US10508117B2 - Solid forms of a toll-like receptor modulator - Google Patents

Solid forms of a toll-like receptor modulator Download PDF

Info

Publication number
US10508117B2
US10508117B2 US16/229,460 US201816229460A US10508117B2 US 10508117 B2 US10508117 B2 US 10508117B2 US 201816229460 A US201816229460 A US 201816229460A US 10508117 B2 US10508117 B2 US 10508117B2
Authority
US
United States
Prior art keywords
compound
degrees
xrpd
crystalline form
inhibitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US16/229,460
Other versions
US20190315750A1 (en
Inventor
Patricia Andres
Krista Marie Diaz
Valeriya N. Smolenskaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gilead Sciences Inc
Original Assignee
Gilead Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gilead Sciences Inc filed Critical Gilead Sciences Inc
Priority to US16/229,460 priority Critical patent/US10508117B2/en
Assigned to GILEAD SCIENCES, INC. reassignment GILEAD SCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDRES, PATRICIA, DIAZ, KRISTA MARIE, SMOLENSKAYA, VALERIYA N.
Publication of US20190315750A1 publication Critical patent/US20190315750A1/en
Priority to US16/678,788 priority patent/US11072615B2/en
Application granted granted Critical
Publication of US10508117B2 publication Critical patent/US10508117B2/en
Priority to US17/353,462 priority patent/US11773098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D475/00Heterocyclic compounds containing pteridine ring systems
    • C07D475/06Heterocyclic compounds containing pteridine ring systems with a nitrogen atom directly attached in position 4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present disclosure relates generally to crystalline solid forms of the antiviral compound 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one, processes for making the forms, and their therapeutic methods of use.
  • the innate immune system provides the body with a first line defense against invading pathogens.
  • an invading pathogen is recognized by a germline-encoded receptor, the activation of which initiates a signaling cascade that leads to the induction of cytokine expression.
  • Innate immune system receptors have broad specificity, recognizing molecular structures that are highly conserved among different pathogens.
  • One family of these receptors is known as Toll-like receptors (TLRs), due to their homology with receptors that were first identified and named in Drosophila , and are present in cells such as macrophages, dendritic cells, and epithelial cells.
  • TLR2 is activated by the lipoprotein of bacteria (e.g., E. coli .)
  • TLR3 is activated by double-stranded RNA
  • TLR4 is activated by lipopolysaccharide (i.e., LPS or endotoxin) of Gram-negative bacteria (e.g., Salmonella and E. coli O157:H7)
  • TLR5 is activated by flagellin of motile bacteria (e.g., Listeria )
  • TLR7 recognizes and responds to imiquimod
  • TLR9 is activated by unmethylated CpG sequences of pathogen DNA.
  • TLR-7 tumor necrosis factor-alpha
  • IL-1 interleukin-1
  • TLRs diseases, disorders, and conditions linked to TLRs
  • therapies using a TLR agonist are believed promising, including but not limited to melanoma, non-small cell lung carcinoma, hepatocellular carcinoma, basal cell carcinoma, renal cell carcinoma, myeloma, allergic rhinitis, asthma, COPD, ulcerative colitis, hepatic fibrosis, and viral infections such as HBV, Flaviviridae viruses, HCV, HPV, RSV, SARS, HIV, or influenza.
  • Flaviviridae virus infections with TLR agonists is particularly promising.
  • Viruses of the Flaviviridae family comprise at least three distinguishable genera including pestiviruses, flaviviruses, and hepaciviruses (Calisher, et al., J. Gen. Virol., 1993, 70, 37-43). While pestiviruses cause many economically important animal diseases such as bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV, hog cholera) and border disease of sheep (BDV), their importance in human disease is less well characterized (Moennig, V., et al., Adv. Vir. Res. 1992, 48, 53-98).
  • BVDV bovine viral diarrhea virus
  • CSFV classical swine fever virus
  • BDV border disease of sheep
  • Flaviviruses are responsible for important human diseases such as dengue fever and yellow fever while hepaciviruses cause hepatitis C virus infections in humans.
  • Other important viral infections caused by the Flaviviridae family include West Nile virus (WNV) Japanese encephalitis virus (JEV), tick-borne encephalitis virus, Junjin virus, Murray Valley encephalitis, St Louis encephalitis, Omsk hemorrhagic fever virus and Zika virus.
  • WNV West Nile virus
  • JEV Japanese encephalitis virus
  • JEV Japanese encephalitis virus
  • Junjin virus Junjin virus
  • Murray Valley encephalitis Junjin virus
  • St Louis encephalitis encephalitis
  • Omsk hemorrhagic fever virus Zika virus.
  • infections from the Flaviviridae virus family cause significant mortality, morbidity and economic losses throughout the world. Therefore, there is a need to develop effective treatments for Flaviviridae virus infections.
  • HCV hepatitis C virus
  • ribavirin a nucleoside analog, interferon-alpha ( ⁇ ) (IFN), and sofosbuvir, another nucleoside analog, that are used for the treatment of chronic HCV infections in humans.
  • IFN interferon-alpha
  • sofosbuvir another nucleoside analog
  • Ribavirin alone is not effective in reducing viral RNA levels, has significant toxicity, and is known to induce anemia.
  • the combination of IFN and ribavirin has been reported to be effective in the management of chronic hepatitis C (Scott, L. J., et al. Drugs 2002, 62, 507-556) but less than half the patients given this treatment show a persistent benefit.
  • HCV is recognized by innate virus-sensing mechanisms that induce a rapid IFN response (Dustin, et al., Annu. Rev. Immunol. 2007, 25, 71-99). It is likely that the sources of the IFN are, at least, the infected hepatocytes and particularly the plasmacytoid dendritic cells (pDC) that highly express TLR 7 receptors and secrete high amounts of IFN. Horsmans, et al. ( Hepatology, 2005, 42, 724-731), demonstrated that a once daily 7-day treatment with the TLR 7 agonist isatoribine reduces plasma virus concentrations in HCV infected patients. Lee, et al. ( Proc. Natl. Acad. Sci.
  • TLR 7 stimulation can induce HCV immunity by both an IFN and IFN-independent mechanisms.
  • TLR 7 is expressed in normal as well as HCV infected hepatocytes.
  • hepatitis B virus (HBV) infection remains a major public health problem worldwide with 400 million chronic carriers. These infected patients are exposed to a risk of developing liver cirrhosis and hepatocellular carcinoma (Lee, W. M. 1997, N. Eng. J. Med., 337, 1733-1745).
  • HBV hepatitis B virus
  • Hepatitis B virus is second to tobacco as a cause of human cancer.
  • the mechanism by which HBV induces cancer is unknown, although it is postulated that may directly trigger tumor development, or indirectly trigger tumor development through chronic inflammation, cirrhosis, and cell regeneration associated with the infection.
  • Hepatitis B virus has reached epidemic levels worldwide. After a two to six month incubation period in which the host is unaware of the infection, HBV infection can lead to acute hepatitis and liver damage, that causes abdominal pain, jaundice, and elevated blood levels of certain enzymes. HBV can cause fulminant hepatitis, a rapidly progressive, often fatal form of the disease in which massive sections of the liver are destroyed. Patients typically recover from acute viral hepatitis. In some patients, however, high levels of viral antigen persist in the blood for an extended, or indefinite, period, causing a chronic infection. Chronic infections can lead to chronic persistent hepatitis. Patients infected with chronic persistent HBV are most common in developing countries. By mid-1991, there were approximately 225 million chronic carriers of HBV in Asia alone, and worldwide, almost 300 million carriers. Chronic persistent hepatitis can cause fatigue, cirrhosis of the liver, and hepatocellular carcinoma, a primary liver cancer.
  • HBV infection In western industrialized countries, high risk groups for HBV infection include those in contact with HBV carriers or their blood samples.
  • the epidemiology of HBV is in fact very similar to that of HIV, which accounts for why HBV infection is common among patients with AIDS or HIV-associated infections.
  • HBV is more contagious than HIV.
  • new compounds and methods of treating AIDS and attacking the HIV virus continue to be sought.
  • Compound I The compound 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one, designated herein as Compound I, as described for example in WO 2010/077613 and U.S. Pat. No. 8,367,670, has been reported to be an inhibitor of toll-like receptor 7. Moreover, Compound I is being investigated for use in treating HBV and HIV. However, Compound I was not previously known in any crystalline form.
  • the present invention provides a crystalline form of Compound I having the structure:
  • the present invention provides a crystalline Form I of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern comprising three or more peaks at 5.8, 11.4, 11.6, 17.7, 22.3, 23.9, or 26.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the present invention provides a crystalline Form II of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern comprising three or more peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the present invention provides a crystalline Form III of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.0, 10.1, 16.9, 20.3, 21.5, 22.0, 23.9, or 25.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the present invention provides a crystalline Form IV of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 4.1, 18.1, 18.7, 23.8, and 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the present invention provides a crystalline Form IX of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the present invention provides a crystalline Form X of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the present invention provides a method of preparing a crystalline Form I of Compound I by forming a mixture of Compound I, and a solvent including a C 1 -C 3 alcohol and dichloromethane, under conditions suitable to prepare Form I.
  • the present invention provides a method of preparing a crystalline Form II of Compound I by forming a mixture of Compound I and chloroform, under conditions suitable to prepare Form II.
  • the present invention provides a method of preparing a crystalline Form III of Compound I by heating a Form I of Compound I to a temperature of from about 130° C. to about 190° C., thereby forming Form III.
  • the present invention provides a method of preparing a crystalline Form IV of Compound I by heating a Form II of Compound I to a temperature of from about 90° C. to about 250° C., thereby forming Form IV.
  • the present invention provides a method of preparing a crystalline Form IX of Compound I by forming a mixture comprising a Form I of Compound I, water and trifluoroethanol, under conditions suitable to prepare Form IX.
  • the present invention provides a method of preparing a crystalline Form X of Compound I by forming a mixture comprising a Form I of Compound I and chloroform, under conditions suitable to prepare Form X.
  • FIG. 1 shows an X-ray powder diffraction pattern of Compound I Form I.
  • FIG. 2 shows a table of X-ray powder diffraction peaks of Compound I Form I.
  • FIG. 3 shows a differential scanning calorimetry plot of Compound I Form I showing endotherms at about 133° C., about 170° C. and about 273° C.
  • FIG. 4 shows a variable temperature XRPD plot of Compound I Form I converting to Form III at about 138° C.
  • FIG. 5 shows an X-ray powder diffraction pattern of Compound I Form II.
  • FIG. 6 shows a table of X-ray powder diffraction peaks of Compound I Form II.
  • FIG. 7 shows a differential scanning calorimetry plot of Compound I Form II showing endotherms at about 98° C., about 253° C. and about 274° C.
  • FIG. 8 shows a variable temperature XRPD plot of Compound I Form II converting to Form IV at about 110° C., and then reverting to Form II upon cooling to about 25° C.
  • FIG. 9 shows an X-ray powder diffraction pattern of Compound I Form III.
  • FIG. 10 shows a table of X-ray powder diffraction peaks of Compound I Form III.
  • FIG. 11 shows a differential scanning calorimetry plot of Compound I Form III showing endotherms at about 181 and about 271° C.
  • FIG. 12 shows a variable temperature XRPD plot of Compound I Form III from about 150° C. to about 25° C., and that Compound I remains as Form III.
  • FIG. 13 shows an X-ray powder diffraction pattern of Compound I Form IV.
  • FIG. 14 shows a table of X-ray powder diffraction peaks of Compound I Form IV.
  • FIG. 15 shows an X-ray powder diffraction pattern of Compound I Forms I, II, III and IV.
  • FIG. 16 shows an X-ray powder diffraction pattern of Compound I Form V.
  • FIG. 17 shows an X-ray powder diffraction pattern of Compound I Form VI.
  • FIG. 18 shows an X-ray powder diffraction pattern of Compound I Form VII.
  • FIG. 19 shows an X-ray powder diffraction pattern of Compound I Form VIII.
  • FIG. 20 shows an X-ray powder diffraction pattern of Compound I Form IX.
  • FIG. 21 shows a table of X-ray powder diffraction peaks of Compound I Form IX.
  • FIG. 22 shows a differential scanning calorimetry plot of Compound I Form IX.
  • FIG. 23 shows an X-ray powder diffraction pattern of Compound I Form X.
  • FIG. 24 shows a table of X-ray powder diffraction peaks of Compound I Form X.
  • FIG. 25 shows a differential scanning calorimetry plot of Compound I Form X.
  • FIG. 26 shows an X-ray powder diffraction pattern of Compound I Form XI.
  • FIG. 27 shows a table of X-ray powder diffraction peaks of Compound I Form XI.
  • FIG. 28 shows an X-ray powder diffraction pattern of Compound I Form XII.
  • FIG. 29 shows a table of X-ray powder diffraction peaks of Compound I Form XII.
  • FIG. 30 shows a differential scanning calorimetry plot of Compound I Form XII.
  • FIG. 31 shows an X-ray powder diffraction pattern of Compound I Form XIII.
  • FIG. 32 shows a table of X-ray powder diffraction peaks of Compound I Form XIII.
  • FIG. 33 shows an X-ray powder diffraction pattern of Compound I Form XIV.
  • FIG. 34 shows a table of X-ray powder diffraction peaks of Compound I Form XIV.
  • Compound I is a selective and potent inhibitor of toll-like receptor 7 (TLR-7):
  • Crystalline materials are generally more stable physically and chemically.
  • the superior stability of crystalline material may make them more suitable to be used in the final dosage form as shelf life of the product is directly correlated with stability.
  • a crystallization step in API processing also means an opportunity to upgrade the drug substance purity by rejecting the impurities to the processing solvent.
  • “Hydrate” refers to a complex formed by the combining of Compound I and water.
  • the term includes stoichiometric as well as non-stoichiometric hydrates.
  • Solvate refers to a complex formed by the combining of Compound I and a solvent.
  • Desolvated refers to a Compound I form that is a solvate as described herein, and from which solvent molecules have been partially or completely removed.
  • Desolvation techniques to produce desolvated forms include, without limitation, exposure of a Compound I Form (solvate) to a vacuum, subjecting the solvate to elevated temperature, exposing the solvate to a stream of gas, such as air or nitrogen, or any combination thereof.
  • a desolvated Compound I form can be anhydrous, i.e., completely without solvent molecules, or partially solvated wherein solvent molecules are present in stoichiometric or non-stoichiometric amounts.
  • Alcohol refers to a solvent having a hydroxy group.
  • Representative alcohols can have any suitable number of carbon atoms, such as C 1 -C 6 , and any suitable number of hydroxy groups, such as 1-3.
  • Exemplary alcohols include, but are not limited to, methanol, ethanol, n-propanol, i-propanol, etc.
  • “Therapeutically effective amount” refers to an amount that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment.
  • the therapeutically effective amount will vary depending upon the subject being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
  • substantially free of other crystalline forms of Compound I refers to a crystalline form of Compound I that contains less than 10% of other crystalline forms of Compound I.
  • substantially free can refer to a crystalline form of Compound I that contains less than 9, 8, 7, 6, 5, 4, 3, 2, or 1% of other crystalline forms of Compound I.
  • substantially free refers to a crystalline form of Compound I that contains less than 5% of other crystalline forms of Compound I.
  • substantially free refers to a crystalline form of Compound I that contains less than 1% of other crystalline forms of Compound I.
  • the present invention provides solid forms of 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one (Compound I; see U.S. Pat. Nos. 8,367,670 and 8,809,527), including crystalline and amorphous forms, as well as solvate and hydrate forms.
  • the present invention provides a crystalline form of Compound I having the structure:
  • Compound I can adopt a variety of solid forms, including, but not limited to, Form I, Form II, Form III, and Form IV. Other forms include Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV. Compound I can form a mixture of two or more crystalline forms, or form a single crystalline form substantially free of other crystalline forms.
  • crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and a differential scanning calorimetry (DSC) plot having endotherms at about 133° C., 170° C. and 273° C.
  • DSC differential scanning calorimetry
  • Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least three peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least four peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having at least five peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK a1 radiation.
  • Form I of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine or more, peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least six peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least seven peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having at least eight peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least nine peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.8, 11.4, 11.6, 17.7, 22.3, 23.9 or 26.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.4, and 11.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising one or more peaks at 17.7, 22.3, 23.9 or 26.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising two or more peaks at 17.7, 22.3, 23.9 or 26.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising three or more peaks at 17.7, 22.3, 23.9 or 26.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.6, 22.3, and 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.6, 17.7, 22.3, 23.9, 26.0 and 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form I of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 1 .
  • the crystalline Form I of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form I of Compound I can be substantially free of Form II, Form III and Form IV.
  • the crystalline Form I of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • Form I of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherms at about 133° C., about 170° C., or about 273° C.
  • the crystalline Form I of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 133, 170, or about 273° C.
  • the crystalline Form I of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 133° C. or about 170° C.
  • the crystalline Form I of Compound I can be characterized by DSC endotherms at about 133° C. and about 170° C.
  • the crystalline Form I of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 133, 170, and about 273° C.
  • the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and one or more DSC endotherms at about 133° C. and about 170° C.
  • Form II of Compound I can be characterized by an XRPD pattern having at least three, four, five, or more, peaks 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least three peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least four peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least five peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • Form II of Compound I can also be characterized by an XRPD pattern having at least six, seven, eight, nine, or more, peaks 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least six peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least seven peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least eight peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least nine peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 18.3, 19.9, 22.4 and 25.5 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising one or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising two or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising three or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising four or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 and 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form II of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 5 .
  • the crystalline Form II of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form II of Compound I can be substantially free of Form I, Form III and Form IV.
  • the crystalline Form II of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • Form II of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherms at about 98, about 253° C., or about 273° C.
  • the crystalline Form II of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 98, 253, or about 273° C.
  • the crystalline Form II of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 98 or about 253° C.
  • the crystalline Form II of Compound I can be characterized by DSC endotherms at about 98° C. and about 253° C.
  • the crystalline Form II of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 98, 253, and about 273° C.
  • the crystalline Form II of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 and 29.1 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and DSC endotherms at about 98 and about 253° C.
  • Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • Form III of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern having three or more peaks at 5.0, 10.1, 16.9, 20.3, 21.5, 22.0, 23.9 or 25.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 5.0, 21.5, and 22.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern having peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 and 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form III of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 9 .
  • the crystalline Form III of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form III of Compound I can be substantially free of Form I, Form II and Form IV.
  • the crystalline Form III of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherms at about 181° C. or about 272° C.
  • the crystalline Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 181° C. or about 272° C.
  • the crystalline Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 181° C.
  • the crystalline Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 181° C. and about 272° C.
  • the crystalline Form III of Compound I can be characterized by an XRPD pattern having peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 and 29.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and a DSC endotherm at about 181° C.
  • Form IV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • Form IV of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IV of Compound I can be characterized by an XRPD pattern having three or more peaks at 4.1, 18.1, 18.7, 23.8, and 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IV of Compound I can be characterized by an XRPD pattern having peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, and 26.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IV of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 13 .
  • the crystalline Form IV of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form IV of Compound I can be substantially free of Form I, Form II and Form III.
  • the crystalline Form IV of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • Form V of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 16 .
  • Form V can be any suitable solvate or hydrate form.
  • Form V of Compound I can be a solvate with hexafluoroisopropanol.
  • Form VI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 17 .
  • Form VI can be any suitable solvate or hydrate form.
  • Form VII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 18 .
  • Form VII can be any suitable solvate or hydrate form.
  • Form VII of Compound I can be a solvate with trifluoroethanol.
  • Form VIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 19 .
  • Form VIII can be any suitable solvate or hydrate form, such as a hemihydrate.
  • the crystalline Form V of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • the crystalline Form VI of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • the crystalline Form VII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • the crystalline Form VIII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • Form IX of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern having three or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 5.3, 9.8, and 15.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern having peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 and 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form IX of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 20 .
  • the crystalline Form IX of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form IX of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form X, Form XI, Form XII, Form XIII and Form XIV.
  • Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherm at about 57, 101, 141, 173, or about 266° C.
  • the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 57, 101, 141, 173, or about 266° C.
  • the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 141 or about 173° C.
  • the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 141 and about 173° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 173 and about 266° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 173° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 57, 101, 141, 173, and about 266° C.
  • DSC differential scanning calorimetry
  • the crystalline Form IX of Compound I can be characterized by an XRPD pattern having peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 and 24.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and a DSC endotherm at about 173° C.
  • the crystalline Form IX of Compound I can also have a solvate or hydrate form.
  • the crystalline Form IX of Compound I can be a hydrate.
  • Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • Form X of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern having three or more peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 5.5, 10.8 and 16.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern having peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form X of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 23 .
  • the crystalline Form X of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form X of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form XI, Form XII, Form XIII and Form XIV.
  • Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one endotherm at about 142° C. or about 274° C.
  • the crystalline Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 142 or about 274° C.
  • the crystalline Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 142° C.
  • the crystalline Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 142 and about 274° C.
  • the crystalline Form X of Compound I can be characterized by an XRPD pattern having peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, and 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and a DSC endotherm at about 142° C.
  • Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • Form XI of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern having three or more peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 7.7, 17.1 and 19.5 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by an XRPD pattern having peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 and 23.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XI of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 26 .
  • the crystalline Form XI of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form XI of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XII, Form XIII, and Form XIV.
  • the crystalline Form XI of Compound I can also have a solvate or hydrate form.
  • the crystalline Form XI of Compound I can be a solvate with hexafluoroisopropanol (HFIPA).
  • Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9 or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • Form XII of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK a1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern having three or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 20.3, 21.1 and 21.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least one or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least two or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least three or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least four or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least five or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least six or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern having peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, and 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XII of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 28 .
  • the crystalline Form XII of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form XII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XIII, and Form XIV.
  • Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having an endotherm at about 94° C., 112° C., 140° C. or about 174° C.
  • the crystalline Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 94° C., 112° C., 140° C. or about 174° C.
  • the crystalline Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 174° C.
  • the crystalline Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 94° C., 112° C., 140° C. and about 174° C.
  • the crystalline Form XII of Compound I can be characterized by an XRPD pattern having peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation, and a DSC endotherm at about 174° C.
  • the crystalline Form XII of Compound I can also have a solvate or hydrate form.
  • the crystalline Form XII of Compound I can be a solvate with trifluoroethanol (TFE).
  • Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • Form XIII of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern having three or more peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 4.6, 9.2, 18.4 and 20.0 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIII of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 31 .
  • the crystalline Form XIII of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form XIII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, and Form XIV.
  • Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • Form XIV of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • XRPD X-ray powder diffraction
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern having three or more peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 7.1, 9.5, 14.3 and 24.6 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by an XRPD pattern having peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 and 26.2 degrees 2 ⁇ ( ⁇ 0.2 degrees 2 ⁇ ), wherein the XRPD is made using CuK ⁇ 1 radiation.
  • the crystalline Form XIV of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 28 .
  • the crystalline Form XIV of Compound I can be substantially free of other crystalline forms of Compound I.
  • the crystalline Form XIV of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, and Form XIII.
  • the crystalline Form XIV of Compound I can also have a solvate or hydrate form.
  • the crystalline Form XIV of Compound I can be a solvate with trifluoroethanol (TFE).
  • TFE trifluoroethanol
  • the crystalline Form XIV of Compound I can be a hydrate.
  • any formula or structure given herein, including Compound I, is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds.
  • Isotopically labeled compounds have structures depicted by the Formulae given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number.
  • isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as, but not limited to 2 H (deuterium, D), 3 H (tritium), 11 C, 13 C, 14 C, 15 N, 18 F, 31 P, 32 P, 35 S, 36 Cl and 125 I.
  • isotopically labeled compounds of the present disclosure for example those into which radioactive isotopes such as 3 H, 13 C and 14 C are incorporated.
  • isotopically labeled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in radioactive treatment of patients.
  • PET positron emission tomography
  • SPECT single-photon emission computed tomography
  • the disclosure also includes Compound I in which from 1 to “n” hydrogens attached to a carbon atom is/are replaced by deuterium, in which n is the number of hydrogens in the molecule.
  • Such compounds exhibit increased resistance to metabolism and are thus useful for increasing the half-life of any Compound I when administered to a mammal. See, for example, Foster, “Deuterium Isotope Effects in Studies of Drug Metabolism”, Trends Pharmacol. Sci. 5(12):524-527 (1984).
  • Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogen atoms have been replaced by deuterium.
  • Deuterium labeled or substituted therapeutic compounds of the disclosure may have improved DMPK (drug metabolism and pharmacokinetics) properties, relating to distribution, metabolism and excretion (ADME). Substitution with heavier isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements.
  • An 18 F labeled compound may be useful for PET or SPECT studies.
  • Isotopically labeled compounds of this disclosure and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent.
  • deuterium i.e., 2 H or D
  • substitution with heavier isotopes may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index. It is understood that deuterium in this context is regarded as a substituent in Compound I.
  • the concentration of such a heavier isotope, specifically deuterium may be defined by an isotopic enrichment factor.
  • any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom.
  • a position is designated specifically as “H” or “hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition.
  • any atom specifically designated as a deuterium (D) is meant to represent deuterium.
  • Compound I can be prepared by a variety of methods. For example, Compound I can be dissolved in a single solvent system and allowed to crystallize. Alternatively, Compound I can be crystallized from a two-solvent system by dissolving Compound I in a solvent, and then adding an anti-solvent to the mixture causing Compound I to crystallize.
  • the solvent can be any solvent suitable to form a solution.
  • the solvent can be a polar solvent, which in some embodiments is a protic solvent.
  • suitable solvents include non-polar solvents.
  • Suitable solvents include, but are not limited to, water, alkanes such as heptanes, hexanes, and cyclohexane, petroleum ether, C 1 -C 3 alcohols (methanol, ethanol, propanol, isopropanol), ethylene glycol and polyethylene glycol such as PEG400, alkanoates such as ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate, acetonitrile, alkanones such as acetone, butanone, methyl ethyl ketone (MEK), methyl propyl ketone (MPK) and methyl iso-butyl ketone (MIBK), ethers such as diethyl ether,
  • the methods of preparing crystalline forms of Compound I can be performed under any suitable reaction conditions.
  • the methods of preparing the crystalline forms of Compound I can be performed at any suitable temperature, such as, but not limited to, below room temperature, at room temperature, or above room temperature.
  • the temperature can be from about ⁇ 78° C. to about 100° C., or from about 0° C. to about 50° C., or from about 10° C. to about 30° C.
  • the temperature can be the reflux temperature of the particular solvent used in the method.
  • crystalline forms of Compound I can be heated above about 100° C. such that one crystalline form of Compound I forms a second crystalline form of Compound I.
  • the methods of preparing crystalline forms of Compound I can be performed for any suitable time.
  • the time can be for minutes, hours or days. In some embodiments, the time can be several hours, such as overnight.
  • the methods of preparing crystalline forms of Compound I can be also be performed at any suitable pressure.
  • the pressure can be below atmospheric pressure, at about atmospheric pressure, or above atmospheric pressure.
  • the present invention provides a method of preparing a crystalline Form I of Compound I of the present invention, including forming a mixture of Compound I of the present invention, and a solvent, under conditions suitable to prepare Form I.
  • Any suitable solvent can be used in the method of preparing Compound I Form I.
  • the solvent can be at least one of water, methanol, ethanol, isopropanol, methyl ethyl ketone, methyl iso-butyl ketone, acetonitrile, tetrahydrofuran, methyl-tetrahydrofuran, 1,2-dimethoxy ethane, ethyl acetate, 1,4-dioxane, or dichloromethane.
  • the solvent can be at least one of methanol, ethanol, isopropanol, or dichloromethane. In some embodiments, the solvent can include one of methanol, ethanol, or isopropanol. In some embodiments, the solvent can be at least one of methanol, ethanol, or isopropanol, in combination with dichloromethane. In some embodiments, the solvent can be methanol and dichloromethane.
  • the present invention provides a method of preparing a crystalline Form I of Compound I by forming a mixture of Compound I, and a solvent including a C 1 -C 3 alcohol and dichloromethane, under conditions suitable to prepare Form I.
  • the C 1 -C 3 alcohol can be methanol, ethanol, propanol or isopropanol.
  • the solvent includes one of methanol, ethanol or isopropanol.
  • the solvent includes methanol and dichloromethane.
  • the solvent includes ethanol and dichloromethane.
  • the solvent includes isopropanol and dichloromethane.
  • the ratio of methanol and dichloromethane can be from 10:1 to about 1:10 (volume/volume), including about 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9 or about 1:10 (volume/volume).
  • the ratio of methanol to dichloromethane can be from about 1:1 to about 1:5 (volume/volume). In some embodiments, the ratio of methanol to dichloromethane can be about 1:2 (volume/volume).
  • the method of preparing Form I of Compound I can include a variety of other steps.
  • the solvent can be evaporated, a seed crystal can be added to the mixture, the mixture can be heated and cooled a single time or repeatedly, etc.
  • the method of preparing Form I of Compound I also includes evaporating the solvent, thereby forming Form I.
  • the method of preparing Form I of Compound I includes forming a reaction mixture of Compound I, methanol and dichloromethane, wherein the ratio of methanol to dichloromethane is 1:2 (volume/volume), and removing the dichloromethane, thereby forming crystalline Form I of Compound I.
  • the present invention also provides methods for preparing Compound I Form II.
  • the present invention provides a method of preparing a crystalline Form II of Compound I by forming a mixture of Compound I and chloroform, under conditions suitable to prepare Form II.
  • the conditions for preparing crystalline Form II of Compound I can include ambient temperature and pressure for a period of time of at least 1 day.
  • the period of time for preparing crystalline Form II of Compound I can also be for at least 2, 3, 4, 5, or more days.
  • the method for preparing the crystalline Form II of Compound I can be for about 5 days.
  • the present invention also provides methods for preparing Compound I Form III.
  • the present invention provides a method of preparing a crystalline Form III of Compound I by heating a Form I of Compound I to a temperature of from about 130° C. to about 190° C., thereby forming Form III.
  • the method also includes cooling Form III to room temperature.
  • the present invention also provides methods for preparing Compound I Form IV.
  • the present invention provides a method of preparing a crystalline Form IV of Compound I by heating a Form II of Compound I to a temperature of from about 90° C. to about 250° C., thereby forming Form IV.
  • the present invention also provides methods for preparing Compound I Form V.
  • the present invention provides a method of preparing a crystalline Form V of Compound I by forming a mixture of Compound I and hexafluoroisopropanol, and removing the hexafluoroisopropanol, under conditions suitable to prepare Form V.
  • the hexafluoroisopropanol can be removed under any suitable conditions such as via vacuum, heating, or a combination of the two.
  • Form V can be formed by combining a hot solution of Compound I with cold water and isolating the subsequent solid.
  • the present invention also provides methods for preparing Compound I Form VI.
  • the present invention provides a method of preparing a crystalline Form VI of Compound I by forming a mixture of Compound I and trifluoroethanol, and removing the trifluoroethanol, under conditions suitable to prepare Form VI.
  • the trifluoroethanol can be removed under any suitable conditions such as via vacuum, heating, or a combination of the two.
  • the present invention also provides methods for preparing Compound I Form VII.
  • the present invention provides a method of preparing a crystalline Form VII of Compound I by forming a mixture of Compound I and trifluoroethanol, and removing the trifluoroethanol, under conditions suitable to prepare Form VII.
  • the trifluoroethanol can be removed under any suitable conditions such as via vacuum, heating, or a combination of the two.
  • the present invention also provides methods for preparing Compound I Form VIII.
  • the present invention provides a method of preparing a crystalline Form VIII of Compound I by exposing Compound I Form V or Form VII to an atmosphere with a relative humidity greater than about 90%, under conditions suitable to prepare Form VIII.
  • the relative humidity can be any suitable humidity, such as greater than about 50%, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or greater than about 99%.
  • the relative humidity can be greater than about 95%.
  • the relative humidity can be about 97%.
  • the present invention also provides methods for preparing Compound I Form IX.
  • the present invention provides a method of preparing a crystalline Form IX of Compound I by forming a mixture of a Form I of Compound I, water and trifluoroethanol, under conditions suitable to prepare Form IX.
  • Any suitable ratio of the trifluoroethanol and water can be used.
  • the ratio of trifluoroethanol to water can be from 10:1 to about 1:1 (volume/volume), including about 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 or about 1:1 (volume/volume).
  • the ratio of trifluoroethanol to water can be from about 10:1 to about 1:1 (volume/volume).
  • the ratio of trifluoroethanol to water can be about 5:1 (volume/volume).
  • the conditions for preparing crystalline Form IX of Compound I can include ambient temperature and pressure for a period of time of at least 1 day.
  • the period of time for preparing crystalline Form IX of Compound I can also be for at least 2, 3, 4, 5, or more days.
  • the method for preparing the crystalline Form IX of Compound I can be for about 5 days.
  • the present invention also provides methods for preparing Compound I Form X.
  • the present invention provides a method of preparing a crystalline Form X of Compound I by forming a mixture of a Form I of Compound I and chloroform, under conditions suitable to prepare Form X.
  • the suitable conditions for preparing the crystalline Form X of Compound I can include ambient temperature and pressure.
  • the present invention also provides methods for preparing Compound I Form XI.
  • the present invention provides a method of preparing a crystalline Form XI of Compound I by forming a mixture of a Form I of Compound I and hexafluoroisopropanol, under conditions suitable to prepare Form XI.
  • the present invention also provides methods for preparing Compound I Form XII.
  • the present invention provides a method of preparing a crystalline Form XII of Compound I by forming a mixture of a Form I of Compound I, water and trifluoroethanol, under conditions suitable to prepare Form XII.
  • Any suitable ratio of the trifluoroethanol and water can be used.
  • the ratio of trifluoroethanol to water can be from 20:1 to about 1:1 (volume/volume), including about 20:1, 19:1, 18:1, 17:1, 16:1, 15:1, 14:1, 13:1, 12:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 or about 1:1 (volume/volume).
  • the ratio of trifluoroethanol to water can be from about 20:1 to about 1:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be from about 15:1 to about 5:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be about 10:1 (volume/volume).
  • the present invention also provides methods for preparing Compound I Form XIII.
  • the present invention provides a method of preparing a crystalline Form XIII of Compound I by cooling Form II of Compound I to less than 0° C., under conditions suitable to prepare Form XIII.
  • Form II of Compound I can be cooled to any suitable temperature less than 0° C., including, but not limited to, ⁇ 5° C., ⁇ 10, ⁇ 15, ⁇ 20, ⁇ 25, ⁇ 30, ⁇ 40, ⁇ 50, ⁇ 60 and ⁇ 70° C.
  • Form II of Compound I can be cooled to about ⁇ 10° C. to prepare Form XIII.
  • the present invention also provides methods for preparing Compound I Form XIV.
  • the present invention provides a method of preparing a crystalline Form XIV of Compound I by drying Form XII under conditions suitable to prepare Form XIV.
  • the drying can include heating Form XII to a suitable temperature for a suitable period of time, placing Form XII in a reduced atmosphere environment, or both.
  • Form XII can be heated to a temperature above room temperature, such as 30° C., 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, or 100° C.
  • preparing Form XIV includes drying Form XII at a pressure less than 1 atmosphere.
  • preparing Form XIV includes heating Form XII.
  • preparing Form XIV including drying Form XII at a pressure less than 1 atmosphere, and heating Form XII at a temperature of about 40° C.
  • the method of preparing crystalline Compound I can be carried out at temperatures generally from about 0° C. to the reflux temperature of the solvent. In some embodiments, the temperature can be room temperature.
  • Compound I, or one of the crystalline forms of Compound I can be heated in solid state form.
  • Compound I Form I can be heated to a temperature of from about 130° C. to about 200° C., or from about 130° C. to about 150° C.
  • Compound I Form II can be heated to a temperature of from about 90° C. to about 200° C.
  • the ratio of solvents in the above methods can be any suitable ratio from about 1:1 to about 1:9, including about 1:2, 1:3, 1:4, 1:5, 1:6, 1:7 and about 1:8 by volume.
  • the range of solvent ratios is preferably from about 1:1 to about 1:9, more preferably from about 1:2 to about 1:7, even more preferably from about 1:2 to about 1:5 by volume.
  • the ratio of Compound I to solvent can be any suitable ratio to promote crystallization.
  • the Compound I to solvent ratio can be from about 1:5 (weight/volume, or w/v) to about 1:50 (w/v), including about 1:6, 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40 and about 1:45 (w/v).
  • the Compound I to solvent ratio is preferably from about 1:10 to about 1:25 (w/v), more preferably from about 1:10 to about 1:15 (w/v).
  • Crystallization can be induced by methods known in the art, for example by mechanical means such as scratching or rubbing the contact surface of the reaction vessel with e.g. a glass rod.
  • the saturated or supersaturated solution may be inoculated with seed crystals.
  • the mixture for crystallizing Compound I can also contain a seed crystal of crystalline Compound I.
  • Isolation of the desired crystalline form can be accomplished by removing the solvent and precipitating solvent from the crystals. Generally this is carried out by known methods, such as, filtration, suction filtration, decantation or centrifugation. Further isolation can be achieved by removing any excess of the solvent(s) from the crystalline form by methods known to the one skilled in the art as for example application of a vacuum, and/or by heating.
  • compositions that contain, as the active ingredient, one or more of the solid forms of Compound I described or a pharmaceutically acceptable salt or ester thereof and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants.
  • the pharmaceutical compositions may be administered alone or in combination with other therapeutic agents (as indicated in the Combination Therapy section below).
  • compositions are prepared in a manner well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.)
  • compositions may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, for example as described in those patents and patent applications incorporated by reference, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously orally, topically, as an inhalant or via an impregnated or coated device such as a stent, for example or an artery-inserted cylindrical polymer.
  • agents having similar utilities for example as described in those patents and patent applications incorporated by reference, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously orally, topically, as an inhalant or via an impregnated or coated device such as a stent, for example or an artery-inserted cylindrical polymer.
  • compositions of the present disclosure include aqueous or oil suspensions or emulsions, with sesame oil, corn oil, cottonseed oil or peanut oil, as well as elixirs, mannitol, dextrose or a sterile aqueous solution and similar pharmaceutical vehicles.
  • Aqueous solutions in saline are also conventionally used for injection, but less preferred in the context of the present disclosure.
  • Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed.
  • the proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Sterile injectable solutions are prepared by incorporating a compound according to the present disclosure in the required amount in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above.
  • the general methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • Oral administration is another route for administration of compounds in accordance with the disclosure. Administration may be via capsule or enteric coated tablets or the like.
  • the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container.
  • the excipient serves as a diluent, it can be in the form of a solid, semi-solid or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient.
  • compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions and sterile packaged powders.
  • excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup and methyl cellulose.
  • the formulations can additionally include: lubricating agents such as talc, magnesium stearate and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
  • compositions of the disclosure can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
  • Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345.
  • Another formulation for use in the methods of the present disclosure employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present disclosure in controlled amounts.
  • the construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile or on demand delivery of pharmaceutical agents.
  • the compositions are formulated in a unit dosage form.
  • unit dosage forms refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient (e.g., a tablet, capsule, ampoule).
  • the compounds are generally administered in a pharmaceutically effective amount.
  • each dosage unit contains from 1 mg to 2 g of a compound described herein and for parenteral administration, in some embodiments, from 0.1 to 700 mg of a compound a compound described herein.
  • the amount of the compound actually administered usually will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered and its relative activity, the age, weight and response of the individual patient, the severity of the patient's symptoms, and the like.
  • the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present disclosure.
  • a pharmaceutical excipient for preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present disclosure.
  • these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
  • the tablets or pills of the present disclosure may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action or to protect from the acid conditions of the stomach.
  • the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
  • compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents or mixtures thereof and powders.
  • the liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra.
  • the compositions are administered by the oral or nasal respiratory route for local or systemic effect.
  • Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a facemask tent or intermittent positive pressure breathing machine. Solution, suspension or powder compositions may be administered, in some embodiments orally or nasally, from devices that deliver the formulation in an appropriate manner.
  • this disclosure relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable excipient or carrier and a therapeutically effective amount of the compound of Compound I as described above or a pharmaceutically acceptable salt, ester, prodrug, stereoisomer or hydrate thereof.
  • the solid forms of Compound I described herein can be administered to a subject suffering from a viral infection such as, but not limited to, hepatitis B virus (HBV), hepatitis C virus (HCV), and human immuno-deficiency virus (HIV) in either single or multiple doses by any of the accepted modes of administration known to those who are skilled in the art and as detailed above.
  • a viral infection such as, but not limited to, hepatitis B virus (HBV), hepatitis C virus (HCV), and human immuno-deficiency virus (HIV) in either single or multiple doses by any of the accepted modes of administration known to those who are skilled in the art and as detailed above.
  • an “agonist” is a substance that stimulates its binding partner, typically a receptor. Stimulation is defined in the context of the particular assay, or may be apparent in the literature from a discussion herein that makes a comparison to a factor or substance that is accepted as an “agonist” or an “antagonist” of the particular binding partner under substantially similar circumstances as appreciated by those of skill in the art. Stimulation may be defined with respect to an increase in a particular effect or function that is induced by interaction of the agonist or partial agonist with a binding partner and can include allosteric effects.
  • an “antagonist” is a substance that inhibits its binding partner, typically a receptor. Inhibition is defined in the context of the particular assay, or may be apparent in the literature from a discussion herein that makes a comparison to a factor or substance that is accepted as an “agonist” or an “antagonist” of the particular binding partner under substantially similar circumstances as appreciated by those of skill in the art. Inhibition may be defined with respect to a decrease in a particular effect or function that is induced by interaction of the antagonist with a binding partner, and can include allosteric effects.
  • a “partial agonist” or a “partial antagonist” is a substance that provides a level of stimulation or inhibition, respectively, to its binding partner that is not fully or completely agonistic or antagonistic, respectively. It will be recognized that stimulation, and hence, inhibition is defined intrinsically for any substance or category of substances to be defined as agonists, antagonists, or partial agonists.
  • intrinsic activity or “efficacy” relates to some measure of biological effectiveness of the binding partner complex.
  • receptor pharmacology the context in which intrinsic activity or efficacy should be defined will depend on the context of the binding partner (e.g., receptor/ligand) complex and the consideration of an activity relevant to a particular biological outcome. For example, in some circumstances, intrinsic activity may vary depending on the particular second messenger system involved. Where such contextually specific evaluations are relevant, and how they might be relevant in the context of the present invention, will be apparent to one of ordinary skill in the art.
  • modulation of a receptor includes agonism, partial agonism, antagonism, partial antagonism, or inverse agonism of a receptor.
  • the method can be used to induce an immune response against multiple epitopes of a viral infection in a human.
  • Induction of an immune response against viral infection can be assessed using any technique that is known by those of skill in the art for determining whether an immune response has occurred.
  • Suitable methods of detecting an immune response for the present invention include, among others, detecting a decrease in viral load or antigen in a subject's serum, detection of IFN-gamma-secreting peptide specific T cells, and detection of elevated levels of one or more liver enzymes, such as alanine transferase (ALT) and aspartate transferase (AST).
  • the detection of IFN-gamma-secreting peptide specific T cells is accomplished using an ELISPOT assay.
  • Another embodiment includes reducing the viral load associated with HBV infection, including a reduction as measured by PCR testing.
  • the present invention provides a method of treating a viral infection, comprising administering to a human in need thereof, a therapeutically effective amount of a crystalline form of Compound I or pharmaceutical composition of the present invention.
  • the present invention provides a crystalline form of Compound I for use in the treatment of a viral infection, comprising administering a therapeutically effective amount of a crystalline form of Compound I or a pharmaceutical composition of the present invention.
  • the present invention provides use of a crystalline form of Compound I for the treatment of a viral infection.
  • the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a viral infection.
  • the present invention provides methods for treating a hepatitis B viral infection or a hepatitis C viral infection, wherein each of the methods includes the step of administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of a crystalline form of Compound I.
  • the human subject is suffering from a chronic hepatitis B infection or a chronic hepatitis C infection, although it is within the scope of the present invention to treat people who are acutely infected with HBV or HCV.
  • the present invention provides a crystalline form of Compound I for use in the treatment of a hepatitis B viral infection or a hepatitis C viral infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a hepatitis B viral infection or a hepatitis C viral infection.
  • the present invention provides a crystalline form of Compound I for use in the treatment of a hepatitis B viral infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a hepatitis B viral infection.
  • Treatment in accordance with the present invention typically results in the stimulation of an immune response against HBV or HCV in a human being infected with HBV or HCV, respectively, and a consequent reduction in the viral load of HBV or HCV in the infected person.
  • immune responses include production of antibodies (e.g., IgG antibodies) and/or production of cytokines, such as interferons, that modulate the activity of the immune system.
  • the immune system response can be a newly induced response, or can be boosting of an existing immune response.
  • the immune system response can be seroconversion against one or more HBV or HCV antigens.
  • the viral load can be determined by measuring the amount of HBV DNA or HCV DNA present in the blood.
  • blood serum HBV DNA can be quantified using the Roche COBAS Amplicor Monitor PCR assay (version 2.0; lower limit of quantification, 300 copies/mL [57 IU/mL]) and the Quantiplex bDNA assay (lower limit of quantification, 0.7 MEq/mL; Bayer Diagnostics, formerly Chiron Diagnostics, Emeryville, Calif.).
  • the amount of antibodies against specific HBV or HCV antigens e.g., hepatitis B surface antigen (HBsAG)
  • HBsAG hepatitis B surface antigen
  • the amount of antibodies against specific HBV or HCV antigens can be measured using the Abbott AxSYM microparticle enzyme immunoassay system (Abbott Laboratories, North Chicago, Ill.).
  • Compound I can be administered by any useful route and means, such as by oral or parenteral (e.g., intravenous) administration.
  • Therapeutically effective amounts of Compound I are from about 0.00001 mg/kg body weight per day to about 10 mg/kg body weight per day, such as from about 0.0001 mg/kg body weight per day to about 10 mg/kg body weight per day, or such as from about 0.001 mg/kg body weight per day to about 1 mg/kg body weight per day, or such as from about 0.01 mg/kg body weight per day to about 1 mg/kg body weight per day, or such as from about 0.05 mg/kg body weight per day to about 0.5 mg/kg body weight per day, or such as from about 0.3 ⁇ g to about 30 mg per day, or such as from about 30 ⁇ g to about 300 ⁇ g per day.
  • Therapeutically effective amounts of Compound I are also from about 0.01 mg per dose to about 1000 mg per dose, such as from about 0.01 mg per dose to about 100 mg per dose, or such as from about 0.1 mg per dose to about 100 mg per dose, or such as from about 1 mg per dose to about 100 mg per dose, or such as from about 1 mg per dose to about 10 mg per dose.
  • Other therapeutically effective amounts of Compound I are about 1 mg per dose, or about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 mg per dose.
  • Compound I are about 100 mg per dose, or about 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, or about 500 mg per dose.
  • a single dose can be administered hourly, daily, or weekly. For example, a single dose can be administered once every 1 hour, 2, 3, 4, 6, 8, 12, 16 or once every 24 hours. A single dose can also be administered once every 1 day, 2, 3, 4, 5, 6, or once every 7 days. A single dose can also be administered once every 1 week, 2, 3, or once every 4 weeks.
  • a single dose can also be administered once every month.
  • the frequency of dosage of Compound I will be determined by the needs of the individual patient and can be, for example, once per day or twice, or more times, per day.
  • Compound I continues for as long as necessary to treat the HBV or HCV infection.
  • Compound I can be administered to a human being infected with HBV or HCV for a period of from 20 days to 180 days or, for example, for a period of from 20 days to 90 days or, for example, for a period of from 30 days to 60 days.
  • Administration can be intermittent, with a period of several or more days during which a patient receives a daily dose of Compound I, followed by a period of several or more days during which a patient does not receive a daily dose of Compound I.
  • a patient can receive a dose of Compound I every other day, or three times per week.
  • a patient can receive a dose of Compound I each day for a period of from 1 to 14 days, followed by a period of 7 to 21 days during which the patient does not receive a dose of Compound I, followed by a subsequent period (e.g., from 1 to 14 days) during which the patient again receives a daily dose of Compound I.
  • Alternating periods of administration of Compound I, followed by non-administration of Compound I can be repeated as clinically required to treat the patient.
  • crystalline forms of Compound I can be administered with one or more additional therapeutic agent(s) to a human being infected with hepatitis B virus or hepatitis C virus.
  • the additional therapeutic agent(s) can be administered to the infected human being at the same time as the crystalline form of Compound I, or before or after administration of the crystalline form of Compound I.
  • the present invention provides a crystalline form of Compound I, for use in a method of treating or preventing a hepatitis B viral infection, wherein the crystalline form of Compound I is administered simultaneously, separately or sequentially with one or more additional therapeutic agents for treating a hepatitis B viral infection.
  • the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a hepatitis B viral infection, wherein the crystalline form of Compound I is administered simultaneously, separately or sequentially with one or more additional therapeutic agents for treating a hepatitis B viral infection.
  • the present invention provides a method for ameliorating a symptom associated with an HBV infection or HCV infection, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of the crystalline form of Compound I, wherein the therapeutically effective amount is sufficient to ameliorate a symptom associated with the HBV infection or HCV infection.
  • symptoms include the presence of HBV virus particles (or HCV virus particles) in the blood, liver inflammation, jaundice, muscle aches, weakness and tiredness.
  • the present invention provides a crystalline form of Compound I for use in ameliorating a symptom associated with an HBV infection or HCV infection, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of the crystalline form of Compound I, wherein the therapeutically effective amount is sufficient to ameliorate a symptom associated with the HBV infection or HCV infection.
  • the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the ameliorating a symptom associated with an HBV infection or HCV infection, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of the crystalline form of Compound I, wherein the therapeutically effective amount is sufficient to ameliorate a symptom associated with the HBV infection or HCV infection
  • the present invention provides a method for reducing the rate of progression of a hepatitis B viral infection, or a hepatitis C virus infection, in a human being, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of Compound I, or a pharmaceutically acceptable salt thereof, wherein the therapeutically effective amount is sufficient to reduce the rate of progression of the hepatitis B viral infection or hepatitis C viral infection.
  • the rate of progression of the infection can be followed by measuring the amount of HBV virus particles or HCV virus particles in the blood.
  • the present invention provides a method for reducing the viral load associated with HBV infection or HCV infection, wherein the method comprises administering to a human being infected with HBV or HCV a therapeutically effective amount of Compound I, or a pharmaceutically acceptable salt thereof, wherein the therapeutically effective amount is sufficient to reduce the HBV viral load or the HCV viral load in the human being.
  • the present invention provides a method of inducing or boosting an immune response against Hepatitis B virus or Hepatitis C virus in a human being, wherein the method comprises administering a therapeutically effective amount of Compound I, or a pharmaceutically acceptable salt thereof, to the human being, wherein a new immune response against Hepatitis B virus or Hepatitis C virus is induced in the human being, or a preexisting immune response against Hepatitis B virus or Hepatitis C virus is boosted in the human being.
  • Seroconversion with respect to HBV or HCV can be induced in the human being.
  • immune responses include production of antibodies, such as IgG antibody molecules, and/or production of cytokine molecules that modulate the activity of one or more components of the human immune system.
  • Induction of seroconversion against HCV or HBV in patients chronically infected with either of these viruses is an unexpected property of Compound I.
  • an HBV patient, or HCV patient is treated with Compound I, alone or in combination with one or more other therapeutic agents, until an immune response against HBV or HCV is induced or enhanced and the viral load of HBV or HCV is reduced. Thereafter, although the HBV or HCV virus may persist in a latent form in the patient's body, treatment with Compound I can be stopped, and the patient's own immune system is capable of suppressing further viral replication.
  • an immune response is induced against one or more antigens of HBV or HCV.
  • an immune response can be induced against the HBV surface antigen (HBsAg), or against the small form of the HBV surface antigen (small S antigen), or against the medium form of the HBV surface antigen (medium S antigen), or against a combination thereof.
  • an immune response can be induced against the HBV surface antigen (HBsAg) and also against other HBV-derived antigens, such as the core polymerase or x-protein.
  • Induction of an immune response against HCV or HBV can be assessed using any technique that is known by those of skill in the art for determining whether an immune response has occurred.
  • Suitable methods of detecting an immune response for the present invention include, among others, detecting a decrease in viral load in a subject's serum, such as by measuring the amount of HBV DNA or HCV DNA in a subject's blood using a PCR assay, and/or by measuring the amount of anti-HBV antibodies, or anti-HCV antibodies, in the subject's blood using a method such as an ELISA.
  • the compounds of this invention may be useful in the treatment of cancer or tumors (including dysplasias, such as uterine dysplasia).
  • dysplasias such as uterine dysplasia
  • the compounds of this invention are employed to treat any neoplasm, including not only hematologic malignancies but also solid tumors of all kinds.
  • lymphomas malignant masses of lymphoid cells, primarily but not exclusively in lymph nodes
  • leukemias neoplasm derived typically from lymphoid or myeloid cells and primarily affecting the bone marrow and peripheral blood.
  • the lymphomas can be subdivided into Hodgkin's Disease and Non-Hodgkin's lymphoma (NHL).
  • NHL Hodgkin's Disease
  • NHL Non-Hodgkin's lymphoma
  • lymphoma aggressive lymphoma, indolent lymphoma
  • histologically e.g. follicular lymphoma, mantle cell lymphoma
  • follicular lymphoma mantle cell lymphoma
  • B lymphocyte T lymphocyte
  • leukemias and related malignancies include acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL).
  • Other hematological malignancies include the plasma cell dyscrasias including multiple myeloma, and the myelodysplastic syndromes.
  • Subjects being treated by administration of the solid forms of Compound I described herein can benefit from treatment with additional therapeutic agents that are effective in treating HCV, or enhance the anti-HCV therapeutic effect of Compound I forms, in accordance with some embodiments.
  • Additional therapeutic agents that may be useful for this purpose include, but are not limited to, ribavirin,
  • HCV NS3 protease inhibitors see EP 1881001, US 2003187018, US 2005267018, WO 2003006490, WO 200364456, WO 2004094452, WO 2005028502, WO 2005037214, WO 2005095403, WO 2007014920, WO 2007014921, WO 2007014922, WO 2007014925, WO 2007014926, WO 2007015824, WO 2008010921, and WO 2008010921); HCV NS5B Inhibitors (see US 2004229840, US 2005154056, US 2005-98125, US 20060194749, US 20060241064, US 20060293306, US 2006040890, US 2006040927, US 2006166964, US 2007275947, U.S.
  • HCV NS5B Inhibitors see US 2004229840, US 2005154056, US 2005-98125, US 20060194749, US 20060241064, US 20060293306, US 2006040890
  • telaprevir also known as VX-950, which is disclosed in US 2010/0015090
  • boceprevir also known as VX-950, which is disclosed in US 2010/0015090
  • BMS-790052 disclosed in WO 2008/021927
  • ITMN-191 disclosed in US 2009/0269305 at Example 62-1
  • ANA-598 identified as compound 31 in F. Ruebasam et al. Biorg. Med. Chem. Lett.
  • TMC435 (formerly known as TMC435350); as well as, interferon- ⁇ , interferon- ⁇ , pegylated interferon- ⁇ , ribavirin, levovirin, viramidine, another nucleoside HCV polymerase inhibitor, a HCV non-nucleoside polymerase inhibitor, a HCV protease inhibitor, a HCV helicase inhibitor or a HCV fusion inhibitor.
  • a method for treating or preventing an HBV infection in a human having or at risk of having the infection comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents.
  • a method for treating an HBV infection in a human having or at risk of having the infection comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents.
  • the present disclosure provides a method for treating an HBV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more additional therapeutic agents which are suitable for treating an HBV infection.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound as disclosed herein may be combined with one or more additional therapeutic agents in any dosage amount of the crystalline form of Compound I (e.g., from 1 mg to 1000 mg of compound).
  • compositions comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents, and a pharmaceutically acceptable carrier, diluent or excipient are provided.
  • kits comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents are provided.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • one or more e.g., one, two, three, four, one or two, or one to three, or one to four
  • the additional therapeutic agent may be an anti-HBV agent.
  • the additional therapeutic agent is selected from the group consisting of HBV combination drugs, HBV DNA polymerase inhibitors, immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, hepatitis B surface antigen (HBsAg) inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting hepatitis B core antigen (HBcAg), cyclophilin inhibitors, HBV therapeutic vaccines, HBV prophylactic vaccines, HBV viral entry inhibitors, NTCP (Na+-taurocholate cotransporting polypeptide) inhibitors, antis
  • the additional therapeutic is selected from the group consisting of HBV combination drugs, HBV DNA polymerase inhibitors, toll-like receptor 7 modulators, toll-like receptor 8 modulators, Toll-like receptor 7 and 8 modulators, Toll-like receptor 3 modulators, interferon alpha receptor ligands, HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV therapeutic vaccines, HBV prophylactic vaccines, HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA), hepatitis B virus E antigen inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus, thymosin agonists, cytokines, nucleoprotein modulators (HBV core), HBV DNA
  • a crystalline form of Compound I is formulated as a tablet, which may optionally contain one or more other compounds useful for treating HBV.
  • the tablet can contain another active ingredient for treating HBV, such as HBV DNA polymerase inhibitors, immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), modulators of TLR7, modulators of TLR8, modulators of TLR7 and TLR8, interferon alpha receptor ligands, hyaluronidase inhibitors, hepatitis B surface antigen (HBsAg) inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting hepatitis B core antigen (HBcAg), cyclophilin inhibitors, HBV viral entry inhibitors, NTCP (Na+-taurocholate
  • such tablets are suitable for once daily dosing.
  • the additional therapeutic agent is selected from one or more of:
  • a compound disclosed herein is combined with one, two, three, four or more additional therapeutic agents.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • two additional therapeutic agents e.g. any crystalline form of Compound I
  • three additional therapeutic agents e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • four additional therapeutic agents e.g. any crystalline form of Compound I.
  • the one, two, three, four or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents.
  • a compound disclosed herein is combined with an HBV DNA polymerase inhibitor.
  • a compound disclosed herein is combined with an HBV DNA polymerase inhibitor and at least one additional therapeutic agent selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV therapeutic vaccines, HBV prophylactic vaccines HBV viral entry inhibitors, NTCP inhibitors, antisense
  • toll-like receptor modulators modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR
  • a compound disclosed herein is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, PD-1 inhibitors, PD-L1 inhibitors, Arginase-1 inhibitors, PI3K inhibitors, I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • an HBV DNA polymerase inhibitor e.g. any crystalline form of Compound I
  • at least a second additional therapeutic agent selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, short interfering RNAs (siRNA), miRNA gene therapy agents, short synthetic hairpin RNAs (sshRNAs), and nucleoprotein modulators (HBV core or capsid protein modulators).
  • a compound disclosed herein is combined with an HBV DNA polymerase inhibitor, one or two additional therapeutic agents selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, PD-1 inhibitors, PD-
  • a compound disclosed herein is combined with one, two, three, four or more additional therapeutic agents selected from adefovir (Hepsera®), tenofovir disoproxil fumarate+emtricitabine (TRUVADA®), tenofovir disoproxil fumarate (Viread®), entecavir (Baraclude®), lamivudine (Epivir-HBV®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®), Clevudine®, emtricitabine (Emtriva®), peginterferon alfa-2b (PEG-Intron®), Multiferon®, interferon alpha 1b (Hapgen
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • entecavir Baraclude®
  • Hepsera® adefovir
  • tenofovir disoproxil fumarate Viread®
  • tenofovir alafenamide tenofovir
  • tenofovir disoproxil tenofovir alafenamide fumarate
  • tenofovir alafenamide hemifumarate telbivudine
  • Tyzeka® telbivudine
  • Epivir-HBV® lamivudine
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • entecavir Baraclude®
  • adefovir Hepsera®
  • tenofovir disoproxil fumarate Viread®
  • tenofovir alafenamide hemifumarate telbivudine
  • Telbivudine Teka®
  • lamivudine Epivir-HBV®
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein is combined with a PD-1 inhibitor.
  • a compound disclosed herein e.g.
  • any crystalline form of Compound I is combined with a PD-L1 inhibitor.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • an IDO inhibitor e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • an IDO inhibitor and a PD-1 inhibitor e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • is combined with an IDO inhibitor and a PD-L1 inhibitors e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), interferon al
  • a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of peginterferon alfa-2b (PEG-Intron®), Multiferon®, interferon alpha 1b (Hapgen®), interferon alpha-2b (Intron A®), pegylated interferon alpha-2a (PEG-Intron®), Multiferon®, interferon alpha 1b (
  • a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsA
  • a first additional therapeutic agent selected from the group consisting of: enteca
  • a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, short interfering RNAs (siRNA), miRNA gene therapy agents,
  • a first additional therapeutic agent selected from the group consisting of: enteca
  • a compound disclosed herein is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®), one or two additional therapeutic agents selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitor
  • a first additional therapeutic agent selected from the group consisting of: enteca
  • a compound disclosed herein is combined with 5-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g.
  • any crystalline form of Compound I is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide.
  • a compound as disclosed herein may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 1 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • 100-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil is combined with 100-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • any crystalline form of Compound I is combined with 100-150; 100-200, 100-250; 100-300; 100-350; 150-200; 150-250; 150-300; 150-350; 150-400; 200-250; 200-300; 200-350; 200-400; 250-350; 250-400; 350-400 or 300-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound disclosed herein e.g.
  • any crystalline form of Compound I is combined with 300 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g.
  • any crystalline form of Compound I is combined with 150 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil.
  • a compound as disclosed herein e.g., a crystalline form of Compound I
  • a method for treating or preventing an HIV infection in a human having or at risk of having the infection comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.
  • a method for treating an HIV infection in a human having or at risk of having the infection comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.
  • the present disclosure provides a method for treating an HIV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt, thereof, in combination with a therapeutically effective amount of one or more additional therapeutic agents which are suitable for treating an HIV infection.
  • a compound as disclosed herein may be combined with one or more additional therapeutic agents in any dosage amount of the compound of Formula I (e.g., from 1 mg to 1000 mg of compound).
  • compositions comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents, and a pharmaceutically acceptable carrier, diluent or excipient are provided.
  • kits comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents are provided.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • one or more additional therapeutic agents e.g., one, two, three, one or two, or one to three
  • the additional therapeutic agent may be an anti-HIV agent.
  • the additional therapeutic agent is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, HIV entry inhibitors (e.g., CCR5 inhibitors, gp41 inhibitors (i.e., fusion inhibitors) and CD4 attachment inhibitors), CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, HIV vaccines, HIV maturation inhibitors, latency reversing agents (e.g., histone deacetylase inhibitors, proteasome inhibitors, protein kinase C (PKC) activators, and BRD4 inhibitors), compounds that target HIV protease inhibitors, HIV non-
  • the additional therapeutic is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, pharmacokinetic enhancers, and combinations thereof.
  • a crystalline form of Compound I is formulated as a tablet, which may optionally contain one or more other compounds useful for treating HIV.
  • the tablet can contain another active ingredient for treating HIV, such as HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, pharmacokinetic enhancers, and combinations thereof.
  • such tablets are suitable for once daily dosing.
  • the additional therapeutic agent is selected from one or more of:
  • a compound disclosed herein is combined with one, two, three, four or more additional therapeutic agents.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • two additional therapeutic agents e.g. any crystalline form of Compound I
  • three additional therapeutic agents e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • four additional therapeutic agents e.g. any crystalline form of Compound I.
  • the one, two, three, four or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • an HIV nucleoside or nucleotide inhibitor of reverse transcriptase and an HIV non-nucleoside inhibitor of reverse transcriptase.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g.
  • any crystalline form of Compound I is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and an HIV protease inhibiting compound.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g.
  • any crystalline form of Compound I is combined with at least one HIV nucleoside inhibitor of reverse transcriptase, an integrase inhibitor, and a pharmacokinetic enhancer.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • two HIV nucleoside or nucleotide inhibitors of reverse transcriptase is combined with two HIV nucleoside or nucleotide inhibitors of reverse transcriptase.
  • a compound disclosed herein is combined with one, two, three, four or more additional therapeutic agents selected from Triumeq® (dolutegravir+abacavir+lamivudine), dolutegravir+abacavir sulfate+lamivudine, raltegravir, raltegravir+lamivudine, Truvada® (tenofovir disoproxil fumarate+emtricitabine, TDF+FTC), maraviroc, enfuvirtide, Epzicom® (Livexa®, abacavir sulfate+lamivudine, ABC+3TC), Trizivir® (abacavir sulfate+zidovudine+lamivudine, ABC+AZT+3TC), adefovir, adefovir dipivoxil, Stribild® (elvitegravir+cobicistat), Triumeq® (dolutegravir+abacavir+l
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • abacavir sulfate tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, tenofovir alafenamide or tenofovir alafenamide hemifumarate.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • tenofovir e.g. any crystalline form of Compound I
  • tenofovir disoproxil e.g. any crystalline form of Compound I
  • tenofovir disoproxil e.g. any crystalline form of Compound I
  • tenofovir disoproxil e.g. any crystalline form of Compound I
  • tenofovir alafenamide tenofovir alafenamide
  • tenofovir alafenamide tenofovir alafenamide hemifumarate
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a first additional therapeutic agent selected from the group consisting of: abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate
  • a second additional therapeutic agent selected from the group consisting of emtricitabine and lamivudine.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a first additional therapeutic agent selected from the group consisting of: tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate and a second additional therapeutic agent, wherein the second additional therapeutic agent is emtricitabine.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir ala
  • a compound as disclosed herein may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • any crystalline form of Compound I is combined with 200-250; 200-300; 200-350; 250-350; 250-400; 350-400; 300-400; or 250-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil and 200 mg emtricitabine.
  • a compound disclosed herein e.g. any crystalline form of Compound I
  • a compound as disclosed herein e.g. any crystalline form of Compound I
  • the components of the composition are administered as a simultaneous or sequential regimen.
  • the combination may be administered in two or more administrations.
  • a compound disclosed herein is combined with one or more additional therapeutic agents in a unitary dosage form for simultaneous administration to a patient, for example as a solid dosage form for oral administration.
  • a compound disclosed herein is administered with one or more additional therapeutic agents.
  • Co-administration of a compound disclosed herein with one or more additional therapeutic agents generally refers to simultaneous or sequential administration of a compound disclosed herein and one or more additional therapeutic agents, such that therapeutically effective amounts of the compound disclosed herein and one or more additional therapeutic agents are both present in the body of the patient.
  • Co-administration includes administration of unit dosages of the compounds disclosed herein before or after administration of unit dosages of one or more additional therapeutic agents, for example, administration of the compound disclosed herein within seconds, minutes, or hours of the administration of one or more additional therapeutic agents.
  • a unit dose of a compound disclosed herein is administered first, followed within seconds or minutes by administration of a unit dose of one or more additional therapeutic agents.
  • a unit dose of one or more additional therapeutic agents is administered first, followed by administration of a unit dose of a compound disclosed herein within seconds or minutes.
  • a unit dose of a compound disclosed herein is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more additional therapeutic agents.
  • a unit dose of one or more additional therapeutic agents is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound disclosed herein.
  • the Rigaku Smart-Lab® X-ray diffraction system was configured for reflection BraggBrentano geometry using a line source X-ray beam.
  • the x-ray source is a Cu Long Fine Focus tube that was operated at 40 kV and 44 mA. That source provides an incident beam profile at the sample that changes from a narrow line at high angles to a broad rectangle at low angles. Beam conditioning slits were used on the line X-ray source to ensure that the maximum beam size is less than 10 mm both along the line and normal to the line.
  • the Bragg-Brentano geometry is a para-focusing geometry controlled by passive divergence and receiving slits with the sample itself acting as the focusing component for the optics.
  • the inherent resolution of Bragg-Brentano geometry is governed in part by the diffractometer radius and the width of the receiving slit used. Typically, the Rigaku Smart-Lab is operated to give peak widths of 0.1° 20 or less.
  • the axial divergence of the X-ray beam is controlled by 5.0-degree Soller slits in both the incident and diffracted beam paths.
  • Powder samples were prepared in a low background Si holder using light manual pressure to keep the sample surfaces flat and level with the reference surface of the sample holder.
  • the single-crystal, Si, low-background holder has a small circular recess (7 mm diameter and about 1 mm depth) that holds between 5 and 10 mg of powdered material.
  • Each sample was analyzed from 2 to 40°2 ⁇ using a continuous scan of 3° 2 ⁇ per minute with an effective step size of 0.02° 2 ⁇ .
  • Solubility Estimations Solubility Estimations. Solubilities were estimated by treating a weighed sample of Compound I with measured aliquots of the test solvent at ambient temperature, with shaking and/or sonication between aliquots. Dissolution was determined by visual inspection. Solubility numbers were calculated by dividing the total amount of solvent used to dissolve the sample by the weight of the sample. The actual solubilities may be greater than the numbers calculated because of the use of solvent aliquots that were too large or because of slow dissolution rates. The solubility number is expressed as “less than” if dissolution did not occur during the experiment. The solubility number is expressed as “greater than” if dissolution occurred on addition of the first solvent aliquot.
  • DSC Differential Scanning Calorimetry
  • Thermogravimetric (TGA) Analysis was carried out using a TA Instruments Q50 instrument. The instrument balance was calibrated using class M weights and the temperature calibration was performed using alumel. The nitrogen purge was ⁇ 40 ml per minute at the balance and ⁇ 60 ml per minute at the furnace. Each sample was placed into a pretared platinum pan and heated from 20° C. to 350° C. at a rate of 10° C. per minute.
  • Karl Fischer (KF) Analyses Karl Fischer analyses were carried out using a Mettler-Toledo C20 Coulometric KF titrator. The instrument was calibrated with a standard of known water concentration.
  • Dynamic Vapor Sorption DVS analyses were carried out in a TA Instruments 05000 Dynamic Vapor Sorption analyzer. The instrument was calibrated with standard weights and a sodium bromide standard for humidity. Samples were analyzed at 25° C. with a maximum equilibration time of 60 minutes in 10% relative humidity (RH) steps from 5 to 95% RH (adsorption cycle) and from 95 to 5% RH (desorption cycle).
  • RH relative humidity
  • Compound I 50 mg was dissolved in 1 mL of methanol/dichloromethane, agitated, and then evaporated.
  • Form I is characterized by the X-ray powder diffraction pattern in FIG. 1 , and the differential scanning calorimetry plot in FIG. 3 showing endotherms at about 133 (conversion to Form III), 170 and 273° C. (decomposition).
  • Form II is characterized by the X-ray powder diffraction pattern in FIG. 5 , and the differential scanning calorimetry plot in FIG. 7 showing endotherms at about 98° C. (conversion to Form IV), 253° C. and 274° C. (decomposition).
  • Form III was generated at 138° C. from Form I in a variable temperature XRD (VT XRD) experiment.
  • Form III is stable when cooled to 25° C. and does not convert back to Form I.
  • Form III was converted back to Form I in a competition slurry experiment with Form I in methanol within about 2 weeks (10 mg of each of Form I and Form III in methanol).
  • Form III is characterized by the X-ray powder diffraction pattern in FIG. 9 , and the differential scanning calorimetry plot in FIG. 11 showing endotherms at about 181 and 271° C. (decomposition).
  • Form IV was generated between 95 and 110° C. from Form II in a variable temperature XRD experiment. Form IV converts back to Form II when cooled to 25° C. in the VT XRD experiment. Form III is characterized by the X-ray powder diffraction pattern in FIG. 13 .
  • Compound I Form I was prepared by dissolving Compound I in a methanol/dichloromethane mixture (33% MeOH/DCM) followed by reducing the volume and dichloromethane content by distillation. Solids were collected by vacuum filtration, resulting in Compound I Form I, as identified by XRPD.
  • Compound I Form II was made by slurrying Compound I Form I in chloroform at ambient temperature and pressure for 5 days. Solids were collected by vacuum filtration, resulting in Compound I Form II, as identified by XRPD. Compound I Form II was also prepared by cooling Compound I Form IV to approximately 25° C. during VT-XRPD analysis. Compound I Form II was also prepared by heating Compound I Form XIII to approximately 11° C.
  • Compound I Form III was made by heating Compound I Form I to approximately 150° C. during VT-XRPD analysis. Compound I Form III was also prepared at a lower temperature during VT-XRPD analysis when Compound I Form I was heated to and held at 100° C.
  • Compound I Form IV was made by heating Compound I Form II to approximately 95° C. to 110° C. during VT-XRPD analysis. Compound I Form IV was also prepared during VT-XRPD analysis when Compound I Form III was heated to approximately 180° C.
  • Compound I Form V was made by forming a solution of Compound I in HFIPA (hexafluoroisopropanol), and evaporating to dryness.
  • An alternative way of preparing Form V is to pour the solution of Compound I in HFIPA at 100° C. into cold water and isolate the solid.
  • Compound I Form V was made by forming a solution of Compound I in TFE (2,2,2-trifluoroethanol), and evaporating to dryness.
  • Compound I Form V was made by forming a solution of Compound I in TFE (2,2,2-trifluoroethanol), and evaporating to dryness.
  • Compound I Form V was made by exposing Form V or Form VII to 97% RH at room temperature for 1 week.
  • Form IX was made by slurring approximately Form I of Compound I in 5:1 TFE/water at ambient temperature for 5 days. Solids were collected by vacuum filtration and dried under reduced pressure for a couple minutes, resulting in Form IX, as identified by XRPD.
  • Form X was made by dissolving approximately Form I of Compound I in chloroform. The resulting solution was filtered through a 0.2 ⁇ m nylon filter and placed in the CentriVap. The sample was centrifuged under vacuum for approximately 30 minutes at ambient temperature. The resulting solids were identified as Form X by XRPD.
  • Form XI was made by dissolving Form I of Compound I in HFIPA. Methanol was then added to the solution, which resulted in a cloudy, white suspension. Solids were collected by vacuum filtration and dried under reduced pressure, and were identified as Form XI by XRPD.
  • Form XII was made by forming a slurry of Form I of Compound I in 10:1 TFE/water at ambient temperature for 3 days. Solids were collected by vacuum filtration and dried under reduced pressure, and were identified as Form XII by XRPD.
  • Form XIII was made by cooling Form II to ⁇ 10° C.
  • Form XIV was made by exposing Form XII of Compound I to vacuum under ambient conditions for three days, then exposing the sample to 40° C. for approximately two hours. Resulting solids were identified as Form XIV by XRPD.

Abstract

The present invention provides crystalline forms, solvates and hydrates of 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one, and methods of making.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS
This application is a Continuation of U.S. patent application Ser. No. 15/591,711, filed on May 10, 2017, which is a Continuation of U.S. patent application Ser. No. 14/853,855, filed on Sep. 14, 2015, now U.S. Pat. No. 9,738,646, issued on Aug. 22, 2017, which claims priority to U.S. Provisional Application No. 62/051,063, filed Sep. 16, 2014, which is incorporated in its entirety herein for all purposes.
BACKGROUND
The present disclosure relates generally to crystalline solid forms of the antiviral compound 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one, processes for making the forms, and their therapeutic methods of use.
The innate immune system provides the body with a first line defense against invading pathogens. In an innate immune response, an invading pathogen is recognized by a germline-encoded receptor, the activation of which initiates a signaling cascade that leads to the induction of cytokine expression. Innate immune system receptors have broad specificity, recognizing molecular structures that are highly conserved among different pathogens. One family of these receptors is known as Toll-like receptors (TLRs), due to their homology with receptors that were first identified and named in Drosophila, and are present in cells such as macrophages, dendritic cells, and epithelial cells.
There are at least ten different TLRs in mammals. Ligands and corresponding signaling cascades have been identified for some of these receptors. For example, TLR2 is activated by the lipoprotein of bacteria (e.g., E. coli.), TLR3 is activated by double-stranded RNA, TLR4 is activated by lipopolysaccharide (i.e., LPS or endotoxin) of Gram-negative bacteria (e.g., Salmonella and E. coli O157:H7), TLR5 is activated by flagellin of motile bacteria (e.g., Listeria), TLR7 recognizes and responds to imiquimod and TLR9 is activated by unmethylated CpG sequences of pathogen DNA. The stimulation of each of these receptors leads to activation of the transcription factor NF-κB, and other signaling molecules that are involved in regulating the expression of cytokine genes, including those encoding tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and certain chemokines. Agonists of TLR-7 are immunostimulants and induce the production of endogenous interferon-α in vivo.
There are a number of diseases, disorders, and conditions linked to TLRs such that therapies using a TLR agonist are believed promising, including but not limited to melanoma, non-small cell lung carcinoma, hepatocellular carcinoma, basal cell carcinoma, renal cell carcinoma, myeloma, allergic rhinitis, asthma, COPD, ulcerative colitis, hepatic fibrosis, and viral infections such as HBV, Flaviviridae viruses, HCV, HPV, RSV, SARS, HIV, or influenza.
The treatment of Flaviviridae virus infections with TLR agonists is particularly promising. Viruses of the Flaviviridae family comprise at least three distinguishable genera including pestiviruses, flaviviruses, and hepaciviruses (Calisher, et al., J. Gen. Virol., 1993, 70, 37-43). While pestiviruses cause many economically important animal diseases such as bovine viral diarrhea virus (BVDV), classical swine fever virus (CSFV, hog cholera) and border disease of sheep (BDV), their importance in human disease is less well characterized (Moennig, V., et al., Adv. Vir. Res. 1992, 48, 53-98). Flaviviruses are responsible for important human diseases such as dengue fever and yellow fever while hepaciviruses cause hepatitis C virus infections in humans. Other important viral infections caused by the Flaviviridae family include West Nile virus (WNV) Japanese encephalitis virus (JEV), tick-borne encephalitis virus, Junjin virus, Murray Valley encephalitis, St Louis encephalitis, Omsk hemorrhagic fever virus and Zika virus. Combined, infections from the Flaviviridae virus family cause significant mortality, morbidity and economic losses throughout the world. Therefore, there is a need to develop effective treatments for Flaviviridae virus infections.
The hepatitis C virus (HCV) is the leading cause of chronic liver disease worldwide (Boyer, N. et al. J Hepatol. 32:98-112, 2000) so a significant focus of current antiviral research is directed toward the development of improved methods of treatment of chronic HCV infections in humans (Di Besceglie, A. M. and Bacon, B. R., Scientific American, October: 80-85, (1999); Gordon, C. P., et al., J. Med. Chem. 2005, 48, 1-20; Maradpour, D.; et al., Nat. Rev. Micro. 2007, 5(6), 453-463). A number of HCV treatments are reviewed by Bymock et al. in Antiviral Chemistry & Chemotherapy, 11:2; 79-95 (2000). Currently, there are several antiviral compounds, ribavirin, a nucleoside analog, interferon-alpha (α) (IFN), and sofosbuvir, another nucleoside analog, that are used for the treatment of chronic HCV infections in humans. Ribavirin alone is not effective in reducing viral RNA levels, has significant toxicity, and is known to induce anemia. The combination of IFN and ribavirin has been reported to be effective in the management of chronic hepatitis C (Scott, L. J., et al. Drugs 2002, 62, 507-556) but less than half the patients given this treatment show a persistent benefit.
HCV is recognized by innate virus-sensing mechanisms that induce a rapid IFN response (Dustin, et al., Annu. Rev. Immunol. 2007, 25, 71-99). It is likely that the sources of the IFN are, at least, the infected hepatocytes and particularly the plasmacytoid dendritic cells (pDC) that highly express TLR 7 receptors and secrete high amounts of IFN. Horsmans, et al. (Hepatology, 2005, 42, 724-731), demonstrated that a once daily 7-day treatment with the TLR 7 agonist isatoribine reduces plasma virus concentrations in HCV infected patients. Lee, et al. (Proc. Natl. Acad. Sci. USA, 2006, 103, 1828-1833), demonstrated that TLR 7 stimulation can induce HCV immunity by both an IFN and IFN-independent mechanisms. These workers also revealed that TLR 7 is expressed in normal as well as HCV infected hepatocytes. These combined results support the conclusion that stimulation of TLR 7 receptors, such as through the administration of a TLR 7 agonist, is a viable mechanism for effectively treating natural HCV infections. Given the need for more effective treatments for HCV infections, there is a need to develop safe and therapeutically effective TLR 7 agonists.
Similarly, despite the existence of efficient vaccines, hepatitis B virus (HBV) infection remains a major public health problem worldwide with 400 million chronic carriers. These infected patients are exposed to a risk of developing liver cirrhosis and hepatocellular carcinoma (Lee, W. M. 1997, N. Eng. J. Med., 337, 1733-1745). Currently, there are believed to be approximately 1.25 million chronic hepatitis B carriers just in the United States, with 200,000 people newly infected each year by contact with blood or body fluids.
Hepatitis B virus is second to tobacco as a cause of human cancer. The mechanism by which HBV induces cancer is unknown, although it is postulated that may directly trigger tumor development, or indirectly trigger tumor development through chronic inflammation, cirrhosis, and cell regeneration associated with the infection.
Hepatitis B virus has reached epidemic levels worldwide. After a two to six month incubation period in which the host is unaware of the infection, HBV infection can lead to acute hepatitis and liver damage, that causes abdominal pain, jaundice, and elevated blood levels of certain enzymes. HBV can cause fulminant hepatitis, a rapidly progressive, often fatal form of the disease in which massive sections of the liver are destroyed. Patients typically recover from acute viral hepatitis. In some patients, however, high levels of viral antigen persist in the blood for an extended, or indefinite, period, causing a chronic infection. Chronic infections can lead to chronic persistent hepatitis. Patients infected with chronic persistent HBV are most common in developing countries. By mid-1991, there were approximately 225 million chronic carriers of HBV in Asia alone, and worldwide, almost 300 million carriers. Chronic persistent hepatitis can cause fatigue, cirrhosis of the liver, and hepatocellular carcinoma, a primary liver cancer.
In western industrialized countries, high risk groups for HBV infection include those in contact with HBV carriers or their blood samples. The epidemiology of HBV is in fact very similar to that of HIV, which accounts for why HBV infection is common among patients with AIDS or HIV-associated infections. However, HBV is more contagious than HIV. To ameliorate suffering and to prolong the lives of infected hosts new compounds and methods of treating AIDS and attacking the HIV virus continue to be sought.
The compound 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one, designated herein as Compound I, as described for example in WO 2010/077613 and U.S. Pat. No. 8,367,670, has been reported to be an inhibitor of toll-like receptor 7. Moreover, Compound I is being investigated for use in treating HBV and HIV. However, Compound I was not previously known in any crystalline form.
BRIEF SUMMARY OF THE INVENTION
In some embodiments, the present invention provides a crystalline form of Compound I having the structure:
Figure US10508117-20191217-C00001

and solvates or hydrates thereof.
In some embodiments, the present invention provides a crystalline Form I of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern comprising three or more peaks at 5.8, 11.4, 11.6, 17.7, 22.3, 23.9, or 26.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the present invention provides a crystalline Form II of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern comprising three or more peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the present invention provides a crystalline Form III of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.0, 10.1, 16.9, 20.3, 21.5, 22.0, 23.9, or 25.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the present invention provides a crystalline Form IV of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 4.1, 18.1, 18.7, 23.8, and 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the present invention provides a crystalline Form IX of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the present invention provides a crystalline Form X of Compound I, and solvates or hydrates thereof, characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the present invention provides a method of preparing a crystalline Form I of Compound I by forming a mixture of Compound I, and a solvent including a C1-C3 alcohol and dichloromethane, under conditions suitable to prepare Form I.
In some embodiments, the present invention provides a method of preparing a crystalline Form II of Compound I by forming a mixture of Compound I and chloroform, under conditions suitable to prepare Form II.
In some embodiments, the present invention provides a method of preparing a crystalline Form III of Compound I by heating a Form I of Compound I to a temperature of from about 130° C. to about 190° C., thereby forming Form III.
In some embodiments, the present invention provides a method of preparing a crystalline Form IV of Compound I by heating a Form II of Compound I to a temperature of from about 90° C. to about 250° C., thereby forming Form IV.
In some embodiments, the present invention provides a method of preparing a crystalline Form IX of Compound I by forming a mixture comprising a Form I of Compound I, water and trifluoroethanol, under conditions suitable to prepare Form IX.
In some embodiments, the present invention provides a method of preparing a crystalline Form X of Compound I by forming a mixture comprising a Form I of Compound I and chloroform, under conditions suitable to prepare Form X.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an X-ray powder diffraction pattern of Compound I Form I.
FIG. 2 shows a table of X-ray powder diffraction peaks of Compound I Form I.
FIG. 3 shows a differential scanning calorimetry plot of Compound I Form I showing endotherms at about 133° C., about 170° C. and about 273° C.
FIG. 4 shows a variable temperature XRPD plot of Compound I Form I converting to Form III at about 138° C.
FIG. 5 shows an X-ray powder diffraction pattern of Compound I Form II.
FIG. 6 shows a table of X-ray powder diffraction peaks of Compound I Form II.
FIG. 7 shows a differential scanning calorimetry plot of Compound I Form II showing endotherms at about 98° C., about 253° C. and about 274° C.
FIG. 8 shows a variable temperature XRPD plot of Compound I Form II converting to Form IV at about 110° C., and then reverting to Form II upon cooling to about 25° C.
FIG. 9 shows an X-ray powder diffraction pattern of Compound I Form III.
FIG. 10 shows a table of X-ray powder diffraction peaks of Compound I Form III.
FIG. 11 shows a differential scanning calorimetry plot of Compound I Form III showing endotherms at about 181 and about 271° C.
FIG. 12 shows a variable temperature XRPD plot of Compound I Form III from about 150° C. to about 25° C., and that Compound I remains as Form III.
FIG. 13 shows an X-ray powder diffraction pattern of Compound I Form IV.
FIG. 14 shows a table of X-ray powder diffraction peaks of Compound I Form IV.
FIG. 15 shows an X-ray powder diffraction pattern of Compound I Forms I, II, III and IV.
FIG. 16 shows an X-ray powder diffraction pattern of Compound I Form V.
FIG. 17 shows an X-ray powder diffraction pattern of Compound I Form VI.
FIG. 18 shows an X-ray powder diffraction pattern of Compound I Form VII.
FIG. 19 shows an X-ray powder diffraction pattern of Compound I Form VIII.
FIG. 20 shows an X-ray powder diffraction pattern of Compound I Form IX.
FIG. 21 shows a table of X-ray powder diffraction peaks of Compound I Form IX.
FIG. 22 shows a differential scanning calorimetry plot of Compound I Form IX.
FIG. 23 shows an X-ray powder diffraction pattern of Compound I Form X.
FIG. 24 shows a table of X-ray powder diffraction peaks of Compound I Form X.
FIG. 25 shows a differential scanning calorimetry plot of Compound I Form X.
FIG. 26 shows an X-ray powder diffraction pattern of Compound I Form XI.
FIG. 27 shows a table of X-ray powder diffraction peaks of Compound I Form XI.
FIG. 28 shows an X-ray powder diffraction pattern of Compound I Form XII.
FIG. 29 shows a table of X-ray powder diffraction peaks of Compound I Form XII.
FIG. 30 shows a differential scanning calorimetry plot of Compound I Form XII.
FIG. 31 shows an X-ray powder diffraction pattern of Compound I Form XIII.
FIG. 32 shows a table of X-ray powder diffraction peaks of Compound I Form XIII.
FIG. 33 shows an X-ray powder diffraction pattern of Compound I Form XIV.
FIG. 34 shows a table of X-ray powder diffraction peaks of Compound I Form XIV.
DETAILED DESCRIPTION OF THE INVENTION I. General
The compound 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one (Compound I) is a selective and potent inhibitor of toll-like receptor 7 (TLR-7):
Figure US10508117-20191217-C00002
The present invention results from the surprising discoveries of the solid forms of Compound I, advantages attributed to the forms as described herein, and processes for making the solid forms. Crystalline materials are generally more stable physically and chemically. The superior stability of crystalline material may make them more suitable to be used in the final dosage form as shelf life of the product is directly correlated with stability. A crystallization step in API processing also means an opportunity to upgrade the drug substance purity by rejecting the impurities to the processing solvent.
II. Definitions
As used in the present specification, the following words and phrases are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
“Hydrate” refers to a complex formed by the combining of Compound I and water.
The term includes stoichiometric as well as non-stoichiometric hydrates.
“Solvate” refers to a complex formed by the combining of Compound I and a solvent.
“Desolvated” refers to a Compound I form that is a solvate as described herein, and from which solvent molecules have been partially or completely removed. Desolvation techniques to produce desolvated forms include, without limitation, exposure of a Compound I Form (solvate) to a vacuum, subjecting the solvate to elevated temperature, exposing the solvate to a stream of gas, such as air or nitrogen, or any combination thereof. Thus, a desolvated Compound I form can be anhydrous, i.e., completely without solvent molecules, or partially solvated wherein solvent molecules are present in stoichiometric or non-stoichiometric amounts.
“Alcohol” refers to a solvent having a hydroxy group. Representative alcohols can have any suitable number of carbon atoms, such as C1-C6, and any suitable number of hydroxy groups, such as 1-3. Exemplary alcohols include, but are not limited to, methanol, ethanol, n-propanol, i-propanol, etc.
“Therapeutically effective amount” refers to an amount that is sufficient to effect treatment, as defined below, when administered to a mammal in need of such treatment. The therapeutically effective amount will vary depending upon the subject being treated, the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
“Substantially free of other crystalline forms of Compound I” refers to a crystalline form of Compound I that contains less than 10% of other crystalline forms of Compound I. For example, substantially free can refer to a crystalline form of Compound I that contains less than 9, 8, 7, 6, 5, 4, 3, 2, or 1% of other crystalline forms of Compound I. Preferably, substantially free refers to a crystalline form of Compound I that contains less than 5% of other crystalline forms of Compound I. Preferably, substantially free refers to a crystalline form of Compound I that contains less than 1% of other crystalline forms of Compound I.
III. Solid Forms of Compound I
The present invention provides solid forms of 4-amino-2-butoxy-8-(3-(pyrrolidin-1-ylmethyl)benzyl)-7,8-dihydropteridin-6(5H)-one (Compound I; see U.S. Pat. Nos. 8,367,670 and 8,809,527), including crystalline and amorphous forms, as well as solvate and hydrate forms. In some embodiments, the present invention provides a crystalline form of Compound I having the structure:
Figure US10508117-20191217-C00003

and solvates or hydrates thereof.
Compound I can adopt a variety of solid forms, including, but not limited to, Form I, Form II, Form III, and Form IV. Other forms include Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV. Compound I can form a mixture of two or more crystalline forms, or form a single crystalline form substantially free of other crystalline forms.
Form I
In some embodiments, crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and a differential scanning calorimetry (DSC) plot having endotherms at about 133° C., 170° C. and 273° C.
Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least three peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least four peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having at least five peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKa1 radiation.
Form I of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine or more, peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least six peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least seven peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having at least eight peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction pattern having at least nine peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 5.8, 11.4, 11.6, 17.7, 22.3, 23.9 or 26.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.4, and 11.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising one or more peaks at 17.7, 22.3, 23.9 or 26.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising two or more peaks at 17.7, 22.3, 23.9 or 26.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising three or more peaks at 17.7, 22.3, 23.9 or 26.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.6, 22.3, and 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.6, 17.7, 22.3, 23.9, 26.0 and 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form I of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 1. In some embodiments, the crystalline Form I of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form I of Compound I can be substantially free of Form II, Form III and Form IV. In some embodiments, the crystalline Form I of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
Form I of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherms at about 133° C., about 170° C., or about 273° C. In some embodiments, the crystalline Form I of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 133, 170, or about 273° C. In some embodiments, the crystalline Form I of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 133° C. or about 170° C. In some embodiments, the crystalline Form I of Compound I can be characterized by DSC endotherms at about 133° C. and about 170° C. In some embodiments, the crystalline Form I of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 133, 170, and about 273° C.
In some embodiments, the crystalline Form I of Compound I can be characterized by an XRPD pattern having peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 and 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and one or more DSC endotherms at about 133° C. and about 170° C.
Form II
Form II of Compound I can be characterized by an XRPD pattern having at least three, four, five, or more, peaks 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least three peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least four peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least five peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form II of Compound I can also be characterized by an XRPD pattern having at least six, seven, eight, nine, or more, peaks 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least six peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least seven peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least eight peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having at least nine peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having three or more peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 18.3, 19.9, 22.4 and 25.5 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising one or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising two or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising three or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern further comprising four or more peaks at 9.2, 15.8, 17.8, 19.2, or 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 and 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form II of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 5. In some embodiments, the crystalline Form II of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form II of Compound I can be substantially free of Form I, Form III and Form IV. In some embodiments, the crystalline Form II of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
Form II of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherms at about 98, about 253° C., or about 273° C. In some embodiments, the crystalline Form II of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 98, 253, or about 273° C. In some embodiments, the crystalline Form II of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 98 or about 253° C. In some embodiments, the crystalline Form II of Compound I can be characterized by DSC endotherms at about 98° C. and about 253° C. In some embodiments, the crystalline Form II of Compound I can be characterized by one or more differential scanning calorimetry (DSC) endotherms at about 98, 253, and about 273° C.
In some embodiments, the crystalline Form II of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 9.2, 15.8, 17.8, 18.3, 19.2, 19.9, 22.4, 25.5 and 29.1 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and DSC endotherms at about 98 and about 253° C.
Form III
Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form III of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 or 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern having three or more peaks at 5.0, 10.1, 16.9, 20.3, 21.5, 22.0, 23.9 or 25.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 5.0, 21.5, and 22.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 10.1, 16.9, 20.3, 23.9 or 25.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern having peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 and 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form III of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 9. In some embodiments, the crystalline Form III of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form III of Compound I can be substantially free of Form I, Form II and Form IV. In some embodiments, the crystalline Form III of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherms at about 181° C. or about 272° C. In some embodiments, the crystalline Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 181° C. or about 272° C. In some embodiments, the crystalline Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 181° C. In some embodiments, the crystalline Form III of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 181° C. and about 272° C.
In some embodiments, the crystalline Form III of Compound I can be characterized by an XRPD pattern having peaks at 5.0, 10.1, 15.2, 16.9, 20.3, 21.5, 22.0, 23.9, 25.2 and 29.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and a DSC endotherm at about 181° C.
Form IV
Form IV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form IV of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, or 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form IV of Compound I can be characterized by an XRPD pattern having three or more peaks at 4.1, 18.1, 18.7, 23.8, and 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 8.8, 16.8, 19.7, 21.1, or 21.4 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form IV of Compound I can be characterized by an XRPD pattern having peaks at 4.1, 8.8, 16.8, 18.1, 18.7, 19.7, 21.1, 21.4, 23.8, and 26.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IV of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 13. In some embodiments, the crystalline Form IV of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form IV of Compound I can be substantially free of Form I, Form II and Form III. In some embodiments, the crystalline Form IV of Compound I can also be substantially free of Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
Forms V to VIII
Form V of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 16. Form V can be any suitable solvate or hydrate form. In some embodiments, Form V of Compound I can be a solvate with hexafluoroisopropanol.
Form VI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 17. Form VI can be any suitable solvate or hydrate form.
Form VII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 18. Form VII can be any suitable solvate or hydrate form. In some embodiments, Form VII of Compound I can be a solvate with trifluoroethanol.
Form VIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern substantially in accordance with that of FIG. 19. Form VIII can be any suitable solvate or hydrate form, such as a hemihydrate.
In some embodiments, the crystalline Form V of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV. In some embodiments, the crystalline Form VI of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV. In some embodiments, the crystalline Form VII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VIII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV. In some embodiments, the crystalline Form VIII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form IX, Form X, Form XI, Form XII, Form XIII and Form XIV.
Form IX
Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form IX of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern having three or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form IX of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 5.3, 9.8, and 15.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern having peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 and 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form IX of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 20. In some embodiments, the crystalline Form IX of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form IX of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form X, Form XI, Form XII, Form XIII and Form XIV.
Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one or more endotherm at about 57, 101, 141, 173, or about 266° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 57, 101, 141, 173, or about 266° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 141 or about 173° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 141 and about 173° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 173 and about 266° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 173° C. In some embodiments, the crystalline Form IX of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 57, 101, 141, 173, and about 266° C.
In some embodiments, the crystalline Form IX of Compound I can be characterized by an XRPD pattern having peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 and 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and a DSC endotherm at about 173° C.
The crystalline Form IX of Compound I can also have a solvate or hydrate form. In some embodiments, the crystalline Form IX of Compound I can be a hydrate.
Form X
Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form X of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern having three or more peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 5.5, 10.8 and 16.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 9.4, 11.9, 12.9, 14.4, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern having peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form X of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 23. In some embodiments, the crystalline Form X of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form X of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form XI, Form XII, Form XIII and Form XIV.
Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having at least one endotherm at about 142° C. or about 274° C. In some embodiments, the crystalline Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 142 or about 274° C. In some embodiments, the crystalline Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 142° C. In some embodiments, the crystalline Form X of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 142 and about 274° C.
In some embodiments, the crystalline Form X of Compound I can be characterized by an XRPD pattern having peaks at 5.5, 9.4, 10.8, 11.9, 12.9, 14.4, 16.0, 19.0, 21.9, and 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and a DSC endotherm at about 142° C.
Form XI
Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form XI of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern having three or more peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XI of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 7.7, 17.1 and 19.5 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 8.4, 10.7, 17.8, 19.3, 21.4, 23.0 or 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XI of Compound I can be characterized by an XRPD pattern having peaks at 7.7, 8.4, 10.7, 17.1, 17.8, 19.3, 19.5, 21.4, 23.0 and 23.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XI of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 26. In some embodiments, the crystalline Form XI of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form XI of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XII, Form XIII, and Form XIV.
The crystalline Form XI of Compound I can also have a solvate or hydrate form. In some embodiments, the crystalline Form XI of Compound I can be a solvate with hexafluoroisopropanol (HFIPA).
Form XII
Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9 or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form XII of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKa1 radiation.
In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern having three or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 20.3, 21.1 and 21.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least one or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least two or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least three or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least four or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least five or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern further comprising at least six or more peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern having peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, and 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XII of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 28. In some embodiments, the crystalline Form XII of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form XII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XIII, and Form XIV.
Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) plot having an endotherm at about 94° C., 112° C., 140° C. or about 174° C. In some embodiments, the crystalline Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 94° C., 112° C., 140° C. or about 174° C. In some embodiments, the crystalline Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 174° C. In some embodiments, the crystalline Form XII of Compound I can be characterized by a differential scanning calorimetry (DSC) endotherm at about 94° C., 112° C., 140° C. and about 174° C.
In some embodiments, the crystalline Form XII of Compound I can be characterized by an XRPD pattern having peaks at 6.0, 9.0, 10.9, 13.7, 17.1, 18.7, 20.3, 21.1, 21.9, or 25.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, and a DSC endotherm at about 174° C.
The crystalline Form XII of Compound I can also have a solvate or hydrate form. In some embodiments, the crystalline Form XII of Compound I can be a solvate with trifluoroethanol (TFE).
Form XIII
Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form XIII of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern having three or more peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 4.6, 9.2, 18.4 and 20.0 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 8.9, 13.8, 15.8, 16.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XIII of Compound I can be characterized by an XRPD pattern having peaks at 4.6, 8.9, 9.2, 13.8, 15.8, 16.0, 18.4, 20.0, 23.1 or 26.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIII of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 31. In some embodiments, the crystalline Form XIII of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form XIII of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, and Form XIV.
Form XIV
Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three, four, five, or more, peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least three peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least four peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least five peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
Form XIV of Compound I can also be characterized by an X-ray powder diffraction (XRPD) pattern having at least six, seven, eight, nine, or more, peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least six peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least seven peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least eight peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having at least nine peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern having three or more peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an X-ray powder diffraction (XRPD) pattern having peaks at 7.1, 9.5, 14.3 and 24.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising one or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising two or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising three or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising four or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising five or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern further comprising six or more peaks at 10.6, 16.8, 17.6, 22.0, 24.9 or 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
In some embodiments, the crystalline Form XIV of Compound I can be characterized by an XRPD pattern having peaks at 7.1, 9.5, 10.6, 14.3, 16.8, 17.6, 22.0, 24.6, 24.9 and 26.2 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation. In some embodiments, the crystalline Form XIV of Compound I can be characterized by the XRPD pattern substantially in accordance with that of FIG. 28. In some embodiments, the crystalline Form XIV of Compound I can be substantially free of other crystalline forms of Compound I. In some embodiments, the crystalline Form XIV of Compound I can be substantially free of Form I, Form II, Form III, Form IV, Form V, Form VI, Form VII, Form VIII, Form IX, Form X, Form XI, Form XII, and Form XIII.
The crystalline Form XIV of Compound I can also have a solvate or hydrate form. In some embodiments, the crystalline Form XIV of Compound I can be a solvate with trifluoroethanol (TFE). In some embodiments, the crystalline Form XIV of Compound I can be a hydrate.
Any formula or structure given herein, including Compound I, is also intended to represent unlabeled forms as well as isotopically labeled forms of the compounds. Isotopically labeled compounds have structures depicted by the Formulae given herein except that one or more atoms are replaced by an atom having a selected atomic mass or mass number. Examples of isotopes that can be incorporated into compounds of the disclosure include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as, but not limited to 2H (deuterium, D), 3H (tritium), 11C, 13C, 14C, 15N, 18F, 31P, 32P, 35S, 36Cl and 125I. Various isotopically labeled compounds of the present disclosure, for example those into which radioactive isotopes such as 3H, 13C and 14C are incorporated. Such isotopically labeled compounds may be useful in metabolic studies, reaction kinetic studies, detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) including drug or substrate tissue distribution assays or in radioactive treatment of patients.
The disclosure also includes Compound I in which from 1 to “n” hydrogens attached to a carbon atom is/are replaced by deuterium, in which n is the number of hydrogens in the molecule. Such compounds exhibit increased resistance to metabolism and are thus useful for increasing the half-life of any Compound I when administered to a mammal. See, for example, Foster, “Deuterium Isotope Effects in Studies of Drug Metabolism”, Trends Pharmacol. Sci. 5(12):524-527 (1984). Such compounds are synthesized by means well known in the art, for example by employing starting materials in which one or more hydrogen atoms have been replaced by deuterium.
Deuterium labeled or substituted therapeutic compounds of the disclosure may have improved DMPK (drug metabolism and pharmacokinetics) properties, relating to distribution, metabolism and excretion (ADME). Substitution with heavier isotopes such as deuterium may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements. An 18F labeled compound may be useful for PET or SPECT studies. Isotopically labeled compounds of this disclosure and prodrugs thereof can generally be prepared by carrying out the procedures disclosed in the schemes or in the examples and preparations described below by substituting a readily available isotopically labeled reagent for a non-isotopically labeled reagent. Further, substitution with heavier isotopes, particularly deuterium (i.e., 2H or D) may afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements or an improvement in therapeutic index. It is understood that deuterium in this context is regarded as a substituent in Compound I.
The concentration of such a heavier isotope, specifically deuterium, may be defined by an isotopic enrichment factor. In the compounds of this disclosure any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom. Unless otherwise stated, when a position is designated specifically as “H” or “hydrogen”, the position is understood to have hydrogen at its natural abundance isotopic composition. Accordingly, in the compounds of this disclosure any atom specifically designated as a deuterium (D) is meant to represent deuterium.
IV. Methods of Preparing Solid Forms of Compound I
The solid forms of Compound I can be prepared by a variety of methods. For example, Compound I can be dissolved in a single solvent system and allowed to crystallize. Alternatively, Compound I can be crystallized from a two-solvent system by dissolving Compound I in a solvent, and then adding an anti-solvent to the mixture causing Compound I to crystallize.
The solvent can be any solvent suitable to form a solution. Typically the solvent can be a polar solvent, which in some embodiments is a protic solvent. Other suitable solvents include non-polar solvents. Suitable solvents include, but are not limited to, water, alkanes such as heptanes, hexanes, and cyclohexane, petroleum ether, C1-C3 alcohols (methanol, ethanol, propanol, isopropanol), ethylene glycol and polyethylene glycol such as PEG400, alkanoates such as ethyl acetate, propyl acetate, isopropyl acetate, and butyl acetate, acetonitrile, alkanones such as acetone, butanone, methyl ethyl ketone (MEK), methyl propyl ketone (MPK) and methyl iso-butyl ketone (MIBK), ethers such as diethyl ether, methyl-t-butyl ether, tetrahydrofuran, methyl-tetrahydrofuran, 1,2-dimethoxy ethane and 1,4-dioxane, aromatics such as benzene and toluene, halogenated solvents such as methylene chloride, chloroform and carbon tetrachloride, dimethylsulfoxide (DMSO), and dimethylformamide (DMF). Suitable solvents also include, but are not limited to halogenated C1-C3 alcohols (trifluoromethanol, trifluoroethanol (TFE), hexafluoroisopropanol (HFIPA)).
The methods of preparing crystalline forms of Compound I can be performed under any suitable reaction conditions. For example, the methods of preparing the crystalline forms of Compound I can be performed at any suitable temperature, such as, but not limited to, below room temperature, at room temperature, or above room temperature. In some embodiments, the temperature can be from about −78° C. to about 100° C., or from about 0° C. to about 50° C., or from about 10° C. to about 30° C. In some embodiments, the temperature can be the reflux temperature of the particular solvent used in the method. In other embodiments, crystalline forms of Compound I can be heated above about 100° C. such that one crystalline form of Compound I forms a second crystalline form of Compound I.
The methods of preparing crystalline forms of Compound I can be performed for any suitable time. For example, the time can be for minutes, hours or days. In some embodiments, the time can be several hours, such as overnight. The methods of preparing crystalline forms of Compound I can be also be performed at any suitable pressure. For example, the pressure can be below atmospheric pressure, at about atmospheric pressure, or above atmospheric pressure.
Form I
In some embodiments, the present invention provides a method of preparing a crystalline Form I of Compound I of the present invention, including forming a mixture of Compound I of the present invention, and a solvent, under conditions suitable to prepare Form I. Any suitable solvent can be used in the method of preparing Compound I Form I. In some embodiments, the solvent can be at least one of water, methanol, ethanol, isopropanol, methyl ethyl ketone, methyl iso-butyl ketone, acetonitrile, tetrahydrofuran, methyl-tetrahydrofuran, 1,2-dimethoxy ethane, ethyl acetate, 1,4-dioxane, or dichloromethane. In some embodiments, the solvent can be at least one of methanol, ethanol, isopropanol, or dichloromethane. In some embodiments, the solvent can include one of methanol, ethanol, or isopropanol. In some embodiments, the solvent can be at least one of methanol, ethanol, or isopropanol, in combination with dichloromethane. In some embodiments, the solvent can be methanol and dichloromethane.
In some embodiments, the present invention provides a method of preparing a crystalline Form I of Compound I by forming a mixture of Compound I, and a solvent including a C1-C3 alcohol and dichloromethane, under conditions suitable to prepare Form I. The C1-C3 alcohol can be methanol, ethanol, propanol or isopropanol. In some embodiments, the solvent includes one of methanol, ethanol or isopropanol. In some embodiments, the solvent includes methanol and dichloromethane. In some embodiments, the solvent includes ethanol and dichloromethane. In some embodiments, the solvent includes isopropanol and dichloromethane.
Any suitable ratio of the methanol and dichloromethane can be used. For example, the ratio of methanol and dichloromethane can be from 10:1 to about 1:10 (volume/volume), including about 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9 or about 1:10 (volume/volume). In some embodiments, the ratio of methanol to dichloromethane can be from about 1:1 to about 1:5 (volume/volume). In some embodiments, the ratio of methanol to dichloromethane can be about 1:2 (volume/volume).
The method of preparing Form I of Compound I can include a variety of other steps. For example, the solvent can be evaporated, a seed crystal can be added to the mixture, the mixture can be heated and cooled a single time or repeatedly, etc. In some embodiments, the method of preparing Form I of Compound I also includes evaporating the solvent, thereby forming Form I. In some embodiments, the method of preparing Form I of Compound I includes forming a reaction mixture of Compound I, methanol and dichloromethane, wherein the ratio of methanol to dichloromethane is 1:2 (volume/volume), and removing the dichloromethane, thereby forming crystalline Form I of Compound I.
Form II
The present invention also provides methods for preparing Compound I Form II. In some embodiments, the present invention provides a method of preparing a crystalline Form II of Compound I by forming a mixture of Compound I and chloroform, under conditions suitable to prepare Form II. The conditions for preparing crystalline Form II of Compound I can include ambient temperature and pressure for a period of time of at least 1 day. The period of time for preparing crystalline Form II of Compound I can also be for at least 2, 3, 4, 5, or more days. In some embodiments, the method for preparing the crystalline Form II of Compound I can be for about 5 days.
Form III
The present invention also provides methods for preparing Compound I Form III. In some embodiments, the present invention provides a method of preparing a crystalline Form III of Compound I by heating a Form I of Compound I to a temperature of from about 130° C. to about 190° C., thereby forming Form III. In some embodiments, the method also includes cooling Form III to room temperature.
Form IV
The present invention also provides methods for preparing Compound I Form IV. In some embodiments, the present invention provides a method of preparing a crystalline Form IV of Compound I by heating a Form II of Compound I to a temperature of from about 90° C. to about 250° C., thereby forming Form IV.
Form V
The present invention also provides methods for preparing Compound I Form V. In some embodiments, the present invention provides a method of preparing a crystalline Form V of Compound I by forming a mixture of Compound I and hexafluoroisopropanol, and removing the hexafluoroisopropanol, under conditions suitable to prepare Form V. The hexafluoroisopropanol can be removed under any suitable conditions such as via vacuum, heating, or a combination of the two. Alternatively, Form V can be formed by combining a hot solution of Compound I with cold water and isolating the subsequent solid.
Form VI
The present invention also provides methods for preparing Compound I Form VI. In some embodiments, the present invention provides a method of preparing a crystalline Form VI of Compound I by forming a mixture of Compound I and trifluoroethanol, and removing the trifluoroethanol, under conditions suitable to prepare Form VI. The trifluoroethanol can be removed under any suitable conditions such as via vacuum, heating, or a combination of the two.
Form VII
The present invention also provides methods for preparing Compound I Form VII. In some embodiments, the present invention provides a method of preparing a crystalline Form VII of Compound I by forming a mixture of Compound I and trifluoroethanol, and removing the trifluoroethanol, under conditions suitable to prepare Form VII. The trifluoroethanol can be removed under any suitable conditions such as via vacuum, heating, or a combination of the two.
Form VIII
The present invention also provides methods for preparing Compound I Form VIII. In some embodiments, the present invention provides a method of preparing a crystalline Form VIII of Compound I by exposing Compound I Form V or Form VII to an atmosphere with a relative humidity greater than about 90%, under conditions suitable to prepare Form VIII. The relative humidity can be any suitable humidity, such as greater than about 50%, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98 or greater than about 99%. In some embodiments, the relative humidity can be greater than about 95%. In some embodiments, the relative humidity can be about 97%.
Form IX
The present invention also provides methods for preparing Compound I Form IX. In some embodiments, the present invention provides a method of preparing a crystalline Form IX of Compound I by forming a mixture of a Form I of Compound I, water and trifluoroethanol, under conditions suitable to prepare Form IX. Any suitable ratio of the trifluoroethanol and water can be used. For example, the ratio of trifluoroethanol to water can be from 10:1 to about 1:1 (volume/volume), including about 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 or about 1:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be from about 10:1 to about 1:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be about 5:1 (volume/volume). The conditions for preparing crystalline Form IX of Compound I can include ambient temperature and pressure for a period of time of at least 1 day. The period of time for preparing crystalline Form IX of Compound I can also be for at least 2, 3, 4, 5, or more days. In some embodiments, the method for preparing the crystalline Form IX of Compound I can be for about 5 days.
Form X
The present invention also provides methods for preparing Compound I Form X. In some embodiments, the present invention provides a method of preparing a crystalline Form X of Compound I by forming a mixture of a Form I of Compound I and chloroform, under conditions suitable to prepare Form X. The suitable conditions for preparing the crystalline Form X of Compound I can include ambient temperature and pressure.
Form XI
The present invention also provides methods for preparing Compound I Form XI. In some embodiments, the present invention provides a method of preparing a crystalline Form XI of Compound I by forming a mixture of a Form I of Compound I and hexafluoroisopropanol, under conditions suitable to prepare Form XI.
Form XII
The present invention also provides methods for preparing Compound I Form XII. In some embodiments, the present invention provides a method of preparing a crystalline Form XII of Compound I by forming a mixture of a Form I of Compound I, water and trifluoroethanol, under conditions suitable to prepare Form XII. Any suitable ratio of the trifluoroethanol and water can be used. For example, the ratio of trifluoroethanol to water can be from 20:1 to about 1:1 (volume/volume), including about 20:1, 19:1, 18:1, 17:1, 16:1, 15:1, 14:1, 13:1, 12:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 or about 1:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be from about 20:1 to about 1:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be from about 15:1 to about 5:1 (volume/volume). In some embodiments, the ratio of trifluoroethanol to water can be about 10:1 (volume/volume).
Form XIII
The present invention also provides methods for preparing Compound I Form XIII. In some embodiments, the present invention provides a method of preparing a crystalline Form XIII of Compound I by cooling Form II of Compound I to less than 0° C., under conditions suitable to prepare Form XIII. Form II of Compound I can be cooled to any suitable temperature less than 0° C., including, but not limited to, −5° C., −10, −15, −20, −25, −30, −40, −50, −60 and −70° C. In some embodiments, Form II of Compound I can be cooled to about −10° C. to prepare Form XIII.
Form XIV
The present invention also provides methods for preparing Compound I Form XIV. In some embodiments, the present invention provides a method of preparing a crystalline Form XIV of Compound I by drying Form XII under conditions suitable to prepare Form XIV. The drying can include heating Form XII to a suitable temperature for a suitable period of time, placing Form XII in a reduced atmosphere environment, or both. For example, Form XII can be heated to a temperature above room temperature, such as 30° C., 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, or 100° C. When Form XII is dried in a reduced atmosphere environment, the reduced atmosphere can have any suitable pressure less than 1 atmosphere, such as 0.9 atm, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001 atm, or less. In some embodiments, preparing Form XIV includes drying Form XII at a pressure less than 1 atmosphere. In some embodiments, preparing Form XIV includes heating Form XII. In some embodiments, preparing Form XIV including drying Form XII at a pressure less than 1 atmosphere, and heating Form XII at a temperature of about 40° C.
The method of preparing crystalline Compound I can be carried out at temperatures generally from about 0° C. to the reflux temperature of the solvent. In some embodiments, the temperature can be room temperature. Alternatively, Compound I, or one of the crystalline forms of Compound I, can be heated in solid state form. For example, Compound I Form I can be heated to a temperature of from about 130° C. to about 200° C., or from about 130° C. to about 150° C. Compound I Form II can be heated to a temperature of from about 90° C. to about 200° C.
When multiple solvents are used in the methods of the present invention, the ratio of solvents in the above methods can be any suitable ratio from about 1:1 to about 1:9, including about 1:2, 1:3, 1:4, 1:5, 1:6, 1:7 and about 1:8 by volume. The range of solvent ratios is preferably from about 1:1 to about 1:9, more preferably from about 1:2 to about 1:7, even more preferably from about 1:2 to about 1:5 by volume.
The ratio of Compound I to solvent, can be any suitable ratio to promote crystallization. For example, the Compound I to solvent ratio can be from about 1:5 (weight/volume, or w/v) to about 1:50 (w/v), including about 1:6, 1:7, 1:8, 1:9, 1:10, 1:11, 1:12, 1:13, 1:14, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40 and about 1:45 (w/v). The Compound I to solvent ratio is preferably from about 1:10 to about 1:25 (w/v), more preferably from about 1:10 to about 1:15 (w/v).
Crystallization can be induced by methods known in the art, for example by mechanical means such as scratching or rubbing the contact surface of the reaction vessel with e.g. a glass rod. Optionally the saturated or supersaturated solution may be inoculated with seed crystals. The mixture for crystallizing Compound I can also contain a seed crystal of crystalline Compound I.
Isolation of the desired crystalline form can be accomplished by removing the solvent and precipitating solvent from the crystals. Generally this is carried out by known methods, such as, filtration, suction filtration, decantation or centrifugation. Further isolation can be achieved by removing any excess of the solvent(s) from the crystalline form by methods known to the one skilled in the art as for example application of a vacuum, and/or by heating.
V. Pharmaceutical Compositions
The solid forms of Compound I provided herein can be administered in the form of pharmaceutical compositions. This disclosure provides pharmaceutical compositions that contain, as the active ingredient, one or more of the solid forms of Compound I described or a pharmaceutically acceptable salt or ester thereof and one or more pharmaceutically acceptable excipients, carriers, including inert solid diluents and fillers, diluents, including sterile aqueous solution and various organic solvents, permeation enhancers, solubilizers and adjuvants. The pharmaceutical compositions may be administered alone or in combination with other therapeutic agents (as indicated in the Combination Therapy section below). Such compositions are prepared in a manner well known in the pharmaceutical art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.)
The pharmaceutical compositions may be administered in either single or multiple doses by any of the accepted modes of administration of agents having similar utilities, for example as described in those patents and patent applications incorporated by reference, including rectal, buccal, intranasal and transdermal routes, by intra-arterial injection, intravenously, intraperitoneally, parenterally, intramuscularly, subcutaneously orally, topically, as an inhalant or via an impregnated or coated device such as a stent, for example or an artery-inserted cylindrical polymer.
One mode for administration is parenteral, particularly by injection. The forms in which the novel compositions of the present disclosure may be incorporated for administration by injection include aqueous or oil suspensions or emulsions, with sesame oil, corn oil, cottonseed oil or peanut oil, as well as elixirs, mannitol, dextrose or a sterile aqueous solution and similar pharmaceutical vehicles. Aqueous solutions in saline are also conventionally used for injection, but less preferred in the context of the present disclosure. Ethanol, glycerol, propylene glycol, liquid polyethylene glycol, and the like (and suitable mixtures thereof), cyclodextrin derivatives, and vegetable oils may also be employed. The proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
Sterile injectable solutions are prepared by incorporating a compound according to the present disclosure in the required amount in the appropriate solvent with various other ingredients as enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the general methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
Oral administration is another route for administration of compounds in accordance with the disclosure. Administration may be via capsule or enteric coated tablets or the like. In making the pharmaceutical compositions that include at least one compound described herein, the active ingredient is usually diluted by an excipient and/or enclosed within such a carrier that can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be in the form of a solid, semi-solid or liquid material (as above), which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, sterile injectable solutions and sterile packaged powders.
Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, sterile water, syrup and methyl cellulose. The formulations can additionally include: lubricating agents such as talc, magnesium stearate and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl and propylhydroxy-benzoates; sweetening agents; and flavoring agents.
The compositions of the disclosure can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art. Controlled release drug delivery systems for oral administration include osmotic pump systems and dissolutional systems containing polymer-coated reservoirs or drug-polymer matrix formulations. Examples of controlled release systems are given in U.S. Pat. Nos. 3,845,770; 4,326,525; 4,902,514; and 5,616,345. Another formulation for use in the methods of the present disclosure employs transdermal delivery devices (“patches”). Such transdermal patches may be used to provide continuous or discontinuous infusion of the compounds of the present disclosure in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Pat. Nos. 5,023,252, 4,992,445 and 5,001,139. Such patches may be constructed for continuous, pulsatile or on demand delivery of pharmaceutical agents.
In some embodiments, the compositions are formulated in a unit dosage form. The term “unit dosage forms” refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient (e.g., a tablet, capsule, ampoule). The compounds are generally administered in a pharmaceutically effective amount. In some embodiments, each dosage unit contains from 1 mg to 2 g of a compound described herein and for parenteral administration, in some embodiments, from 0.1 to 700 mg of a compound a compound described herein. It will be understood, however, that the amount of the compound actually administered usually will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered and its relative activity, the age, weight and response of the individual patient, the severity of the patient's symptoms, and the like.
For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present disclosure. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules.
The tablets or pills of the present disclosure may be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action or to protect from the acid conditions of the stomach. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer that serves to resist disintegration in the stomach and permit the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents or mixtures thereof and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described supra. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably pharmaceutically acceptable solvents may be nebulized by use of inert gases. Nebulized solutions may be inhaled directly from the nebulizing device or the nebulizing device may be attached to a facemask tent or intermittent positive pressure breathing machine. Solution, suspension or powder compositions may be administered, in some embodiments orally or nasally, from devices that deliver the formulation in an appropriate manner.
In one embodiment, this disclosure relates to a pharmaceutical composition comprising a pharmaceutically acceptable excipient or carrier and a therapeutically effective amount of the compound of Compound I as described above or a pharmaceutically acceptable salt, ester, prodrug, stereoisomer or hydrate thereof.
VI. Methods of Use
The solid forms of Compound I described herein can be administered to a subject suffering from a viral infection such as, but not limited to, hepatitis B virus (HBV), hepatitis C virus (HCV), and human immuno-deficiency virus (HIV) in either single or multiple doses by any of the accepted modes of administration known to those who are skilled in the art and as detailed above.
As used herein, an “agonist” is a substance that stimulates its binding partner, typically a receptor. Stimulation is defined in the context of the particular assay, or may be apparent in the literature from a discussion herein that makes a comparison to a factor or substance that is accepted as an “agonist” or an “antagonist” of the particular binding partner under substantially similar circumstances as appreciated by those of skill in the art. Stimulation may be defined with respect to an increase in a particular effect or function that is induced by interaction of the agonist or partial agonist with a binding partner and can include allosteric effects.
As used herein, an “antagonist” is a substance that inhibits its binding partner, typically a receptor. Inhibition is defined in the context of the particular assay, or may be apparent in the literature from a discussion herein that makes a comparison to a factor or substance that is accepted as an “agonist” or an “antagonist” of the particular binding partner under substantially similar circumstances as appreciated by those of skill in the art. Inhibition may be defined with respect to a decrease in a particular effect or function that is induced by interaction of the antagonist with a binding partner, and can include allosteric effects.
As used herein, a “partial agonist” or a “partial antagonist” is a substance that provides a level of stimulation or inhibition, respectively, to its binding partner that is not fully or completely agonistic or antagonistic, respectively. It will be recognized that stimulation, and hence, inhibition is defined intrinsically for any substance or category of substances to be defined as agonists, antagonists, or partial agonists.
As used herein, “intrinsic activity” or “efficacy” relates to some measure of biological effectiveness of the binding partner complex. With regard to receptor pharmacology, the context in which intrinsic activity or efficacy should be defined will depend on the context of the binding partner (e.g., receptor/ligand) complex and the consideration of an activity relevant to a particular biological outcome. For example, in some circumstances, intrinsic activity may vary depending on the particular second messenger system involved. Where such contextually specific evaluations are relevant, and how they might be relevant in the context of the present invention, will be apparent to one of ordinary skill in the art.
As used herein, modulation of a receptor includes agonism, partial agonism, antagonism, partial antagonism, or inverse agonism of a receptor.
As will be appreciated by those skilled in the art, when treating a viral infection such as HCV, HBV, or HIV, such treatment may be characterized in a variety of ways and measured by a variety of endpoints. The scope of the present invention is intended to encompass all such characterizations.
In one embodiment, the method can be used to induce an immune response against multiple epitopes of a viral infection in a human. Induction of an immune response against viral infection can be assessed using any technique that is known by those of skill in the art for determining whether an immune response has occurred. Suitable methods of detecting an immune response for the present invention include, among others, detecting a decrease in viral load or antigen in a subject's serum, detection of IFN-gamma-secreting peptide specific T cells, and detection of elevated levels of one or more liver enzymes, such as alanine transferase (ALT) and aspartate transferase (AST). In one embodiment, the detection of IFN-gamma-secreting peptide specific T cells is accomplished using an ELISPOT assay. Another embodiment includes reducing the viral load associated with HBV infection, including a reduction as measured by PCR testing.
In some embodiments, the present invention provides a method of treating a viral infection, comprising administering to a human in need thereof, a therapeutically effective amount of a crystalline form of Compound I or pharmaceutical composition of the present invention. In some embodiments, the present invention provides a crystalline form of Compound I for use in the treatment of a viral infection, comprising administering a therapeutically effective amount of a crystalline form of Compound I or a pharmaceutical composition of the present invention. In some embodiments, the present invention provides use of a crystalline form of Compound I for the treatment of a viral infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a viral infection.
In another aspect, the present invention provides methods for treating a hepatitis B viral infection or a hepatitis C viral infection, wherein each of the methods includes the step of administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of a crystalline form of Compound I. Typically, the human subject is suffering from a chronic hepatitis B infection or a chronic hepatitis C infection, although it is within the scope of the present invention to treat people who are acutely infected with HBV or HCV.
In some embodiments, the present invention provides a crystalline form of Compound I for use in the treatment of a hepatitis B viral infection or a hepatitis C viral infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a hepatitis B viral infection or a hepatitis C viral infection.
In some embodiments, the present invention provides a crystalline form of Compound I for use in the treatment of a hepatitis B viral infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a hepatitis B viral infection.
Treatment in accordance with the present invention typically results in the stimulation of an immune response against HBV or HCV in a human being infected with HBV or HCV, respectively, and a consequent reduction in the viral load of HBV or HCV in the infected person. Examples of immune responses include production of antibodies (e.g., IgG antibodies) and/or production of cytokines, such as interferons, that modulate the activity of the immune system. The immune system response can be a newly induced response, or can be boosting of an existing immune response. In particular, the immune system response can be seroconversion against one or more HBV or HCV antigens.
The viral load can be determined by measuring the amount of HBV DNA or HCV DNA present in the blood. For example, blood serum HBV DNA can be quantified using the Roche COBAS Amplicor Monitor PCR assay (version 2.0; lower limit of quantification, 300 copies/mL [57 IU/mL]) and the Quantiplex bDNA assay (lower limit of quantification, 0.7 MEq/mL; Bayer Diagnostics, formerly Chiron Diagnostics, Emeryville, Calif.). The amount of antibodies against specific HBV or HCV antigens (e.g., hepatitis B surface antigen (HBsAG)) can be measured using such art-recognized techniques as enzyme-linked immunoassays and enzyme-linked immunoabsorbent assays. For example, the amount of antibodies against specific HBV or HCV antigens can be measured using the Abbott AxSYM microparticle enzyme immunoassay system (Abbott Laboratories, North Chicago, Ill.).
Compound I can be administered by any useful route and means, such as by oral or parenteral (e.g., intravenous) administration. Therapeutically effective amounts of Compound I are from about 0.00001 mg/kg body weight per day to about 10 mg/kg body weight per day, such as from about 0.0001 mg/kg body weight per day to about 10 mg/kg body weight per day, or such as from about 0.001 mg/kg body weight per day to about 1 mg/kg body weight per day, or such as from about 0.01 mg/kg body weight per day to about 1 mg/kg body weight per day, or such as from about 0.05 mg/kg body weight per day to about 0.5 mg/kg body weight per day, or such as from about 0.3 μg to about 30 mg per day, or such as from about 30 μg to about 300 μg per day.
Therapeutically effective amounts of Compound I are also from about 0.01 mg per dose to about 1000 mg per dose, such as from about 0.01 mg per dose to about 100 mg per dose, or such as from about 0.1 mg per dose to about 100 mg per dose, or such as from about 1 mg per dose to about 100 mg per dose, or such as from about 1 mg per dose to about 10 mg per dose. Other therapeutically effective amounts of Compound I are about 1 mg per dose, or about 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or about 100 mg per dose. Other therapeutically effective amounts of Compound I are about 100 mg per dose, or about 125, 150, 175, 200, 225, 250, 275, 300, 350, 400, 450, or about 500 mg per dose. A single dose can be administered hourly, daily, or weekly. For example, a single dose can be administered once every 1 hour, 2, 3, 4, 6, 8, 12, 16 or once every 24 hours. A single dose can also be administered once every 1 day, 2, 3, 4, 5, 6, or once every 7 days. A single dose can also be administered once every 1 week, 2, 3, or once every 4 weeks.
A single dose can also be administered once every month.
The frequency of dosage of Compound I will be determined by the needs of the individual patient and can be, for example, once per day or twice, or more times, per day.
Administration of Compound I continues for as long as necessary to treat the HBV or HCV infection. For example, Compound I can be administered to a human being infected with HBV or HCV for a period of from 20 days to 180 days or, for example, for a period of from 20 days to 90 days or, for example, for a period of from 30 days to 60 days.
Administration can be intermittent, with a period of several or more days during which a patient receives a daily dose of Compound I, followed by a period of several or more days during which a patient does not receive a daily dose of Compound I. For example, a patient can receive a dose of Compound I every other day, or three times per week. Again by way of example, a patient can receive a dose of Compound I each day for a period of from 1 to 14 days, followed by a period of 7 to 21 days during which the patient does not receive a dose of Compound I, followed by a subsequent period (e.g., from 1 to 14 days) during which the patient again receives a daily dose of Compound I. Alternating periods of administration of Compound I, followed by non-administration of Compound I, can be repeated as clinically required to treat the patient.
As described more fully herein, crystalline forms of Compound I can be administered with one or more additional therapeutic agent(s) to a human being infected with hepatitis B virus or hepatitis C virus. The additional therapeutic agent(s) can be administered to the infected human being at the same time as the crystalline form of Compound I, or before or after administration of the crystalline form of Compound I. In some embodiments, the present invention provides a crystalline form of Compound I, for use in a method of treating or preventing a hepatitis B viral infection, wherein the crystalline form of Compound I is administered simultaneously, separately or sequentially with one or more additional therapeutic agents for treating a hepatitis B viral infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the treatment of a hepatitis B viral infection, wherein the crystalline form of Compound I is administered simultaneously, separately or sequentially with one or more additional therapeutic agents for treating a hepatitis B viral infection.
In another aspect, the present invention provides a method for ameliorating a symptom associated with an HBV infection or HCV infection, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of the crystalline form of Compound I, wherein the therapeutically effective amount is sufficient to ameliorate a symptom associated with the HBV infection or HCV infection. Such symptoms include the presence of HBV virus particles (or HCV virus particles) in the blood, liver inflammation, jaundice, muscle aches, weakness and tiredness.
In some embodiments, the present invention provides a crystalline form of Compound I for use in ameliorating a symptom associated with an HBV infection or HCV infection, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of the crystalline form of Compound I, wherein the therapeutically effective amount is sufficient to ameliorate a symptom associated with the HBV infection or HCV infection. In some embodiments, the present invention provides use of a crystalline form of Compound I for the manufacture of a medicament for the ameliorating a symptom associated with an HBV infection or HCV infection, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of the crystalline form of Compound I, wherein the therapeutically effective amount is sufficient to ameliorate a symptom associated with the HBV infection or HCV infection
In a further aspect, the present invention provides a method for reducing the rate of progression of a hepatitis B viral infection, or a hepatitis C virus infection, in a human being, wherein the method comprises administering to a human subject infected with hepatitis B virus or hepatitis C virus a therapeutically effective amount of Compound I, or a pharmaceutically acceptable salt thereof, wherein the therapeutically effective amount is sufficient to reduce the rate of progression of the hepatitis B viral infection or hepatitis C viral infection. The rate of progression of the infection can be followed by measuring the amount of HBV virus particles or HCV virus particles in the blood.
In another aspect, the present invention provides a method for reducing the viral load associated with HBV infection or HCV infection, wherein the method comprises administering to a human being infected with HBV or HCV a therapeutically effective amount of Compound I, or a pharmaceutically acceptable salt thereof, wherein the therapeutically effective amount is sufficient to reduce the HBV viral load or the HCV viral load in the human being.
In a further aspect, the present invention provides a method of inducing or boosting an immune response against Hepatitis B virus or Hepatitis C virus in a human being, wherein the method comprises administering a therapeutically effective amount of Compound I, or a pharmaceutically acceptable salt thereof, to the human being, wherein a new immune response against Hepatitis B virus or Hepatitis C virus is induced in the human being, or a preexisting immune response against Hepatitis B virus or Hepatitis C virus is boosted in the human being. Seroconversion with respect to HBV or HCV can be induced in the human being. Examples of immune responses include production of antibodies, such as IgG antibody molecules, and/or production of cytokine molecules that modulate the activity of one or more components of the human immune system.
Induction of seroconversion against HCV or HBV in patients chronically infected with either of these viruses is an unexpected property of Compound I. In clinical practice, an HBV patient, or HCV patient, is treated with Compound I, alone or in combination with one or more other therapeutic agents, until an immune response against HBV or HCV is induced or enhanced and the viral load of HBV or HCV is reduced. Thereafter, although the HBV or HCV virus may persist in a latent form in the patient's body, treatment with Compound I can be stopped, and the patient's own immune system is capable of suppressing further viral replication. In patients treated in accordance with the present invention and who are already receiving treatment with an antiviral agent that suppresses replication of the HBV virus or HCV virus, there may be little or no detectable viral particles in the body of the patient during treatment with the antiviral agent(s). In these patients, seroconversion will be evident when the antiviral agent(s) is no longer administered to the patient and there is no increase in the viral load of HBV or HCV.
In the practice of the present invention, an immune response is induced against one or more antigens of HBV or HCV. For example, an immune response can be induced against the HBV surface antigen (HBsAg), or against the small form of the HBV surface antigen (small S antigen), or against the medium form of the HBV surface antigen (medium S antigen), or against a combination thereof. Again by way of example, an immune response can be induced against the HBV surface antigen (HBsAg) and also against other HBV-derived antigens, such as the core polymerase or x-protein.
Induction of an immune response against HCV or HBV can be assessed using any technique that is known by those of skill in the art for determining whether an immune response has occurred. Suitable methods of detecting an immune response for the present invention include, among others, detecting a decrease in viral load in a subject's serum, such as by measuring the amount of HBV DNA or HCV DNA in a subject's blood using a PCR assay, and/or by measuring the amount of anti-HBV antibodies, or anti-HCV antibodies, in the subject's blood using a method such as an ELISA.
Additionally, the compounds of this invention may be useful in the treatment of cancer or tumors (including dysplasias, such as uterine dysplasia). These includes hematological malignancies, oral carcinomas (for example of the lip, tongue or pharynx), digestive organs (for example esophagus, stomach, small intestine, colon, large intestine, or rectum), liver and biliary passages, pancreas, respiratory system such as larynx or lung (small cell and non-small cell), bone, connective tissue, skin (e.g., melanoma), breast, reproductive organs (uterus, cervix, testicles, ovary, or prostate), urinary tract (e.g., bladder or kidney), brain and endocrine glands such as the thyroid. In summary, the compounds of this invention are employed to treat any neoplasm, including not only hematologic malignancies but also solid tumors of all kinds.
Hematological malignancies are broadly defined as proliferative disorders of blood cells and/or their progenitors, in which these cells proliferate in an uncontrolled manner. Anatomically, the hematologic malignancies are divided into two primary groups: lymphomas—malignant masses of lymphoid cells, primarily but not exclusively in lymph nodes, and leukemias—neoplasm derived typically from lymphoid or myeloid cells and primarily affecting the bone marrow and peripheral blood. The lymphomas can be subdivided into Hodgkin's Disease and Non-Hodgkin's lymphoma (NHL). The latter group comprises several distinct entities, which can be distinguished clinically (e.g. aggressive lymphoma, indolent lymphoma), histologically (e.g. follicular lymphoma, mantle cell lymphoma) or based on the origin of the malignant cell (e.g. B lymphocyte, T lymphocyte). Leukemias and related malignancies include acute myelogenous leukemia (AML), chronic myelogenous leukemia (CML), acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Other hematological malignancies include the plasma cell dyscrasias including multiple myeloma, and the myelodysplastic syndromes.
VII. Combination Therapy
Subjects being treated by administration of the solid forms of Compound I described herein can benefit from treatment with additional therapeutic agents that are effective in treating HCV, or enhance the anti-HCV therapeutic effect of Compound I forms, in accordance with some embodiments. Additional therapeutic agents that may be useful for this purpose include, but are not limited to, ribavirin,
Figure US10508117-20191217-C00004
Other antiviral agents that may be useful in combination with the crystalline forms of Compound I of the present invention, include, but are not limited to: HCV NS3 protease inhibitors (see EP 1881001, US 2003187018, US 2005267018, WO 2003006490, WO 200364456, WO 2004094452, WO 2005028502, WO 2005037214, WO 2005095403, WO 2007014920, WO 2007014921, WO 2007014922, WO 2007014925, WO 2007014926, WO 2007015824, WO 2008010921, and WO 2008010921); HCV NS5B Inhibitors (see US 2004229840, US 2005154056, US 2005-98125, US 20060194749, US 20060241064, US 20060293306, US 2006040890, US 2006040927, US 2006166964, US 2007275947, U.S. Pat. No. 6,784,166, US20072759300, WO 2002057287, WO 2002057425, WO 2003010141, WO 2003037895, WO 2003105770, WO 2004000858, WO 2004002940, WO 2004002944, WO 2004002977, WO 2004003138, WO 2004041201, WO 2004065367, WO 2004096210, WO 2005021568, WO 2005103045, WO 2005123087, WO 2006012078, WO 2006020082, WO 2006065335, WO 2006065590, WO 2006093801, WO 200702602, WO 2007039142, WO 2007039145, WO 2007076034, WO 2007088148, WO 2007092000, and WO2007095269); HCV NS4 Inhibitors (see WO 2005067900 and WO 2007070556); HCV NS5a Inhibitors (see US 2006276511, WO 2006035061, WO 2006100310, WO 2006120251, and WO 2006120252); Toll-like receptor agonists (see WO 2007093901); other inhibitors (see WO 2000006529, WO 2003101993, WO 2004009020, WO 2004014313, WO 2004014852, and WO 2004035571); U.S. Pat. No. 7,429,572; US 2007/0197463; US 2010/0081628; US 2010/0016251; U.S. Ser. No. 12/783,680; telaprevir (also known as VX-950, which is disclosed in US 2010/0015090); boceprevir (disclosed in US 2006/0276405); BMS-790052 (disclosed in WO 2008/021927); ITMN-191 (disclosed in US 2009/0269305 at Example 62-1); ANA-598 (identified as compound 31 in F. Ruebasam et al. Biorg. Med. Chem. Lett. (2008) 18: 3616-3621; and TMC435 (formerly known as TMC435350); as well as, interferon-α, interferon-β, pegylated interferon-α, ribavirin, levovirin, viramidine, another nucleoside HCV polymerase inhibitor, a HCV non-nucleoside polymerase inhibitor, a HCV protease inhibitor, a HCV helicase inhibitor or a HCV fusion inhibitor.
The present disclosure is not to be limited in scope by the specific embodiments disclosed in the examples, which are intended to be illustrations of a few embodiments of the disclosure, nor is the disclosure to be limited by any embodiments that are functionally equivalent within the scope of this disclosure. Indeed, various modifications of the disclosure in addition to those shown and described herein will become apparent to those skilled in the art and are intended to fall within the scope of the appended claims. To this end, it should be noted that one or more hydrogen atoms or methyl groups can be omitted from the drawn structures consistent with accepted shorthand notation of such organic compounds, and that one skilled in the art of organic chemistry would readily appreciate their presence.
In certain embodiments, a method for treating or preventing an HBV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents. In one embodiment, a method for treating an HBV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents.
In certain embodiments, the present disclosure provides a method for treating an HBV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more additional therapeutic agents which are suitable for treating an HBV infection.
In certain embodiments, a compound as disclosed herein (e.g., any crystalline form of Compound I) may be combined with one or more additional therapeutic agents in any dosage amount of the crystalline form of Compound I (e.g., from 1 mg to 1000 mg of compound).
In one embodiment, pharmaceutical compositions comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents, and a pharmaceutically acceptable carrier, diluent or excipient are provided.
In one embodiment, kits comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, four, one or two, or one to three, or one to four) additional therapeutic agents are provided.
In the above embodiments, the additional therapeutic agent may be an anti-HBV agent. For example, in some embodiments, the additional therapeutic agent is selected from the group consisting of HBV combination drugs, HBV DNA polymerase inhibitors, immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, hepatitis B surface antigen (HBsAg) inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting hepatitis B core antigen (HBcAg), cyclophilin inhibitors, HBV therapeutic vaccines, HBV prophylactic vaccines, HBV viral entry inhibitors, NTCP (Na+-taurocholate cotransporting polypeptide) inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA), miRNA gene therapy agents, endonuclease modulators, inhibitors of ribonucleotide reductase, hepatitis B virus E antigen inhibitors, recombinant scavenger receptor A (SRA) proteins, Src kinase inhibitors, HBx inhibitors, cccDNA inhibitors, short synthetic hairpin RNAs (sshRNAs), HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), CCR2 chemokine antagonists, thymosin agonists, cytokines, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of NOD2, stimulators of NOD1, Arginase-1 inhibitors, STING agonists, PI3K inhibitors, lymphotoxin beta receptor activators, Natural Killer Cell Receptor 2B4 inhibitors, Lymphocyte-activation gene 3 inhibitors, CD160 inhibitors, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) inhibitors, IDO inhibitors, cccDNA epigenetic modifiers, CD137 inhibitors, Killer cell lectin-like receptor subfamily G member 1 inhibitors, TIM-3 inhibitors, B- and T-lymphocyte attenuator inhibitors, CD305 inhibitors, PD-1 inhibitors, PD-L1 inhibitors, PEG-Interferon Lambda, recombinant thymosin alpha-1, BTK inhibitors, modulators of TIGIT, modulators of CD47, modulators of SIRPalpha, modulators of ICOS, modulators of CD27, modulators of CD70, modulators of OX40, modulators of NKG2D, modulators of Tim-4, modulators of B7-H4, modulators of B7-H3, modulators of NKG2A, modulators of GITR, modulators of CD160, modulators of HEVEM, modulators of CD161, modulators of Axl, modulators of Mer, modulators of Tyro, gene modifiers or editors such as CRISPR (including CRISPR Cas9), zinc finger nucleases or synthetic nucleases (TALENs), IAPs inhibitors, SMAC mimetics, Hepatitis B virus replication inhibitors compounds such as those disclosed in US20100143301 (Gilead Sciences), US20110098248 (Gilead Sciences), US20090047249 (Gilead Sciences), U.S. Pat. No. 8,722,054 (Gilead Sciences), US20140045849 (Janssen), US20140073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), US20140350031 (Janssen), WO2014/023813 (Janssen), US20080234251 (Array Biopharma), US20080306050 (Array Biopharma), US20100029585 (Ventirx Pharma), US20110092485 (Ventirx Pharma), US20110118235 (Ventirx Pharma), US20120082658 (Ventirx Pharma), US20120219615 (Ventirx Pharma), US20140066432 (Ventirx Pharma), US20140088085 (VentirxPharma), US20140275167 (Novira therapeutics), US20130251673 (Novira therapeutics), U.S. Pat. No. 8,513,184 (Gilead Sciences), US20140030221 (Gilead Sciences), US20130344030 (Gilead Sciences), US20130344029 (Gilead Sciences), US20140343032 (Roche), WO2014037480 (Roche), US20130267517 (Roche), WO2014131847 (Janssen), WO2014033176 (Janssen), WO2014033170 (Janssen), WO2014033167 (Janssen), US20140330015 (Ono pharmaceutical), US20130079327 (Ono pharmaceutical), US20130217880 (Ono pharmaceutical), US20100015178 (Incyte) and other drugs for treating HBV, and combinations thereof.
In certain embodiments, the additional therapeutic is selected from the group consisting of HBV combination drugs, HBV DNA polymerase inhibitors, toll-like receptor 7 modulators, toll-like receptor 8 modulators, Toll-like receptor 7 and 8 modulators, Toll-like receptor 3 modulators, interferon alpha receptor ligands, HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV therapeutic vaccines, HBV prophylactic vaccines, HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA), hepatitis B virus E antigen inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus, thymosin agonists, cytokines, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of NOD2, stimulators of NOD1, recombinant thymosin alpha-1, BTK inhibitors, IDO inhibitors, hepatitis B virus replication inhibitors, and combinations thereof.
In certain embodiments a crystalline form of Compound I is formulated as a tablet, which may optionally contain one or more other compounds useful for treating HBV. In certain embodiments, the tablet can contain another active ingredient for treating HBV, such as HBV DNA polymerase inhibitors, immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), modulators of TLR7, modulators of TLR8, modulators of TLR7 and TLR8, interferon alpha receptor ligands, hyaluronidase inhibitors, hepatitis B surface antigen (HBsAg) inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting hepatitis B core antigen (HBcAg), cyclophilin inhibitors, HBV viral entry inhibitors, NTCP (Na+-taurocholate cotransporting polypeptide) inhibitors, endonuclease modulators, inhibitors of ribonucleotide reductase, hepatitis B virus E antigen inhibitors, Src kinase inhibitors, HBx inhibitors, cccDNA inhibitors, CCR2 chemokine antagonists, thymosin agonists, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of NOD2, stimulators of NOD1, Arginase-1 inhibitors, STING agonists, PI3K inhibitors, lymphotoxin beta receptor activators, Natural Killer Cell Receptor 2B4 inhibitors, Lymphocyte-activation gene 3 inhibitors, CD160 inhibitors, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) inhibitors, CD137 inhibitors, Killer cell lectin-like receptor subfamily G member 1 inhibitors, TIM-3 inhibitors, B- and T-lymphocyte attenuator inhibitors, CD305 inhibitors, PD-1 inhibitors, PD-L1 inhibitors, BTK inhibitors, modulators of TIGIT, cccDNA epigenetic modifiers, modulators of CD47, modulators of SIRP alpha, modulators of ICOS, modulators of CD27, modulators of CD70, modulators of OX40, modulators of NKG2D, modulators of Tim-4, modulators of B7-H4, modulators of B7-H3, modulators of NKG2A, modulators of GITR, modulators of CD160, modulators of HEVEM, modulators of CD161, modulators of Axl, modulators of Mer, modulators of Tyro, IAPs inhibitors, SMAC mimetics, IDO inhibitors, and Hepatitis B virus replication inhibitors, and combinations thereof.
In certain embodiments, such tablets are suitable for once daily dosing.
In certain embodiments, the additional therapeutic agent is selected from one or more of:
  • (1) Combination drugs selected from the group consisting of tenofovir disoproxil fumarate+emtricitabine (TRUVADA®), ABX-203+lamivudine+PEG-IFNalpha, and ABX-203+adefovir+PEG-IFNalpha, INO-9112+RG7944 (INO-1800);
  • (2) HBV DNA polymerase inhibitors selected from the group consisting of besifovir, entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, tenofovir dipivoxil, tenofovir dipivoxil fumarate, tenofovir octadecyloxyethyl ester, telbivudine (Tyzeka®), pradefovir, Clevudine, emtricitabine (Emtriva®), ribavirin, lamivudine (Epivir-HBV®), phosphazide, famciclovir, SNC-019754, FMCA, fusolin, AGX-1009, AR-II-04-26, HS-10234 and metacavir;
  • (3) Immunomodulators selected from the group consisting of rintatolimod, imidol hydrochloride, ingaron, dermaVir, plaquenil (hydroxychloroquine), proleukin, hydroxyurea, mycophenolate mofetil (MPA) and its ester derivative mycophenolate mofetil (MMF), WF-10, ribavirin, IL-12, INO-9112, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, BMS-936559, RO-7011785, RO-6871765 and IR-103;
  • (4) Toll-like receptor 7 modulators selected from the group consisting of GS-9620, GSK-2245035, imiquimod, resiquimod, DSR-6434, DSP-3025, IMO-4200, MCT-465, 3M-051, SB-9922, 3M-052, Limtop, TMX-30X, TMX-202 RG-7863 and RG-7795;
  • (5) Toll-like receptor 8 modulators selected from the group consisting of motolimod, resiquimod, 3M-051, 3M-052, MCT-465, IMO-4200, VTX-763, VTX-1463;
  • (6) Toll-like receptor 3 modulators selected from the group consisting of rintatolimod, poly-ICLC, MCT-465, MCT-475, Riboxxon, Riboxxim and ND-1.1;
  • (7) Interferon alpha receptor ligands selected from the group consisting of interferon alpha-2b (Intron A®), pegylated interferon alpha-2a (Pegasys®), interferon alpha 1b (Hapgen®), Veldona, Infradure, Roferon-A, YPEG-interferon alfa-2a (YPEG-rhlFNalpha-2a), P-1101, Algeron, Alfarona, Ingaron (interferon gamma), rSIFN-co (recombinant super compound interferon), Ypeginterferon alfa-2b (YPEG-rhlFNalpha-2b), MOR-22, peginterferon alfa-2b (PEG-Intron®), Bioferon, Novaferon, Inmutag (Inferon), Multiferon®, interferon alfa-n1 (Humoferon®), interferon beta-1a (Avonex®), Shaferon, interferon alfa-2b (AXXO), Alfaferone, interferon alfa-2b (BioGeneric Pharma), interferon-alpha 2 (CJ), Laferonum, VIPEG, BLAUFERON-B, BLAUFERON-A, Intermax Alpha, Realdiron, Lanstion, Pegaferon, PDferon-B PDferon-B, interferon alfa-2b (IFN, Laboratorios Bioprofarma), alfainterferona 2b, Kalferon, Pegnano, Feronsure, PegiHep, interferon alfa 2b (Zydus-Cadila), Optipeg A, Realfa 2B, Reliferon, interferon alfa-2b (Amega), interferon alfa-2b (Virchow), peginterferon alfa-2b (Amega), Reaferon-EC, Proquiferon, Uniferon, Urifron, interferon alfa-2b (Changchun Institute of Biological Products), Anterferon, Shanferon, Layfferon, Shang Sheng Lei Tai, INTEFEN, SINOGEN, Fukangtai, Pegstat, rHSA-IFN alpha-2b and Interapo (Interapa);
  • (8) Hyaluronidase inhibitors selected from the group consisting of astodrimer;
  • (9) Modulators of IL-10;
  • (10) HBsAg inhibitors selected from the group consisting of HBF-0259, PBHBV-001, PBHBV-2-15, PBHBV-2-1, REP-9AC, REP-9C, REP-9, REP-2139, REP-2139-Ca, REP-2165, REP-2055, REP-2163, REP-2165, REP-2053, REP-2031 and REP-006 and REP-9AC′;
  • (11) Toll like receptor 9 modulators selected from CYT003 and CYT-003-QbG10;
  • (12) Cyclophilin inhibitors selected from the group consisting of OCB-030, SCY-635 and NVP-018;
  • (13) HBV Prophylactic vaccines selected from the group consisting of Hexaxim, Heplisav, Mosquirix, DTwP-HBV vaccine, Bio-Hep-B, D/T/P/HBV/M (LBVP-0101; LBVW-0101), DTwP-Hepb-Hib-IPV vaccine, Heberpenta L, DTwP-HepB-Hib, V-419, CVI-HBV-001, Tetrabhay, hepatitis B prophylactic vaccine (Advax Super D), Hepatrol-07, GSK-223192A, Engerix B®, recombinant hepatitis B vaccine (intramuscular, Kangtai Biological Products), recombinant hepatitis B vaccine (Hansenual polymorpha yeast, intramuscular, Hualan Biological Engineering), Bimmugen, Euforavac, Eutravac, anrix-DTaP-IPV-Hep B, Infanrix-DTaP-IPV-Hep B-Hib, Pentabio Vaksin DTP-HB-Hib, Comvac 4, Twinrix, Euvax-B, Tritanrix HB, Infanrix Hep B, Comvax, DTP-Hib-HBV vaccine, DTP-HBV vaccine, Yi Tai, Heberbiovac HB, Trivac HB, GerVax, DTwP-Hep B-Hib vaccine, Bilive, Hepavax-Gene, SUPERVAX, Comvac5, Shanvac-B, Hebsulin, Recombivax HB, Revac B mcf, Revac B+, Fendrix, DTwP-HepB-Hib, DNA-001, Shan6, rhHBsAG vaccine, and DTaP-rHB-Hib vaccine;
  • (14) HBV Therapeutic vaccines selected from the group consisting of HBsAG-HBIG complex, Bio-Hep-B, NASVAC, abi-HB (intravenous), ABX-203, Tetrabhay, GX-110E, GS-4774, peptide vaccine (epsilonPA-44), Hepatrol-07, NASVAC (NASTERAP), IMP-321, BEVAC, Revac B mcf, Revac B+, MGN-1333, KW-2, CVI-HBV-002, AltraHepB, VGX-6200, FP-02, FP-02.2, TG-1050, NU-500, HBVax, im/TriGrid/antigen vaccine, Mega-CD40L-adjuvanted vaccine, HepB-v, RG7944 (INO-1800), recombinant VLP-based therapeutic vaccine (HBV infection, VLP Biotech), AdTG-17909, AdTG-17910 AdTG-18202, ChronVac-B, and Lm HBV;
  • (15) HBV viral entry inhibitor selected from the group consisting of Myrcludex B;
  • (16) Antisense oligonucleotide targeting viral mRNA selected from the group consisting of ISIS-HBVRx;
  • (17) short interfering RNAs (siRNA) selected from the group consisting of TKM-HBV (TKM-HepB), ALN-HBV, SR-008, ddRNAi and ARC-520;
  • (18) Endonuclease modulators selected from the group consisting of PGN-514;
  • (19) Inhibitors of ribonucleotide reductase selected from the group consisting of Trimidox;
  • (20) Hepatitis B virus E antigen inhibitors selected from the group consisting of wogonin;
  • (21) HBV antibodies targeting the surface antigens of the hepatitis B virus selected from the group consisting of GC-1102, XTL-17, XTL-19, XTL-001, KN-003, IV Hepabulin SN, and fully human monoclonal antibody therapy (hepatitis B virus infection, Humabs BioMed);
  • (22) HBV antibodies including monoclonal antibodies and polyclonal antibodies selected from the group consisting of Zutectra, Shang Sheng Gan Di, Uman Big (Hepatitis B Hyperimmune), Omri-Hep-B, Nabi-HB, Hepatect CP, HepaGam B, igantibe, Niuliva, CT-P24, hepatitis B immunoglobulin (intravenous, pH4, HBV infection, Shanghai RAAS Blood Products) and Fovepta (BT-088);
  • (23) CCR2 chemokine antagonists selected from the group consisting of propagermanium;
  • (24) Thymosin agonists selected from the group consisting of Thymalfasin;
  • (25) Cytokines selected from the group consisting of recombinant IL-7, CYT-107, interleukin-2 (IL-2, Immunex); recombinant human interleukin-2 (Shenzhen Neptunus), IL-15, IL-21, IL-24 and celmoleukin;
  • (26) Nucleoprotein modulators (HBV core or capsid protein modulators) selected from the group consisting of NVR-1221, NVR-3778, BAY 41-4109, morphothiadine mesilate and DVR-23;
  • (27) Stimulators of retinoic acid-inducible gene 1 selected from the group consisting of SB-9200, SB-40, SB-44, ORI-7246, ORI-9350, ORI-7537, ORI-9020, ORI-9198 and ORI-7170;
  • (28) Stimulators of NOD2 selected from the group consisting of SB-9200;
  • (29) Recombinant thymosin alpha-1 selected from the group consisting of NL-004 and PEGylated thymosin alpha 1;
  • (30) Hepatitis B virus replication inhibitors selected from the group consisting of isothiafludine, IQP-HBV, RM-5038 and Xingantie;
  • (31) PI3K inhibitors selected from the group consisting of idelalisib, AZD-8186, buparlisib, CLR-457, pictilisib, neratinib, rigosertib, rigosertib sodium, EN-3342, TGR-1202, alpelisib, duvelisib, UCB-5857, taselisib, XL-765, gedatolisib, VS-5584, copanlisib, CAI orotate, perifosine, RG-7666, GSK-2636771, DS-7423, panulisib, GSK-2269557, GSK-2126458, CUDC-907, PQR-309, INCB-040093, pilaralisib, BAY-1082439, puquitinib mesylate, SAR-245409, AMG-319, RP-6530, ZSTK-474, MLN-1117, SF-1126, RV-1729, sonolisib, LY-3023414, SAR-260301 and CLR-1401;
  • (32) cccDNA inhibitors selected from the group consisting of BSBI-25;
  • (33) PD-L1 inhibitors selected from the group consisting of MEDI-0680, RG-7446, durvalumab, KY-1003, KD-033, MSB-0010718C, TSR-042, ALN-PDL, STI-A1014 and BMS-936559;
  • (34) PD-1 inhibitors selected from the group consisting of nivolumab, pembrolizumab, pidilizumab, BGB-108 and mDX-400;
  • (35) BTK inhibitors selected from the group consisting of ACP-196, dasatinib, ibrutinib, PRN-1008, SNS-062, ONO-4059, BGB-3111, MSC-2364447, X-022, spebrutinib, TP-4207, HM-71224, KBP-7536 and AC-0025;
  • (36) IDO inhibitors selected from the group consisting of epacadostat (INCB24360), F-001287, resminostat (4SC-201), SN-35837, NLG-919, GDC-0919, and indoximod;
  • (37) Other drugs for treating HBV selected from the group consisting of gentiopicrin (gentiopicroside), nitazoxanide, birinapant, NOV-205 (Molixan; BAM-205), Oligotide, Mivotilate, Feron, levamisole, Ka Shu Ning, Alloferon, WS-007, Y-101 (Ti Fen Tai), rSIFN-co, PEG-IIFNm, KW-3, BP-Inter-014, oleanolic acid, HepB-nRNA, cTP-5 (rTP-5), HSK-II-2, HEISCO-106-1, HEISCO-106, Hepbama, IBPB-006IA, Hepuyinfen, DasKloster 0014-01, Jiangantai (Ganxikang), picroside, DasKloster-0039, hepulantai, IMB-2613, TCM-800B, reduced glutathione, RO-6864018 and ZH-2N; and
  • (37) The compounds disclosed in US20100143301 (Gilead Sciences), US20110098248 (Gilead Sciences), US20090047249 (Gilead Sciences), U.S. Pat. No. 8,722,054 (Gilead Sciences), US20140045849 (Janssen), US20140073642 (Janssen), WO2014/056953 (Janssen), WO2014/076221 (Janssen), WO2014/128189 (Janssen), US20140350031 (Janssen), WO2014/023813 (Janssen), US20080234251 (Array Biopharma), US20080306050 (Array Biopharma), US20100029585 (Ventirx Pharma), US20110092485 (Ventirx Pharma), US20110118235 (Ventirx Pharma), US20120082658 (Ventirx Pharma), US20120219615 (Ventirx Pharma), US20140066432 (Ventirx Pharma), US20140088085 (VentirxPharma), US20140275167 (Novira therapeutics), US20130251673 (Novira therapeutics), U.S. Pat. No. 8,513,184 (Gilead Sciences), US20140030221 (Gilead Sciences), US20130344030 (Gilead Sciences), US20130344029 (Gilead Sciences), US20140343032 (Roche), WO2014037480 (Roche), US20130267517 (Roche), WO2014131847 (Janssen), WO2014033176 (Janssen), WO2014033170 (Janssen), WO2014033167 (Janssen), US20140330015 (Ono pharmaceutical), US20130079327 (Ono pharmaceutical), and US20130217880 (Ono pharmaceutical), and US20100015178 (Incyte).
In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with one, two, three, four or more additional therapeutic agents. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with two additional therapeutic agents. In other embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with three additional therapeutic agents. In further embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with four additional therapeutic agents. The one, two, three, four or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents.
In a specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HBV DNA polymerase inhibitor. In another specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HBV DNA polymerase inhibitor and at least one additional therapeutic agent selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting HBcAg, cyclophilin inhibitors, HBV therapeutic vaccines, HBV prophylactic vaccines HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA), miRNA gene therapy agents, endonuclease modulators, inhibitors of ribonucleotide reductase, Hepatitis B virus E antigen inhibitors, recombinant scavenger receptor A (SRA) proteins, src kinase inhibitors, HBx inhibitors, cccDNA inhibitors, short synthetic hairpin RNAs (sshRNAs), HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), CCR2 chemokine antagonists, thymosin agonists, cytokines, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of NOD2, stimulators of NOD1, Arginase-1 inhibitors, STING agonists, PI3K inhibitors, lymphotoxin beta receptor activators, Natural Killer Cell Receptor 2B4 inhibitors, Lymphocyte-activation gene 3 inhibitors, CD160 inhibitors, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) inhibitors, CD137 inhibitors, Killer cell lectin-like receptor subfamily G member 1 inhibitors, TIM-3 inhibitors, B- and T-lymphocyte attenuator inhibitors, CD305 inhibitors, PD-1 inhibitors, PD-L1 inhibitors, PEG-Interferon Lambda, recombinant thymosin alpha-1, BTK inhibitors, modulators of TIGIT, modulators of CD47, modulators of SIRPalpha, modulators of ICOS, modulators of CD27, modulators of CD70, modulators of OX40, cccDNA epigenetic modifiers, modulators of NKG2D, modulators of Tim-4, modulators of B7-H4, modulators of B7-H3, modulators of NKG2A, modulators of GITR, modulators of CD160, modulators of HEVEM, modulators of CD161, modulators of Axl, modulators of Mer, modulators of Tyro, gene modifiers or editors such as CRISPR (including CRISPR Cas9), zinc finger nucleases or synthetic nucleases (TALENs), IAPs inhibitors, SMAC mimetics, IDO inhibitors, and Hepatitis B virus replication inhibitors.
In another specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, PD-1 inhibitors, PD-L1 inhibitors, Arginase-1 inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2.
In another specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HBV DNA polymerase inhibitor and at least a second additional therapeutic agent selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, short interfering RNAs (siRNA), miRNA gene therapy agents, short synthetic hairpin RNAs (sshRNAs), and nucleoprotein modulators (HBV core or capsid protein modulators).
In another specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HBV DNA polymerase inhibitor, one or two additional therapeutic agents selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, PD-1 inhibitors, PD-L1 inhibitors, Arginase-1 inhibitors, PI3K inhibitors, IDO inhibitors, and stimulators of NOD2, and one or two additional therapeutic agents selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, short interfering RNAs (siRNA), miRNA gene therapy agents, short synthetic hairpin RNAs (sshRNAs), and nucleoprotein modulators (HBV core or capsid protein modulators).
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with one, two, three, four or more additional therapeutic agents selected from adefovir (Hepsera®), tenofovir disoproxil fumarate+emtricitabine (TRUVADA®), tenofovir disoproxil fumarate (Viread®), entecavir (Baraclude®), lamivudine (Epivir-HBV®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®), Clevudine®, emtricitabine (Emtriva®), peginterferon alfa-2b (PEG-Intron®), Multiferon®, interferon alpha 1b (Hapgen®), interferon alpha-2b (Intron A®), pegylated interferon alpha-2a (Pegasys®), interferon alfa-n1 (Humoferon®), ribavirin, interferon beta-1a (Avonex®), Bioferon, Ingaron, Inmutag (Inferon), Algeron, Roferon-A, Oligotide, Zutectra, Shaferon, interferon alfa-2b (AXXO), Alfaferone, interferon alfa-2b (BioGeneric Pharma), Feron, interferon-alpha 2 (CJ), BEVAC, Laferonum, VIPEG, BLAUFERON-B, BLAUFERON-A, Intermax Alpha, Realdiron, Lanstion, Pegaferon, PDferon-B, interferon alfa-2b (IFN, Laboratorios Bioprofarma), alfainterferona 2b, Kalferon, Pegnano, Feronsure, PegiHep, interferon alfa 2b (Zydus-Cadila), Optipeg A, Realfa 2B, Reliferon, interferon alfa-2b (Amega), interferon alfa-2b (Virchow), peginterferon alfa-2b (Amega), Reaferon-EC, Proquiferon, Uniferon, Urifron, interferon alfa-2b (Changchun Institute of Biological Products), Anterferon, Shanferon, MOR-22, interleukin-2 (IL-2, Immunex), recombinant human interleukin-2 (Shenzhen Neptunus), Layfferon, Ka Shu Ning, Shang Sheng Lei Tai, INTEFEN, SINOGEN, Fukangtai, Alloferon and celmoleukin.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®).
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®). In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I) is combined with a PD-1 inhibitor. In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I) is combined with a PD-L1 inhibitor. In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I) is combined with an IDO inhibitor. In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I) is combined with an IDO inhibitor and a PD-1 inhibitor. In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I) is combined with an IDO inhibitor and a PD-L1 inhibitors.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), interferon alpha receptor ligands, hyaluronidase inhibitors, recombinant IL-7, HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, compounds targeting HbcAg, cyclophilin inhibitors, HBV Therapeutic vaccines, HBV prophylactic vaccines, HBV viral entry inhibitors, NTCP inhibitors, antisense oligonucleotide targeting viral mRNA, short interfering RNAs (siRNA), miRNA gene therapy agents, endonuclease modulators, inhibitors of ribonucleotide reductase, Hepatitis B virus E antigen inhibitors, recombinant scavenger receptor A (SRA) proteins, src kinase inhibitors, HBx inhibitors, cccDNA inhibitors, short synthetic hairpin RNAs (sshRNAs), HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), CCR2 chemokine antagonists, thymosin agonists, cytokines, nucleoprotein modulators (HBV core or capsid protein modulators), stimulators of retinoic acid-inducible gene 1, stimulators of NOD2, stimulators of NOD1, IDO inhibitors, recombinant thymosin alpha-1, Arginase-1 inhibitors, STING agonists, PI3K inhibitors, lymphotoxin beta receptor activators, Natural Killer Cell Receptor 2B4 inhibitors, Lymphocyte-activation gene 3 inhibitors, CD160 inhibitors, cytotoxic T-lymphocyte-associated protein 4 (CTLA4) inhibitors, CD137 inhibitors, Killer cell lectin-like receptor subfamily G member 1 inhibitors, TIM-3 inhibitors, B- and T-lymphocyte attenuator inhibitors, cccDNA epigenetic modifiers, CD305 inhibitors, PD-1 inhibitors, PD-L1 inhibitors, PEG-Interferon Lambd, BTK inhibitors, modulators of TIGIT, modulators of CD47, modulators of SIRPalpha, modulators of ICOS, modulators of CD27, modulators of CD70, modulators of OX40, modulators of NKG2D, modulators of Tim-4, modulators of B7-H4, modulators of B7-H3, modulators of NKG2A, modulators of GITR, modulators of CD160, modulators of HEVEM, modulators of CD161, modulators of Axl, modulators of Mer, modulators of Tyro, gene modifiers or editors such as CRISPR (including CRISPR Cas9), zinc finger nucleases or synthetic nucleases (TALENs), IAPs inhibitors, SMAC mimetics, and Hepatitis B virus replication inhibitors.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of peginterferon alfa-2b (PEG-Intron®), Multiferon®, interferon alpha 1b (Hapgen®), interferon alpha-2b (Intron A®), pegylated interferon alpha-2a (Pegasys®), interferon alfa-n1 (Humoferon®), ribavirin, interferon beta-1a (Avonex®), Bioferon, Ingaron, Inmutag (Inferon), Algeron, Roferon-A, Oligotide, Zutectra, Shaferon, interferon alfa-2b (AXXO), Alfaferone, interferon alfa-2b (BioGeneric Pharma), Feron, interferon-alpha 2 (CJ), BEVAC, Laferonum, VIPEG, BLAUFERON-B, BLAUFERON-A, Intermax Alpha, Realdiron, Lanstion, Pegaferon, PDferon-B, interferon alfa-2b (IFN, Laboratorios Bioprofarma), alfainterferona 2b, Kalferon, Pegnano, Feronsure, PegiHep, interferon alfa 2b (Zydus-Cadila), Optipeg A, Realfa 2B, Reliferon, interferon alfa-2b (Amega), interferon alfa-2b (Virchow), peginterferon alfa-2b (Amega), Reaferon-EC, Proquiferon, Uniferon, Urifron, interferon alfa-2b (Changchun Institute of Biological Products), Anterferon, Shanferon, MOR-22, interleukin-2 (IL-2, Immunex), recombinant human interleukin-2 (Shenzhen Neptunus), Layfferon, Ka Shu Ning, Shang Sheng Lei Tai, INTEFEN, SINOGEN, Fukangtai, Alloferon and celmoleukin;
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, Arginase-1 inhibitors, PI3K inhibitors, PD-1 inhibitors, PD-L1 inhibitors, IDO inhibitors, and stimulators of NOD2.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®) and at least a second additional therapeutic agent selected from the group consisting of HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, short interfering RNAs (siRNA), miRNA gene therapy agents, short synthetic hairpin RNAs (sshRNAs), and nucleoprotein modulators (HBV core or capsid protein modulators).
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: entecavir (Baraclude®), adefovir (Hepsera®), tenofovir disoproxil fumarate (Viread®), tenofovir alafenamide, tenofovir, tenofovir disoproxil, tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, telbivudine (Tyzeka®) or lamivudine (Epivir-HBV®), one or two additional therapeutic agents selected from the group consisting of: immunomodulators, toll-like receptor modulators (modulators of TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), HBsAg inhibitors, hepatitis B surface antigen (HBsAg) secretion or assembly inhibitors, HBV therapeutic vaccines, HBV antibodies including HBV antibodies targeting the surface antigens of the hepatitis B virus and bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives, TCR-like antibodies), cyclophilin inhibitors, stimulators of retinoic acid-inducible gene 1, PD-1 inhibitors, PD-L1 inhibitors, Arginase-1 inhibitors, P13K inhibitors, IDO inhibitors, and stimulators of NOD2, and one or two additional therapeutic agents selected from the group consisting of: HBV viral entry inhibitors, NTCP inhibitors, HBx inhibitors, cccDNA inhibitors, HBV antibodies targeting the surface antigens of the hepatitis B virus, short interfering RNAs (siRNA), miRNA gene therapy agents, short synthetic hairpin RNAs (sshRNAs), and nucleoprotein modulators (HBV core or capsid protein modulators).
In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 5-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 5-10; 5-15; 5-20; 5-25; 25-30; 20-30; 15-30; or 10-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide. A compound as disclosed herein (e.g., a crystalline form of Compound I) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 1 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 100-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 100-150; 100-200, 100-250; 100-300; 100-350; 150-200; 150-250; 150-300; 150-350; 150-400; 200-250; 200-300; 200-350; 200-400; 250-350; 250-400; 350-400 or 300-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 300 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 250 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 150 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil. A compound as disclosed herein (e.g., a crystalline form of Compound I) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 1 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
In certain embodiments, a method for treating or preventing an HIV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents. In one embodiment, a method for treating an HIV infection in a human having or at risk of having the infection is provided, comprising administering to the human a therapeutically effective amount of a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with a therapeutically effective amount of one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents.
In certain embodiments, the present disclosure provides a method for treating an HIV infection, comprising administering to a patient in need thereof a therapeutically effective amount of a compound disclosed herein, or a pharmaceutically acceptable salt, thereof, in combination with a therapeutically effective amount of one or more additional therapeutic agents which are suitable for treating an HIV infection.
A compound as disclosed herein (e.g. any crystalline form of Compound I) may be combined with one or more additional therapeutic agents in any dosage amount of the compound of Formula I (e.g., from 1 mg to 1000 mg of compound).
In one embodiment, pharmaceutical compositions comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents, and a pharmaceutically acceptable carrier, diluent or excipient are provided.
In one embodiment, kits comprising a compound disclosed herein (e.g. any crystalline form of Compound I), in combination with one or more (e.g., one, two, three, one or two, or one to three) additional therapeutic agents are provided.
In the above embodiments, the additional therapeutic agent may be an anti-HIV agent. For example, in some embodiments, the additional therapeutic agent is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, HIV entry inhibitors (e.g., CCR5 inhibitors, gp41 inhibitors (i.e., fusion inhibitors) and CD4 attachment inhibitors), CXCR4 inhibitors, gp120 inhibitors, G6PD and NADH-oxidase inhibitors, HIV vaccines, HIV maturation inhibitors, latency reversing agents (e.g., histone deacetylase inhibitors, proteasome inhibitors, protein kinase C (PKC) activators, and BRD4 inhibitors), compounds that target the HIV capsid (“capsid inhibitors”; e.g., capsid polymerization inhibitors or capsid disrupting compounds, HIV nucleocapsid p7 (NCp7) inhibitors, HIV p24 capsid protein inhibitors), pharmacokinetic enhancers, immune-based therapies (e.g., Pd-1 modulators, Pd-L1 modulators, toll like receptors modulators, IL-15 agonists,), HIV antibodies, bispecific antibodies and “antibody-like” therapeutic proteins (e.g., DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives) including those targeting HIV gp120 or gp41, combination drugs for HIV, HIV p17 matrix protein inhibitors, IL-13 antagonists, Peptidyl-prolyl cis-trans isomerase A modulators, Protein disulfide isomerase inhibitors, Complement C5a receptor antagonists, DNA methyltransferase inhibitor, HIV vif gene modulators, Vif dimerization antagonists, HIV-1 viral infectivity factor inhibitors, TAT protein inhibitors, HIV-1 Nef modulators, Hck tyrosine kinase modulators, mixed lineage kinase-3 (MLK-3) inhibitors, HIV-1 splicing inhibitors, Rev protein inhibitors, Integrin antagonists, Nucleoprotein inhibitors, Splicing factor modulators, COMM domain containing protein 1 modulators, HIV Ribonuclease H inhibitors, Retrocyclin modulators, CDK-9 inhibitors, Dendritic ICAM-3 grabbing nonintegrin 1 inhibitors, HIV GAG protein inhibitors, HIV POL protein inhibitors, Complement Factor H modulators, Ubiquitin ligase inhibitors, Deoxycytidine kinase inhibitors, Cyclin dependent kinase inhibitors Proprotein convertase PC9 stimulators, ATP dependent RNA helicase DDX3X inhibitors, reverse transcriptase priming complex inhibitors, HIV gene therapy, PI3K inhibitors, compounds such as those disclosed in WO 2013/006738 (Gilead Sciences), US 2013/0165489 (University of Pennsylvania), WO 2013/091096A1 (Boehringer Ingelheim), WO 2009/062285 (Boehringer Ingelheim), US20140221380 (Japan Tobacco), US20140221378 (Japan Tobacco), WO 2010/130034 (Boehringer Ingelheim), WO 2013/159064 (Gilead Sciences), WO 2012/145728 (Gilead Sciences), WO2012/003497 (Gilead Sciences), WO2014/100323 (Gilead Sciences), WO2012/145728 (Gilead Sciences), WO2013/159064 (Gilead Sciences) and WO 2012/003498 (Gilead Sciences) and WO 2013/006792 (Pharma Resources), and other drugs for treating HIV, and combinations thereof.
In certain embodiments, the additional therapeutic is selected from the group consisting of HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, pharmacokinetic enhancers, and combinations thereof.
In certain embodiments a crystalline form of Compound I is formulated as a tablet, which may optionally contain one or more other compounds useful for treating HIV. In certain embodiments, the tablet can contain another active ingredient for treating HIV, such as HIV protease inhibitors, HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase, HIV nucleoside or nucleotide inhibitors of reverse transcriptase, HIV integrase inhibitors, HIV non-catalytic site (or allosteric) integrase inhibitors, pharmacokinetic enhancers, and combinations thereof.
In certain embodiments, such tablets are suitable for once daily dosing. In certain embodiments, the additional therapeutic agent is selected from one or more of:
  • (1) Combination drugs selected from the group consisting of ATRIPLA® (efavirenz+tenofovir disoproxil fumarate+emtricitabine), COMPLERA® (EVIPLERA®, rilpivirine+tenofovir disoproxil fumarate+emtricitabine), STRIBILD® (elvitegravir+cobicistat+tenofovir disoproxil fumarate+emtricitabine), dolutegravir+abacavir sulfate+lamivudine, TRIUMEQ® (dolutegravir+abacavir+lamivudine), lamivudine+nevirapine+zidovudine, dolutegravir+rilpivirine, dolutegravir+rilpivirine hydrochloride, atazanavir sulfate+cobicistat, atazanavir+cobicistat, darunavir+cobicistat, efavirenz+lamivudine+tenofovir disoproxil fumarate, tenofovir alafenamide hemifumarate+emtricitabine+cobicistat+elvitegravir, tenofovir alafenamide hemifumarate+emtricitabine, tenofovir alafenamide+emtricitabine, tenofovir alafenamide hemifumarate+emtricitabine+rilpivirine, tenofovir alafenamide+emtricitabine+rilpivirine, Vacc-4x+romidepsin, darunavir+tenofovir alafenamide hemifumarate+emtricitabine+cobicistat, APH-0812, raltegravir+lamivudine, KALETRA® (ALUVIA®, lopinavir+ritonavir), atazanavir sulfate+ritonavir, COMBIVIR® (zidovudine+lamivudine, AZT+3TC), EPZICOM® (Livexa®, abacavir sulfate+lamivudine, ABC+3TC), TRIZIVIR® (abacavir sulfate+zidovudine+lamivudine, ABC+AZT+3TC), TRUVADA® (tenofovir disoproxil fumarate+emtricitabine, TDF+FTC), doravirine+lamivudine+tenofovir disoproxil fumarate, doravirine+lamivudine+tenofovir disoproxil, tenofovir+lamivudine and lamivudine+tenofovir disoproxil fumarate;
  • (2) HIV protease inhibitors selected from the group consisting of amprenavir, atazanavir, fosamprenavir, fosamprenavir calcium, indinavir, indinavir sulfate, lopinavir, ritonavir, nelfinavir, nelfinavir mesylate, saquinavir, saquinavir mesylate, tipranavir, brecanavir, darunavir, DG-17, TMB-657 (PPL-100) and TMC-310911;
  • (3) HIV non-nucleoside or non-nucleotide inhibitors of reverse transcriptase selected from the group consisting of delavirdine, delavirdine mesylate, nevirapine, etravirine, dapivirine, doravirine, rilpivirine, efavirenz, KM-023, VM-1500, lentinan and AIC-292;
  • (4) HIV nucleoside or nucleotide inhibitors of reverse transcriptase selected from the group consisting of VIDEX® and VIDEX® EC (didanosine, ddl), zidovudine, emtricitabine, didanosine, stavudine, zalcitabine, lamivudine, censavudine, abacavir, abacavir sulfate, elvucitabine, alovudine, phosphazid, fozivudine tidoxil, apricitabine, KP-1461, fosalvudine tidoxil, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, tenofovir alafenamide, tenofovir alafenamide hemifumarate, tenofovir alafenamide fumarate, adefovir, adefovir dipivoxil, and festinavir;
  • (5) HIV integrase inhibitors selected from the group consisting of curcumin, derivatives of curcumin, chicoric acid, derivatives of chicoric acid, 3,5-dicaffeoylquinic acid, derivatives of 3,5-dicaffeoylquinic acid, aurintricarboxylic acid, derivatives of aurintricarboxylic acid, caffeic acid phenethyl ester, derivatives of caffeic acid phenethyl ester, tyrphostin, derivatives of tyrphostin, quercetin, derivatives of quercetin, raltegravir, elvitegravir, dolutegravir and cabotegravir;
  • (6) HIV non-catalytic site, or allosteric, integrase inhibitors (NCINI) selected from the group consisting of CX-05168, CX-05045 and CX-14442;
  • (7) HIV gp41 inhibitors selected from the group consisting of enfuvirtide, sifuvirtide and albuvirtide;
  • (8) HIV entry inhibitors selected from the group consisting of cenicriviroc;
  • (9) HIV gp120 inhibitors selected from the group consisting of Radha-108 (Receptol) and BMS-663068;
  • (10) CCR5 inhibitors selected from the group consisting of aplaviroc, vicriviroc, maraviroc, cenicriviroc, PRO-140, Adaptavir (RAP-101), nifeviroc (TD-0232), TD-0680, and vMIP (Haimipu);
  • (11) CD4 attachment inhibitors selected from the group consisting of ibalizumab;
  • (12) CXCR4 inhibitors selected from the group consisting of plerixafor, ALT-1188, vMIP and Haimipu;
  • (13) Pharmacokinetic enhancers selected from the group consisting of cobicistat and ritonavir;
  • (14) Immune-based therapies selected from the group consisting of dermaVir, interleukin-7, plaquenil (hydroxychloroquine), proleukin (aldesleukin, IL-2), interferon alfa, interferon alfa-2b, interferon alfa-n3, pegylated interferon alfa, interferon gamma, hydroxyurea, mycophenolate mofetil (MPA) and its ester derivative mycophenolate mofetil (MMF), WF-10, ribavirin, IL-2, IL-12, polymer polyethyleneimine (PEI), Gepon, VGV-1, MOR-22, BMS-936559, toll-like receptors modulators (TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, TLR8, TLR9, TLR10, TLR11, TLR12 and TLR13), rintatolimod and IR-103;
  • (15) HIV vaccines selected from the group consisting of peptide vaccines, recombinant subunit protein vaccines, live vector vaccines, DNA vaccines, virus-like particle vaccines (pseudovirion vaccine), CD4-derived peptide vaccines, vaccine combinations, rgp120 (AIDSVAX), ALVAC HIV (vCP1521)/AIDSVAX B/E (gp120) (RV144), monomeric gp120 HIV-1 subtype C vaccine (Novartis), Remune, ITV-1, Contre Vir, Ad5-ENVA-48, DCVax-001 (CDX-2401), PEP-6409, Vacc-4x, Vacc-C5, VAC-3S, multiclade DNA recombinant adenovirus-5 (rAd5), Pennvax-G, VRC-HIV MAB060-00-AB, AVX-101, HIV-TriMix-mRNA vaccine, AVX-201, HIV-LAMP-vax, Ad35, Ad35-GRIN, NAcGM3/VSSP ISA-51, poly-ICLC adjuvanted vaccines, TatImmune, GTU-multiHIV (FIT-06), AGS-004, gp140[delta]V2.TV1+MF-59, rVSVIN HIV-1 gag vaccine, SeV-Gag vaccine, AT-20, DNK-4, Ad35-GRIN/ENV, TBC-M4, HIVAX, HIVAX-2, NYVAC-HIV-PT1, NYVAC-HIV-PT4, DNA-HIV-PT123, rAAV1-PG9DP, GOVX-B11, GOVX-B21, ThV-01, TUTI-16, VGX-3300, TVI-HIV-1, Ad-4 (Ad4-env Clade C+Ad4-mGag), EN41-UGR7C, EN41-FPA2, PreVaxTat, TL-01, SAV-001, AE-H, MYM-V101, CombiHIVvac, ADVAX, MYM-V201, MVA-CMDR, MVATG-17401, ETV-01, CDX-1401, rcAd26.MOS1.HIV-Env and DNA-Ad5 gag/pol/nef/nev (HVTN505);
  • (16) HIV antibodies, bispecific antibodies and “antibody-like” therapeutic proteins (such as DARTs®, Duobodies®, Bites®, XmAbs®, TandAbs®, Fab derivatives) including BMS-936559, TMB-360 and those targeting HIV gp120 or gp41 selected from the group consisting of bavituximab, UB-421, C2F5, C2G12, C4E10, C2F5+C2G12+C4E10, 3-BNC-117, PGT145, PGT121, MDX010 (ipilimumab), VRC01, A32, 7B2, 10E8, VRC-07-523 and VRC07;
  • (17) latency reversing agents selected from the group consisting of Histone deacetylase inhibitors such as Romidepsin, vorinostat, panobinostat; Proteasome inhibitors such as Velcade; protein kinase C (PKC) activators such as Indolactam, Prostratin, Ingenol B and DAG-lactones, Ionomycin, GSK-343, PMA, SAHA, BRD4 inhibitors, IL-15, JQ1, disulfram, and amphotericin B;
  • (18) HIV nucleocapsid p7 (NCp7) inhibitors selected from the group consisting of azodicarbonamide;
  • (19) HIV maturation inhibitors selected from the group consisting of BMS-955176 and GSK-2838232;
  • (20) PI3K inhibitors selected from the group consisting of idelalisib, AZD-8186, buparlisib, CLR-457, pictilisib, neratinib, rigosertib, rigosertib sodium, EN-3342, TGR-1202, alpelisib, duvelisib, UCB-5857, taselisib, XL-765, gedatolisib, VS-5584, copanlisib, CAI orotate, perifosine, RG-7666, GSK-2636771, DS-7423, panulisib, GSK-2269557, GSK-2126458, CUDC-907, PQR-309, INCB-040093, pilaralisib, BAY-1082439, puquitinib mesylate, SAR-245409, AMG-319, RP-6530, ZSTK-474, MLN-1117, SF-1126, RV-1729, sonolisib, LY-3023414, SAR-260301 and CLR-1401;
  • (21) the compounds disclosed in WO 2004/096286 (Gilead Sciences), WO 2006/110157 (Gilead Sciences), WO 2006/015261 (Gilead Sciences), WO 2013/006738 (Gilead Sciences), US 2013/0165489 (University of Pennsylvania), US20140221380 (Japan Tobacco), US20140221378 (Japan Tobacco), WO 2013/006792 (Pharma Resources), WO 2009/062285 (Boehringer Ingelheim), WO 2010/130034 (Boehringer Ingelheim), WO 2013/091096A1 (Boehringer Ingelheim), WO 2013/159064 (Gilead Sciences), WO 2012/145728 (Gilead Sciences), WO2012/003497 (Gilead Sciences), WO2014/100323 (Gilead Sciences), WO2012/145728 (Gilead Sciences), WO2013/159064 (Gilead Sciences) and WO 2012/003498 (Gilead Sciences); and
  • (22) other drugs for treating HIV selected from the group consisting of BanLec, MK-8507, AG-1105, TR-452, MK-8591, REP 9, CYT-107, alisporivir, NOV-205, IND-02, metenkefalin, PGN-007, Acemannan, Gamimune, Prolastin, 1,5-dicaffeoylquinic acid, BIT-225, RPI-MN, VSSP, Hlviral, IMO-3100, SB-728-T, RPI-MN, VIR-576, HGTV-43, MK-1376, rHIV7-shl-TAR-CCR5RZ, MazF gene therapy, BlockAide, ABX-464, SCY-635, naltrexone, AAV-eCD4-Ig gene therapy, TEV-90110, TEV-90112, TEV-90111, TEV-90113, deferiprone, HS-10234, and PA-1050040 (PA-040).
In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with one, two, three, four or more additional therapeutic agents. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with two additional therapeutic agents. In other embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with three additional therapeutic agents. In further embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with four additional therapeutic agents. The one, two, three, four or more additional therapeutic agents can be different therapeutic agents selected from the same class of therapeutic agents, and/or they can be selected from different classes of therapeutic agents. In a specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase and an HIV non-nucleoside inhibitor of reverse transcriptase. In another specific embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, and an HIV protease inhibiting compound. In a further embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and an HIV protease inhibiting compound. In an additional embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with an HIV nucleoside or nucleotide inhibitor of reverse transcriptase, an HIV non-nucleoside inhibitor of reverse transcriptase, and a pharmacokinetic enhancer. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with at least one HIV nucleoside inhibitor of reverse transcriptase, an integrase inhibitor, and a pharmacokinetic enhancer. In another embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with two HIV nucleoside or nucleotide inhibitors of reverse transcriptase.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with one, two, three, four or more additional therapeutic agents selected from Triumeq® (dolutegravir+abacavir+lamivudine), dolutegravir+abacavir sulfate+lamivudine, raltegravir, raltegravir+lamivudine, Truvada® (tenofovir disoproxil fumarate+emtricitabine, TDF+FTC), maraviroc, enfuvirtide, Epzicom® (Livexa®, abacavir sulfate+lamivudine, ABC+3TC), Trizivir® (abacavir sulfate+zidovudine+lamivudine, ABC+AZT+3TC), adefovir, adefovir dipivoxil, Stribild® (elvitegravir+cobicistat+tenofovir disoproxil fumarate+emtricitabine), rilpivirine, rilpivirine hydrochloride, Complera® (Eviplera®, rilpivirine+tenofovir disoproxil fumarate+emtricitabine), Cobicistat, atazanavir sulfate+cobicistat, atazanavir+cobicistat, darunavir+cobicistat, Atripla® (efavirenz+tenofovir disoproxil fumarate+emtricitabine), atazanavir, atazanavir_sulfate, dolutegravir, elvitegravir, Aluvia® (Kaletra®, lopinavir+ritonavir), ritonavir, emtricitabine, atazanavir_sulfate+ritonavir, darunavir, lamivudine, Prolastin, fosamprenavir, fosamprenavir calcium, efavirenz, Combivir® (zidovudine+lamivudine, AZT+3TC), etravirine, nelfinavir, nelfinavir mesylate, interferon, didanosine, stavudine, indinavir, indinavir sulfate, tenofovir+lamivudine, zidovudine, nevirapine, saquinavir, saquinavir mesylate, aldesleukin, zalcitabine, tipranavir, amprenavir, delavirdine, delavirdine mesylate, Radha-108 (Receptol), Hlviral, lamivudine+tenofovir disoproxil fumarate, efavirenz+lamivudine+tenofovir disoproxil fumarate, phosphazid, lamivudine+nevirapine+zidovudine, abacavir, abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, darunavir+cobicistat, atazanavir sulfate+cobicistat, atazanavir+cobicistat, tenofovir alafenamide and tenofovir alafenamide hemifumarate.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, tenofovir alafenamide or tenofovir alafenamide hemifumarate.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, or tenofovir alafenamide hemifumarate.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: abacavir sulfate, tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate and a second additional therapeutic agent selected from the group consisting of emtricitabine and lamivudine.
In a particular embodiment, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with a first additional therapeutic agent selected from the group consisting of: tenofovir, tenofovir disoproxil, tenofovir disoproxil fumarate, tenofovir alafenamide, and tenofovir alafenamide hemifumarate and a second additional therapeutic agent, wherein the second additional therapeutic agent is emtricitabine.
In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 5-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 5-10; 5-15; 5-20; 5-25; 25-30; 20-30; 15-30; or 10-30 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 10 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 25 mg tenofovir alafenamide fumarate, tenofovir alafenamide hemifumarate, or tenofovir alafenamide and 200 mg emtricitabine. A compound as disclosed herein (e.g., any crystalline form of Compound I) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 50 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 200-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 200-250; 200-300; 200-350; 250-350; 250-400; 350-400; 300-400; or 250-400 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil and 200 mg emtricitabine. In certain embodiments, a compound disclosed herein (e.g. any crystalline form of Compound I), is combined with 300 mg tenofovir disoproxil fumarate, tenofovir disoproxil hemifumarate, or tenofovir disoproxil and 200 mg emtricitabine. A compound as disclosed herein (e.g. any crystalline form of Compound I) may be combined with the agents provided herein in any dosage amount of the compound (e.g., from 1 mg to 500 mg of compound) the same as if each combination of dosages were specifically and individually listed.
In certain embodiments, when a compound disclosed herein is combined with one or more additional therapeutic agents as described above, the components of the composition are administered as a simultaneous or sequential regimen. When administered sequentially, the combination may be administered in two or more administrations.
In certain embodiments, a compound disclosed herein is combined with one or more additional therapeutic agents in a unitary dosage form for simultaneous administration to a patient, for example as a solid dosage form for oral administration.
In certain embodiments, a compound disclosed herein is administered with one or more additional therapeutic agents. Co-administration of a compound disclosed herein with one or more additional therapeutic agents generally refers to simultaneous or sequential administration of a compound disclosed herein and one or more additional therapeutic agents, such that therapeutically effective amounts of the compound disclosed herein and one or more additional therapeutic agents are both present in the body of the patient.
Co-administration includes administration of unit dosages of the compounds disclosed herein before or after administration of unit dosages of one or more additional therapeutic agents, for example, administration of the compound disclosed herein within seconds, minutes, or hours of the administration of one or more additional therapeutic agents.
For example, in some embodiments, a unit dose of a compound disclosed herein is administered first, followed within seconds or minutes by administration of a unit dose of one or more additional therapeutic agents. Alternatively, in other embodiments, a unit dose of one or more additional therapeutic agents is administered first, followed by administration of a unit dose of a compound disclosed herein within seconds or minutes. In some embodiments, a unit dose of a compound disclosed herein is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of one or more additional therapeutic agents. In other embodiments, a unit dose of one or more additional therapeutic agents is administered first, followed, after a period of hours (e.g., 1-12 hours), by administration of a unit dose of a compound disclosed herein.
VIII. Examples
Abbreviations as used herein have respective meanings as follows:
Ac Acetate
ACN Acetonitrile
BippyPhos 5-(di-tert-butylphosphino)-1′,3′,5′-
tripheny1-1′H-[1,4′]bipyrazole
Bn Benzyl
br. s Broad singlet
Bu Butyl
dba Dibenzylideneacetone
DCM Dichloromethane
dd Doublet of doublets
ddd Doublet of doublet of doublets
DIPE diisopropyl ether
DMF Dimethylformamide
DMSO Dimethylsulfoxide
dr Diastereomeric ratio
DSC Differential scanning calorimetry
DVS Dynamic vapor sorption
ee Enantiomeric excess
equiv Equivalents
Et Ethyl
EtOAc Ethyl acetate
EtOH Ethanol
ft Foot (length)
g Gram
GC Gas chromatography
h Hour
HBV Hepatitis B virus
HCV Hepatitis C virus
HFIPA hexafluoroisopropanol
HIV Human Immunodeficiency virus
HPLC High-pressure liquid chromatography
IPA Isopropyl alcohol
IPAc Isopropyl acetate
iPr Isopropyl
iPrOAc or IPAc isopropyl acetate
kg Kilogram
L Liter
m Multiplet
M Molar
Me Methyl
MEK methyl ethyl ketone
MeOH methanol
Me—THF 2 methyl tetrahydrofuran
mg Milligram
MHz Mega hertz
MIBK Methylisobutyl ketone
min Minute
mL Milliliter
mmol Millimole
mol Mole
MTBE Methyl-tert-butyl ether
N Normal
NLT No less than
NMR Nuclear magnetic resonance
Ph Phenyl
RH Relative humidity
s Singlet
t-Bu tert-Butyl
td Triplet of doublets
Tf Trifluoromethanesulfonate
TFE trifluoroethanol
TGA Thermogravimetric analysis
THF Tetrahydrofuran
TMS Trimethylsilyl
vol Volume
wt Weight
XRPD X-ray powder diffraction
δ Chemical shift
μL Microliter
The solid forms (polymorphs, solvates and hydrates) of Compound I were characterized by a variety of the following methods.
X-ray Powder Diffraction (XRPD). The Rigaku Smart-Lab® X-ray diffraction system was configured for reflection BraggBrentano geometry using a line source X-ray beam. The x-ray source is a Cu Long Fine Focus tube that was operated at 40 kV and 44 mA. That source provides an incident beam profile at the sample that changes from a narrow line at high angles to a broad rectangle at low angles. Beam conditioning slits were used on the line X-ray source to ensure that the maximum beam size is less than 10 mm both along the line and normal to the line. The Bragg-Brentano geometry is a para-focusing geometry controlled by passive divergence and receiving slits with the sample itself acting as the focusing component for the optics. The inherent resolution of Bragg-Brentano geometry is governed in part by the diffractometer radius and the width of the receiving slit used. Typically, the Rigaku Smart-Lab is operated to give peak widths of 0.1° 20 or less. The axial divergence of the X-ray beam is controlled by 5.0-degree Soller slits in both the incident and diffracted beam paths.
Powder samples were prepared in a low background Si holder using light manual pressure to keep the sample surfaces flat and level with the reference surface of the sample holder. The single-crystal, Si, low-background holder has a small circular recess (7 mm diameter and about 1 mm depth) that holds between 5 and 10 mg of powdered material. Each sample was analyzed from 2 to 40°2θ using a continuous scan of 3° 2θ per minute with an effective step size of 0.02° 2θ.
Solubility Estimations. Solubilities were estimated by treating a weighed sample of Compound I with measured aliquots of the test solvent at ambient temperature, with shaking and/or sonication between aliquots. Dissolution was determined by visual inspection. Solubility numbers were calculated by dividing the total amount of solvent used to dissolve the sample by the weight of the sample. The actual solubilities may be greater than the numbers calculated because of the use of solvent aliquots that were too large or because of slow dissolution rates. The solubility number is expressed as “less than” if dissolution did not occur during the experiment. The solubility number is expressed as “greater than” if dissolution occurred on addition of the first solvent aliquot.
Differential Scanning Calorimetry (DSC). DSC analyses were carried out using a TA Instruments Q2000 instrument. The instrument temperature calibration was performed using indium. The DSC cell was kept under a nitrogen purge of ˜50 mL per minute during each analysis. The sample was placed in a standard, crimped, aluminum pan and was heated from 20° C. to 350° C. at a rate of 10° C. per minute.
Thermogravimetric (TGA) Analysis. The TGA analysis was carried out using a TA Instruments Q50 instrument. The instrument balance was calibrated using class M weights and the temperature calibration was performed using alumel. The nitrogen purge was ˜40 ml per minute at the balance and ˜60 ml per minute at the furnace. Each sample was placed into a pretared platinum pan and heated from 20° C. to 350° C. at a rate of 10° C. per minute.
Karl Fischer (KF) Analyses. Karl Fischer analyses were carried out using a Mettler-Toledo C20 Coulometric KF titrator. The instrument was calibrated with a standard of known water concentration.
Dynamic Vapor Sorption (DVS). DVS analyses were carried out in a TA Instruments 05000 Dynamic Vapor Sorption analyzer. The instrument was calibrated with standard weights and a sodium bromide standard for humidity. Samples were analyzed at 25° C. with a maximum equilibration time of 60 minutes in 10% relative humidity (RH) steps from 5 to 95% RH (adsorption cycle) and from 95 to 5% RH (desorption cycle).
Example 1. Stable Form Screening of Compound I
Method I.
50 mg of Compound I was dissolved in 1 mL of methanol/dichloromethane, agitated, and then evaporated.
Method II.
A solution of Compound I, methanol and dichloromethane, was concentrated under vacuum at 40° C. to about 10 volumes. Methanol was charged and the reaction mixture was concentrated under vacuum at 40° C. to about 10 volumes (and repeated once). The slurry was agitated at 20° C. for at least 2 hours. The slurry was filtered and the filter cake was rinsed with methanol and ethyl acetate. The wet product was dried under vacuum at NMT 40° C.
Form I is characterized by the X-ray powder diffraction pattern in FIG. 1, and the differential scanning calorimetry plot in FIG. 3 showing endotherms at about 133 (conversion to Form III), 170 and 273° C. (decomposition).
Form II is characterized by the X-ray powder diffraction pattern in FIG. 5, and the differential scanning calorimetry plot in FIG. 7 showing endotherms at about 98° C. (conversion to Form IV), 253° C. and 274° C. (decomposition).
Form III was generated at 138° C. from Form I in a variable temperature XRD (VT XRD) experiment. Form III is stable when cooled to 25° C. and does not convert back to Form I. Form III was converted back to Form I in a competition slurry experiment with Form I in methanol within about 2 weeks (10 mg of each of Form I and Form III in methanol). Form III is characterized by the X-ray powder diffraction pattern in FIG. 9, and the differential scanning calorimetry plot in FIG. 11 showing endotherms at about 181 and 271° C. (decomposition).
Form IV was generated between 95 and 110° C. from Form II in a variable temperature XRD experiment. Form IV converts back to Form II when cooled to 25° C. in the VT XRD experiment. Form III is characterized by the X-ray powder diffraction pattern in FIG. 13.
Example 2. Preparation of Form I
Compound I Form I was prepared by dissolving Compound I in a methanol/dichloromethane mixture (33% MeOH/DCM) followed by reducing the volume and dichloromethane content by distillation. Solids were collected by vacuum filtration, resulting in Compound I Form I, as identified by XRPD.
Example 3. Preparation of Form II
Compound I Form II was made by slurrying Compound I Form I in chloroform at ambient temperature and pressure for 5 days. Solids were collected by vacuum filtration, resulting in Compound I Form II, as identified by XRPD. Compound I Form II was also prepared by cooling Compound I Form IV to approximately 25° C. during VT-XRPD analysis. Compound I Form II was also prepared by heating Compound I Form XIII to approximately 11° C.
Example 4. Preparation of Form III
Compound I Form III was made by heating Compound I Form I to approximately 150° C. during VT-XRPD analysis. Compound I Form III was also prepared at a lower temperature during VT-XRPD analysis when Compound I Form I was heated to and held at 100° C.
Example 5. Preparation of Form IV
Compound I Form IV was made by heating Compound I Form II to approximately 95° C. to 110° C. during VT-XRPD analysis. Compound I Form IV was also prepared during VT-XRPD analysis when Compound I Form III was heated to approximately 180° C.
Example 6. Preparation of Form V
Compound I Form V was made by forming a solution of Compound I in HFIPA (hexafluoroisopropanol), and evaporating to dryness. An alternative way of preparing Form V is to pour the solution of Compound I in HFIPA at 100° C. into cold water and isolate the solid.
Example 7. Preparation of Form VI
Compound I Form V was made by forming a solution of Compound I in TFE (2,2,2-trifluoroethanol), and evaporating to dryness.
Example 8. Preparation of Form VII
Compound I Form V was made by forming a solution of Compound I in TFE (2,2,2-trifluoroethanol), and evaporating to dryness.
Example 9. Preparation of Form VIII
Compound I Form V was made by exposing Form V or Form VII to 97% RH at room temperature for 1 week.
Example 10. Preparation of Form IX
Form IX was made by slurring approximately Form I of Compound I in 5:1 TFE/water at ambient temperature for 5 days. Solids were collected by vacuum filtration and dried under reduced pressure for a couple minutes, resulting in Form IX, as identified by XRPD.
Example 11. Preparation of Form X
Form X was made by dissolving approximately Form I of Compound I in chloroform. The resulting solution was filtered through a 0.2 μm nylon filter and placed in the CentriVap. The sample was centrifuged under vacuum for approximately 30 minutes at ambient temperature. The resulting solids were identified as Form X by XRPD.
Example 12. Preparation of Form XI
Form XI was made by dissolving Form I of Compound I in HFIPA. Methanol was then added to the solution, which resulted in a cloudy, white suspension. Solids were collected by vacuum filtration and dried under reduced pressure, and were identified as Form XI by XRPD.
Example 13. Preparation of Form XII
Form XII was made by forming a slurry of Form I of Compound I in 10:1 TFE/water at ambient temperature for 3 days. Solids were collected by vacuum filtration and dried under reduced pressure, and were identified as Form XII by XRPD.
Example 14. Preparation of Form XIII
Form XIII was made by cooling Form II to −10° C.
Example 15. Preparation of Form XIV
Form XIV was made by exposing Form XII of Compound I to vacuum under ambient conditions for three days, then exposing the sample to 40° C. for approximately two hours. Resulting solids were identified as Form XIV by XRPD.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, one of skill in the art will appreciate that certain changes and modifications may be practiced within the scope of the appended claims. In addition, each reference, including all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification are incorporated herein by reference, in their entirety, to the extent not inconsistent with the present description. Where a conflict exists between the instant application and a reference provided herein, the instant application shall dominate.

Claims (18)

What is claimed is:
1. A crystalline form of Compound I having the structure:
Figure US10508117-20191217-C00005
characterized by an X-ray powder diffraction (XRPD) pattern comprising three or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
2. The crystalline form of claim 1, characterized by an XRPD pattern comprising peaks at 5.3, 9.8 and 15.6 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
3. The crystalline form of claim 1, characterized by an XRPD pattern comprising peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 and 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
4. The crystalline form of claim 1, characterized by the XRPD pattern substantially in accordance with that of FIG. 20.
5. The crystalline form of claim 1, characterized by a differential scanning calorimetry (DSC) endotherm at about 141° C. or about 173° C.
6. The crystalline form of claim 1, characterized by
an XRPD pattern comprising peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 and 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation; and
a DSC endotherm at about 173° C.
7. A method of preparing a crystalline form of claim 1, comprising:
forming a mixture comprising a crystalline Form I of Compound I characterized by an XRPD pattern comprising three or more peaks at 5.8, 11.4, 11.6, 17.7, 20.1, 20.9, 22.3, 23.9, 26.0 or 26.8 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation, water and trifluoroethanol, under conditions suitable to prepare the crystalline form of claim 1.
8. The method of claim 7, wherein the ratio of trifluoroethanol to water is from about 10:1 to about 1:1 (volume/volume).
9. The method of claim 7, wherein the ratio of trifluoroethanol to water is about 5:1 (volume/volume).
10. A pharmaceutical composition comprising a therapeutically effective amount of a crystalline form of Compound I of claim 1, and a pharmaceutically acceptable carrier or excipient.
11. The pharmaceutical composition of claim 10, further comprising at least one additional therapeutic agent.
12. The crystalline form of claim 1, characterized by an X-ray powder diffraction (XRPD) pattern comprising four or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
13. The crystalline form of claim 1, characterized by an X-ray powder diffraction (XRPD) pattern comprising five or more peaks at 5.3, 9.8, 13.1, 15.6, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
14. The crystalline form of claim 2, characterized by an XRPD pattern further comprising one or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
15. The crystalline form of claim 2, characterized by an XRPD pattern further comprising two or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
16. The crystalline form of claim 2, characterized by an XRPD pattern further comprising three or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
17. The crystalline form of claim 2, characterized by an XRPD pattern further comprising four or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
18. The crystalline form of claim 2, characterized by an XRPD pattern further comprising five or more peaks at 13.1, 17.0, 19.6, 20.0, 20.7, 21.9 or 24.9 degrees 2θ (±0.2 degrees 2θ), wherein the XRPD is made using CuKα1 radiation.
US16/229,460 2014-09-16 2018-12-21 Solid forms of a toll-like receptor modulator Active US10508117B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/229,460 US10508117B2 (en) 2014-09-16 2018-12-21 Solid forms of a toll-like receptor modulator
US16/678,788 US11072615B2 (en) 2014-09-16 2019-11-08 Solid forms of a toll-like receptor modulator
US17/353,462 US11773098B2 (en) 2014-09-16 2021-06-21 Solid forms of a toll-like receptor modulator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462051063P 2014-09-16 2014-09-16
US14/853,855 US9738646B2 (en) 2014-09-16 2015-09-14 Solid forms of a toll-like receptor modulator
US15/591,711 US10202384B2 (en) 2014-09-16 2017-05-10 Solid forms of a toll-like receptor modulator
US16/229,460 US10508117B2 (en) 2014-09-16 2018-12-21 Solid forms of a toll-like receptor modulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/591,711 Continuation US10202384B2 (en) 2014-09-16 2017-05-10 Solid forms of a toll-like receptor modulator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/678,788 Continuation US11072615B2 (en) 2014-09-16 2019-11-08 Solid forms of a toll-like receptor modulator

Publications (2)

Publication Number Publication Date
US20190315750A1 US20190315750A1 (en) 2019-10-17
US10508117B2 true US10508117B2 (en) 2019-12-17

Family

ID=54266614

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/853,855 Active US9738646B2 (en) 2014-09-16 2015-09-14 Solid forms of a toll-like receptor modulator
US15/591,711 Active US10202384B2 (en) 2014-09-16 2017-05-10 Solid forms of a toll-like receptor modulator
US16/229,460 Active US10508117B2 (en) 2014-09-16 2018-12-21 Solid forms of a toll-like receptor modulator
US16/678,788 Active US11072615B2 (en) 2014-09-16 2019-11-08 Solid forms of a toll-like receptor modulator
US17/353,462 Active 2036-03-29 US11773098B2 (en) 2014-09-16 2021-06-21 Solid forms of a toll-like receptor modulator

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/853,855 Active US9738646B2 (en) 2014-09-16 2015-09-14 Solid forms of a toll-like receptor modulator
US15/591,711 Active US10202384B2 (en) 2014-09-16 2017-05-10 Solid forms of a toll-like receptor modulator

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/678,788 Active US11072615B2 (en) 2014-09-16 2019-11-08 Solid forms of a toll-like receptor modulator
US17/353,462 Active 2036-03-29 US11773098B2 (en) 2014-09-16 2021-06-21 Solid forms of a toll-like receptor modulator

Country Status (19)

Country Link
US (5) US9738646B2 (en)
EP (1) EP3194401B1 (en)
JP (3) JP2017526730A (en)
KR (2) KR20170054481A (en)
CN (2) CN110305133A (en)
AR (1) AR101883A1 (en)
AU (2) AU2015318061B2 (en)
BR (1) BR102015023450A2 (en)
CA (1) CA2960436C (en)
EA (1) EA201790369A1 (en)
ES (1) ES2835717T3 (en)
IL (1) IL250754B (en)
MX (1) MX2017003284A (en)
PT (1) PT3194401T (en)
SG (1) SG11201701520TA (en)
SI (1) SI3194401T1 (en)
TW (1) TWI728954B (en)
UY (1) UY36298A (en)
WO (1) WO2016044182A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072615B2 (en) 2014-09-16 2021-07-27 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US11110091B2 (en) 2008-12-09 2021-09-07 Gilead Sciences, Inc. Modulators of toll-like receptors
US11116774B2 (en) 2014-07-11 2021-09-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of HIV

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ702485A (en) 2010-06-03 2016-04-29 Pharmacyclics Llc The use of inhibitors of bruton’s tyrosine kinase (btk)
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
CA2879570A1 (en) 2012-07-24 2014-01-30 Pharmacyclics, Inc. Mutations associated with resistance to inhibitors of bruton's tyrosine kinase (btk)
US10034939B2 (en) * 2012-10-26 2018-07-31 The University Of Chicago Synergistic combination of immunologic inhibitors for the treatment of cancer
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
EP4079847A1 (en) 2014-07-30 2022-10-26 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
EP3341373A1 (en) * 2015-08-26 2018-07-04 Gilead Sciences, Inc. Deuterated toll-like receptor modulators
CN108513575A (en) 2015-10-23 2018-09-07 哈佛大学的校长及成员们 Nucleobase editing machine and application thereof
TWI808055B (en) 2016-05-11 2023-07-11 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-1 inhibitors
TWI794171B (en) 2016-05-11 2023-03-01 美商滬亞生物國際有限公司 Combination therapies of hdac inhibitors and pd-l1 inhibitors
KR20230095129A (en) 2016-08-03 2023-06-28 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Adenosine nucleobase editors and uses thereof
EP3497214B1 (en) 2016-08-09 2023-06-28 President and Fellows of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
WO2018078620A1 (en) 2016-10-25 2018-05-03 Urogen Pharma Ltd. Immunomodulating treatments of body cavities
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
CN106755097A (en) * 2016-12-27 2017-05-31 安徽省农业科学院畜牧兽医研究所 A kind of goat TLR4 gene knockout carriers and its construction method
CN106619662B (en) * 2016-12-31 2020-06-16 江苏科本药业有限公司 Oral dry suspension containing tenofovir disoproxil fumarate and preparation method thereof
KR101899773B1 (en) * 2017-03-07 2018-09-18 일동제약(주) Granules comprising besifovir dipivoxil or pharmaceutical acceptable salts thereof, a pharmaceutical composition comprising the same and a method for preparing the same
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
JP2020510439A (en) 2017-03-10 2020-04-09 プレジデント アンド フェローズ オブ ハーバード カレッジ Base-editing factor from cytosine to guanine
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
CN107417727B (en) * 2017-04-25 2020-11-17 成都倍特药业股份有限公司 Large-particle-size tenofovir disoproxil fumarate and preparation method thereof
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
MX2020001226A (en) * 2017-08-10 2020-07-20 Yisheng Biopharma Singapore Pte Ltd A composition for treating and/or preventing hepatitis b virus infection and the use thereof.
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
CN108285907A (en) * 2018-01-04 2018-07-17 山东大学 A kind of application of bifunctional vector in inhibiting HBV infection
BR112020013788A2 (en) * 2018-01-10 2020-12-01 Idorsia Pharmaceuticals Ltd compound, pharmaceutical composition, use of a compound, and method of treatment.
CN108715832B (en) * 2018-06-01 2020-11-10 段海峰 Mesenchymal stem cell for inhibiting tumor growth and preparation method and application thereof
CN113164618A (en) 2018-09-12 2021-07-23 希沃尔拜克治疗公司 Methods and compositions for treating diseases with immunostimulatory conjugates
JP7287708B2 (en) 2019-02-08 2023-06-06 プロジェニア インコーポレイテッド Toll-like receptor 7 or 8 agonist-cholesterol conjugate and use thereof
WO2020191249A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
TW202210480A (en) * 2019-04-17 2022-03-16 美商基利科學股份有限公司 Solid forms of a toll-like receptor modulator
KR20220011685A (en) 2019-05-22 2022-01-28 길리애드 사이언시즈, 인코포레이티드 Combination of a TLR7 modulating compound with an HIV vaccine
WO2021067644A1 (en) 2019-10-01 2021-04-08 Silverback Therapeutics, Inc. Combination therapy with immune stimulatory conjugates
EP4106819A1 (en) 2020-02-21 2022-12-28 Silverback Therapeutics, Inc. Nectin-4 antibody conjugates and uses thereof
CN115666637A (en) 2020-03-02 2023-01-31 蛋白科技先锋 Nano particle simulating live pathogen based on pathogen cell wall skeleton and preparation method thereof
DE112021002672T5 (en) 2020-05-08 2023-04-13 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EDIT BOTH STRANDS SIMULTANEOUSLY OF A DOUBLE STRANDED NUCLEOTIDE TARGET SEQUENCE
WO2022006327A1 (en) 2020-07-01 2022-01-06 Silverback Therapeutics, Inc. Anti-asgr1 antibody conjugates and uses thereof
US20230277525A1 (en) 2020-08-04 2023-09-07 Progeneer Inc Conjugate of functional drug and toll-like receptor 7 or 8 agonist of which active site is temporarily inactivated and use thereof
JP2023536945A (en) 2020-08-04 2023-08-30 プロジェニア インコーポレイテッド Kinetic Adjuvant Ensemble
JP2023536953A (en) 2020-08-04 2023-08-30 プロジェニア インコーポレイテッド mRNA Vaccines Containing Dynamically Controllable Adjuvants
WO2023107371A1 (en) * 2021-12-06 2023-06-15 SURGE Therapeutics, Inc. Solid forms of resiquimod and formulations thereof

Citations (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2220246A1 (en) 1971-06-01 1972-12-14 International Chemical & Nuclear Corp , Pasadena, Calif (V St A ) 1,2,4 Tnazole nucleosides
JPS491576A (en) 1972-05-02 1974-01-08
DE2438037A1 (en) 1973-08-08 1975-02-20 Phavic Sprl 2-BENZAMIDO-5-NITROTHIAZOL DERIVATIVES
DE2758025A1 (en) 1977-12-24 1979-07-12 Bayer Ag Tri:hydroxy-piperidine derivs. - useful as glucosidase inhibitors for treating diabetes etc. and as animal feed additives
JPS55111420A (en) 1979-02-20 1980-08-28 Ono Pharmaceut Co Ltd Antitumorigenic agent
US4539205A (en) 1982-11-09 1985-09-03 Scripps Clinic And Research Foundation Modulation of animal cellular responses with compositions containing 8-substituted guanine derivatives
US4639436A (en) 1977-08-27 1987-01-27 Bayer Aktiengesellschaft Antidiabetic 3,4,5-trihydroxypiperidines
US4643992A (en) 1982-11-09 1987-02-17 Scripps Clinic And Research Foundation Modulation of animal cellular responses with compositions containing 8-substituted guanine derivatives
US4880784A (en) 1987-12-21 1989-11-14 Brigham Young University Antiviral methods utilizing ribofuranosylthiazolo[4,5-d]pyrimdine derivatives
WO1990014837A1 (en) 1989-05-25 1990-12-13 Chiron Corporation Adjuvant formulation comprising a submicron oil droplet emulsion
US5011828A (en) 1985-11-15 1991-04-30 Michael Goodman Immunostimulating guanine derivatives, compositions and methods
US5041426A (en) 1987-12-21 1991-08-20 Brigham Young University Immune system enhancing 3-β-d-ribofuranosylthiazolo[4,5-d]pyridimine nucleosides and nucleotides
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
WO1993019785A1 (en) 1992-04-01 1993-10-14 Merck & Co., Inc. Recombinant human hiv-neutralizing monoclonal antibodies for prevention and treatment of hiv infection
JPH05320143A (en) 1992-03-18 1993-12-03 Mochida Pharmaceut Co Ltd New pyrimidine derivative
US5395937A (en) 1993-01-29 1995-03-07 Minnesota Mining And Manufacturing Company Process for preparing quinoline amines
US5424311A (en) 1992-09-26 1995-06-13 Hoeschst Aktiengesellschaft Azaquinoxalines and their use
JPH07330770A (en) 1994-06-03 1995-12-19 Japan Energy Corp Purine derivative and treating agent containing the derivative as active component
US5620978A (en) 1994-01-03 1997-04-15 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon, Eugene Oregon 8-aza, 6-aza and 6,8-diaza-1,4-dihydroquinoxaline-2,3-diones and the use thereof as antagonists for the glycine/NMDA receptor
US5681835A (en) 1994-04-25 1997-10-28 Glaxo Wellcome Inc. Non-steroidal ligands for the estrogen receptor
WO1997044038A1 (en) 1996-05-23 1997-11-27 Du Pont Pharmaceuticals Company Tetrahydropteridines and pyridylpiperazines for treatment of neurological disorders
US5693641A (en) 1996-08-16 1997-12-02 Berlex Laboratories Inc. Bicyclic pyrimidine derivatives and their use as anti-coagulants
WO1998001448A1 (en) 1996-07-03 1998-01-15 Japan Energy Corporation Novel purine derivatives
WO1998005661A1 (en) 1996-08-06 1998-02-12 Pfizer Inc. Substituted pyrido- or pyrimido-containing 6,6- or 6,7-bicyclic derivatives
JP2886570B2 (en) 1989-09-29 1999-04-26 エーザイ株式会社 Compounds having fused heterocycle
WO1999028321A1 (en) 1997-11-28 1999-06-10 Sumitomo Pharmaceuticals Company, Limited Novel heterocyclic compounds
WO1999032477A1 (en) 1997-12-19 1999-07-01 Schering Aktiengesellschaft Ortho-anthranilamide derivatives as anti-coagulants
WO1999032122A1 (en) 1997-12-22 1999-07-01 Japan Energy Corporation Type 2 helper t cell-selective immune response suppressors
JPH11180982A (en) 1997-12-24 1999-07-06 Japan Energy Corp New adenine derivative and its pharmaceutical use
WO2000000478A1 (en) 1998-06-26 2000-01-06 Bristol-Myers Squibb Pharma Company Substituted quinoxalin-2(1h)-ones useful as hiv reverse transcriptase inhibitors
WO2001019825A1 (en) 1999-09-15 2001-03-22 Warner-Lambert Company Pteridinones as kinase inhibitors
US6268391B1 (en) 1997-08-06 2001-07-31 Glaxo Wellcome Inc. Benzylidene-1,3-dihydro-indol-2-one derivatives a receptor tyrosine kinase inhibitors, particularly of Raf kinases
EP1147108A1 (en) 1999-01-26 2001-10-24 Ustav Experimentalni Botaniky Akademie ved Ceské Republiky Substituted nitrogen heterocyclic derivatives and pharmaceutical use thereof
WO2002076954A1 (en) 2001-03-23 2002-10-03 Smithkline Beecham Corporation Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases
US20020173655A1 (en) 2000-12-08 2002-11-21 Dellaria Joseph F. Thioether substituted imidazoquinolines
US20030044428A1 (en) 2001-01-26 2003-03-06 Moss Ronald B. Method for treating an HIV-infected individual by combining immunization with structured interruption of anti-retroviral treatment
WO2003020722A1 (en) 2001-09-04 2003-03-13 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel dihydropteridinones, method for producing the same and the use thereof as medicaments
US20030065005A1 (en) 2000-12-08 2003-04-03 Charles Leslie J. Heterocyclic ether substituted imidazoquinolines
US20030100764A1 (en) 2000-12-08 2003-05-29 Bonk Jason D. Thioether substituted imidazoquinolines
US20030162806A1 (en) 2000-12-08 2003-08-28 3M Innovative Properties Company Amide substituted imidazopyridines
US20030176458A1 (en) 2000-12-08 2003-09-18 3M Innovative Properties Company Urea substituted imidazopyridines
US6629831B2 (en) 1999-04-16 2003-10-07 Coach Wei Apparatus for altering the physical properties of fluids
US20040029885A1 (en) 2001-09-04 2004-02-12 Boehringer Ingelheim Pharma Kg New dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions
WO2004029054A1 (en) 2002-09-27 2004-04-08 Sumitomo Pharmaceuticals Company, Limited Novel adenine compound and use thereof
US20040116362A1 (en) 2002-12-17 2004-06-17 SARTORELLI Alan C. Novel nucleosides and related processes, pharmaceutical compositions and methods
US20040132748A1 (en) 2001-04-17 2004-07-08 Yoshiaki Isobe Novel adenne derivatives
WO2004076454A1 (en) 2003-02-26 2004-09-10 Boehringer Ingelheim Pharma Gmbh & Co Kg Dihydropteridinones, method for the production and use thereof in the form of drugs
WO2005016348A1 (en) 2003-08-14 2005-02-24 Icos Corporation Method of inhibiting immune responses stimulated by an endogenous factor
WO2005016349A1 (en) 2003-08-14 2005-02-24 Icos Corporation Methods of inhibiting leukocyte accumulation
JP2005089334A (en) 2003-09-12 2005-04-07 Sumitomo Pharmaceut Co Ltd 8-hydroxyadenine compound
WO2005067901A2 (en) 2004-01-08 2005-07-28 Michigan State University Methods for treating and preventing hypertension and hypertension-related disorders
WO2005112935A1 (en) 2004-05-13 2005-12-01 Vanderbilt University Phosphoinositide 3-kinase delta selective inhibitors for inhibiting angiogenesis
WO2005117889A1 (en) 2004-05-25 2005-12-15 Icos Corporation Methods for treating and/or preventing aberrant proliferation of hematopoietic
WO2005120511A1 (en) 2004-06-04 2005-12-22 Icos Corporation Methods for treating mast cell disorders
WO2005123736A1 (en) 2004-06-21 2005-12-29 Boehringer Ingelheim International Gmbh Novel 2-benzylaminodihydropteridinones, method for producing them and use thereof as drugs
WO2006034001A2 (en) 2004-09-16 2006-03-30 Bristol-Myers Squibb Company Methods of treating hiv infection
WO2006089106A2 (en) 2005-02-17 2006-08-24 Icos Corporation Phosphoinositide 3-kinase inhibitors for inhibiting leukocyte accumulation
WO2006117670A1 (en) 2005-05-04 2006-11-09 Pfizer Limited 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
US20060269936A1 (en) 2005-03-24 2006-11-30 Jaromir Vlach Screening assay for TLR7, TLR8 and TLR9 agonists and antagonists
WO2007014838A1 (en) 2005-08-03 2007-02-08 Boehringer Ingelheim International Gmbh Dihydropteridinones in the treatment of respiratory diseases
WO2007024707A2 (en) 2005-08-22 2007-03-01 The Regents Of The University Of California Tlr agonists
WO2007034917A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034882A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034817A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007089334A2 (en) 2005-12-12 2007-08-09 Elan Pharmaceuticals, Inc. Assay for parkinson's disease therapeutics and enzymatically active parkin preparations useful therein
US20070190071A1 (en) 2004-03-26 2007-08-16 Dainippon Sumitomo Pharma Co., Ltd. 9-Substituted 8-oxoadenine compound
US20070197478A1 (en) 2006-02-17 2007-08-23 Pfizer Limited Novel pharmaceuticals
US20070197558A1 (en) 2005-12-21 2007-08-23 Betebenner David A Anti-viral compounds
WO2007108968A2 (en) 2006-03-13 2007-09-27 Merck & Co., Inc. Ophthalmic compositions for treating ocular hypertension
WO2007142755A2 (en) 2006-05-31 2007-12-13 The Regents Of The University Of California Purine analogs
WO2007148064A1 (en) 2006-06-23 2007-12-27 Astrazeneca Ab Pteridine derivatives and their use as cathespin inhibitors
US20080008682A1 (en) 2006-07-07 2008-01-10 Chong Lee S Modulators of toll-like receptor 7
WO2008004948A1 (en) 2006-07-05 2008-01-10 Astrazeneca Ab 8-oxoadenine derivatives acting as modulators of tlr7
WO2008051493A2 (en) 2006-10-19 2008-05-02 Signal Pharmaceuticals, Llc Heteroaryl compounds, compositions thereof, and their use as protein kinase inhibitors
WO2008055870A1 (en) 2006-11-06 2008-05-15 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzonitrile derivatives, medicaments containing such compounds, their use and process for their manufacture
US20080167289A1 (en) 2006-02-14 2008-07-10 David Kay Dihydrodiazepines useful as inhibitors of protein kinases
US20080182863A1 (en) 2005-03-25 2008-07-31 Kenneth Alan Simmen Fused Bicyclic Inhibitors of Hcv
WO2008101867A1 (en) 2007-02-19 2008-08-28 Smithkline Beecham Corporation Purine derivatives as immunomodulators
US20080234255A1 (en) 2007-03-22 2008-09-25 Shaoqing Chen Substituted pyrimidodiazepines
WO2008129994A1 (en) 2007-04-18 2008-10-30 Kissei Pharmaceutical Co., Ltd. Nitrogenated fused ring derivative, pharmaceutical composition comprising the same, and use of the same for medical purposes
WO2008135791A1 (en) 2007-05-08 2008-11-13 Astrazeneca Ab Imidazoquinolines with immuno-modulating properties
US20080300244A1 (en) 2006-12-14 2008-12-04 Astrazeneca Ab Novel compounds
US20090005560A1 (en) 2007-06-27 2009-01-01 Ajinomoto Co. Inc Production method of diaminopyrimidine compounds
WO2009005687A1 (en) 2007-06-29 2009-01-08 Gilead Sciences, Inc. Purine derivatives and their use as modulators of toll-like receptor 7
WO2009019553A2 (en) 2007-08-03 2009-02-12 Pfizer Limited Imidazopyridinones
WO2009022185A2 (en) 2007-08-16 2009-02-19 Astrazeneca Ab 6, 6-fused heterocycles, their pharmaceutical compositions and methos of use
WO2009023269A2 (en) 2007-08-15 2009-02-19 Vertex Pharmaceuticals Incorporated 4-(9-(3, 3-difluorocyclopentyl) -5, 7, 7-trimethyl-6-oxo-6, 7, 8, 9-tetrahydro-5h-pyrimido [4, 5-b[1, 4] diazepin-2-ylamino)-3-methoxybenzamide derivatives as inhibitors of the human protein kinases plk1 to plk4 for the treatment of proliferative diseases
US20090082332A1 (en) 2005-09-22 2009-03-26 Philip Abbot Purine derivatives for the treatment of viral or allergic diseases and cancers
US20090099216A1 (en) 2005-09-22 2009-04-16 Astrazeneca Aktiebolag A Corporation Of Sweden Novel adenine compound
WO2009062285A1 (en) 2007-11-16 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
WO2009067547A1 (en) 2007-11-19 2009-05-28 Takeda Pharmaceutical Company Limited Polo-like kinase inhibitors
US20090143400A1 (en) 2005-09-16 2009-06-04 Mcinally Thomas Purine derivatives having immuno-modulating properties
US20090192153A1 (en) 2005-09-22 2009-07-30 Dainippon Sumitomo Pharma Co., Ltd. a corporation of Japan Novel adenine compound
US20090209524A1 (en) 2007-11-22 2009-08-20 Astrazeneca Ab Novel Compounds
US20090221556A1 (en) 2005-11-04 2009-09-03 Pfizer Inc. Hydroxy and alkoxy substituted 1h-imidazoquinolines and methods
US20090221551A1 (en) 2006-03-15 2009-09-03 Pfizer Inc. Substituted fused[1,2] imidazo[4,5c] ring compounds and methods
US7592326B2 (en) 2004-03-15 2009-09-22 Karaolis David K R Method for stimulating the immune, inflammatory or neuroprotective response
US20090263470A1 (en) 2004-05-28 2009-10-22 Beth-Ann Coller Vaccine Compositions Comprising Virosomes and a Saponin Adjuvant
EP2133353A1 (en) 2007-03-20 2009-12-16 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
EP2132209A1 (en) 2007-03-19 2009-12-16 AstraZeneca AB 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7 ) modulators
EP2138497A1 (en) 2007-03-20 2009-12-30 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20090325877A1 (en) 2008-05-25 2009-12-31 Wyeth Combination Product of Receptor Tyrosine Kinase Inhibitor and Fatty Acid Synthase Inhibitor for Treating Cancer
US20100015230A1 (en) 2007-05-15 2010-01-21 Niles Ron Bone Morphogenetic Protein Compositions
US20100029585A1 (en) 2008-08-01 2010-02-04 Howbert J Jeffry Toll-like receptor agonist formulations and their use
WO2010018132A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Compounds
WO2010018130A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
WO2010018134A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Novel adenine derivatives
WO2010018131A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
US20100075995A1 (en) 2008-08-11 2010-03-25 Smithkline Beecham Corporation Compounds
US20100087443A1 (en) 2007-03-19 2010-04-08 Roger Victor Bonnert 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7) modulators
US20100143301A1 (en) 2008-12-09 2010-06-10 Gilead Sciences, Inc. Modulators of toll-like receptors
US20100152230A1 (en) 2005-09-02 2010-06-17 Pfizer Inc. Hydroxy substituted 1h-imidazopyridines and methods
US20100210598A1 (en) 2009-02-11 2010-08-19 Regents Of The University Of California, San Diego Toll-like receptor modulators and treatment of diseases
US20100215642A1 (en) 2009-02-10 2010-08-26 Idera Pharmaceuticals, Inc. Synthetic rna-based agonists of tlr7
WO2010107939A2 (en) 2009-03-17 2010-09-23 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
US20100256169A1 (en) 2003-09-05 2010-10-07 Anadys Pharmaceuticals, Inc. Administration of tlr7 ligands and prodrugs thereof for treatment of infection by hepatitis c virus
WO2010130034A1 (en) 2009-05-15 2010-11-18 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
US20100298364A1 (en) 2009-05-21 2010-11-25 Astrazeneca Ab salts 756
US20110053893A1 (en) 2009-09-02 2011-03-03 Irm Llc Compounds and compositions as tlr activity modulators
WO2011031965A1 (en) 2009-09-14 2011-03-17 Gilead Sciences, Inc. Modulators of toll-like receptors
WO2011049825A1 (en) 2009-10-22 2011-04-28 Gilead Sciences, Inc. Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
US20110282061A1 (en) 2008-10-24 2011-11-17 Glaxosmithkline Biologicals Sa Lipidated Imidazoquinoline Derivatives
WO2012003497A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. Napht- 2 -ylacetic acid derivatives to treat aids
WO2012003498A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. 2 -quinolinyl- acetic acid derivatives as hiv antiviral compounds
WO2012030904A2 (en) 2010-08-31 2012-03-08 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv)-neutralizing antibodies
US8148374B2 (en) 2007-02-23 2012-04-03 Gilead Sciences, Inc. Modulators of pharmacokinetic properties of therapeutics
WO2012087596A1 (en) 2010-12-20 2012-06-28 Gilead Sciences, Inc. Combinations for treating hcv
WO2012145728A1 (en) 2011-04-21 2012-10-26 Gilead Sciences, Inc. Benzothiazole compounds and their pharmaceutical use
US20130109647A1 (en) 2011-10-31 2013-05-02 Gilead Pharmasset Llc Methods and compositions for treating hepatitis c virus
WO2013068438A1 (en) 2011-11-09 2013-05-16 Janssen R&D Ireland Purine derivatives for the treatment of viral infections
US20130136776A1 (en) 2011-11-29 2013-05-30 Gilead Pharmasset Llc Compositions and methods for treating hepatitis c virus
TWI401084B (en) 2008-04-23 2013-07-11 Gilead Sciences Inc 1'-substituted carba-nucleoside analogs for antiviral treatment
US20130236492A1 (en) 2012-03-08 2013-09-12 Novartis Ag Adjuvanted formulations of booster vaccines
US20130243726A1 (en) 2011-09-16 2013-09-19 Gilead Pharmasset Llc Methods for treating hcv
WO2013159064A1 (en) 2012-04-20 2013-10-24 Gilead Sciences, Inc. Benzothiazol- 6 -yl acetic acid derivatives and their use for treating an hiv infection
US20140024664A1 (en) 2008-08-11 2014-01-23 Glaxosmithkline Llc Novel adenine derivatives
US8637036B2 (en) 2009-09-25 2014-01-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to HIV-1 and their use
WO2014063059A1 (en) 2012-10-18 2014-04-24 Rockefeller University (The) Broadly-neutralizing anti-hiv antibodies
US20140134132A1 (en) 2012-09-29 2014-05-15 Novartis Ag Cyclic peptides and use as medicines
US8728486B2 (en) 2011-05-18 2014-05-20 University Of Kansas Toll-like receptor-7 and -8 modulatory 1H imidazoquinoline derived compounds
US8728465B2 (en) 2008-06-17 2014-05-20 Cedars-Sinai Medical Center Use of toll-like receptor ligands as adjuvants to vaccination therapy for brain tumors
US20140142086A1 (en) 2009-08-18 2014-05-22 Array Biopharma, Inc. Substituted Benzoazepines as Toll-Like Receptor Modulators
US20140170221A1 (en) 2012-11-09 2014-06-19 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and compositions for localized delivery of agents to virally infected cells and tissues
WO2015048770A2 (en) 2013-09-30 2015-04-02 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (hiv)
US20150105350A1 (en) 2012-02-03 2015-04-16 Gilead Sciences, Inc. Combination therapy comprising tenofovir alafenamide hemifumarate and cobicistat for use in the treatment of viral infections
US20160008374A1 (en) 2014-07-11 2016-01-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
WO2016044182A1 (en) 2014-09-16 2016-03-24 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US9573952B2 (en) 2014-09-16 2017-02-21 Gilead Sciences, Inc. Methods of preparing toll-like receptor modulators

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169555A (en) 1995-12-19 1997-06-30 Ebata Kk Composite material for molding, molded material and production thereof
JP2001012367A (en) 1999-06-28 2001-01-16 Sanden Corp Scroll compressor
US6452325B1 (en) 2000-07-24 2002-09-17 Thermoplastic Processes, Inc. Shatterproofing of fluorescent lamps
SE531106C2 (en) 2005-05-26 2008-12-16 Pemtec Ab seal means
PL1942108T3 (en) 2005-10-28 2014-03-31 Ono Pharmaceutical Co Compound containing basic group and use thereof
US20070299067A1 (en) 2006-03-08 2007-12-27 Ruiping Liu Quinoline and isoquinoline derivatives as phosphodiesterase 10 inhibitors
US7866135B2 (en) 2006-08-28 2011-01-11 Exmark Manufacturing Company, Inc. Flow control baffle for turf mower
EP2468734A1 (en) 2007-04-05 2012-06-27 Siemens Medical Solutions USA, Inc. Development of molecular imaging probes for carbonic anhydrase-IX using click chemistry
US20100179109A1 (en) 2007-04-05 2010-07-15 Baldwin Jonh J Renin inhibitors
CN101284810A (en) 2008-06-02 2008-10-15 秦引林 Cyano-pyrrolidine and cyano-tetrahydrothiazole derivates
TWI598358B (en) 2009-05-20 2017-09-11 基利法瑪席特有限責任公司 Nucleoside phosphoramidates
UY33775A (en) 2010-12-10 2012-07-31 Gilead Sciences Inc MACROCYCLIC INHIBITORS OF VIRUS FLAVIVIRIDAE, PHARMACEUTICAL COMPOSITIONS THAT UNDERSTAND AND THEIR USES
KR102007444B1 (en) 2011-04-25 2019-08-06 어드밴스드 바이오사이언스 라보라토리즈, 인코포레이티드 Truncated hiv envelope proteins(env), methods and compositions related thereto
TW201310216A (en) 2011-08-17 2013-03-01 Hon Hai Prec Ind Co Ltd Power supply system
EP2620446A1 (en) 2012-01-27 2013-07-31 Laboratorios Del Dr. Esteve, S.A. Immunogens for HIV vaccination
KR20220011685A (en) 2019-05-22 2022-01-28 길리애드 사이언시즈, 인코포레이티드 Combination of a TLR7 modulating compound with an HIV vaccine

Patent Citations (215)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798209A (en) 1971-06-01 1974-03-19 Icn Pharmaceuticals 1,2,4-triazole nucleosides
DE2220246A1 (en) 1971-06-01 1972-12-14 International Chemical & Nuclear Corp , Pasadena, Calif (V St A ) 1,2,4 Tnazole nucleosides
JPS491576A (en) 1972-05-02 1974-01-08
DE2438037A1 (en) 1973-08-08 1975-02-20 Phavic Sprl 2-BENZAMIDO-5-NITROTHIAZOL DERIVATIVES
US3950351A (en) 1973-08-08 1976-04-13 S.P.R.L. Phavic New derivatives of 2-benzamido-5-nitro thiazoles
US4639436A (en) 1977-08-27 1987-01-27 Bayer Aktiengesellschaft Antidiabetic 3,4,5-trihydroxypiperidines
DE2758025A1 (en) 1977-12-24 1979-07-12 Bayer Ag Tri:hydroxy-piperidine derivs. - useful as glucosidase inhibitors for treating diabetes etc. and as animal feed additives
JPS55111420A (en) 1979-02-20 1980-08-28 Ono Pharmaceut Co Ltd Antitumorigenic agent
US4539205A (en) 1982-11-09 1985-09-03 Scripps Clinic And Research Foundation Modulation of animal cellular responses with compositions containing 8-substituted guanine derivatives
US4643992A (en) 1982-11-09 1987-02-17 Scripps Clinic And Research Foundation Modulation of animal cellular responses with compositions containing 8-substituted guanine derivatives
US5011828A (en) 1985-11-15 1991-04-30 Michael Goodman Immunostimulating guanine derivatives, compositions and methods
US5057540A (en) 1987-05-29 1991-10-15 Cambridge Biotech Corporation Saponin adjuvant
US5041426A (en) 1987-12-21 1991-08-20 Brigham Young University Immune system enhancing 3-β-d-ribofuranosylthiazolo[4,5-d]pyridimine nucleosides and nucleotides
US4880784A (en) 1987-12-21 1989-11-14 Brigham Young University Antiviral methods utilizing ribofuranosylthiazolo[4,5-d]pyrimdine derivatives
US6299884B1 (en) 1989-05-25 2001-10-09 Chiron Corporation Adjuvant formulation comprising a submicron oil droplet emulsion
WO1990014837A1 (en) 1989-05-25 1990-12-13 Chiron Corporation Adjuvant formulation comprising a submicron oil droplet emulsion
JP2886570B2 (en) 1989-09-29 1999-04-26 エーザイ株式会社 Compounds having fused heterocycle
JPH05320143A (en) 1992-03-18 1993-12-03 Mochida Pharmaceut Co Ltd New pyrimidine derivative
US5397781A (en) 1992-03-18 1995-03-14 Mochida Pharmaceutical Company, Limited Pyrimidine derivatives
WO1993019785A1 (en) 1992-04-01 1993-10-14 Merck & Co., Inc. Recombinant human hiv-neutralizing monoclonal antibodies for prevention and treatment of hiv infection
US5424311A (en) 1992-09-26 1995-06-13 Hoeschst Aktiengesellschaft Azaquinoxalines and their use
US5395937A (en) 1993-01-29 1995-03-07 Minnesota Mining And Manufacturing Company Process for preparing quinoline amines
US5620978A (en) 1994-01-03 1997-04-15 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon, Eugene Oregon 8-aza, 6-aza and 6,8-diaza-1,4-dihydroquinoxaline-2,3-diones and the use thereof as antagonists for the glycine/NMDA receptor
US5681835A (en) 1994-04-25 1997-10-28 Glaxo Wellcome Inc. Non-steroidal ligands for the estrogen receptor
JPH07330770A (en) 1994-06-03 1995-12-19 Japan Energy Corp Purine derivative and treating agent containing the derivative as active component
WO1997044038A1 (en) 1996-05-23 1997-11-27 Du Pont Pharmaceuticals Company Tetrahydropteridines and pyridylpiperazines for treatment of neurological disorders
WO1998001448A1 (en) 1996-07-03 1998-01-15 Japan Energy Corporation Novel purine derivatives
US6028076A (en) 1996-07-03 2000-02-22 Japan Energy Corporation Purine derivative
WO1998005661A1 (en) 1996-08-06 1998-02-12 Pfizer Inc. Substituted pyrido- or pyrimido-containing 6,6- or 6,7-bicyclic derivatives
US5693641A (en) 1996-08-16 1997-12-02 Berlex Laboratories Inc. Bicyclic pyrimidine derivatives and their use as anti-coagulants
US6268391B1 (en) 1997-08-06 2001-07-31 Glaxo Wellcome Inc. Benzylidene-1,3-dihydro-indol-2-one derivatives a receptor tyrosine kinase inhibitors, particularly of Raf kinases
US6329381B1 (en) 1997-11-28 2001-12-11 Sumitomo Pharmaceuticals Company, Limited Heterocyclic compounds
EP1035123A1 (en) 1997-11-28 2000-09-13 Sumitomo Pharmaceuticals Company, Limited Novel heterocyclic compounds
WO1999028321A1 (en) 1997-11-28 1999-06-10 Sumitomo Pharmaceuticals Company, Limited Novel heterocyclic compounds
WO1999032477A1 (en) 1997-12-19 1999-07-01 Schering Aktiengesellschaft Ortho-anthranilamide derivatives as anti-coagulants
WO1999032122A1 (en) 1997-12-22 1999-07-01 Japan Energy Corporation Type 2 helper t cell-selective immune response suppressors
US6376501B1 (en) 1997-12-22 2002-04-23 Japan Energy Corporation Type 2 helper T cell-selective immune response suppressors
JPH11180982A (en) 1997-12-24 1999-07-06 Japan Energy Corp New adenine derivative and its pharmaceutical use
WO2000000478A1 (en) 1998-06-26 2000-01-06 Bristol-Myers Squibb Pharma Company Substituted quinoxalin-2(1h)-ones useful as hiv reverse transcriptase inhibitors
US6552192B1 (en) 1999-01-26 2003-04-22 Ustau Experimentalni Botaniky Av-Cr Substituted nitrogen heterocyclic derivatives and pharmaceutical use thereof
EP1147108A1 (en) 1999-01-26 2001-10-24 Ustav Experimentalni Botaniky Akademie ved Ceské Republiky Substituted nitrogen heterocyclic derivatives and pharmaceutical use thereof
US6629831B2 (en) 1999-04-16 2003-10-07 Coach Wei Apparatus for altering the physical properties of fluids
WO2001019825A1 (en) 1999-09-15 2001-03-22 Warner-Lambert Company Pteridinones as kinase inhibitors
US20030186949A1 (en) 2000-12-08 2003-10-02 3M Innovative Properties Company Amide substituted imidazopyridines
US20030195209A1 (en) 2000-12-08 2003-10-16 3M Innovative Properties Company Urea substituted imidazopyridines
US20030065005A1 (en) 2000-12-08 2003-04-03 Charles Leslie J. Heterocyclic ether substituted imidazoquinolines
US20030100764A1 (en) 2000-12-08 2003-05-29 Bonk Jason D. Thioether substituted imidazoquinolines
US20030162806A1 (en) 2000-12-08 2003-08-28 3M Innovative Properties Company Amide substituted imidazopyridines
US20030176458A1 (en) 2000-12-08 2003-09-18 3M Innovative Properties Company Urea substituted imidazopyridines
US20020173655A1 (en) 2000-12-08 2002-11-21 Dellaria Joseph F. Thioether substituted imidazoquinolines
US20030044428A1 (en) 2001-01-26 2003-03-06 Moss Ronald B. Method for treating an HIV-infected individual by combining immunization with structured interruption of anti-retroviral treatment
WO2002076954A1 (en) 2001-03-23 2002-10-03 Smithkline Beecham Corporation Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases
US7521454B2 (en) 2001-04-17 2009-04-21 Dainippon Sumitomo Pharma Co., Ltd. Adenine derivatives
US7157465B2 (en) 2001-04-17 2007-01-02 Dainippon Simitomo Pharma Co., Ltd. Adenine derivatives
US20040132748A1 (en) 2001-04-17 2004-07-08 Yoshiaki Isobe Novel adenne derivatives
US20040029885A1 (en) 2001-09-04 2004-02-12 Boehringer Ingelheim Pharma Kg New dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions
WO2003020722A1 (en) 2001-09-04 2003-03-13 Boehringer Ingelheim Pharma Gmbh & Co. Kg Novel dihydropteridinones, method for producing the same and the use thereof as medicaments
WO2004029054A1 (en) 2002-09-27 2004-04-08 Sumitomo Pharmaceuticals Company, Limited Novel adenine compound and use thereof
EP1550662B1 (en) 2002-09-27 2012-07-04 Dainippon Sumitomo Pharma Co., Ltd. Adenine compound and use thereof
US20060052403A1 (en) 2002-09-27 2006-03-09 Yoshiaki Isobe Novel adenine compound and use thereof
US20040116362A1 (en) 2002-12-17 2004-06-17 SARTORELLI Alan C. Novel nucleosides and related processes, pharmaceutical compositions and methods
WO2004076454A1 (en) 2003-02-26 2004-09-10 Boehringer Ingelheim Pharma Gmbh & Co Kg Dihydropteridinones, method for the production and use thereof in the form of drugs
US20050043239A1 (en) 2003-08-14 2005-02-24 Jason Douangpanya Methods of inhibiting immune responses stimulated by an endogenous factor
WO2005016349A1 (en) 2003-08-14 2005-02-24 Icos Corporation Methods of inhibiting leukocyte accumulation
WO2005016348A1 (en) 2003-08-14 2005-02-24 Icos Corporation Method of inhibiting immune responses stimulated by an endogenous factor
US20100256169A1 (en) 2003-09-05 2010-10-07 Anadys Pharmaceuticals, Inc. Administration of tlr7 ligands and prodrugs thereof for treatment of infection by hepatitis c virus
JP2005089334A (en) 2003-09-12 2005-04-07 Sumitomo Pharmaceut Co Ltd 8-hydroxyadenine compound
WO2005067901A2 (en) 2004-01-08 2005-07-28 Michigan State University Methods for treating and preventing hypertension and hypertension-related disorders
US7592326B2 (en) 2004-03-15 2009-09-22 Karaolis David K R Method for stimulating the immune, inflammatory or neuroprotective response
US20070190071A1 (en) 2004-03-26 2007-08-16 Dainippon Sumitomo Pharma Co., Ltd. 9-Substituted 8-oxoadenine compound
US20140045837A1 (en) 2004-03-26 2014-02-13 Astrazeneca Aktiebolag 9-Substituted 8-Oxoadenine Compound
WO2005112935A1 (en) 2004-05-13 2005-12-01 Vanderbilt University Phosphoinositide 3-kinase delta selective inhibitors for inhibiting angiogenesis
WO2005117889A1 (en) 2004-05-25 2005-12-15 Icos Corporation Methods for treating and/or preventing aberrant proliferation of hematopoietic
US20090263470A1 (en) 2004-05-28 2009-10-22 Beth-Ann Coller Vaccine Compositions Comprising Virosomes and a Saponin Adjuvant
WO2005120511A1 (en) 2004-06-04 2005-12-22 Icos Corporation Methods for treating mast cell disorders
WO2005123736A1 (en) 2004-06-21 2005-12-29 Boehringer Ingelheim International Gmbh Novel 2-benzylaminodihydropteridinones, method for producing them and use thereof as drugs
WO2006034001A2 (en) 2004-09-16 2006-03-30 Bristol-Myers Squibb Company Methods of treating hiv infection
WO2006089106A2 (en) 2005-02-17 2006-08-24 Icos Corporation Phosphoinositide 3-kinase inhibitors for inhibiting leukocyte accumulation
US20060269936A1 (en) 2005-03-24 2006-11-30 Jaromir Vlach Screening assay for TLR7, TLR8 and TLR9 agonists and antagonists
US20080182863A1 (en) 2005-03-25 2008-07-31 Kenneth Alan Simmen Fused Bicyclic Inhibitors of Hcv
US7642350B2 (en) 2005-05-04 2010-01-05 Pfizer Limited Purine derivatives
WO2006117670A1 (en) 2005-05-04 2006-11-09 Pfizer Limited 2-amido-6-amino-8-oxopurine derivatives as toll-like receptor modulators for the treatment of cancer and viral infections, such as hepatitis c
WO2007014838A1 (en) 2005-08-03 2007-02-08 Boehringer Ingelheim International Gmbh Dihydropteridinones in the treatment of respiratory diseases
US20090324551A1 (en) 2005-08-22 2009-12-31 The Regents Of The University Of California Office Of Technology Transfer Tlr agonists
WO2007024707A2 (en) 2005-08-22 2007-03-01 The Regents Of The University Of California Tlr agonists
US20100152230A1 (en) 2005-09-02 2010-06-17 Pfizer Inc. Hydroxy substituted 1h-imidazopyridines and methods
US20090143400A1 (en) 2005-09-16 2009-06-04 Mcinally Thomas Purine derivatives having immuno-modulating properties
US20090082332A1 (en) 2005-09-22 2009-03-26 Philip Abbot Purine derivatives for the treatment of viral or allergic diseases and cancers
US20080269240A1 (en) 2005-09-22 2008-10-30 Dainippon Sumitomo Pharma Co., Ltd. a corporation of Japan Novel Adenine Compound
US20090192153A1 (en) 2005-09-22 2009-07-30 Dainippon Sumitomo Pharma Co., Ltd. a corporation of Japan Novel adenine compound
EP1939201A1 (en) 2005-09-22 2008-07-02 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034917A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20090118263A1 (en) 2005-09-22 2009-05-07 Dainippon Sumitomo Pharma Co., Ltd. Novel Adenine Compound
WO2007034817A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2007034882A1 (en) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20090099216A1 (en) 2005-09-22 2009-04-16 Astrazeneca Aktiebolag A Corporation Of Sweden Novel adenine compound
US20090105212A1 (en) 2005-09-22 2009-04-23 Dainippon Sumitomo Pharma Co., Ltd. a corporation of Japan Novel adenine compound
US20090221556A1 (en) 2005-11-04 2009-09-03 Pfizer Inc. Hydroxy and alkoxy substituted 1h-imidazoquinolines and methods
WO2007089334A2 (en) 2005-12-12 2007-08-09 Elan Pharmaceuticals, Inc. Assay for parkinson's disease therapeutics and enzymatically active parkin preparations useful therein
US20070197558A1 (en) 2005-12-21 2007-08-23 Betebenner David A Anti-viral compounds
US20080167289A1 (en) 2006-02-14 2008-07-10 David Kay Dihydrodiazepines useful as inhibitors of protein kinases
US20070197478A1 (en) 2006-02-17 2007-08-23 Pfizer Limited Novel pharmaceuticals
WO2007108968A2 (en) 2006-03-13 2007-09-27 Merck & Co., Inc. Ophthalmic compositions for treating ocular hypertension
US20090221551A1 (en) 2006-03-15 2009-09-03 Pfizer Inc. Substituted fused[1,2] imidazo[4,5c] ring compounds and methods
WO2007142755A2 (en) 2006-05-31 2007-12-13 The Regents Of The University Of California Purine analogs
WO2007148064A1 (en) 2006-06-23 2007-12-27 Astrazeneca Ab Pteridine derivatives and their use as cathespin inhibitors
WO2008004948A1 (en) 2006-07-05 2008-01-10 Astrazeneca Ab 8-oxoadenine derivatives acting as modulators of tlr7
US20100240623A1 (en) 2006-07-05 2010-09-23 Anthony Cook 8-oxoadenine derivatives acting as modulators of tlr7
US8138172B2 (en) 2006-07-05 2012-03-20 Astrazeneca Ab 8-oxoadenine derivatives acting as modulators of TLR7
US20090202484A1 (en) 2006-07-07 2009-08-13 Gilead Sciences, Inc. Modulators of toll-like receptor 7
US20080008682A1 (en) 2006-07-07 2008-01-10 Chong Lee S Modulators of toll-like receptor 7
TW200813057A (en) 2006-07-07 2008-03-16 Gilead Sciences Inc Modulators of toll-like receptor 7
WO2008051493A2 (en) 2006-10-19 2008-05-02 Signal Pharmaceuticals, Llc Heteroaryl compounds, compositions thereof, and their use as protein kinase inhibitors
WO2008055870A1 (en) 2006-11-06 2008-05-15 Boehringer Ingelheim International Gmbh Glucopyranosyl-substituted benzyl-benzonitrile derivatives, medicaments containing such compounds, their use and process for their manufacture
US20080300244A1 (en) 2006-12-14 2008-12-04 Astrazeneca Ab Novel compounds
US8067411B2 (en) 2006-12-14 2011-11-29 Astrazeneca Ab Compounds
US20090131458A1 (en) 2007-02-19 2009-05-21 Smithkline Beecham Corporation Compounds
US20100120799A1 (en) 2007-02-19 2010-05-13 Smithkline Beecham Corporation Purine derivatives as immunomodulators
WO2008101867A1 (en) 2007-02-19 2008-08-28 Smithkline Beecham Corporation Purine derivatives as immunomodulators
US8148374B2 (en) 2007-02-23 2012-04-03 Gilead Sciences, Inc. Modulators of pharmacokinetic properties of therapeutics
US20100087443A1 (en) 2007-03-19 2010-04-08 Roger Victor Bonnert 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7) modulators
US20100130491A1 (en) 2007-03-19 2010-05-27 Roger Victor Bonnert 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7 ) modulators
EP2132209A1 (en) 2007-03-19 2009-12-16 AstraZeneca AB 9-substituted-8-oxo-adenine compounds as toll-like receptor (tlr7 ) modulators
EP2138497A1 (en) 2007-03-20 2009-12-30 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
EP2133353A1 (en) 2007-03-20 2009-12-16 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20100093998A1 (en) 2007-03-20 2010-04-15 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
US20100099870A1 (en) 2007-03-20 2010-04-22 Dainippon Sumitomo Phama Co., Ltd Novel adenine compound
US20110028715A1 (en) 2007-03-20 2011-02-03 Dainippon Sumitomo Pharma Co., Ltd. Novel adenine compound
WO2008113711A1 (en) 2007-03-22 2008-09-25 F. Hoffmann-La Roche Ag Substituted pyrimidodiazepines useful as plk1 inhibitors
US20080234255A1 (en) 2007-03-22 2008-09-25 Shaoqing Chen Substituted pyrimidodiazepines
US8217069B2 (en) 2007-04-18 2012-07-10 Kissei Pharmaceutical Co., Ltd. Nitrogenated fused ring derivative, pharmaceutical composition comprising the same, and use of the same for medical purposes
CN101663302A (en) 2007-04-18 2010-03-03 橘生药品工业株式会社 Nitrogenated fused ring derivative, pharmaceutical composition comprising the same, and use of the same for medical purposes
WO2008129994A1 (en) 2007-04-18 2008-10-30 Kissei Pharmaceutical Co., Ltd. Nitrogenated fused ring derivative, pharmaceutical composition comprising the same, and use of the same for medical purposes
EP2143724A1 (en) 2007-04-18 2010-01-13 Kissei Pharmaceutical Co., Ltd. Nitrogenated fused ring derivative, pharmaceutical composition comprising the same, and use of the same for medical purposes
US20100280001A1 (en) 2007-05-08 2010-11-04 Roger Victor Bonnert Imidazoquinolines with immuno-modulating properties
WO2008135791A1 (en) 2007-05-08 2008-11-13 Astrazeneca Ab Imidazoquinolines with immuno-modulating properties
US20100015230A1 (en) 2007-05-15 2010-01-21 Niles Ron Bone Morphogenetic Protein Compositions
JP2009007273A (en) 2007-06-27 2009-01-15 Ajinomoto Co Inc Method for producing diaminopyrimidine compound
US20090005560A1 (en) 2007-06-27 2009-01-01 Ajinomoto Co. Inc Production method of diaminopyrimidine compounds
US20090047249A1 (en) 2007-06-29 2009-02-19 Micheal Graupe Modulators of toll-like receptor 7
US7968544B2 (en) 2007-06-29 2011-06-28 Gilead Sciences, Inc. Modulators of toll-like receptor 7
WO2009005687A1 (en) 2007-06-29 2009-01-08 Gilead Sciences, Inc. Purine derivatives and their use as modulators of toll-like receptor 7
US20090221631A1 (en) 2007-08-03 2009-09-03 Jones Peter H Imidazopyridinones
WO2009019553A2 (en) 2007-08-03 2009-02-12 Pfizer Limited Imidazopyridinones
WO2009023269A2 (en) 2007-08-15 2009-02-19 Vertex Pharmaceuticals Incorporated 4-(9-(3, 3-difluorocyclopentyl) -5, 7, 7-trimethyl-6-oxo-6, 7, 8, 9-tetrahydro-5h-pyrimido [4, 5-b[1, 4] diazepin-2-ylamino)-3-methoxybenzamide derivatives as inhibitors of the human protein kinases plk1 to plk4 for the treatment of proliferative diseases
WO2009022185A2 (en) 2007-08-16 2009-02-19 Astrazeneca Ab 6, 6-fused heterocycles, their pharmaceutical compositions and methos of use
WO2009062285A1 (en) 2007-11-16 2009-05-22 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
US20090291938A1 (en) 2007-11-19 2009-11-26 Takeda Pharmaceutical Company Limited Polo-like kinase inhibitors
WO2009067547A1 (en) 2007-11-19 2009-05-28 Takeda Pharmaceutical Company Limited Polo-like kinase inhibitors
US20090209524A1 (en) 2007-11-22 2009-08-20 Astrazeneca Ab Novel Compounds
TWI401084B (en) 2008-04-23 2013-07-11 Gilead Sciences Inc 1'-substituted carba-nucleoside analogs for antiviral treatment
US20090325877A1 (en) 2008-05-25 2009-12-31 Wyeth Combination Product of Receptor Tyrosine Kinase Inhibitor and Fatty Acid Synthase Inhibitor for Treating Cancer
US8728465B2 (en) 2008-06-17 2014-05-20 Cedars-Sinai Medical Center Use of toll-like receptor ligands as adjuvants to vaccination therapy for brain tumors
US20130018042A1 (en) 2008-08-01 2013-01-17 Howbert J Jeffry Toll-Like Receptor Agonist Formulations and Their Use
US20100029585A1 (en) 2008-08-01 2010-02-04 Howbert J Jeffry Toll-like receptor agonist formulations and their use
US20100075995A1 (en) 2008-08-11 2010-03-25 Smithkline Beecham Corporation Compounds
US20140024664A1 (en) 2008-08-11 2014-01-23 Glaxosmithkline Llc Novel adenine derivatives
WO2010018132A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Compounds
US8067426B2 (en) 2008-08-11 2011-11-29 Glaxosmithkline Llc 6-amino-purin-8-one compounds
US20120035193A1 (en) 2008-08-11 2012-02-09 Glaxosmithkline Llc 6-amino-purin-8-one compounds
WO2010018130A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
WO2010018134A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Novel adenine derivatives
WO2010018131A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
US20110282061A1 (en) 2008-10-24 2011-11-17 Glaxosmithkline Biologicals Sa Lipidated Imidazoquinoline Derivatives
US8809527B2 (en) 2008-12-09 2014-08-19 Gilead Sciences, Inc. Modulators of toll-like receptors
WO2010077613A1 (en) 2008-12-09 2010-07-08 Gilead Sciences, Inc. Modulators of toll-like receptors
PT2364314E (en) 2008-12-09 2014-06-09 Gilead Sciences Inc Modulators of toll-like receptors
CN103497192A (en) 2008-12-09 2014-01-08 吉里德科学公司 Modulators of TOLL-like receptors
US9127006B2 (en) 2008-12-09 2015-09-08 Gilead Sciences, Inc. Modulators of toll-like receptors
US9452166B2 (en) 2008-12-09 2016-09-27 Gilead Sciences, Inc. Modulators of toll-like receptors
US8629142B2 (en) 2008-12-09 2014-01-14 Gilead Sciences, Inc. Modulators of toll-like receptors
US20100143301A1 (en) 2008-12-09 2010-06-10 Gilead Sciences, Inc. Modulators of toll-like receptors
US8367670B2 (en) 2008-12-09 2013-02-05 Gilead Sciences, Inc. Modulators of toll-like receptors
EP2364314A1 (en) 2008-12-09 2011-09-14 Gilead Sciences, Inc. Modulators of toll-like receptors
US20100215642A1 (en) 2009-02-10 2010-08-26 Idera Pharmaceuticals, Inc. Synthetic rna-based agonists of tlr7
US20100210598A1 (en) 2009-02-11 2010-08-19 Regents Of The University Of California, San Diego Toll-like receptor modulators and treatment of diseases
US8729088B2 (en) 2009-02-11 2014-05-20 The Regents Of The University Of California Toll-like receptor modulators and treatment of diseases
WO2010107939A2 (en) 2009-03-17 2010-09-23 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv) -neutralizing antibodies
WO2010130034A1 (en) 2009-05-15 2010-11-18 Boehringer Ingelheim International Gmbh Inhibitors of human immunodeficiency virus replication
US20100298364A1 (en) 2009-05-21 2010-11-25 Astrazeneca Ab salts 756
US20140142086A1 (en) 2009-08-18 2014-05-22 Array Biopharma, Inc. Substituted Benzoazepines as Toll-Like Receptor Modulators
US20110053893A1 (en) 2009-09-02 2011-03-03 Irm Llc Compounds and compositions as tlr activity modulators
EP2477987A1 (en) 2009-09-14 2012-07-25 Gilead Sciences, Inc. Modulators of toll-like receptors
WO2011031965A1 (en) 2009-09-14 2011-03-17 Gilead Sciences, Inc. Modulators of toll-like receptors
CA2772253A1 (en) 2009-09-14 2011-03-17 Gilead Sciences, Inc. Modulators of toll-like receptors
US8476270B2 (en) 2009-09-14 2013-07-02 Gilead Sciences, Inc. Dihydropyrido[4,3-b]pyrazine-3-ones as modulators of toll-like receptors
US8637036B2 (en) 2009-09-25 2014-01-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to HIV-1 and their use
US8507507B2 (en) 2009-10-22 2013-08-13 Gilead Sciences, Inc. Modulators of toll-like receptors
WO2011049825A1 (en) 2009-10-22 2011-04-28 Gilead Sciences, Inc. Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
WO2012003498A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. 2 -quinolinyl- acetic acid derivatives as hiv antiviral compounds
WO2012003497A1 (en) 2010-07-02 2012-01-05 Gilead Sciences, Inc. Napht- 2 -ylacetic acid derivatives to treat aids
WO2012030904A2 (en) 2010-08-31 2012-03-08 Theraclone Sciences, Inc. Human immunodeficiency virus (hiv)-neutralizing antibodies
WO2012087596A1 (en) 2010-12-20 2012-06-28 Gilead Sciences, Inc. Combinations for treating hcv
JP2014505045A (en) 2010-12-20 2014-02-27 ギリアード サイエンシーズ, インコーポレイテッド Combinations for treating HCV
US9452154B2 (en) 2010-12-20 2016-09-27 Gilead Sciences, Inc. Methods for treating HCV
WO2012145728A1 (en) 2011-04-21 2012-10-26 Gilead Sciences, Inc. Benzothiazole compounds and their pharmaceutical use
US8728486B2 (en) 2011-05-18 2014-05-20 University Of Kansas Toll-like receptor-7 and -8 modulatory 1H imidazoquinoline derived compounds
US20130243726A1 (en) 2011-09-16 2013-09-19 Gilead Pharmasset Llc Methods for treating hcv
US20130109647A1 (en) 2011-10-31 2013-05-02 Gilead Pharmasset Llc Methods and compositions for treating hepatitis c virus
WO2013068438A1 (en) 2011-11-09 2013-05-16 Janssen R&D Ireland Purine derivatives for the treatment of viral infections
US20130136776A1 (en) 2011-11-29 2013-05-30 Gilead Pharmasset Llc Compositions and methods for treating hepatitis c virus
US20150105350A1 (en) 2012-02-03 2015-04-16 Gilead Sciences, Inc. Combination therapy comprising tenofovir alafenamide hemifumarate and cobicistat for use in the treatment of viral infections
US20130236492A1 (en) 2012-03-08 2013-09-12 Novartis Ag Adjuvanted formulations of booster vaccines
WO2013159064A1 (en) 2012-04-20 2013-10-24 Gilead Sciences, Inc. Benzothiazol- 6 -yl acetic acid derivatives and their use for treating an hiv infection
US20140134132A1 (en) 2012-09-29 2014-05-15 Novartis Ag Cyclic peptides and use as medicines
WO2014063059A1 (en) 2012-10-18 2014-04-24 Rockefeller University (The) Broadly-neutralizing anti-hiv antibodies
US20140170221A1 (en) 2012-11-09 2014-06-19 The General Hospital Corporation D/B/A Massachusetts General Hospital Methods and compositions for localized delivery of agents to virally infected cells and tissues
WO2015048770A2 (en) 2013-09-30 2015-04-02 Beth Israel Deaconess Medical Center, Inc. Antibody therapies for human immunodeficiency virus (hiv)
US20160008374A1 (en) 2014-07-11 2016-01-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
WO2016007765A1 (en) 2014-07-11 2016-01-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
EP3166607A1 (en) 2014-07-11 2017-05-17 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of hiv
WO2016044182A1 (en) 2014-09-16 2016-03-24 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US9573952B2 (en) 2014-09-16 2017-02-21 Gilead Sciences, Inc. Methods of preparing toll-like receptor modulators
US9738646B2 (en) 2014-09-16 2017-08-22 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
EP3194402B1 (en) 2014-09-16 2018-11-21 Gilead Sciences, Inc. Methods of preparing toll-like receptor modulators

Non-Patent Citations (93)

* Cited by examiner, † Cited by third party
Title
Ashizawa, et al., Iyakuhin no Takeigensho to Shoseki no Kagaku [Science of crystallization and polymorph phenomenon of pharmaceutical product], Maruzen Planet Co., Ltd, Sep. 20, 2002, pp. 305-317 [No English copy available].
Barouch, et al., Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys, Nature, 2013, pp. 224-239, vol. 503.
Barr, et al., ISCOMSs and other saponin based adjuvants, Advanced Drug Delivery Reviews, 1998, pp. 247-271, vol. 32.
Barton, et al., Prospects for Treatment of Latent HIV, Nature.com, 2013, pp. 46-56, vol. 93, No. 1.
Battistini, et al., HIV-1 Latency: An Update of Molecular Mechanisms and Therapeutic Strategies, Viruses, 2014, pp. 1715-1758, vol. 6.
Borducchi, et al., Antibody and TLR7 Agonist Delay Viral Rebound in SHIV-Infected Monkeys, Nature, Oct. 3, 2018, 21 pages, vol. 564.
Boyer, et al., Pathogenesis, diagnosis, and management of hepatitis C, J. of Hepatology, Supp. 1, 2000, pp. 98-112.
Boyle, et al., Synthesis of a 2,4-Diaminodihydrohomopteridine, 6-Acetyl-2,4-Diamino-7,8-Dihydro-9H-Pyrimido[4,5-b][1,4]Diazepine, Using a Furazano[3,4-d]Pyrimidine Precursor, Tetrahedron, 1991, pp. 5259-5268, vol. 28.
Breault, et al., Exploring 8-benzyl pteridine-6,7-diones as inhibitors of glutamate recemase (Mur1) in Gram-positive bacteria, Bioorganic & Medicinal Chemistry Letters, Dec. 1, 2008, p. 6101; figure 2; compound 2; p. 6102; tables 2-3; compounds 0-12, 14-16; p. 6103; table 4; compound 25.
Brittain, Polymorphism in Pharmaceutical Solids, 1999, 25 pages.
Buffa, et al., Evaluaton of TLR Agonists as Potential Mucosal Adjuvants for HIV gp140 and Tetanus Toxoid in Mice, PLOS ONE, 2012, 10 pages, vol. 7, No. 12.
Buitendijk, Gardiquimod: A Toll-Like Receptor-7 Agonist that Inhibits HIV Type 1 Infection of Human Macrophages and Activated T Cells, Immunology, AIDS Research and Human Retroviruses, 2013, pp. 907-918, vol. 29, No. 6.
Caira, Crystalline Polymorphism of Organic Compounds, Topics in Current Chemistry, Jan. 1, 1998, pp. 163-208 and 177-180, vol. 198.
Calisher, et al., Antigenic relationships between Flaviviruses as determined by cross-neutralization tests with polyclonal antisera, J. Gen. Virol., 1989, pp. 37-43, vol. 70.
Chang, et al. TLR7/9 antagonist reduces HIV-1-induced immune activation, Retrovirology, 2012, Suppl 2. vol. 172.
Chang, et al., Immune Activation and the Role of TLRs and TLR Agonists in the Pathogenesis of HIV-1 Infection in the Humanized Mouse Model, The Journal of Infectious Diseases, 2013, pp. S145-S149, vol. 208, No. S2.
Chang, et al., TLR-mediated immune activation in HIV, Blood, 2009, pp. 269-270, vol. 113, No. 2.
Charpentier, et al., Persistent low-level HIV-1 RNA between 20 and 50 copies/mL in antiretroviral-treated patients: associated factors and virological outcome, J Antimicrob Chemother, 2012, pp. 2231-2235, vol. 167.
Cillo, et al., Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy, PNAS, 2014, pp. 7078-7083, vol. 111, No. 19.
Coiras, HIV-1 Latency and Eradication of Long-term Viral Reservoirs, Retrieved from: http://www.discoverymedicine.com/Mayte-Coiras/2010/030/03/hiv-1-latency-and-eradication on Mar. 13, 2014, 2010, 12 pgs.
Denton, et al., Humanized Mouse Models of HIV Infection, AIDS Rev., 2011, pp. 135-148, vol. 13, No. 3.
Di Bisceglie, et al., The unmet challenges of hepatitis C, Scientific American, Inc., 1999, pp. 80-85.
Dustin, Flying under the radar: The immunbiology of Hepatitis C, Annu. Rev. Immunol., 2007, pp. 71-99, vol. 25.
Dymock, Novel approaches to the treatment of hepatitis C virus infection, Antivirial Chemistry & Chemotherapy, 2000, pp. 79-96, vol. 11.
Dzierba, et al., Dihydropyridopyrazinones and Dihydripterdinones as Corticotropin-Releasing Factor-a receptor antagonists: Structure-Activity Relationships and Computational Modeling, J. Med. Chem., 2007, pp. 5569-5572, vol. 50.
Eriksson, et al., Comparative Analyss of Measures of Viral Reservoirs in HIV-1 Eradication Studies, PLOS Pathogens, 2013, 17 pages, vol. 9, No. 2.
European Patent Office, Examination Report for European Patent Application No. EP107608317, dated Oct. 12, 2015, 4 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2008/007955, dated Sep. 15, 2009, 32 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2009/041432, dated Oct. 26, 2010, 7 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2010/049471, dated Mar. 27, 2012, 7 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2015/050039, dated Mar. 21, 2017, 16 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2015/057932, dated Apr. 15, 2016, 17 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2015/057933, dated Jan. 21, 2016, 9 pages.
European Patent Office, International Preliminary Report on Patentability and Written Opinion for PCT International Application No. PCT/US2015/057934, dated Mar. 18, 2016, 20 pages.
European Patent Office, International Search Report and Written Opinion for PCT International Application No. PCT/US2009/067002, dated Feb. 22, 2010, 10 pages.
European Patent Office, International Search Report and Written Opinion for PCT International Application No. PCT/US2015/050037, dated Dec. 3, 2015, 10 pages.
European Patent Office, International Search Report and Written Opinion for PCT International Application No. PCT/US2015/050039, dated Mar. 4, 2016, 10 pages.
European Patent Office, International Search Report and Written Opinion for PCT International Application No. PCT/US2016/052092, dated Nov. 10, 2016, 11 pages.
European Patent Office, International Search Report and Written Opinion for PCT International Application No. PCT/US2017/028251, dated Nov. 16, 2017, 22 pages.
European Patent Office, International Search Report and Written Opinion for PCT International Application No. PCT/US2018/029974, dated Sep. 18, 2018, 21 pages.
Farumashia, Jun. 2014, p. 575, vol. 50, No. 6 [No English copy available].
Gibson, Pharmaceutical Preformulation and Formulation, 2009, pp. 334-335.
Gluck, et al., New technology platforms in the development of vaccines for the future, 2002, B10-6, vol. 5.
Goodchild, et al., Primary leukocyte screens for innate immune agonists, Journal of Biomolecular Screening, 2009, pp. 723-730, vol. 14.
Gordon, et al., Control of hepatitis C: A medicinal chemistry perspective, Journal of Medicinal Chemistry, 2005, pp. 1-20, vol. 48.
Guillory, Generation of Polymorphs, Hydrates, Solvates, and Amorphous Solids, Polymorphism in Pharmaceutical Solids, 1999, pp. 184-227.
Gunthard, et al., Residual Human Immunodeficiency Virus (HIV) Type 1 RNA and DNA in Lymph Nodes and HIV RNA in Genital Secretions and in Cerebrospinal Fluid after Suppression of Viremia for 2 Years, The Journal of Infectious Diseases, 2001, pp. 1318-1327, vol. 183.
Horowitz, et al., HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice, PNAS USA, 2013, pp. 16538-16543.
Horsmans, et al., Isatoribine, an agonist of TLR7, reduces plasma virus concentration in chronic hepatitis C infection, Hepatology, 2005, pp. 724-731, vol. 42.
Hubert, et al., Natural history of serum HIV-1 RNA levels in 330 patients with a known date of infection, AIDS, 2000, pp. 123-131, vol. 14.
Illan-Cabeza, et al., Antiproliferatvie effects of palladium(II) complexes of 5-nitrosopyrimidines and interactions with the proteolytic regulatory enzymes of the renin-angiotensin system in tumoral brain cells, J. Inorg. Biochem., 2013, pp. 118-127, vol. 126.
Isobe, et al., Synthesis and biological evaluation of novel-9-substituted-8-hydroxyadenine derivatives as potent interferon inducers, Journal of Medicinal Chemistry, 2006, pp. 2088-2095, vol. 49, No. 6.
Jiang, et al.,Targeting NF-KB Signaling with Protein Kinase C Agonists As an Emerging Strategy for Combating HIV Latency, AIDS Research and Human Retroviruses, 2015, vol. 31, No. 1.
Jin, et al., Synthesis and Immunostimulatory activity of 8-substituted amino 9-benzyladenines as potent Toll-like receptor 7 agonists, Bioorg. Med. Chem. Lett, 2006, pp. 4559-4563, vol. 16.
Julien, et al., Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-gp120 V3 Base and Multiple Surrounding Glycans, PLOS Pathogens, 2013, 15 pages, vol. 9, No. 5.
Juricova, et al., Synthesis of Base-Modified ‘Abbreviated’ NAD Analogues, Collection of Czechoslovak Chemical Communications, 1995, pp. 237-250, vol. 60, No. 2.
Juricova, et al., Synthesis of Base-Modified 'Abbreviated' NAD Analogues, Collection of Czechoslovak Chemical Communications, 1995, pp. 237-250, vol. 60, No. 2.
Kelly, Journal of Medicinal Chemistry, 1989, pp. 1757-1763, vol. 32, No. 8.
Korba, et al., Treatment of chronic woodchuck hepatitis virus infection in the Eastern Wookdchuck (Marnota monax) with nucleoside analgoues is predictive of therapy for chronic hepatitis B virus infection in humans, Hepatology, 2000, pp. 1165-1175, vol. 31.
Kwong, et al., Human Antibodies that Neutralize HIV-1: Identification, Structures, and B Cell Ontogenies, Immunity, 2012, pp. 412-425, vol. 37.
Lanford, et al., GS-9620, an Oral Agonist of Toll-Like Receptor-7, Induces Prolonged Suppression of Hepatitis B Virus in Chronically Infected Chimpanzees, Gastroenterology, 2013, pp. 1508-1517, vol. 144.
Lee, et al., Activiation of anti-hepatitis C virus responses via Toll-like receptor 7, 2006, Proc. Natl. Acad. Sci., pp. 1828-1833, vol. 103.
Lewin, et al., HIV Rebound Prevented in Monkeys, Nature, Nov. 15, 2018, pp. 333-334, vol. 563.
Loveday, Prediction of progression to AIDS with serum HIV-1 RNA and CD4 count, The Lancet, 1995, pp. 790-791, vol. 345.
Malbec, et al., Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission, Journal of Experimental Medicine, 2013, pp. 2813-2821, vol. 210, No. 13.
Marsden, et al., Neutralizing the HIV Reservoir, Cell, 2014, pp. 971-972, vol. 158.
Matsuoka, Kesshotake no Kiso to Oyo [Fundamentals and application of crystalline polymorphs], CMC Publishing Co., Ltd, Oct. 22, 2010, popular edition, First print, pp. 105-117 and 181-191.
Menne, et al., The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection, World J. Gastroenterol, 2007, pp. 104-124, vol. 13.
Meyer, Clinical Investigations of Toll-Like Receptor Agonists, Jul. 2008, pp. 1051-1065, vol. 17, No. 7.
Moennig, et al., The pestiviruses, Advances in Virus Research, 1992, pp. 53-98, vol. 41.
Mofenson, et al., The Relationship between Serum Human Immunodeficiency Virus Type 1 (HIV-1) RNA Level, CD4 Lymphocyte Percent, and Long-Term Mortality Risk in HIV-1-Infected Children, The Journal of Infectious Diseases, 1997, pp. 1029-1038, vol. 175.
Moody, et al., TLR-7/8 and 9 Agonists Cooperate to Enthance HIV-1 Envelope Antibody Responses in Rhesus Macaques, J. Virol., 2014, 42 pages.
Moradpour, et al., Replication of hepatitisc C virus, Nature Reviews, Microbiology, 2007, pp. 453-463, vol. 5.
Moye, et al., The synthesis of 4,6-Dihydroxy-2-methoxypyrimidine and derived pyrimidine intermediates, Aust. J. Chem., 1965, pp. 1309-1310, vol. 17.
Nagashima, et al., Solution-Phase parallel synthesis of a N-Alkylated dihydropteridinone library from fluorous-amino acids, J. Comb. Chem., 2004, pp. 942-949, vol. 6.
Ostrowski, et al., Residual Virae,ia in HIV-1-Infected Patients with Plasma Viral Load £20 copies/ml is Associated with Increased Blood Levels of Soluble Immune Activation Markers, Scandinavian Journal of Immunology, 2008, pp. 652-660, vol. 68.
Persaud, a stable latent reservoir for HIV-1 in resting CD4+ T lymphocytes in infected children, The Journal of Clinical Investigation, 2000, pp. 995-1003, vol. 105, No. 7.
Picker, et al., Antibodies advance the search for a cure, Nature, 2013, pp. 207-208, vol. 503.
Prince, et al., Common Antiviral Agents, 2014, 9 pages.
Rasmussen, Eliminating the latent HIV reservoir by reactivation strategies, Human Vaccines & Immunotherapeutics, 2013, pp. 790-799, vol. 9, No. 4.
Roethle, et al., Identification and Optimization of Pteridinone Toll-like Receptor 7 (TLR7) Agonists for the Oral Treatment of Viral Hepatitis, Journal of Medicinal Chemistry, 2013, pp. 7324-7333, vol. 56, No. 18.
Scott, et al., Interferon-alpha-2b plus ribavirin: a review of its use in the management of chronic hepatistis C, Drugs, 2002, pp. 507-556, vol. 62.
Shingai, et al., Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia, Nature, 2013, pp. 277-291, vol. 503.
Siliciano, et al., HIV Latency, Cold Spring Harb Perspect Med, 2011, 20 pages.
Smith et al., Developments in HIV-1 Immunotherapy and therapeutic vaccination, F1000Pripe Reports, 2014, vol. 6, No. 43.
Stahly, Diversity in Single-and Multiple-Component Crystals. The Search for and Prevalence of Polymorphs and Cocrystals, Crystal Growth & Design, 2007, pp. 1007-1026, vol. 7.
Sun, et al., Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus, Virology, 2009, pp. 207-215, vol. 383.
Susvilo, et al., Study on the reaction of methy N-Methyl-N-(6-substituted-5-nitropyrimidine-4-yl) glycinates with sodium alkoxides, J. Heterocyclic Chem., 2006, pp. 267-276, vol. 43.
Tennant, Animal models of hepatitis B virus infection, Clinics in Liver Disease, 1999, pp. 241-266, vol. 3.
Thomas, et al., Investigating toll-like receptor agonists for potential to treat hepatitis C virus infection, Antimicrobial Agents and Chemotherapy, 2007, pp. 2969-2978, vol. 51.
Van Der Sluis, et al, Dendritic Cell-induced Activation of Latent HIV-1 Provirus in Actively Proliferating Primary T Lymphocytes, PLOS Pathogens, 2013, 15 pages, vol. 9, No. 3.
Walker, et al., Broad neutralization coverage of HIV by multiple highly potent antibodies, Nature, 2011, pp. 466-471, vol. 477.
Whitney, Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys, Nature, 2014, pp. 74-77, vol. 512.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11110091B2 (en) 2008-12-09 2021-09-07 Gilead Sciences, Inc. Modulators of toll-like receptors
US11116774B2 (en) 2014-07-11 2021-09-14 Gilead Sciences, Inc. Modulators of toll-like receptors for the treatment of HIV
US11072615B2 (en) 2014-09-16 2021-07-27 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator
US11773098B2 (en) 2014-09-16 2023-10-03 Gilead Sciences, Inc. Solid forms of a toll-like receptor modulator

Also Published As

Publication number Publication date
US20200207771A1 (en) 2020-07-02
JP2020176156A (en) 2020-10-29
KR20190125537A (en) 2019-11-06
ES2835717T3 (en) 2021-06-23
AU2018204107A1 (en) 2018-06-28
CN106715431A (en) 2017-05-24
US10202384B2 (en) 2019-02-12
US20170313707A1 (en) 2017-11-02
EP3194401B1 (en) 2020-10-21
MX2017003284A (en) 2017-06-28
TW201625623A (en) 2016-07-16
US11072615B2 (en) 2021-07-27
JP2019056017A (en) 2019-04-11
AU2015318061B2 (en) 2018-05-17
IL250754A0 (en) 2017-04-30
US11773098B2 (en) 2023-10-03
IL250754B (en) 2018-08-30
BR102015023450A2 (en) 2016-04-12
US20190315750A1 (en) 2019-10-17
PT3194401T (en) 2020-12-23
CA2960436C (en) 2021-01-05
EA201790369A1 (en) 2017-10-31
CA2960436A1 (en) 2016-03-24
UY36298A (en) 2016-04-29
EP3194401A1 (en) 2017-07-26
TWI728954B (en) 2021-06-01
SG11201701520TA (en) 2017-04-27
US20160108045A1 (en) 2016-04-21
AU2015318061A1 (en) 2017-03-23
WO2016044182A1 (en) 2016-03-24
JP2017526730A (en) 2017-09-14
SI3194401T1 (en) 2020-12-31
CN110305133A (en) 2019-10-08
US9738646B2 (en) 2017-08-22
KR20170054481A (en) 2017-05-17
US20220009928A1 (en) 2022-01-13
AR101883A1 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
US11773098B2 (en) Solid forms of a toll-like receptor modulator
AU2021200857B2 (en) Crystalline forms of tenofovir alafenamide
US20210292327A1 (en) Deuterated toll-like receptor modulators

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: GILEAD SCIENCES, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDRES, PATRICIA;DIAZ, KRISTA MARIE;SMOLENSKAYA, VALERIYA N.;REEL/FRAME:050180/0825

Effective date: 20150908

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4