2A.T3D.T4D, T1F.T2A.T3D.T4E, T1F.T2A.T3D.T4F, T1F.T2A.T3D.T4G, T1F.T2A.T3D.T4H, T1F.T2B.T3A.T4A, T1F.T2B.T3A.T4B, T1F.T2B.T3A.T4C, T1F.T2B.T3A.T4D, T1F.T2B.T3A.T4E, T1F.T2B.T3A.T4F, T1F.T2B.T3A.T4G, T1F.T2B.T3A.T4H, T1F.T2B.T3B.T4A, T1F.T2B.T3B.T4B, T1F.T2B.T3B.T4Q T1F.T2B.T3B.T4D, T1F.T2B.T3B.T4E, T1F.T2B.T3B.T4F, T1F.T2B.T3B.T4G, T1F.T2B.T3B.T4H, T1F.T2B.T3C.T4A, T1F.T2B.T3C.T4B, T1F.T2B.T3C.T4C, T1F.T2B.T3C.T4D, T1F.T2B.T3C.T4E, T1F.T2B.T3C.T4F, T1F.T2B.T3C.T4G, T1F.T2B.T3C.T4H, T1F.T2B.T3D.T4A, T1F.T2B.T3D.T4B, T1F.T2B.T3D.T4Q T1F.T2B.T3D.T4D, T1F.T2B.T3D.T4E, T1F.T2B.T3D.T4F, T1F.T2B.T3D.T4G, T1F.T2B.T3D.T4H, T1F.T2C.T3A.T4A, T1F.T2C.T3A.T4B, T1F.T2C.T3A.T4C, T1F.T2C.T3A.T4D, T1F.T2C.T3A.T4E, T1F.T2C.T3A.T4F, T1F.T2C.T3A.T4G, T1F.T2C.T3A.T4H, T1F.T2C.T3B.T4A, T1F.T2C.T3B.T4B, T1F.T2C.T3B.T4Q T1F.T2C.T3B.T4D, T1F.T2C.T3B.T4E, T1F.T2C.T3B.T4F, T1F.T2C.T3B.T4G, T1F.T2C.T3B.T4H, T1F.T2C.T3C.T4A, T1F.T2C.T3C.T4B, T1F.T2C.T3C.T4Q T1F.T2C.T3C.T4D, T1F.T2C.T3C.T4E, T1F.T2C.T3C.T4F, T1F.T2C.T3C.T4G, T1F.T2C.T3C.T4H, T1F.T2C.T3D.T4A, T1F.T2C.T3D.T4B, T1F.T2C.T3D.T4C, T1F.T2C.T3D.T4D, T1F.T2C.T3D.T4E, T1F.T2C.T3D.T4F, T1F.T2C.T3D.T4G, T1F.T2C.T3D.T4H, T1F.T2D.T3A.T4A, T1F.T2D.T3A.T4B, T1F.T2D.T3A.T4C, T1F.T2D.T3A.T4D, T1F.T2D.T3A.T4E, T1F.T2D.T3A.T4F, T1F.T2D.T3A.T4G, T1F.T2D.T3A.T4H, T1F.T2D.T3B.T4A, T1F.T2D.T3B.T4B, T1F.T2D.T3B.T4Q T1F.T2D.T3B.T4D, T1F.T2D.T3B.T4E, T1F.T2D.T3B.T4F, T1F.T2D.T3B.T4G, T1F.T2D.T3B.T4H, T1F.T2D.T3C.T4A, T1F.T2D.T3C.T4B, T1F.T2D.T3C.T4C, T1F.T2D.T3C.T4D, T1F.T2D.T3C.T4E, T1F.T2D.T3C.T4F, T1F.T2D.T3C.T4G, T1F.T2D.T3C.T4H, T1F.T2D.T3D.T4A, T1F.T2D.T3D.T4B, T1F.T2D.T3D.T4C, T1F.T2D.T3D.T4D, T1F.T2D.T3D.T4E, T1F.T2D.T3D.T4F, T1F.T2D.T3D.T4G, T1F.T2D.T3D.T4H, T1G.T2A.T3A.T4A, T1G.T2A.T3A.T4B, T1G.T2A.T3A.T4Q T1G.T2A.T3A.T4D, T1G.T2A.T3A.T4E, T1G.T2A.T3A.T4F, T1G.T2A.T3A.T4G, T1G.T2A.T3A.T4H, T1G.T2A.T3B.T4A, T1G.T2A.T3B.T4B, T1G.T2A.T3B.T4Q T1G.T2A.T3B.T4D, T1G.T2A.T3B.T4E, T1G.T2A.T3B.T4F, T1G.T2A.T3B.T4G, T1G.T2A.T3B.T4H, T1G.T2A.T3C.T4A, T1G.T2A.T3C.T4B, T1G.T2A.T3C.T4C, T1G.T2A.T3C.T4D, T1G.T2A.T3C.T4E, T1G.T2A.T3C.T4F, T1G.T2A.T3C.T4G, T1G.T2A.T3C.T4H, T1G.T2A.T3D.T4A, T1G.T2A.T3D.T4B, T1G.T2A.T3D.T4C, T1G.T2A.T3D.T4D, T1G.T2A.T3D.T4E, T1G.T2A.T3D.T4F, T1G.T2A.T3D.T4G, T1G.T2A.T3D.T4H, T1G.T2B.T3A.T4A, T1G.T2B.T3A.T4B, T1G.T2B.T3A.T4C, T1G.T2B.T3A.T4D, T1G.T2B.T3A.T4E, T1G.T2B.T3A.T4F, T1G.T2B.T3A.T4G, T1G.T2B.T3A.T4H, T1G.T2B.T3B.T4A, T1G.T2B.T3B.T4B, T1G.T2B.T3B.T4C, T1G.T2B.T3B.T4D, T1G.T2B.T3B.T4E, T1G.T2B.T3B.T4F, T1G.T2B.T3B.T4G, T1G.T2B.T3B.T4H, T1G.T2B.T3C.T4A, T1G.T2B.T3C.T4B, T1G.T2B.T3C.T4C, T1G.T2B.T3C.T4D, T1G.T2B.T3CT4E, T1G.T2B.T3C.T4F, T1G.T2B.T3C.T4G, T1G.T2B.T3C.T4H, T1G.T2B.T3D.T4A, T1G.T2B.T3D.T4B, T1G.T2B.T3D.T4C, T1G.T2B.T3D.T4D, T1G.T2B.T3D.T4E, T1G.T2B.T3D.T4F, T1G.T2B.T3D.T4G, T1G.T2B.T3D.T4H, T1G.T2C.T3A.T4A, T1G.T2C.T3A.T4B, T1G.T2C.T3A.T4C, T1G.T2C.T3A.T4D, T1G.T2C.T3A.T4E, T1G.T2C.T3A.T4F, T1G.T2C.T3A.T4G, T1G.T2C.T3A.T4H, T1G.T2C.T3B.T4A, T1G.T2C.T3B.T4B, T1G.T2C.T3B.T4C, T1G.T2C.T3B.T4D, T1G.T2C.T3B.T4E, T1G.T2C.T3B.T4F, T1G.T2C.T3B.T4G, T1G.T2C.T3B.T4H, T1G.T2C.T3C.T4A, T1G.T2C.T3C.T4B, T1G.T2C.T3C.T4C, T1G.T2C.T3C.T4D, T1G.T2C.T3C.T4E, T1G.T2C.T3C.T4F, T1G.T2C.T3C.T4G, T1G.T2C.T3C.T4H, T1G.T2C.T3D.T4A, T1G.T2C.T3D.T4B, T1G.T2C.T3D.T4C, T1G.T2C.T3D.T4D, T1G.T2C.T3D.T4E, T1G.T2C.T3D.T4F, T1G.T2C.T3D.T4G, T1G.T2C.T3D.T4H, T1G.T2D.T3A.T4A, T1G.T2D.T3A.T4B, T1G.T2D.T3A.T4C, T1G.T2D.T3A.T4D, T1G.T2D.T3A.T4E, T1G.T2D.T3A.T4F, T1G.T2D.T3A.T4G, T1G.T2D.T3A.T4H, T1G.T2D.T3B.T4A, T1G.T2D.T3B.T4B, T1G.T2D.T3B.T4C, T1G.T2D.T3B.T4D, T1G.T2D.T3B.T4E, T1G.T2D.T3B.T4F, T1G.T2D.T3B.T4G, T1G.T2D.T3B.T4H, T1G.T2D.T3C.T4A, T1G.T2D.T3C.T4B, T1G.T2D.T3C.T4C, T1G.T2D.T3C.T4D, T1G.T2D.T3C.T4E, T1G.T2D.T3C.T4F, T1G.T2D.T3C.T4G, T1G.T2D.T3C.T4H, T1G.T2D.T3D.T4A, T1G.T2D.T3D.T4B, T1G.T2D.T3D.T4C, T1G.T2D.T3D.T4D, T1G.T2D.T3D.T4E, T1G.T2D.T3D.T4F, T1G.T2D.T3D.T4G, T1G.T2D.T3D.T4H,
In still another embodiment, selected compounds of Formula I and II are named below in tabular format (Table 10) as compounds of general Formula TV (below):
X A Y Z
Formula IV
where X, A, Y, and Z are defined in Tables 6-9, below. Each compound is designated in tabular form by combining the "code" representing each structural moiety using the following syntax: X.A.Y.Z. Thus, for example, Xl .Al .Yl .Zl represents the following structure:
Figure imgf000059_0001
Table 6: "A" Structures
Figure imgf000059_0003
Table 7: "X" Structures
Figure imgf000059_0002
Figure imgf000060_0001
Table 8: "Y" Structures
Figure imgf000060_0002
Figure imgf000061_0002
Table 9: "Z" Structures
Figure imgf000061_0001
Table 10: List of Compound Structures of Formula III Xl.Al.Yl.Zl, Xl.Al.Yl.Z2, Xl.Al.Yl.Z3, Xl.Al.Yl.Z4, Xl.Al.Yl.Z5, Xl.Al.Yl.Z6, Xl.Al.Yl.Z7, Xl.Al.Yl.Z8, X1.A1.Y2.Z1, X1.A1.Y2.Z2, X1.A1.Y2.Z3, X1.A1.Y2.Z4, X1.A1.Y2.Z5, X1.A1.Y2.Z6, X1.A1.Y2.Z7, X1.A1.Y2.Z8, X1.A1.Y3.Z1, X1.A1.Y3.Z2, X1.A1.Y3.Z3, X1.A1.Y3.Z4, X1.A1.Y3.Z5, X1.A1.Y3.Z6, X1.A1.Y3.Z7, X1.A1.Y3.Z8, Xl.Al.Y4.Z1, Xl.Al.Y4.Z2, Xl.Al.Y4.Z3, Xl.Al.Y4.Z4, Xl.Al.Y4.Z5, Xl.Al.Y4.Z6, X1.A1.Y4.Z7, X1.A1.Y4.Z8, X1.A2.Y1.Z1, X1.A2.Y1.Z2, X1.A2.Y1.Z3, X1.A2.Y1.Z4, X1.A2.Y1.Z5, X1.A2.Y1.Z6, X1.A2.Y1.Z7, X1.A2.Y1.Z8, X1.A2.Y2.Z1, X1.A2.Y2.Z2, X1.A2.Y2.Z3, X1.A2.Y2.Z4, X1.A2.Y2.Z5, X1.A2.Y2.Z6, X1.A2.Y2.Z7, X1.A2.Y2.Z8, X1.A2.Y3.Z1, X1.A2.Y3.Z2, X1.A2.Y3.Z3, X1.A2.Y3.Z4, X1.A2.Y3.Z5, X1.A2.Y3.Z6, X1.A2.Y3.Z7, X1.A2.Y3.Z8, X1.A2.Y4.Z1, X1.A2.Y4.Z2, X1.A2.Y4.Z3, X1.A2.Y4.Z4, X1.A2.Y4.Z5, X1.A2.Y4.Z6, X1.A2.Y4.Z7, X1.A2.Y4.Z8, X1.A3.Y1.Z1, X1.A3.Y1.Z2, X1.A3.Y1.Z3, X1.A3.Y1.Z4, X1.A3.Y1.Z5, X1.A3.Y1.Z6, X1.A3.Y1.Z7, X1.A3.Y1.Z8, X1.A3.Y2.Z1, X1.A3.Y2.Z2, X1.A3.Y2.Z3, X1.A3.Y2.Z4, X1.A3.Y2.Z5, X1.A3.Y2.Z6, X1.A3.Y2.Z7, X1.A3.Y2.Z8, X1.A3.Y3.Z1, X1.A3.Y3.Z2, X1.A3.Y3.Z3, X1.A3.Y3.Z4, Xl.A3.Y3.Z5, Xl.A3.Y3.Z6, Xl.A3.Y3.Z7, Xl.A3.Y3.Z8, Xl.A3.Y4.Z1, Xl.A3.Y4.Z2, X1.A3.Y4.Z3, X1.A3.Y4.Z4, X1.A3.Y4.Z5, X1.A3.Y4.Z6, X1.A3.Y4.Z7, X1.A3.Y4.Z8, X1.A4.Y1.Z1, X1.A4.Y1.Z2, X1.A4.Y1.Z3, X1.A4.Y1.Z4, X1.A4.Y1.Z5, X1.A4.Y1.Z6, X1.A4.Y1.Z7, X1.A4.Y1.Z8, X1.A4.Y2.Z1, X1.A4.Y2.Z2, X1.A4.Y2.Z3, X1.A4.Y2.Z4, X1.A4.Y2.Z5, X1.A4.Y2.Z6, X1.A4.Y2.Z7, X1.A4.Y2.Z8, X1.A4.Y3.Z1, X1.A4.Y3.Z2, Xl . A4.Y3.Z3, Xl . A4.Y3.Z4, Xl . A4.Y3.Z5, Xl . A4.Y3.Z6, Xl . A4.Y3.Z7, Xl . A4.Y3.Z8, X1.A4.Y4.Z1, X1.A4.Y4.Z2, X1.A4.Y4.Z3, X1.A4.Y4.Z4, X1.A4.Y4.Z5, X1.A4.Y4.Z6, X1.A4.Y4.Z7, X1.A4.Y4.Z8, X2. Al .Yl. Zl7 X2.A1.Y1.Z2, X2.A1.Y1.Z3, X2.A1.Y1.Z4, X2.A1.Y1.Z5, X2.A1.Y1.Z6, X2.A1.Y1.Z7, X2.A1.Y1.Z8, X2.A1.Y2.Z1, X2.A1.Y2.Z2, X2.A1.Y2.Z3, X2.A1.Y2.Z4, X2.A1.Y2.Z5, X2.A1.Y2.Z6, X2.A1.Y2.Z7, X2.A1.Y2.Z8, X2.A1.Y3.Z1, X2.A1.Y3.Z2, X2.A1.Y3.Z3, X2.A1.Y3.Z4, X2.A1.Y3.Z5, X2.A1.Y3.Z6, X2.A1.Y3.Z7, X2.A1.Y3.Z8, X2.A1.Y4.Z1, X2.A1.Y4.Z2, X2.A1.Y4.Z3, X2.A1.Y4.Z4, X2.A1.Y4.Z5, X2.A1.Y4.Z6, X2.A1.Y4.Z7, X2.A1.Y4.Z8, X2.A2.Y1.Z1, X2.A2.Y1.Z2, X2.A2.Y1.Z3, X2.A2.Y1.Z4, X2.A2.Y1.Z5, X2.A2.Y1.Z6, X2.A2.Y1.Z7, X2.A2.Y1.Z8, X2.A2.Y2.Z1, X2.A2.Y2.Z2, X2.A2.Y2.Z3, X2.A2.Y2.Z4, X2.A2.Y2.Z5, X2.A2.Y2.Z6, X2.A2.Y2.Z7, X2.A2.Y2.Z8, X2.A2.Y3.Z1, X2.A2.Y3.Z2, X2.A2.Y3.Z3, X2.A2.Y3.Z4, X2.A2.Y3.Z5, X2.A2.Y3.Z6, X2.A2.Y3.Z7, X2.A2.Y3.Z8, X2.A2.Y4.Z1, X2.A2.Y4.Z2, X2.A2.Y4.Z3, X2.A2.Y4.Z4, X2.A2.Y4.Z5, X2.A2.Y4.Z6, X2.A2.Y4.Z7, X2.A2.Y4.Z8, X2.A3.Y1.Z1, X2.A3.Y1.Z2, X2.A3.Y1.Z3, X2.A3.Y1.Z4, X2.A3.Y1.Z5, X2.A3.Y1.Z6, X2.A3.Y1.Z7, X2.A3.Y1.Z8, X2.A3.Y2.Z1, X2.A3.Y2.Z2, X2.A3.Y2.Z3, X2.A3.Y2.Z4, X2.A3.Y2.Z5, X2.A3.Y2.Z6, X2.A3.Y2.Z7, X2.A3.Y2.Z8, X2.A3.Y3.Z1, X2.A3.Y3.Z2, X2.A3.Y3.Z3, X2.A3.Y3.Z4, X2.A3.Y3.Z5, X2.A3.Y3.Z6, X2.A3.Y3.Z7, X2.A3.Y3.Z8, X2.A3.Y4.Z1, X2.A3.Y4.Z2, X2.A3.Y4.Z3, X2.A3.Y4.Z4, X2.A3.Y4.Z5, X2.A3.Y4.Z6, X2.A3.Y4.Z7, X2.A3.Y4.Z8, X2.A4.Y1.Z1, X2.A4.Y1.Z2, X2.A4.Y1.Z3, X2.A4.Y1.Z4, X2.A4.Y1.Z5, X2.A4.Y1.Z6, X2.A4.Y1.Z7, X2.A4.Y1.Z8, X2.A4.Y2.Z1, X2.A4.Y2.Z2, X2.A4.Y2.Z3, X2.A4.Y2.Z4, X2.A4.Y2.Z5, X2.A4.Y2.Z6, X2.A4.Y2.Z7, X2.A4.Y2.Z8, X2.A4.Y3.Z1, X2.A4.Y3.Z2, X2.A4.Y3.Z3, X2.A4.Y3.Z4, X2.A4.Y3.Z5, X2.A4.Y3.Z6, X2.A4.Y3.Z7, X2.A4.Y3.Z8, X2.A4.Y4.Z1, X2.A4.Y4.Z2, X2.A4.Y4.Z3, X2.A4.Y4.Z4, X2.A4.Y4.Z5, X2.A4.Y4.Z6, X2.A4.Y4.Z7, X2.A4.Y4.Z8, X3.Al .Yl. Zl, X3.A1.Y1.Z2, X3.A1.Y1.Z3, X3.A1.Y1.Z4, X3.A1.Y1.Z5, X3.A1.Y1.Z6, X3.A1.Y1.Z7, X3.A1.Y1.Z8, X3.A1.Y2.Z1, X3.A1.Y2.Z2, X3.A1.Y2.Z3, X3.A1.Y2.Z4, X3.A1.Y2.Z5, X3.A1.Y2.Z6, X3.A1.Y2.Z7, X3.A1.Y2.Z8, X3.A1.Y3.Z1, X3.A1.Y3.Z2, X3.A1.Y3.Z3, X3.A1.Y3.Z4, X3.A1.Y3.Z5, X3.A1.Y3.Z6, X3.A1.Y3.Z7, X3.A1.Y3.Z8, X3.A1.Y4.Z1, X3.A1.Y4.Z2, X3.A1.Y4.Z3, X3.A1.Y4.Z4, X3.A1.Y4.Z5, X3.A1.Y4.Z6, X3.A1.Y4.Z7, X3.A1.Y4.Z8, X3.A2.Y1.Z1, X3.A2.Y1.Z2, X3.A2.Y1.Z3, X3.A2.Y1.Z4, X3.A2.Y1.Z5, X3.A2.Y1.Z6, X3.A2.Y1.Z7, X3.A2.Y1.Z8, X3.A2.Y2.Z1, X3.A2.Y2.Z2, X3.A2.Y2.Z3, X3.A2.Y2.Z4, X3.A2.Y2.Z5, X3.A2.Y2.Z6, X3.A2.Y2.Z7, X3.A2.Y2.Z8, X3.A2.Y3.Z1, X3.A2.Y3.Z2, X3.A2.Y3.Z3, X3.A2.Y3.Z4, X3.A2.Y3.Z5, X3.A2.Y3.Z6, X3.A2.Y3.Z7, X3.A2.Y3.Z8, X3.A2.Y4.Z1, X3.A2.Y4.Z2, X3.A2.Y4.Z3, X3.A2.Y4.Z4, X3.A2.Y4.Z5, X3.A2.Y4.Z6, X3.A2.Y4.Z7, X3.A2.Y4.Z8, X3.A3.Y1.Z1, X3.A3.Y1.Z2, X3.A3.Y1.Z3, X3.A3.Y1.Z4, X3.A3.Y1.Z5, X3.A3.Y1.Z6, X3.A3.Y1.Z7, X3.A3.Y1.Z8, X3.A3.Y2.Z1, X3.A3.Y2.Z2, X3.A3.Y2.Z3, X3.A3.Y2.Z4, X3.A3.Y2.Z5, X3.A3.Y2.Z6, X3.A3.Y2.Z7, X3.A3.Y2.Z8, X3.A3.Y3.Z1, X3.A3.Y3.Z2, X3.A3.Y3.Z3, X3.A3.Y3.Z4, X3.A3.Y3.Z5, X3.A3.Y3.Z6, X3.A3.Y3.Z7, X3.A3.Y3.Z8, X3.A3.Y4.Z1, X3.A3.Y4.Z2, X3.A3.Y4.Z3, X3.A3.Y4.Z4, X3.A3.Y4.Z5, X3.A3.Y4.Z6, X3.A3.Y4.Z7, X3.A3.Y4.Z8, X3.A4.Y1.Z1, X3.A4.Y1.Z2, X3.A4.Y1.Z3, X3.A4.Y1.Z4, X3.A4.Y1.Z5, X3.A4.Y1.Z6, X3.A4.Y1.Z7, X3.A4.Y1.Z8, X3.A4.Y2.Z1, X3.A4.Y2.Z2, X3.A4.Y2.Z3, X3.A4.Y2.Z4, X3.A4.Y2.Z5, X3.A4.Y2.Z6, X3.A4.Y2.Z7, X3.A4.Y2.Z8, X3.A4.Y3.Z1, X3.A4.Y3.Z2, X3.A4.Y3.Z3, X3.A4.Y3.Z4, X3.A4.Y3.Z5, X3.A4.Y3.Z6, X3.A4.Y3.Z7, X3.A4.Y3.Z8, X3.A4.Y4.Z1, X3.A4.Y4.Z2, X3.A4.Y4.Z3, X3.A4.Y4.Z4, X3.A4.Y4.Z5, X3.A4.Y4.Z6, X3.A4.Y4.Z7, X3.A4.Y4.Z8, X4. Al .Yl. Zl, X4.A1.Y1.Z2, X4.A1.Y1.Z3, X4.A1.Y1.Z4, X4.A1.Y1.Z5, X4.A1.Y1.Z6, X4.A1.Y1.Z7, X4.A1.Y1.Z8, X4.A1.Y2.Z1, X4.A1.Y2.Z2, X4.A1.Y2.Z3, X4.A1.Y2.Z4, X4. Al .Y2.Z5, X4. Al .Y2.Z6, X4. Al .Y2.Z7, X4. Al .Y2.Z8, X4. Al .Y3.Z1, X4. Al .Y3.Z2, X4.A1.Y3.Z3, X4.A1.Y3.Z4, X4.A1.Y3.Z5, X4.A1.Y3.Z6, X4.A1.Y3.Z7, X4.A1.Y3.Z8, X4.A1.Y4.Z1, X4.A1.Y4.Z2, X4.A1.Y4.Z3, X4.A1.Y4.Z4, X4.A1.Y4.Z5, X4.A1.Y4.Z6, X4.A1.Y4.Z7, X4.A1.Y4.Z8, X4.A2.Y1.Z1, X4.A2.Y1.Z2, X4.A2.Y1.Z3, X4.A2.Y1.Z4, X4.A2.Y1.Z5, X4.A2.Y1.Z6, X4.A2.Y1.Z7, X4.A2.Y1.Z8, X4.A2.Y2.Z1, X4.A2.Y2.Z2, X4.A2.Y2.Z3, X4.A2.Y2.Z4, X4.A2.Y2.Z5, X4.A2.Y2.Z6, X4.A2.Y2.Z7, X4.A2.Y2.Z8, X4.A2.Y3.Z1, X4.A2.Y3.Z2, X4.A2.Y3.Z3, X4.A2.Y3.Z4, X4.A2.Y3.Z5, X4.A2.Y3.Z6, X4.A2.Y3.Z7, X4.A2.Y3.Z8, X4.A2.Y4.Z1, X4.A2.Y4.Z2, X4.A2.Y4.Z3, X4.A2.Y4.Z4, X4.A2.Y4.Z5, X4.A2.Y4.Z6, X4.A2.Y4.Z7, X4.A2.Y4.Z8, X4.A3.Y1.Z1, X4.A3.Y1.Z2, X4.A3.Y1.Z3, X4.A3.Y1.Z4, X4.A3.Y1.Z5, X4.A3.Y1.Z6, X4.A3.Y1.Z7, X4.A3.Y1.Z8, X4.A3.Y2.Z1, X4.A3.Y2.Z2, X4.A3.Y2.Z3, X4.A3.Y2.Z4, X4.A3.Y2.Z5, X4.A3.Y2.Z6, X4.A3.Y2.Z7, X4.A3.Y2.Z8, X4.A3.Y3.Z1, X4.A3.Y3.Z2, X4.A3.Y3.Z3, X4.A3.Y3.Z4, X4.A3.Y3.Z5, X4.A3.Y3.Z6, X4.A3.Y3.Z7, X4.A3.Y3.Z8, X4.A3.Y4.Z1, X4.A3.Y4.Z2, X4.A3.Y4.Z3, X4.A3.Y4.Z4, X4.A3.Y4.Z5, X4.A3.Y4.Z6, X4.A3.Y4.Z7, X4.A3.Y4.Z8, X4.A4.Y1.Z1, X4.A4.Y1.Z2, X4.A4.Y1.Z3, X4.A4.Y1.Z4, X4.A4.Y1.Z5, X4.A4.Y1.Z6, X4. A4.Y1.Z7, X4. A4.Y1.Z8, X4. A4.Y2.Z1, X4. A4.Y2.Z2, X4. A4.Y2.Z3, X4. A4.Y2.Z4, X4.A4.Y2.Z5, X4.A4.Y2.Z6, X4.A4.Y2.Z7, X4.A4.Y2.Z8, X4.A4.Y3.Z1, X4.A4.Y3.Z2, X4.A4.Y3.Z3, X4.A4.Y3.Z4, X4.A4.Y3.Z5, X4.A4.Y3.Z6, X4.A4.Y3.Z7, X4.A4.Y3.Z8, X4.A4.Y4.Z1, X4.A4.Y4.Z2, X4.A4.Y4.Z3, X4.A4.Y4.Z4, X4.A4.Y4.Z5, X4.A4.Y4.Z6, X4.A4.Y4.Z7, X4.A4.Y4.Z8, X5. Al .Yl. Zl, X5.A1.Y1.Z2, X5.A1.Y1.Z3, X5.A1.Y1.Z4, X5.A1.Y1.Z5, X5.A1.Y1.Z6, X5.A1.Y1.Z7, X5.A1.Y1.Z8, X5.A1.Y2.Z1, X5.A1.Y2.Z2, X5.A1.Y2.Z3, X5.A1.Y2.Z4, X5.A1.Y2.Z5, X5.A1.Y2.Z6, X5.A1.Y2.Z7, X5.A1.Y2.Z8, X5.A1.Y3.Z1, X5.A1.Y3.Z2, X5.A1.Y3.Z3, X5.A1.Y3.Z4, X5.A1.Y3.Z5, X5.A1.Y3.Z6, X5.A1.Y3.Z7, X5.A1.Y3.Z8, X5.A1.Y4.Z1, X5.A1.Y4.Z2, X5.A1.Y4.Z3, X5.A1.Y4.Z4, X5.A1.Y4.Z5, X5.A1.Y4.Z6, X5.A1.Y4.Z7, X5.A1.Y4.Z8, X5.A2.Y1.Z1, X5.A2.Y1.Z2, X5.A2.Y1.Z3, X5.A2.Y1.Z4, X5.A2.Y1.Z5, X5.A2.Y1.Z6, X5.A2.Y1.Z7, X5.A2.Y1.Z8, X5.A2.Y2.Z1, X5.A2.Y2.Z2, X5.A2.Y2.Z3, X5.A2.Y2.Z4, X5.A2.Y2.Z5, X5.A2.Y2.Z6, X5.A2.Y2.Z7, X5.A2.Y2.Z8, X5.A2.Y3.Z1, X5.A2.Y3.Z2, X5.A2.Y3.Z3, X5.A2.Y3.Z4, X5.A2.Y3.Z5, X5.A2.Y3.Z6, X5.A2.Y3.Z7, X5.A2.Y3.Z8, X5.A2.Y4.Z1, X5.A2.Y4.Z2, X5.A2.Y4.Z3, X5.A2.Y4.Z4, X5.A2.Y4.Z5, X5.A2.Y4.Z6, X5.A2.Y4.Z7, X5.A2.Y4.Z8, X5.A3.Y1.Z1, X5.A3.Y1.Z2, X5.A3.Y1.Z3, X5.A3.Y1.Z4, X5.A3.Y1.Z5, X5.A3.Y1.Z6, X5.A3.Y1.Z7, X5.A3.Y1.Z8, X5.A3.Y2.Z1, X5.A3.Y2.Z2, X5.A3.Y2.Z3, X5.A3.Y2.Z4, X5.A3.Y2.Z5, X5.A3.Y2.Z6, X5.A3.Y2.Z7, X5.A3.Y2.Z8, X5.A3.Y3.Z1, X5.A3.Y3.Z2, X5.A3.Y3.Z3, X5.A3.Y3.Z4, X5.A3.Y3.Z5, X5.A3.Y3.Z6, X5.A3.Y3.Z7, X5.A3.Y3.Z8, X5.A3.Y4.Z1, X5.A3.Y4.Z2, X5.A3.Y4.Z3, X5.A3.Y4.Z4, X5.A3.Y4.Z5, X5.A3.Y4.Z6, X5.A3.Y4.Z7, X5.A3.Y4.Z8, X5.A4.Y1.Z1, X5.A4.Y1.Z2, X5.A4.Y1.Z3, X5.A4.Y1.Z4, X5.A4.Y1.Z5, X5.A4.Y1.Z6, X5.A4.Y1.Z7, X5.A4.Y1.Z8, X5.A4.Y2.Z1, X5.A4.Y2.Z2, X5.A4.Y2.Z3, X5.A4.Y2.Z4, X5.A4.Y2.Z5, X5.A4.Y2.Z6, X5.A4.Y2.Z7, X5.A4.Y2.Z8, X5.A4.Y3.Z1, X5.A4.Y3.Z2, X5.A4.Y3.Z3, X5.A4.Y3.Z4, X5.A4.Y3.Z5, X5.A4.Y3.Z6, X5.A4.Y3.Z7, X5.A4.Y3.Z8, X5.A4.Y4.Z1, X5.A4.Y4.Z2, X5.A4.Y4.Z3, X5.A4.Y4.Z4, X5.A4.Y4.Z5, X5.A4.Y4.Z6, X5.A4.Y4.Z7, X5.A4.Y4.Z8, X6. Al .Yl. Zl, X6.A1.Y1.Z2, X6.A1.Y1.Z3, X6.A1.Y1.Z4, X6.A1.Y1.Z5, X6.A1.Y1.Z6, X6.A1.Y1.Z7, X6.A1.Y1.Z8, X6.A1.Y2.Z1, X6.A1.Y2.Z2, X6.A1.Y2.Z3, X6.A1.Y2.Z4, X6.A1.Y2.Z5, X6.A1.Y2.Z6, X6.A1.Y2.Z7, X6.A1.Y2.Z8, X6.A1.Y3.Z1, X6.A1.Y3.Z2, X6.A1.Y3.Z3, X6.A1.Y3.Z4, X6.A1.Y3.Z5, X6.A1.Y3.Z6, X6.A1.Y3.Z7, X6.A1.Y3.Z8, X6.A1.Y4.Z1, X6.A1.Y4.Z2, X6.A1.Y4.Z3, X6.A1.Y4.Z4, X6.A1.Y4.Z5, X6.A1.Y4.Z6, X6.A1.Y4.Z7, X6.A1.Y4.Z8, X6.A2.Y1.Z1, X6.A2.Y1.Z2, X6.A2.Y1.Z3, X6.A2.Y1.Z4, X6.A2.Y1.Z5, X6.A2.Y1.Z6, X6.A2.Y1.Z7, X6.A2.Y1.Z8, X6.A2.Y2.Z1, X6.A2.Y2.Z2, X6.A2.Y2.Z3, X6.A2.Y2.Z4, X6.A2.Y2.Z5, X6.A2.Y2.Z6, X6.A2.Y2.Z7, X6.A2.Y2.Z8, X6.A2.Y3.Z1, X6.A2.Y3.Z2, X6.A2.Y3.Z3, X6.A2.Y3.Z4, X6.A2.Y3.Z5, X6.A2.Y3.Z6, X6.A2.Y3.Z7, X6.A2.Y3.Z8, X6.A2.Y4.Z1, X6.A2.Y4.Z2, X6.A2.Y4.Z3, X6.A2.Y4.Z4, X6.A2.Y4.Z5, X6.A2.Y4.Z6, X6.A2.Y4.Z7, X6.A2.Y4.Z8, X6.A3.Y1.Z1, X6.A3.Y1.Z2, X6.A3.Y1.Z3, X6.A3.Y1.Z4, X6.A3.Y1.Z5, X6.A3.Y1.Z6, X6.A3.Y1.Z7, X6.A3.Y1.Z8, X6.A3.Y2.Z1, X6.A3.Y2.Z2, X6.A3.Y2.Z3, X6.A3.Y2.Z4, X6.A3.Y2.Z5, X6.A3.Y2.Z6, X6.A3.Y2.Z7, X6.A3.Y2.Z8, X6.A3.Y3.Z1, X6.A3.Y3.Z2, X6.A3.Y3.Z3, X6.A3.Y3.Z4, X6.A3.Y3.Z5, X6.A3.Y3.Z6, X6.A3.Y3.Z7, X6.A3.Y3.Z8, X6.A3.Y4.Z1, X6.A3.Y4.Z2, X6.A3.Y4.Z3, X6.A3.Y4.Z4, X6.A3.Y4.Z5, X6.A3.Y4.Z6, X6.A3.Y4.Z7, X6.A3.Y4.Z8, X6.A4.Y1.Z1, X6.A4.Y1.Z2, X6.A4.Y1.Z3, X6.A4.Y1.Z4, X6.A4.Y1.Z5, X6.A4.Y1.Z6, X6.A4.Y1.Z7, X6.A4.Y1.Z8, X6.A4.Y2.Z1, X6.A4.Y2.Z2, X6.A4.Y2.Z3, X6.A4.Y2.Z4, X6.A4.Y2.Z5, X6.A4.Y2.Z6, X6.A4.Y2.Z7, X6.A4.Y2.Z8, X6.A4.Y3.Z1, X6.A4.Y3.Z2, X6.A4.Y3.Z3, X6.A4.Y3.Z4, X6.A4.Y3.Z5, X6.A4.Y3.Z6, X6.A4.Y3.Z7, X6.A4.Y3.Z8, X6.A4.Y4.Z1, X6.A4.Y4.Z2, X6.A4.Y4.Z3, X6.A4.Y4.Z4, X6.A4.Y4.Z5, X6.A4.Y4.Z6, X6.A4.Y4.Z7, X6.A4.Y4.Z8
Pharmaceutical Formulations The compounds of this invention are formulated with conventional carriers and excipients, which will be selected in accord with ordinary practice. Tablets will contain excipients, glidants, fillers, binders and the like. Aqueous formulations are prepared in sterile form, and when intended for delivery by other than oral administration generally will be isotonic. All formulations will optionally contain excipients such as those set forth in the Handbook of Pharmaceutical Excipients (1986), herein incorporated by reference in its entirety. Excipients include ascorbic acid and other antioxidants, chelating agents such as EDTA, carbohydrates such as dextrin, hydroxyalkylcellulose, hydroxyalkylmethylcellulose, stearic acid and the like. The pH of the formulations ranges from about 3 to about 11, but is ordinarily about 7 to 10.
While it is possible for the active ingredients to be administered alone it may be preferable to present them as pharmaceutical formulations. The formulations of the invention, both for veterinary and for human use, comprise at least one active ingredient, together with one or more acceptable carriers and optionally other therapeutic ingredients. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and physiologically innocuous to the recipient thereof.
The formulations include those suitable for the foregoing administration routes. The formulations may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy.
Techniques and formulations generally are found in Remington's Pharmaceutical Sciences (Mack Publishing Co., Easton, Pa.), herein incorporated by reference in its entirety. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients. In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.
Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets or tablets each containing a predetermined amount of the active ingredient; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion. The active ingredient may also be administered as a bolus, electuary or paste. A tablet is made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered active ingredient moistened with an inert liquid diluent. The tablets may optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient. For administration to the eye or other external tissues e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w (including active ingredient(s) in a range between 0.1% and 20% in increments of 0.1% w/w such as 0.6% w/w, 0.7% w/w, etc.), preferably 0.2 to 15% w/w and most preferably 0.5 to 10% w/w. When formulated in an ointment, the active ingredients may be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base.
If desired, the aqueous phase of the cream base may include, for example, at least 30% w/w of a polyhydric alcohol, i.e. an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulphoxide and related analogs.
The oily phase of the emulsions of this invention may be constituted from known ingredients in a known manner. While the phase may comprise merely an emulsifier (otherwise known as an emulgent), it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulgents and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties. The cream should preferably be a non-greasy, non- staining and washable product with suitable consistency to avoid leakage from tubes or other containers. Straight or branched chain, mono- or dibasic alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of branched chain esters known as Crodamol CAP may be used, the last three being preferred esters. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils are used. Pharmaceutical formulations according to the present invention comprise one or more compounds of the invention together with one or more pharmaceutically acceptable carriers or excipients and optionally other therapeutic agents. Pharmaceutical formulations containing the active ingredient may be in any form suitable for the intended method of administration. When used for oral use for example, tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, syrups or elixirs may be prepared. Compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable. These excipients may be, for example, inert diluents, such as calcium or sodium carbonate, lactose, lactose monohydrate, croscarmellose sodium, povidone, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as cellulose, microcrystalline cellulose, starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets may be uncoated or may be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax may be employed.
Formulations for oral use may be also presented as hard gelatin capsules where the active ingredient is mixed with an inert solid diluent, for example calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, such as peanut oil, liquid paraffin or olive oil. Aqueous suspensions of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include a suspending agent, such as sodium carboxymethylcellulose, methylcellulose, hydroxypropyl methylcelluose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension may also contain one or more preservatives such as ethyl or n-propyl p-hydroxy-benzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin. Oil suspensions may be formulated by suspending the active ingredient in a vegetable oil, such as arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oral suspensions may contain a thickening agent, such as beeswax, hard paraffin or cetyl alcohol. Sweetening agents, such as those set forth herein, and flavoring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an antioxidant such as ascorbic acid.
Dispersible powders and granules of the invention suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, a suspending agent, and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those disclosed above. Additional excipients, for example sweetening, flavoring and coloring agents, may also be present. The pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, such as olive oil or arachis oil, a mineral oil, such as liquid paraffin, or a mixture of these. Suitable emulsifying agents include naturally-occurring gums, such as gum acacia and gum tragacanth, naturally occurring phosphatides, such as soybean lecithin, esters or partial esters derived from fatty acids and hexitol anhydrides, such as sorbitan monooleate, and condensation products of these partial esters with ethylene oxide, such as polyoxyethylene sorbitan monooleate. The emulsion may also contain sweetening and flavoring agents. Syrups and elixirs may be formulated with sweetening agents, such as glycerol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative, a flavoring or a coloring agent.
The pharmaceutical compositions of the invention may be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned herein. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butane-diol or prepared as a lyophilized powder. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils may conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid may likewise be used in the preparation of injectables. The amount of active ingredient that may be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans may contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which may vary from about 5 to about 95% of the total compositions (weightrweight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion may contain from about 3 to 500 μg of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
Formulations suitable for administration to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of 0.5 to 20%, advantageously 0.5 to 10% particularly about 1.5% w/w.
Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate. Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 μm (including particle sizes in a range between 0.1 and 500 μm in increments such as 0.5 μm, 1 μm, 30 μm, 35 μm, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration may be prepared according to conventional methods and may be delivered with other therapeutic agents such as compounds heretofore used in the treatment or prophylaxis of infections as described herein. Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate. Formulations suitable for parenteral administration include aqueous and nonaqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations are presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
It should be understood that in addition to the ingredients particularly mentioned above the formulations of this invention may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
The invention further provides veterinary compositions comprising at least one active ingredient as above defined together with a veterinary carrier.
Veterinary carriers are materials useful for the purpose of administering the composition and may be solid, liquid or gaseous materials which are otherwise inert or acceptable in the veterinary art and are compatible with the active ingredient. These veterinary compositions may be administered orally, parenterally or by any other desired route. Compounds of the invention can also be formulated to provide controlled release of the active ingredient to allow less frequent dosing or to improve the pharmacokinetic or toxicity profile of the active ingredient. Accordingly, the invention also provided compositions comprising one or more compounds of the invention formulated for sustained or controlled release.
The effective dose of an active ingredient depends at least on the nature of the condition being treated, toxicity, whether the compound is being used prophylacrically (lower doses) or against an active disease or condition, the method of delivery, and the pharmaceutical formulation, and will be determined by the clinician using conventional dose escalation studies. The effective dose can be expected to be from about 0.0001 to about 10 mg/kg body weight per day, typically from about 0.001 to about 1 mg/kg body weight per day, more typically from about 0.01 to about 1 mg/kg body weight per day, even more typically from about 0.05 to about 0.5 mg/kg body weight per day. For example, the daily candidate dose for an adult human of approximately 70 kg body weight will range from about 0.05 mg to about 100 mg, or between about 0.1 mg and about 25 mg, or between about 0.4 mg and about 4 mg, and may take the form of single or multiple doses.
In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and a pharmaceutically acceptable carrier or exipient.
In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of Formula I, Ia, Ib, II, Ha, HI, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent, and a pharmaceutically acceptable carrier or exipient.
In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of Formula I, Ia, Ib, II, Ila, HI, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent, and a pharmaceutically acceptable carrier or exipient. Examples of the additional active agent also include, but are not limited to interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
More specifically, one or more compounds of the present invention may be combined with one or more compounds selected from the group consisting of:
(1) interferons selected from the group consisting of pegylated rlFN-alpha 2b (PEG-Intron), pegylated rlFN-alpha 2a (Pegasys), rlFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG- Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof;
(2) ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
(3) HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
(4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof; (5) hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof;
(6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of R1626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
(7) non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
(8) HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
(9) TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof; (10) cyclophillin inhibitors selected from the group consisting of DEBIO-025,
SCY-635, NIM811, and mixtures thereof;
(11) HCV IRES inhibitors selected from the group consisting of MCI-067,
(12) pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and (13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BF/N-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
In yet another embodiment, the present application provides a combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of Formula I, Ia, Ib, II, Ua, in, or IV, or a pharmaceutically acceptable salt, solvate, or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
Routes of Administration
One or more compounds of the invention (herein referred to as the active ingredients) are administered by any route appropriate to the condition to be treated. Suitable routes include oral, rectal, nasal, topical (including buccal and sublingual), vaginal and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, intrathecal and epidural), and the like. It will be appreciated that the preferred route may vary with for example the condition of the recipient. An advantage of the compounds of this invention is that they are orally bioavailable and can be dosed orally.
Combination Therapy
In one embodiment, the compounds of the present invention are used in combination with other active therapeutic ingredients or agents. Combinations of the compounds of Formula I, Ia, Ib, II, Ha, III, or IV, and additional active agents may be selected to treat patients with a viral infection, e.g., HBV, HCV, or HIV infection. Preferably, the other active therapeutic ingredients or agents are interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof. Combinations of the compounds of Formula I, Ia, Ib, II, Ha, in, or IV, are typically selected based on the condition to be treated, cross-reactivities of ingredients and pharmaco-properties of the combination. For example, when treating an infection (e.g., HCV), the compositions of the invention are combined with other active agents (such as those described herein). Suitable active agents or ingredients which can be combined with the compounds of Formula I, Ia, Ib, II, Ila, in, or IV, can include one or more compounds selected from the group consisting of:
(1) interferons selected from the group consisting of pegylated rIFN-alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative,
Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG- Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof;
(2) ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
(3) HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof; (4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof;
(5) hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof; (6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of R1626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
(7) non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
(8) HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof; (9) TLR-7 agonists selected from the group consisting of ANA-975, SM-
360320, and mixtures thereof;
(10) cyclophillin inhibitors selected from the group consisting of DEBIO-025, SCY-635, NIM811, and mixtures thereof;
(11) HCV IRES inhibitors selected from the group consisting of MCI-067, (12) pharmacokinetic enhancers selected from the group consisting of BAS-
100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and
(13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18,
VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Baviruximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
T7 In yet another embodiment, the present application discloses pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent, and a pharmaceutically acceptable carrier or exipient.
According to the present invention, the active agent used in combination with the compound of the present invention can be any agent having a therapeutic effect when used in combination with the compound of the present invention. For example, the active agent used in combination with the compound of the present invention can be interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof. In another embodiment, the present application provides pharmaceutical compositions comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, in combination with at least one additional active agent selected from the group consisting of:
(1) interferons selected from the group consisting of pegylated rIFN-alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVf-005), PEG-
Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof; (2) ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
(3) HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-T), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-101, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
(4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof;
(5) hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof;
(6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of Rl 626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
(7) non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708,
VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
(8) HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
(9) TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof;
(10) cyclophillin inhibitors selected from the group consisting of DEBIO-025, SCY-635, NIM811, and mixtures thereof; (11) HCV IRES inhibitors selected from the group consisting of MCI-067,
(12) pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and (13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
In yet another embodiment, the present application provides a combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of the present invention, or a pharmaceutically acceptable salt, solvate, or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
It is also possible to combine any compound of the invention with one or more other active agents in a unitary dosage form for simultaneous or sequential administration to a patient. The combination therapy may be administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations.
Co-administration of a compound of the invention with one or more other active agents generally refers to simultaneous or sequential administration of a compound of the invention and one or more other active agents, such that therapeutically effective amounts of the compound of the invention and one or more other active agents are both present in the body of the patient. Co-administration includes administration of unit dosages of the compounds of the invention before or after administration of unit dosages of one or more other active agents, for example, administration of the compounds of the invention within seconds, minutes, or hours of the administration of one or more other active agents. For example, a unit dose of a compound of the invention can be administered first, followed within seconds or minutes by administration of a unit dose of one or more other active agents. Alternatively, a unit dose of one or more other active agents can be administered first, followed by administration of a unit dose of a compound of the invention within seconds or minutes. In some cases, it may be desirable to administer a unit dose of a compound of the invention first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more other active agents. In other cases, it may be desirable to administer a unit dose of one or more other active agents first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound of the invention. The combination therapy may provide "synergy" and "synergistic effect", i.e. the effect achieved when the active ingredients used together is greater than the sum of the effects that results from using the compounds separately. A synergistic effect may be attained when the active ingredients are: (1) co-formulated and administered or delivered simultaneously in a combined formulation; (2) delivered by alternation or in parallel as separate formulations; or (3) by some other regimen. When delivered in alternation therapy, a synergistic effect may be attained when the compounds are administered or delivered sequentially, e.g., in separate tablets, pills or capsules, or by different injections in separate syringes. In general, during alternation therapy, an effective dosage of each active ingredient is administered sequentially, i.e. serially, whereas in combination therapy, effective dosages of two or more active ingredients are administered together.
In still yet another embodiment, the present application provides for methods of treating a viral infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
In still yet another embodiment, the present application provides for methods of treating a viral infection in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active agent.
In still yet another embodiment, the present application provides for methods of treating HCV in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or FV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
In still yet another embodiment, the present application provides for methods of treating HCV in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or FV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active agent which inhibits HCV polymerase.
In still yet another embodiment, the present application provides for methods of treating HCV in a patient, comprising: administering to the patient a therapeutically effective amount of a compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, and at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
In still yet another embodiment, the present application provides for the use of a compound of the present invention, or a pharmaceutically acceptable salt, solvate, and/or ester thereof, for the preparation of a medicament for treating a viral infection, e.g., an HBV/HCV infection.
In yet another embodiment, the present application provides a method for treating or preventing a viral infection comprising co-administering, to a patient in need thereof, a therapeutically effective amount of at least one compound of
Formula I, Ia, Ib, II, Ha, III, or IV, and at least one additional active agent selected from the group consisting of:
(1) interferons selected from the group consisting of pegylated rlFN- alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative,
Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG- Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof;
(2) ribavirin and its analogs selected from the group consisting of ribavirin (Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
(3) HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
(4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof; (5) hepatoprotectants selected from the group consisting of IDN-6556, ME
3738, LB-84451, silibilin, MitoQ, and mixtures thereof; (6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of Rl 626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
(7) non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708,
VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
(8) HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
(9) TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof;
(10) cyclophillin inhibitors selected from the group consisting of DEBIO-025, SCY-635, NIM811, and mixtures thereof; (11) HCV IRES inhibitors selected from the group consisting of MCI-067,
(12) pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and
(13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvadn, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
In yet another embodiment, the present application provides a method for modulating toll-like receptor 7, comprising contacting a cell having a toll-like receptor 7 with an effective amount of a compound of Formula I, Ia, Ib, II, Ha, HI, or rv or a pharmaceutically acceptable salt, solvate, and/or ester thereof. The term "modulating" refers to contacting the toll-like receptor 7 with a compound of Formula I, Ia, Ib, π, III, or IV which is e.g., an agonist or partial agonist of toll-like receptor 7.
In yet another embodiment, the present application provides a method for inducing interferon (or IFN-a) production in a patient in need thereof, comprising administering to the patient, a therapeutically effective amount of at least one compound of Formula I, Ia, Ib, II, Ha, III, or IV, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
Examples
Synthesis of Example A:
Scheme 1
Figure imgf000086_0001
Compound 2
2-(2-Methoxy-ethoxy)-9H-purin-6-ylamine (1 g, 4.78 mmol) (1), α,α'-dibromo- m-xylene (2.52 g, 9.56 mmol) and anhydrous potassium carbonate (1.32 g, 9.56 mmol) were combined in DMF (10 mL) and stirred at ambient temperature for 5 hours. The reaction mixture was diluted with ethyl acetate (120 mL), washed with water (2x), brine, dried with Na∑SO^ and evaporated under vacuum. The crude product was purified by chromatography on silica gel with 0-10% methanol in ethyl acetate as eluent. Evaporation of the appropriate fractions gave 9-(3-Bromomethyl- benzyl)-2-(2-methoxy-ethoxy)-9H-purin-6-ylamine (2) (1.1 g, 2.80 mmol, 59%). MS: 392/394 (MH+).
Compound 3 9-(3-Bromomethyl-benzyl)-2-(2-methoxy-ethoxy)-9H-purin-6-ylamine (2) (1 g,
2.54 mmol) was dissolved in acetonitrile (10 mL). N-bromosuccinimide (1.5 g, 8.4 mmol) was added in portions over 5 min. The mixture was stirred at ambient temperature for 1 hour, then diluted with ethyl acetate (100 mL), washed with 10% aqueous Na2S203 solution, and brine, dried with Na2SU4, and evaporated under vacuum. The crude 8-Bromo-9-(3-bromomethyl-benzyl)-2-(2-methoxy-ethoxy)-9H- purin-6-ylamine (3) (~1 g) was used in the next step without further purification.
Example A
Crude 8-Bromo-9-(3-bromomethyl-benzyl)-2-(2-methoxy-ethoxy)-9H-purin-6- ylamine (3) (~1 g) was dissolved in dichloromethane (10 mL) and pyrrolidine (1 mL) was added. The reaction mixture was stirred at ambient temperature overnight and then evaporated under vacuum. The residue (4) was dissolved in methanol (20 mL) and 50% aqueous KOH (2 mL) was added. The mixture was heated under reflux until HPLC analysis indicated complete disappearance of starting material (~3 hours). Then the mixture was cooled to ambient temperature and concentrated aq. HCl was added (5 mL). Heating under reflux was continued for 1 hour after which the reaction mixture was evaporated to dryness under vacuum. The solid residue was extracted 3x with methanol to separate from salts. The methanol solution was evaporated under vacuum and the crude product was purified by reverse phase preparative HPLC (5-45% acetonitrile/40 mM aqueous HCl) giving 6-Amino-2-(2- methoxy-ethoxy)-9-(3-pyrrolidin-l-ylmethyl-benzyl)-9H-purin-8-ol (Example A) (450 mg, 1.13 mmol) as yellowish solid as the HCl salt. 1H-NMR (DMSO) δ: 10.09 (s, IH), 9.78 (br, IH), 7.47-7.33 (m, 4H), 6.54 (br, 2H), 4.87 (s, 2H), 4.32 (d, J=5.1, 2H), 4.23 (t, J=4.5Hz, 2H), 3.56 (t, J=4.5Hz, 2H), 3.25 (s, 3H), 3.38- 3.00 (m, 4H), 2.05-1.75 (m, 4H). MS: 399 (MH+).
Examples B, C, D, E, F, G, H, I, J, K, L, M, and N were prepared using procedures similar to those used to prepare Example A except that pyrrolidine was replaced with the appropriate amine for each of these examples.
Example B:
Figure imgf000088_0001
B 6-Amino-2-(2-methoxy-ethoxy)-9-(3-morpholin-4-ylmethyl-benzyl)-9H-purin-8-ol 1H-NMR (DMSO) δ: 10.08 (s, IH), 9.85 (br, IH), 7.55-7.35 (m, 4H), 6.53 (br, 2H), 4.89 (s, 2H), 4.32 (s, 2H), 4.23 (t, J=4.5Hz, 2H), 3.98-3.89 (m, 2H), 3.66-3.52 (m, 4H), 3.25 (s, 3H), 3.25-3.02 (m, 4H). MS: 415 (MH+).
Example C:
Figure imgf000088_0002
6-Arru^o-2-(2-methoxy-ethoxy)-9-[3-(4-methyl-piperazin-l-ylmethyl)-benzyl]-9H- purin-8-ol
1H-NMR (DMSO) δ: 11.6 (br, 2H), 10.75 (s, IH), 7.59-7.33 (m, 4H), 4.89 (s, 2H), 4.37- 4.28 (m, 4H), 3.60-3.27 (m, 10H), 3.26 (s, 3H), 2.80 (s, 3H). MS: 428 (MH+).
Example D:
Figure imgf000089_0001
6-Amino-9-{3-[(cyclopropylmethyl-amino)-methyl]-benzyl}-2-(2-methoxy-ethoxy)- 9H-purin-8-ol 1H-NMR (DMSO) δ: 10.89 (s, IH), 9.18 (br, 2H), 7.50-7.32 (m, 4H), 5.58 (br, 2H), 4.89 (s, 2H), 4.32 (t, J=4 Hz, 2H), 4.09 (t, J=4.5 Hz, 2H), 3.59 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 2.80-2.74 (m, 2H), 1.10-1.03 (m, IH), 0.57-0.52 (m, 2H), 0.34-0.30 (m, 2H). MS: 399 (MH+).
Example E:
Figure imgf000089_0002
E
6-Arnino-9-(3-irnidazol-l-ylrnethyl-benzyl)-2-(2-rnethoxy-ethoxy)-9H-purin-8-ol 1H-NMR (DMSO) δ: 10.85 (s, IH), 9.28 (s, IH), 7.76 (s, IH), 7.68 (s, IH), 7.40-7.26 (m, 4H), 5.42 (s, 2H), 5.40 (br, 2H), 4.87 (s, 2H), 4.29 (t, J=4.5 Hz, 2H), 3.59 (t, J=4.5 Hz, 2H), 3.26 (s, 3H). MS: 396 (MH+). Example F:
Figure imgf000090_0001
6-Amino-9-[3-(3/5-dimethyl-piperidin-l-ylmethyl)-benzyl]-2-(2-methoxy-ethoxy)- 9H-purin-8-ol (mixture of ds and trans); MS: 441 (MH+).
Example G:
Figure imgf000090_0002
6-Arnino-9-[3-(2,6-diniethyl-morpholin-4-ylrnethyl)-benzyl]-2-(2-rnethoxy-ethoxy)- 9H-purin-8-ol 1H-NMR (DMSO) δ: 11.31 (br, IH), 10.90 (s, IH), 7.60-7.36 (m, 4H), 5.10 (br, 2H), 4.91 (s, 2H), 4.33 (t, J=4.5 Hz, 2H), 4.26 (m, 2H), 3.98-3.89 (m, 2H), 3.59 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 3.18 (d, J=I 1.7 Hz, 2H), 2.65-2.50 (m, 2H), 1.07 (d, J=6.3 Hz, 6H). MS: 443 (MH+).
Example H:
Figure imgf000090_0003
6-Amino-9-[3-(2,3-dihydro-indol-l-ylmethyl)-benzyl]-2-(2-methoxy-ethoxy)-9H- purin-8-ol 1H-NMR (DMSO) δ: 9.94 (s, IH), 7.32-7.15 (m, 4H), 7.01 (d, J=6.9 Hz, IH), 6.93 (t, J=7.2 Hz, IH), 6.59-6.49 (m, 2H), 6.46 (s, 2H), 4.84 (s, 2H), 4.23 (t, J=4.5 Hz, 2H), 4.21 (s, 2H), 3.55 (t, J=4.5 Hz, 2H), 3.25 (s, 3H), 3.19 (t, J=8.4 Hz, 2H), 2.85 (t, J=8.4 Hz, 2H). MS: 447 (MH+).
Example I:
Figure imgf000091_0001
6-Amino-9-[3-(l,3-dihydro-isoindol-2-ylinethyl)-benzyl]-2-(2-methoxy-ethoxy)-9H- purin-8-ol 1H-NMR (DMSO) δ: 11.31 (br, IH), 10.42 (s, IH), 7.63-7.34 (m, 8H), 6.77 (br, 2H), 4.91 (s, 2H), 4.60-4.52 (m, 6H), 4.26 (t, J=4.5 Hz, 2H), 3.56 (t, J=4.5 Hz, 2H), 3.24 (s, 3H). MS: 447 (MH+).
Example J:
Figure imgf000091_0002
6-Amino-2-(2-methoxy-ethoxy)-9-(3-piperidin-l-ylmethyl-benzyl)-9H-purin-8-ol 1H-NMR (DMSO) δ: 10.67 (s, IH), 10.08 (br, IH), 7.51-7.34 (m, 4H), 4.90 (s, 2H), 4.51 (br, 2H), 4.30-4.20 (m, 4H), 3.57 (t, J=4.5 Hz, 2H), 3.25 (s, 3H), 3.30-3.20 (m, 2H), 2.87- 2.74 (m, 2H), 1.80-1.25 (m, 6H). MS: 413 (MH+).
Example K:
Figure imgf000092_0001
6-Amino-9-[3-(4-fluoro-piperidin-l-ylmethyl)-benzyl]-2-(2-methoxy-ethoxy)-9H- purin-8-ol
1H-NMR (DMSO) δ: 10.90 (s, IH), 10.85 (br, IH), 7.58-7.34 (m, 4H), 4.91 (s, 2H), 4.30-
4.20 (m, 4H), 3.59 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 3.30-2.90 (m, 5H), 2.25-1.95 (m, 4H).
MS: 431 (MH+).
Example L:
Figure imgf000092_0002
6-Amino-9-[3-(3,3-difluoro-piperidin-l-ylmethyl)-benzyl]-2-(2-methoxy-ethoxy)-9H- purin-8-ol
1H-NMR (DMSO) δ: 11.05 (br, IH), 11.00 (s, IH), 7.53-7.38 (m, 4H), 4.92 (s, 2H), 4.38-
4.29 (m, 4H), 3.59 (t, J=4.5 Hz, 2H), 3.55-3.45 (m, 2H), 3.26 (s, 3H), 3.05-2.90 (m, 2H),
2.20-1.85 (m, 4H). MS: 449 (MH+).
Example M:
Figure imgf000092_0003
M 9-(3-((pyridin-2-ylamino)πιethyl)benzyl)-6-ainino-2-(2-methoxyethoxy)-9H-purin-8- ol
1H-NMR (DMSO) b: 10.47 (s, IH), 8.53 (br, 2H), 8.09 (d, J=6.3 Hz, IH), 7.90 (t, J=7.5 Hz, IH), 7.37 (t, J=8 Hz, IH) 7.28 (d, J=7.5 Hz, IH) 7.12-7.03 (m, 3H), 6.91 (t, J=7.5 Hz, IH), 5.42 (s, 2H), 4.84 (s, 2H), 4.25 (t, J=4.5 Hz, 2H), 3.59 (t, J=4.5 Hz, 2H), 3.27 (s, 3H). MS: 422 (MH+).
Example N:
Figure imgf000093_0001
N 9-(3-(azetidin-l-ylmethyl)benzyl)-6-amino-2-(2-methoxyethoxy)-9H-purin-8-ol
1H NMR (DMSO) δ: 2.17-2.41 (m, 2H), 3.25 (s, 3H), 3.59 (t, 3H, /= 4.5 Hz), 3.82-4.02 (m, 4H), 4.28 (d, 2H, / = 6 Hz), 4.39 (t, 2H, / = 4.5 Hz), 4.90 (s, 2H), 7.35-7.44 (m, 4H), 11.32 (s, IH). LCMS: mlz for Ci9H24N6O3 + + H observed 385.2 at 1.61 minutes of a 3.5 minute run, gradient 5-95% CHsCN in H2O.
Synthesis of Example O:
Scheme 2
Figure imgf000094_0001
Compound 5
Crude 8-Bromo-9-(3-bromomethyl-benzyl)-2-(2-methoxy-ethoxy)-9H-purin-6- ylamine (-70 mg) was dissolved in DMF (2 mL). 2-Hydroxypyridine (100 mg) and anhydrous potassium carbonate (100 mg) was added and the reaction mixture was stirred overnight. After dilution with ethyl acetate (100 mL), the solution was washed with water and brine, dried with Na2SO4 and evaporated under vacuum. The crude product (5) was converted to l-((3-((6-amino-8-hydroxy-2-(2- methoxyethoxy)-9H-purin-9-yl)methyl)phenyl)methyl)pyridin-2(lH)-one (Example O, 41 mg) using procedures similar to those used to convert Compound 4 to Example A.
1H-NMR (DMSO) δ: 10.54 (s, IH), 7.72 (d, J=7 Hz, IH), 7.40 (t, J=7 Hz, IH), 7.29 (t, J=7.2 Hz, IH), 7.22-7.11 (m, 3H), 6.38 (d, J=9 Hz, IH), 6.20 (t, J=6.6 Hz, IH), 5.06 (s, 2H), 4.84 (s, 2H), 4.31 (t, J=4.5 Hz, 2H), 3.60 (t, J=4.5 Hz, 2H), 3.27 (s, 3H). MS: 423 (MH+). Synthesis of Example P:
Scheme 3
Figure imgf000095_0001
Example P 6-Amino-2-(2-methoxy-ethoxy)-9-(3-pyrrolidin-l-ylmethyl-benzyl)-9H-purin-
8-ol (Example A) (31 mg, 0.078 mmol) was dissolved in DMF (2 mL). Anhydrous potassium carbonate (50 mg) was added followed by p-methoxybenzyl chloride (13.7μL, 0.101 mmol). The mixture was stirred at ambient temperature overnight. The reaction mixture was diluted with dichloromethane, washed with water and brine, dried with Na2SO4 and evaporated under vacuum. Purification by preparative HPLC (5-60% acetonitrile/40mM aqueous HCl) gave 6-amino-7-(4-methoxy-benzyl)- 2-(2-methoxy-ethoxy)-9-(3-pyrrolidin-l-ylmethyl-benzyl)-7/9-dihydro-purin-8-one (Example P) (6 mg) as the HCl salt. 1H-NMR (CDCb) δ: 12.54 (br, IH), 7.85-6.88 (m, 10H), 5.24 (s, 2H), 5.14 (s, 2H), 4.66 (s, 2H), 4.20 (br, 2H), 3.81 (s, 3H), 3.72 (br, 2H), 3.58 (br, 2H), 3.36 (s, 3H), 2.85 (br, 2H), 2.25-2.00 (m, 4H). MS: 519 (MH+).
Synthesis of Example Q:
Scheme 4
Figure imgf000096_0001
6-Amino-2-(2-methoxy-ethoxy)-9-(3-pyrrolidin-l-ylmethyl-benzyl)-9H-purin-
8-ol (Example A) (60 mg, 0.15 mmol) was dissolved in dichloromethane (2 mL). N7N- diisopropylethylamine (0.1 mL) was added and the mixture was cooled to 00C. Ethylchloroformate (0.04 mL, 0.42 mmol) was added. After stirring for 30 minutes, the reaction was quenched with water and concentrated under vacuum. Purification by preparative reverse phase HPLC (5-45% acetonitrile/40 mM aqueous HCl) gave 9- (3-(pyrrolidin-l-ylmethyl)benzyl)-6-amino-2-(2-methoxyethoxy)-9H-purin-8-yl ethyl carbonate (Example Q) (24 mg) as a white glassy solid, HCl salt. 1H-NMR (DMSO) δ: 9.99 (br, IH), 7.45-7.32 (m, 4H), 7.08 (br, 2H), 4.89 (s, 2H), 4.37 (q, J=6.9 Hz, 2H), 4.29 (t, J=4.5 Hz, 2H), 4.20 (br, 2H), 3.58 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 3.15-2.85 (m, 4H), 1.92-1.78 (m, 4H)7 1.31 (t, J=6.9 Hz, 3H). MS: 471 (MH+).
Examples R, S, T, U, and V were prepared using procedures similar to those used to prepare Example Q except that ethyl chloroformate was replaced with isopropyl chloroformate and the appropriate starting material was utilized for each of these examples.
Example R:
Figure imgf000097_0001
R
9-(3-(pyrrolidin-l-ylmethyl)benzyl)-6-amino-2-(2-methoxyethoxy)-9H-purin-8-yl isopropyl carbonate prepared from Example A.
1H-NMR (DMSO) δ: 10.65 (br, IH), 7.55-7.37 (m, 4H)7 7.10 (br, 2H), 5.11 (sept, J=6.3Hz, IH), 4.89 (s, 2H), 4.33-4.25 (m, 4H), 3.58 (t, J=4.5Hz, 2H), 3.36-3.26 (m, 2H), 3.26 (s, 3H), 3.08-2.95 (m, 2H), 2.05-1.80 (m, 4H), 1.33 (d, J=6.3Hz, 6H). MS: 485 (MH+).
Example S:
Figure imgf000097_0002
9-(3-((4-fluoropiperidin-l-yl)methyl)benzyl)-6-amino-2-(2-methoxyethoxy)-9H- purin-8-yl isopropyl carbonate prepared from Example K.
1H-NMR (DMSO) δ: 10.95 (br, IH), 7.59-7.38 (m, 4H), 7.10 (br, 2H), 5.10 (sept, J=6.3 Hz, IH), 4.89 (s, 2H), 4.33-4.23 (m, 4H), 3.58 (t, J=4.5 Hz, 2H), 3.36-2.87 (m, 5H), 3.26 (s, 3H), 2.25-1.95 (m, 4H), 1.33 (d, J=6.3 Hz, 6H). MS: 517 (MH+). Example T:
Figure imgf000098_0001
9-(3-(piperidin-l-ylmethyl)benzyl)-6-amino-2-(2-methoxyethoxy)-9H-purin-8-yl isopropyl carbonate prepared from Example J.
1H NMR (CD3OD) δ: 1.43 (d, 6H, / = 6 Hz), 1.72-1.97 (m, 6H), 2.95 (t, 4H, /= 9.3 Hz), 3.38 (s, 3H), 3.75 (t, 2H, / = 4.5, 9 Hz), 4.28 (s, 2H), 4.62 (t, 2H, / = 4.5, 9 Hz), 5.11 (s, 2H), 5.21-5.31 (m, IH), 7.48 (d, 2H, / = 4.2 Hz), 7.56 (d, IH, / = 3.6 Hz), 7.66 (s, IH). LCMS: mlz for C25H34N6O5 ++ H observed 499.2 at 2.31 minutes of a 3.5 minute run, gradient 5-95% CH3CN in H2O.
Example U:
Figure imgf000098_0002
9-(3-((4-methylpiperazin-l-yl)methyl)benzyl)-6-amino-2-(2-methoxyethoxy)-9H- purin-8-yl isopropyl carbonate prepared from Example C.
1H NMR (CD3OD) δ: 1.43 (d, 6H, / = 6 Hz), 3.0 (s, 4H), 3.39 (s, 3H), 3.64 (s, 2H), 3.77 (t, 2H, / = 4.5 Hz), 4.49 (s, 2H), 4.63 (t, 2H, J = 4.5 Hz), 5.11 (s, 2H), 5.23-5.31 (m, IH), 7.46-7.62 (m, 3H), 7.72 (s, IH). LCMS: mlz for C25H35NTOS + + H observed 514.2 at 2.09 minutes of a 3.5 minute run, gradient 5-95% CH3CN in H2O. Example V:
Figure imgf000099_0001
9-(3-(pyrrolidin-l-ylmethyl)ben2yl)-6-amino-2-butoxy-9H-purin-8-yl isopropyl carbonate prepared from Example W.
1H NMR (DMSO) δ: 0.89 (t, 3H, / = 7.2 Hz), 3.17 (d, 6H), 1.29-42 (m, 2H), 1.62 (q, 2H, / = 7.5), 1.79-2.02 (m, 4H), 2.91-3.08 (m, 2H), 3.21-3.36 (m, 2H), 4.17 (t, 2H, / = 6.6), 4.29 (d, 2H, / = 6), 4.89 (s, 2H), 5.06-5.15 (m, IH), 7.38-7.57 (m, 4H), 10.95 (s, IH). LCMS: mlz for C25H34N6O4 ++ H observed 483.2 at 2.64 minutes of a 3.5 minute run, gradient 5-95% CHsCN in H2O.
Synthesis of Example W:
Scheme 5
Figure imgf000099_0002
microwave as in Example A
Figure imgf000099_0003
Compound 6 2-chloroadenine (1.53 g, 9.03 mmol) was divided among three microwave vials (10-20 mL), each containing 1-butanol (10 mL) and t-BuOK (5 mL, IM in THF). Each vial was heated to 1700C for 40 minutes. The three reaction mixtures were combined, the solvent was removed by rotary evaporation and the product was purified on flash column eluting 10% methanol in ethylacetate. Evaporation of solvent gave 1.33 g (70%) of 2-butoxy-9H-purin-6-amine (6) as an off white solid. 1H NMR (DMSO) δ: 0.919 (t, 3H), 1.39 (m, 2H), 1.62 (m, 2H), 4.09 (t, 2H), 6.00 (s, 2H), 7.44 (s, IH). LCMS: mix for C9Hi3NsO+ + H observed 208.1 at 1.34 minutes of a 3.5 minute run, gradient 5-95% CHaCN in H2O.
Example W was prepared from Compound 6 using procedures similar to those used to prepare Example A.
1H NMR (DMSO) δ: 0.89 (t, 3H, / = 7.2 Hz), 1.29-1.42 (m, 2H), 1.60 (q, 2H, / = 7.2), 1.77-2.04 (m, 4H), 2.97-3.10 (m, 2H), 3.26-3.37 (m, 2H), 4.12 (t, 2H, / = 7), 4.30 (d, 2H, / = 6), 4.89 (s, 2H), 7.30-7.50 (m, 4H), 10.26 (s, IH). LCMS: mlz for C21H28N6O2 ++ H observed 397.2 at 2.50 minutes of a 3.5 minute run, gradient 5-95% CHsCN in H2O.
Synthesis of Example X:
Scheme 6
Figure imgf000100_0001
Example X
Example D (40 mg, 0.100 mmol) was dissolved in dichloromethane (2 mL) and cooled to 00C. Diisopropylethylamine (0.1 mL) and then methanesulfonyl chloride (0.012 mL, 0.154 mmol) was added sequentially. After stirring for 1 hour at 00C, the reaction mixture was quenched with water (1 mL) and evaporated to dryness. Purification by reverse phase preparative HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example X (23 mg).
1H-NMR (DMSO) δ: 9.96 (s, IH), 7.34-7.18 (m, 4H), 6.45 (br, 2H), 4.85 (s, 2H), 4.37 (s, 2H), 4.24 (t, J=4.5 Hz, 2H), 3.57 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 2.94 (s, 3H), 2.91 (d, J=6.9Hz, 2H), 0.88-0.78 (m, IH), 0.35-0.29 (m, 2H), 0.04-0.00 (m, 2H). MS: 477 (MH+).
Synthesis of Example Y:
Scheme 7
Figure imgf000101_0001
Example Y
Example A (30 mg, 0.075 mmol) was dissolved in dichloromethane (2 mL). Diisopropylethylamine (0.1 mL) and then ethyl isocyanate (0.05 mL) was added. After stirring at ambient temperature overnight, the reaction mixture was evaporated to dryness under vacuum. Purification by reverse phase preparative HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example Y (23 mg) as a white solid as the HCl salt.
1H-NMR (DMSO) δ: 10.96 (br, IH), 8.87 (t, J=5.7Hz, IH), 7.57-7.36 (m, 4H), 4.95 (s, 2H), 4.32-4.25 (m, 4H), 3.58 (t, J=4.5 Hz, 2H), 3.25 (s, 3H), 3.36-3.25 (m, 4H), 3.05-2.92 (m, 2H), 2.02-1.80 (m, 4H), 1.13 (t, J=7.2 Hz, 3H). MS: 470 (MH+). Synthesis of Example Z:
Scheme 8
Figure imgf000102_0001
Example Z
Example D (40 mg, 0.10 mmol) was dissolved in dichloromethane (2 mL). N,N-diisopropylethylamine (0.1 mL) was added and the mixture was cooled to 00C. Ethylchloroformate (0.021 mL, 0.22 mmol) was added. After stirring for 30 minutes, the reaction was quenched with water and concentrated under vacuum. Purification by preparative reverse phase HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example Z (17 mg) as a white solid.
1H-NMR (DMSO) δ: 7.32-7.11 (m, 4H), 7.06 (br, 2H), 4.85 (s, 2H), 4.45 (s, 2H), 4.36 (q, J=7.5 Hz, 2H), 4.28 (t, J=4.5 Hz, 2H), 4.02 (br, 2H), 3.58 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 3.06-2.97 (m, 2H), 1.30 (t, J=6.9 Hz, 3H), 1.22-1.02 (m, 3H), 0.93-0.81 (m, IH), 0.38-0.29 (m, 2H), 0.12-0.05 (m, 2H). MS: 543 (MH+)
Synthesis of Example AA and Example AB:
Scheme 9
Figure imgf000103_0001
Examples AA and AB
Example D (40 mg, 0.10 mmol) was dissolved in dichloromethane (2 mL). N,N-diisopropylethylamine (0.1 mL) was added and then ethyl isocyanate (0.05 mL).
After stirring at ambient temperature for 30 minutes, the reaction mixture was evaporated to dryness under vacuum. Purification by reverse phase preparative
HPLC (5-60% acetonitrile/40 mM aqueous HCl) gave Example AA (4 mg) and
Example AB (6.5 mg) as white solids. Example AA: 1H-NMR (DMSO) δ: 9.93 (s, IH), 7.30-7.09 (m, 4H), 6.44 (br, 2H), 6.30
(m, IH), 4.82 (s, 2H), 4.46 (s, 2H), 4.24 (t, J=4.5 Hz, 2H), 3.57 (t, J=4.5 Hz, 2H)7 3.26 (s,
3H), 3.10-2.94 (m, 4H), 0.96 (t, J=6.9 Hz, 3H), 0.93-0.81 (m, IH), 0.34-0.25 (m, 2H),
0.08-0.01 (m, 2H). MS: 470 (MH+).
Example AB: 1H-NMR (DMSO) δ: 8.88 (m, IH), 7.30-7.05 (m, 4H), 6.29 (m, IH), 4.90 (s, 2H), 4.46 (s, 2H), 4.29 (t, J=4.5 Hz, 2H), 3.59 (t, J=4.5 Hz, 2H), 3.30 (m, 2H), 3.26 (s,
3H), 3.08-2.94 (m, 4H), 1.13 (t, J=6.9 Hz, 3H), 0.95 (t, J=6.9 Hz, 3H), 0.90-0.80 (m, IH),
0.34-0.25 (m, 2H), 0.08-0.01 (m, 2H). MS: 541 (MH+).
Synthesis of AC
Scheme 10
Figure imgf000104_0001
Compound 7
2-(2-Methoxyethoxy)-9H-purin-6-amine (1) (1.28 g, 6.12 mmol), δ-bromo-m- tolunitrile (1.37 g, 7.0 mmol), and potassium carbonate (0.97 g, 7.0 mmol) were combined in DMF (10 mL) and stirred at ambient temperature for 4 hours. The mixture was diluted with ethyl acetate (200 mL), washed with water and brine, dried with Na2SU4 and evaporated under vacuum. The residue was crystallized from ethyl acetate giving 3-((6-amino-2-(2-methoxyethoxy)-9H-purin-9-yl)methyl)benzonitrile (7) (1.0 g) as a white solid.
Compound 9
3-((6-amino-2-(2-methoxyethoxy)-9H-purin-9-yl)methyl)benzonitrile (7) (1.0 g) was suspended in acetonitrile. N-Bromosuccinimide (1.0 g) was added in small portions over 10 minutes. After stirring for 1 hour, the mixture was diluted with ethyl acetate, washed with 10% aqueous Na2S2θ3 solution, saturated aqueous NaHCCb solution and brine, dried with Na∑SCu and evaporated to dryness under vacuum. The crude 3-((6-amino-8-bromo-2-(2-methoxyethoxy)-9H-purin-9- yl)methyl)benzonitrile (8) was dissolved in methanol (50 mL) and 50% aqueous KOH solution (1 mL) was added. The mixture was heated under reflux for 3 hours and then concentrated under vacuum. The product was extracted with ethyl acetate, the combined organic layers were washed with water and brine, dried with Na2SO4 and evaporated under vacuum. Purification by flash chromatography on silica gel (eluent: 0-10% MeOH in ethyl acetate) gave 3-((6-amino-8-methoxy-2-(2- methoxyethoxy)-9H-purin-9-yl)methyl)benzonitrile (9) (0.45 g) as a pinkish solid.
Compound 10
3-((6-Amino-8-methoxy-2-(2-methoxyethoxy)-9H-purin-9- yl)methyl)benzonitrile (9) (50 mg) was dissolved in acetonitrile (2 mL). A 6N aqueous HCl solution (2 mL) was added and the mixture was stirred at ambient temperature overnight. After evaporation to dryness, the residue was dissolved in DMF (1 mL). Potassium carbonate (100 mg) and ethyl iodide (0.02 mL) were added and the mixture was stirred at ambient temperature for 5 hours. After dilution with water (20 mL) the product was extracted with dichloromethane. The combined organic layers were washed with water and brine, dried with Na2SO4 and evaporated under vacuum. Purification by flash chromatography on silica gel (eluent: 0-10% MeOH in ethyl acetate) gave 3-((6-amino-7-ethyl-2-(2- methoxyethoxy)-8-oxo-7/8-dihydropurin-9-yl)methyl)benzonitrile (10) (35 mg) as a colorless glass.
Example AC
3-((6-Amino-7-ethyl-2-(2-methoxyethoxy)-8-oxo-7,8-dihydropurin-9- yl)methyl)benzonitrile (35 mg) was dissolved in dichloromethane (2 mL) and cooled to 00C. IM DIBAL solution in toluene (0.5 mL) was added. After stirring for 1 hour, the reaction was quenched with water and a saturated solution of Rochelle salt was added. After vigorous stirring for 30 minutes, the mixture was extracted with dichloromethane. The combined organic layers were washed with water and brine, dried with Na2SO4 and evaporated under vacuum. The crude product (11) was dissolved in methanol (1 mL) and acetic acid (0.5 mL). Pyrrolidine (0.1 mL) was added followed by sodium triacetoxy borohydride (100 mg). The mixture was stirred for 1 hour at ambient temperature and then evaporated to dryness. The residue was dissolved in aqueous HCl/acetonitrile and purified by preparative reverse phase HPLC (5-60% acetonitrile/40 mM aqueous HCl) which gave Example AC (9 mg) as the HCl salt as a colorless glass. 1H-NMR (DMSO) δ: 10.66 (br, IH), 7.54-7.29 (m, 4H), 6.74 (br, 2H), 4.92 (s, 2H), 4.31- 4.25 (m, 4H), 3.97 (m, 2H, under the water peak), 3.58 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 3.35-3.25 (m, 2H), 3.07-2.95 (m, 2H), 2.05-1.80 (m, 4H), 1.12 (t, J=6.9 Hz, 3H). MS: 427 (MH+). Synthesis of Example AD:
Scheme 11
Figure imgf000107_0001
Compound 12
To a suspension of 2-chloroadenine (1.7 g, 10.18 mmol) in DMF (10 mL) was added K2CO3 (1.4 g, 10.18 mmol), 2-bromomethylbenzonitrile (2 g, 10.18 mmol). The reaction was reacted at 80 °C. After the reaction was complete, the reaction mixture was diluted with water, and then the precipitate was collected. The solid was washed by water, then ether ester. The product (12) was dried under high vacuum. MS: 285 (MH+).
Compound 13
To a flask with n-BuOH (10 ml), was added NaH (60%, 840 mg, 21 mmol) at room temperature. The reaction mixture was stirred at ambient temperature for 5 min. Then compound 12 (2.4 g, 8.4 mmol) was added. The mixture was allowed to react at 120 °C for about half an hour. Then the reaction mixture was cooled, washed with saturated NHiCl solution and extracted with DCM. The organic layer was dried over Na2SO4 and filtered. The filtrate was concentrated down, and the residue (13) was purified by silica gel column, using DCM/MeOH as solvent. 1H NMR (dβ- DMSO) δ: 0.90 (t, 3H), 1.33-1.41 (m, 2H), 1.58-1.67 (m, 2H), 4.19 (t, 2H), 5.32 (s, 2H), 7.22 (s, 2H), 7.52-7.84 (m, 4H), 8.06 (s, IH); 323 (MH+).
Example AD was prepared from Compound 13 using procedures similar to those used to prepare Example AC except that Compound 10 was replaced with Compound 13.
1H NMR (CD3OD) δ: 0.99 (t, 3H), 1.46-1.54 (m, 2H), 1.76-1.1.83 (m, 2H), 2.01-2.11 (m, 2H), 2.15-2.17 (m, 2H), 3.16-3.18 (m, 2H), 3.45-3.47 (m, 2H), 3.61 (s, 3H), 4.36 (s, 2H), 4.54 (t, 2H), 5.14 (s, 2H), 7.48-7.60 (m, 4H); MS: 411 (MH+).
Examples AE, AF, AG and AH were prepared using procedures similar to those used to prepare Example AD except that the appropriate iodide was used during the 7-N alkylation step to make the corresponding compounds.
Example AE
Figure imgf000108_0001
1H NMR (CDsOD) δ: 0.99 (t, 3H), 1.47-1.54 (m, 2H), 1.77-1.86 (m, 2H), 2.02-2.07 (m, 2H), 2.10-2.16 (m, 2H), 3.15-3.19 (m, 2H), 3.44-3.47 (m, 2H), 4.37 (s, 2H), 4.56 (t, 2H), 4.70 (s, 2H), 5.08-5.26 (m, 4H), 5.98-6.07 (m, IH), 7.44-7.63 (m, 4H); MS: 437 (MH+).
Example AF
Figure imgf000109_0001
1H NMR (CD3OD) δ: 0.41-0.42 (m, 2H), 0.53-0.56 (m, 2H), 0.99 (t, 3H), 1.53-1.57 (m, IH), 1.47-1.55 (m, 2H), 1.78-1.84 (m, 2H), 2.01-2.04 (m, 2H), 2.14-2.17 (m, 2H), 3.15- 3.19 (m, 2H), 3.44-3.47 (m, 2H), 3.97 (d, 2H), 4.38 (s, 2H), 4.55 (t, 2H), 5.16 (s, 2H), 7.50-7.61 (m, 4H); MS: 451 (MH+).
Example AG
Figure imgf000109_0002
1H (CDsOD) δ: 0.90-1.01 (m, 6H), 1.46-1.54 (m, 2H), 1.69-1.84 (m, 4H), 2.00-2.04 (m, 2H), 2.15-2.17 (m, 2H), 3.16-3.19 (m, 2H), 3.44-3.47 (m, 2H), 4.04 (m, 2H), 4.37 (s, 2H), 4.56 (t, 2H), 5.16 (s, 2H), 7.46-7.61 (m, 2H); MS: 439 (MH+).
Example AH
Figure imgf000109_0003
Η NMR (CD3OD) δ: 0.99 (t, 3H), 1.46-1.54 (m, 2H), 1.59 (d, 6H), 1.77-1.82 (m, 2H), 2.00-2.04 (m, 2H), 2.15-2.18 (m, 2H), 3.16-3.20 (m, 2H), 3.45-3.49 (m, 2H), 4.38 (s, 2H), 4.55 (t, 3H), 5.11 (s, 2H), 7.48-7.60 (m, 4H); MS: 439 (MH+).
Synthesis of Example AI
Scheme 12
Figure imgf000110_0001
Compound 14 was prepared using the procedures similar to those used to prepare Compound 13 except that cyclobutanol was used instead of n-BuOH. 1H NMR (CDCl3) δ: 1.61-1.95 (m, 2H), 2.14-2.44 (m, 4H), 5.13-5.18 (m, IH), 5.30 (s, 2H), 5.94 (s, 2H), 7.44-7.64 (m, 5H); MS: 321 (MH+).
Example AI was prepared using the procedures shown in Scheme 12, and similar to those used to prepare Example AC. The spectral data of the intermediates and Example AC are shown below. Compound 15
1H NMR (CDCb) δ: 1.62-1.88 (m, 2H), 2.11-2.45 (m, 4H), 5.14-5.16 (m, IH)7 5.30 (s, 2H), 6.23 (s, 2H), 7.44-7.65 (m, 4H); MS: 399 (MH+).
Compounds 16
1H NMR (CDCb) δ: 1.52-1.77 (m, 2H), 1.96-2.17 (m, 2H), 2.29-2.38 (m, 2H), 4.02 (s, 3H), 5.01-5.08 (m, 3H), 5.91 (s, 2H), 7.32-7.56 (m, 4H); MS: 351 (MH+).
Compound 17 1H NMR (CDCb) δ: 1.68-1.88 (m, 2H), 3.20-3.37 (m, 4H), 5.00-5.02 (m, 2H), 5.19-5.20 (m, IH), 7.45-7.68 (m, 4H); MS: 337 (MH+).
Example AI
1H NMR (CD3OD) δ: 1.73-2.28 (m, 8H), 2.44-2.48 (m, 2H), 3.15-3.20 (m, 2H), 4.44-4.48 (m, 2H), 4.37 (s, 2H), 5.10 (s, 2H), 5.25-5.34 (m, IH), 7.49-7.59 (m, 4H); MS: 395 (MH+).
Synthesis of Example AJ
Scheme 13
NaOMe/MeOH
Figure imgf000112_0002
Figure imgf000112_0003
Example AJ was prepared using the procedures shown in scheme 13, and similar to those used to prepare Example AC. The spectral data of the intermediates and Example AJ are listed below.
Compound 18
1H NMR PMSO) δ: 1.47-1.56 (m, 2H), 1.64-1.74 (m, 2H), 3.33-3.43 (m, 2H), 4.16 (t, 2H), 7.05 (s, 2H), 7.87 (s, IH), 12.55 (bs, IH); MS: 224 (MH+).
Ill Compound 19
1H NMR (CDCl3) δ: 1.65-1.74 (m, 2H), 1.81-1.87 (m, 2H), 3.69 (t, 2H), 5.27 (s, 2H), 6.52 (s, 2H), 7.39-7.68 (m, 5H); MS: 339 (MH+).
Compound 20
1H NMR (CDCb) δ: 1.70-1.76 (m, 2H), 1.82-1.87 (m, 2H), 3.69 (t, 2H), 4.32 (t, 2H), 5.28 (s, 2H), 6.57 (s, 2H), 7.39-7.63 (m, 4H); MS: 419 (MH+).
Compound 21 1H NMR (CDCb) δ: 1.70-1.74 (m, 2H), 1.81-1.87 (m, 2H), 3.69 (t, 2H), 4.07 (s, 3H), 4.29 (t, 2H), 5.08 (s, 2H), 5.81 (s, 2H), 7.37-7.61 (m, 4H); MS: 369 (MH+).
Compound 22
1H NMR (CD3OD) δ: 1.69-1.70 (m. 2H), 1.87-1.91 (m, 2H), 3.63 (t, 2H), 4.56 (t, 2H), 5.11 (s, 2H), 7.56-7.82 (4H); MS: 355 (MH+).
Example AJ
1H NMR (CD3OD) δ: 1.66-1.72(m, 2H), 1.87-1.93 (m, 2H), 2.01-2.04 (m, 2H), 2.15-2.18 (m, 2H), 3.15-3.19 (m, 2H), 3.45-3.49 (m, 2H), 3.62 (t, 2H), 4.38 (t, 2H), 4.58 (t, 2H), 5.12 (s, 2H), 7.47-7.61 (m, 4H); MS: 413 (MH+).
Synthesis of Example AK and Example AL
Scheme 14
Figure imgf000114_0001
NaOMe/MeOH
Figure imgf000114_0002
Figure imgf000114_0003
Example AK and Example AL were prepared using the procedures shown in Scheme 14, and similar to those used to prepare Example AC. The bromide (23) used in the first step was made by treating the corresponding benzenemethyl compound with NBS in acetonitrile at room temperature or at 400C. The spectral data of intermediates and Example AK and Example AL are listed below. Compound 23
1H NMR (CDCl3) δ: 3.43 (s, 3H)7 3.75 (t, 2H), 4.47 (s, 2H), 5.28 (s, 2H), 5.85 (s, 2H), 7.47-7.65 (m, 4H); MS: 359 (MH+).
Compound 24
1H NMR (CD3OD) δ: 3.40 (s, 3H), 3.73 (s, 2H), 4.47 (s, 2H), 5.38 (s, 2H), 7.58-7.62 (m, 2H), 7.84 (s, IH); MS: 437 (MH+).
Compound 25 1H NMR (CDCb) δ: 3.41 (s, 3H), 3.74 (t, 2H), 4.09 (s, 3H), 4.44 (t, 2H), 5.06 (s, 2H), 5.48 (s, 2H), 7.42-7.61 (m, 3H); MS: 389 (MH+).
Compound 26
1H NMR (CDCl3) δ: 3.41 (s, 3H), 3.72-3.76 (m, 2H), 3.89 (s, 3H), 4.09 (s, 3H), 3.42-3.47 (m, 2H), 5.00 (s, 2H), 5.48 (s, 2H), 7.45-7.62 (m, 3H); MS: 385 (MH+).
Example AK
1H NMR (CD3OD) δ: 2.02-2.06 (m, 2H), 2.20-2.23 (m, 2H), 3.10-3.16 (m, 2H), 3.40 (s, 3H), 3.54-3.58 (m, 2H), 3.76 (t, 2H), 4.63 (t, 2H), 5.10 (s, 2H), 7.52-7.59 (m, 2H), 7.74 (s, IH); MS: 433 (MH+).
Example AL
1H NMR (CD3OD) δ: 2.01-2.03 (m, 2H), 2.15-2.19 (m, 2H), 3.18-3.23 (m, 2H), 3.41 (s, 3H), 4.44-3.49 (m, 2H), 3.77 (t, 2H), 3.93 (s, 3H), 4.36 (s, 2H), 4.66 (t, 2H), 5.03 (s, 2H), 7.11 (d, IH), 7.52-7.58 (m, 2H); MS: 429 (MH+). Synthesis of Example AM
Scheme 15
Figure imgf000116_0001
Example AM was prepared using the procedures shown in Scheme 15, and similar to the procedures used to prepare Example AC. The spectral data of the intermediates and Example AM are listed below.
Compound 27
1H NMR (CD3OD) δ: 3.39 (s, 3H), 3.73 (t, 2H), 4.45 (t, 2H), 5.44 (s, 2H), 7.36 (t, IH), 7.78-7.87 (m, 2H), 8.01 (s, IH); MS: 343 (MH+).
Compound 28
1H NMR (CD3OD) δ: 3.39 (s, 3H), 3.72 (t, 2H), 4.44 (t, 2H), 5.44 (s, 2H), 7.37 (t, IH), 7.67-7.79 (m, 2H); MS: 421 (MH+). Compound 29
1H NMR (CDCl3) δ: 3.40 (s, 3H), 3.73 (t, 2H), 3.92 (s, 3H), 4.11 (s, 3H), 4.46 (t, 2H), 5.12 (s, 2H), 6.94 (d, IH), 7.14 (s, IH), 7.60 (dd, IH); MS: 385 (MH+).
Example AM
1H NMR (CD3OD) δ: 1.97-1.99 (m, 2H), 2.13-2.16 (m, 2H), 3.12-3.17 (m, 2H), 3.37 (s, 3H), 3.38-3.44(m, 2H), 3.72 (t, 2H), 3.89 (s, 3H), 4.27 (s, 2H), 4.56 (t, 2H), 5.08 (s, 2H), 7.09 (d, IH), 7.33 (s, IH), 7.45 (dd, IH); MS: 429 (MH+).
Synthesis of Example AN
Example AN was prepared using the procedures shown in Scheme 16, and similar to those used to prepare Example AC. The spectral data of intermediates and Example AN are listed below.
Scheme 16
Figure imgf000117_0001
Compound 30
1H NMR (CD3OD) δ: 3.40 (s. 3H), 3.73 (t, 2H), 4.47 (t, 2H), 5.36 (s, 2H), 7.35 (t, IH), 7.72-7.86 (m, 2H), 8.03 (s, IH); MS: 343 (MH+).
Compound 31
1H NMR (CDCb) δ: 3.44 (s, 3H), 3.77 (t, 2H), 4.53 (s, 2H), 5.30 (s, 2H), 6.11 (bs, 2H), 7.21-7.27 (m, 2H), 7.64-7.68 (m, 2H); MS: 421 (MH+).
Compound 32 1H NMR (CD3OD) δ: 2.00-2.12 (m, 2H), 2.13-2.17 (m, 2H), 3.19-3.22 (m, 2H), 3.40 (s, 3H), 3.42-3.54 (m, 2H), 3.74 (t, 2H), 4.45 (s, 2H), 4.54 (t, 2H), 5.39 (s, 2H), 7.29 (t, IH), 7.52-7.56 (m, 2H); MS: 479 (MH+).
Example AN 1H NMR (CD3OD) δ: 2.01-2.06 (m, 2H), 2.18-2.20 (m, 2H), 3.18-3.24 (m, 2H), 3.40 (s, 3H), 3.51-3.55 (m, 2H), 3.76-3.79 (m, 2H), 4.46 (s, 2H), 4.66-4.69 (m, 2H), 5.10 (s, 2H), 7.27 (t, IH), 7.61-7.63 (m, IH), 7.68-7.72 (m, IH); MS: 417 (MH+).
Example AO was prepared using procedures similar to those used to prepare Example AM (Scheme 15), except that in the first step, l-bromo-(3- cyanophenyl)ethane was used to alkylate Compound 1. The product obtained from the first step was then taken through the remaining steps described in Scheme 15 to give Example AO. l-Bromo-(3-cyanophenyl)ethane was synthesized using a two- step procedure by fisrt reducing 3-acetylbenzonitrile to l-(3-cyanophenyl)-ethanol, followed by conversion to l-bromo-(3-cyanophenyl)ethane. Examples AP, AQ, AR, and AS were prepared using procedures similar to those used to prepare Example AN (Scheme 16) by using an appropriate bromide in the first alkylation step. For compound AP, Na(CN)3BH was used instead of Na(OAc)3BH during the reductive amination. The structure and spectral data of these compounds are listed below.
Example AO
Figure imgf000119_0001
1H NMR (CD3OD) δ: 2.00-2.20 (m, 7H), 3.12-3.20 (m, 2H), 3.38 (S, 3H), 3.44-3.50 (m, 2H), 3.74 (t, 2H), 4.39 (s, 2H), 4.56-4.64 (m, 2H), 5.78 (q, IH), 7.48-7.69 (m, 4H); MS: 413 (MH+).
Example AP
Figure imgf000119_0002
1H NMR (CD3OD) δ: 1.72 (d, 3H), 1.92-2.18 (m, 4H), 2.92-3.04 (m, 2H), 3.19-3.29 (m, 2H), 3.39 (s, 3H), 3.75-3.84 (m, 3H), 4.40 (q, IH), 4.64-4.67 (m, 2H), 5.10-5.13 (m, 2H), 7.47-7.64 (m, 4H); MS: 413 (MH+).
Example AQ
Figure imgf000119_0003
1H NMR (CD3OD) δ: 2.00-2.05 (m, 2H), 2.08-2.19 (m, 2H), 3.16-3.21 (m, 2H), 3.38 (s, 3H), 3.47-3.52 (m, 2H), 3.74-3.77 (m, 2H), 4.49 (s, 2H), 4.65 (t, 2H), 5.20 (s, 2H), 7.90- 7.92 (m, 3H); MS: 467 (MH+).
Example AR
Figure imgf000120_0001
1H NMR (CD3OD) δ: 3.20-3.35 (m, 4H), 3.39 (s, 3H), 3.75-3.78 (m, 4H), 3.86-3.87 (m, 2H), 4.00-4.04 (m, 2H), 4.46 (s, 2H), 4.65-4.68 (m, 2H), 5.20 (s, 2H), 7.90-7.97 (m, 3H); MS: 483 (MH+).
Example AS
Figure imgf000120_0002
1H NMR (CD3OD) δ: 1.54-1.58 (m, IH), 1.80-1.90 (m, 5H), 2.99 (t, 2H), 3.39 (s, 3H), 3.42 (s, 2H), 3.76 (m, 2H), 4.39 (s, 2H), 4.66 (t, 2H), 5.20 (2H), 7.87-7.93 (m, 3H); MS: 481 (MH+).
Examples AT, AU, AV, and AW were prepared using procedures similar to those used to prepare Example W except that NMP was used as the solvent and different alcohols were used instead of butanol. For Example AT, the first step was conducted at 200 °C.
Example AT
Figure imgf000121_0001
1H NMR (DMSO) δ: 1.84-1.97 (m, 4H), 2.98-3.00 (m, 2H), 3.27-3.29 (m, 2H), 4.30 (dd, 2H), 4.80-4.90 (m, 4H), 7.33-7.54 (m, 4H), 10.70 (s, IH); MS: 423 (MH+).
Example AU
Figure imgf000121_0002
1H NMR (DMSO) δ: 0.05-0.07 (m, 2H), 0.38-0.40 (m, 2H), 0.73-0.76 (m, IH), 1.51-1.58 (m, 2H), 1.82-1.98 (m, 4H), 2.97-3.02 (m, 2H), 3.26-3.30 (m, 2H), 4.22-4.30 (m, 4H), 10.65(S, IH); MS: 409 (MH+).
Example AV
Figure imgf000121_0003
1H NMR (CD3OD) δ: 1.92-2.20 (m, HH), 3.15-3.21 (m, 2H), 3.43-3.52 (m, 2H), 4.38 (s, 2H), 4.50 (d, 2H), 5.12 (s, 2H), 7.49-7.60 (m, 4H); MS: 409 (MH+). Example AW
Figure imgf000122_0001
1H NMR (DMSO) δ: 0.27-0.31 (m, 2H), 0.49-0.61 (m, 2H), 1.64-1.84 (m, IH), 1.84-1.98 (m, 4H), 2.98-3.01 (m, 2H), 3.27-3.29 (m, 2H), 4.29-4.31 (m, 4H), 5.01 (s, 2H), 7.34-7.55 (m, 4H), 10.65 (s, IH); MS: 395 (MH+).
Example AX
Figure imgf000122_0002
Example AXwas prepared using procedures similar to those used to prepare
Example AC, except Compound 1 was replaced with Compound 6. 1H NMR (DMSO) δ: 0.89 (t, / = 7.5 Hz, 3H), 1.13 (t, / = 7.2 Hz, 3H), 1.35 (sext, / = 7.2 Hz, 2H), 1.63 (quint, / = 7.5 Hz, 2H), 1.80-2.02 (m, 4H), 2.91-3.04 (m, 2H), 3.20-3.31 (m, 2H), 4.00 (q, J = 7.2 Hz, 2H), 4.21-4.30 (m, 4H), 4.94 (s, 2H), 7.00 (br, 2H), 7.30-7.58 (m, 4H), 11.23 (s, IH); MS:425 (MH+).
Examples AY, AZ and BA were prepared using the procedures similar to those used to prepare Example A, except that pyrrolidine was replaced with an appropriate amine. For example, pyrrolidine was replaced with cyclohexylmethanamine in Example AZ. Example AY
Figure imgf000123_0001
1H MNR (DMSO) δ: 1.13 (s, 6H), 2.68-2.74 (m, 2 H), 3.25 (s, 3H), 3.57 (t, / = 4.5 Hz, 2H), 4.05-4.15 (m, 2H), 4.29 (t, / = 4.5 Hz, 2H), 4.89 (s, 2H), 7.10 (br, 2H), 7.49-7.32 (m, 4H), 8.84 (br, 2H), 10.71 (s, IH); MS: 417 (MH+).
Example AZ
Figure imgf000123_0002
1H NMR (DMSO) δ: 0.94-0.81 (m, 2H), 1.08-1.26 (m, 2H), 1.55-1.77 (m, 6H), 2.66-2.74 (m, 2H), 3.25 (s, 3H), 3.57 (t, / = 4.5 Hz, 2H), 4.05-4.15 (m, 2H), 4.26 (t, / = 4.5 Hz, 2H), 4.88 (s, 2H), 6.84 (br, 2H), 7.32-7.48 (m, 4H), 8.87 (br, 2H), 10.53 (s, IH); MS: 441 (MH+).
Example BA
Figure imgf000123_0003
1H NMR (DMSO) δ: 1.12-1.57 (m, 10H), 2.68-2.76 (m, 2H), 3.25 (s, 3H), 3.59 (t, / = 4.5 Hz, 2H), 4.06-4.14 (m, 2H), 4.32 (t, / = 4.5 Hz, 2H), 4.89 (s, 2H), 7.30 (br, 2H), 7.32-7.51 (m, 4H), 8.88 (br, 2H), 10.96 (s, IH); MS: 457 (MH+). Examples BB and BC were prepared using procedures similar to those used to prepare Example W, except that the appropriate amine was used for the different compounds.
Example BB
Figure imgf000124_0001
BB
1H NMR (DMSO) δ: 0.88 (t, / = 7.2 Hz7 3H), 1.36 (sext, / = 7.2 Hz, 2H); 1.64 (quint, / = 6.6 Hz, 2H), 2.96-3.19 (m, 4H), 3.72-3.92 (m, 4H), 4.22-4.34 (m, 4H), 4.92 (s, 2H), 7.30 (br, 2H), 7.36-7.58 (m, 4H), 11.6 (s, IH), 11.35 (br, IH); MS: 314 (MH+).
Example BC
Figure imgf000124_0002
1H NMR (DMSO) δ: 0.88 (t, / = 7.2 Hz, 3H), 1.35 (sext, / = 7.2 Hz, 2H), 1.62 (quint, / = 6.6 Hz, 2H), 4.18 (t, / = 6.6 Hz, 2H), 4.87 (s, 2H), 5.42 (s, 2H), 7.20 (br, 2H), 7.25-7.40 (m, 4H), 7.68 (s, IH), 7.76 (s, H), 8.29 (s, IH), 10.90 (s, IH); MS: 394 (MH+). Synthesis of Example BD:
Scheme 17
Figure imgf000125_0001
33
Figure imgf000125_0002
Compound 33
A sample of the 2-butoxy-8-methoxy-9H-purin-6-amine TFA salt (7.58 g) was dissolved in CHsCN (400 mL) and treated with CS2CO3 (21.1 g) at 23 °C for 5 min. 3- (bromomethyl)-benzaldehyde (4.27 g) was then added. Once the reaction was gauged complete using LCMS and HPLC, it was filtered through a plug of Na2SO4 over a glass frit. The filtrate was concentrated to an orange soild. A minimum of warm glacial AcOH (30 mL) was used to dissolve the solid with stirring in an oil bath at 80 0C. H2O (54 mL) was added slowly with mild stirring. Clouding was persistent so the reaction was allowed to cool to 23 0C in the oil bath. An orange oil began to coagulate out of the mother liquor. More glacial AcOH (5 mL) was added, but the oil failed to resorb into the mother liquor. The mixture was cooled in a refridgerator overnight, and the orange oil solidified. The mother liquor was decanted away, and almost immediately, white crystals began to grow. These crystals proved to be 95% pure compound 33 (-1.5 g), which was captured via filtration. The orange solidified oil could be purified on silica gel (DCMrMeOH, 98:2, isocratic gradient), affording 90% pure 33 (yield not determined). 1H NMR (CDCb) δ: 0.97 (t, 3H), 1.46-1.55 (m, 2H), 1.73-1.81 (m, 2H), 4.11 (s, 3H), 4.31 (t, 2H), 5.18 (d, 4H), 7.47-7.60 (m, 2H), 7.79-7.86 (m, 2H), 9.99 (s, IH); MS: 356 (MH+).
Example BD
To a solution of aldehyde 33 (90 mg) in DMF (1.5 mL) was added 4- fluoropiperidine hydrochloride (106 mg). Glacial AcOH (90 μL) and NaBH(OAφ (270 mg) were introduced, and the reaction was stirred at 23 °C for 1.5 h. Once the reaction was gauged complete using LCMS and HPLC analysis, 12 M aq HCl (300 μL) was added. The next day, 1.0 M aq HCl (1.0 mL) was added to aid conversion. Once the reaction had reached completion, the entire reaction was directly purified on a C-18 reversed-phase HPLC column (eluent: 0.5% w/v aq HCl + CH3CN; 5/90 to 100:0), giving amine BD (85.5 mg, 81% yield) as a yellow gum after lyophilization.Η NMR (DMSO) δ: 0.89 (t, 3H), 1.32-1.38 (m, 2H), 1.57-1.63 (m, 2H), 1.90-2.12 (m, 5H), 3.07-3.21 (m, 4H), 4.12 (t, 2H), 4.28-4.32 (m, 2H), 4.89 (s, 2H), 7.36-7.44 (m, 4H), 10.04 (bs, IH), 10.28 (s, IH); MS: 429 (MH+).
Examples BE and BF were prepared using procedures similar to those used to prepare Example BD, except that the appropriate amine was used for different examples and that the reductive amination step to make example BF was conducted at 80 °C.
Example BE
Figure imgf000126_0001
1H NMR PMSO) δ: 0.88 (t, 3H), 1.33-1.40 (m, 2H), 1.59-1.68 (m, 2H), 2.26-2.38 (m, 2H), 3.87-3.99 (m, 4H), 4.28 (t, 2H), 4.91 (s, 2H), 7.30-7.42 (m, 4H), 11.01 (bs, IH), 11.13 (s, IH); MS: 383 (MH+).
Example BF
Figure imgf000127_0001
1H NMR (DMSO) δ: 0.89 (t, 3H), 1.35-1.42 (m, 2H), 1.58-1.62 (m, 2H), 4.13 (t, 2H), 4.29(d, 2H), 4.86 (s, 2H), 6.49-7.97 (m, 7H), 10.02 (s, IH); MS: 420 (MH+).
Synthesis of Example BG:
Scheme 18
Figure imgf000127_0002
as in example Al
Figure imgf000127_0003
Compound 34
Sodium Hydride (170 mg) was added to an excess of isobutanol (10 mL) until completely dissolved. Nitrile 12 (1.26 g) was added and the mixture stirred at 83 °C overnight. The mixture was poured onto icy water with 2 mL of glacial HOAc and stirred for 5 minutes. Extract with EtOAc (3 x 100 mL), dry with Na∑Sθ4 and concentrate. Chromatography on silica gel using ISCO combiflash on a 4OG column using solid loading and a DCM / 20% MeOH in DCM eluent performed with a 4-40% gradient over 10 column volumes gave isobutyl ether 34 (333 mg). (The product was a mixture with corresponding ester from reduction of nitrile which was carried forward and removed later in the reaction sequence). MS: 323 (MH+).
Example BG was prepared from Compound 34 using procedures similar to those used to prepare Example AI. IH NMR (300 MHz7 d6 DMSO) δ: 0.91-0.93 (d J=6.6 Hz, 6H); 1.81-2.04 (m, 5H); 3.00 (m, 2H); 3.28 (m, 2H); 3.98-4.01 (d J=6.6Hz, 2H);4.28-4.31 (d J=6.3Hz, 2H); 4.91 (s, 2H); 7.34-7.45 (m, 3H); 7.51-7.53 (d J=7.2 Hz, IH) 10.75, (bs, IH); 10.92 (s, IH). MS: 397 (MH+).
Example BH was prepared using procedures similar to those used to prepare
Example BG, except that 3,3,3-trifluoropropan-l-ol was used in the first step and that the mixture reacted in a sealed tube at 94 0C for 2.5h.
Figure imgf000128_0001
1H NMR (300 MHz, d6 DMSO) δ: 1.82-1.98(bd, 8H); 2.68-2.76 (m, 2H); 3.02 (bm, 2H); 3.29 (bm, 2H); 4.29-4.37(ddd, 4H); 4.90 (s, 2H), 7.36-7.50 (m, 4H); 10.40 (bs, IH); 10.53 (s, IH); MS: 437 (MH+). Synthesis of Example BI:
Scheme 19
Figure imgf000129_0001
To a solution of aldehyde 33 (230 mg) in MeOH (-10 mL) was added homopiperidine (aka hexamethyleneimine) (270 μL). Glacial AcOH (100 μL) and NaHB(OAφ (307 mg) were introduced, and the reaction was stirred at 23 °C for 12 hrs. Once the reaction was determined to be complete using LCMS and HPLC analysis, the crude Schiff base was purified by PREP HPLC. All product fractions were combined, neutralized with an excess of K2CO3, concentrated to remove acetonitrile, and extracted with EtOAc (3 x 30 mL). The combined organic extracts were dried with Na2SO4 and concentrated to a solid in vacuo. The resulting solid was dissolved in minimal CHsCN and cone. HCl (900 μL) was added and stirred at 23 °C for 30 minutes, then the entire reaction was directly purified on a Preparative C-18 reversed-phase HPLC column (eluent: 0.5% w/v aq HCl + CHsCN; 1-40% CH3CN in water over 20 minutes), giving amine Example BI (18 mg) as a lyophilized HCl salt. IH NMR (300 MHz, d6 DMSO) δ: 0.89 (t, 3H), 1.32-1.40 (m, 2H), 1.54-1.64 (m, 6H), 1.75-1.77 (m, 4H), 2.98-3.03 (m, 2H), 3.21-3.26 (m, 2H), 4.18 (t, 2H), 4.27 (d, 2H), 7.35- 7.54 (m, 4H), 10.22 (bs, IH), 10.71 (S, IH); MS: 425 (MH+).
Example BJ was prepared using procedures similar to those used to prepare
Example BG, except that tetrahydrofuran-3-ol was used in the first step and the reaction mixture was reacted at 94 0C for 2hrs.
Figure imgf000130_0001
1H NMR (300 MHz, d6 DMSO) δ: 1.81-1.98 (bd, 8H); 2.09-2.21 (m, 2H); 3.01 (bm, 2H); 3.31 (bm, 2H); 3.66-3.88 (m, 4H); 4.29-4.31 (d J= 6.0 Hz, 2H); 4.89, (s, 2H); 5.27 (bm, IH); 7.35-7.50 (m, 4H); 10.45 (bs, IH); 10.59 (s, IH); MS: 410 (MH+).
Example BK was prepared using procedures similar to those used to prepare Example BG, except that (tetrahydrofuran-2-yl)methanol was used in the first step and that the reaction mixture reacted in a sealed tube at 94 "C for 2hrs.
Figure imgf000130_0002
1H NMR (300 MHz, d6 DMSO) δ: 1.58-2.01 (m, 8H), 2.87-3.17 (m, 2H), 3.37-3.35 (m, 2H)7 3.60-3.77 (m, 2H), 4.04-4.14 (m, 3H), 4.30 (d, 2H), 4.90 (s, 2H), 7.24-7.50 (m, 4H), 10.20 (bs, IH), 10.39 (s, IH); MS: 425 (MH+).
Example BL was prepared using procedures similar to those used to prepare Example BG, except that 2,2,3,3,3-pentafluropropanol was used in the first step and that the reaction mixture reacted in a sealed tube at 95 0C for 9 hrs.
Figure imgf000130_0003
1H NMR (300 MHz, d6 DMSO) δ: 1.80-1.99 (m, 4H), 3.01-3.18 (m, 2H), 3.27-3.32 (m, 2H), 4.30 (d, 2H), 4.91-4.99 (m, 4H), 7.33-7.52 (m, 4H), 10.48 (bs, Ih), 10.69 (s, IH); MS: 472 (MH+).
Example BM was prepared using procedures similar to those used to prepare
Example BG, except that cyclopentanol was used in the first step.
Figure imgf000131_0001
1H-NMR (300 MHz, DMSO) δ: 1.54-1.67 (m, 6H), 1.82-1.98 (m, 6H), 3.01 (m, 2H), 3.29 (m, 2H), 4.29-4.31 (d, 2H), 4.89 (s, 2H), 5.32 (m, IH), 7.35-7.56 (m, 4H), 10.49 (bs, IH), 10.63 (s, IH); MS: 409 (MH+).
Example BN was prepared using procedures similar to those used to prepare Example A, except that Compound 2 was reacted directly with 1-methylpiperazine (i.e., bromination of the 8-position of the puring ring was not carried out).
Figure imgf000131_0002
1H-NMR (DMSO) δ: 8.04 (s, IH), 7.33-7.17 (m, 6H), 5.24 (s, 2H), 4.31 (t, J=4.5Hz, 2H),
3.60 (t, J=4.5 Hz, 2H), 3.46 (s, 2H), 3.27 (s, 3H), 2.75-2.30 (m, 8H), 2.40 (s, 3H). MS: 412 (MH+)
Similarly, Example BO was prepared using procedures similar to those used to prepare Example A, except that Compound 2 was reacted directly with pyrrolidine (and bromination of the 8-position of the puring ring was not carried out).
Figure imgf000132_0001
1H-NMR (DMSO) δ: 0.33-0.34 (m, 2H), 0.51-0.55 (m, 2H), 1.20-1.23 (m, IH), 1.81-1.96 (m, 4H), 2.96-3.01 (m, 2H), 3.25-3.28 (m, 2H), 4.15-4.29 (m, 4H), 5.37 (s, 2H), 7.40-7.59
(m, 4H), 8.54 (s, IH); MS: 379 (MH+).
Examples BP, BQ, BR, BS, and BT were prepared using procedures similar to those used to prepare Example A except that pyrrolidine was replaced with the appropriate amine for each of these examples.
Figure imgf000132_0002
1H-NMR (DMSO) δ: 11.23 (br, IH), 10.69 (s, IH), 7.54-7.36 (m, 4H), 7.10 (br, 2H), 4.87 (s, 2H), 4.32 (s, 2H), 4.27 (t, J=4.5 Hz, 2H), 3.56 (t, J=4.5 Hz, 2H), 3.40-3.30 (m, 2H), 3.23 (s, 3H), 3.12-3.01 (m, 2H), 2.50-2.22 (m, 4H). MS: 449 (MH+)
Figure imgf000132_0003
1H-NMR (DMSO) δ: 10.63 (s, IH), 9.94 (br, 2H), 7.49-7.34 (m, 4H), 6.94 (br, 2H), 4.89 (s, 2H), 4.27 (t, J=4.5 Hz, 2H), 4.19 (s, 2H), 3.99 (q, J=18.9 Hz, 2H), 3.57 (t, J=4.5 Hz, 2H), 3.25 (s, 3H). MS: 427 (MH+)
Figure imgf000133_0001
1H-NMR (DMSO) δ: 10.80 (s, IH), 9.79 (br, 2H), 7.56-7.43 (m, 4H), 7.05 (br, 2H), 4.92 (s, 2H), 4.68-4.58 (m, 2H), 4.28 (t, J=4.5 Hz, 2H), 3.83-3.45 (m, 8H), 3.27 (s, 3H), 3.22-
3.13 (m, 2H), 2.99 (s, 3H), 2.20-2.12 (m, 2H). MS: 442 (MH+)
Figure imgf000133_0002
1H-NMR (DMSO) δ: 11.41 (br, IH), 10.75 (s, IH), 9.58 (br, IH), 9.42 (br, IH), 7.60-7.34 (m, 4H), 7.10 (br, 2H), 4.89 (s, 2H), 4.35 (s, 2H), 4.30 (t, J=4.5 Hz, 2H), 3.58 (t, J=4.5 Hz, 2H), 3.68-3.10 (m, 8H), 3.26 (s, 3H), 2.18-2.10 (m, 2H). MS: 428 (MH+)
Figure imgf000133_0003
1H-NMR (DMSO) δ: 11.95 (br, IH), 10.88 (s, IH), 9.69 (br, 2H), 7.60-7.35 (m, 4H), 7.20 (br, 2H), 4.90 (s, 2H), 4.38 (s, 2H), 4.32 (t, J=4.5 Hz, 2H), 3.59 (t, J=4.5 Hz, 2H), 3.55-3.10 (m, 8H), 3.26 (s, 3H). MS: 414 (MH+) Examples BU and BV were prepared using procedures similar to those used to prepare Example AC except that bis(cyclopropylmethyl) amine or cyclopropylmethanamine was used instead of pyrrolidine.
Figure imgf000134_0001
1H-NMR (DMSO) δ: 10.46 (br, IH), 7.60-7.33 (m, 4H), 6.80 (br, 2H), 4.93 (s, 2H), 4.39 (d, J=4.5 Hz, 2H), 4.29 (t, J=4.8 Hz, 2H), 3.98 (q, J=6.6 Hz, 2H), 3.58 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 3.05-2.84 (m, 4H), 1.12 (t, J=6.9 Hz, 3H), 1.20-1.05 (m, 2H), 0.62-0.53 (m, 4H), 0.38-0.28 (m, 4H). MS: 481 (MH+)
Figure imgf000134_0002
1H-NMR (DMSO) δ: 9.14 (br, 2H), 7.50-7.28 (m, 4H), 6.71 (br, 2H), 4.92 (s, 2H), 4.27 (t,
J=4.5 Hz, 2H) 4.05-3.93 (m, 4H), 3.58 (t, J=4.5 Hz, 2H), 3.26 (s, 3H), 2.82-2.72 (m, 2H), 1.13 (t, J=6.9 Hz, 3H), 1.15-1.00 (m, IH), 0.58-0.51 (m, 2H), 0.35-0.29 (m, 2H). MS: 427 (MH+) Example BW was prepared using procedures similar to those used to prepare
Example AC except that 4-(bromomethyl)benzonitrile is used to alkylate Compound 1 instead of S-φromomethytybenzonitrile, and subsequently, the corresponding analog of Compound 8 was hydrolyzed to 4-((6-amino-8-hydroxy-2-(2- methoxyethoxy)-9H-purin-9-yl)methyl)benzonitrile without reaction with ethyl iodide, and the corresponding 4-((6-amino-8-hydroxy-2-(2-methoxyethoxy)-9H- purin-9-yl)methyl)benzaldehyde was the reacted with pyrrolidine.
Figure imgf000135_0001
1H-NMR (300 MHz, DMSO) δ: 1.82-1.99 (m, 4H), 3.01-3.03 (m, 2H), 3.24-3.28 (m, 5H), 3.59 (t, 2H), 4.28-4.31 (m, 4H), 4.90 (s, 2H), 7.34-7.55 (m, 4H), 10.59 (bs, 2H); MS: 399 (MH+). TLR7 Reporter Assay protocol A. HEK293 Assay
1. Cell culture:
HEK293 cells stably transfected with the human TLR7 gene and a pNiFty™ NF-kB inducible luciferase reporter plasmid were obtained from Invivogen (San Diego, CA). DMEM/F12 medium, fetal bovine serum (FBS), Penicillin-Streptomycin (Pen-Strep), Blasticidin and Zeocine were from Invitrogen (Carlsbad, CA). The HEK293/TLR7/Luciferase cell line was constructed by transfecting stably the HEK293/TLR7 cells with the pNiFty plasmid. Cells were grown in the DMEM/F12 medium with 10% heat-inactivated FBS, supplemented with IX Pen-Strep, 10 μg/mL Blasticidin and 5 μg/mL Zeocin.
2. Assay procedure:
For the determination of the EC50 and Emax values of TLR7 agonists in the reporter assay, 20 μL of 2X test concentration of serial diluted compound in cell culture medium was added to each well of a white, clear-bottomed 384-well cell culture plate from Corning (Corning, NY). To this plate, 20 μL of cell culture medium containing 12,000 HEK293/TLR7/Luciferase cells was dispensed to each well. The plate was then placed in incubator (37 °C and 5% CO2) and incubated for 2 days. After the incubation, 40 μL of the pre-mixed lysis buffer/luciferase substrate solution was dispensed into each well. The lysis buffer (5X) and luciferase substrate was obtained from Promega (Madison, WI) and they were mixed at 2:3 (v/v) ratio immediately prior to use. After 10 minutes of incubation at room temperature, the luminescence signal was measured using a VictorLight plate reader (Perkin Elmer, Wellesley, MA) with an integration time of 0.1 seconds per sample.
Data analysis was performed with Prism software from GraphPad (San Diego, CA) using a single site binding algorithm. The maximum signal for each test compound (Emax) was normalized with the maximum signal for the positive control, Resiquimod, on each plate. The concentration of a compound that corresponds to 50% of the maximum signal is defined as the ECso.
The compounds of the present invention have HCV EC50 values (μM) in the range of about 0.01 to about 1000, or about 0.1 to about 500, or about 0.1 to about 300, or about 0.1 to about 200, or about 0.1 to about 100, or about 0.1 to about 50, or less than about 500, or less than about 400, or less than about 300, or less than about 200, or less than about 100, or less than about 50, or less than about 20, or less than about 10. B. PBMC Assay
Assays were conducted to determine cytokine stimulation at 24 hours from human Peripheral Blood Mononuclear Cell (PMBC) using the compounds of the present invention. The assays were run in duplicate, with 8-point, half-log dilution curves. The compounds of the present invention were diluted from 10 μM DMSO solution. Cell supernatants are assayed directly for IFNα and 1:10 dilution for
TNFα. The assays were performed in a similar fashion as described in Bioorg. Med. Chem. Lett. 16, 4559, (2006). Specifically, cryo-preserved PBMCs were thawed and seeded 96 well plates with 750,000 cells/well in 190μL/well cell media. The PBMCs were then incubated for 1 hour at 370C at 5% CO2. Then, the compounds of the present invention were added in lOμL cell media at 8 point, half -log dilution titration. The plates were incubated at 37QC and 5% CO2 for 24 hours and then spinned at 1200rpm for lOmin, which was followed by collecting supernatant and storing the same at -8O0C. Cytokine secretion was assayed with Luminex and Upstate multi-plex kits, using a Luminex analysis instrument. IFN ECmax value for a compound was the concentration at which the compound stimulated maximum IFN a production as determined using the assay method above.
The compounds of the present invention have IFN ECmax values (nM) in the range of about 0.1 to about 10,000, or about 0.1 to about 1,000, or about 0.1 to about 300, or about 0.1 to about 100, or about 0.1 to about 10, or about 0.1 to about 5, or about 0.1 to about 1, or less than about 5000, or less than about 3000, or less than about 1000, or less than about 500, or less than about 400, or less than about 300, or less than about 200, or less than about 100, or less than about 50, or less than about 20, or less than about 10, or less than about 5, or less than about 1. Examples A, C, D, F, J, N, R, W, Y, AI, AJ, AQ, AS, AU, AV, AW, AZ, BE, BG, BH, and BM have IFN ECmax values (nM) of less than about 5.

Claims

What is Claimed:
1. A compound of Formula I or II:
Figure imgf000138_0001
I II or a pharmaceutically acceptable salt thereof, wherein: X1 is -NH-, -O-, alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene, substituted alkynylene, carbocyclylene, substituted carbocyclylene, heterocyclylene, or substituted heterocyclylene;
D is carbocyclylene or heterocyclylene; each L1 is independently alkylene or substituted alkylene; each R1 is independently -NR4R5; m is 1 or 2; L2 is a covalent bond, -NH-, -O-, or -S-;
R2 is H, halo, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)OR7, -S(O)NR7R8, -S(O)2R7,
-S(O)R7, -S(O)2OR7, or -S(O)2NR7R8;
L3 is -NH-, -O-, -S-, -N(R9)C(O) -, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or -
C(O)NR7R8; or R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or
R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle;
R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; n is an integer from 0 to 5; and with the the following provisos: (a) When X1 is -CH2-, D is 1,4-phenylene, R3-IA is CH3CH2CH2CH2O- or CH3- O-CH2CH2-O, n=0, m=l, then NR4R5 is not: (1) a 4-substituted or 4,4- disubstituted piperidine or piperazine (2) -NHCH3;
(b) When X1 is -CH2-, D is 1,4-phenylene or 1,4-piperidinylene, R3-L3- is CH3CH2CH2CH2O- or CH3-O-CH2CH2-O, n=0, m=l, then neither R4 nor R5 are substituted alkyl, substituted heterocycyl, substituted benzyl; and
(c) When X1 is -CH2-, D is 2,5-pyridylene, R3-L3- is CH3CH2CH2CH2O- or CH3- O-CH2CH2-O, n=0, m=l, then NR4R5 is not pyrrolyl, piperazyl, N(CHs)2.
2. The compound of claim 1, wherein:
X1 is alkylene or substituted alkylene; wherein the substituted alkylene comprises an alkylene substituted with one or more substituents selected from the group consisting of halo, hydroxyl, amino, heteroalkyl, substituted heteroalkyl, cyano, azido, nitro, alkyl, substituted alkyl, and combinations thereof.
3. The compound of any of claims 1 or 2, wherein: m is 1;
D is D is arylene or heteroarylene; IΛR1 of Formula I is -OH;
R1 is -NR4R5; and
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S; or a 10- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
4. The compound of any of claims 1-3, wherein: -L3-R3 is -O-alkyl or -O-alkylene-O-alkyl.
5. The compound of claim 1, wherein Formula I is represented by Formula Ia:
Figure imgf000141_0001
Ia or a pharmaceutically acceptable salt thereof, wherein:
R1 is -NR4R5;
R2 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, - C(O)OR6, -C(O)NR7R8, -S(O)OR7, -S(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8;
L3 is -NH-, -O-, -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond;
R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R7 and R8 are each independently H7 alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle;
R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety;
R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is an integer from 0 to 4.
The compound of claim 5, wherein: R1 is NR4R5; and
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated, partially unsaturated, or heteraryl ring containing at least one hetero atom selected from N, O, and
S; or a 10- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
7. The compound of claim 6, wherein the heterocycle is selected from the group consisting of:
Figure imgf000143_0001
8. The compound of any of claims 1, 2 or 5, wherein: R1 is NR4R5;
R4 is H, alkyl, substituted alkyl, carbocyclylalkyl, or substituted carbocyclylalkyl; and R5 is alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -C(O)OR3, or -C(O)NR7R8.
9. The compound of any of claims 1-8, wherein:
R2 is H, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)OR7, -S(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8.
10. The compound of any of claims 1-3 or 5-8, wherein:
-L3-R3 is -O-alkyl, -O-(substituted alkyl), -O-carbocyclyl, -O-heterocyclyl, -O- carbocyclylalkyl, -O-heterocyclylalkyl, or -O-alkylene-O-alkyl; and
R2 is H.
11. The compound of any of claims 1-7, wherein R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000144_0001
12. The compound of any of claims 1-7 or 10, wherein R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000144_0002
13. The compound of any of claims 1, 2 or 5, wherein: R1 is -NR4R5; R2 is H, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or -S(O)2NR7R8;
L3 is -O-;
R3 is alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, heterocyclyl, carbocyclylalkyl, heterocyclylalkyl; and R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
14. The compound of any of claims 1-3 or 5, wherein -L3-R3 is -OCH2CH2OCH3, -OCH2CH2CH3, -OCH2CH2CH2CH3, -O-i-butyl, -O-cyclobutyl, - O-cyclopentyl, -OCH∑-cyclopropyl, -OCH2-cyclobutyl, -OCH2CH2- cyclopropyl, -OCH2CH2CH2CH2OH, -OCH2CF3, -OCH2CH2CF3, -OCH2CH2CH2CF3, or (tetrahydrofuran-2-yl)methoxy; and R2 is H.
15. The compound of claim 14, wherein R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000145_0001
Figure imgf000146_0001
16. The compound of claim 14, wherein R1 is NR4R5 and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocyde selected from the group consisting of:
Figure imgf000146_0002
17. The compound of claim 16 wherein -IΛR3 is -OCH2CH2CH2CH3, -OCH2CH2OCH3, -OCH2CH2CF3, -OCH2CH2CH2CH2OH, or - OCH∑-cyclopropyl.
18. The compound of claim 1, wherein Formula II is represented by Formula Ha:
Figure imgf000146_0003
Ha or a pharmaceutically acceptable salt thereof, wherein: R1 is -NR4R5;
R2 is H, alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocydylalkyl, substituted carbocyclylalkyl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)R6, -C(O)OR6, -C(O)NR7R8, -S(O)2OR7, or - S(O)2NR7R8;
L3 is -NH-, -O-, -S-, -N(R9)C(O)-, -S(O)2-, -S(O) -, or a covalent bond; R3 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R4 and R5 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -S(O)R3, -S(O)2R3, -C(O)OR3, or - C(O)NR7R8; or
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle;
R6 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, heteroalkyl, substituted heteroalkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl;
R7 and R8 are each independently H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocyclylalkyl, or substituted heterocyclylalkyl; or R7 and R8, taken together with the nitrogen to which they are both bonded, form a substituted or unsubstituted heterocycle; R9 is H, alkyl, substituted alkyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, heterocyclyl, substituted heterocyclyl, heterocydylalkyl, or substituted heterocyclylalkyl, a protecting group, or a prodrug moiety; R10 is halogen, cyano, azido, nitro, alkyl, substituted alkyl, hydroxyl, amino, heteroalkyl, or substituted heteroalkyl; and n is 0, 1, 2, or 3.
19. The compound of claim 18, wherein: R1 is NR4R5; and
R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle; wherein the heterocycle is a 4- to 6-membered monocyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S; or a 10- to 12-membered fused bicyclic fully saturated or partially unsaturated ring containing at least one hetero atom selected from N, O, and S.
20. The compound of claim 19, wherein the heterocycle is selected from the group consisting of:
Figure imgf000148_0001
21. The compound of claim 18, wherein: R1 is NR4R5; R4 is H, alkyl, substituted alkyl, carbocyclylalkyl, substituted carbocyclylalkyl; and R5 is carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclylalkyl, substituted heterocyclylalkyl, -C(O)H, -C(O)R3, -
C(O)OR3, or -C(O)NR7R8.
22. The compound of any of claims 18-21, wherein:
R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, carbocyclyl, substituted carbocyclyl, carbocyclylalkyl, substituted carbocyclylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl.
23. The compound of any of claims 18-22, wherein: -LAR3 is -O-alkyl or -O-alkylene-O-alkyl.
24. The compound of claim 18, wherein: R1 is -NR4R5;
R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, cyclylalkyl, substituted cyclylalkyl, cyclylalkylalkyl, substituted cyclylalkylalkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, heterocyclylalkyl, or substituted heterocyclylalkyl; L3 is -O-;
R3 is alkyl, substituted alkyl, heteroalkyl, substituted heteroalkyl; and R4 and R5, taken together with the nitrogen to which they are both attached, form a substituted or unsubstituted heterocycle.
25. The compound of claim 1, wherein L2 is a covalent bond; and R2 is H or halo.
26. The compound of claim 1 selected from the group consisting of:
Figure imgf000150_0001
Figure imgf000151_0001
Figure imgf000152_0001
Figure imgf000153_0001
Figure imgf000154_0001
Figure imgf000155_0001
Figure imgf000156_0001
Figure imgf000157_0001
Figure imgf000158_0001
Figure imgf000159_0001
or pharmaceutically acceptable salts, solvates, and/or esters thereof.
27. A compound of Formula Ia:
Figure imgf000159_0002
Ia or a pharmaceutically acceptable salt, solvate, and/or ester thereof, wherein: -IAR3 is -OCH2CH2OCH3, -OCH2CH2CH3, -OCH2CH2CH2CH3, -O-i-butyl, -O- cyclobutyl, -O-cyclopentyl, -OCH^cyclopropyl, -OCH^cyclobutyl, - OCH^H∑-cyclopropyl, -OCH2CH2CH2CH2OH, -OCH2CF3, - OCH2CH2CF3, -OCH2CH2CH2CF3, or (tetrahydrofuran-2-yl)methoxy;
R2 is H; n is O;
R1 is -NR4R5; and R4 and R5, taken together with the nitrogen to which they are both attached, form a heterocycle selected from the group consisting of:
Figure imgf000160_0001
28. The compound of claim 27 wherein -L3-R3 is -OCH2CH2CH2CH3, -OCH2CH2OCH3, -OCH2CH2CF3, -OCH2CH2CH2CH2OH, or - OCH2-Cy clopropyl .
29. The compound of claim 28 wherein -IAR3 is -OCH2CH2CH2CH3.
30. The compound of any of claims 27-29 wherein R4 and R5, taken together with the nitrogen to which they are both attached form a heterocycle selected from the group consisting of:
Figure imgf000160_0002
31. The compound of claim 1 selected from the group consisting of:
Figure imgf000161_0001
or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
32. A pharmaceutical composition comprising: at least one compound of any of claims 1-31, or a pharmaceutically acceptable salt, solvate, and/or ester thereof; and a pharmaceutically acceptable carrier or excipient.
33. The pharmaceutical composition of claim 32, further comprising: at least one additional active agent.
34. The pharmaceutical composition of claim 33, wherein: the at least one additional active agent is selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha- glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
35. The pharmaceutical composition of claim 34, wherein the at least one additional active agent is selected from the group consisting of: (1) interferons selected from the group consisting of pegylated rIFN-alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG- Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof; (2) ribavirin and its analogs selected from the group consisting of ribavirin
(Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
(3) HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
(4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof;
(5) hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof; (6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of Rl 626, R7128 (R4048), IDXl 84, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof;
(7) non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC-
2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof; (8) HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
(9) TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof; (10) cyclophillin inhibitors selected from the group consisting of DEBIO-025,
SCY-635, NIM811, and mixtures thereof;
(11) HCV IRES inhibitors selected from the group consisting of MCI-067,
(12) pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and (13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Baviruximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
36. A method of agonizing toll-like receptor 7, comprising: contacting a cell having a toll-like receptor 7 with an effective amount of a compound of any of claims 1-31, or a pharmaceutically acceptable salt, solvate, and/or ester thereof.
37. A combination pharmaceutical agent comprising: a) a first pharmaceutical composition comprising a compound of any of claims 1-31, or a pharmaceutically acceptable salt, solvate, or ester thereof; and b) a second pharmaceutical composition comprising at least one additional active agent selected from the group consisting of interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cydophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
38. A new compound, substantially as described herein.
39. A compound as described in any of claims 1-31, substantially as described herein and illustrated.
40. A new pharmaceutical composition or use for the preparation of a medicament, substantially as described herein.
41. A compound of any of claims 1-31 as a therapeutic substance.
42. The use of a compound of any of claims 1-31 for the manufacture of a medicament for the treatment of viral infection in a patient.
43. The use of claim 42, wherein said medicament further comprises at least one additional active agent.
44. The use of claim 43, wherein said at least one additional active agent is selected from the group consisting of: one or more interferons, ribavirin or its analogs, HCV NS3 protease inhibitors, alpha-glucosidase 1 inhibitors, hepatoprotectants, nucleoside or nucleotide inhibitors of HCV NS5B polymerase, non-nucleoside inhibitors of HCV NS5B polymerase, HCV NS5A inhibitors, TLR-7 agonists, cyclophillin inhibitors, HCV IRES inhibitors, pharmacokinetic enhancers, and other drugs for treating HCV, or mixtures thereof.
45. The use of claim 44, wherein the at least one additional active agent is selected from the group consisting of:
(1) interferons selected from the group consisting of pegylated rIFN-alpha 2b (PEG-Intron), pegylated rIFN-alpha 2a (Pegasys), rIFN-alpha 2b (Intron A), rlFN- alpha 2a (Roferon-A), interferon alpha (MOR-22, OPC-18, Alfaferone, Alfanative, Multiferon, subalin), interferon alfacon-1 (Infergen), interferon alpha-nl (Wellferon), interferon alpha-n3 (Alferon), interferon-beta (Avonex, DL-8234), interferon-omega (omega DUROS, Biomed 510), albinterferon alpha-2b (Albuferon), IFN alpha-2b XL, BLX-883 (Locteron), DA-3021, glycosylated interferon alpha-2b (AVI-005), PEG- Infergen, PEGylated interferon lambda-1 (PEGylated IL-29), belerofon, and mixtures thereof; (2) ribavirin and its analogs selected from the group consisting of ribavirin
(Rebetol, Copegus), taribavirin (Viramidine), and mixtures thereof;
(3) HCV NS3 protease inhibitors selected from the group consisting of boceprevir (SCH-503034 , SCH-7), telaprevir (VX-950), TMC435350, BI-1335, BI-1230, MK-7009, VBY-376, VX-500, BMS-790052, BMS-605339, PHX-1766, AS-IOl, YH-5258, YH5530, YH5531, ITMN-191, and mixtures thereof;
(4) alpha-glucosidase 1 inhibitors selected from the group consisting of celgosivir (MX-3253), Miglitol, UT-231B, and mixtures thereof;
(5) hepatoprotectants selected from the group consisting of IDN-6556, ME 3738, LB-84451, silibilin, MitoQ, and mixtures thereof; (6) nucleoside or nucleotide inhibitors of HCV NS5B polymerase selected from the group consisting of Rl 626, R7128 (R4048), IDX184, IDX-102, BCX-4678, valopicitabine (NM-283), MK-0608, and mixtures thereof; (7) non-nucleoside inhibitors of HCV NS5B polymerase selected from the group consisting of PF-868554, VCH-759, VCH-916, JTK-652, MK-3281, VBY-708, VCH-222, A848837, ANA-598, GL60667, GL59728, A-63890, A-48773, A-48547, BC- 2329, VCH-796 (nesbuvir), GSK625433, BILN-1941, XTL-2125, GS-9190, and mixtures thereof;
(8) HCV NS5A inhibitors selected from the group consisting of AZD-2836 (A- 831), A-689, and mixtures thereof;
(9) TLR-7 agonists selected from the group consisting of ANA-975, SM- 360320, and mixtures thereof; (10) cyclophillin inhibitors selected from the group consisting of DEBIO-025,
SCY-635, NIM811, and mixtures thereof;
(11) HCV IRES inhibitors selected from the group consisting of MCI-067,
(12) pharmacokinetic enhancers selected from the group consisting of BAS- 100, SPI-452, PF-4194477, TMC-41629, roxythromycin, and mixtures thereof; and (13) other drugs for treating HCV selected from the group consisting of thymosin alpha 1 (Zadaxin), nitazoxanide (Alinea, NTZ), BIVN-401 (virostat), PYN- 17 (altirex), KPE02003002, actilon (CPG-10101), KRN-7000, civacir, GI-5005, XTL- 6865, BIT225, PTX-111, ITX2865, TT-033i, ANA 971, NOV-205, tarvacin, EHC-18, VGX-410C, EMZ-702, AVI 4065, BMS-650032, BMS-791325, Bavituximab, MDX-1106 (ONO-4538), Oglufanide, VX-497 (merimepodib), and mixtures thereof.
PCT/US2008/007955 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7 WO2009005687A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
ES08779791.6T ES2541434T3 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of the Toll 7 receptor
EA200971081A EA021463B1 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
BRPI0813952A BRPI0813952A2 (en) 2007-06-29 2008-06-26 purine derivatives and their use as modulators and bell-like receptor 7
AU2008271127A AU2008271127C1 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of Toll-like receptor 7
MX2009013832A MX2009013832A (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7.
JP2010514814A JP5395068B2 (en) 2007-06-29 2008-06-26 Purine derivatives as modulators of toll-like receptor 7 and uses thereof
UAA200913908A UA98334C2 (en) 2007-06-29 2008-06-26 Purine compounds and use thereof as modulators of toll-like receptor 7
SI200831437T SI2170888T1 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
PL08779791T PL2170888T3 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
EP20080779791 EP2170888B1 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
CN2008801043261A CN101784548B (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of Toll-like receptor 7
NZ582090A NZ582090A (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
AP2009005072A AP2706A (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
CA2691444A CA2691444C (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7
IL202622A IL202622A (en) 2007-06-29 2009-12-09 Purine derivatives and pharmaceutical compositions comprising them
HK10109535.1A HK1143145A1 (en) 2007-06-29 2010-10-06 Purine derivatives and their use as modulators of toll-like receptor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US93772607P 2007-06-29 2007-06-29
US60/937,726 2007-06-29
US95971407P 2007-07-16 2007-07-16
US60/959,714 2007-07-16

Publications (1)

Publication Number Publication Date
WO2009005687A1 true WO2009005687A1 (en) 2009-01-08

Family

ID=39789972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/007955 WO2009005687A1 (en) 2007-06-29 2008-06-26 Purine derivatives and their use as modulators of toll-like receptor 7

Country Status (23)

Country Link
US (5) US7968544B2 (en)
EP (1) EP2170888B1 (en)
JP (2) JP5395068B2 (en)
KR (1) KR101561710B1 (en)
CN (1) CN101784548B (en)
AP (1) AP2706A (en)
AR (1) AR067182A1 (en)
AU (1) AU2008271127C1 (en)
BR (1) BRPI0813952A2 (en)
CA (1) CA2691444C (en)
CO (1) CO6251258A2 (en)
EA (2) EA021463B1 (en)
EC (1) ECSP109905A (en)
ES (1) ES2541434T3 (en)
HK (1) HK1143145A1 (en)
IL (1) IL202622A (en)
MX (1) MX2009013832A (en)
NZ (1) NZ582090A (en)
PL (1) PL2170888T3 (en)
PT (1) PT2170888E (en)
SI (1) SI2170888T1 (en)
TW (1) TWI434849B (en)
WO (1) WO2009005687A1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767660B2 (en) 2006-12-20 2010-08-03 Istituto Di Richerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US7781422B2 (en) 2006-12-20 2010-08-24 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
WO2010103130A2 (en) 2009-03-13 2010-09-16 Katholieke Universiteit Leuven, K.U.Leuven R&D Novel bicyclic heterocycles
WO2010093436A3 (en) * 2009-02-11 2010-11-11 Carson Dennis A Toll-like receptor modulators and treatment of diseases
WO2010151488A1 (en) * 2009-06-23 2010-12-29 Gilead Sciences, Inc. Combination of boceprevir with 5- ( { 6- [2, 4- bis (trifluoromethyl) phenyl] pyridazin-3 -yl } methyl) -2- (2 -fluorophenyl) -5h- imidazo [4, 5-c] pyridine for the treatment of hcv
WO2010151487A1 (en) * 2009-06-23 2010-12-29 Gilead Sciences, Inc. Combination of telaprevir with 5- ({6- [2,4-bis (trifluoromethyl) phenyl] pyridazin-3 -yl)methyl) -2- (2 -fluorophenyl) -5h- imidazo [4, 5-c]pyridine for the treatment of hcv
US7879797B2 (en) 2005-05-02 2011-02-01 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2011079016A1 (en) * 2009-12-22 2011-06-30 Gilead Sciences, Inc. Methods of treating hbv and hcv infection
US7973040B2 (en) 2008-07-22 2011-07-05 Merck Sharp & Dohme Corp. Macrocyclic quinoxaline compounds as HCV NS3 protease inhibitors
US7989438B2 (en) 2007-07-17 2011-08-02 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Therapeutic compounds
WO2011094489A1 (en) * 2010-01-29 2011-08-04 Vertex Pharmaceuticals Incorporated Therapies for treating hepatitis c virus infection
US8044056B2 (en) 2007-03-20 2011-10-25 Dainippon Sumitomo Pharma Co., Ltd. Adenine compound
WO2011147753A1 (en) 2010-05-26 2011-12-01 Katholieke Universiteit Leuven, K.U.Leuven R&D Antiviral activity of novel bicyclic heterocycles
US8101595B2 (en) 2006-12-20 2012-01-24 Istituto di Ricerche di Biologia Molecolare P. Angletti SpA Antiviral indoles
US8138164B2 (en) 2006-10-24 2012-03-20 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2012035423A1 (en) 2010-09-15 2012-03-22 Katholieke Universiteit Leuven, K.U. Leuven R&D Anti-cancer activity of novel bicyclic heterocycles
US8178520B2 (en) 2006-05-15 2012-05-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Macrocyclic compounds as antiviral agents
US8278322B2 (en) 2005-08-01 2012-10-02 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8309540B2 (en) 2006-10-24 2012-11-13 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8314062B2 (en) 2006-06-23 2012-11-20 Instituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic compounds as antiviral agents
US8357374B2 (en) 2007-02-07 2013-01-22 The Regents Of The University Of California Conjugates of synthetic TLR agonists and uses therefor
JP2013504593A (en) * 2009-09-14 2013-02-07 ギリアード サイエンシーズ, インコーポレイテッド Toll-like receptor modulators
US8377873B2 (en) 2006-10-24 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8377874B2 (en) 2006-10-27 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
JP2013508373A (en) * 2009-10-22 2013-03-07 ギリアード サイエンシーズ, インコーポレイテッド Regulators of TOLL-like receptors
DE102011116417A1 (en) 2011-10-18 2013-04-18 Kurt Lucas Cinnamon bark extract useful for treating symptoms including e.g. chronic rhinitis, secretion production with metallic, sour taste, inflammation of the paranasal sinuses, swelling of the nasal passages, seizure-like sneezing
WO2013068438A1 (en) * 2011-11-09 2013-05-16 Janssen R&D Ireland Purine derivatives for the treatment of viral infections
US8461107B2 (en) 2008-04-28 2013-06-11 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2013096512A1 (en) * 2011-12-20 2013-06-27 Gilead Sciences, Inc. Pharmaceutical compositions and methods for treating gastrointestinal infections and disorders
WO2014009509A1 (en) * 2012-07-13 2014-01-16 Janssen R&D Ireland Macrocyclic purines for the treatment of viral infections
WO2014056333A1 (en) 2012-10-10 2014-04-17 深圳大学 Immune receptor modifier conjugate and preparation method and use thereof, coupling precursor for preparing same, and compound for synthesizing coupling precursor
US8828930B2 (en) 2009-07-30 2014-09-09 Merck Sharp & Dohme Corp. Hepatitis C virus NS3 protease inhibitors
US8846697B2 (en) 2006-05-31 2014-09-30 The Regents Of The University Of California Purine analogs
US8865896B2 (en) 2008-01-17 2014-10-21 Astrazeneca Aktiebolag Method for preparing adenine compound
US8895570B2 (en) 2010-12-17 2014-11-25 Astrazeneca Ab Purine derivatives
US8927569B2 (en) 2007-07-19 2015-01-06 Merck Sharp & Dohme Corp. Macrocyclic compounds as antiviral agents
US9050319B2 (en) 2010-04-30 2015-06-09 Telormedix, Sa Phospholipid drug analogs
US9066940B2 (en) 2009-02-06 2015-06-30 Telormedix, Sa Pharmaceutical compositions comprising imidazoquinolin(amines) and derivatives thereof suitable for local administration
US9173936B2 (en) 2010-04-30 2015-11-03 Telormedix Sa Phospholipid drug analogs
US9284304B2 (en) 2012-08-10 2016-03-15 Janssen Sciences Ireland Uc Substituted pyrimidines as toll-like receptor modulators
US9359360B2 (en) 2005-08-22 2016-06-07 The Regents Of The University Of California TLR agonists
US9393256B2 (en) 2011-09-16 2016-07-19 Gilead Pharmasset Llc Methods for treating HCV
US9452154B2 (en) 2010-12-20 2016-09-27 Gilead Sciences, Inc. Methods for treating HCV
WO2016177833A1 (en) 2015-05-04 2016-11-10 Bionor Immuno As Dosage regimen for hiv vaccine
US9738661B2 (en) 2006-10-27 2017-08-22 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
WO2018041763A1 (en) * 2016-08-29 2018-03-08 F. Hoffmann-La Roche Ag 7-substituted sulfonimidoylpurinone compounds for the treatment and prophylaxis of virus infection
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
WO2018181420A1 (en) 2017-03-29 2018-10-04 大日本住友製薬株式会社 Vaccine adjuvant formulation
WO2019035969A1 (en) * 2017-08-16 2019-02-21 Bristol-Myers Squibb Company Toll-like receptor 7 (tlr7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US10253003B2 (en) 2012-11-16 2019-04-09 Janssen Sciences Ireland Uc Heterocyclic substituted 2-amino quinazoline derivatives for the treatment of viral infections
US10259793B2 (en) 2013-02-21 2019-04-16 Janssen Sciences Ireland Uc 2-aminopyrimidine derivatives for the treatment of viral infections
US10259814B2 (en) 2012-10-10 2019-04-16 Janssen Sciences Ireland Uc Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
US10266543B2 (en) 2013-03-29 2019-04-23 Janssen Sciences Ireland Uc Macrocyclic deaza-purinones for the treatment of viral infections
US10272085B2 (en) 2011-04-08 2019-04-30 Janssen Sciences Ireland Uc Pyrimidine derivatives for the treatment of viral infections
US10316043B2 (en) 2013-07-30 2019-06-11 Janssen Sciences Ireland Unlimited Company Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
WO2019113462A1 (en) 2017-12-07 2019-06-13 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
WO2019124500A1 (en) 2017-12-21 2019-06-27 大日本住友製薬株式会社 Combination drug including tlr7 agonist
US10377738B2 (en) 2013-05-24 2019-08-13 Janssen Sciences Ireland Unlimited Company Pyridone derivatives for the treatment of viral infections and further diseases
WO2019155042A1 (en) * 2018-02-12 2019-08-15 F. Hoffmann-La Roche Ag Novel sulfone compounds and derivatives for the treatment and prophylaxis of virus infection
US10385054B2 (en) 2013-06-27 2019-08-20 Janssen Sciences Ireland Unlimited Company Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
US10508117B2 (en) 2014-09-16 2019-12-17 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
WO2020022272A1 (en) 2018-07-23 2020-01-30 公益財団法人ヒューマンサイエンス振興財団 Composition containing influenza vaccine
US10555949B2 (en) 2014-08-15 2020-02-11 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Pyrrolopyrimidine compounds used as TLR7 agonist
US10703755B2 (en) 2016-04-26 2020-07-07 Sumitomo Dainippon Pharma Co., Ltd. Substituted purine derivative
US10780091B2 (en) 2016-02-05 2020-09-22 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. TLR7 agonist maleate salt, crystalline forms C, D and E thereof, preparation methods and uses of maleate salt and crystalline forms
US10968184B2 (en) 2016-09-29 2021-04-06 Janssen Sciences Ireland Unlimited Company Pyrimidine prodrugs for the treatment of viral infections and further diseases
US11053256B2 (en) 2016-07-01 2021-07-06 Janssen Sciences Ireland Unlimited Company Dihydropyranopyrimidines for the treatment of viral infections
US11110091B2 (en) 2008-12-09 2021-09-07 Gilead Sciences, Inc. Modulators of toll-like receptors
US11116774B2 (en) 2014-07-11 2021-09-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of HIV
WO2022063278A1 (en) * 2020-09-27 2022-03-31 上海维申医药有限公司 Macrocyclic tlr7 agonist, preparation method therefor, pharmaceutical composition and use thereof
US11597704B2 (en) 2018-03-01 2023-03-07 Janssen Sciences Ireland Unlimited Company 2,4-diaminoquinazoline derivatives and medical uses thereof
US11628181B2 (en) 2014-12-26 2023-04-18 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US11697851B2 (en) 2016-05-24 2023-07-11 The Regents Of The University Of California Early ovarian cancer detection diagnostic test based on mRNA isoforms

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005226359B2 (en) * 2004-03-26 2011-02-03 Astrazeneca Aktiebolag 9-substituted 8-oxoadenine compound
BRPI0611435A2 (en) * 2005-05-04 2010-09-08 Pfizer Ltd 2-starch-6-amino-8-oxopurine derivatives, pharmaceutical compositions, use and process for preparing same
EP1939202A4 (en) * 2005-09-22 2010-06-16 Dainippon Sumitomo Pharma Co Novel adenine compound
US8138172B2 (en) * 2006-07-05 2012-03-20 Astrazeneca Ab 8-oxoadenine derivatives acting as modulators of TLR7
TW200831105A (en) * 2006-12-14 2008-08-01 Astrazeneca Ab Novel compounds
US20100120799A1 (en) * 2007-02-19 2010-05-13 Smithkline Beecham Corporation Purine derivatives as immunomodulators
EP2139894B1 (en) * 2007-03-19 2011-10-26 AstraZeneca AB 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7) modulators
WO2008114008A1 (en) * 2007-03-19 2008-09-25 Astrazeneca Ab 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7 ) modulators
PE20081887A1 (en) * 2007-03-20 2009-01-16 Dainippon Sumitomo Pharma Co NEW ADENINE COMPOUND
US8436178B2 (en) * 2007-05-08 2013-05-07 Astrazeneca Ab Imidazoquinolines with immuno-modulating properties
EA021463B1 (en) * 2007-06-29 2015-06-30 Джилид Сайэнс, Инк. Purine derivatives and their use as modulators of toll-like receptor 7
PE20091156A1 (en) 2007-12-17 2009-09-03 Astrazeneca Ab SALTS OF (3 - {[[3- (6-AMINO-2-BUTOXY-8-OXO-7,8-DIHIDRO-9H-PURIN-9-IL) PROPYL] (3-MORFOLIN-4-ILPROPIL) AMINO] METHYL} PHENYL) METHYL ACETATE
US20110054168A1 (en) * 2008-01-17 2011-03-03 Ayumu Kurimoto Method for preparing adenine compound
EA201001264A1 (en) * 2008-02-07 2011-04-29 Дзе Регентс Оф Дзе Юниверсити Оф Калифорния METHOD FOR TREATING URINARY BUBBLE DISEASES WITH TLR7 Activator
UA103195C2 (en) * 2008-08-11 2013-09-25 Глаксосмитклайн Ллк Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
TWI490219B (en) 2009-06-29 2015-07-01 Incyte Corp Pyrimidinones as pi3k inhibitors
EP2507237A1 (en) * 2009-12-03 2012-10-10 Dainippon Sumitomo Pharma Co., Ltd. Imidazoquinolines which act via toll - like receptors (tlr)
AR079529A1 (en) * 2009-12-18 2012-02-01 Incyte Corp ARILO AND HETEROARILO DERIVATIVES REPLACED AND FOUNDED AS INHIBITORS OF THE PI3K
US8759359B2 (en) * 2009-12-18 2014-06-24 Incyte Corporation Substituted heteroaryl fused derivatives as PI3K inhibitors
EP2558463A1 (en) 2010-04-14 2013-02-20 Incyte Corporation Fused derivatives as i3 inhibitors
WO2011163195A1 (en) 2010-06-21 2011-12-29 Incyte Corporation Fused pyrrole derivatives as pi3k inhibitors
JP5978225B2 (en) 2010-12-16 2016-08-24 大日本住友製薬株式会社 Imidazo [4,5-c] quinolin-1-yl derivatives useful for therapy
TW201249844A (en) 2010-12-20 2012-12-16 Incyte Corp N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
WO2012125629A1 (en) 2011-03-14 2012-09-20 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as pi3k inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
SG10201602384VA (en) * 2011-03-31 2016-05-30 Konstanze Schäfer Perfluorinated compounds for the non-viral transfer of nucleic acids
DK2734186T3 (en) 2011-07-22 2019-01-07 Glaxosmithkline Llc COMPOSITION
WO2013030750A1 (en) 2011-09-01 2013-03-07 Lupin Limited Antiviral compounds
TWI543980B (en) 2011-09-02 2016-08-01 英塞特控股公司 Heterocyclylamines as pi3k inhibitors
WO2013118097A1 (en) 2012-02-10 2013-08-15 Lupin Limited Antiviral compounds with a dibenzooxaheterocycle moiety
AR090548A1 (en) 2012-04-02 2014-11-19 Incyte Corp BICYCLIC AZAHETEROCICLOBENCILAMINS AS PI3K INHIBITORS
PE20150730A1 (en) 2012-08-24 2015-06-02 Glaxosmithkline Llc PYRAZOLOPYRIMIDINE COMPOUNDS
DK2922549T3 (en) 2012-11-20 2017-09-11 Glaxosmithkline Llc Hitherto unknown compounds
EP2922547B1 (en) 2012-11-20 2017-03-08 Glaxosmithkline LLC Novel compounds
ES2632448T3 (en) 2012-11-20 2017-09-13 Glaxosmithkline Llc New compounds
SG11201608299TA (en) 2014-05-01 2016-11-29 Novartis Ag Compounds and compositions as toll-like receptor 7 agonists
SG11201608161VA (en) * 2014-05-01 2016-11-29 Novartis Ag Compounds and compositions as toll-like receptor 7 agonists
US10077277B2 (en) 2014-06-11 2018-09-18 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as PI3K inhibitors
LT3831833T (en) 2015-02-27 2023-02-27 Incyte Holdings Corporation Processes for the preparation of a pi3k inhibitor
DK3097102T3 (en) 2015-03-04 2018-01-22 Gilead Sciences Inc TOLL-LIKE RECEPTOR MODULATING 4,6-DIAMINO-PYRIDO [3,2-D] PYRIMIDINE COMPOUNDS
WO2016183060A1 (en) 2015-05-11 2016-11-17 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
JP2018525412A (en) 2015-08-26 2018-09-06 ギリアード サイエンシーズ, インコーポレイテッド Deuterated toll-like receptor modulator
CU20180062A7 (en) 2015-12-15 2018-08-06 Gilead Sciences Inc HUMAN IMMUNODEFICIENCY VIRUS NEUTRALIZING ANTIBODIES
EP3394044A1 (en) 2015-12-17 2018-10-31 Gilead Sciences, Inc. Tank-binding kinase inhibitor compounds
WO2017191546A1 (en) 2016-05-05 2017-11-09 Laurus Labs Private Ltd. Process for the preparation of intermediates useful in the preparation of hepatitis c virus (hcv) inhibitors
CA3025633C (en) 2016-05-27 2021-02-23 Gilead Sciences, Inc. Methods for treating hepatitis b virus infections using ns5a, ns5b or ns3 inhibitors
BR102017010009A2 (en) 2016-05-27 2017-12-12 Gilead Sciences, Inc. COMPOUNDS FOR THE TREATMENT OF HEPATITIS B VIRUS INFECTION
JOP20190024A1 (en) 2016-08-26 2019-02-19 Gilead Sciences Inc Substituted pyrrolizine compounds and uses thereof
US10640499B2 (en) 2016-09-02 2020-05-05 Gilead Sciences, Inc. Toll like receptor modulator compounds
MA46093A (en) 2016-09-02 2021-05-19 Gilead Sciences Inc TOLL-TYPE RECEIVER MODULATING COMPOUNDS
SG10201914029RA (en) 2016-10-14 2020-03-30 Precision Biosciences Inc Engineered meganucleases specific for recognition sequences in the hepatitis b virus genome
WO2018086593A1 (en) 2016-11-11 2018-05-17 礼沃(上海)医药科技有限公司 Nitrogen-containing heterocyclic compound, preparation method, intermediate, pharmaceutical composition and use
TWI820984B (en) 2017-01-31 2023-11-01 美商基利科學股份有限公司 Crystalline forms of tenofovir alafenamide
JOP20180008A1 (en) 2017-02-02 2019-01-30 Gilead Sciences Inc Compounds for the treatment of hepatitis b virus infection
JOP20180040A1 (en) 2017-04-20 2019-01-30 Gilead Sciences Inc Pd-1/pd-l1 inhibitors
US10487084B2 (en) 2017-08-16 2019-11-26 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a heterobiaryl moiety, conjugates thereof, and methods and uses therefor
US10508115B2 (en) 2017-08-16 2019-12-17 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having heteroatom-linked aromatic moieties, conjugates thereof, and methods and uses therefor
US10494370B2 (en) * 2017-08-16 2019-12-03 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a pyridine or pyrazine moiety, conjugates thereof, and methods and uses therefor
US10472361B2 (en) 2017-08-16 2019-11-12 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a benzotriazole moiety, conjugates thereof, and methods and uses therefor
CN111051305A (en) 2017-08-22 2020-04-21 吉利德科学公司 Therapeutic heterocyclic compounds
WO2019084060A1 (en) 2017-10-24 2019-05-02 Silverback Therapeutics, Inc. Conjugates and methods of use thereof for selective delivery of immune-modulatory agents
JP2021035910A (en) * 2017-11-01 2021-03-04 大日本住友製薬株式会社 Substituted purine compound
CA3084667A1 (en) 2017-12-15 2019-06-20 Silverback Therapeutics, Inc. Antibody construct-drug conjugate for the treatment of hepatitis
WO2019123339A1 (en) 2017-12-20 2019-06-27 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
CA3084569A1 (en) 2017-12-20 2019-06-27 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 3'3' cyclic dinucleotides with phosphonate bond activating the sting adaptor protein
WO2019160882A1 (en) 2018-02-13 2019-08-22 Gilead Sciences, Inc. Pd-1/pd-l1 inhibitors
CN111788204B (en) 2018-02-26 2023-05-05 吉利德科学公司 Substituted pyrrolizine compounds as inhibitors of HBV replication
US10870691B2 (en) 2018-04-05 2020-12-22 Gilead Sciences, Inc. Antibodies and fragments thereof that bind hepatitis B virus protein X
TWI818007B (en) 2018-04-06 2023-10-11 捷克科學院有機化學與生物化學研究所 2'3'-cyclic dinucleotides
TW202005654A (en) 2018-04-06 2020-02-01 捷克科學院有機化學與生物化學研究所 2'2'-cyclic dinucleotides
EP3774832A1 (en) 2018-04-06 2021-02-17 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3'-cyclic dinucleotides
US11142750B2 (en) 2018-04-12 2021-10-12 Precision Biosciences, Inc. Optimized engineered meganucleases having specificity for a recognition sequence in the Hepatitis B virus genome
TWI712412B (en) 2018-04-19 2020-12-11 美商基利科學股份有限公司 Pd-1/pd-l1 inhibitors
WO2019209811A1 (en) 2018-04-24 2019-10-31 Bristol-Myers Squibb Company Macrocyclic toll-like receptor 7 (tlr7) agonists
US20190359645A1 (en) 2018-05-03 2019-11-28 Institute Of Organic Chemistry And Biochemistry Ascr, V.V.I. 2'3'-cyclic dinucleotides comprising carbocyclic nucleotide
SG11202012043RA (en) 2018-07-03 2021-01-28 Gilead Sciences Inc Antibodies that target hiv gp120 and methods of use
EP3817818A1 (en) 2018-07-06 2021-05-12 Gilead Sciences, Inc. Therapeutic heterocyclic compounds
CA3103987C (en) 2018-07-06 2023-08-01 Gilead Sciences, Inc. Therapeutic heterocyclic compounds
KR20230159715A (en) 2018-07-13 2023-11-21 길리애드 사이언시즈, 인코포레이티드 Pd-1/pd-l1 inhibitors
WO2020028097A1 (en) 2018-08-01 2020-02-06 Gilead Sciences, Inc. Solid forms of (r)-11-(methoxymethyl)-12-(3-methoxypropoxy)-3,3-dimethyl-8-0x0-2,3,8,13b-tetrahydro-1h-pyrido[2,1-a]pyrrolo[1,2-c] phthalazine-7-c arboxylic acid
US11554120B2 (en) 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor
BR112021004590A2 (en) 2018-09-12 2021-05-25 Silverback Therapeutics, Inc. compositions for the treatment of disease with immunostimulating conjugates
CN111072667A (en) * 2018-10-22 2020-04-28 罗欣药业(上海)有限公司 Five-membered or six-membered heterocyclic pyrimidine compound and application thereof
CN112955435A (en) 2018-10-24 2021-06-11 吉利德科学公司 PD-1/PD-L1 inhibitors
TW202136261A (en) 2018-10-31 2021-10-01 美商基利科學股份有限公司 Substituted 6-azabenzimidazole compounds
SG11202103839UA (en) 2018-10-31 2021-05-28 Gilead Sciences Inc Substituted 6-azabenzimidazole compounds as hpk1 inhibitors
KR20210137517A (en) 2019-03-07 2021-11-17 인스티튜트 오브 오가닉 케미스트리 앤드 바이오케미스트리 에이에스 씨알 브이.브이.아이. 2'3'-cyclic dinucleotides and prodrugs thereof
KR20210137518A (en) 2019-03-07 2021-11-17 인스티튜트 오브 오가닉 케미스트리 앤드 바이오케미스트리 에이에스 씨알 브이.브이.아이. 3'3'-cyclic dinucleotides and prodrugs thereof
EP3935065A1 (en) 2019-03-07 2022-01-12 Institute of Organic Chemistry and Biochemistry ASCR, V.V.I. 3'3'-cyclic dinucleotide analogue comprising a cyclopentanyl modified nucleotide as sting modulator
TW202212339A (en) 2019-04-17 2022-04-01 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
TW202210480A (en) 2019-04-17 2022-03-16 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
TW202231277A (en) 2019-05-21 2022-08-16 美商基利科學股份有限公司 Methods of identifying hiv patients sensitive to therapy with gp120 v3 glycan-directed antibodies
TWI826690B (en) 2019-05-23 2023-12-21 美商基利科學股份有限公司 Substituted eneoxindoles and uses thereof
US20220305115A1 (en) 2019-06-18 2022-09-29 Janssen Sciences Ireland Unlimited Company Combination of hepatitis b virus (hbv) vaccines and pyridopyrimidine derivatives
US20220249685A1 (en) 2019-06-19 2022-08-11 Silverback Therapeutics, Inc. Anti-mesothelin antibodies and immunoconjugates thereof
BR112021026376A2 (en) 2019-06-25 2022-05-10 Gilead Sciences Inc flt3l-fc fusion proteins and methods of use
EP3999107A1 (en) 2019-07-16 2022-05-25 Gilead Sciences, Inc. Hiv vaccines and methods of making and using
WO2021011891A1 (en) 2019-07-18 2021-01-21 Gilead Sciences, Inc. Long-acting formulations of tenofovir alafenamide
WO2021034804A1 (en) 2019-08-19 2021-02-25 Gilead Sciences, Inc. Pharmaceutical formulations of tenofovir alafenamide
US11497808B2 (en) 2019-09-30 2022-11-15 Gilead Sciences, Inc. HBV vaccines and methods treating HBV
AU2020358726A1 (en) 2019-10-01 2022-04-07 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
EP4349413A2 (en) 2019-10-18 2024-04-10 Forty Seven, Inc. Combination therapies for treating myelodysplastic syndromes and acute myeloid leukemia
CA3153636A1 (en) 2019-10-31 2021-05-06 Forty Seven, Inc. Anti-cd47 and anti-cd20 based treatment of blood cancer
TWI778443B (en) 2019-11-12 2022-09-21 美商基利科學股份有限公司 Mcl1 inhibitors
CN116057068A (en) 2019-12-06 2023-05-02 精密生物科学公司 Optimized engineered meganucleases with specificity for recognition sequences in hepatitis b virus genomes
IL294032A (en) 2019-12-24 2022-08-01 Carna Biosciences Inc Diacylglycerol kinase modulating compounds
EP4097102A1 (en) 2020-01-27 2022-12-07 Bristol-Myers Squibb Company 1h-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (tlr7) agonists
US20230127326A1 (en) 2020-01-27 2023-04-27 Bristol-Myers Squibb Company C3-SUBSTITUTED 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
JP2023512227A (en) 2020-01-27 2023-03-24 ブリストル-マイヤーズ スクイブ カンパニー 1H-pyrazolo[4,3-d]pyrimidine compounds as Toll-like receptor 7 (TLR7) agonists
US20230144824A1 (en) 2020-01-27 2023-05-11 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
US20230041738A1 (en) 2020-01-27 2023-02-09 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
CN115151548A (en) 2020-01-27 2022-10-04 百时美施贵宝公司 1H-pyrazolo [4,3-d ] pyrimidine compounds as Toll-like receptor 7 (TLR 7) agonists
JP2023512229A (en) 2020-01-27 2023-03-24 ブリストル-マイヤーズ スクイブ カンパニー 1H-pyrazolo[4,3-d]pyrimidine compounds as Toll-like receptor 7 (TLR7) agonists
CN115135654A (en) 2020-01-27 2022-09-30 百时美施贵宝公司 1H-pyrazolo [4,3-d ] pyrimidine compounds as Toll-like receptor 7(TLR7) agonists
US20230140430A1 (en) 2020-01-27 2023-05-04 Bristol-Myers Squibb Company 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS
AU2021219668A1 (en) 2020-02-14 2022-08-25 Gilead Sciences, Inc. Antibodies and fusion proteins that bind to CCR8 and uses thereof
JP2023514727A (en) 2020-02-21 2023-04-07 シルバーバック セラピューティックス インコーポレイテッド Nectin-4 antibody conjugates and uses thereof
CN115605493A (en) 2020-03-20 2023-01-13 吉利德科学公司(Us) Prodrugs of4'-C-substituted-2-halo-2' -deoxyadenosine nucleosides and methods of making and using the same
CR20220547A (en) 2020-05-01 2022-12-15 Gilead Sciences Inc Cd73 inhibiting 2,4-dioxopyrimidine compounds
JP2023525047A (en) 2020-05-06 2023-06-14 エイジャックス セラピューティクス, インコーポレイテッド 6-heteroaryloxybenzimidazoles and azabenzimidazoles as JAK2 inhibitors
WO2021236944A1 (en) 2020-05-21 2021-11-25 Gilead Sciences, Inc. Pharmaceutical compositions comprising bictegravir
CN116209678A (en) 2020-07-01 2023-06-02 安尔士制药公司 anti-ASGR 1 antibody conjugates and uses thereof
CA3186054A1 (en) 2020-08-07 2022-02-10 Daniel H. BYUN Prodrugs of phosphonamide nucleotide analogues and their pharmaceutical use
TW202406932A (en) 2020-10-22 2024-02-16 美商基利科學股份有限公司 Interleukin-2-fc fusion proteins and methods of use
KR20230107288A (en) 2020-11-11 2023-07-14 길리애드 사이언시즈, 인코포레이티드 Method for identifying HIV patients susceptible to therapy with gp120 CD4 binding site-directed antibody
WO2022161420A1 (en) * 2021-01-28 2022-08-04 上海翊石医药科技有限公司 Class of heteroaromatic compound, preparation method therefor and use thereof
TW202304524A (en) 2021-04-10 2023-02-01 美商普方生物製藥美國公司 Folr1 binding agents, conjugates thereof and methods of using the same
TW202302145A (en) 2021-04-14 2023-01-16 美商基利科學股份有限公司 Co-inhibition of cd47/sirpα binding and nedd8-activating enzyme e1 regulatory subunit for the treatment of cancer
JP2024516631A (en) 2021-04-23 2024-04-16 プロファウンドバイオ ユーエス カンパニー Anti-CD70 antibodies, conjugates thereof and methods of using same
JP2024518558A (en) 2021-05-13 2024-05-01 ギリアード サイエンシーズ, インコーポレイテッド Combination of TLR8 Modulating Compounds with Anti-HBV siRNA Therapeutics
WO2022245671A1 (en) 2021-05-18 2022-11-24 Gilead Sciences, Inc. Methods of using flt3l-fc fusion proteins
KR20240023628A (en) 2021-06-23 2024-02-22 길리애드 사이언시즈, 인코포레이티드 Diacylglycerol Kinase Modulating Compounds
KR20240025616A (en) 2021-06-23 2024-02-27 길리애드 사이언시즈, 인코포레이티드 Diacylglycerol Kinase Modulating Compounds
WO2022271650A1 (en) 2021-06-23 2022-12-29 Gilead Sciences, Inc. Diacylglyercol kinase modulating compounds
CN117355531A (en) 2021-06-23 2024-01-05 吉利德科学公司 Diacylglycerol kinase modulating compounds
TW202320857A (en) 2021-07-06 2023-06-01 美商普方生物製藥美國公司 Linkers, drug linkers and conjugates thereof and methods of using the same
TW202330504A (en) 2021-10-28 2023-08-01 美商基利科學股份有限公司 Pyridizin-3(2h)-one derivatives
CA3235986A1 (en) 2021-10-29 2023-05-04 Gilead Science, Inc. Cd73 compounds
WO2023086319A1 (en) 2021-11-09 2023-05-19 Ajax Therapeutics, Inc. 6-he tero aryloxy benzimidazoles and azabenzimidazoles as jak2 inhibitors
WO2023102529A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023102239A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023102523A1 (en) 2021-12-03 2023-06-08 Gilead Sciences, Inc. Therapeutic compounds for hiv virus infection
WO2023107954A1 (en) 2021-12-08 2023-06-15 Dragonfly Therapeutics, Inc. Antibodies targeting 5t4 and uses thereof
WO2023107956A1 (en) 2021-12-08 2023-06-15 Dragonfly Therapeutics, Inc. Proteins binding nkg2d, cd16 and 5t4
US20240124412A1 (en) 2021-12-22 2024-04-18 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
US20230242508A1 (en) 2021-12-22 2023-08-03 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
TW202340168A (en) 2022-01-28 2023-10-16 美商基利科學股份有限公司 Parp7 inhibitors
EP4245756A1 (en) 2022-03-17 2023-09-20 Gilead Sciences, Inc. Ikaros zinc finger family degraders and uses thereof
WO2023183817A1 (en) 2022-03-24 2023-09-28 Gilead Sciences, Inc. Combination therapy for treating trop-2 expressing cancers
TW202345901A (en) 2022-04-05 2023-12-01 美商基利科學股份有限公司 Combination therapy for treating colorectal cancer
TW202400172A (en) 2022-04-06 2024-01-01 美商基利科學股份有限公司 Bridged tricyclic carbamoylpyridone compounds and uses thereof
TW202400138A (en) 2022-04-21 2024-01-01 美商基利科學股份有限公司 Kras g12d modulating compounds
TW202402280A (en) 2022-07-01 2024-01-16 美商基利科學股份有限公司 Therapeutic compounds useful for the prophylactic or therapeutic treatment of an hiv virus infection
US20240116928A1 (en) 2022-07-01 2024-04-11 Gilead Sciences, Inc. Cd73 compounds
WO2024015741A1 (en) 2022-07-12 2024-01-18 Gilead Sciences, Inc. Hiv immunogenic polypeptides and vaccines and uses thereof
US20240083984A1 (en) 2022-08-26 2024-03-14 Gilead Sciences, Inc. Dosing and scheduling regimen for broadly neutralizing antibodies
WO2024064668A1 (en) 2022-09-21 2024-03-28 Gilead Sciences, Inc. FOCAL IONIZING RADIATION AND CD47/SIRPα DISRUPTION ANTICANCER COMBINATION THERAPY
WO2024076915A1 (en) 2022-10-04 2024-04-11 Gilead Sciences, Inc. 4'-thionucleoside analogues and their pharmaceutical use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329381B1 (en) 1997-11-28 2001-12-11 Sumitomo Pharmaceuticals Company, Limited Heterocyclic compounds
JP2005089334A (en) 2003-09-12 2005-04-07 Sumitomo Pharmaceut Co Ltd 8-hydroxyadenine compound
US20060052403A1 (en) 2002-09-27 2006-03-09 Yoshiaki Isobe Novel adenine compound and use thereof
WO2006117670A1 (en) 2005-05-04 2006-11-09 Pfizer Limited 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
WO2007034817A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034917A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1040108T3 (en) 1997-12-19 2004-05-24 Schering Ag Orthoanthranilamide derivatives as anticoagulants
TW572758B (en) * 1997-12-22 2004-01-21 Sumitomo Pharma Type 2 helper T cell-selective immune response inhibitors comprising purine derivatives
US20050043239A1 (en) * 2003-08-14 2005-02-24 Jason Douangpanya Methods of inhibiting immune responses stimulated by an endogenous factor
WO2005016349A1 (en) 2003-08-14 2005-02-24 Icos Corporation Methods of inhibiting leukocyte accumulation
US20050239809A1 (en) 2004-01-08 2005-10-27 Watts Stephanie W Methods for treating and preventing hypertension and hypertension-related disorders
AU2005226359B2 (en) * 2004-03-26 2011-02-03 Astrazeneca Aktiebolag 9-substituted 8-oxoadenine compound
CA2730540A1 (en) 2004-05-13 2005-12-01 Vanderbilt University Phosphoinositide 3-kinase delta selective inhibitors for inhibiting angiogenesis
EP1755609A1 (en) 2004-05-25 2007-02-28 Icos Corporation Methods for treating and/or preventing aberrant proliferation of hematopoietic cells
EP1750715A1 (en) 2004-06-04 2007-02-14 Icos Corporation Methods for treating mast cell disorders
EP1885356A2 (en) 2005-02-17 2008-02-13 Icos Corporation Phosphoinositide 3-kinase inhibitors for inhibiting leukocyte accumulation
JP2009504803A (en) * 2005-08-22 2009-02-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア TLR agonist
TW200801003A (en) * 2005-09-16 2008-01-01 Astrazeneca Ab Novel compounds
TW200745114A (en) * 2005-09-22 2007-12-16 Astrazeneca Ab Novel compounds
WO2007034882A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20090099216A1 (en) * 2005-09-22 2009-04-16 Astrazeneca Aktiebolag A Corporation Of Sweden Novel adenine compound
EP1939198A4 (en) * 2005-09-22 2012-02-15 Dainippon Sumitomo Pharma Co Novel adenine compound
CA2632657A1 (en) 2005-12-12 2007-08-09 Elan Pharmaceuticals, Inc. Assay for parkinson's disease therapeutics and enzymatically active parkin preparations useful therein
WO2007142755A2 (en) 2006-05-31 2007-12-13 The Regents Of The University Of California Purine analogs
US8138172B2 (en) * 2006-07-05 2012-03-20 Astrazeneca Ab 8-oxoadenine derivatives acting as modulators of TLR7
PT2038290E (en) * 2006-07-07 2013-12-10 Gilead Sciences Inc Modulators of toll-like receptor 7
TW200831105A (en) * 2006-12-14 2008-08-01 Astrazeneca Ab Novel compounds
US20100120799A1 (en) * 2007-02-19 2010-05-13 Smithkline Beecham Corporation Purine derivatives as immunomodulators
EP2139894B1 (en) * 2007-03-19 2011-10-26 AstraZeneca AB 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7) modulators
WO2008114008A1 (en) * 2007-03-19 2008-09-25 Astrazeneca Ab 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7 ) modulators
JPWO2008114819A1 (en) * 2007-03-20 2010-07-08 大日本住友製薬株式会社 New adenine compounds
PE20081887A1 (en) * 2007-03-20 2009-01-16 Dainippon Sumitomo Pharma Co NEW ADENINE COMPOUND
US8436178B2 (en) * 2007-05-08 2013-05-07 Astrazeneca Ab Imidazoquinolines with immuno-modulating properties
EA021463B1 (en) * 2007-06-29 2015-06-30 Джилид Сайэнс, Инк. Purine derivatives and their use as modulators of toll-like receptor 7
PE20091236A1 (en) * 2007-11-22 2009-09-16 Astrazeneca Ab PYRIMIDINE DERIVATIVES AS IMMUNOMODULATORS OF TLR7
WO2009151910A2 (en) * 2008-05-25 2009-12-17 Wyeth Combination product of receptor tyrosine kinase inhibitor and fatty acid synthase inhibitor for treating cancer
WO2010018132A1 (en) * 2008-08-11 2010-02-18 Smithkline Beecham Corporation Compounds
UA103195C2 (en) * 2008-08-11 2013-09-25 Глаксосмитклайн Ллк Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
MX2011001662A (en) * 2008-08-11 2011-03-24 Glaxosmithkline Llc Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases.
ES2433371T3 (en) * 2008-08-11 2013-12-10 Glaxosmithkline Llc Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
CN102176911B (en) * 2008-08-11 2014-12-10 葛兰素史密丝克莱恩有限责任公司 Novel adenine derivatives
GB0908772D0 (en) * 2009-05-21 2009-07-01 Astrazeneca Ab New salts 756

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329381B1 (en) 1997-11-28 2001-12-11 Sumitomo Pharmaceuticals Company, Limited Heterocyclic compounds
US20060052403A1 (en) 2002-09-27 2006-03-09 Yoshiaki Isobe Novel adenine compound and use thereof
JP2005089334A (en) 2003-09-12 2005-04-07 Sumitomo Pharmaceut Co Ltd 8-hydroxyadenine compound
WO2006117670A1 (en) 2005-05-04 2006-11-09 Pfizer Limited 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
WO2007034817A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034917A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Handbook of Pharmaceutical Excipients", 1986
"McGraw-Hill Dictionary of Chemical Terms", 1984, MCGRAW-HILL BOOK COMPANY
"PROTECTING GROUPS: AN OVERVIEW", article "Carbonyl Protecting Groups", pages: 155 - 184
"PROTECTING GROUPS: AN OVERVIEW", article "Carboxyl Protecting Groups", pages: 118 - 154
"PROTECTING GROUPS: AN OVERVIEW", article "Diol Protecting Groups", pages: 95 - 117
"PROTECTING GROUPS: AN OVERVIEW", article "Hydroxyl Protecting Groups", pages: 21 - 94
"Protecting Groups: An Overview", pages: 1 - 20
ELIEL, E.; WILEN, S.: "Stereochemistry of Organic Compounds", 1994, JOHN WILEY & SONS, INC.
KOCIENSKI, PHILIP J.: "Protecting Groups", 1994, GEORG THIEME VERLAG
THEODORA W. GREENE; PETER G. M. WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY & SONS, INC.

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879797B2 (en) 2005-05-02 2011-02-01 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8278322B2 (en) 2005-08-01 2012-10-02 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US9359360B2 (en) 2005-08-22 2016-06-07 The Regents Of The University Of California TLR agonists
US8178520B2 (en) 2006-05-15 2012-05-15 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Macrocyclic compounds as antiviral agents
US8846697B2 (en) 2006-05-31 2014-09-30 The Regents Of The University Of California Purine analogs
US8314062B2 (en) 2006-06-23 2012-11-20 Instituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic compounds as antiviral agents
US8309540B2 (en) 2006-10-24 2012-11-13 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8377873B2 (en) 2006-10-24 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8138164B2 (en) 2006-10-24 2012-03-20 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US9738661B2 (en) 2006-10-27 2017-08-22 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8377874B2 (en) 2006-10-27 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US8101595B2 (en) 2006-12-20 2012-01-24 Istituto di Ricerche di Biologia Molecolare P. Angletti SpA Antiviral indoles
US7767660B2 (en) 2006-12-20 2010-08-03 Istituto Di Richerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US7781422B2 (en) 2006-12-20 2010-08-24 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Antiviral indoles
US9050376B2 (en) 2007-02-07 2015-06-09 The Regents Of The University Of California Conjugates of synthetic TLR agonists and uses therefor
US8357374B2 (en) 2007-02-07 2013-01-22 The Regents Of The University Of California Conjugates of synthetic TLR agonists and uses therefor
US8790655B2 (en) 2007-02-07 2014-07-29 The Regents Of The University Of California Conjugates of synthetic TLR agonists and uses therefor
US8044056B2 (en) 2007-03-20 2011-10-25 Dainippon Sumitomo Pharma Co., Ltd. Adenine compound
US7989438B2 (en) 2007-07-17 2011-08-02 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Therapeutic compounds
US8927569B2 (en) 2007-07-19 2015-01-06 Merck Sharp & Dohme Corp. Macrocyclic compounds as antiviral agents
US8865896B2 (en) 2008-01-17 2014-10-21 Astrazeneca Aktiebolag Method for preparing adenine compound
US8461107B2 (en) 2008-04-28 2013-06-11 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
US7973040B2 (en) 2008-07-22 2011-07-05 Merck Sharp & Dohme Corp. Macrocyclic quinoxaline compounds as HCV NS3 protease inhibitors
US8080654B2 (en) 2008-07-22 2011-12-20 Insituto di Ricerche di Biologia Molecolare P. Angeletti SpA Macrocyclic quinoxaline compounds as HCV NS3 protease inhibitors
US11110091B2 (en) 2008-12-09 2021-09-07 Gilead Sciences, Inc. Modulators of toll-like receptors
US9066940B2 (en) 2009-02-06 2015-06-30 Telormedix, Sa Pharmaceutical compositions comprising imidazoquinolin(amines) and derivatives thereof suitable for local administration
US9107919B2 (en) 2009-02-06 2015-08-18 Telormedix Sa Pharmaceutical compositions comprising imidazoquinolin(amines) and derivatives thereof suitable for local administration
WO2010093436A3 (en) * 2009-02-11 2010-11-11 Carson Dennis A Toll-like receptor modulators and treatment of diseases
CN102439011A (en) * 2009-02-11 2012-05-02 加利福尼亚大学校务委员会 Toll-like receptor modulators and treatment of diseases
EP2607365A1 (en) * 2009-02-11 2013-06-26 The Regents of The University of California Toll-like receptor modulators and treatment of diseases
CN102439011B (en) * 2009-02-11 2016-05-04 加利福尼亚大学校务委员会 The treatment of TOLL sample receptor modulators and disease
US8729088B2 (en) 2009-02-11 2014-05-20 The Regents Of The University Of California Toll-like receptor modulators and treatment of diseases
EA019768B1 (en) * 2009-02-11 2014-06-30 Дзе Регентс Оф Дзе Юниверсити Оф Калифорния Compounds modulating activity of toll-like receptors
WO2010103130A2 (en) 2009-03-13 2010-09-16 Katholieke Universiteit Leuven, K.U.Leuven R&D Novel bicyclic heterocycles
WO2010151488A1 (en) * 2009-06-23 2010-12-29 Gilead Sciences, Inc. Combination of boceprevir with 5- ( { 6- [2, 4- bis (trifluoromethyl) phenyl] pyridazin-3 -yl } methyl) -2- (2 -fluorophenyl) -5h- imidazo [4, 5-c] pyridine for the treatment of hcv
WO2010151487A1 (en) * 2009-06-23 2010-12-29 Gilead Sciences, Inc. Combination of telaprevir with 5- ({6- [2,4-bis (trifluoromethyl) phenyl] pyridazin-3 -yl)methyl) -2- (2 -fluorophenyl) -5h- imidazo [4, 5-c]pyridine for the treatment of hcv
US8828930B2 (en) 2009-07-30 2014-09-09 Merck Sharp & Dohme Corp. Hepatitis C virus NS3 protease inhibitors
JP2013504593A (en) * 2009-09-14 2013-02-07 ギリアード サイエンシーズ, インコーポレイテッド Toll-like receptor modulators
JP2013508373A (en) * 2009-10-22 2013-03-07 ギリアード サイエンシーズ, インコーポレイテッド Regulators of TOLL-like receptors
WO2011079016A1 (en) * 2009-12-22 2011-06-30 Gilead Sciences, Inc. Methods of treating hbv and hcv infection
CN102844030A (en) * 2010-01-29 2012-12-26 沃泰克斯药物股份有限公司 Therapies for treating hepatitis c virus infection
WO2011094489A1 (en) * 2010-01-29 2011-08-04 Vertex Pharmaceuticals Incorporated Therapies for treating hepatitis c virus infection
US9173936B2 (en) 2010-04-30 2015-11-03 Telormedix Sa Phospholipid drug analogs
US9050319B2 (en) 2010-04-30 2015-06-09 Telormedix, Sa Phospholipid drug analogs
US9173935B2 (en) 2010-04-30 2015-11-03 Telormedix Sa Phospholipid drug analogs
US9180183B2 (en) 2010-04-30 2015-11-10 Telormedix Sa Phospholipid drug analogs
WO2011147753A1 (en) 2010-05-26 2011-12-01 Katholieke Universiteit Leuven, K.U.Leuven R&D Antiviral activity of novel bicyclic heterocycles
US9730944B2 (en) 2010-05-26 2017-08-15 Katholieke Universiteit Leuven, K.U. Leuven R&D Antiviral activity of novel bicyclic heterocycles
US9193741B2 (en) 2010-05-26 2015-11-24 Katholieke Universiteit Leuven, K. U. Leuven R&D Antiviral activity of bicyclic heterocycles
WO2012035423A1 (en) 2010-09-15 2012-03-22 Katholieke Universiteit Leuven, K.U. Leuven R&D Anti-cancer activity of novel bicyclic heterocycles
US8895570B2 (en) 2010-12-17 2014-11-25 Astrazeneca Ab Purine derivatives
US9452154B2 (en) 2010-12-20 2016-09-27 Gilead Sciences, Inc. Methods for treating HCV
US10420767B2 (en) 2011-04-08 2019-09-24 Janssen Sciences Ireland Uc Pyrimidine derivatives for the treatment of viral infections
US10272085B2 (en) 2011-04-08 2019-04-30 Janssen Sciences Ireland Uc Pyrimidine derivatives for the treatment of viral infections
US11541050B2 (en) 2011-04-08 2023-01-03 Janssen Sciences Ireland Uc Pyrimidine derivatives for the treatment of viral infections
US10780089B2 (en) 2011-04-08 2020-09-22 Janssen Sciences Ireland Uc Pyrimidine derivatives for the treatment of viral infections
US9393256B2 (en) 2011-09-16 2016-07-19 Gilead Pharmasset Llc Methods for treating HCV
US10456414B2 (en) 2011-09-16 2019-10-29 Gilead Pharmasset Llc Methods for treating HCV
DE102011116417A1 (en) 2011-10-18 2013-04-18 Kurt Lucas Cinnamon bark extract useful for treating symptoms including e.g. chronic rhinitis, secretion production with metallic, sour taste, inflammation of the paranasal sinuses, swelling of the nasal passages, seizure-like sneezing
AU2012334127B2 (en) * 2011-11-09 2017-05-18 Janssen Sciences Ireland Uc Purine derivatives for the treatment of viral infections
EA036645B1 (en) * 2011-11-09 2020-12-03 Янссен Сайенсиз Айрлэнд Юси Purine derivatives for the treatment of viral infections
US9556176B2 (en) 2011-11-09 2017-01-31 Janssen Sciences Ireland Uc Purine derivatives for the treatment of viral infections
WO2013068438A1 (en) * 2011-11-09 2013-05-16 Janssen R&D Ireland Purine derivatives for the treatment of viral infections
EA033830B1 (en) * 2011-11-09 2019-11-29 Janssen Sciences Ireland Uc Adenine derivatives as activators of tlr7 toll-like receptors
US10280167B2 (en) 2011-11-09 2019-05-07 Janssen Sciences Ireland Uc Purine derivatives for the treatment of viral infections
US11104678B2 (en) 2011-11-09 2021-08-31 Janssen Sciences Ireland Unlimited Company Purine derivatives for the treatment of viral infections
WO2013096512A1 (en) * 2011-12-20 2013-06-27 Gilead Sciences, Inc. Pharmaceutical compositions and methods for treating gastrointestinal infections and disorders
AU2013288600B2 (en) * 2012-07-13 2017-06-29 Janssen Sciences Ireland Uc Macrocyclic purines for the treatment of viral infections
US10822349B2 (en) 2012-07-13 2020-11-03 Janssen Sciences Ireland Unlimited Company Macrocyclic purines for the treatment of viral infections
WO2014009509A1 (en) * 2012-07-13 2014-01-16 Janssen R&D Ireland Macrocyclic purines for the treatment of viral infections
EA035790B1 (en) * 2012-07-13 2020-08-11 Янссен Сайенсиз Айрлэнд Юси Macrocyclic purines for the treatment of viral infections
US10280180B2 (en) 2012-07-13 2019-05-07 Janssen Sciences Ireland Uc Macrocyclic purines for the treatment of viral infections
US9284304B2 (en) 2012-08-10 2016-03-15 Janssen Sciences Ireland Uc Substituted pyrimidines as toll-like receptor modulators
US10259814B2 (en) 2012-10-10 2019-04-16 Janssen Sciences Ireland Uc Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
EP2918596A4 (en) * 2012-10-10 2016-08-31 Univ Shenzhen Immune receptor modifier conjugate and preparation method and use thereof, coupling precursor for preparing same, and compound for synthesizing coupling precursor
US10030066B2 (en) 2012-10-10 2018-07-24 Shenzhen University Immune receptor modifier conjugate and preparation method and use thereof, coupling precursor for preparing same, and compound for synthesizing coupling precursor
US11220504B2 (en) 2012-10-10 2022-01-11 Janssen Sciences Ireland Unlimited Company Pyrrolo[3,2-d] pyrimidine derivatives for the treatment of viral infections and other diseases
WO2014056333A1 (en) 2012-10-10 2014-04-17 深圳大学 Immune receptor modifier conjugate and preparation method and use thereof, coupling precursor for preparing same, and compound for synthesizing coupling precursor
US10723707B2 (en) 2012-11-16 2020-07-28 Janssen Sciences Ireland Unlimited Company Heterocyclic substituted 2-amino quinazoline derivatives for the treatment of viral infections
US10253003B2 (en) 2012-11-16 2019-04-09 Janssen Sciences Ireland Uc Heterocyclic substituted 2-amino quinazoline derivatives for the treatment of viral infections
US10039779B2 (en) 2013-01-31 2018-08-07 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US10259793B2 (en) 2013-02-21 2019-04-16 Janssen Sciences Ireland Uc 2-aminopyrimidine derivatives for the treatment of viral infections
US10647684B2 (en) 2013-02-21 2020-05-12 Janssen Sciences Ireland Unlimited Company 2-aminopyrimidine derivatives for the treatment of viral infections
US11702426B2 (en) 2013-03-29 2023-07-18 Janssen Sciences Ireland Unlimited Company Macrocyclic deaza-purinones for the treatment of viral infections
US10829494B2 (en) 2013-03-29 2020-11-10 Janssen Sciences Ireland Unlimited Company Macrocyclic deaza-purinones for the treatment of viral infections
US10266543B2 (en) 2013-03-29 2019-04-23 Janssen Sciences Ireland Uc Macrocyclic deaza-purinones for the treatment of viral infections
US10865193B2 (en) 2013-05-24 2020-12-15 Janssen Sciences Ireland Unlimited Company Pyridone derivatives for the treatment of viral infections and further diseases
US10377738B2 (en) 2013-05-24 2019-08-13 Janssen Sciences Ireland Unlimited Company Pyridone derivatives for the treatment of viral infections and further diseases
US10781216B2 (en) 2013-06-27 2020-09-22 Janssen Sciences Ireland Unlimited Company Pyrrolo [3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
US10385054B2 (en) 2013-06-27 2019-08-20 Janssen Sciences Ireland Unlimited Company Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
US10316043B2 (en) 2013-07-30 2019-06-11 Janssen Sciences Ireland Unlimited Company Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
US10822347B2 (en) 2013-07-30 2020-11-03 Janssen Sciences Ireland Unlimited Company Thieno[3,2-d]pyrimidines derivatives for the treatment of viral infections
US11116774B2 (en) 2014-07-11 2021-09-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of HIV
US10555949B2 (en) 2014-08-15 2020-02-11 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Pyrrolopyrimidine compounds used as TLR7 agonist
US11072615B2 (en) 2014-09-16 2021-07-27 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US11773098B2 (en) 2014-09-16 2023-10-03 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US10508117B2 (en) 2014-09-16 2019-12-17 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US11628181B2 (en) 2014-12-26 2023-04-18 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
WO2016177833A1 (en) 2015-05-04 2016-11-10 Bionor Immuno As Dosage regimen for hiv vaccine
US10780091B2 (en) 2016-02-05 2020-09-22 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. TLR7 agonist maleate salt, crystalline forms C, D and E thereof, preparation methods and uses of maleate salt and crystalline forms
US10703755B2 (en) 2016-04-26 2020-07-07 Sumitomo Dainippon Pharma Co., Ltd. Substituted purine derivative
US11697851B2 (en) 2016-05-24 2023-07-11 The Regents Of The University Of California Early ovarian cancer detection diagnostic test based on mRNA isoforms
US11053256B2 (en) 2016-07-01 2021-07-06 Janssen Sciences Ireland Unlimited Company Dihydropyranopyrimidines for the treatment of viral infections
AU2021204303B2 (en) * 2016-08-29 2022-05-12 F. Hoffmann-La Roche Ag 7-substituted sulfonimidoylpurinone compounds for the treatment and prophylaxis of virus infection
AU2017320742B2 (en) * 2016-08-29 2021-08-05 F. Hoffmann-La Roche Ag 7-substituted sulfonimidoylpurinone compounds for the treatment and prophylaxis of virus infection
EP3865482A1 (en) * 2016-08-29 2021-08-18 F. Hoffmann-La Roche AG 7-substituted sulfonimidoylpurinone compounds for the treatment and prophylaxis of virus infection
US10752630B2 (en) 2016-08-29 2020-08-25 Hofmann La-Roche Inc. 7-substituted sulfonimidoylpurinone compounds for the treatment of virus infection
US10233184B2 (en) 2016-08-29 2019-03-19 Hoffmann-La Roche Inc. 7-substituted sulfonimidoylpurinone compounds and derivatives for the treatment and prophylaxis of virus infection
WO2018041763A1 (en) * 2016-08-29 2018-03-08 F. Hoffmann-La Roche Ag 7-substituted sulfonimidoylpurinone compounds for the treatment and prophylaxis of virus infection
US10968184B2 (en) 2016-09-29 2021-04-06 Janssen Sciences Ireland Unlimited Company Pyrimidine prodrugs for the treatment of viral infections and further diseases
WO2018181420A1 (en) 2017-03-29 2018-10-04 大日本住友製薬株式会社 Vaccine adjuvant formulation
WO2019035969A1 (en) * 2017-08-16 2019-02-21 Bristol-Myers Squibb Company Toll-like receptor 7 (tlr7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US11331331B2 (en) 2017-12-07 2022-05-17 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
WO2019113462A1 (en) 2017-12-07 2019-06-13 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
US11903959B2 (en) 2017-12-07 2024-02-20 Emory University N4-hydroxycytidine and derivatives and anti-viral uses related thereto
WO2019124500A1 (en) 2017-12-21 2019-06-27 大日本住友製薬株式会社 Combination drug including tlr7 agonist
US11220502B2 (en) 2018-02-12 2022-01-11 Hoffmann-La Roche, Inc. Sulfone compounds and derivatives for the treatment and prophylaxis of virus infection
WO2019155042A1 (en) * 2018-02-12 2019-08-15 F. Hoffmann-La Roche Ag Novel sulfone compounds and derivatives for the treatment and prophylaxis of virus infection
US11597704B2 (en) 2018-03-01 2023-03-07 Janssen Sciences Ireland Unlimited Company 2,4-diaminoquinazoline derivatives and medical uses thereof
WO2020022272A1 (en) 2018-07-23 2020-01-30 公益財団法人ヒューマンサイエンス振興財団 Composition containing influenza vaccine
WO2022063278A1 (en) * 2020-09-27 2022-03-31 上海维申医药有限公司 Macrocyclic tlr7 agonist, preparation method therefor, pharmaceutical composition and use thereof

Also Published As

Publication number Publication date
AP2706A (en) 2013-07-29
KR20100039368A (en) 2010-04-15
US8993755B2 (en) 2015-03-31
JP2010532353A (en) 2010-10-07
US20150239888A1 (en) 2015-08-27
ES2541434T3 (en) 2015-07-20
EA024359B1 (en) 2016-09-30
AR067182A1 (en) 2009-09-30
AP2009005072A0 (en) 2009-12-31
EP2170888B1 (en) 2015-04-22
US20140135492A1 (en) 2014-05-15
IL202622A0 (en) 2010-06-30
CO6251258A2 (en) 2011-02-21
AU2008271127C1 (en) 2014-04-17
US20110236348A1 (en) 2011-09-29
CA2691444A1 (en) 2009-01-08
PT2170888E (en) 2015-08-21
US9611268B2 (en) 2017-04-04
CA2691444C (en) 2016-06-14
AU2008271127A1 (en) 2009-01-08
MX2009013832A (en) 2010-03-10
EA200971081A1 (en) 2010-10-29
JP5395068B2 (en) 2014-01-22
EA201490489A1 (en) 2014-07-30
US20120244121A1 (en) 2012-09-27
BRPI0813952A2 (en) 2017-05-09
US7968544B2 (en) 2011-06-28
CN101784548A (en) 2010-07-21
KR101561710B1 (en) 2015-10-19
JP2014005308A (en) 2014-01-16
EP2170888A1 (en) 2010-04-07
CN101784548B (en) 2013-07-17
NZ582090A (en) 2012-05-25
TWI434849B (en) 2014-04-21
ECSP109905A (en) 2010-04-30
AU2008271127B2 (en) 2013-12-05
SI2170888T1 (en) 2015-10-30
EA021463B1 (en) 2015-06-30
TW200914454A (en) 2009-04-01
PL2170888T3 (en) 2015-09-30
IL202622A (en) 2016-12-29
US20090047249A1 (en) 2009-02-19
HK1143145A1 (en) 2010-12-24

Similar Documents

Publication Publication Date Title
US9611268B2 (en) Modulators of toll-like receptor 7
JP5356228B2 (en) Regulator of toll-like receptor 7
CA2777824C (en) Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
CA2893963C (en) Antiviral compounds
CA2745295C (en) Modulators of toll-like receptors
US20120053148A1 (en) Inhibitors of hepatitis c virus
US8927484B2 (en) Antiviral compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104326.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08779791

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008271127

Country of ref document: AU

Ref document number: 2691444

Country of ref document: CA

Ref document number: MX/A/2009/013832

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 582090

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 14059472

Country of ref document: CO

Ref document number: 09145298

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 200971081

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 8396/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010514814

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008779791

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008271127

Country of ref document: AU

Date of ref document: 20080626

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107002075

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A200913908

Country of ref document: UA

ENP Entry into the national phase

Ref document number: PI0813952

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091229