WO2009002272A1 - A method of making a secondary imprint on an imprinted polymer - Google Patents
A method of making a secondary imprint on an imprinted polymer Download PDFInfo
- Publication number
- WO2009002272A1 WO2009002272A1 PCT/SG2008/000221 SG2008000221W WO2009002272A1 WO 2009002272 A1 WO2009002272 A1 WO 2009002272A1 SG 2008000221 W SG2008000221 W SG 2008000221W WO 2009002272 A1 WO2009002272 A1 WO 2009002272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- imprint
- primary
- polymer structure
- mold
- pressing
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000003825 pressing Methods 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims description 59
- 239000002105 nanoparticle Substances 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 31
- 229920002120 photoresistant polymer Polymers 0.000 claims description 15
- 239000004793 Polystyrene Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 238000004528 spin coating Methods 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000009477 glass transition Effects 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229920000307 polymer substrate Polymers 0.000 description 21
- 230000009467 reduction Effects 0.000 description 21
- 230000008569 process Effects 0.000 description 18
- 238000001127 nanoimprint lithography Methods 0.000 description 14
- 238000001878 scanning electron micrograph Methods 0.000 description 9
- 238000005530 etching Methods 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- -1 polychlorotrifluoroethylene Polymers 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000000609 electron-beam lithography Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004954 Polyphthalamide Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920006260 polyaryletherketone Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 239000004632 polycaprolactone Substances 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001123 polycyclohexylenedimethylene terephthalate Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 2
- 229920001470 polyketone Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920006380 polyphenylene oxide Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920006375 polyphtalamide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920002160 Celluloid Polymers 0.000 description 1
- 101710162828 Flavin-dependent thymidylate synthase Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 101710135409 Probable flavin-dependent thymidylate synthase Proteins 0.000 description 1
- 229920000995 Spectralon Polymers 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005026 oriented polypropylene Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- QRPMCZNLJXJVSG-UHFFFAOYSA-N trichloro(1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-henicosafluorodecyl)silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)[Si](Cl)(Cl)Cl QRPMCZNLJXJVSG-UHFFFAOYSA-N 0.000 description 1
- VIFIHLXNOOCGLJ-UHFFFAOYSA-N trichloro(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)silane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)CC[Si](Cl)(Cl)Cl VIFIHLXNOOCGLJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
Definitions
- the present invention generally relates to a method of making a secondary imprint on an imprinted polymer.
- nanopatterning techniques play pivotal roles in the evolution of microelectronic and nanoelectronic devices, such as integrated circuits (ICs), microelectromechanical systems (MEMS)/ nanoelectromechanical systems (NEMs), optical components and light emitting diodes (LEDs).
- ICs integrated circuits
- MEMS microelectromechanical systems
- NEMs nanoelectromechanical systems
- LEDs light emitting diodes
- Existing nanopatterning techniques include photolithography, e-beam lithography and nanoimprint lithography (NIL) .
- photolithography techniques employ light, usually in the form of ultraviolet (UV) radiation, to selectively radiate a predefined portion of a light- sensitive chemical known as photoresist, which is deposited on a substrate surface.
- the step of selective radiation is usually accomplished through the use of a photomask to shield/expose respective regions of the photoresist from/to the UV radiation.
- This process is usually followed by the partial removal of the photoresist layer and a plethora of deposition processes, such as chemical vapor deposition (CVD) or physical vapor deposition (PVD).
- CVD chemical vapor deposition
- PVD physical vapor deposition
- a problem associated with photolithography is that the resolution of the pattern formed is unable to go below the 100 nm range. This is largely due to the diffraction effects of light, which in turn affect the precision in which the photoresist is radiated by the light. Consequently, this results in a resolution limit achievable through conventional photolithography. As diffraction is an inherent physical property of light, it can be said that the resolution limit of photolithography is considerably difficult to improve upon. Furthermore, the photomask used in the process is both expensive and time consuming to produce, thereby, increasing the capital costs associated with photolithography.
- Electron beam (e-beam) lithography is a patterning technique involving the scanning of a beam of electrons in a patterned manner across a substrate covered with a resist. The purpose of this is to create very small structures in the resist that can subsequently be transferred into another material for use in other applications, such as in microelectronics.
- a problem associated with e-beam lithography is that it is a very slow process, because the patterning process is carried out on a pixel-by-pixel basis. Consequently, throughput becomes a serious limitation, especially when writing dense patterns over large area substrates. Furthermore, the equipment required for e-beam lithography is expensive and complex to operate, thus requiring an enormous deal of maintenance.
- a further problem associated with e-beam lithography- is the potential for the occurrence of data-related defects. As can be reasonably expected, larger data files (larger patterns) are more susceptible to data- related defects such as blanking or deflection errors, caused by discrepancies in the data input to the optical control hardware.
- NIL is another known nanopatterning technique having the advantage of being of relatively low cost, high throughput and high resolution.
- a mold is typically used to create patterns on the imprint resist via thermomechanical deformation. The resist is then subsequently removed via etching processes to reveal a pattern on a substrate.
- the imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during imprinting. Adhesion between the resist and the mold is controlled to ensure ease of detachment after the deformation process.
- a problem associated with existing NIL is the need to manufacture high-resolution molds for imprinting on the resist. As resolution of the molds increases, the costs associated with the use of the NIL technique also increases as the mold production forms a considerable proportion of the capital costs involved with NIL.
- a method of making an imprint on a polymer structure comprising the step of pressing a mold having a defined surface pattern against the surface of a primary imprint of a polymer structure to form a secondary imprint thereon.
- a method of making a nano-sized or micro-sized imprint on a polymer structure comprising the step of pressing a mold having a defined surface pattern that is nano-sized or micro-sized against the surface of a micro-sized or nano-sized primary imprint of a polymer structure to form a nano- sized or micro-sized secondary imprint thereon.
- the secondary imprint has a nano-size dimension while the primary imprint has a micro-size dimension.
- At least one of the primary and secondary imprints are in the form of a generally longitudinal channel.
- the channel width of the primary imprint can be reduced to a range of about
- the primary polymer imprint can be made nano- sized without the use of a mold having an equivalent nano-sized imprint. Therefore, a significant reduction of the channel width of the primary imprint can be achieved using the process disclosed herein.
- a method of making a nano-sized imprint on a polymer structure comprising the steps of: (a) pressing a mold having a defined micro-sized channel pattern against the surface of the polymer structure to form a primary micro-sized channel imprint thereon; and
- an imprinted polymer structure made in a method comprising the step of pressing a mold having a defined surface pattern against the surface of a primary imprint of a polymer structure to form a secondary imprint thereon.
- a nano-sized or micro-sized imprinted polymer structure made in a method comprising the step of pressing a mold having a defined surface pattern against the surface of a micro- sized or nano-sized primary imprint of a polymer structure to form a nano-sized or micro-sized secondary imprint thereon.
- nano-size refers to a structure having a thickness dimension in the nano-sized range of about 1 nm to less than about 1 micron.
- micro-sized refers to a structure having a thickness dimension in the micro-sized range of about 1 micron to about 10 micron.
- channel used in the context of the specification generally refers to a region of space disposed between a pair of projections extending from the base of the polymer structure, each projection having a length dimension extending along a longitudinal axis, a height dimension and a width dimension normal to the longitudinal axis.
- channel width used herein refers to the width of the channel normal to the longitudinal axis of the polymer structure. Typically, there are plural channels provided on the polymer.
- photoresist indicates a photosensitive material commonly used in a semiconductor fabrication process.
- the photoresist indicates a material exhibiting a change in physical properties, such as solubility change in a specific solvent, i.e., solubilization or insolubilization, due to an instant change of its molecular structure induced by irradiation.
- positive photoresist refers to any type of polymer material that becomes soluble in a corresponding developer upon exposure to light, typically ultra-violet light.
- negative photoresist refers to any type of polymer material that becomes insoluble in a corresponding developer upon exposure to light, typically ultra-violet light.
- developer typically refers to an organic or aqueous medium, which is usually basic in nature, employed as a solvent for various types of photoresists polymers.
- mold generally refers to a mold structure or a master mold that is used for shaping or fabrication of a specific article or product.
- pressing in the context of this specification may refer to one body pressing against another body, or vice versa, or both bodies approaching each other at the same time to impart a compressive force.
- pressing A against B would not only cover body A pressing against body B but would also cover body B pressing against body A and both bodies A and B pressing against each other.
- polymer as used herein denotes a molecule having two or more units derived from the same monomer component, so that the "polymer” incorporates molecules derived from different monomer components to form copolymers, terpolymers, multi-component polymers, graft-co-polymers, block-co-polymers, and the like.
- surface pattern as used herein generally refers to an outer peripheral surface of any structure disclosed herein.
- spin-coating or grammatical variations thereof as used herein generally refers to a process wherein a polymer solution is dispersed on a surface
- the term "about”, in the context of concentrations of components of the formulations, typically means +/- 5% of the stated value, more typically +/- 4% of the stated value, more typically +/- 3% of the stated value, more typically, +/- 2% of the stated value, even more typically +/- 1% of the stated value, and even more typically +/- 0.5% of the stated value.
- a method of making a nano-sized or micro-sized imprint on a polymer structure comprising the step of pressing a mold having a defined surface pattern against the surface of a micro- sized or nano-sized primary imprint of a polymer structure to form a nano-sized or micro-sized secondary imprint thereon.
- the secondary imprint is of a smaller dimension relative to said primary imprint.
- the primary imprint can be nano-sized or micro-sized.
- the primary polymer imprint can be made nano-sized without the use of a mold having an equivalent nano-sized imprint. This effectively reduces the costs involved in nano imprint lithography as molds having nano-sized imprints equivalent to the imprinted polymer are generally more expensive.
- the primary imprint of the polymer structure may be comprised of a plurality of generally longitudinal channels imprinted on the surface of the imprinted polymer structure.
- the secondary imprint may be comprised of a plurality of generally longitudinal channels imprinted on the surface of the primary polymer structure .
- the pressing step can reduce the width of the channel of said primary imprint .
- the channel width of the primary imprint can be reduced in the range selected from the group consisting of about 2 to about 13 fold; about 2 to about 10 fold; about 2 to about 8 fold; and about 2 to about 5 fold.
- the reduced channel width of the primary imprint can be used to deposit nano-metal lines or wire.
- the channel width of said primary imprint can be reduced from the micro-size range to the nano-size range after said width has been reduced by said pressing step. In one embodiment, the channel width of said primary imprint can be reduced from a size range of more than about 2 micron; more than about 1.5 micron; more than about 1 micron; and more than about 0.5 micron before said pressing step. In another embodiment, the channel width of said primary imprint can be reduced to a size range of less than about 800 nm; less than about 750 nm less than about 700 nm less than about 650 nm; less than about 500 nm; less than about 450 nm; less than about 400 nm; less than about 350 nm; and less than about 150 nm after said pressing step.
- the channel width of said primary imprint can be reduced from a size range of more than about 1 micron to a size range of less than about 800 nm after said pressing step. More preferably, the channel width of said primary imprint can be reduced' from a size range of more than about 1 micron to a size range of less than about 500 nm after said pressing step.
- the polymer structure may be comprised of a photoresist.
- the photoresist can be selected from the group consisting of SU-8, diazonaphtoquinone-novolac resin (DNA/NR) BF410 (Tokyo Oka, Japan) and combinations thereof.
- the polymer disclosed herein may comprise a thermoplastic polymer.
- exemplary thermoplastic polymers include, but are not limited to, polymers selected from the group consisting of acrylonitrile butadiene styrene (ABS) , acrylic, celluloid, ethylene- vinyl acetate (EVA) , ethylene vinyl alcohol (EVAL) , fluoroplastics, liquid crystal polymer (LCP) , polyacetal
- POM polyacrylonitrile
- PBD polycaprolactone
- PCL polychlorotrifluoroethylene
- PET polyethylene terephthalate
- PCT polycyclohexylene dimethylene terephthalate
- PHAs polyhydroxyalkanoates
- PES polyketone
- PEC polyethylenechlorinates
- PLA polylactic acid
- PMP polymethylpentene
- PPO polyphenylene oxide
- PPS polyphenylene sulfide
- PSU polyphthalamide
- PVDC polysulfone
- PVDC polyvinylidene chloride
- thermoplastic polymer may comprise polystyrene (PS) .
- the pressing step can be performed at a temperature below the glass transition temperature of the polymer structure, to form the secondary imprint thereon.
- the pressing step can be performed at a temperature in the range selected from the group consisting of about 20 0 C to about 100 0 C; about 20 0 C to about 85°C; about 20 0 C to about 65°C; about 20 0 C to about 45°C; about 30 0 C to about 100 0 C; about 45°C to about 100 0 C; about 65°C to about 100 0 C and about 85°C to about 100 0 C.
- the temperature condition during the pressing step is about 40 0 C to about 65°C.
- a method of making an imprint on a polymer structure further comprising, prior to the pressing step, the step of forming said primary imprint by pressing a mold having a defined surface pattern against the surface of the polymer structure, to form the primary imprint thereon.
- the pressing step to form the primary imprint on the polymer structure may be undertaken at a temperature in the range selected from the group consisting of about 50 0 C to about 180 0 C; about 50 0 C to about 150 0 C; about 50 0 C to about 100 0 C; about 50°C to about 80°C; about 100 0 C to about 180°C; and about 150°C to about 180 0 C.
- the temperature condition during the pressing step is about 90 0 C to about 140 0 C.
- a method of making an imprint on a polymer structure wherein the pressure condition during the pressing steps may be in the range selected from the group consisting of about 2MPa to about 10MPa; about 2MPa to about 8MPa; and about 2MPa to about 5MPa. In one particular embodiment, the pressure condition during the pressing steps is about 4 MPa to about 6 MPa.
- a method of making an imprint on a polymer structure wherein the time condition during the pressing steps may be in the range selected from the group consisting of about 1 minute to about 15 minutes; about 1 minute to about 10 minutes; about 1 minute to about 5 minutes; about 5 minutes to about 15 minutes; and about 10 minutes to about 15 minutes. In one particular embodiment, the time condition during the pressing steps is about 5 minutes to about 10 minutes .
- a method of making an imprint on a polymer structure further comprising, after the pressing step, the step of pressing another mold having a defined surface pattern against the surface of the secondary imprint of the polymer structure, to form a tertiary imprint thereon.
- the step of forming a tertiary imprint on the surface of the secondary imprint may result in a reduction of the channel width of the secondary imprint. Therefore, tertiary nano-sized imprints can be made without using molds of sizes equivalent to the tertiary nano-sized imprints.
- the primary and secondary imprints may be in the form of generally longitudinal channels
- the pressing step may comprise the step of orienting the mold during the pressing step such that the longitudinal axis of the primary and secondary imprints are at an alignment angle to each other in the range selected from the group consisting of about 0 degrees to about 90 degrees to each other; about 0 degrees to about 80 degrees to each other; about 0 degrees to about 65 degrees to each other; about 0 degrees to about 45 degrees to each other; about 0 degrees to about 25 degrees to each other; about 10 degrees to about 90 degrees to each other; about 20 degrees to about 90 degrees to each other; about 35 degrees to about 90 degrees to each other; about 45 degrees to about 90 degrees to each other; and about 60 degrees to about 90 degrees to each other.
- the alignment angle between the longitudinal axis of the primary and secondary imprints can be about 25 degrees to about 60 degrees to each other.
- the mold may be oriented during the pressing step such that the longitudinal axes of the primary and secondary imprints can be substantially parallel to each other.
- the mold may be oriented during the pressing step such that the longitudinal axes of the primary and secondary imprints are at an alignment angle to each other of about 45 degrees.
- the mold may be oriented during the pressing step such that the longitudinal axes of the primary and secondary imprints can be substantially perpendicular to each other.
- different types of imprinted polymer structures having different channel widths can be produced when the mold is oriented such that the alignment angle between the longitudinal axis of the primary and secondary imprints is about 0 degrees to 90 degrees to each other during the pressing step. Furthermore, there is a significant reduction in the channel width of the primary imprint when the longitudinal axes of the primary and secondary imprints are substantially perpendicular or at an alignment angle of 45 degrees to each other. Furthermore, there is a more significant reduction in the channel width when the longitudinal axes of the primary and secondary imprints are substantially perpendicular to each other. Therefore, the primary imprints having a reduced channel width are useful in depositing nano metal lines or wires.
- the reduction in the channel width of the primary imprint may depend on a combination of factors such as the type of polymer used and the pressure applied during the pressing step. For example, different types of polymers having different thermo-mechanical properties may affect the size of the channel width during the pressing step.
- the defined surface pattern of the mold to form the primary imprint and/or the mold to form the secondary imprint may be comprised of a plurality of projections extending from the base of the mold, each projection having a width dimension normal to the longitudinal axis of said mold.
- the width dimension of the mold for forming the primary imprint on the polymer structure may be in the range selected from the group consisting of about 0.25 ⁇ m to about 10 ⁇ m; about 0.25 ⁇ m to about 4 ⁇ m; about 0.25 ⁇ m to about 2 ⁇ m; about 0.5 ⁇ m to about 10 ⁇ m; about 1.5 ⁇ m to about 10 ⁇ m; and about 4 ⁇ m to about 10 ⁇ m.
- the width dimension of the mold for primary imprinting is about 0.25 ⁇ m to about 2 ⁇ m.
- a method of making an imprint on a polymer structure further comprising, before said pressing step, the step of spin- coating a polymer on a substrate to form the polymer structure.
- the substrate can be chemically inert to said polymer.
- the substrate may be selected from the group consisting of silicon, glass, metal, metal oxide, silicon dioxide, silicon nitride, Indium Tin oxide, ceramic, sapphire, polymeric and combinations thereof.
- a method of making a primary imprint on a polymer structure further comprising, after the pressing step, the step of removing the residual layer from the substrate.
- an oxygen plasma is introduced to remove the residual layer from the substrate.
- the channel width of the polymer imprint may expose the underneath substrate which can be etched to replicate the channel width onto the substrate. Therefore, the imprinted polymer structure can be used as a dry or wet etch mask to etch nanometer sized features into the substrate.
- a method of making an imprint on a polymer structure comprising the steps of:
- Fig. 1 schematically illustrates a disclosed process of making a primary and secondary imprint on a polymer structure.
- Fig. 2 shows scanning electron microscope (SEM) images of the polymer structure fabricated using the disclosed method.
- Fig. 3 shows a graph illustrating the trend of the channel width reduction as a function of the secondary mold pattern.
- Fig. 4 shows scanning electron microscope (SEM) images of the polymer structure fabricated using the disclosed method.
- FIG. 1 there is disclosed a schematic illustration of a disclosed process 10 for forming a primary and a secondary imprint on a polymer structure.
- Step 1 a first silicon (Si) mold A having an imprinted surface pattern consisting of projections (12A, 12B) , which extend along the length of the Si mold A, is aligned directly above the surface of a flat polystyrene polymer substrate (PS) .
- Si mold A is pressed towards the surface of the PS polymer, at a temperature of 140 0 C, at 6 MPa for 10 minutes to form a primary imprint consisting of trench gaps (14A, 14B) and projections (16A, 16B, 16C) along the surface of the primary imprint.
- Step 2 a second Si mold B having a defined surface pattern consisting of projections (18A, 18B, 18C, 18D, 18E, 18F) is placed directly above the surface of the primary imprint of the PS polymer.
- the second Si mold B is oriented such that the longitudinal axis of the Si mold B and the PS polymer are at an alignment angle of 0 degrees from each other; that is parallel to each other.
- Si mold B is pressed towards the surface of the primary imprint at a temperature of 65°C, at 6 MPa for 10 minutes to form a secondary imprint consisting of trench gaps (2OA, 2OB, 2OC, 2OD, 2OE, 20F) on the surface of the primary imprint.
- a significant reduction in the width of the trench gaps (14A, 14B) in Step 1 and the width of trench gaps (14A', 14B' ) in Step 2 can be clearly observed.
- This example describes the method of mold preparation and imprinting to achieve pattern size reduction in NIL using a negative photoresist (SU-8), purchased from Micro Chem Corp, USA and polystyrene (PS) , from Sigma Aldrich, Singapore.
- SU-8 negative photoresist
- PS polystyrene
- the molds used for the primary imprinting process were made of silicon (Si) .
- the molds are cut into sizes of 2 cm by 2 cm using a diamond scribe. They were then cleaned by sonication in acetone and then isopropanol for 10 minutes.
- the molds were further treated in an oxygen plasma (8OW, 250 Torr) for ten minutes.
- the molds were then silanized with a 2OmM solution of perfluorodecyltrichlorosilane (FDTS) for half an hour in a nitrogen glovebox.
- the relative humidity in the glove box was kept between 10 to 15 %.
- the molds were then rinsed with heptane and isopropanol respectively.
- the molds were then soft-baked for one hour in an oven at 95 0 C to remove any residual solvent.
- ITO Indium-Tin-Oxide
- PS films were prepared by spin coating a 12% PS solution (45k) on well-cleaned silicon wafers.
- the coating conditions used were formulated to give a film thickness of between 1.8 ⁇ m to 2 ⁇ m. Approximately
- the spin cycle used was set at 500 rpm for 30 seconds -to obtain a minimal residual layer of 188 nm on
- the PS sample After spin-coating, the sample was then soft baked at 65°C for 5 minutes to evaporate the solvent. The samples were baked on a digital level hotplate.
- Imprinting is carried out on an Obducat imprinter.
- the mold was placed on top of the sample and loaded into the imprinter.
- the resist was imprinted at 90 0 C and 60 bars (absolute) for 600 seconds while PS was imprinted at 140 0 C and 40 bars (absolute) for 600 seconds.
- the primary imprint was carried out with a 2 ⁇ m grating mold with a duty cycle of 1:1 and the secondary mold used was a 250 nm grating mold, also with duty cycle of 1:1.
- an oxygen plasma (RIE Trion) was used to etch away the residual layer (the resist/PS region that had been thermomechanically deformed) before a secondary imprint was carried out.
- the step of removing the residual layer allows lateral movement of the projections of the primary polymer so that the channel width of the primary polymer can be effectively reduced during the secondary imprinting process.
- An optimal etching time of 10 seconds was used to etch away the residual layer.
- a series of etching durations associated with the thickness of the residual layer is shown in Table 1.
- Table 1 Optimization of residual layer in PS imprint through spin condition, the corresponding residual layer thickness and required etching time are shown.
- a secondary imprint process was carried out at a reduced temperature (below glass transition temperature T g ) of 4O 0 C at 60 bars for 600 seconds for the resist and at 65°C at 40 bars for 600 seconds for the PS.
- T g reduced temperature
- the samples were then exposed to UV light in the imprinter for 10 seconds, resulting in crosslinking within the resist structure.
- the samples were then baked in a convection oven at 18O 0 C for 2.5 hours. The temperature was reduced slowly to allow the samples to cool gradually. This was to prevent thermal stresses from occurring in the sample.
- the samples were then demolded to separate the mold from the substrate.
- the PS samples did not require any exposure or post baking treatment, and .were simply demolded to separate the mold from the substrate.
- Example 1 The samples used in the current example were prepared using the same protocol as described in Example 1.
- the imprinting protocol was also the same as described in Example 1. This example further illustrates the use of a secondary imprint to improve the pattern resolution on a photoresist (SU-8) coating.
- Fig. 2 (a) shows an SEM image, having a magnification of 500Ox, of the primary resist structure after the primary imprinting by the grating mold.
- a grating pattern having a trench gap width of 2 ⁇ m was imprinted on a negative photoresist (SU-8) layer deposited on a silicon substrate.
- the trench gap width of 2 ⁇ m was congruent with the resolution pattern of the grating mold used.
- the primary resist structure has a pitch of 4 ⁇ m.
- Fig. 2 (b) shows an SEM image, having a magnification of 13,00Ox, illustrating the secondary grating pattern obtained when a 250 run grating mold (secondary mold) was further imprinted on the surface of the primary imprint obtained from Fig. 2 (a) .
- the alignment of the longitudinal axis of the channels of the secondary mold were placed almost parallel to the longitudinal axis of the channels of the primary imprint, resulting in parallel trenches running along the primary resist structure.
- a trench gap width reduction from 2 ⁇ m to 550 ran (reduced by a factor of 3.6) can be clearly observed in the primary imprint.
- Fig. 2(c) shows a SEM image, having a magnification of 5,00Ox, illustrating the secondary grating pattern obtained when a 250 nm grating mold (secondary mold) was further imprinted on the surface of the primary imprint obtained from Fig. 2 (a).
- the longitudinal axis of the channels of the secondary mold was placed perpendicular to the longitudinal axis of the primary imprint.
- a trench gap width reduction from 2 ⁇ m to 300 nm can be clearly observed in the primary imprint.
- Fig. 2 (d) shows a SEM image, having a magnification of 6,00Ox, illustrating the secondary grating pattern obtained when a 250 nm grating mold (secondary mold) was further imprinted on the surface of the primary imprint obtained from Fig. 2 (a) .
- the secondary mold was placed at an angle of 45 degrees to the longitudinal axis of the primary imprint. A trench width gap reduction from 2 ⁇ m to 281 nm can be clearly observed in the primary imprint.
- Table 2 Summary table of the reduction in trench width fabricated by nanoimprint lithography (NIL) for a resist polymer layer.
- Table 2 provides a summary of trench width reduction for a resist primary structure, obtained through a combination of primary and secondary mold imprinting in various alignments. A significant reduction in trench width of the primary imprint can be observed when the 250nm secondary imprint mold is imprinted at an angle of 45 degrees or 90 degrees to the longitudinal axis of the primary imprint.
- Example 1 The samples used in the current example were prepared using the same protocol as described in Example 1.
- the imprinting protocol was also the same as described in Example 1. This example further illustrates the use of a secondary imprint to reduce the pattern resolution on a PS primary structure.
- Fig. 4 shows a series of SEM images of the PS structure fabricated by the disclosed method, in which the effects of the pattern feature of the secondary molds on the trench width reduction of the primary structure are investigated.
- Fig. 4 (a) shows a SEM image, having a magnification of 3,50Ox, depicting grating patterns obtained by imprinting with a 2 ⁇ m grating primary mold.
- a trench width gap of 2 ⁇ m was observed for the primary PS structure.
- the trench gap width of 2 ⁇ m was congruent with the resolution pattern of the grating primary mold used.
- Fig. 4 (b) shows an SEM image having a magnification of 5,50Ox, depicting grating patterns obtained by imprinting with a 2 ⁇ m grating primary mold followed by a 500 nm grating secondary mold, applied 90° with respect to the primary imprint.
- a trench width gap reduction from 2 ⁇ m to 409 nm can be clearly observed in the primary imprint.
- Fig. 4 (c) shows an SEM image, having a magnification of 7,50Ox, depicting grating patterns obtained by imprinting first with a 2 ⁇ m grating primary mold followed by a 150 nm grating secondary mold, applied 90° with respect to the primary imprint. A trench width gap reduction from 2 ⁇ m to 150 run can be observed.
- Fig. 4 (d) shows an SEM image, having a magnification of 2,30Ox, depicting grating patterns obtained by imprinting first with a 2 ⁇ m grating primary mold followed by a 2 ⁇ m grating secondary mold, applied 90° with respect to the primary imprint. A trench width gap reduction from 2 ⁇ m to 1.7 ⁇ m can be observed.
- Table 3 Summary table of size of gaps fabricated by nanoimprint lithography (NIL) for a PS polymer layer. Table 3 provides a summary of trench width reduction for a PS primary structure, obtained through a series of primary and secondary mold imprinting in various alignments. It can be observed that for a PS primary structure, applying a secondary imprinting mold having
- 250 nm gratings in a 90° alignment is most effective for reducing the trench width of the primary PS structure.
- the methods disclosed herein offer a cheaper alternative to obtain nanopatterns using NIL because a mold with nanometer scale pattern is not required to achieve " nanometer surface patterns. That is, the pressing by a mold having a defined surface pattern against the surface of a primary imprint of a polymer structure, reduces the dimension of the primary imprint. For example, where the primary imprint is in the form of a channel, the width of the channel may be reduced to the nano-sized range from the micro-sized range.
- the channel width of the primary imprint can be reduced to a range of about 2 to about 13 folds. Therefore, nano-sized polymer imprints can be achieved without the use of molds having imprints of sizes equivalent to the nano-sized polymer imprints. Therefore, a significant reduction of the channel width of the primary imprint can be achieved using the process disclosed herein.
- different types of imprinted polymer structures having different channel widths can be produced using the methods disclosed herein. Furthermore, there is a significant reduction in the channel width of the primary imprint when the longitudinal axes of the primary and secondary imprints are substantially perpendicular or at an alignment angle of 45 degrees to each other.
- the processes disclosed herein are able to fabricate templates having high-resolution patterns that can be used to deposit metal lines and wires for use as nanoelectrodes .
- the imprinted polymer structure can be used as a dry or wet shadow mask, to etch nanometer sized features into the substrate.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Micromachines (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08767300A EP2171538A4 (en) | 2007-06-27 | 2008-06-23 | A method of making a secondary imprint on an imprinted polymer |
JP2010514705A JP5395789B2 (en) | 2007-06-27 | 2008-06-23 | Method for making a secondary imprint on an imprinted polymer |
AU2008269284A AU2008269284A1 (en) | 2007-06-27 | 2008-06-23 | A method of making a secondary imprint on an imprinted polymer |
US12/666,048 US20100193993A1 (en) | 2007-06-27 | 2008-06-23 | Method of making a secondary imprint on an imprinted polymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US94644307P | 2007-06-27 | 2007-06-27 | |
US60/946,443 | 2007-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009002272A1 true WO2009002272A1 (en) | 2008-12-31 |
Family
ID=40185894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SG2008/000221 WO2009002272A1 (en) | 2007-06-27 | 2008-06-23 | A method of making a secondary imprint on an imprinted polymer |
Country Status (7)
Country | Link |
---|---|
US (1) | US20100193993A1 (en) |
EP (1) | EP2171538A4 (en) |
JP (1) | JP5395789B2 (en) |
KR (1) | KR101590075B1 (en) |
AU (1) | AU2008269284A1 (en) |
TW (1) | TWI409582B (en) |
WO (1) | WO2009002272A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120268822A1 (en) * | 2011-04-19 | 2012-10-25 | Bee Khuan Jaslyn Law | Antireflective hierarchical structures |
TWI466819B (en) * | 2011-04-27 | 2015-01-01 | Nat Univ Tsing Hua | A method for nanoimprinting a piezoelectric polymeric material to form high aspect ratio nanopillars |
KR101385976B1 (en) * | 2012-08-30 | 2014-04-16 | 한국전기연구원 | Manufacturing method of mold for forming nano-micro composite pattern |
KR102168402B1 (en) * | 2018-07-19 | 2020-10-21 | 한국세라믹기술원 | Transfer plate, fabricating method of the same, and Heat sink comprising of the same, and Diaphragm comprising of the same |
JP7345843B2 (en) * | 2020-03-04 | 2023-09-19 | 国立研究開発法人産業技術総合研究所 | Nanopillar structure substrate with microwell and manufacturing method thereof |
KR102283098B1 (en) | 2020-04-02 | 2021-07-29 | 주식회사 스몰머신즈 | Manufacture method of chip for fluid analysis |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5512131A (en) * | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US6818139B1 (en) * | 1999-04-21 | 2004-11-16 | Minuta Technology Co., Ltd. | Method for forming a micro-pattern on a substrate |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050064344A1 (en) * | 2003-09-18 | 2005-03-24 | University Of Texas System Board Of Regents | Imprint lithography templates having alignment marks |
JP3821069B2 (en) * | 2002-08-01 | 2006-09-13 | 株式会社日立製作所 | Method for forming structure by transfer pattern |
US6936194B2 (en) * | 2002-09-05 | 2005-08-30 | Molecular Imprints, Inc. | Functional patterning material for imprint lithography processes |
EP1443344A1 (en) * | 2003-01-29 | 2004-08-04 | Heptagon Oy | Manufacturing micro-structured elements |
KR20050112940A (en) * | 2004-05-28 | 2005-12-01 | 삼성전자주식회사 | Hybrid mask mold having fake recession and method for fabrication of barrier ribs or etch barrier using the same |
US7686970B2 (en) * | 2004-12-30 | 2010-03-30 | Asml Netherlands B.V. | Imprint lithography |
KR101169426B1 (en) * | 2005-10-20 | 2012-07-27 | 에이전시 포 사이언스, 테크놀로지 앤드 리서치 | Hierarchical Nanopatterns by Nanoimprint Lithography |
JP5002207B2 (en) * | 2006-07-26 | 2012-08-15 | キヤノン株式会社 | Method for manufacturing structure having pattern |
-
2008
- 2008-06-23 JP JP2010514705A patent/JP5395789B2/en not_active Expired - Fee Related
- 2008-06-23 WO PCT/SG2008/000221 patent/WO2009002272A1/en active Application Filing
- 2008-06-23 EP EP08767300A patent/EP2171538A4/en not_active Withdrawn
- 2008-06-23 AU AU2008269284A patent/AU2008269284A1/en not_active Abandoned
- 2008-06-23 KR KR1020107001855A patent/KR101590075B1/en active IP Right Grant
- 2008-06-23 US US12/666,048 patent/US20100193993A1/en not_active Abandoned
- 2008-06-27 TW TW097124127A patent/TWI409582B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5512131A (en) * | 1993-10-04 | 1996-04-30 | President And Fellows Of Harvard College | Formation of microstamped patterns on surfaces and derivative articles |
US6818139B1 (en) * | 1999-04-21 | 2004-11-16 | Minuta Technology Co., Ltd. | Method for forming a micro-pattern on a substrate |
Also Published As
Publication number | Publication date |
---|---|
US20100193993A1 (en) | 2010-08-05 |
KR101590075B1 (en) | 2016-02-12 |
TWI409582B (en) | 2013-09-21 |
KR20100041788A (en) | 2010-04-22 |
EP2171538A4 (en) | 2011-08-17 |
JP2010532283A (en) | 2010-10-07 |
EP2171538A1 (en) | 2010-04-07 |
JP5395789B2 (en) | 2014-01-22 |
TW200912546A (en) | 2009-03-16 |
AU2008269284A1 (en) | 2008-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tseng et al. | Enhanced polymeric lithography resists via sequential infiltration synthesis | |
US8398868B2 (en) | Directed self-assembly of block copolymers using segmented prepatterns | |
US7521094B1 (en) | Method of forming polymer features by directed self-assembly of block copolymers | |
US10538859B2 (en) | Methods for providing patterned orientation templates for self-assemblable polymers for use in device lithography | |
US6893966B2 (en) | Method of patterning the surface of an article using positive microcontact printing | |
US20100178615A1 (en) | Method for reducing tip-to-tip spacing between lines | |
US20100193993A1 (en) | Method of making a secondary imprint on an imprinted polymer | |
WO2012111694A1 (en) | Method for producing substrate having surface nanostructure | |
JP3506248B2 (en) | Manufacturing method of microstructure | |
US6897158B2 (en) | Process for making angled features for nanolithography and nanoimprinting | |
KR20120111288A (en) | Methode of forming fine patterns using nano imprint mold and photo mask | |
WO2008097278A2 (en) | Etch-enhanced technique for lift-off patterning | |
US20140248439A1 (en) | Pattern formation method | |
Borah et al. | Soft-graphoepitaxy using nanoimprinted polyhedral oligomeric silsesquioxane substrates for the directed self-assembly of PS-b-PDMS | |
US9081274B2 (en) | Pattern forming method | |
US9841674B2 (en) | Patterning method, and template for nanoimprint and producing method thereof | |
US20160068429A1 (en) | Pattern forming method, photomask, and template for nanoimprint | |
US6777167B2 (en) | Method of producing an etch-resistant polymer structure using electron beam lithography | |
Shin et al. | Nanoimprinting ultrasmall and high-aspect-ratio structures by using rubber-toughened UV cured epoxy resist | |
US7604903B1 (en) | Mask having sidewall absorbers to enable the printing of finer features in nanoprint lithography (1XMASK) | |
KR20120111306A (en) | Method for manufacturing mold using nano imprinting and photolithography, and method for forming fine pattern using the mold | |
KR100734664B1 (en) | Method for forming a minute pattern using a langmuir-blodegett way | |
Binderup et al. | Large area nanoscale patterning of functional materials using organosilicate ink based nanotransfer printing | |
Hu | Ultrahigh resolution electron beam lithography for molecular electronics | |
EP1485757B1 (en) | Method of producing an etch-resistant polymer structure using electron beam lithography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08767300 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514705 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008269284 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008767300 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107001855 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2008269284 Country of ref document: AU Date of ref document: 20080623 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12666048 Country of ref document: US |