WO2009001217A2 - Low-additive influenza vaccines - Google Patents
Low-additive influenza vaccines Download PDFInfo
- Publication number
- WO2009001217A2 WO2009001217A2 PCT/IB2008/002238 IB2008002238W WO2009001217A2 WO 2009001217 A2 WO2009001217 A2 WO 2009001217A2 IB 2008002238 W IB2008002238 W IB 2008002238W WO 2009001217 A2 WO2009001217 A2 WO 2009001217A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vaccine
- antigen
- influenza
- virus
- vaccines
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5252—Virus inactivated (killed)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55566—Emulsions, e.g. Freund's adjuvant, MF59
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16211—Influenzavirus B, i.e. influenza B virus
- C12N2760/16234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Definitions
- This invention is in the field of vaccines for protecting against influenza virus infection, and in particular vaccines that contain low levels of pharmaceutical additives.
- Vaccines are generally based either on live virus or on inactivated virus. Inactivated vaccines may be based on whole virions, 'split' virions, or on purified surface antigens.
- influenza vaccines include various pharmaceutical additives and other contaminants, such as: anti-bacterial preservatives e.g. thimerosal; detergents e.g. CTAB, polysorbate 80, octoxynol 10, etc.; antibiotics e.g. neomycin, kanamycin; formaldehyde; and egg-derived materials including egg proteins (e.g. ovomucoid) and chicken DNA.
- anti-bacterial preservatives e.g. thimerosal
- detergents e.g. CTAB, polysorbate 80, octoxynol 10, etc.
- antibiotics e.g. neomycin, kanamycin
- formaldehyde e.g. ovomucoid
- egg-derived materials including egg proteins (e.g. ovomucoid) and chicken DNA.
- reference 2 prepared a vaccine that was free of formaldehyde, but contained thimerosal and egg products.
- an influenza vaccine lacks at least three of: a mercurial preservative; an antibiotic; formaldehyde; and egg-derived materials.
- a vaccine includes none of these four components.
- the invention provides a vaccine comprising an influenza virus antigen, wherein the vaccine contains no mercurial preservative, no antibiotic and no egg-derived materials.
- Formaldehyde-free vaccines are preferred.
- the invention provides a vaccine comprising an influenza virus antigen, wherein the vaccine contains no mercurial preservative, no antibiotic and no formaldehyde.
- the invention also provides a vaccine comprising an influenza virus antigen, wherein the vaccine contains no antibiotic, no formaldehyde and no egg-derived materials.
- the invention also provides a vaccine comprising an influenza virus antigen, wherein the vaccine contains no mercurial preservative, no antibiotic, no formaldehyde and no egg-derived materials.
- Preferred vaccines also have a very low endotoxin content e.g. less than 0.1 IU/ml, and preferably less than 0.05 IU/ml.
- the international unit for endotoxin measurement is well known and can be calculated for a sample by, for instance, comparison to an international standard [3,4], such as the 2nd International Standard (Code 94/580 - IS) available from the NIBSC.
- Current vaccines prepared from virus grown in eggs have endotoxin levels in the region of 0.5-5 IU/ml.
- the invention also provides a process for preparing an influenza virus antigen, comprising the steps of: (i) growing influenza virus in a cell culture system, in the absence of egg-derived materials and of antibiotics; (ii) inactivating the influenza viruses grown in step (i), in the absence of formaldehyde; and (iii) preparing a vaccine antigen formulation from the inactivated influenza viruses, in the absence of thimerosal.
- the resulting antigen formulation may a bulk vaccine antigen that can be used to prepare monovalent or multivalent vaccines.
- Antigen components The invention uses influenza virus antigens prepared from influenza virions.
- the virions are inactivated without using formaldehyde.
- Chemical means for inactivating a virus include treatment with an effective amount of one or more of the following agents: detergents, ⁇ -propiolactone, or UV light. Additional chemical means for inactivation include treatment with methylene blue, psoralen, carboxyfullerene (C60) or a combination of any thereof.
- Other methods of viral inactivation are known in the art, such as for example binary ethylamine, acetyl ethyleneimine, or gamma irradiation.
- Virions can be harvested from virus-containing fluids by various methods. For example, a purification process may involve zonal centrifugation using a linear sucrose gradient solution that includes detergent to disrupt the virions. Antigens may then be purified, after optional dilution, by diafiltration.
- Split virions are obtained by treating purified virions with detergents (e.g. ethyl ether, polysorbate 80, deoxycholate, tri-iV-butyl phosphate, Triton X-100, Triton NlOl, cetyltrimethylammonium bromide, Tergitol NP9, etc.) to produce subvirion preparations, including the 'Tween-ether' splitting process.
- detergents e.g. ethyl ether, polysorbate 80, deoxycholate, tri-iV-butyl phosphate, Triton X-100, Triton NlOl, cetyltrimethylammonium bromide, Tergitol NP9, etc.
- Methods of splitting influenza viruses are well known in the art e.g. see refs. 5-10, etc.
- Splitting of the virus is typically carried out by disrupting or fragmenting whole virus, whether infectious or non-infectious, with a disrupting concentration of a
- Preferred splitting agents are non-ionic and ionic (e.g. cationic) surfactants e.g. alkylglycosides, alkylthioglycosides, acyl sugars, sulphobetaines, betains, polyoxyethylenealkylethers, N,N-dialkyl-Glucamides, Hecameg, alkylphenoxy-polyethoxyethanols, quaternary ammonium compounds, sarcosyl, CTABs (cetyl trimethyl ammonium bromides), tri-N-butyl phosphate, Cetavlon, myristyltrimethylammonium salts, lipofectin, lipofectamine, and DOTMA, the octyl- or nonylphenoxy polyoxyethanols (e.g.
- Triton surfactants such as Triton X-IOO or Triton NlOl
- polyoxyethylene sorbitan esters the Tween surfactants
- polyoxyethylene ethers polyoxyethlene esters, etc.
- One useful splitting procedure uses the consecutive effects of sodium deoxycholate and formaldehyde, and splitting can take place during initial virion purification (e.g. in a sucrose density gradient solution). Split virions can usefully be resuspended in sodium phosphate-buffered isotonic sodium chloride solution, s.
- Purified surface antigen vaccines comprise the influenza surface antigens haemagglutinin and, typically, also neuraminidase. Processes for preparing these proteins in purified form are well known.
- Influenza antigens can also be presented in the form of virosomes [11] (nucleic acid free viral-like liposomal particles), as in the INFLEXAL VTM and INV A VACTM products.
- the influenza virus may be attenuated.
- the influenza virus may be temperature-sensitive.
- the influenza virus may be cold-adapted.
- Human influenza virus strains for use in vaccines change from season to season.
- vaccines typically include two influenza A strains (HlNl and H3N2) and one influenza B strain, and trivalent vaccines are typical.
- the invention may also use HA from pandemic strains (i.e. strains to which the vaccine recipient and the general human population are immunologically na ⁇ ve), such as H2, H5, H7 or H9 subtype strains (in particular of influenza A virus), and influenza vaccines for pandemic strains may be monovalent or may be based on a normal trivalent vaccine supplemented by a pandemic strain.
- the invention may protect against one or more of HA subtypes Hl, H2, H3, H4, H5, H6, H7, H8, H9, HlO, Hl 1, H12, H13, H14, H15 or H16 (influenza A virus).
- the invention may protect against one or more of influenza A virus NA subtypes Nl, N2, N3, N4, N5, N6, N7, N8 orN9.
- the compositions of the invention are particularly useful for immunizing against pandemic strains.
- the characteristics of an influenza strain that give it the potential to cause a pandemic outbreak are: (a) it contains a new hemagglutinin compared to the hemagglutinins in currently-circulating human strains, i.e. one that either has not been evident in the human population for over a decade (e.g. H2) or has not previously been seen at all in the human population (e.g.
- H5, H6 or H9 that have generally been found only in bird populations), and/or it contains a new neuraminidase compared to the neuraminidases in currently-circulating human strains, such that the human population will be immunologically na ⁇ ve to the strain's hemagglutinin and/or neuraminidase; (b) it is capable of being transmitted horizontally in the human population; and (c) it is pathogenic to humans.
- a virus with H5 haemagglutinin type is preferred for immunizing against pandemic influenza, such as a H5N1 strain.
- Other possible strains include H5N3, H9N2, H2N2, H7N1 and H7N7, and any other emerging potentially pandemic strains.
- a virus may fall into HA clade 1, HA clade 1', HA clade 2 or HA clade 3 [12], with clades 1 and 3 being particularly relevant.
- strains which are resistant to antiviral therapy e.g. resistant to oseltamivir [13] and/or zanamivir
- resistant pandemic strains [14] e.g. resistant to oseltamivir [13] and/or zanamivir
- compositions of the invention may include antigen(s) from one or more (e.g. 1, 2, 3, 4 or more) influenza virus strains, including influenza A virus and/or influenza B virus.
- Monovalent vaccines can be prepared, as can 2-valent, 3-valent, 4-valent, etc.. Where a vaccine includes more than one strain of influenza, the different strains are typically grown separately and are mixed after the viruses have been harvested and antigens have been prepared.
- a process of the invention may include the step of mixing antigens from more than one influenza strain, and this process may be performed under non-refrigerated conditions.
- a trivalent vaccine is preferred, including antigens from two influenza A virus strains and one influenza B virus strain.
- the compositions may include antigen from a single influenza A strain. In some embodiments, the compositions may include antigen from two influenza A strains, provided that these two strains are not HlNl and H3N2. In some embodiments, the compositions may include antigen from more than two influenza A strains.
- the influenza virus may be a reassortant strain, and may have been obtained by reverse genetics techniques.
- Reverse genetics techniques [e.g. 15-19] allow influenza viruses with desired genome segments to be prepared in vitro using plasmids.
- it involves expressing (a) DNA molecules that encode desired viral RNA molecules e.g. from poll promoters, and (b) DNA molecules that encode viral proteins e.g. from polll promoters, such that expression of both types of DNA in a cell leads to assembly of a complete intact infectious virion.
- the DNA preferably provides all of the viral RNA and proteins, but it is also possible to use a helper virus to provide some of the RNA and proteins.
- Plasmid-based methods using separate plasmids for producing each viral RNA are preferred [20-22], and these methods will also involve the use of plasmids to express all or some (e.g. just the PBl, PB2, PA and NP proteins) of the viral proteins, with up to 12 plasmids being used in some methods.
- a recent approach [23] combines a plurality of RNA polymerase I transcription cassettes (for viral RNA synthesis) on the same plasmid (e.g. sequences encoding 1, 2, 3, 4, 5, 6, 7 or all 8 influenza A vRNA segments), and a plurality of protein-coding regions with RNA polymerase II promoters on another plasmid (e.g.
- Preferred aspects of the reference 23 method involve: (a) PBl, PB2 and PA mRNA-encoding regions on a single plasmid; and (b) all 8 vRNA-encoding segments on a single plasmid. Including the NA and HA segments on one plasmid and the six other segments on another plasmid can also facilitate matters.
- bacteriophage polymerase promoters As an alternative to using poll promoters to encode the viral RNA segments, it is possible to use bacteriophage polymerase promoters [24]. For instance, promoters for the SP6, T3 or T7 polymerases can conveniently be used. Because of the species-specificity of poll promoters, bacteriophage polymerase promoters can be more convenient for many cell types (e.g. MDCK), although a cell must also be transfected with a plasmid encoding the exogenous polymerase enzyme.
- bacteriophage polymerase promoters can be more convenient for many cell types (e.g. MDCK), although a cell must also be transfected with a plasmid encoding the exogenous polymerase enzyme.
- the virus may include one or more RNA segments from a A/PR/8/34 virus (typically 6 segments from A/PR/8/34, with the HA and N segments being from a vaccine strain, i.e. a 6:2 reassortant). It may also include one or more RNA segments from a A/WSN/33 virus, or from any other virus strain useful for generating reassortant viruses for vaccine preparation.
- the invention protects against a strain that is capable of human-to-human transmission, and so the strain's genome will usually include at least one RNA segment that originated in a mammalian (e.g. in a human) influenza virus. It may include NS segment that originated in an avian influenza virus.
- vaccines of the invention can be free from chicken DNA, as well as being free from egg proteins (such as ovalbumin and ovomucoid).
- the cell substrate will typically be a cell line of mammalian origin.
- Suitable mammalian cells of origin include, but are not limited to, hamster, cattle, primate (including humans and monkeys) and dog cells.
- Various cell types may be used, such as kidney cells, fibroblasts, retinal cells, lung cells, etc.
- suitable hamster cells are the cell lines having the names BHK21 or HKCC.
- Suitable monkey cells are e.g. African green monkey cells, such as kidney cells as in the Vero cell line.
- Suitable dog cells are e.g. kidney cells, as in the MDCK cell line.
- suitable cell lines include, but are not limited to: MDCK; CHO; 293T; BHK; Vero; MRC-5; PER.C6; WI-38; etc.
- Preferred mammalian cell lines for growing influenza viruses include: MDCK cells [27-30], derived from Madin Darby canine kidney; Vero cells [31-33], derived from African green monkey (Cercopithecus aethiops) kidney; or PER.C6 cells [34], derived from human embryonic retinoblasts.
- MDCK cells [27-30], derived from Madin Darby canine kidney; Vero cells [31-33], derived from African green monkey (Cercopithecus aethiops) kidney; or PER.C6 cells [34], derived from human embryonic retinoblasts.
- ATCC American Type Cell Culture
- ECACC European Collection of Cell Cultures
- the ATCC supplies various different Vero cells under catalog numbers CCL-81, CCL-81.2, CRL-1586 and CRL-1587, and it supplies MDCK cells under catalog number CCL-34.
- PER.C6 is available from the ECACC under deposit number 96022940.
- virus can be grown on avian cell lines [e.g. refs. 37-39], including avian embryonic stem cells [37,40] and cell lines derived from ducks (e.g. duck retina), or from hens.
- Suitable avian embryonic stem cells include the EBx cell line derived from chicken embryonic stem cells, EB45, EB14, and EB14-074 [41].
- Chicken embryo fibroblasts can also be used, etc.
- the most preferred cell lines for growing influenza viruses are MDCK cell lines.
- the original MDCK cell line is available from the ATCC as CCL-34, but derivatives of this cell line may also be used.
- reference 27 discloses a MDCK cell line that was adapted for growth in suspension culture ('MDCK 33016', deposited as DSM ACC 2219).
- reference 42 discloses a MDCK-derived cell line that grows in suspension in serum-free culture ('B-702', deposited as FERM BP-7449).
- Reference 43 discloses non-tumorigenic MDCK cells, including 'MDCK-S' (ATCC PTA-6500), 'MDCK-SFlOl' (ATCC PTA-6501), 'MDCK-SF102' (ATCC PTA- 6502) and 'MDCK-SF103' (PTA-6503).
- Reference 44 discloses MDCK cell lines with high susceptibility to infection, including 'MDCK.5F1' cells (ATCC CRL- 12042). Any of these MDCK cell lines can be used.
- the culture for cell growth, and also the viral inoculum used to start the culture will preferably be free from (i.e. will have been tested for and given a negative result for contamination by) herpes simplex virus, respiratory syncytial virus, parainfluenza virus 3, SARS coronavirus, adenovirus, rhinovirus, reoviruses, polyomaviruses, birnaviruses, circoviruses, and/or parvoviruses [45]. Absence of herpes simplex viruses is particularly preferred.
- Virus may be grown on cells in suspension [27,46,47] or in adherent culture.
- the cells may be adapted for growth in suspension.
- One suitable MDCK cell line that is adapted for growth in suspension culture is MDCK 33016 (deposited as DSM ACC 2219).
- microcarrier culture can be used.
- Cell lines supporting influenza virus replication are preferably grown in serum-free culture media and/or protein free media.
- a medium is referred to as a serum-free medium in the context of the present invention in which there are no additives from serum of human or animal origin.
- Protein-free is understood to mean cultures in which multiplication of the cells occurs with exclusion of proteins, growth factors, other protein additives and non-serum proteins, but can optionally include proteins such as trypsin or other proteases that may be necessary for viral growth.
- the cells growing in such cultures naturally contain proteins themselves.
- Cell lines supporting influenza virus replication are preferably grown below 37°C [48] (e.g. 30-36 0 C) during viral replication.
- the method for propagating virus in cultured cells generally includes the steps of inoculating the cultured cells with the strain to be cultured, cultivating the infected cells for a desired time period for virus propagation, such as for example as determined by virus titer or antigen expression (e.g. between 24 and 168 hours after inoculation) and collecting the propagated virus.
- the cultured cells are inoculated with a virus (measured by PFU or TCID 50 ) to cell ratio of 1:500 to 1:1, preferably
- the virus is added to a suspension of the cells or is applied to a monolayer of the cells, and the virus is absorbed on the cells for at least 60 minutes but usually less than 300 minutes, preferably between 90 and 240 minutes at 25 0 C to 4O 0 C, preferably
- the infected cell culture (e.g. monolayers) may be removed either by freeze-thawing or by enzymatic action to increase the viral content of the harvested culture supernatants.
- the harvested fluids are then either inactivated or stored frozen.
- Cultured cells may be infected at a multiplicity of infection ("m.o.i.") of about 0.0001 to 10, preferably 0.002 to 5, more preferably to 0.001 to 2. Still more preferably, the cells are infected at a m.o.i of about 0.01. Infected cells may be harvested 30 to 60 hours post infection. Preferably, the cells are harvested 34 to 48 hours post infection. Still more preferably, the cells are harvested 38 to 40 hours post infection.
- m.o.i. multiplicity of infection
- Proteases typically trypsin
- the proteases can be added at any suitable stage during the culture. According to the invention, antibiotics can be avoided during the culture.
- Influenza vaccines are currently standardised by reference to HA levels, typically measured by SRID. Existing vaccines typically contain about 15 ⁇ g of HA per strain, although lower doses can be used (e.g. when using an adjuvant). Fractional doses such as 1 A (i.e. 7.5 ⁇ g HA per strain), 1 A and V 8 have been used [62,63], as have higher doses (e.g. 3x or 9x doses [49,50]).
- vaccines may include between 0.1 and 150 ⁇ g of HA per influenza strain, preferably between 0.1 and 50 ⁇ g e.g. 0.1- 20 ⁇ g, 0.1-15 ⁇ g, 0.1-10 ⁇ g, 0.1-7.5 ⁇ g, 0.5-5 ⁇ g, etc.
- Particular doses include e.g. about 90, about 45, about 30, about 15, about 10, about 7.5, about 5, about 3.8, about 1.9, about 1.5, etc. per strain.
- the components of the vaccines, kits and processes of the invention e.g. their volumes and concentrations may be selected to provide these antigen doses in final products.
- HA used with the invention may be a natural HA as found in a virus, or may have been modified. For instance, it is known to modify HA to remove determinants (e.g. hyper-basic regions, such as around the cleavage site between HAl and HA2).
- determinants e.g. hyper-basic regions, such as around the cleavage site between HAl and HA2.
- compositions of the invention may include further influenza virus proteins.
- they will typically include neuraminidase glycoprotein.
- They may also include a matrix protein, such as Ml and/or M2 (or a fragment thereof), and/or nucleoprotein.
- the composition preferably contains less than IOng (preferably less than Ing, and more preferably less than 1 OOpg) of residual host cell DNA per dose, although trace amounts of host cell DNA may be present.
- the host cell DNA that it is desirable to exclude from compositions of the invention is DNA that is longer than lOObp.
- the assay used to measure DNA will typically be a validated assay [51,52].
- the performance characteristics of a validated assay can be described in mathematical and quantifiable terms, and its possible sources of error will have been identified.
- the assay will generally have been tested for characteristics such as accuracy, precision, specificity. Once an assay has been calibrated (e.g. against known standard quantities of host cell DNA) and tested then quantitative DNA measurements can be routinely performed.
- hybridization methods such as Southern blots or slot blots [53]
- immunoassay methods such as the ThresholdTM System [54]
- quantitative PCR PCR
- a typical assay involves non-sequence-specific formation of a reaction complex between a biotinylated ssDNA binding protein, a urease-conjugated anti-ssDNA antibody, and DNA. All assay components are included in the complete Total DNA Assay Kit available from the manufacturer. Various commercial manufacturers offer quantitative PCR assays for detecting residual host cell DNA e.g. AppTecTM Laboratory Services, BioRelianceTM, Althea Technologies, etc. A comparison of a chemiluminescent hybridisation assay and the total DNA ThresholdTM system for measuring host cell DNA contamination of a human viral vaccine can be found in reference 56.
- Contaminating DNA can be removed during vaccine preparation using standard purification procedures e.g. chromatography, etc. Removal of residual host cell DNA can be enhanced by nuclease treatment e.g. by using a DNase.
- nuclease treatment e.g. by using a DNase.
- a convenient method for reducing host cell DNA contamination is disclosed in references 57 & 58, involving a two-step treatment, first using a DNase (e.g. Benzonase), which may be used during viral growth, and then a cationic detergent (e.g. CTAB), which may be used during virion disruption.
- a DNase e.g. Benzonase
- CTAB cationic detergent
- Treatment with an alkylating agent, such as ⁇ -propiolactone, can also be used to remove host cell DNA, and advantageously may also be used to inactivate virions [59] while avoiding use of formaldehyde.
- Vaccines containing ⁇ 10ng (e.g. ⁇ lng, ⁇ 100pg) host cell DNA per 15 ⁇ g of haemagglutinin are preferred, as are vaccines containing ⁇ 10ng (e.g. ⁇ lng, ⁇ 100pg) host cell DNA per 0.25ml volume.
- Vaccines containing ⁇ 10ng e.g.
- ⁇ lng, ⁇ 100pg host cell DNA per 50 ⁇ g of haemagglutinin are more preferred, as are vaccines containing ⁇ 10ng (e.g. ⁇ lng, ⁇ 100pg) host cell DNA per 0.5ml volume.
- Adjuvants Compositions of the invention may advantageously include an adjuvant, which can function to enhance the immune responses (humoral and/or cellular) elicited in a patient who receives the composition.
- an adjuvant which can function to enhance the immune responses (humoral and/or cellular) elicited in a patient who receives the composition.
- the use of adjuvants with influenza vaccines has been described before. In references 60 & 61, aluminum hydroxide was used, and in reference 62, a mixture of aluminum hydroxide and aluminum phosphate was used. Reference 63 also described the use of aluminum salt adjuvants.
- the FLUADTM product from Chiron Vaccines includes an oil-in-water emulsion.
- Adjuvants that can be used with the invention include, but are not limited to: • A mineral-containing composition, including calcium salts and aluminum salts (or mixtures thereof).
- Calcium salts include calcium phosphate (e.g. the "CAP" particles disclosed in ref. 64).
- Aluminum salts include hydroxides, phosphates, sulfates, etc., with the salts taking any suitable form (e.g. gel, crystalline, amorphous, etc.). Adsorption to these salts is preferred.
- the mineral containing compositions may also be formulated as a particle of metal salt [65].
- Saponins [chapter 22 of ref. 101], which are a heterologous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria offlcianalis (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs.
- QS21 is marketed as StimulonTM.
- Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS 17, QS 18, QS21, QH-A, QH- B and QH-C.
- the saponin is QS21.
- a method of production of QS21 is disclosed in ref. 66. It is possible to use fraction A of Quil A together with at least one other adjuvant [67].
- Saponin formulations may also comprise a sterol, such as cholesterol [68]. Combinations of saponins and cholesterols can be used to form unique particles called immunostimulating complexs (ISCOMs) [chapter 23 of ref. 101].
- ISCOMs immunostimulating complexs
- ISCOMs typically also include a phospholipid such as phosphatidylethanolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs.
- the ISCOM includes one or more of QuilA, QHA & QHC. ISCOMs are further described in refs. 68-70.
- the ISCOMS may be devoid of additional detergent [71]. It is possible to use a mixture of at least two
- ISCOM complexes each complex comprising essentially one saponin fraction, where the complexes are ISCOM complexes or ISCOM matrix complexes [72].
- saponin based adjuvants can be found in refs. 73 & 74.
- Bacterial ADP-ribosylating toxins e.g. the E.coli heat labile enterotoxin "LT”, cholera toxin
- CT pertussis toxin
- PT pertussis toxin
- ADP-ribosylating toxins as mucosal adjuvants is described in ref. 76 and as parenteral adjuvants in ref. 77.
- Bioadhesives and mucoadhesives such as esterified hyaluronic acid microspheres [78] or chitosan and its derivatives [79].
- Microparticles i.e. a particle of ⁇ 100nm to ⁇ 150 ⁇ m in diameter, more preferably ⁇ 200nm to ⁇ 30 ⁇ m in diameter, or ⁇ 500nm to ⁇ 10 ⁇ m in diameter
- materials that are biodegradable and non-toxic ⁇ e.g. a poly( ⁇ -hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, etc.
- poly(lactide-co-glycolide) being preferred, optionally treated to have a negatively-charged surface ⁇ e.g. with SDS) or a positively-charged surface ⁇ e.g. with a cationic detergent, such as CTAB).
- Liposomes Choapters 13 & 14 of ref. 101). Examples of liposome formulations suitable for use as adjuvants are described in refs. 80-82.
- Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9- steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.
- Muramyl peptides such as N-acetylmuramyl-L-threonyl-D-isoglutamine (“thr-MDP"
- N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylglucsaminyl-N- acetylmuramyl-L-Al-D-isoglu-L-Ala-dipalmitoxy propylamide ("DTP-DPP", or "TheramideTM), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(r-2 T dipalmitoyl- sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (“MTP-PE").
- An outer membrane protein proteosome preparation prepared from a first Gram-negative bacterium in combination with a liposaccharide preparation derived from a second Gram-negative bacterium, wherein the outer membrane protein proteosome and liposaccharide preparations form a stable non-covalent adjuvant complex.
- Such complexes include "IVX-908", a complex comprised of Neisseria meningitidis outer membrane and lipopolysaccharides. They have been used as adjuvants for influenza vaccines [86].
- a polyhydroxlated pyrrolizidine compound [88] such as one having formula:
- R is selected from the group comprising hydrogen, straight or branched, unsubstituted or substituted, saturated or unsaturated acyl, alkyl ⁇ e.g. cycloalkyl), alkenyl, alkynyl and aryl groups, or a pharmaceutically acceptable salt or derivative thereof.
- examples include, but are not limited to: casuarine, casuarine-6- ⁇ -D-glucopyranose, 3-epz-casuarine, 7-ep/-casuarine, 3,7-die/?/-casuarine, etc.
- a CDId ligand such as a ⁇ -glycosylceramide e.g. ⁇ -galactosylceramide.
- Compositions may include two or more of said adjuvants.
- they may advantageously include both an oil-in-water emulsion and a cytokine-inducing agent, as this combination improves the cytokine responses elicited by influenza vaccines, such as the interferon- ⁇ response, with the improvement being much greater than seen when either the emulsion or the agent is used on its own.
- Antigens and adjuvants in a composition will typically be in admixture.
- kits including the antigen and adjuvant components ready for mixing.
- the kit allows the adjuvant and the antigen to be kept separately until the time of use.
- the components are physically separate from each other within the kit, and this separation can be achieved in various ways.
- the two components may be in two separate containers, such as vials.
- the contents of the two vials can then be mixed e.g. by removing the contents of one vial and adding them to the other vial, or by separately removing the contents of both vials and mixing them in a third container.
- one of the kit components is in a syringe and the other is in a container such as a vial.
- the syringe can be used (e.g. with a needle) to insert its contents into the second container for mixing, and the mixture can then be withdrawn into the syringe.
- the mixed contents of the syringe can then be administered to a patient, typically through a new sterile needle. Packing one component in a syringe eliminates the need for using a separate syringe for patient administration.
- the two kit components are held together but separately in the same syringe e.g. a dual-chamber syringe, such as those disclosed in references 90-97 etc.
- Oil-in-water emulsions have been found to be particularly suitable for use in adjuvanting influenza virus vaccines.
- Various such emulsions are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible.
- the oil droplets in the emulsion are generally less than 5 ⁇ m in diameter, and may even have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220nm are preferred as they can be subjected to filter sterilization.
- the invention can be used with oils such as those from an animal (such as fish) or vegetable source.
- Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used e.g. obtained from the jojoba bean. Seed oils include safflower oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used.
- 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils.
- Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention.
- the procedures for separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art.
- Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein.
- a number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids.
- Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15, 19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein.
- Squalane the saturated analog to squalene
- Fish oils, including squalene and squalane are readily available from commercial sources or may be obtained by methods known in the art. Other preferred oils are the tocopherols (see below). Mixtures of oils can be used.
- Surfactants can be classified by their ⁇ LB' (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16.
- the invention can be used with surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWF AXTM tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-l,2-ethanediyl) groups, with octoxynol-9 (Triton X-IOO, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polye
- Preferred surfactants for including in the emulsion are Tween 80 (polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-IOO.
- detergents such as Tween 80 may contribute to the thermal stability seen in the examples below.
- surfactants can be used e.g. Tween 80/Span 85 mixtures.
- a combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-IOO) is also suitable.
- Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
- Preferred amounts of surfactants are: polyoxyethylene sorbitan esters (such as Tween 80) 0.01 to 1%, in particular about 0.1 %; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-IOO, or other detergents in the Triton series) 0.001 to 0.1 %, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20 %, preferably 0.1 to 10 % and in particular 0.1 to 1 % or about 0.5%.
- polyoxyethylene sorbitan esters such as Tween 80
- octyl- or nonylphenoxy polyoxyethanols such as Triton X-IOO, or other detergents in the Triton series
- polyoxyethylene ethers such as laureth 9
- Specific oil-in-water emulsion adjuvants useful with the invention include, but are not limited to: • A submicron emulsion of squalene, Tween 80, and Span 85.
- the composition of the emulsion by volume can be about 5% squalene, about 0.5% polysorbate 80 and about 0.5% Span 85. In weight terms, these ratios become 4.3% squalene, 0.5% polysorbate 80 and 0.48% Span 85.
- This adjuvant is known as 'MF59' [98-100], as described in more detail in Chapter 10 of ref. 101 and chapter 12 of ref. 102.
- the MF59 emulsion advantageously includes citrate ions e.g. 1OmM sodium citrate buffer.
- An emulsion of squalene, a tocopherol, and Tween 80 may include phosphate buffered saline. It may also include Span 85 (e.g. at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% Tween 80, and the weight ratio of squalene tocopherol is preferably ⁇ 1 as this provides a more stable emulsion. Squalene and Tween 80 may be present volume ratio of about 5:2.
- One such emulsion can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90ml of this solution with a mixture of (5g of DL- ⁇ -tocopherol and 5ml squalene), then microfluidising the mixture.
- the resulting emulsion may have submicron oil droplets e.g. with an average diameter of between 100 and 250nm, preferably about 180nm.
- An emulsion of squalene, a tocopherol, and a Triton detergent e.g. Triton X-100.
- the emulsion may also include a 3d-MPL (see below).
- the emulsion may contain a phosphate buffer.
- An emulsion comprising a polysorbate (e.g. polysorbate 80), a Triton detergent (e.g. Triton X-100) and a tocopherol (e.g. an ⁇ -tocopherol succinate).
- the emulsion may include these three components at a mass ratio of about 75:1 1:10 (e.g. 750 ⁇ g/ml polysorbate 80, HO ⁇ g/ml
- Triton X-100 and lOO ⁇ g/ml ⁇ -tocopherol succinate should include any contribution of these components from antigens.
- the emulsion may also include squalene.
- the emulsion may also include a 3d-MPL (see below).
- the aqueous phase may contain a phosphate buffer. • An emulsion of squalane, polysorbate 80 and poloxamer 401 ("PluronicTM L121").
- the emulsion can be formulated in phosphate buffered saline, pH 7.4.
- This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the "SAF-I" adjuvant [103] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the "AF" adjuvant [104] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.
- An emulsion comprising squalene, an aqueous solvent, a polyoxyethylene alkyl ether hydrophilic nonionic surfactant (e.g. polyoxyethylene (12) cetostearyl ether) and a hydrophobic nonionic surfactant (e.g. a sorbitan ester or mannide ester, such as sorbitan monoleate or 'Span 80').
- the emulsion is preferably thermoreversible and/or has at least 90% of the oil droplets (by volume) with a size less than 200 nm [105].
- the emulsion may also include one or more of: alditol; a cryoprotective agent (e.g. a sugar, such as dodecylmaltoside and/or sucrose); and/or an alkylpolyglycoside. Such emulsions may be lyophilized.
- An emulsion having from 0.5-50% of an oil, 0.1-10% of a phospholipid, and 0.05-5% of a non-ionic surfactant.
- preferred phospholipid components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin. Submicron droplet sizes are advantageous.
- Additives may be included, such as QuilA saponin, cholesterol, a saponin-lipophile conjugate (such as GPI-0100, described in reference 107, produced by addition of aliphatic amine to desacylsaponin via the carboxyl group of glucuronic acid), dimethyidioctadecylammonium bromide and/or N,N-dioctadecyl-
- An emulsion comprising a mineral oil, a non-ionic lipophilic ethoxylated fatty alcohol, and a non-ionic hydrophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene- polyoxypropylene block copolymer) [108].
- An emulsion comprising a mineral oil, a non-ionic hydrophilic ethoxylated fatty alcohol, and a non-ionic lipophilic surfactant (e.g. an ethoxylated fatty alcohol and/or polyoxyethylene- polyoxypropylene block copolymer) [108].
- the emulsions may be mixed with antigen extemporaneously, at the time of delivery.
- the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use.
- the antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids.
- the volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:5) but is generally about 1:1.
- haemagglutininin antigen will generally remain in aqueous solution but may distribute itself around the oil/water interface. In general, little if any haemagglutinin will enter the oil phase of the emulsion.
- composition includes a tocopherol
- any of the ⁇ , ⁇ , ⁇ , ⁇ , ⁇ or ⁇ tocopherols can be used, but ⁇ -tocopherols are preferred.
- the tocopherol can take several forms e.g. different salts and/or isomers. Salts include organic salts, such as succinate, acetate, nicotinate, etc. D- ⁇ -tocopherol and
- DL- ⁇ -tocopherol can both be used.
- Tocopherols are advantageously included in vaccines for use in elderly patients (e.g. aged 60 years or older) because vitamin E has been reported to have a positive effect on the immune response in this patient group [HO]. They also have antioxidant properties that may help to stabilize the emulsions [111].
- a preferred ⁇ -tocopherol is DL- ⁇ -tocopherol, and the preferred salt of this tocopherol is the succinate.
- the succinate salt has been found to cooperate with TNF-related ligands in vivo.
- ⁇ -tocopherol succinate is known to be compatible with influenza vaccines and to be a useful preservative as an alternative to mercurial compounds [8].
- Cytokine-inducing agents for inclusion in compositions of the invention are able, when administered to a patient, to elicit the immune system to release cytokines, including interferons and interleukins. Cytokine responses are known to be involved in the early and decisive stages of host defense against influenza infection [112]. Preferred agents can elicit the release of one or more of: interferon- ⁇ ; interleukin-1; inter leukin-2; interleukin-12; TNF - ⁇ ; TNF- ⁇ ; and GM-CSF. Preferred agents elicit the release of cytokines associated with a ThI -type immune response e.g. interferon- ⁇ , TNF- ⁇ , interleukin-2.
- T cells that, when stimulated with an influenza antigen, will release the desired cytokine(s) in an antigen-specific manner.
- T cells purified form their blood will release ⁇ -interferon when exposed in vitro to influenza virus haemagglutinin.
- Methods for measuring such responses in peripheral blood mononuclear cells (PBMC) are known in the art, and include ELISA, ELISPOT, flow-cytometry and real-time PCR.
- reference 113 reports a study in which antigen-specific T cell-mediated immune responses against tetanus toxoid, specifically ⁇ -interferon responses, were monitored, and found that ELISPOT was the most sensitive method to discriminate antigen-specific TT-induced responses from spontaneous responses, but that intracytoplasmic cytokine detection by flow cytometry was the most efficient method to detect re-stimulating effects.
- Suitable cytokine-inducing agents include, but are not limited to:
- An immunostimulatory oligonucleotide such as one containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine), or a double-stranded RNA, or an oligonucleotide containing a palindromic sequence, or an oligonucleotide containing a poly(dG) sequence.
- '3dMPL ⁇ also known as 'MPLTM'
- An imidazoquinoline compound such as Imiquimod (“R-837”) [1 18,119], Resiquimod (“R-848”) [120], and their analogs; and salts thereof (e.g. the hydrochloride salts). Further details about immunostimulatory imidazoquinolines can be found in references 121 to 125.
- a thiosemicarbazone compound such as those disclosed in reference 126. Methods of formulating, manufacturing, and screening for active compounds are also described in reference 126.
- the thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- ⁇ .
- a tryptanthrin compound such as those disclosed in reference 127. Methods of formulating, manufacturing, and screening for active compounds are also described in reference 127.
- the thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- ⁇ .
- a nucleoside analog such as: (a) Isatorabine (ANA-245; 7-thia-8-oxoguanosine):
- Ri and R 2 are each independently H, halo, -NR 3 R b , -OH, C]_ 6 alkoxy, substituted Ci -6 alkoxy, heterocyclyl, substituted heterocyclyl, C 6-I o aryl, substituted C 6-1O aryl, C 1-6 alkyl, or substituted C 1-6 alkyl;
- R3 is absent, H, Cj -6 alkyl, substituted Ci -6 alkyl, C 6-I o aryl, substituted C 6-I o aryl, heterocyclyl, or substituted heterocyclyl;
- R 4 and R 5 are each independently H, halo, heterocyclyl, substituted heterocyclyl, -C(O)-R d , Ci -6 alkyl, substituted Ci -6 alkyl, or bound together to form a 5 membered ring as in R 4-5 :
- X] and X 2 are each independently N, C, O, or S;
- R 8 is H, halo, -OH, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, -OH, -NR a R b , -(CH 2 ) n -O-R c , -0-(C] -6 alkyl), -S(O) p R e , or -C(O)-Ra;
- Rg is H, C 1-6 alkyl, substituted C 1-6 alkyl, heterocyclyl, substituted heterocyclyl or Rg a , wherein Rg a is:
- R 10 and Rn are each independently H, halo, Ci -6 alkoxy, substituted Ci -6 alkoxy, -
- a polyoxidonium polymer [137,138] or other N-oxidized polyethylene-piperazine derivative • Compounds disclosed in reference 139.
- a CDId ligand such as an ⁇ -glycosylceramide [142-149] (e.g. ⁇ -galactosylceramide), phytosphingosine-containing ⁇ -glycosylceramides, OCH, KRN7000 [(2S,3S,4R)-l-O-( ⁇ -D- galactopyranosyl)-2-(N-hexacosanoylamino)- 1 ,3 ,4-octadecanetriol], CRONY- 101, 3 "-O- sulfo-galactosylceramide, etc.
- ⁇ -glycosylceramide e.g. ⁇ -galactosylceramide
- phytosphingosine-containing ⁇ -glycosylceramides OCH
- KRN7000 [(2S,3S,4R)-l-O-( ⁇ -D- galactopyranosyl)-2-(N-hexacosan
- a phosphazene such as poly[di(carboxylatophenoxy)phosphazene] (“PCPP”) as described, for example, in references 150 and 151.
- PCPP poly[di(carboxylatophenoxy)phosphazene]
- SIPs Small molecule immunopotentiators
- the cytokine-inducing agents for use in the present invention may be modulators and/or agonists of Toll-Like Receptors (TLR).
- TLR Toll-Like Receptors
- they may be agonists of one or more of the human TLRl, TLR2, TLR3, TLR4, TLR7, TLR8, and/or TLR9 proteins.
- Preferred agents are agonists of TLR7 ⁇ e.g. imidazoquinolines) and/or TLR9 ⁇ e.g. CpG oligonucleotides). These agents are useful for activating innate immunity pathways.
- the cytokine-inducing agent can be added to the composition at various stages during its production.
- the agent may be added to the emulsion components before emulsification, or it can be added to the emulsion after emulsification.
- the agent may be coacervated within the emulsion droplets.
- the location and distribution of the cytokine-inducing agent within the final composition will depend on its hydrophilic/lipophilic properties e.g. the agent can be located in the aqueous phase, in the oil phase, and/or at the oil-water interface.
- the cytokine-inducing agent can be conjugated to a separate agent, such as an antigen (e.g. CRMl 97).
- a separate agent such as an antigen (e.g. CRMl 97).
- an antigen e.g. CRMl 97
- the adjuvants may be non-covalently associated with additional agents, such as by way of hydrophobic or ionic interactions.
- Two preferred cytokine-inducing agents are (a) immunostimulatory oligonucleotides and (b) 3dMPL.
- Immunostimulatory oligonucleotides can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or (except for RNA) single-stranded.
- references 153, 154 and 155 disclose possible analog substitutions e.g. replacement of guanosine with 2'-deoxy-7-deazaguanosine.
- the adjuvant effect of CpG oligonucleotides is further discussed in refs. 156-161.
- a CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT
- the CpG sequence may be specific for inducing a ThI immune response, such as a CpG-A ODN (oligodeoxynucleotide), or it may be more specific for inducing a B cell response, such a CpG-
- CpG-A and CpG-B ODNs are discussed in refs. 163-165.
- the CpG is a CpG-A
- the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition.
- two CpG oligonucleotide sequences may be attached at their 3' ends to form
- CpG7909 also known as ProMuneTM (Coley Pharmaceutical Group, Inc.).
- TpG sequences can be used [169]. These oligonucleotides may be free from unmethylated CpG motifs.
- the immunostimulatory oligonucleotide may be pyrimidine-rich.
- it may comprise more than one consecutive thymidine nucleotide (e.g. TTTT, as disclosed in ref. 169), and/or it may have a nucleotide composition with >25% thymidine (e.g. >35%, >40%, >50%, >60%, >80%, etc.).
- it may comprise more than one consecutive cytosine nucleotide (e.g. CCCC, as disclosed in ref. 169), and/or it may have a nucleotide composition with >25% cytosine (e.g. >35%, >40%, >50%, >60%, >80%, etc.).
- These oligonucleotides may be free from unmethylated CpG motifs.
- Immunostimulatory oligonucleotides will typically comprise at least 20 nucleotides. They may comprise fewer than 100 nucleotides.
- 3dMPL (also known as 3 de-O-acylated monophosphoryl lipid A or 3-O-desacyl-4'-monophosphoryl lipid A) is an adjuvant in which position 3 of the reducing end glucosamine in monophosphoryl lipid A has been de-acylated.
- 3dMPL has been prepared from a heptoseless mutant of Salmonella minnesota, and is chemically similar to lipid A but lacks an acid-labile phosphoryl group and a base- labile acyl group. It activates cells of the monocyte/macrophage lineage and stimulates release of several cytokines, including IL-I, IL- 12, TNF- ⁇ and GM-CSF (see also ref. 170). Preparation of 3dMPL was originally described in reference 171.
- 3dMPL can take the form of a mixture of related molecules, varying by their acylation ⁇ e.g. having 3, 4, 5 or 6 acyl chains, which may be of different lengths).
- the two glucosamine (also known as 2-deoxy-2-amino-glucose) monosaccharides are N-acylated at their 2-position carbons (i.e. at positions 2 and 2'), and there is also O-acylation at the 3' position.
- the group attached to carbon 2 has formula -NH-CO-CH 2 -CR 1 R 1' .
- the group attached to carbon 2' has formula -NH-CO-CH 2 -CR 2 R 2' .
- the group attached to carbon 3' has formula -0-CO-CH 2 -CR 3 R 3 .
- a representative structure is:
- Groups R 1 , R 2 and R 3 are each independently -(CH 2 V-CHs.
- the value of n is preferably between 8 and 16, more preferably between 9 and 12, and is most preferably 10.
- Groups R 1 ', R 2' and R 3' can each independently be: (a) -H; (b) -OH; or (c) -O-CO-R 4 ,where R 4 is either -H or -(CH 2 ) m -CH 3 , wherein the value of 777 is preferably between 8 and 16, and is more preferably 10, 12 or 14. At the 2 position, m is preferably 14. At the 2' position, m is preferably 10. At the 3' position, 777 is preferably 12.
- Groups R 1 , R 2 and R 3' are thus preferably -O-acyl groups from dodecanoic acid, tetradecanoic acid or hexadecanoic acid.
- the 3dMPL has only 3 acyl chains (one on each of positions 2, 2' and 3 1 ).
- the 3dMPL can have 4 acyl chains.
- the 3dMPL can have 5 acyl chains.
- the 3dMPL can have 6 acyl chains.
- the 3dMPL adjuvant used according to the invention can be a mixture of these forms, with from 3 to 6 acyl chains, but it is preferred to include 3dMPL with 6 acyl chains in the mixture, and in particular to ensure that the hexaacyl chain form makes up at least 10% by weight of the total 3dMPL e.g. >20%, >30%, >40%, >50% or more. 3dMPL with 6 acyl chains has been found to be the most adjuvant-active form.
- 3dMPL for inclusion in compositions of the invention is:
- references to amounts or concentrations of 3dMPL in compositions of the invention refer to the combined 3dMPL species in the mixture.
- 3dMPL can form micellar aggregates or particles with different sizes e.g. with a diameter ⁇ 150nm or >500nm. Either or both of these can be used with the invention, and the better particles can be selected by routine assay. Smaller particles (e.g. small enough to give a clear aqueous suspension of 3dMPL) are preferred for use according to the invention because of their superior activity [172]. Preferred particles have a mean diameter less than 220nm, more preferably less than 200nm or less than 150nm or less than 120nm, and can even have a mean diameter less than lOOnm. In most cases, however, the mean diameter will not be lower than 50nm.
- Particle diameter can be assessed by the routine technique of dynamic light scattering, which reveals a mean particle diameter. Where a particle is said to have a diameter of x nm, there will generally be a distribution of particles about this mean, but at least 50% by number (e.g. >60%, >70%, >80%, >90%, or more) of the particles will have a diameter within the range x+25%.
- 3dMPL can advantageously be used in combination with an oil-in-water emulsion. Substantially all of the 3dMPL may be located in the aqueous phase of the emulsion.
- the 3dMPL can be used on its own, or in combination with one or more further compounds.
- Fatty adjuvants that can be used with the invention include the oil-in-water emulsions described above, and also include, for example:
- ⁇ R 804059', 'ER 804442', ⁇ R 804680', ⁇ R 804764', ER 803022 or ⁇ R 804057' e.g.:
- a formulation of a cationic lipid and a (usually neutral) co-lipid such as aminopropyl- dimethyl-myristoleyloxy-propanaminium bromide-diphytanoylphosphatidyl-ethanolamine ("VaxfectinTM”) or aminopropyl-dimethyl-bis-dodecyloxy-propanaminium bromide- dioleoylphosphatidyl-ethanolamine (“GAP-DLRIE:DOPE”).
- Formulations containing Cf)-N- (3 -aminopropyl)-N,N-dimethyl-2,3 -bis(syn-9-tetradeceneyloxy)- 1 -propanaminium salts are preferred [180].
- the adjuvants known as aluminum hydroxide and aluminum phosphate may be used. These names are conventional, but are used for convenience only, as neither is a precise description of the actual chemical compound which is present ⁇ e.g. see chapter 9 of reference 101).
- the invention can use any of the "hydroxide” or "phosphate” adjuvants that are in general use as adjuvants.
- aluminium hydroxide typically aluminium oxyhydroxide salts, which are usually at least partially crystalline.
- Aluminium oxyhydroxide which can be represented by the formula AlO(OH)
- IR infrared
- the degree of crystallinity of an aluminium hydroxide adjuvant is reflected by the width of the diffraction band at half height (WBH), with poorly-crystalline particles showing greater line broadening due to smaller crystallite sizes.
- aluminium hydroxide adjuvants The surface area increases as WHH increases, and adjuvants with higher WHH values have been seen to have greater capacity for antigen adsorption.
- a fibrous morphology e.g. as seen in transmission electron micrographs
- the pi of aluminium hydroxide adjuvants is typically about 11 i.e. the adjuvant itself has a positive surface charge at physiological pH.
- Adsorptive capacities of between 1.8-2.6 mg protein per mg Al +++ at pH 7.4 have been reported for aluminium hydroxide adjuvants.
- the adjuvants known as "aluminium phosphate” are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate (i.e. aluminium hydroxyphosphate sulfate). They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation influence the degree of substitution of phosphate for hydroxyl in the salt. Hydroxyphosphates generally have a PO 4 /AI molar ratio between 0.3 and 1.2. Hydroxyphosphates can be distinguished from strict AlPO 4 by the presence of hydroxyl groups. For example, an IR spectrum band at 3164cm "1 (e.g. when heated to 200 0 C) indicates the presence of structural hydroxyls [ch.9 of ref.
- the PO 4 /A1 3+ molar ratio of an aluminium phosphate adjuvant will generally be between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95+0.1.
- the aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts.
- a typical adjuvant is amorphous aluminium hydroxyphosphate with PO 4 /AI molar ratio between 0.84 and 0.92, included at 0.6mg Al 3+ AnI.
- the aluminium phosphate will generally be particulate (e.g. plate-like morphology as seen in transmission electron micrographs). Typical diameters of the particles are in the range 0.5- 20 ⁇ m (e.g. about 5-10 ⁇ m) after any antigen adsorption.
- Adsorptive capacities of between 0.7-1.5 mg protein per mg Al 4+1" at pH 7.4 have been reported for aluminium phosphate adjuvants.
- the suspensions are preferably sterile and pyrogen-free.
- a suspension may include free aqueous phosphate ions e.g. present at a concentration between 1.0 and 2O mM, preferably between 5 and 15 mM, and more preferably about 10 mM.
- the suspensions may also comprise sodium chloride.
- the invention can use a mixture of both an aluminium hydroxide and an aluminium phosphate [62]. In this case there may be more aluminium phosphate than hydroxide e.g. a weight ratio of at least 2:1 e.g. >5:1, >6:1, >7:1, >8:1, >9:1, etc.
- the concentration of Al +"1"1" in a composition for administration to a patient is preferably less than 10mg/ml e.g. ⁇ 5 mg/ml, ⁇ 4 mg/ml, ⁇ 3 mg/ml, ⁇ 2 mg/ml, ⁇ 1 mg/ml, efc.
- a preferred range is between 0.3 and lmg/ml. A maximum of 0.85mg/dose is preferred.
- the adjuvant component may include one or more further adjuvant or immunostimulating agents.
- additional components include, but are not limited to: a 3-O-deacylated monophosphoryl lipid A adjuvant ('3d-MPL'); and/or an oil-in-water emulsion.
- 3d-MPL has also been referred to as 3 de-O-acylated monophosphoryl lipid A or as 3-O-desacyl-4'-monophosphoryl lipid A. The name indicates that position 3 of the reducing end glucosamine in monophosphoryl lipid A is de-acylated.
- compositions of the invention are pharmaceutically acceptable. They usually include components in addition to the antigens e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion of such components is available in reference 183.
- compositions will generally be in aqueous form.
- the composition includes no mercurial material. It may include a preservative such as 2-phenoxyethanol, but preservative-free vaccines are more preferred.
- a physiological salt such as a sodium salt.
- Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml.
- Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, etc.
- Compositions will generally have an osmolality of between 200 m ⁇ sm/kg and 400 m ⁇ sm/kg, preferably between 240-360 m ⁇ srn/kg, and will more preferably fall within the range of 290-310 m ⁇ sm/kg. Osmolality has previously been reported not to have an impact on pain caused by vaccination [184], but keeping osmolality in this range is nevertheless preferred.
- Compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer; or a citrate buffer. Buffers will typically be included in the 5-2OmM range. The buffer may be in the emulsion's aqueous phase.
- the pH of a composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 e.g. 6.5 and 7.5, or between 7.0 and 7.8.
- a process of the invention may therefore include a step of adjusting the pH of the bulk vaccine prior to packaging.
- the composition is preferably sterile.
- the composition is preferably gluten free.
- the vaccine is free from antibiotics (e.g. neomycin, kanamycin, polymyxin B).
- antibiotics e.g. neomycin, kanamycin, polymyxin B.
- the composition may include material for a single immunisation, or may include material for multiple immunisations (i.e. a 'multidose' composition).
- Multidose arrangements usually include a preservative in the vaccine.
- a vaccine may be contained in a container having an aseptic adaptor for removal of material.
- Influenza vaccines are typically administered in a dosage volume of about 0.5ml, although a half dose (i.e. about 0.25ml) may be administered to children, and unit doses will be selected accordingly e.g. a unit dose to give a 0.5ml dose for administration to a patient.
- a half dose i.e. about 0.25ml
- unit doses will be selected accordingly e.g. a unit dose to give a 0.5ml dose for administration to a patient.
- Processes of the invention can include a step in which vaccine is placed into a container, and in particular into a container for distribution for use by physicians. After packaging into such containers, the container is not refrigerated.
- Suitable containers for the vaccines include vials, nasal sprays and disposable syringes, which should be sterile.
- the vial is preferably made of a glass or plastic material.
- the vial is preferably sterilized before the composition is added to it.
- vials are preferably sealed with a latex-free stopper, and the absence of latex in all packaging material is preferred.
- the vial may include a single dose of vaccine, or it may include more than one dose (a 'multidose' vial) e.g. 10 doses.
- Preferred vials are made of colorless glass.
- a vial can have a cap (e.g. a Luer lock) adapted such that a pre-filled syringe can be inserted into the cap, the contents of the syringe can be expelled into the vial, and the contents of the vial can be removed back into the syringe. After removal of the syringe from the vial, a needle can then be attached and the composition can be administered to a patient.
- the cap is preferably located inside a seal or cover, such that the seal or cover has to be removed before the cap can be accessed.
- a vial may have a cap that permits aseptic removal of its contents, particularly for multidose vials.
- the syringe may have a needle attached to it. If a needle is not attached, a separate needle may be supplied with the syringe for assembly and use. Such a needle may be sheathed. Safety needles are preferred. 1-inch 23-gauge, 1-inch 25-gauge and 5/8-inch 25-gauge needles are typical. Syringes may be provided with peel-off labels on which the lot number, influenza season and expiration date of the contents may be printed, to facilitate record keeping.
- the plunger in the syringe preferably has a stopper to prevent the plunger from being accidentally removed during aspiration.
- the syringes may have a latex rubber cap and/or plunger.
- Disposable syringes contain a single dose of vaccine.
- the syringe will generally have a tip cap to seal the tip prior to attachment of a needle, and the tip cap is preferably made of a butyl rubber. If the syringe and needle are packaged separately then the needle is preferably fitted with a butyl rubber shield.
- Preferred syringes are those marketed under the trade name "Tip-Lok"TM.
- Containers may be marked to show a half-dose volume e.g. to facilitate delivery to children.
- a syringe containing a 0.5ml dose may have a mark showing a 0.25ml volume.
- a glass container e.g. a syringe or a vial
- a composition may be combined (e.g. in the same box) with a leaflet including details of the vaccine e.g. instructions for administration, details of the antigens within the vaccine, etc.
- the instructions may also contain warnings e.g. to keep a solution of adrenaline readily available in case of anaphylactic reaction following vaccination, etc.
- compositions of the invention are suitable for administration to human patients, and the invention provides a method of raising an immune response in a patient, comprising the step of administering a composition of the invention to the patient.
- the invention also provides a kit or composition of the invention for use as a medicament.
- the immune response raised by the methods and uses of the invention will generally include an antibody response, preferably a protective antibody response.
- Methods for assessing antibody responses, neutralising capability and protection after influenza virus vaccination are well known in the art. Human studies have shown that antibody titers against hemagglutinin of human influenza virus are correlated with protection (a serum sample hemagglutination-inhibition titer of about 30-40 gives around 50% protection from infection by a homologous virus) [185].
- Antibody responses are typically measured by hemagglutination inhibition, by microneutralisation, by single radial immunodiffusion (SRID), and/or by single radial hemolysis (SRH). These assay techniques are well known in the art. Compositions of the invention can be administered in various ways.
- the most preferred immunisation route is by intramuscular injection (e.g. into the arm or leg), but other available routes include subcutaneous injection, intranasal [186-188], oral [189], intradermal [190,191], transcutaneous, transdermal [192], etc.
- Vaccines prepared according to the invention may be used to treat both children and adults. Influenza vaccines are currently recommended for use in pediatric and adult immunisation, from the age of 6 months. Thus the patient may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old.
- Preferred patients for receiving the vaccines are the elderly (e.g. >50 years old, >60 years old, and preferably >65 years), the young (e.g. ⁇ 5 years old), hospitalised patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, immunodeficient patients, patients who have taken an antiviral compound (e.g.
- an oseltamivir or zanamivir compound in the 7 days prior to receiving the vaccine, people with egg allergies and people travelling abroad.
- the vaccines are not suitable solely for these groups, however, and may be used more generally in a population. For pandemic strains, administration to all age groups is preferred.
- compositions of the invention satisfy 1 , 2 or 3 of the CPMP criteria for efficacy.
- these criteria are: (1) >70% seroprotection; (2) >40% seroconversion; and/or (3) a GMT increase of >2.5-fold.
- these criteria are: (1) >60% seroprotection; (2) >30% seroconversion; and/or (3) a GMT increase of >2-fold.
- Treatment can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes e.g. a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, etc. Administration of more than one dose
- multiple doses are particularly useful in immunologically na ⁇ ve patients e.g. for people who have never received an influenza vaccine before, or for vaccinating against a new HA subtype (as in a pandemic outbreak).
- Multiple doses will typically be administered at least 1 week apart (e.g. about
- Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated H.influem ⁇ e type b vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A C Wl 35 Y vaccine), a respiratory syncytial virus vaccine, a pneumococcal conjugate vaccine, etc.
- Administration at substantially the same time as a pneumococcal vaccine and/or a meningococcal vaccine is particularly useful in
- vaccines of the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional) an antiviral compound, and in particular an antiviral compound active against influenza virus (e.g. oseltamivir and/or zanamivir).
- an antiviral compound active against influenza virus e.g. oseltamivir and/or zanamivir.
- neuraminidase inhibitors such as a (3R,4R,5S)-4- acetylamino-5-amino-3(l-ethylpropoxy)-l-cyclohexene-l-carboxylic acid or 5-(acetylamino)-4- [(aminoiminomethyl)-amino]-2,6-anhydro-3,4,5-trideoxy-D-glycero-D-galactonon-2-enonic acid, including esters thereof (e.g. the ethyl esters) and salts thereof (e.g. the phosphate salts).
- esters thereof e.g. the ethyl esters
- salts thereof e.g. the phosphate salts
- a preferred antiviral is (3R,4R,5S)-4-acetylamino-5-amino-3(l-ethylpropoxy)-l-cyclohexene-l-carboxylic acid, ethyl ester, phosphate (1:1), also known as oseltamivir phosphate (TAMIFLUTM).
- TAMIFLUTM oseltamivir phosphate
- composition comprising X may consist exclusively of X or may include something additional e.g. X + Y.
- a process comprising a step of mixing two or more components does not require any specific order of mixing.
- components can be mixed in any order. Where there are three components then two components can be combined with each other, and then the combination may be combined with the third component, etc.
- animal (and particularly bovine) materials are used in the culture of cells, they should be obtained from sources that are free from transmissible spongiform encaphalopathies (TSEs), and in particular free from bovine spongiform encephalopathy (BSE). Overall, it is preferred to culture cells in the total absence of animal-derived materials.
- TSEs transmissible spongiform encaphalopathies
- BSE bovine spongiform encephalopathy
- a compound is administered to the body as part of a composition then that compound may alternatively be replaced by a suitable prodrug.
- a cell substrate is used for reassortment or reverse genetics procedures, it is preferably one that has been approved for use in human vaccine production e.g. as in Ph Eur general chapter 5.2.3.
- influenza A and B viruses were grown in MDCK cells in a suspension culture, following the teaching of references 27 and 47.
- the culture did not include any antibiotic.
- the final culture medium was clarified to provide virions, which were then subjected to chromatography and ultrafiltration/diafiltration.
- virions in the resulting material were inactivated using ⁇ -propiolactone (final concentration 0.05% v/v; incubated for 16-20 hours at 2-8°C, and then hydrolyzed by incubating at 37°C for 2-2.5 hours), following the teaching of reference 59.
- CTAB was then used to split the virions, and various further processing steps gave a final monovalent bulk vaccine containing purified surface proteins.
- the final bulk material contained no mercurial preservative, no an antibiotic, no formaldehyde, and no egg-derived materials. Individual doses of vaccine were prepared from the bulk, each containing 15 ⁇ g of HA from a
- A/H1N1, A/H3N2 and B strain This vaccine has been was administered to patients in a clinical trial, with control patients receiving egg-derived AgrippalTM (which can include formaldehyde and trace amounts of antibiotic).
- the MDCK-derived vaccine was well tolerated, highly immunogenic (immunologically non-inferior to Agrippal), and met CHMP and CBER criteria for assessment of influenza vaccines. Similar immunogenicity and safety profiles were induced by three different lots of the MDCK-derived vaccine, confirming that the cell culture manufacturing technology is able to generate consistent clinical results.
- CVM Veterinary Medicine
- Vaccine Adjuvants Preparation Methods and Research Protocols (Volume 42 of Methods in
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Mycology (AREA)
- Pulmonology (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Dispersion Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (17)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES08806940T ES2393162T3 (en) | 2007-06-27 | 2008-06-27 | Influenza vaccines with reduced additive content |
DK08806940.6T DK2185191T3 (en) | 2007-06-27 | 2008-06-27 | Influenza vaccines with low levels of additives |
PL08806940T PL2185191T3 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
AU2008269439A AU2008269439B2 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
EA201070066A EA201070066A1 (en) | 2007-06-27 | 2008-06-27 | VACCINES AGAINST FLU WITH LOW CONTENT OF ADDITIVES |
CN200880103467A CN101784283A (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
US12/666,628 US20100183671A1 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
CA002692200A CA2692200A1 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
NZ582595A NZ582595A (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
JP2010514180A JP2010531348A (en) | 2007-06-27 | 2008-06-27 | Influenza vaccine with few additives |
EP08806940A EP2185191B1 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
BRPI0813866-4A2A BRPI0813866A2 (en) | 2007-06-27 | 2008-06-27 | VACCINES AGAINST INFLUENCE WITH LOW ADDITIVE CONTENT |
SI200830816T SI2185191T1 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
HK10109718.0A HK1143085A1 (en) | 2007-06-27 | 2010-10-14 | Low-additive influenza vaccines |
HRP20120790AT HRP20120790T1 (en) | 2007-06-27 | 2012-10-03 | Low-additive influenza vaccines |
US15/191,582 US20170119871A1 (en) | 2007-06-27 | 2016-06-24 | Low-additive influenza vaccines |
US16/018,312 US20190142927A1 (en) | 2007-06-27 | 2018-06-26 | Low-additive influenza vaccines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US93751507P | 2007-06-27 | 2007-06-27 | |
US60/937,515 | 2007-06-27 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/666,628 A-371-Of-International US20100183671A1 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
US15/191,582 Continuation US20170119871A1 (en) | 2007-06-27 | 2016-06-24 | Low-additive influenza vaccines |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009001217A2 true WO2009001217A2 (en) | 2008-12-31 |
WO2009001217A3 WO2009001217A3 (en) | 2009-08-13 |
Family
ID=40076631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/002238 WO2009001217A2 (en) | 2007-06-27 | 2008-06-27 | Low-additive influenza vaccines |
Country Status (20)
Country | Link |
---|---|
US (3) | US20100183671A1 (en) |
EP (2) | EP2185191B1 (en) |
JP (1) | JP2010531348A (en) |
KR (1) | KR20100045437A (en) |
CN (1) | CN101784283A (en) |
AU (1) | AU2008269439B2 (en) |
BR (1) | BRPI0813866A2 (en) |
CA (1) | CA2692200A1 (en) |
CY (1) | CY1113738T1 (en) |
DK (1) | DK2185191T3 (en) |
EA (1) | EA201070066A1 (en) |
ES (1) | ES2393162T3 (en) |
HK (1) | HK1143085A1 (en) |
HR (1) | HRP20120790T1 (en) |
NZ (1) | NZ582595A (en) |
PL (1) | PL2185191T3 (en) |
PT (1) | PT2185191E (en) |
SG (1) | SG182957A1 (en) |
SI (1) | SI2185191T1 (en) |
WO (1) | WO2009001217A2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010117786A1 (en) | 2009-03-30 | 2010-10-14 | Mount Sinai School Of Medicine Of New York University | Influenza virus vaccines and uses thereof |
WO2011151726A2 (en) | 2010-06-01 | 2011-12-08 | Novartis Ag | Concentration of vaccine antigens with lyophilization |
WO2011151723A2 (en) | 2010-06-01 | 2011-12-08 | Novartis Ag | Concentration of vaccine antigens without lyophilization |
WO2012023044A1 (en) | 2010-08-20 | 2012-02-23 | Novartis Ag | Soluble needle arrays for delivery of influenza vaccines |
EP2566958B1 (en) | 2010-05-03 | 2015-12-30 | GlaxoSmithKline Biologicals S.A. | Method for inactivating influenza virus |
EP3248615A1 (en) | 2010-03-30 | 2017-11-29 | Mount Sinai School of Medicine of New York University | Influenza virus vaccines and uses thereof |
US10544207B2 (en) | 2013-03-14 | 2020-01-28 | Icahn School Of Medicine At Mount Sinai | Antibodies against influenza virus hemagglutinin and uses thereof |
US10583188B2 (en) | 2012-12-18 | 2020-03-10 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
US10736956B2 (en) | 2015-01-23 | 2020-08-11 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccination regimens |
US11254733B2 (en) | 2017-04-07 | 2022-02-22 | Icahn School Of Medicine At Mount Sinai | Anti-influenza B virus neuraminidase antibodies and uses thereof |
US11266734B2 (en) | 2016-06-15 | 2022-03-08 | Icahn School Of Medicine At Mount Sinai | Influenza virus hemagglutinin proteins and uses thereof |
EP4241785A2 (en) | 2011-09-20 | 2023-09-13 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2010557B1 (en) | 2006-03-31 | 2014-02-26 | Wisconsin Alumni Research Foundation | High titer recombinant influenza viruses for vaccines |
US9474798B2 (en) | 2007-06-18 | 2016-10-25 | Wisconsin Alumni Research Foundation | Influenza M2 protein mutant viruses as live influenza attenuated vaccines |
ES2813347T3 (en) | 2009-10-26 | 2021-03-23 | Wisconsin Alumni Res Found | Recombinant High Titer Influenza Viruses with Enhanced Replication in Vero Cells |
US10130697B2 (en) | 2010-03-23 | 2018-11-20 | Wisconsin Alumni Research Foundation (Warf) | Vaccines comprising mutant attenuated influenza viruses |
JP2016524915A (en) | 2013-07-15 | 2016-08-22 | ウィスコンシン アルムニ リサーチ ファンデイション | High titer recombinant influenza virus with enhanced replication in MDCK, Vero cells or eggs |
US10053671B2 (en) | 2014-06-20 | 2018-08-21 | Wisconsin Alumni Research Foundation (Warf) | Mutations that confer genetic stability to additional genes in influenza viruses |
US10633422B2 (en) | 2015-06-01 | 2020-04-28 | Wisconsin Alumni Research Foundation (Warf) | Influenza virus replication by inhibiting microRNA lec7C binding to influenza viral cRNA and mRNA |
WO2017007839A1 (en) | 2015-07-06 | 2017-01-12 | Wisconsin Alumni Research Foundation (Warf) | Improved influenza virus replication for vaccine development |
KR101766313B1 (en) | 2015-09-09 | 2017-08-08 | 조동휘 | method of mature alcohol using a fermentation pine leaf |
CN105349499B (en) * | 2015-11-06 | 2018-12-07 | 张澍 | A kind of preparation method of bird flu whole virus particles marker vaccine and products thereof and purposes |
CN109477074B (en) | 2016-02-19 | 2023-01-24 | 威斯康星旧生研究基金会 | Improved influenza b virus replication for vaccine development |
US11241492B2 (en) | 2019-01-23 | 2022-02-08 | Wisconsin Alumni Research Foundation (Warf) | Mutations that confer genetic stability to genes in influenza viruses |
EP3921413A1 (en) | 2019-02-08 | 2021-12-15 | Wisconsin Alumni Research Foundation (WARF) | Humanized cell line |
US11707518B2 (en) * | 2019-04-28 | 2023-07-25 | Gholam A. Peyman | Method of treating, reducing, or alleviating a medical condition in a patient |
WO2020223699A1 (en) | 2019-05-01 | 2020-11-05 | Wisconsin Alumni Research Foundation (Warf) | Improved influenza virus replication for vaccine development |
US11807872B2 (en) | 2019-08-27 | 2023-11-07 | Wisconsin Alumni Research Foundation (Warf) | Recombinant influenza viruses with stabilized HA for replication in eggs |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19612966A1 (en) * | 1996-04-01 | 1997-10-02 | Behringwerke Ag | Animal cells and methods for the propagation of influenza viruses |
EP1605052A2 (en) * | 1993-09-13 | 2005-12-14 | Mg-Pmc, L.L.C. | A method for producing influenza hemagglutinin multivalent vaccines |
EP1676569A1 (en) * | 2004-12-30 | 2006-07-05 | Pevion Biotech Ltd. | Lyophilization of virosomes |
US20060252132A1 (en) * | 2003-06-16 | 2006-11-09 | Medimmune Vaccines, Inc. | Influenza hemagglutinin and neuraminidase variants |
WO2007052163A2 (en) * | 2005-11-01 | 2007-05-10 | Novartis Vaccines And Diagnostics Gmbh & Co Kg | Cell-derived viral vaccines with low levels of residual cell dna by beta-propiolactone treatment |
WO2007052061A2 (en) * | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics Srl | Emulsions with free aqueous-phase surfactant as adjuvants for split influenza vaccines |
Family Cites Families (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4060082A (en) | 1976-08-16 | 1977-11-29 | Mpl, Inc. | Dual-ingredient medication dispenser |
SE8205892D0 (en) | 1982-10-18 | 1982-10-18 | Bror Morein | IMMUNOGENT MEMBRANE PROTEIN COMPLEX, SET FOR PREPARATION AND USE THEREOF |
IL73534A (en) | 1983-11-18 | 1990-12-23 | Riker Laboratories Inc | 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds |
US5916588A (en) | 1984-04-12 | 1999-06-29 | The Liposome Company, Inc. | Peptide-containing liposomes, immunogenic liposomes and methods of preparation and use |
US6090406A (en) | 1984-04-12 | 2000-07-18 | The Liposome Company, Inc. | Potentiation of immune responses with liposomal adjuvants |
US4680338A (en) | 1985-10-17 | 1987-07-14 | Immunomedics, Inc. | Bifunctional linker |
US5011828A (en) | 1985-11-15 | 1991-04-30 | Michael Goodman | Immunostimulating guanine derivatives, compositions and methods |
US5057540A (en) | 1987-05-29 | 1991-10-15 | Cambridge Biotech Corporation | Saponin adjuvant |
US4912094B1 (en) | 1988-06-29 | 1994-02-15 | Ribi Immunochem Research Inc. | Modified lipopolysaccharides and process of preparation |
AU631377B2 (en) | 1988-08-25 | 1992-11-26 | Liposome Company, Inc., The | Affinity associated vaccine |
US5238944A (en) | 1988-12-15 | 1993-08-24 | Riker Laboratories, Inc. | Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine |
US4929624A (en) | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
HU212924B (en) | 1989-05-25 | 1996-12-30 | Chiron Corp | Adjuvant formulation comprising a submicron oil droplet emulsion |
US4988815A (en) | 1989-10-26 | 1991-01-29 | Riker Laboratories, Inc. | 3-Amino or 3-nitro quinoline compounds which are intermediates in preparing 1H-imidazo[4,5-c]quinolines |
US5658731A (en) | 1990-04-09 | 1997-08-19 | Europaisches Laboratorium Fur Molekularbiologie | 2'-O-alkylnucleotides as well as polymers which contain such nucleotides |
DE69229114T2 (en) | 1991-03-01 | 1999-11-04 | Minnesota Mining And Mfg. Co., Saint Paul | 1,2-SUBSTITUTED 1H-IMIDAZO [4,5-C] CHINOLIN-4-AMINE |
US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
JPH0614756Y2 (en) | 1991-06-26 | 1994-04-20 | 株式会社アルテ | Assembled dual chamber syringe |
US5936076A (en) | 1991-08-29 | 1999-08-10 | Kirin Beer Kabushiki Kaisha | αgalactosylceramide derivatives |
US5268376A (en) | 1991-09-04 | 1993-12-07 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US5266575A (en) | 1991-11-06 | 1993-11-30 | Minnesota Mining And Manufacturing Company | 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines |
MY111880A (en) | 1992-03-27 | 2001-02-28 | Smithkline Beecham Biologicals S A | Hepatitis vaccines containing 3-0 deacylated monophosphoryl lipid a |
IL105325A (en) | 1992-04-16 | 1996-11-14 | Minnesota Mining & Mfg | Immunogen/vaccine adjuvant composition |
ES2143716T3 (en) | 1992-06-25 | 2000-05-16 | Smithkline Beecham Biolog | VACCINE COMPOSITION CONTAINING ADJUVANTS. |
US5395937A (en) | 1993-01-29 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Process for preparing quinoline amines |
SG48309A1 (en) | 1993-03-23 | 1998-04-17 | Smithkline Beecham Biolog | Vaccine compositions containing 3-0 deacylated monophosphoryl lipid a |
US5352784A (en) | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
JPH09500128A (en) | 1993-07-15 | 1997-01-07 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Imidazo [4,5-c] pyridin-4-amine |
AU5543294A (en) | 1993-10-29 | 1995-05-22 | Pharmos Corp. | Submicron emulsions as vaccine adjuvants |
GB9326174D0 (en) | 1993-12-22 | 1994-02-23 | Biocine Sclavo | Mucosal adjuvant |
GB9326253D0 (en) | 1993-12-23 | 1994-02-23 | Smithkline Beecham Biolog | Vaccines |
US6429199B1 (en) | 1994-07-15 | 2002-08-06 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules for activating dendritic cells |
US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US6207646B1 (en) | 1994-07-15 | 2001-03-27 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
US5496284A (en) | 1994-09-27 | 1996-03-05 | Waldenburg; Ottfried | Dual-chamber syringe & method |
AUPM873294A0 (en) | 1994-10-12 | 1994-11-03 | Csl Limited | Saponin preparations and use thereof in iscoms |
US5482936A (en) | 1995-01-12 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]quinoline amines |
GB9503863D0 (en) | 1995-02-25 | 1995-04-19 | Smithkline Beecham Biolog | Vaccine compositions |
UA56132C2 (en) | 1995-04-25 | 2003-05-15 | Смітклайн Бічем Байолоджікалс С.А. | Vaccine composition (variants), method for stabilizing qs21 providing resistance against hydrolysis (variants), method for manufacturing vaccine |
AU4161296A (en) | 1995-10-20 | 1997-05-07 | Davidson, Clifford M. | Influenza vaccine |
DE19612967A1 (en) | 1996-04-01 | 1997-10-02 | Behringwerke Ag | Process for the propagation of influenza viruses in cell culture, and the influenza viruses obtainable by the process |
WO1998001174A1 (en) | 1996-07-05 | 1998-01-15 | Debiotech S.A. | Dual-chamber syringe for mixing two substances prior to injection |
AU753688B2 (en) | 1997-03-10 | 2002-10-24 | Ottawa Civic Loeb Research Institute | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
US6818222B1 (en) | 1997-03-21 | 2004-11-16 | Chiron Corporation | Detoxified mutants of bacterial ADP-ribosylating toxins as parenteral adjuvants |
TW570803B (en) | 1997-04-09 | 2004-01-11 | Duphar Int Res | Influenza vaccine |
US6080725A (en) | 1997-05-20 | 2000-06-27 | Galenica Pharmaceuticals, Inc. | Immunostimulating and vaccine compositions employing saponin analog adjuvants and uses thereof |
WO1999017820A1 (en) | 1997-10-03 | 1999-04-15 | Texas Pharmaceuticals, Inc. | Improved dual chamber syringe apparatus |
US5971953A (en) | 1998-01-09 | 1999-10-26 | Bachynsky; Nicholas | Dual chamber syringe apparatus |
GB9725084D0 (en) | 1997-11-28 | 1998-01-28 | Medeva Europ Ltd | Vaccine compositions |
JP2002511423A (en) | 1998-04-09 | 2002-04-16 | スミスクライン ビーチャム バイオロジカルズ ソシエテ アノニム | vaccine |
ATE375803T1 (en) | 1998-05-07 | 2007-11-15 | Corixa Corp | ADJUVANT COMPOSITION AND METHODS OF USE THEREOF |
US6562798B1 (en) | 1998-06-05 | 2003-05-13 | Dynavax Technologies Corp. | Immunostimulatory oligonucleotides with modified bases and methods of use thereof |
US6110929A (en) | 1998-07-28 | 2000-08-29 | 3M Innovative Properties Company | Oxazolo, thiazolo and selenazolo [4,5-c]-quinolin-4-amines and analogs thereof |
GB9817052D0 (en) | 1998-08-05 | 1998-09-30 | Smithkline Beecham Biolog | Vaccine |
DE19835749C1 (en) | 1998-08-07 | 2000-02-03 | Dieter Perthes | Ready-to-use syringe for unstable drugs |
US6544785B1 (en) | 1998-09-14 | 2003-04-08 | Mount Sinai School Of Medicine Of New York University | Helper-free rescue of recombinant negative strand RNA viruses |
AT408615B (en) | 1998-09-15 | 2002-01-25 | Immuno Ag | NEW INFLUENCE VIRUS VACCINE COMPOSITION |
CA2773698C (en) | 1998-10-16 | 2015-05-19 | Glaxosmithkline Biologicals S.A. | Adjuvant systems comprising an immunostimulant adsorbed to a metallic salt particle and vaccines thereof |
US20030130212A1 (en) | 1999-01-14 | 2003-07-10 | Rossignol Daniel P. | Administration of an anti-endotoxin drug by intravenous infusion |
US6551600B2 (en) | 1999-02-01 | 2003-04-22 | Eisai Co., Ltd. | Immunological adjuvant compounds compositions and methods of use thereof |
CA2361421A1 (en) | 1999-02-03 | 2000-08-10 | Biosante Pharmaceuticals, Inc. | Therapeutic calcium phosphate particles and methods of manufacture and use |
JP4800485B2 (en) | 1999-03-26 | 2011-10-26 | バイカル インコーポレイテッド | Adjuvant compositions and methods for enhancing immune responses to polynucleotide-based vaccines |
PT1820853E (en) | 1999-04-06 | 2012-01-03 | Wisconsin Alumni Res Found | Recombinant influenza viruses for vaccines and gene therapy |
US6331539B1 (en) | 1999-06-10 | 2001-12-18 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
ATE353370T1 (en) | 1999-07-14 | 2007-02-15 | Sinai School Medicine | IN VITRO RECONSTITUTION OF SEGMENTED NEGATIVE STRAND RNA VIRUSES |
BR0014281A (en) | 1999-09-24 | 2002-05-21 | Smithkline Beecham Biolog | Vaccine against intranasal flu virus |
PL355232A1 (en) | 1999-09-24 | 2004-04-05 | Smithkline Beecham Biologicals S.A. | Adjuvant comprising a polyxyethylene alkyl ether or ester and at least one nonionic surfactant |
CO5200837A1 (en) | 1999-09-24 | 2002-09-27 | Smithkline Beecham Corp | VACCINES |
AP1775A (en) | 1999-09-25 | 2007-08-28 | Univ Iowa Res Found | Immunostimulatory nucleic acids. |
GB9923176D0 (en) | 1999-09-30 | 1999-12-01 | Smithkline Beecham Biolog | Novel composition |
CA2396871A1 (en) | 2000-01-20 | 2001-12-20 | Ottawa Health Research Institute | Immunostimulatory nucleic acids for inducing a th2 immune response |
EP1260581B1 (en) | 2000-03-03 | 2010-07-07 | Juridical Foundation, The Chemo-Sero-Therapeutic Research Institute | Cell usable in serum-free culture and suspension culture and process for producing virus for vaccine by using the cell |
KR100848719B1 (en) | 2000-04-28 | 2008-07-25 | 세인트 쥬드 칠드런즈 리써치 호스피탈 | Dna transfection system for the generation of infectious influenza virus |
FR2808803B1 (en) | 2000-05-11 | 2004-12-10 | Agronomique Inst Nat Rech | MODIFIED ES CELLS AND SPECIFIC GENE OF ES CELLS |
US7407662B2 (en) * | 2000-06-29 | 2008-08-05 | Lipid Sciences, Inc. | Modified viral particles with immunogenic properties and reduced lipid content |
ATE448226T1 (en) | 2000-09-01 | 2009-11-15 | Novartis Vaccines & Diagnostic | AZA HETEROCYCLIC DERIVATIVES AND THEIR THERAPEUTIC USE |
PT1650203E (en) | 2000-09-11 | 2008-05-13 | Novartis Vaccines & Diagnostic | Process of preparation of benzimidazol-2-yl quinolinone derivatives |
ES2298269T3 (en) | 2000-09-26 | 2008-05-16 | Idera Pharmaceuticals, Inc. | MODULATION OF THE IMMUNO-STIMULATING ACTIVITY OF OLIGONUCLEOTIDIC ANALOGS IMMUNO-STIMULANTS THROUGH POSITIONAL CHEMICAL CHANGES. |
GB0024089D0 (en) | 2000-10-02 | 2000-11-15 | Smithkline Beecham Biolog | Novel compounds |
US6660735B2 (en) | 2000-12-08 | 2003-12-09 | 3M Innovative Properties Company | Urea substituted imidazoquinoline ethers |
US6677348B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Aryl ether substituted imidazoquinolines |
US6664260B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Heterocyclic ether substituted imidazoquinolines |
US6667312B2 (en) | 2000-12-08 | 2003-12-23 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
US6664264B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Thioether substituted imidazoquinolines |
US6677347B2 (en) | 2000-12-08 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamido ether substituted imidazoquinolines |
US6660747B2 (en) | 2000-12-08 | 2003-12-09 | 3M Innovative Properties Company | Amido ether substituted imidazoquinolines |
UA74852C2 (en) | 2000-12-08 | 2006-02-15 | 3M Innovative Properties Co | Urea-substituted imidazoquinoline ethers |
US6664265B2 (en) | 2000-12-08 | 2003-12-16 | 3M Innovative Properties Company | Amido ether substituted imidazoquinolines |
DE60239594D1 (en) | 2001-02-23 | 2011-05-12 | Glaxosmithkline Biolog Sa | INFLUENZA VACCINE COMPOSITIONS FOR INTRADERMAL ADMINISTRATION |
AR032575A1 (en) | 2001-02-23 | 2003-11-12 | Smithkline Beecham Biolog | USE OF AN ANTIGEN FLU PREPARATION FOR THE MANUFACTURE OF AN INTRADERMIC VACCINE OF THE FLU AND PHARMACEUTICAL CASE THAT INCLUDES SUCH VACCINE |
MXPA03008154A (en) | 2001-03-09 | 2004-11-12 | Id Biomedical Corp Quebec | A novel proteosome-liposaccharide vaccine adjuvant. |
TWI228420B (en) | 2001-05-30 | 2005-03-01 | Smithkline Beecham Pharma Gmbh | Novel vaccine composition |
DE10144906B4 (en) | 2001-09-12 | 2013-11-28 | Novartis Vaccines And Diagnostics Gmbh | Process for the large-scale production of vaccines |
DE10144903A1 (en) | 2001-09-12 | 2003-03-27 | Chiron Behring Gmbh & Co | Replication of virus in cell cultures, useful for preparing vaccines and diagnostic reagents, where replication of cells and virus is simultaneous |
WO2003035836A2 (en) | 2001-10-24 | 2003-05-01 | Hybridon Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5' ends |
FR2832423B1 (en) | 2001-11-22 | 2004-10-08 | Vivalis | EXOGENOUS PROTEIN EXPRESSION SYSTEM IN AN AVIAN SYSTEM |
US7321033B2 (en) | 2001-11-27 | 2008-01-22 | Anadys Pharmaceuticals, Inc. | 3-B-D-ribofuranosylthiazolo [4,5-d] pyrimidine nucleosides and uses thereof |
JP4493337B2 (en) | 2001-11-27 | 2010-06-30 | アナディス ファーマシューティカルズ インク | 3-β-D-ribofuranosyl thiazolo [4,5-d] pyrimidine nucleoside and uses thereof |
US6677349B1 (en) | 2001-12-21 | 2004-01-13 | 3M Innovative Properties Company | Sulfonamide and sulfamide substituted imidazoquinolines |
FR2836924B1 (en) | 2002-03-08 | 2005-01-14 | Vivalis | AVIAN CELL LINES USEFUL FOR THE PRODUCTION OF INTEREST SUBSTANCES |
US7071216B2 (en) | 2002-03-29 | 2006-07-04 | Chiron Corporation | Substituted benz-azoles and methods of their use as inhibitors of Raf kinase |
WO2003101949A2 (en) | 2002-05-29 | 2003-12-11 | 3M Innovative Properties Company | Process for imidazo[4,5-c]pyridin-4-amines |
WO2003105769A2 (en) | 2002-06-13 | 2003-12-24 | New York University | Synthetic c-glycolipid and its use for treating cancer infectious diseases and autoimmune diseases |
SE0202110D0 (en) | 2002-07-05 | 2002-07-05 | Isconova Ab | Iscom preparation and use thereof |
DE60333762D1 (en) | 2002-08-23 | 2010-09-23 | Novartis Vaccines & Diagnostic | PYRROL COMPOUNDS AS GLYCOGENIC SYNTHASE KINASE 3 INHIBITORS |
CA2511646A1 (en) | 2002-12-27 | 2004-07-22 | Chiron Corporation | Thiosemicarbazones as anti-virals and immunopotentiators |
EP1594524B1 (en) | 2003-01-21 | 2012-08-15 | Novartis Vaccines and Diagnostics, Inc. | Use of tryptanthrin compounds for immune potentiation |
GB0301554D0 (en) | 2003-01-23 | 2003-02-26 | Molecularnature Ltd | Immunostimulatory compositions |
ES2423800T3 (en) | 2003-03-28 | 2013-09-24 | Novartis Vaccines And Diagnostics, Inc. | Use of organic compounds for immunopotentiation |
SE0301998D0 (en) | 2003-07-07 | 2003-07-07 | Isconova Ab | Quil A fraction with low toxicity and use thereof |
RU2236257C1 (en) | 2003-09-15 | 2004-09-20 | Косяков Константин Сергеевич | Synthetic immunogen for therapy and prophylaxis of addiction with narcotic and psychoactive substances |
US7771726B2 (en) | 2003-10-08 | 2010-08-10 | New York University | Use of synthetic glycolipids as universal adjuvants for vaccines against cancer and infectious diseases |
EP1528101A1 (en) | 2003-11-03 | 2005-05-04 | ProBioGen AG | Immortalized avian cell lines for virus production |
JP5003155B2 (en) | 2004-03-23 | 2012-08-15 | ニプロ株式会社 | Prefilled syringe |
AU2005235080A1 (en) | 2004-03-31 | 2005-11-03 | New York University | Novel synthetic C-glycolipids, their synthesis and use to treat infections, cancer and autoimmune diseases |
KR20090051129A (en) | 2004-04-05 | 2009-05-20 | 화이자 프로덕츠 인코포레이티드 | Microfluidized oil-in-water emulsions and vaccine compositions |
WO2005113756A1 (en) | 2004-05-14 | 2005-12-01 | Glaxosmithkline Biologicals S.A. | Method |
JP2007537760A (en) | 2004-05-20 | 2007-12-27 | アイディー バイオメディカル コーポレイション | Process for manufacturing influenza vaccines |
CA2571421A1 (en) | 2004-06-24 | 2006-01-05 | Nicholas Valiante | Compounds for immunopotentiation |
RS51721B (en) | 2004-09-09 | 2011-10-31 | Novartis Vaccines And Diagnostics Gmbh. | Decreasing potential iatrogenic risks associated with influenza vaccines |
AU2005322353B2 (en) | 2004-12-23 | 2011-09-01 | Medimmune, Llc | Non-tumorigenic MDCK cell line for propagating viruses |
RU2435855C2 (en) | 2004-12-24 | 2011-12-10 | Солвей Байолоджикалз Б.В. | Method for producing replicative influenza virus particles, cell composition (versions), cell culture composition and application thereof |
US7572620B2 (en) * | 2005-01-11 | 2009-08-11 | Wisconsin Alumni Research Foundation | H3 equine influenza A virus |
FR2884255B1 (en) | 2005-04-11 | 2010-11-05 | Vivalis | USE OF EBX AVIATION STEM CELL LINES FOR THE PRODUCTION OF INFLUENZA VACCINE |
US7691368B2 (en) | 2005-04-15 | 2010-04-06 | Merial Limited | Vaccine formulations |
US8703095B2 (en) | 2005-07-07 | 2014-04-22 | Sanofi Pasteur S.A. | Immuno-adjuvant emulsion |
WO2008008881A1 (en) * | 2006-07-13 | 2008-01-17 | Emory University | Virosomes, methods of preparation, and immunogenic compositions |
RU2496519C2 (en) * | 2007-08-28 | 2013-10-27 | Бакстер Интернэшнл Инк. | Method for producing preparation containing viral antigens and using preparation |
-
2008
- 2008-06-27 SI SI200830816T patent/SI2185191T1/en unknown
- 2008-06-27 DK DK08806940.6T patent/DK2185191T3/en active
- 2008-06-27 AU AU2008269439A patent/AU2008269439B2/en not_active Ceased
- 2008-06-27 EP EP08806940A patent/EP2185191B1/en not_active Revoked
- 2008-06-27 EP EP12166256A patent/EP2484377A1/en not_active Withdrawn
- 2008-06-27 US US12/666,628 patent/US20100183671A1/en not_active Abandoned
- 2008-06-27 SG SG2012047478A patent/SG182957A1/en unknown
- 2008-06-27 CA CA002692200A patent/CA2692200A1/en not_active Abandoned
- 2008-06-27 CN CN200880103467A patent/CN101784283A/en active Pending
- 2008-06-27 PT PT08806940T patent/PT2185191E/en unknown
- 2008-06-27 EA EA201070066A patent/EA201070066A1/en unknown
- 2008-06-27 KR KR1020107001171A patent/KR20100045437A/en not_active Application Discontinuation
- 2008-06-27 JP JP2010514180A patent/JP2010531348A/en active Pending
- 2008-06-27 BR BRPI0813866-4A2A patent/BRPI0813866A2/en active Search and Examination
- 2008-06-27 WO PCT/IB2008/002238 patent/WO2009001217A2/en active Application Filing
- 2008-06-27 ES ES08806940T patent/ES2393162T3/en active Active
- 2008-06-27 PL PL08806940T patent/PL2185191T3/en unknown
- 2008-06-27 NZ NZ582595A patent/NZ582595A/en not_active IP Right Cessation
-
2010
- 2010-10-14 HK HK10109718.0A patent/HK1143085A1/en not_active IP Right Cessation
-
2012
- 2012-10-03 HR HRP20120790AT patent/HRP20120790T1/en unknown
- 2012-12-10 CY CY20121101203T patent/CY1113738T1/en unknown
-
2016
- 2016-06-24 US US15/191,582 patent/US20170119871A1/en not_active Abandoned
-
2018
- 2018-06-26 US US16/018,312 patent/US20190142927A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1605052A2 (en) * | 1993-09-13 | 2005-12-14 | Mg-Pmc, L.L.C. | A method for producing influenza hemagglutinin multivalent vaccines |
DE19612966A1 (en) * | 1996-04-01 | 1997-10-02 | Behringwerke Ag | Animal cells and methods for the propagation of influenza viruses |
US20060252132A1 (en) * | 2003-06-16 | 2006-11-09 | Medimmune Vaccines, Inc. | Influenza hemagglutinin and neuraminidase variants |
EP1676569A1 (en) * | 2004-12-30 | 2006-07-05 | Pevion Biotech Ltd. | Lyophilization of virosomes |
WO2007052163A2 (en) * | 2005-11-01 | 2007-05-10 | Novartis Vaccines And Diagnostics Gmbh & Co Kg | Cell-derived viral vaccines with low levels of residual cell dna by beta-propiolactone treatment |
WO2007052061A2 (en) * | 2005-11-04 | 2007-05-10 | Novartis Vaccines And Diagnostics Srl | Emulsions with free aqueous-phase surfactant as adjuvants for split influenza vaccines |
Non-Patent Citations (6)
Title |
---|
ID BIOMEDICAL CORPORATION OF QUEBEC: "Highlights of prescribing information Flulaval"[Online] 2006, pages 1-12, XP002513142 Retrieved from the Internet: URL:http://www.fda.gov/CBER/label/flulavalLB.pdf> [retrieved on 2009-02-03] * |
KESSLER N ET AL: "SUITABILITY OF MDCK CELLS GROWN IN A SERUM-FREE MEDIUM FOR INFLUENZA VIRUS PRODUCTION" DEVELOPMENTS IN BIOLOGICAL STANDARDIZATION, KARGER, BASEL, CH, vol. 98, 1 January 1999 (1999-01-01), pages 13-21,73/74, XP001097586 ISSN: 0301-5149 * |
MERTEN O-W ET AL: "PRODUCTION OF INFLUENZA VIRUS IN SERUM-FREE MAMMALIAN CELL CULTURES" DEVELOPMENTS IN BIOLOGICAL STANDARDIZATION, KARGER, BASEL, CH, vol. 98, 1 January 1997 (1997-01-01), pages 23-37, XP000909398 ISSN: 0301-5149 * |
REICHELDERFER P S ET AL: "REDUCTION OF ENDO TOXIN LEVELS IN INFLUENZA VIRUS VACCINES BY BARIUM SULFATE ADSORPTION ELUTION" APPLIED MICROBIOLOGY, vol. 30, no. 2, 1975, pages 333-334, XP002513140 ISSN: 0003-6919 * |
SANOFI PASTEUR: "Highlights of prescribing information Fluzone"[Online] 1980, pages 1-16, XP002513141 Retrieved from the Internet: URL:http://www.fda.gov/CBER/label/fluzoneLB.pdf> [retrieved on 2009-02-03] * |
See also references of EP2185191A2 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3009145A1 (en) | 2009-03-30 | 2016-04-20 | Mount Sinai School of Medicine of New York University | Influenza virus vaccines and uses thereof |
WO2010117786A1 (en) | 2009-03-30 | 2010-10-14 | Mount Sinai School Of Medicine Of New York University | Influenza virus vaccines and uses thereof |
EP3248615A1 (en) | 2010-03-30 | 2017-11-29 | Mount Sinai School of Medicine of New York University | Influenza virus vaccines and uses thereof |
EP3900740A1 (en) | 2010-03-30 | 2021-10-27 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
EP2566958B1 (en) | 2010-05-03 | 2015-12-30 | GlaxoSmithKline Biologicals S.A. | Method for inactivating influenza virus |
EP3827843A1 (en) | 2010-06-01 | 2021-06-02 | Seqirus UK Limited | Concentration of influenza vaccine antigens without lyophilization |
WO2011151726A2 (en) | 2010-06-01 | 2011-12-08 | Novartis Ag | Concentration of vaccine antigens with lyophilization |
WO2011151723A2 (en) | 2010-06-01 | 2011-12-08 | Novartis Ag | Concentration of vaccine antigens without lyophilization |
WO2012023044A1 (en) | 2010-08-20 | 2012-02-23 | Novartis Ag | Soluble needle arrays for delivery of influenza vaccines |
EP4241785A2 (en) | 2011-09-20 | 2023-09-13 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
US10583188B2 (en) | 2012-12-18 | 2020-03-10 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
EP4154907A1 (en) | 2012-12-18 | 2023-03-29 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
US10544207B2 (en) | 2013-03-14 | 2020-01-28 | Icahn School Of Medicine At Mount Sinai | Antibodies against influenza virus hemagglutinin and uses thereof |
US10736956B2 (en) | 2015-01-23 | 2020-08-11 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccination regimens |
US11266734B2 (en) | 2016-06-15 | 2022-03-08 | Icahn School Of Medicine At Mount Sinai | Influenza virus hemagglutinin proteins and uses thereof |
US11865173B2 (en) | 2016-06-15 | 2024-01-09 | Icahn School Of Medicine At Mount Sinai | Influenza virus hemagglutinin proteins and uses thereof |
US11254733B2 (en) | 2017-04-07 | 2022-02-22 | Icahn School Of Medicine At Mount Sinai | Anti-influenza B virus neuraminidase antibodies and uses thereof |
US12030928B2 (en) | 2017-04-07 | 2024-07-09 | Icahn School Of Medicine At Mount Sinai | Anti-influenza B virus neuraminidase antibodies and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2010531348A (en) | 2010-09-24 |
BRPI0813866A2 (en) | 2015-01-06 |
PL2185191T3 (en) | 2013-02-28 |
EP2185191A2 (en) | 2010-05-19 |
EP2185191B1 (en) | 2012-09-12 |
US20190142927A1 (en) | 2019-05-16 |
AU2008269439A1 (en) | 2008-12-31 |
CA2692200A1 (en) | 2008-12-31 |
EP2484377A1 (en) | 2012-08-08 |
NZ582595A (en) | 2012-07-27 |
KR20100045437A (en) | 2010-05-03 |
AU2008269439B2 (en) | 2013-12-19 |
HK1143085A1 (en) | 2010-12-24 |
US20100183671A1 (en) | 2010-07-22 |
SG182957A1 (en) | 2012-08-30 |
US20170119871A1 (en) | 2017-05-04 |
CY1113738T1 (en) | 2016-06-22 |
EA201070066A1 (en) | 2010-06-30 |
HRP20120790T1 (en) | 2013-01-31 |
ES2393162T3 (en) | 2012-12-19 |
CN101784283A (en) | 2010-07-21 |
SI2185191T1 (en) | 2012-12-31 |
DK2185191T3 (en) | 2012-12-03 |
PT2185191E (en) | 2012-11-27 |
WO2009001217A3 (en) | 2009-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2185191B1 (en) | Low-additive influenza vaccines | |
CA2671629C (en) | Vaccines including antigen from four strains of influenza virus | |
US9901630B2 (en) | Adjuvant-sparing multi-dose influenza vaccination regimen | |
EP2382987A1 (en) | Storage of influenza vaccines without refrigeration | |
EP2211901A1 (en) | Vaccination with multiple clades of h5 influenza a virus | |
WO2007052057A2 (en) | Adminstration routes for priming/boosting with influenza vaccines | |
US20240299537A1 (en) | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture | |
US20090285854A1 (en) | Frozen stockpiling of influenza vaccines | |
US20210170021A1 (en) | Adjuvanted vaccines with non-virion antigens prepared from influenza viruses grown in cell culture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880103467.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08806940 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2692200 Country of ref document: CA Ref document number: MX/A/2009/014272 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4439/KOLNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12666628 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010514180 Country of ref document: JP |
|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 582595 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008269439 Country of ref document: AU |
|
ENP | Entry into the national phase in: |
Ref document number: 20107001171 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201070066 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008806940 Country of ref document: EP |
|
ENP | Entry into the national phase in: |
Ref document number: 2008269439 Country of ref document: AU Date of ref document: 20080627 Kind code of ref document: A |
|
ENP | Entry into the national phase in: |
Ref document number: PI0813866 Country of ref document: BR Kind code of ref document: A2 Effective date: 20091223 |