WO2008151317A1 - Bague de capteur multicapteur rotative modulaire - Google Patents

Bague de capteur multicapteur rotative modulaire Download PDF

Info

Publication number
WO2008151317A1
WO2008151317A1 PCT/US2008/066151 US2008066151W WO2008151317A1 WO 2008151317 A1 WO2008151317 A1 WO 2008151317A1 US 2008066151 W US2008066151 W US 2008066151W WO 2008151317 A1 WO2008151317 A1 WO 2008151317A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
platform
robot
ring platform
sensor ring
Prior art date
Application number
PCT/US2008/066151
Other languages
English (en)
Inventor
Wayland E. Tobey
Original Assignee
Tobey Wayland E
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobey Wayland E filed Critical Tobey Wayland E
Publication of WO2008151317A1 publication Critical patent/WO2008151317A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments

Definitions

  • This invention is related to sensor attachments for robots.
  • Moving sensor platforms include radar dishes, line scan cameras, cameras on a rotating base for "panning", and laser scanners.
  • moving platforms have also been used, containing such sensors as laser scanners, sonar sensors, infrared sensors, and cameras.
  • Cybermotion used a multi-sensor rotating sensor head in its SR-3 ESP robot models.
  • a human's head is a good example of a rotating sensor platform; we aim our head toward a sound we hear, for a closer look. Unfortunately, our neck has limited rotation capability.
  • Some sensors are expensive, use substantial amounts of power, use a long form factor or occupy a large volume. Many sensors cover only a narrow field of view (FOV) and some sensors require periodic, involved calibrations and maintenance. Large sensors may not fit some robot designs, but could if the sensor parts could be distributed or folded in size, such as with optical paths.
  • FOV field of view
  • a rotating sensor platform that can be scanned or aimed can also provide the ability to interact with the platform's environment. Additionally, “output" or reactive features can be incorporated, such as aiming a spot light, emitting a directed sound, mechanically moving an object or extending and operating a probe.
  • the Cybermotion SR- 3 with ESP features a spinning sensor package located at the very top of the robot
  • This rotating sensor package typically consists of four sensors, two passive IR sensors, one flame- detecting sensor and one microwave sensor
  • This rotating sensor platform has several limitations such as no video capability, a very limited number of small sensors, no onboard computer processing, and minor sensor signal conditioning with dedicated electronics
  • the sensor signals are presented to a slip ring device where a sub- processor computer on the mam chassis leads the data This is not a true data transfer, as data can be lost and no local storage of the sensor values is available
  • the chassis contains the fixed RPM sensor package drive motor, connected to a solid central axle shaft
  • the sensors are socketed, but require substantial disassembly to access the sensors
  • this design is not modular but is more integrated with the chassis, making repairs, calibrations and troubleshooting veiy involved
  • the Cybermotion scannei is capable of sensing withm its intended design limits, but it is limited m capacity, function and scanning ability
  • the solid axle design using a chassis mounted drive motor and remote major electronics limits its installation for piovidmg unobstructed sensor views to the very top of the robot
  • the fixed iotation rate and direction prohibits the ability to directionally scan or dwell m an area
  • This invention provides a sensor platform that reduces the total sensor cost and expands the sensing ability with no sensor obstructions m a modular design utilizing local processing and control of the sensor platform while featuring a large internal diameter to provide the chassis with maximum interior volume for the supporting structure as well as for the traversal past the sensor platform of wires, mechanisms and equipment.
  • the invention has several distinct and independent advantages over the known prior art, including the ability to direct a sensor's sensing direction, such as to scan and survey an area.
  • Modular construction provides for a simple connection to the chassis or framework as well as incorporating modular internal components.
  • the local on-board or embedded internal computing capacity can process sensor data as well as to manage the sensor platforms positional control.
  • a positionable sensor platform that can be built over a large diameter rotation axis. This provides a large diameter useful for the robots support structure, and locating other equipment and wires or pipes, etc.
  • a modular intelligent multi-sensor sensor platform was developed for mobile robots and other vehicles as well as applicable to sensor outposts or sentries.
  • the modular intelligent multi-sensor sensor platform provides a directional sensing ability utilizing a multitude of sensors in a cost effective package.
  • FIG. 1 is a perspective schematic view of a round robot with an exemplary embodiment of a sensor ring platform according to this invention
  • FIG. 2 s a top schematic view of the exemplary embodiment of the sensor ring platform of FIG. 1 and its components;
  • FIG. 3 s a perspective schematic view of the exemplary embodiment of the ring platform of FIG. 1 in the process of removal or installation;
  • FIG. 4 s a top schematic view showing a flexible version of the sensor platform of FIG. 1;
  • FIG. 5 s a schematic view of a first exemplary mode of operation showing the rotation of the exemplary embodiment of the sensor ring platform of FIG. l;
  • FIG. 6 s a schematic view of a second exemplary mode of operation showing a fixed position of the exemplary embodiment of the sensor ring platform of FIG. 1 ;
  • FIG. 7 s a schematic view of a third exemplary mode of operation showing a sector scan rotation of the exemplary embodiment of the sensor ring platform of FIG. 1 ;
  • FIG. 8 s a schematic view of a fourth exemplary mode of operation showing the rotation required to track an object by the exemplary embodiment of the sensor ring platform of FIG. 1 ;
  • FIG. 9 s a schematic view showing one possible sensor ring platform calibration aid feature;
  • FIG. 10 is a schematic view of the exemplary embodiment of the sensor ring platform of FIG. 1 mounted on a structural I-beam;
  • FIG. 11 is a schematic view of the exemplary embodiment of the sensor ring platform of FIG. 1 mounted below a typical industrial robotic arm.
  • FIG. 1 shows a cylindrical shaped robot with an exemplary embodiment of a sensor ring platform 100 according to this invention.
  • the sensor ring platform 100 is a hollow structure whose form is typically a ring, cylinder, donut, or hemisphere shape.
  • the form of the sensor ring is a flexible or segmented belt that rotates for use on a square or non- circular shape 100.
  • the platform rotates about a central support structure tube or shaft 20 (the rotation axis).
  • the sensor ring platform 100 is typically circular in shape, allowing the platform to scan or rotate in a confined space.
  • the sensor ring platform 100 contains sensors, computers and electronics with additional sensors installed as needed.
  • FIGS. 5-8 show various exemplary embodiments of different operation modes of the sensor ring platform. It should be appreciated that the different operation modes may be separately selectable or may work in conjunction with each other. As shown in FIG. 5-8, the rotational movements of the sensor ring platform are varied and can range from stationary, as shown in FIG. 6, to continuous 360+ degree rotations, as shown in FIG. 5, or even area scanned (sector scanned - back and forth) and directed movements as shown in FIG. 7. Some examples of the scanning modes of operation would be a fast circular scan, followed by a slow circular scan, with rescan sectoring on interesting areas. Step scans can dwell on a heading, such as move five degrees, stop, and scan, move five degrees, stop, scan and repeat.
  • the scanning can also be a random search pattern, as in the case of the robot looking for something, jumping from heading to heading (the view location).
  • the sensor ring platform scanning can also be sensor driven, such as by analyzing the sensor data and moving to the heading of an abnormal sensor reading for detailed measurements, such as detecting a loud noise, and rotating the sensor platform to imestigate
  • modularity features include the sensor ring platform module 100, which is capable of semi-operation as a self contained separate stand-alone unit
  • Internal platform modularity includes modular sub-components such as a rotation drive system 130, one or more sensors, the computer(s) or processor(s) 137, a power supply 134 and supporting electronics 139
  • the sensor ring platform 100 requires a simple mechanical mounting, and minimal powei and data communication connections
  • the stationary chassis can form elements of the support structure
  • the sensor ring platform 100 is connected to a chassis 20, suspended and centered by, for example, a bearing interface, idlei wheel a ⁇ angements, etc
  • the sensor ring platform 100 is driven by one or more motors (actuators) 130 that rotate the sensor ring platform 100 relative to the chassis oi support structuie 20 it is installed on
  • the placement of the rotation motor 130 can be either on the chassis 20 driving the sensor ring platform 100, oi m the preferred location withm the platform 100
  • the rotation motor 130 acts on a stationaiy reaction linkage 26, such as an external geai, belt, chain, friction path, pulley or other mechanical connections, including a direct drive motor or other device
  • the motions of the platform 100 can be controlled locally using the embedded computei(s) oi piocessor(s) 137 This location simplifies the wiring as well as allows local control of the drive for position control
  • the sensor ring platform 100 uses an encoder 28 or 136, which is also provided on the position motor
  • a cooling fan 131 may be needed to cool the electronics and the drive motor 130
  • the sensor ring platform 100 can be removed and replaced as needed, for example, when a large number of complex sensors are installed As shown m FIG 3, in various exemplary embodiments, the sensor ring platform 100 can be detached and reattached easily (such as by a quick disconnect) as a module from the intended mounting oi support structuie 20 of the sensor ring platform 100, which may be beneficial for maintenance, upgrades and/or calibiations [0040]
  • One method by which the sensor ring platform 100 can be removed from the central tube or support structure 20, is by splitting open the sensor ring platform 100 in sections, such as in half, with one edge 104 having a clear opening, and the other edge having a hinged arrangement 102.
  • the drive mechanism 130 should be located near the section break edges to provide ease of disassembly as well as ease in disconnecting or reconnecting the drive mechanism 130 coupling to the stationary drive portion 26. Once split, the sensor ring platform can be lifted out. This design does not require disassembly of the chassis or framework, as well as not requiring disconnecting any wires or cables.
  • the sensor ring platform 100 contains the major components of the sensors, and one or more on-board or embedded computer(s) or processor(s) 137.
  • the sensor ring platform 100 may contain a rotation drive system 130, an uninterruptable power supply (UPS) 134 or 133 and/or other known or later-developed power supply.
  • UPS uninterruptable power supply
  • Communication methods between the chassis 20 and the sensor ring platform 100 for data and commands can be of any type, such as wired, optical or radio wave connections.
  • the sensor ring platform 100 may provide a continuous 360 degrees of rotation.
  • a rotary coupler 24 and 135 is used for transmitting power and communication between the chassis or structure and the sensor ring platform 100.
  • Such rotary coupler forms include using the typical slip ring designs, as well as any known or later-developed mechanical, electrical, optical, magnetic, radio wave, etc. rotational devices.
  • this rotational coupler arrangement can be used to transfer other media within the robot, such as air samples for gas analysis, fire retardant, coolant, water, paint balls, etc.
  • a flexible cable harness can also be used for data or media transport.
  • the rotary coupler or slip rings consist of two sections, with the fixed section 24 located on the stationary chassis, and the rotary section 135 located on the sensor ring platform.
  • Rotation position data of the sensor ring platform is obtained by, for example, an electrical or optical encoder 28 and 136.
  • Such encoders can be used separately or in any combination of incremental and/or absolute encoders.
  • an absolute encoder is recommended for the sensor rmg platform measurements
  • the sensor ring platform 100 is capable of operating when dismounted from its support structure 20 If positioned, for example, on a work bench, and if sensor rmg platform movements were desired, a user may need to supply or duplicate the missing stationary components. If supplied with the matching stationary components, such as the rotational coupler section 24, the reaction gear or mechanism 26, the stationary encoder disk 28 and the suspension points for the rotation axis 106, the sensor ⁇ ng platform 100 could be operated and perform many of its normal functions If even simpler non-rotating testing were needed, the sensor rmg platform 100 may only require the power and data communications connections
  • the sensor rmg platform 100 collects, processes and arranges sensor data, m any directed heading Local onboard (i e , embedded withm the sensor rmg platform 100) computer(s) oi processoi(s) 137 will provide the data and control processing needs for the sensors, electronics, motion controllers, actuators and other features
  • the workloads of the sensor rmg platform 100 may necessitate additional embedded computers and/or processors to distribute the sensor data processing workloads and memory operations
  • the data can be communicated to the overall data/control system of the robot, vehicle or system
  • the local on-board embedded computer(s) or processor(s) 137 can react
  • the sensor readings are processed locally onboard the sensor rmg platform 100 and are assigned the heading and rotation speed of the sensor rmg platform 100 as well as an accurate time stamp.
  • This sensor data preprocessing and analysis can result m some sensor data events triggering a local sensor rmg platform response.
  • Such triggered responses can result m actions that allow the robot a "subconscious" type of response. This operation is much like diiving a cai with your eyes jumping to the cars rear view mirror when a siren is heard behind you, while watching the road ahead
  • the sensor data can be overlaid, combined or "fused", and any combination of raw or fused data can be used locally on the sensor ring platform 100 or transferred to an external location from the sensor ring platform 100
  • Sensor data can be collected using any method, such as polled, synchionous or asynchronous data tiansfer modes
  • the data is referenced to an accurate time, rotation position and rotation speed reference data stamps
  • the data can be stored m such locations as a data array m memory or in a database table
  • Sensoi data can also be "aligned", for example, as the sensoi ring platform 100 rotates, sensors and sensor readings will sequence past the heading mark (i e , the front or zero degree heading of the robot or vehicle), resulting m some sensor data readings that are delayed m time as the sensor ring platform 100 sweeps past that heading
  • a video camera 112 observes data at the heading or direction of interest, say ten degiees, followed m rotation for example, by a sonar sensoi 114
  • Each leading at the ten-degree point has a different time stamp Since the robot is not moving, theie is no need to correct for the iobofs velocity and position changes
  • the data can be synchronized simply by sorting by the position of the sensor img platform
  • each sensor's field of view (FOV) reading foi a given heading will occur at both a different time and location m space
  • the sensor data will need to be sorted and corrected or adjusted to take the robots motion into account
  • a time stamped data set logged from the robot's navigation system including, foi example, the robot's speed, the iate of chassis spin, and overall direction, may be used
  • An mertial measuiement unit 116 embedded m the sensoi ring platform 100 can also be used to provide data for this purpose
  • data is transferred to another computer or data storage medium located m the robot, vehicle or m an external location
  • data can include, foi example, selected sensor readings, a data snap shot or a windowed data segment
  • a windowed segment of data can also be transferred as a "frame” similar to a video "frame", as the sensor data structure would contain similar data consisting of overlaid video and sensor data
  • computer piocessmg and data transfer rates may, at least m part, determine how many windowed segments of data or "frames per second" are transferred
  • the sensor img platform 100 should have a minimum number of external sensors installed It is envisioned that the sensors are matched to the intended purpose and operational environment of the sensor ring platform 100 It should be appieciated that these variables may not apply to any internal sensors of the iobot or vehicle, such as the rotation position encodeis, the dnve motor encodei, component temperature sensors, as well as miscellaneous amperage, voltage, and othei embedded sensors In various exemplaiy embodiments, the maximum sensoi count installed is limited by such factors as, foi example, the sensor cost, the available mte ⁇ oi volume or physical space, the powei requirements, and/or an overall heat load of the sensor ring platform
  • Typical sensors used m robotics include, for example, tactile, ultrasonic sonar sensors, LIDAR, RADAR, and Video cameras
  • the sensor ring platform 100 can incorporate a multitude of sensor types such as, for example [0055] i. Audio sensors: such as microphones and sonar sensors 114,
  • Optical and video sensors such as UV, IR and visible light cameras 112 and sensors, LIDAR and other laser or optical systems,
  • Environmental sensors such as temperature, air pressure, air velocity, humidity, dew-point, solar flux, O 2 , CO 2 , Hydrogen (gas leak), Air-born dust and other particulate matter levels, combustion products, various odors, etc.,
  • Electromagnetic and electrostatic sensors such as for electrostatic fields, electromagnetic fields, magnetic field measurements and defined radio waves (such as for wireless network detection and mapping, RFID identification and tracking), and radar,
  • sensors such as radiation detectors, wet floor detection, fingerprint and body fluid detector, inertial measurements (accelerometers and gyroscopes), GPS, etc.,
  • Tactile sensors such as mechanical switches, direct pressure sensors, piezoelectric sensors and capacitance touch sensors.
  • External feelers 1 18 or whiskers, i.e., "fur" can also be implemented for close proximity tactile measurements as well as for measuring air currents.
  • the sensor ring platform 100 is not limited in what kinds of sensors can be mounted on it. As such, any desirable, known or later-developed sensor may be used with the sensor ring platform 100.
  • Sensor calibration and qualification can be enhanced and automated using the sensor ring platform 100. As shown in FIG. 9, when the robot is docked for such purposes as, for example, battery recharging, the sensor ring platform can be rotated to align with and connect to suitable calibration fixtures 210, 220 for each sensor's calibration needs.
  • the sensors can be presented to calibrate a first sensor by a first calibration fixture 210, with that sensor's readings taken, then the sensor ring platform 100 can rotate to calibrate a second sensor with a second calibration fixture 220, to obtain a second set of sensor readings, repeating if needed or to verify the calibrations.
  • the data collection and processing of the sensor ring platform 100 desirably uses reference data.
  • This reference data is used to synchronize sensor readings and to provide a sensor timeline.
  • the time reference data is obtained from a built-in accurate time source clock 138 where the computer time stamps each sensor reading The position and rotation speed values of the sensor ring platform 100 are also added to the sensor's reading.
  • This accurate time clock can be a separate module in the sensor ring platform, such as the time source clock 138, or combined with the embedded computer(s) or processor(s) 137 Using high resolution position sensors, such as an absolute encoder 28 and 136, can provide the position data In addition, an absolute encoder enables a faster startup as it can directly read the location of the sensor ring platform without going through a homing procedure.
  • the rotation speed of the sensor ring platform 100 is also used to evaluate sensor data quality and sensor data timing during the rotation of the sensor ring platform
  • the large internal diameter of the sensor ring platform 100 provides room inside the sensor ring platform 100 for large sensors, such as optical systems, which may be needed to obtain high quality images using such techniques as, for example, folded or distributed optics, that includes mirrors, lenses and beam splitters These optical splitters can provide a common bore-sighted or collimated image that is processed between split optical channels for such sensors as visible and IR thermal cameras
  • the large internal diameter of the sensor ring platform 100 allows the chassis or support structure 20 to have a large diameter 22. As shown m FIG. 10, this is useful, for example, for mounting the sensor ring platform 100 on an I-beam, as the I-beam can iemam unmodified with the sensor ring platform 100 fitting around the entire I-beam
  • the interior chassis 20 where the laige mtenor diameter of the sensor ring platform 100 provides the chassis 20 with a matching large extenor diameter 22 in the region of the sensor ring platform 100
  • This provides the chassis 20 with a stiffer structure, and room for other equipment or assemblies to be located m
  • this large interior volume allows the easy routing of wires, pipes and other mechanisms from the bottom to the top of the robot or vehicle
  • the dynamic balance of the sensor ring platform 100 can be enhanced by relocating heavy components such as the UPS batteries 133 to reduce any unbalanced wobbles or vibrations and unbalanced bearing loads.
  • the mertial measurement system 116 including accelerometers and gyroscopes, can measure these vibrations and the local onboard computer can adjust or limit the rotation speeds to minimize these vibrations.
  • the sensor ring platform 100 can use cushioned bearings 106 or fixtures to reduce the shocks, bumps and vibrations felt by the robot or vehicle and to provide for a quiet operation.
  • the sensor ring platform 100 contains an energy management system for its power consumption and energy reserves.
  • This energy management system may also contain a local battery-assisted uninterruptable power supply, or "UPS" 133 or 134 that is fed from a power source located on the chassis or structure.
  • Power is delivered to the sensor ring platform from the rotary coupler 24 and 135, and is routed through the power management controls 139, which include switchable power converters 134, power-monitoring circuits and the uninterruptable power supply (UPS) 133 or 134.
  • UPS uninterruptable power supply
  • the chassis power feeds the battery- assisted power supply, or UPS 133 or 134, and the UPS 133 or 134 supplies filtered power when the power source is not delivering sufficient power, or if the chassis power is noisy or out of tolerance.
  • UPS 133 or 134 serves as a sink for any sudden heavy current draws or voltage spikes, such as the high-speed reversal of the platform motor 130 or the toggling of an output device like a spotlight.
  • the UPS system 133 or 134 typically includes electronics 134 and energy storage devices 133 such as a set of batteries or capacitors or other energy storage devices.
  • overall robot energy management commands sent to the sensor ring platform 100 are given priority over internal platform commands. Such commands include to "power off, return to “full power”, go to “sleep”, or “awake”, and to “recharge”, the battery or “conserve energy”. Combinations can also be designated, such as naming a specific sensor or sensor group for energy management.
  • the thermal management of the sensor ring platform 100 may also control some sensors' energy use, such as turning off a hot sensor.
  • the sensor ring platform 100 can be commanded to go into a light sleep mode, with no platform rotations, reduced processor speeds and logging only triggered image and audio events found beyond a set threshold of levels, much like a reactive security camera system.
  • the power management system also receives chassis or robot E-Stop commands, as well as having one or more manual E-Stop buttons or switches 111.
  • the E-Stop event disconnects the UPS 134 or 133 and the chassis power inside the sensor ring platform 100 and can send out an E-Stop event message.
  • the sensor ring platform 100 uses an anti-static or ground brush 113 to keep any charges or stray voltages grounded. This helps insure a safe operation as well as cleaner sensor readings and possibly avoids bearing damage due to stray voltages.
  • the sensor ring platform 100 can also interact with its environment, such as with reactive or "Output Devices". If the sensor ring platform 100 is equipped with such devices, such as, for example, lights 120, speakers 124, information displays 122, small robot arms 126, mechanical mechanisms, material ejectors 128, etc. it can interact with its environment.
  • Such devices such as, for example, lights 120, speakers 124, information displays 122, small robot arms 126, mechanical mechanisms, material ejectors 128, etc. it can interact with its environment.
  • Displays can provide information, such as statistics, selected data readings and image displays to a user or person near the sensor ring platform 100.
  • An array of lights such as colored LEDs, can create rotating text displays, colored lights for alerts, warnings, status, illumination and the like.
  • a speaker 124 also allows the sensor ring platform 100 to emit a directed sound.
  • the sensor ring platform 100 will use mechanical sample acquisition, such as feelers, scrapers, brushes 118 and liquid or air samples. These devices can be incorporated into the sensor ring platform 100.
  • Other active devices can include a small robot arm 126 mounted on or inside the sensor ring platform 100. Such an arm 126 may be limited in features and capacity but the arm 126 could be used in such cases as sample collections or for object manipulation for sensor readings.
  • the sensor ring platform 100 can also house an output projector system 128, such as a fire retardant mister, water sprayer, a paint ball ejector, or other projectile launchers. With the ability to rotate for positional control, as well as sensor readings for determining the aiming, the projectile's path can be computed and released.
  • multiple sensor ring platforms 100 can be installed on a single robot chassis and can provide additional sensing capacity and coverage. The multiple sensor ring platforms 100 can communicate with each other to coordinate sensor monitoring and data readings as well as performing detailed target analysis.
  • FIG. 1 shows an example of multiple sensor ring platforms 100 installed in a stacked configuration.
  • one or more sensor ring platforms 100 may be positioned close together and/or back to back.
  • two or more sensor ring platforms 100 may be located at distant or different locations in the robot's or vehicle's chassis, such as located at the bottom and top of a robot or vehicle. These sensor ring platform installations and cooperation between multiple sensor ring platforms 100 may be needed to observe transient or moving phenomena, as well as to work together to navigate in tight locations.
  • the sensor ring platforms 100 are capable of isolated operation for use as in performing independent or divergent observations and tasks.
  • one or more sensor ring platform(s) 100 can cooperatively participate with other systems or subsystems such as for coordinating the robot's arms.
  • a first sensor ring platform 100 is used for robot navigation, such as for moving in a hallway, while a second sensor ring platform 100 is useful for observing and communicating to the robot's arms while performing a task.
  • the sensor ring platform 100 can rotate with a robot arm, or arms, as they move, such as when following a modular hybrid snake arm as it rotates around the co-axial body of the robot or vehicle while sharing sensor data between these subsystems.
  • a robot arm or arms, as they move, such as when following a modular hybrid snake arm as it rotates around the co-axial body of the robot or vehicle while sharing sensor data between these subsystems.
  • FIG. 11 another example is of the sensor ring platform 100 being directed to examine a set location if another subsystem requests it, such as the industrial robot arm requesting to see an object in order to pick it up.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

L'invention concerne une plate-forme de bague de capteur multicapteur rotative modulaire intelligente pour des utilisations telles que dans la robotique mobile qui permet à quelques capteurs de balayer la zone locale et l'environnement, offre une économie d'échelle et une économie d'énergie tout en réduisant les coûts liés à l'étalonnage et à la maintenance. La plate-forme de bague de capteur a un grand diamètre interne permettant une aire maximale pour les éléments structurels de châssis de même que pour d'autres équipements situés sur le châssis. Un traitement de signal de capteur local est combiné avec le temps, la vitesse de rotation et les estampilles de données de position pour permettre d'utiliser localement les données traitées et de les transférer à d'autres systèmes ou sous-systèmes ou à des fins de consignation de données.
PCT/US2008/066151 2007-06-06 2008-06-06 Bague de capteur multicapteur rotative modulaire WO2008151317A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US94235107P 2007-06-06 2007-06-06
US60/942,351 2007-06-06

Publications (1)

Publication Number Publication Date
WO2008151317A1 true WO2008151317A1 (fr) 2008-12-11

Family

ID=40094210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/066151 WO2008151317A1 (fr) 2007-06-06 2008-06-06 Bague de capteur multicapteur rotative modulaire

Country Status (1)

Country Link
WO (1) WO2008151317A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763099A (zh) * 2008-12-23 2010-06-30 库卡机器人有限公司 联网工业控制系统及用于改变这种工业控制系统操作模式的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823618A (en) * 1986-09-17 1989-04-25 Jr3, Inc. Force-moment sensors
US5241875A (en) * 1990-09-24 1993-09-07 Uwe Kochanneck Multiblock-robot
US5467003A (en) * 1993-05-12 1995-11-14 Fanuc Ltd. Control method and control apparatus for a robot with sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823618A (en) * 1986-09-17 1989-04-25 Jr3, Inc. Force-moment sensors
US5241875A (en) * 1990-09-24 1993-09-07 Uwe Kochanneck Multiblock-robot
US5467003A (en) * 1993-05-12 1995-11-14 Fanuc Ltd. Control method and control apparatus for a robot with sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763099A (zh) * 2008-12-23 2010-06-30 库卡机器人有限公司 联网工业控制系统及用于改变这种工业控制系统操作模式的方法
US8768506B2 (en) 2008-12-23 2014-07-01 Kuka Roboter Gmbh Networked industrial control and method for changing of an operating mode of such an industrial control
CN105759765A (zh) * 2008-12-23 2016-07-13 库卡机器人有限公司 联网工业控制系统及用于改变这种工业控制系统操作模式的方法

Similar Documents

Publication Publication Date Title
US8364312B2 (en) Modular rotary multi-sensor sensor ring
US20230305157A1 (en) Laser scanner
JP6637068B2 (ja) モジュール式lidarシステム
US10837756B2 (en) Multi-dimensional measuring system with measuring instrument having 360° angular working range
EP2298507B1 (fr) Plateforme robotique autonome
Liu et al. Low-cost retina-like robotic lidars based on incommensurable scanning
US20190079522A1 (en) Unmanned aerial vehicle having a projector and being tracked by a laser tracker
Yagi Omnidirectional sensing and its applications
US7129901B2 (en) Electromagnetic gravity drive for rolling axle array system
US5757499A (en) Method of locating the spatial position of a frame of reference and apparatus for implementing the method
CN109444773B (zh) 一种固连外部磁体和磁传感器阵列的磁源检测装置
US11633848B2 (en) Independent pan of coaxial robotic arm and perception housing
US8180187B2 (en) Systems and methods for gimbal mounted optical communication device
EP3865968B1 (fr) Systèmes pour déterminer l'emplacement utilisant des robots comportant des capteurs déformables
CN107765681A (zh) 一种巡检机器人及巡检系统
WO2008151317A1 (fr) Bague de capteur multicapteur rotative modulaire
JP2023179623A (ja) 移動体、巡回点検システム及び巡回点検方法
US10655946B2 (en) Automated rotation mechanism for spherically mounted retroreflector
US20030193444A1 (en) Gravity drive for a rolling radar array
US6912341B2 (en) Optical fiber link
CN208013100U (zh) 一种用于堵塞压力流体管件内部定位测量的装置
CN112829850A (zh) 机器人驱动装置和检测机器人
US20030193443A1 (en) Angle sensing system for a rolling radar array
CN108321983B (zh) 一种轻小型云台框架力矩电机与光电码盘组合式连接装置
Yagi et al. The integration of an environmental map observed by multiple mobile robots with omnidirectional image sensor COPIS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08795887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08795887

Country of ref document: EP

Kind code of ref document: A1