WO2008154783A1 - Method for establishing tunnel from sgsn to serving gateway - Google Patents

Method for establishing tunnel from sgsn to serving gateway Download PDF

Info

Publication number
WO2008154783A1
WO2008154783A1 PCT/CN2007/003848 CN2007003848W WO2008154783A1 WO 2008154783 A1 WO2008154783 A1 WO 2008154783A1 CN 2007003848 W CN2007003848 W CN 2007003848W WO 2008154783 A1 WO2008154783 A1 WO 2008154783A1
Authority
WO
WIPO (PCT)
Prior art keywords
sgsn
serving
establishing
tunnel
destination
Prior art date
Application number
PCT/CN2007/003848
Other languages
French (fr)
Chinese (zh)
Inventor
Jinguo Zhu
Zaifeng Zong
Min Fang
Xiliang Liu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2008154783A1 publication Critical patent/WO2008154783A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/66Arrangements for connecting between networks having differing types of switching systems, e.g. gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels

Definitions

  • FIG. 1 is a schematic diagram of a SAE architecture according to the related art
  • FIG. 2 is a paging flowchart of Signaling Free technology according to the related art
  • FIG. 3 is a tunnel establishment of an SGSN to Serving GW according to an embodiment of the present invention

Abstract

A method for establishing a tunnel from SGSN to Serving GW includes the following steps of: the mobility management entity informing SGSN that the Serving GW changed, and informing SGSN about the address information of the new Serving GW; SGSN sending the request for establishing bearer to the new Serving GW; the new Serving GW returning the response for establishing bearer to SGSN.

Description

SGSN到服务网关的隧道的建立方法 技术领域 本发明涉及通信领域, 并且特别地, 涉及一种 GPRS支持节点( Serving GPRS Support Node, SGSN ) 到月艮务网关的隧道的建立方法。 背景技术 随着全球微波接入互通 ( World Interoperability for Microwave Access, Wimax ) 的快速发展, 如果第三代移动通信系统要保持其在移动通信领域中 强大的竟争力, 必须提高其网络性能并降低网络建设和运营的成本。 因此, 目前 3GPP ( 3rd Generation Partnership Project, 第三^ (弋合作伙伴计划) 的 4示 准 ^匕工作组正致力于对包交换核心网 ( Packet Switch Core, PS Core )和全球 移动通言系统无线接入网 ( Universal Mobile Telecommunication System Radio Access Network, UTRAN ) 演进的研究, 该研究的课题称作系统架构演进 TECHNICAL FIELD The present invention relates to the field of communications, and in particular, to a method for establishing a tunnel of a GPRS support node (SGSN) to a monthly service gateway. BACKGROUND With the rapid development of World Interoperability for Microwave Access (Wimax), if third-generation mobile communication systems are to maintain their strong competitiveness in the field of mobile communications, they must improve their network performance and reduce their performance. The cost of network construction and operations. Therefore, the current 3GPP (3rd Generation Partnership Project, 3rd Generation Partnership Project) is working on Packet Switch Core (PS Core) and Global Mobile Voice System Wireless. The evolution of the Universal Mobile Telecommunication System Radio Access Network (UTRAN), the subject of this research is called system architecture evolution.
( System Architecture Evolution, 简称 SAE ), 其目的是使演进的 PS Core能 够提供更高的传输速率和更短的传输延时、 优化分组、 以及支持演进的 UTRAN ( Evolved UTRAN, E-UTRAN )、 UTRAN >无线局域网 ( Wireless Local Area Network, WLAN )、 以及其他非 3GPP的接入网络之间的移动性管理。 目前, SAE的架构如图 1所示, 其中包含了如下网元: 演进的无线接入网 (Evolved RAN, E-RAN ): 可以提供更高的上 /下行 速率、 更低的传输延迟、 以及更加可靠的无线传输。 E-RAN中包含的网元是 演进的节点 B ( Evolved NodeB, eNodeB ), 其可以为用户的接入提供无线资 源; 归属用户服务器 (Home Subscriber Server, HSS): 用于永久地存储用户 的签约数据; 分组数据网 (Packet Data Network, PDN): 用于为用户提供业务; 演进的分组网 (E-Packet Core ): 其可以提供更 ί氐的延迟, 并允许更多 的无线接入系统接入。 其中包含以下网元: 移动管理实体 ( Mobility Management Entity , MME ): 是控制面功能实体, 用于临时存储用户数据的 月良务器, 其负责管理和存储 UE 上下文 (比如 UE/用户标识, 移动性管理状 态, 用户安全参数等), 为用户分配临时标识, 当 UE驻扎在该 5艮踪区域或者 该网络是负责对该用户进行鉴权, 则处理 MME和 UE之间的所有非接入层 消息; 触发在 SAE的寻呼; 月良务网关 ( Serving GW ): 该网关是一个用户面实体, 负责用户面数据 路由处理, 终结处于闲置状态的 UE的下行数据。 管理和存储 UE的 SAE承 载(bearer )上下文, 比如 IP承栽业务参数和网络内部路由信息等。 是 3GPP 系统内部用户面的 4苗点, 一个用户在一个时刻只能有一个 Serving GW; (System Architecture Evolution, SAE for short), the purpose is to enable the evolved PS Core to provide higher transmission rates and shorter transmission delays, optimize packets, and support evolved UTRAN (Evolved UTRAN, E-UTRAN), UTRAN > Mobility management between Wireless Local Area Network (WLAN), and other non-3GPP access networks. Currently, the architecture of the SAE is as shown in Figure 1, which includes the following network elements: Evolved RAN (E-RAN): can provide higher uplink/downlink rates, lower transmission delays, and More reliable wireless transmission. The network element included in the E-RAN is an evolved Node B (eNodeB), which can provide radio resources for user access; Home Subscriber Server (HSS): used to permanently store user subscriptions. Data; Packet Data Network (PDN): used to provide services to users; E-Packet Core: It can provide more delay and allow more wireless access systems to connect In. The following network elements are included: Mobility Management Entity (MME): is a control plane function entity for temporarily storing user data. The server is responsible for managing and storing the UE context (such as UE/user identity, mobility management state, user security parameters, etc.), assigning a temporary identifier to the user, and when the UE is camped in the 5 tracking area or the network is responsible for The user is authenticated, and all non-access stratum messages between the MME and the UE are processed; the paging in the SAE is triggered; the monthly service gateway (Serving GW): the gateway is a user plane entity, responsible for user plane data Route processing, terminating the downlink data of the UE in idle state. Manage and store the SAE bearer context of the UE, such as IP bearer service parameters and network internal routing information. It is a 4 seed point of the internal user plane of the 3GPP system. A user can only have one Serving GW at a time;
PDN GW: 分组数据网网关, 负责 UE接入 PDN的网关功能, 是 3GPP 和非 3GPP接入系统的移动性锚点。用户在同一时刻能够接入多个 PDN GW。 此外, SAE系统也允许用户从传统通用移动通信系统 ( UMTS )接入。 传统 UMTS中的网元月 务 SGSN可以接入 Serving GW, 此时, Serving GW 是 UMTS和 SAE中的用户面的锚点。 另外, SGSN和 MME之间也存在一个 接口, 用于提供 UMTS系统中类似于 SGSN之间的接口功能。 在 SAE系统和 UMTS系统同时覆盖的区域中, 当处于空闲状态时, 用 户可以根据信号的强弱在这两个系统中交替选择接入技术, 由此会导致大量 的空中信令。 为此, 目前正在研究一种被称为 Signaling free的技术, 目的是当用户 交替选择接入技术时, 避免或者减少空口的信令。 其原理是允许用户同时在 SAE和 UMTS系统中登记, 这样, 当用户选择已经登记过的系统时, 就不用 再次发起登记过程, 从而减少了空中信令 然而, 当用户处于空闲状态时, 由于可能改变了接入系统而没有触发登 记过程, 所以此时核心网可能不知道用户当前处于哪个接入系统中, 因此, 如果有下行数据到达, 必须在两个系统中同时进行寻呼。 为了触发在 UMTS 中的寻呼, 要求 SGSN和 Serving GW之间保留传递用户数据的隧道。 当有 下 4亍数据到达 Serving GW时, Serving GW判断用户处于空闲状态, 一方面 直接通知 MME在 SAE发起寻呼, 另外可以将下行数据通过该隧道直接发送 到 SGSN, 从而触发 SGSN在 UMTS发起寻呼。 图 2示出了该寻呼的流程。 如图 2所示, 该寻呼包括以下处理: 步骤 201 , Serving GW从已有的承载上接收下行数据包; 步骤 202, Serving GW根据保存的信息判断用户目前处于空闲状态; 步骤 203 , Serving GW通知 MME在 SAE中寻呼用户; 步骤 204, 在 MME中保存有用户当前所在跟踪区( Tracking Area, TA ) 列表, 并且 MME向这些 TA所在的所有 e-Node B发送寻呼请求, e-Node B 在空口中寻呼用户; 步骤 205, Serving GW将接收到的下行数据 (可能是第一个数据包)通 过已经存在的隧道发送到 SGSN; 步骤 206, SGSN判断用户处于空闲状态, 向用户当前所在的无线网络 控制器 (RNC )发起寻呼请求; 步骤 207, 当用户收到寻呼请求之后, 向当前所在的接入系统返回寻呼 响应, 开始接入并建立 载, 并且 Serving GW在建立的 载上将下行数据 发送到 UE。 如上所述, Serving GW是一个用户面的月良务网关, 当用户移动的时^ (矣,PDN GW: Packet data network gateway, responsible for the gateway function of the UE to access the PDN, is the mobility anchor of 3GPP and non-3GPP access systems. Users can access multiple PDN GWs at the same time. In addition, the SAE system also allows users to access from traditional Universal Mobile Telecommunications System (UMTS). The network element SGSN in the traditional UMTS can access the Serving GW. At this time, the Serving GW is an anchor point of the user plane in the UMTS and the SAE. In addition, there is also an interface between the SGSN and the MME for providing an interface function similar to the SGSN in the UMTS system. In the area covered by both the SAE system and the UMTS system, when in the idle state, the user can alternately select the access technology in the two systems according to the strength of the signal, thereby causing a large amount of over-the-air signaling. To this end, a technique called Signaling free is currently being researched to avoid or reduce the signaling of air interfaces when users alternately select access technologies. The principle is to allow the user to register in both the SAE and UMTS systems, so that when the user selects the already registered system, the registration process does not need to be initiated again, thereby reducing the over-the-air signaling. However, when the user is in an idle state, The access system is changed without triggering the registration process, so the core network may not know which access system the user is currently in. Therefore, if downlink data arrives, paging must be performed simultaneously in both systems. In order to trigger paging in UMTS, a tunnel for transferring user data is required between the SGSN and the Serving GW. When the next 4 data arrives at the Serving GW, the Serving GW determines that the user is in an idle state. On the one hand, the MME is directly notified to the MME to initiate paging, and the downlink data can be directly sent to the SGSN through the tunnel, thereby triggering the SGSN to initiate the MME in the UMTS. call. Figure 2 shows the flow of this paging. As shown in FIG. 2, the paging includes the following processing: Step 201: The Serving GW receives the downlink data packet from the existing bearer. Step 202: The Serving GW determines, according to the saved information, that the user is currently in an idle state; Step 203, Serving GW The MME is notified to page the user in the SAE. Step 204: The MME stores a current Tracking Area (TA) list, and the MME sends a paging request to all e-Nodes where the TAs are located, e-Node B. Paging the user in the air interface; Step 205, the Serving GW sends the received downlink data (possibly the first data packet) to the SGSN through the existing tunnel; Step 206, the SGSN determines that the user is in an idle state, and is currently present to the user. The radio network controller (RNC) is located to initiate a paging request. Step 207, after receiving the paging request, the user returns a paging response to the current access system, starts to access and establish a bearer, and the Serving GW is established. The downlink data is sent to the UE. As mentioned above, Serving GW is a user-facing monthly gateway, when the user moves ^ (矣,
MME可能依据 e-Node B的位置重新选择 Serving GW。 而当 Serving GW改 变的时候, 目前协议中的 MME并不将该改变通知相关的 SGSN,这样 SGSN 就无法新建到新 Serving GW的隧道。 因此, 在空闲状态下, 无法将下行数 据从 SGSN方发送到新的 Serving GW, 从而导致 Signaling Free机制失效。 因此, 需要提供一种针对该问题的解决方案。 发明内容 考虑到上述问题而提出本发明, 为此, 本发明的主要目的在于提供一种 SGSN到服务网关的隧道的建立方法。 才艮据本发明的实施例, 提供了一种 SGSN 到服务网关的隧道的建立方 法。 该方法包括: 移动管理实体通知 SGSN服务网关发生改变, 并通知新服 务网关的地址信息; SGSN 向新月 务网关发起建立 7 载请求; 新;^务网^ SGSN返回建立承载响应。 其中, 上述 SGSN 通过建立承栽请求来请求新服务网关建立用户面隧 道; 建立承载请求中携带有 SGSN的地址信息和用户面隧道 ID。 在返回建立 载响应之前, 新月艮务网关分配用户面隧道 ID, 并在建立 7?载响应中携带分 配的用户面隧道 ID。 此外, 移动管理实体在空闲状态下的 艮踪区更新过程中进行通知; 或者 在连接状态下的切换过程中进行通知。 具体地, 在用户从源移动管理实体移 动到目的移动管理实体的情况下, 由目的移动管理实体进行通知, 或者由源 移动管理实体将来自目的移动管理实体的通知转发到 SGSN。 并且, 源移动 管理实体和 SGSN均支持 Signaling Free机制。 另外, 建立 载请求可以为更新 PDP上下文请求, 建立 7|载响应可以 为更新 PDP上下文响应。 通过本发明的上述技术方案, 能够保证空闲状态下 Signaling Free机制 的有效性。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是根据相关技术的 SAE架构的示意图; 图 2是根据相关技术的 Signaling Free技术的寻呼流程图; 图 3是根据本发明实施例的 SGSN到 Serving GW的隧道的建立方法的 流程图; 图 4是才艮据本发明实施例的 SGSN到 Serving GW的隧道的建立方法的 信令流程图; 图 5是 >据本发明实施例的 SGSN到 Serving GW的隧道的建立方法的 处理实例 1的信令流程图; 图 6是根据本发明实施例的 SGSN到 Serving GW的隧道的建立方''土 处理实例 2的信令流程图; 图 7是根据本发明实施例的 SGSN到 Serving GW的隧道的建立方法的 处理实例 3的信令流程图; 以及 图 8是根据本发明实施例的 SGSN到 Serving GW的隧道的建立方法的 处理实例 4的信令流程图。 具体实施方式 本发明实施例中提供的方案能够解决相关技术中存在的上述问题。 其 中, 当移动管理实体(MME )发现服务网关( Serving GW )改变的时候, 通 知 SGSN, 并将新的 Serving GW的地址信息告诉 SGSN, 这样 SGSN可以建 立到新 Serving GW的隧道, 从而使得 Signaling Free机制能够有效。 以下将 参照附图来详细描述本发明实施例, 其中, 给出以下实施例以提供对本发明 的全面和透彻理解, 而不是对本发明进行任何限制。 在本实施例中, 提供了一种 SGSN到 Serving GW的隧道的建立方法。 如图 3所示, 根据本实施例的 SGSN到 Serving GW的隧道的建立方法 包 4舌: 步骤 S302, MME通知 SGSN Serving GW发生改变, 并通知新 Serving GW的地址信息 (对应于图, 4中的步骤 401 , 通知消息); 步骤 S304, SGSN 向新 Serving GW发起建立 载请求, 其中, 建立 载请求用于请求建立用 户面隧道(对应于图 4 中的步骤 402, 建立承载请求); 以及步骤 S306, 响 应于建立承载请求, 新 Serving GW保存相关信息(例如, SGSN的地址信息 和隧道信息), 分配用户面隧道 ID, 并向 SGSN返回建立 栽响应 (对应于 图 4中的步骤 403 , 建立 7^载响应)。 其中, 建立 载请求中携带有 SGSN的地址信息和用户面隧道 ID。 而 建立承载响应中携带有新月良务网关分配的用户面隧道 ID。 具体地, MME可以在空闲状态下的跟踪区( TA )更新过程中进行通知; 或者在连接状态下的切换过程中进行通知。 在用户从源 MME 移动到目的 MME的情况下, 由目的 MME进行通知, 或者由源 MME 寻来自目的 MME 的通知转发到 SGSN。其中,源 MME和 SGSN均支持 Signaling Free机制(后 面将对该过程进行详细描述)。 另夕卜,建立承栽请求为更新 PDP上下文请求,建立承载响应为更新 PDP 上下文响应。 图 4示出了该方法的信令流程图。 图 4中的步骤 401、 402、 和 403分 别对应于图 3中的步骤 S302、 步骤 S304、 和步骤 S306, 这里不再重复其描 述。 通过上述处理, 成功建立了 SGSN到新 Serving GW之间的隧道。此时, 下行数据包可以从该隧道到达 SGSN, 并触发在 UMTS中的寻呼过程, 参见 图 2中的步骤 205。 下面将参照实例来描述本发明的实施例。 实例 1 在该实例中, 假设空闲模式下的用户从 UMTS覆盖区域移动到 S AE覆 盖区域, 如图 5所示, 在这种情况下的 TA更新过程中, Serving GW ό 文变 过程的包括以下处理: 步骤 501 : 当 UE发现目前 SAE信号比 UMTS信号好、 并且当前所在 的 TA没有登记过时, 该 UE向网络发起 TA更新请求, 其中带有用户原有的 P-TMSI (用户临时身份标识) 和上一次登记的路由区标识; eNodeB 收到该 请求之后, 向当前 TA所在的 MME转发该 TA更新请求, 其中带有当前所在 的 TA标识; 步骤 502: 目的 MME收到之后, 根据上一次登记的路由区推导出用户 上一次登记的 SGSN, 从而实现从 SGSN获取用户的上下文, 其中, 该上下 文中包含有用户原有的 Serving GW; 步骤 503: 目的 MME根据需要发起鉴权过程; 步骤 504: 目的 MME判断是否能够继续使用原有的 Serving GW, 如果 能够使用, 则保持原有的 Serving GW不变; 如果不能使用, 则确定选择新 的 Serving GW; 步骤 505: 在鉴权成功之后, 目的 MME返回 SGSN上下文获取应答消 息, 因此, 如果用户重新返回 SGSN, 就需要进行重新鉴权并到 HSS获取数 据; 步骤 506: 目的 MME请求新的 Serving GW分配资源并建立承载过程; 步骤 507: 目的 MME向 HSS请求用户数据并更新 HSS中用户位置信 息的过程; 步骤 508: 如果目的 MME选择了新 Serving GW, 并且目的 MME和源 SGSN都支持 Signaling Free机制,则目的 MME向源 SGSN发起 Serving GW 改变的通知消息, 其中带有改变的 Serving GW标识和新 Serving GW的地址 信息; 可选地, 在步骤 505 中, 目的 MME将 Serving GW 改变的标识和新 Serving GW的地址信息通知源 SGSN, 这样就不需要上述步骤 508。 步骤 509, 源 SGSN收到通知之后 (该通知是步骤 508或步骤 505中地 通知消息), 向新的 Serving GW发送更新 PDP上下文请求, 其中带有 SGSN 的 IP地址和分配的隧道信息; 步骤 510, 新的 Serving GW收到请求之后, 保存 SGSN的 IP地址以及 隧道信息, 分配其本身的隧道信息, 并向 SGSN返回更新 PDP上下文响应, 其中带有 Serving GW分配的隧道信息(即, 通过步骤 509和步骤 510, 在源 SGSN和新 Serving GW之间建立了新隧道 ); 步骤 511 : 目的 MME重新分配 S-TMSI, 并将 S-TMSI重分配消息返回 给 UE, 该返回的消息中带有 S-TMSI和当前的 TA; 步骤 512: 响应于步骤 511 中的返回消息, UE保存 S-TMSI和当前的 TA, 并返回 TMSI重新分配响应。 在实例 1 中, 果步骤 504中目的 MME决定继续使用原有的 Serving GW, 则不执行步骤 508至步骤 510, 而直接执行步骤 511和 512。 实例 2 在该实例中, 假设空闲模式下的用户在 SAE覆盖区域内移动, 该实例 与实例 1基本类似, 不同之处在于 SGSN不是作为源节点。 如图 6所示, 在 这种情况下的 TA更新过程中, Serving GW的改变过程包括以下处理: 步骤 601: UE发现当前所在的 TA未登记过, 向网络发起 TA更新请求 消息, 请求消息中带用户原有的 S-TMSI和上一次登记的 TA列表; eNodeB 收到请求消息之后, 向当前 TA所在的 MME转发该 TA更新请求消息, 并在 消息中附加当前所在的 TA; 步骤 602: 目的 MME收到之后, 根据上一次登记的 TA推导出用户上 一次登记的源 MME, 从而实现从 SGSN获取用户的上下文, 其中, 该上下 文中包含有用户原有的 Serving GW和此时注册的 SGSN的地址信息, 并包 含表示 SGSN是否支持 Signaling Free的能力的标识; 步骤 603: 目的 MME根据需要发起鉴权过程; 步骤 604: 与上述步骤 504类似, 目的 MME判断是否能够继续使用原 有的 Serving GW, 如果能够使用, 就保持原有的 Serving GW不变; 如果不 能使用, 就决定选择新的 Serving GW; 步骤 605:与上述步骤 505类^ ¾,在鉴权成功之后,目的 MME返回 SGSN 上下文获取应答消息, 因此, 如果用户重新返回 SGSN, 就需要进行重新鉴 权并到 HSS获取数据; 步骤 606: 与上述步骤 506类似, 目的 MME请求新的 Serving GW分 配资源并建立承载过程; 步骤 607: 与上述步骤 507类似, 目的 MME向 HSS请求用户数据并更 新 HSS中用户位置信息的过程; 步骤 608: 如果目的 MME选择了新的 Serving GW, 并且源 MME和同 时注册的 SGSN都支持 Signaling Free机制, 贝1 J目的 MME向该 SGSN发起 Serving GW改变的通知消息, 其中带有 Serving GW?丈变的标识和新 Serving GW的地址信息, 其中, SGSN的地址信息是在步骤 602 中从原有的 MME 获取的; 可选地, 在步骤 605中, 使用上下文获取应答消息, 或者用一个新的消 息, 目的 MME将 Serving GW改变的标识和新 Serving GW的地址信息通知 源 MME;源 MME收到通知之后,判断同时注册的 SGSN支持 Signaling Free, 之后再向 SGSN发起 Serving GW改变的通知, 该通知消息带有新的 Serving GW的地 言息; 步骤 609, SGSN收到通知之后, 向新的 Serving GW发送更新 PDP上 下文请求, 其中, 该请求中带有 SGSN的 IP地址和分配的隧道信息; 步骤 610, 新的 Serving GW收到请求之后, 保存 SGSN的 IP地址以及 隧道信息, 分配自己的隧道信息, 并向 SGSN返回更新 PDP上下文响应, 其 中带有 Serving GW分配的隧道信息 (即, 通过步骤 609和步骤 610, 在源 SGSN和新 Serving GW之间建立了新隧道 ); 步骤 611 :与步骤 511相同, 目的 MME重新分配 S-TMSI,并将 S-TMSI 重分配消息返回给 UE, 其中带有 S-TMSI和当前的 TA; 步骤 612: 响应于步骤 611 中的返回消息, UE保存 S-TMSI和当前的 TA, 并返回 TMSI重新分配响应。 类似地, 在本实例中, 如果步骤 604中目的 MME决定继续使用原有的The MME may reselect the Serving GW according to the location of the e-Node B. When the Serving GW changes, the MME in the current protocol does not notify the relevant SGSN of the change, so that the SGSN cannot create a tunnel to the new Serving GW. Therefore, in the idle state, downlink data cannot be sent from the SGSN side to the new Serving GW, causing the Signaling Free mechanism to fail. Therefore, there is a need to provide a solution to this problem. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a main object of the present invention is to provide a method for establishing a tunnel of an SGSN to a serving gateway. According to an embodiment of the present invention, a method for establishing a tunnel of an SGSN to a serving gateway is provided. The method includes: the mobility management entity notifies the SGSN that the service gateway changes, and notifies the address information of the new serving gateway; the SGSN initiates the establishment of the seven-load request to the new monthly gateway; The SGSN returns to establish a bearer response. The SGSN requests the new serving gateway to establish a user plane tunnel by establishing a bearer request. The bearer request carries the address information of the SGSN and the user plane tunnel ID. Before returning to establish the load response, the new moon service gateway assigns the user plane tunnel ID and carries the assigned user plane tunnel ID in the setup 7 load response. In addition, the mobility management entity notifies during the tracking area update process in the idle state; or performs notification during the handover process in the connected state. Specifically, in the case where the user moves from the source mobility management entity to the destination mobility management entity, the destination mobility management entity notifies, or the source mobility management entity forwards the notification from the destination mobility management entity to the SGSN. Moreover, both the source mobility management entity and the SGSN support the Signaling Free mechanism. In addition, the setup request may be an update PDP context request, and the setup response may be an update PDP context response. Through the above technical solution of the present invention, the effectiveness of the Signaling Free mechanism in the idle state can be guaranteed. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, In the drawings: FIG. 1 is a schematic diagram of a SAE architecture according to the related art; FIG. 2 is a paging flowchart of Signaling Free technology according to the related art; FIG. 3 is a tunnel establishment of an SGSN to Serving GW according to an embodiment of the present invention; FIG. 4 is a signaling flowchart of a method for establishing a tunnel of an SGSN to a Serving GW according to an embodiment of the present invention; FIG. 5 is a method for establishing a tunnel of an SGSN to a Serving GW according to an embodiment of the present invention; Signaling flowchart of processing example 1; FIG. 6 is a diagram of a tunnel of an SGSN to a Serving GW tunnel according to an embodiment of the present invention. FIG. 7 is a signaling flowchart of a processing example 3 of a method for establishing a tunnel of an SGSN to a Serving GW according to an embodiment of the present invention; and FIG. 8 is an SGSN to Serving according to an embodiment of the present invention. Signaling flowchart of the processing example 4 of the method for establishing the tunnel of the GW. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The solution provided in the embodiments of the present invention can solve the above problems in the related art. When the mobility management entity (MME) discovers that the serving gateway (Serving GW) changes, the SGSN is notified, and the address information of the new Serving GW is notified to the SGSN, so that the SGSN can establish a tunnel to the new Serving GW, thereby making Signaling Free The mechanism can be effective. The embodiments of the present invention are described in detail below with reference to the accompanying drawings, in which: FIG. In this embodiment, a method for establishing a tunnel of an SGSN to a Serving GW is provided. As shown in FIG. 3, the method for establishing a tunnel of the SGSN to the Serving GW according to the present embodiment includes: Step S302: The MME notifies the SGSN that the Serving GW changes, and notifies the address information of the new Serving GW (corresponding to the figure, 4) Step 401, the notification message); Step S304, the SGSN initiates a setup request to the new Serving GW, where the setup request is used to request to establish a user plane tunnel (corresponding to step 402 in FIG. 4, establishing a bearer request); S306. In response to establishing the bearer request, the new Serving GW saves related information (for example, address information and tunnel information of the SGSN), allocates a user plane tunnel ID, and returns a setup response to the SGSN (corresponding to step 403 in FIG. 4, establishing 7^ loaded response). The address request carries the address information of the SGSN and the user plane tunnel ID. The user plane tunnel ID that carries the assignment of the new moon service gateway is established in the bearer response. Specifically, the MME may notify during the tracking area (TA) update process in the idle state; or notify during the handover process in the connected state. When the user moves from the source MME to the destination MME, the destination MME notifies, or the source MME searches for the notification from the destination MME to the SGSN. The source MME and the SGSN both support the Signaling Free mechanism (this process will be described in detail later). In addition, the bearer request is established to update the PDP context request, and the bearer response is established to update the PDP context response. Figure 4 shows a signalling flow diagram for the method. Steps 401, 402, and 403 in FIG. 4 correspond to step S302, step S304, and step S306 in FIG. 3, respectively, and the description thereof will not be repeated here. Through the above processing, the tunnel between the SGSN and the new Serving GW is successfully established. At this point, the downstream data packet can arrive at the SGSN from the tunnel and trigger the paging procedure in UMTS, see step 205 in FIG. Embodiments of the present invention will be described below with reference to examples. Example 1 In this example, it is assumed that the user in the idle mode moves from the UMTS coverage area to the S AE coverage area, as shown in FIG. 5, in the TA update process in this case, the Serving GW ό 变 过程 process includes the following Processing: Step 501: When the UE finds that the current SAE signal is better than the UMTS signal, and the current TA is not registered, the UE initiates a TA update request to the network, where the user has the original P-TMSI (User Temporary Identity). And the last registered routing area identifier; after receiving the request, the eNodeB forwards the TA update request to the MME where the current TA is located, where the current TA identifier is present; Step 502: After receiving the destination MME, according to the previous registration The routing area derives the last registered SGSN of the user, so as to obtain the context of the user from the SGSN, where the context includes the original Serving GW of the user; Step 503: The destination MME initiates an authentication process according to the requirement; Step 504: The destination MME determines whether the original Serving GW can continue to be used, and if it can be used, keeps the original Serving GW unchanged; if not, it cannot be used. It is determined to select a new Serving GW; Step 505: After successful authentication, MME returns an SGSN Context object acquisition response message, therefore, return to the user if the SGSN, and on the need for re-authentication data to the HSS acquired; Step 506: The destination MME requests the new Serving GW to allocate resources and establish a bearer process. Step 507: The process in which the destination MME requests user data from the HSS and updates the user location information in the HSS. Step 508: If the destination MME selects a new Serving GW, and The destination MME and the source SGSN both support the Signaling Free mechanism, and the destination MME sends a notification message of the Serving GW change to the source SGSN, where the changed Serving GW identifier and the address information of the new Serving GW are included. Optionally, in step 505, The destination MME notifies the source SGSN of the identifier of the Serving GW change and the address information of the new Serving GW, so that the above step 508 is unnecessary. Step 509: After receiving the notification (the notification is a notification message in step 508 or step 505), the source SGSN sends an update PDP context request to the new Serving GW, where the IP address of the SGSN and the allocated tunnel information are included; Step 510 After receiving the request, the new Serving GW saves the IP address of the SGSN and the tunnel information, allocates its own tunnel information, and returns an update PDP context response to the SGSN, with the tunnel information allocated by the Serving GW (ie, through step 509). And step 510, a new tunnel is established between the source SGSN and the new Serving GW; Step 511: The destination MME re-allocates the S-TMSI, and returns an S-TMSI re-allocation message to the UE, where the returned message carries the S - TMSI and current TA; Step 512: In response to the return message in step 511, the UE saves the S-TMSI and the current TA and returns a TMSI reallocation response. In the example 1, if the destination MME decides to continue to use the original Serving GW in step 504, steps 508 to 510 are not performed, and steps 511 and 512 are directly performed. Example 2 In this example, assuming that a user in idle mode moves within the SAE coverage area, the instance is substantially similar to instance 1, except that the SGSN is not acting as a source node. As shown in FIG. 6, in the TA update process in this case, the change process of the Serving GW includes the following processing: Step 601: The UE finds that the current TA is not registered, and initiates a TA update request to the network. The message, the request message carries the user's original S-TMSI and the last registered TA list; after receiving the request message, the eNodeB forwards the TA update request message to the MME where the current TA is located, and attaches the current TA to the message. Step 602: After receiving the destination MME, the source MME that is last registered by the user is derived according to the last registered TA, so that the context of the user is obtained from the SGSN, where the context includes the original Serving GW of the user and the The address information of the SGSN is registered, and includes an identifier indicating whether the SGSN supports the capability of the Signaling Free. Step 603: The destination MME initiates an authentication process according to the requirement. Step 604: Similar to the foregoing step 504, the destination MME determines whether the original MME can continue to use the original Some Serving GW, if it can be used, keeps the original Serving GW unchanged; if it cannot be used, it decides to select a new Serving GW; Step 605: Same as step 505 above, after the authentication succeeds, the destination MME Returns the SGSN context get response message, therefore, if the user returns to the SGSN again, it needs to re-authenticate and get the number to the HSS. Step 606: Similar to step 506 above, the destination MME requests the new Serving GW to allocate resources and establish a bearer process. Step 607: Similar to step 507 above, the destination MME requests user data from the HSS and updates the user location information in the HSS. step 608: If the destination MME selects a new Serving GW, and the source MME and SGSN are registered at the same time support the Signaling Free Mode mechanism, shellfish 1 J purpose MME to initiate a notification message to the SGSN Serving GW change, which with Serving GW? The identifier of the change and the address information of the new Serving GW, where the address information of the SGSN is obtained from the original MME in step 602; optionally, in step 605, the response message is obtained using the context, or a new one is used. The destination MME notifies the source MME of the identifier of the Serving GW change and the address information of the new Serving GW; after receiving the notification, the source MME determines that the simultaneously registered SGSN supports Signaling Free, and then initiates a notification of the Serving GW change to the SGSN. The notification message carries a new message of the Serving GW; Step 609, after receiving the notification, the SGSN sends an update PDP to the new Serving GW. The following request, where the request carries the IP address of the SGSN and the allocated tunnel information; Step 610, after receiving the request, the new Serving GW saves the IP address of the SGSN and the tunnel information, allocates its own tunnel information, and sends the tunnel information to the SGSN. Returning to the update PDP context response, with the tunnel information allocated by the Serving GW (ie, a new tunnel is established between the source SGSN and the new Serving GW through steps 609 and 610); Step 611: Same as step 511, the destination MME Redistributing the S-TMSI and returning the S-TMSI reallocation message to the UE with the S-TMSI and the current TA; Step 612: In response to the return message in step 611, the UE saves the S-TMSI and the current TA , and return TMSI to redistribute the response. Similarly, in this example, if the destination MME decides to continue using the original in step 604
Serving GW , 则不必执行步骤 608 ~步骤 610, 而直接执行步骤 611和 612。 实例 3 图 7示出了在激活模式下从 UMTS到 SAE的切换过程中, Serving GW 改变过程的处理。 如图 7所示, 具体包括以下步骤: 步骤 701: 源 RNC根据信号测量, 向源 SGSN发起切换请求消息, 该 请求消息中带有目的 TA的信息; 步骤 702: 源 SGSN根据请求消息中目的 TA的信息, 找到目的 MME, 并向该 MME发送切换请求, 其中带有目的 TA的信息和源 Serving GW的位 置信息; 步骤 703: 目的 MME 收到请求之后, 根据目的小区的信息选择目的 eNodeB, 并判断原来的 Serving GW能否继续使用, 如果不能继续使用, 则 选择新的 Serving GW; 步骤 704: 目的 MME请求新的 Serving GW 分配承载资源; 在目的 Serving GW分配承栽资源之后, 将分配的用户面资源信息返回给 MME; 步錄 705: 目的 MME向目的 eNodeB发起切换请求, 并将目的 ServingServing GW, it is not necessary to perform steps 608 ~ 610, and directly perform steps 611 and 612. Example 3 Figure 7 shows the processing of the Serving GW change process during the handover from UMTS to SAE in the active mode. As shown in FIG. 7, the method includes the following steps: Step 701: The source RNC sends a handover request message to the source SGSN according to the signal measurement, where the request message carries the information of the destination TA. Step 702: The source SGSN according to the destination TA in the request message Information, find the destination MME, and send a handover request to the MME, where the information of the destination TA and the location information of the source Serving GW are included; Step 703: After receiving the request, the destination MME selects the destination eNodeB according to the information of the target cell, and Determine whether the original Serving GW can continue to use, if not continue to use, select a new Serving GW; Step 704: The destination MME requests the new Serving GW to allocate bearer resources; After the destination Serving GW allocates the bearer resources, the allocated users The face resource information is returned to the MME; Step 705: The destination MME initiates a handover request to the destination eNodeB, and the destination Serving
GW的用户名资源 4言息通 目的 eNodeB; 目的 eNodeB分配 载资源和空口 无线资源之后, 返回目的 MME切换响应消息, 该响应消息中带有 eNodeB 分配的 载资源信息和空口无线资源信息 (即, 通过步骤 704和步骤 705 , 成功预留了切换目的方的资源); 步骤 706: 目的 ΜΜΕ返回源 SGSN切换响应, 其中带有目的 eNodeB 分配的空口无线资源信息; 步骤 707:源 SGSN向源 RNC发起切换命令消息,其中带有目的 eNodeB 分配的空口无线资源信息; 步骤 708: 源 RNC命令 UE开始切换; 步骤 709: 终端根据目的 eNodeB分配的空口无线资源信息, 切换到目 的 eNodeB; 步骤 710: 目的 eNodeB向目的 MME 4艮告切换完成消息; 步骤 711 : 目的 MME 向源 SGSN发送切换完成消息, 该消息中带有 Serving GW是否改变的指示,如果 Serving GW改变,则进一步带有新 Serving GW的地址信息; 可选的, Serving GW是否改变的指示以及 Serving GW的地址信息也可 以在步骤 706中带给源 SGSN。 步骤 712: 源 SGSN返回目的 MME切换完成响应消息; 步骤 713: 源 SGSN向新的 Serving GW发送更新 PDP上下文请求, 其 中带有 SGSN的 IP地址和分配的隧道信息; 步骤 714,新的 Serving GW收到更新 PDP上下文请求之后,保存 SGSN 的 IP地址以及隧道信息,分配其本身的隧道信息,并向 SGSN返回更新 PDP 上下文响应, 该响应中带有 Serving GW分配的隧道信息(即, 通过步骤 714 和步骤 715, 在源 SGSN和新的 Serving GW之间建立了新隧道); 步骤 715: 源 SGSN向源 RNC发起资源释放请求; 步骤 716: 源 RNC释放相关资源之后, 向源 SGSN发送资源释放响应。 在本实例中, 在步骤 703 中, 如果目的 MME 判断继续使用原有的The GW's username resource 4 is the eNodeB; after the destination eNodeB allocates the bearer resource and the air interface radio resource, it returns a destination MME handover response message with the eNodeB in the response message. The allocated resource information and the air interface radio resource information (ie, the resources of the handover destination are successfully reserved through steps 704 and 705); Step 706: The destination ΜΜΕ returns the source SGSN handover response, where the air interface allocated by the destination eNodeB is allocated. Radio resource information; Step 707: The source SGSN sends a handover command message to the source RNC, where the air interface radio resource information is allocated by the destination eNodeB. Step 708: The source RNC commands the UE to start the handover. Step 709: The terminal allocates the air interface according to the destination eNodeB. The resource information is switched to the destination eNodeB. Step 710: The destination eNodeB reports the handover completion message to the destination MME 4. Step 711: The destination MME sends a handover complete message to the source SGSN, where the message carries an indication of whether the Serving GW changes, if Serving The GW changes, and further carries the address information of the new Serving GW; optionally, the indication of whether the Serving GW changes and the address information of the Serving GW may also be brought to the source SGSN in step 706. Step 712: The source SGSN returns a destination MME handover complete response message. Step 713: The source SGSN sends an update PDP context request to the new Serving GW, where the IP address of the SGSN and the allocated tunnel information are included. Step 714, the new Serving GW receives After updating the PDP context request, the SGSN's IP address and tunnel information are saved, its own tunnel information is allocated, and an update PDP context response is returned to the SGSN with the tunnel information assigned by the Serving GW (ie, by step 714 and Step 715: A new tunnel is established between the source SGSN and the new Serving GW. Step 715: The source SGSN initiates a resource release request to the source RNC. Step 716: After the source RNC releases the related resource, the source RNC sends a resource release response to the source SGSN. In this example, in step 703, if the destination MME determines to continue to use the original
Serving GW, 则不执 4亍步骤 713和 714。 实例 4 图 8所示在激活模式下 SAE内部切换中, Serving GW改变过程的处理。 该实例与之前的实例 3类似, 不同之处在于 SGSN不是切换的源节点。 如图 8所示, 其具体包括以下处理: 步骤 801: 源 eNodeB根据信号测量, 向源 MME发起切换请求消息, 该请求消息中带有目的 TA的信息; 步骤 802: 源 MME根据请求消息中目的 TA的信息, 找到目的 MME, 然后向该 MME发送切换请求,该请求中带有目的 TA的信息和源 Serving GW 的位置信息, 以及同时登记的 SGSN的信息; 步骤 803: 目的 MME收到上述切换请求之后, 根据目的小区的信息选 择目的 eNodeB; 然后判断能否继续使用原来的 Serving GW, 如果不能继续 使用, 则选择新的 Serving GW; 步骤 804: 目的 MME请求新的 Serving GW分配承载资源, 并且目的 Serving GW分配7 载资源之后, 将分配的用户面资源信息返回给 ΜΜΕ; 步骤 805: 目的 ΜΜΕ向目的 eNodeB发起切换请求, 并将目的 ServingServing GW, then does not perform steps 713 and 714. Example 4 Figure 8 shows the processing of the Serving GW change process in SAE internal switching in active mode. This example is similar to the previous example 3, except that the SGSN is not the source node of the handover. As shown in FIG. 8, the method includes the following steps: Step 801: The source eNodeB initiates a handover request message to the source MME according to the signal measurement, where the request message carries the information of the destination TA. Step 802: The source MME according to the destination in the request message The information of the TA, finds the destination MME, and then sends a handover request to the MME, where the request carries the information of the destination TA and the location information of the source Serving GW, and the information of the SGSN that is simultaneously registered; Step 803: The destination MME receives the handover After the request, the destination eNodeB is selected according to the information of the target cell; then it is determined whether the original Serving GW can be used again, and if it cannot be used, the new Serving GW is selected; Step 804: The destination MME requests the new Serving GW to allocate the bearer resource, and After the destination Serving GW allocates the 7- load resource, the allocated user plane resource information is returned to the ΜΜΕ; Step 805: The destination 发起 initiates the handover request to the destination eNodeB, and the destination Serving
GW的用户名资源信息通知给目的 eNodeB , 目的 eNodeB分配承载资源和空 口无线资源之后, 返回目的 MME切换响应消息, 其中带有 eNodeB分配的 载资源信息和空口无线资源信息 (即, 通过步骤 804和步骤 805 , 成功预 留了切换目的方的资源); 步骤 806:目的 MME返回源 MME切换响应消息,其中带有目的 eNodeB 分配的空口无线资源信息; 步骤 807: 源 MME 向源 eNodeB 发起切换命令消息, 其中带有目的 eNodeB分配的空口无线资源信息; 步骤 808: 源 eNodeB命令 UE开始切换; 步骤 809: 终端根据目的 eNodeB分配的空口无线资源信息, 切换到目 的 eNodeB; 步骤 810: 目的 eNodeB向目的 MME发送切换完成消息; 步骤 811 : 目的 MME 向源 MME发送切换完成消息, 该消息中带有 Serving GW是否改变的指示,如果 Serving GW?文变,则进一步带有新 Serving GW的地址信息; 可选的, Serving GW是否改变的指示以及新 Serving GW的地址信息, 也可以在步骤 806中带给源 MME。 步骤 812: 源 MME返回目的 MME切换完成响应消息; 步錄 813:如果 Serving GW改变,并且 SGSN支持 Signaling Free机制, 源 MME向 SGSN发起通知消息, 该通知消息中带有新 Serving GW的地址 信息。可选的,也可以由目的 MME直接向 SGSN发起通知消息,其中, SGSN 的地址信息可以在上面的步骤 802中从源 MME获知; 步骤 814: SGSN收到通知消息之后,向新的 Serving GW发送更新 PDP 上下文请求, 其中带有 SGSN的 IP地址和分配的隧道信息; 步骤 815 ,新的 Serving GW收到更新 PDP上下文请求之后,保存 SGSN 的 IP地址以及隧道信息,分配其本身的隧道信息,并向 SGSN返回更新 PDP 上下文响应, 其中带有 Serving GW分配的隧道信息 (即, 通过步骤 814和 步骤 815 , 在源 SGSN和新 Serving GW之间建立了新隧道 ); 步骤 816: 源 MME向源 eNodeB发起资源释放请求; 步骤 817: 源 eNodeB释放相关资源, 之后向源 MME发送资源释放响 应; 类似地, 在步骤 803 中, 如果目的 MME判断继续使用原有的 Serving GW, 则不必执 4亍步骤 813、 814、 和 815。 综上所述, 借助于本发明的术方案, 当 Serving GW改变的时候, SGSN 能够重建到新 Serving GW的隧道, 从而能够保证空闲状态下 Signaling Free 机制的有效性。 本发明的思想同样也可以适用于 SGSN重新选择一个 Serving GW的情 况, SGSN通知 MME重新建立到 Serving GW的连接, 从而保证空闲状态下 Signaling Free机制的有效 '(·生。 以上所述仅为本发明的优选实施例, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可有各种更改和变化。 凡在本发明的精神和原则之 内所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 The GW user name resource information is sent to the destination eNodeB, and after the destination eNodeB allocates the bearer resource and the air interface radio resource, the destination MME handover response message is returned, where the eNodeB allocates the bearer resource information and the air interface radio resource information (ie, through step 804 and Step 805: The resource of the handover destination is successfully reserved. Step 806: The destination MME returns a source MME handover response message with the air interface radio resource information allocated by the destination eNodeB. Step 807: The source MME initiates a handover command message to the source eNodeB. And the source eNodeB instructs the UE to start the handover. Step 809: The terminal switches to the destination eNodeB according to the air interface radio resource information allocated by the destination eNodeB. Step 810: The destination eNodeB goes to the destination MME. Sending a handover complete message; Step 811: The destination MME sends a handover complete message to the source MME, where the message carries Does the Serving GW change the indication if Serving GW? The variator further carries the address information of the new Serving GW; optionally, the indication of whether the Serving GW changes and the address information of the new Serving GW may also be brought to the source MME in step 806. Step 812: The source MME returns a destination MME handover complete response message. Step 813: If the Serving GW changes, and the SGSN supports the Signaling Free mechanism, the source MME sends a notification message to the SGSN, where the notification message carries the address information of the new Serving GW. Optionally, the destination MME may also directly send a notification message to the SGSN, where the address information of the SGSN may be learned from the source MME in the above step 802. Step 814: After receiving the notification message, the SGSN sends the message to the new Serving GW. Updating the PDP context request, with the IP address of the SGSN and the allocated tunnel information; Step 815, after receiving the update PDP context request, the new Serving GW saves the IP address of the SGSN and the tunnel information, and allocates its own tunnel information, and Returning an update PDP context response to the SGSN with tunnel information assigned by the Serving GW (ie, a new tunnel is established between the source SGSN and the new Serving GW through steps 814 and 815); Step 816: Source MME to source eNodeB Initiating a resource release request; Step 817: The source eNodeB releases the related resource, and then sends a resource release response to the source MME. Similarly, in step 803, if the destination MME determines to continue to use the original Serving GW, it is not necessary to perform step 813. , 814, and 815. In summary, with the solution of the present invention, when the Serving GW changes, the SGSN can re-establish the tunnel to the new Serving GW, thereby ensuring the validity of the Signaling Free mechanism in the idle state. The idea of the present invention can also be applied to the case where the SGSN reselects a Serving GW, and the SGSN notifies the MME to re-establish the connection to the Serving GW, thereby ensuring that the Signaling Free mechanism is valid in the idle state. The preferred embodiment of the invention is not intended to limit the invention, and various modifications and changes can be made thereto without departing from the spirit and scope of the invention. Improvements and the like should be included in the scope of the present invention.

Claims

权 利 要 求 书 Claim
1. 一种 SGSN到服务网关的隧道的建立方法, 其特征在于, 包括: A method for establishing a tunnel of a SGSN to a serving gateway, comprising:
移动管理实体通知 SGSN Λ良务网关发生改变,并通知所述 SGSN新 月良务网关的地址信息;  The mobility management entity notifies the SGSN that the service gateway changes, and notifies the address information of the SGSN new month service gateway;
所述 SGSN向所述新服务网关发起建立承载请求;  The SGSN initiates a bearer setup request to the new serving gateway;
所述新月良务网关向所述 SGSN返回建立 载响应。  The crescent service gateway returns a setup response to the SGSN.
2. 根据权利要求 1 所述的隧道的建立方法, 其特征在于, 所述建立承载请 求中携带有所述 SGSN的地址信息和用户面隧道 ID。 The method for establishing a tunnel according to claim 1, wherein the establishing a bearer request carries address information of the SGSN and a user plane tunnel ID.
3. 根据权利要求 1所述的隧道的建立方法, 其特征在于, 所述建立承载响 应中携带有所述新月良务网关分配的用户面隧道 ID。 The method for establishing a tunnel according to claim 1, wherein the establishing a bearer response carries a user plane tunnel ID allocated by the crescent service gateway.
4. 根据权利要求 1至 3中任一项所述的隧道的建立方法, 其特征在于, 所 述 SGSN 通过所述建立 栽请求来请求所述新 务网关建立用户面隧 道;在返回所述建立 载响应之前,所述新月艮务网关分配用户面隧道 ID。 The method for establishing a tunnel according to any one of claims 1 to 3, wherein the SGSN requests the new service gateway to establish a user plane tunnel by using the setup request; The credential gateway assigns a user plane tunnel ID before the response is loaded.
5. 根据权利要求 1所述的隧道的建立方法, 其特征在于, 所述移动管理实 体在空闲状态下的 3艮踪区更新过程中进行所述通知; 或者在连接状态下 的切换过程中进行所述通知。 The method for establishing a tunnel according to claim 1, wherein the mobility management entity performs the notification in a 3-tracking area update process in an idle state; or in a handover process in a connected state. The notification.
6. #居权利要求 5所述的隧道的建立方法, 其特征在于, 在用户从源移动 管理实体移动到目的移动管理实体的情况下, 由目的移动管理实体进行 所述通知, 或者由源移动管理实体将来自目的移动管理实体的所述通知 碑 发到所述 SGSN。 6. The method for establishing a tunnel according to claim 5, wherein the notification is performed by the destination mobility management entity or moved by the source when the user moves from the source mobility management entity to the destination mobility management entity. The management entity sends the notification monument from the destination mobility management entity to the SGSN.
7. 根据权利要求 6所述的隧道的建立方法, 其特征在于, 所述源移动管理 实体和所述 SGSN均支持 Signaling Free机制。 The method for establishing a tunnel according to claim 6, wherein the source mobility management entity and the SGSN both support a Signaling Free mechanism.
8. 根据权利要求 1 所述的隧道的建立方法, 其特征在于, 所述建立承栽请 求为更新 PDP上下文请求, 所述建立 载响应为更新 PDP上下文响应。 The method for establishing a tunnel according to claim 1, wherein the establishing a bearer request is an update PDP context request, and the setup load response is an update PDP context response.
PCT/CN2007/003848 2007-06-19 2007-12-27 Method for establishing tunnel from sgsn to serving gateway WO2008154783A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710127630.5 2007-06-19
CN2007101276305A CN101330425B (en) 2007-06-19 2007-06-19 Method for establishing tunnel from SGSN to service gateway

Publications (1)

Publication Number Publication Date
WO2008154783A1 true WO2008154783A1 (en) 2008-12-24

Family

ID=40155864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003848 WO2008154783A1 (en) 2007-06-19 2007-12-27 Method for establishing tunnel from sgsn to serving gateway

Country Status (2)

Country Link
CN (1) CN101330425B (en)
WO (1) WO2008154783A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511079B (en) 2007-11-01 2010-10-27 华为技术有限公司 Method and device for accessing original network through evolution network temporary mark
CN102821382B (en) 2008-06-18 2015-09-23 上海华为技术有限公司 A kind of device for accessing
CN101784033B (en) * 2009-01-15 2014-07-09 华为技术有限公司 Processing method, processing device and processing system for switching data forwarding
CN104105144B (en) * 2009-01-15 2017-11-17 华为技术有限公司 Switch data method for processing forwarding, device and system
CN101945429B (en) * 2009-07-08 2014-09-17 华为技术有限公司 Method, device and system for data routing of mobile network user interface
WO2011054145A1 (en) * 2009-11-05 2011-05-12 华为技术有限公司 Method, system and equipment for notifying internet protocol address
CN102740384A (en) * 2011-04-06 2012-10-17 中兴通讯股份有限公司 Tunnel information reporting method and system thereof
CN102892109B (en) 2011-07-21 2018-05-11 中兴通讯股份有限公司 A kind of method and system for realizing IP address property notification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633090A (en) * 2003-12-24 2005-06-29 华为技术有限公司 A method for redirecting packet data gateway in wireless LAN
WO2006010876A1 (en) * 2004-07-30 2006-02-02 Orange Sa Tunneling internet protocol packets between a gateway support node and a mobile terminal
EP1677569A1 (en) * 2005-01-04 2006-07-05 Avaya Technology Corp. In-band call association signaling for a single number destination
CN1852461A (en) * 2005-05-31 2006-10-25 华为技术有限公司 Method for realizing concurrent voice business after inter-local-network switchover
WO2007024116A1 (en) * 2005-08-26 2007-03-01 Electronics And Telecommunications Research Institute An apparatus and a method for service continuity between umts network and wlan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842049A (en) * 2005-03-30 2006-10-04 向为 Method for relocating universal packet wireless service gateway support note

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633090A (en) * 2003-12-24 2005-06-29 华为技术有限公司 A method for redirecting packet data gateway in wireless LAN
WO2006010876A1 (en) * 2004-07-30 2006-02-02 Orange Sa Tunneling internet protocol packets between a gateway support node and a mobile terminal
EP1677569A1 (en) * 2005-01-04 2006-07-05 Avaya Technology Corp. In-band call association signaling for a single number destination
CN1852461A (en) * 2005-05-31 2006-10-25 华为技术有限公司 Method for realizing concurrent voice business after inter-local-network switchover
WO2007024116A1 (en) * 2005-08-26 2007-03-01 Electronics And Telecommunications Research Institute An apparatus and a method for service continuity between umts network and wlan

Also Published As

Publication number Publication date
CN101330425B (en) 2011-03-02
CN101330425A (en) 2008-12-24

Similar Documents

Publication Publication Date Title
EP3884719B1 (en) Wireless device paging by a wireless network
EP2908566B1 (en) Method and system for realizing mobility management of evolved packet core network
US8855045B2 (en) Method and system for controlling establishment of local IP access
JP5021772B2 (en) How to prevent resources being accidentally released during the tracking area update or switchover process
EP2259657B1 (en) Method for indicating the bearer management of a serving gateway
US8190149B2 (en) Dynamic GGSN relocation in a GPRS network
WO2009006774A1 (en) Interior hangover method in a system
WO2009094916A1 (en) A control method, system, and device for circuit domain fallback
WO2009097772A1 (en) Control method, communication system and relative device for resource release
WO2013010415A1 (en) Method, system and sgw for realizing ip address attribute notification
WO2008151544A1 (en) Method, apparatus and system for establishing bearer connection
WO2008128452A1 (en) The method, system and cn node for load transferring in the pool area
WO2008154783A1 (en) Method for establishing tunnel from sgsn to serving gateway
WO2009000125A1 (en) Method for informing home subscriber server of storing packet data network gateway address information
WO2011098040A1 (en) 2g/3g network fallback method and correlative apparatuses and communication system
WO2010077190A1 (en) Emergency call support during roaming
WO2010111814A1 (en) Apparatus and method for moving wcdma mobile station in the manner of the least packet loss
WO2010031353A1 (en) A processing method, device and system of service request
WO2012122910A1 (en) Dual-channel communication method and system
WO2007109955A1 (en) A method for using ip address of the roaming user and a user terminal thereof
WO2012136098A1 (en) Method for mobility management and for context creation and channel establishment for terminal
WO2008014684A1 (en) Method for realizing the load balancing
WO2014005444A1 (en) Access method, system, mme, and ue for wireless local area network shunting
KR20220091555A (en) Connection processing method and communication equipment
WO2012024989A1 (en) Method and system for bearer release

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07855849

Country of ref document: EP

Kind code of ref document: A1