WO2008148926A2 - Method for diagnosing immune system diseases and compounds that can be used to treat said diseases - Google Patents

Method for diagnosing immune system diseases and compounds that can be used to treat said diseases Download PDF

Info

Publication number
WO2008148926A2
WO2008148926A2 PCT/ES2008/070111 ES2008070111W WO2008148926A2 WO 2008148926 A2 WO2008148926 A2 WO 2008148926A2 ES 2008070111 W ES2008070111 W ES 2008070111W WO 2008148926 A2 WO2008148926 A2 WO 2008148926A2
Authority
WO
WIPO (PCT)
Prior art keywords
dgkα
protein
sequence
phosphorylated
seq
Prior art date
Application number
PCT/ES2008/070111
Other languages
Spanish (es)
French (fr)
Other versions
WO2008148926A3 (en
Inventor
Isabel Merida San Roman
Ernesto Merino Plaza
Naokai Saito
Yasuhito Shiriai
Tomoko Kakehi
Takehiro Matsubara
Juana Antonia Avila Flores
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Autónoma de Madrid filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2008148926A2 publication Critical patent/WO2008148926A2/en
Publication of WO2008148926A3 publication Critical patent/WO2008148926A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/564Immunoassay; Biospecific binding assay; Materials therefor for pre-existing immune complex or autoimmune disease, i.e. systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, rheumatoid factors or complement components C1-C9
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/24Immunology or allergic disorders

Definitions

  • the present invention is framed in the field of biomedicine, and more specifically in the application of biotechnological tools for the diagnosis and treatment of human diseases, and more specifically of diseases with impaired immune response.
  • T lymphocytes In response to the stimulation of the T cell receptor (TCR), a series of ordered events occur that lead to the development of the immune response (Berridge 1997). Within these events, the tyrosine kinases play a fundamental role, among which p56lck stands out as the axis of all the triggered response.
  • the p56lck protein is a tyrosine kinase of the Src family that is recruited to the TCR after receptor stimulation. In this complex, p56lck phosphorylates the LAT and SPL76 adapter molecules providing anchor sites for other proteins such as PLC ⁇ and ZAP 70.
  • the PLC ⁇ protein hydrolyzes phosphatidyl inositol (4,5) bi-phosphate (PI (4,5) P2) and generates two important messengers: Inositol tri-phosphate (IP3), which causes the Ca 2+ exit from the endoplasmic reticulum resulting in the activation of the NFAT transcription factor, and diacylglycerol (DAG), the second lipid messenger involved in the activation of The PKC / Ras / MAPK route, and which results in the activation of the transcription factors AP-1 and NFKB.
  • IP3 Inositol tri-phosphate
  • DAG diacylglycerol
  • the action of the NFAT-AP1 complex together with NFKB allows the expression of genes necessary for a correct immune response to occur.
  • NFAT activation of NFAT in the absence of activation of AP-1 results in Ia differential regulation of a series of genes that cause a state of non-response called anergy in cells (Macian, Garcia-Cozar et al. 2002).
  • the maintenance of the immunological tolerance of effector T cells in the periphery is mediated by the induction of anergy in those T cells that are capable of recognizing their own antigens, that is, the antigens generated from proteins from the body itself, avoiding with it auto-immune processes.
  • DAG DAG metabolism
  • PLC ⁇ Heissmeyer, Macian et al. 2004
  • DGK ⁇ Macian, Garcia-Cozar et al. 2002
  • This increase in DGK ⁇ causes a decrease in the location of RasGRP and with this the activation of the Ras / Raf / Erk1-2 route (Zha, Marks et al. 2006) is diminished.
  • DGKs Diacylglycerolinases
  • PA phosphatidic acid
  • the family of mammalian DGKs is composed of ten isoforms classified in turn into five subgroups according to their domains of regulation and tissue / cellular expression (Sakane and Kanoh 1997; Topham and Prescott 1999; van Blitterswijk and Houssa 2000; Imai, Kai et al. 2005). All DGKs share a highly conserved catalytic domain, within which the GGDG amino acid sequence stands out.
  • the C1 B domain has an extension of fifteen amino acids that has served to postulate that its function is to present the DAG to the catalytic domain (van Blitterswijk and Houssa 1999), although other works show that these domains are dispensable for the activity of the DGK (Abe, Lu et al. 2003).
  • the DGK ⁇ belongs to the DGKs of type I (DGK ⁇ , ⁇ and ⁇ ) that are characterized by having two domains of union to Ca 2+ (EF-hands) that allow them to respond to the increase of Ca 2+ , being the affinity for the Ca 2+ dependent on the isoform (Yamada, Sakane et al. 1997).
  • the DGK ⁇ exerts different functions during the immune response triggered in the T cells, on the one hand, it acts as a negative regulator of the activation mediated by the TCR of the RasGRP / PKC ⁇ route (Sanjuan, Jones et al. 2001; Sanjuan, Pradet-Balade et al.
  • Tyrosine kinases play a fundamental role in the activation of DGK ⁇ , not only through the activation of TCR in the immune system, but also outside it, since it has been associated with the response to liver growth factor ( HGF) (Cutrupi, Baldanzi et al. 2000) and ⁇ -D-tocopherol (Fukunaga-Takenaka, Shirai et al. 2005), as well as tyrosine activity NPM-ALK protein kinase in certain tumors (Bacchiocchi, Baldanzi et al. 2005). All this suggests that this mediation may be common and necessary in response to different receptors.
  • HGF liver growth factor
  • the activation of the DGK ⁇ in these systems shows the importance of the family of tyrosine kinases Src in the activation and function of the DGK ⁇ , and points to the tyrosine 335 as an important amino acid for the mobilization of the DGK ⁇ from the cytosol to the membrane although no direct evidence of its action is shown or that this translocation is due solely to the action of the DGK ⁇ , being also the stimulus other than the activation through TCR (Fukunaga-Takenaka, Shirai et al. 2005 ).
  • This tyrosine 335 is in a very conserved region within the DGK ⁇ of all known species, but not DGK ⁇ or DGK ⁇ , which suggests some functional specificity of the tyrosine 335.
  • the DGKD is not the only isoform present in T lymphocytes.
  • DGKD which is ubiquitously expressed in numerous tissues, is expressed in T and B lymphocytes.
  • DGKD is a type IV DGK that was originally characterized as a nuclear protein (Goto et al. 1996) and which presents unique structural characteristics.
  • this protein In addition to the catalytic domain and the two atypical C1 domains, common to all DGKs, this protein has a MARKS type domain close to its nuclear localization domain. The regulation by phosphorylation of this domain in the DGKD regulates its nuclear location, which in turn is fundamental in the control of cell proliferation (Topham M, 1998).
  • mice deficient in this isoform has confirmed its function as a negative modulator of the immune response (Zhong, 2003).
  • T lymphocytes of DGK ⁇ -deficient mice showed a hyper-response to stimulation and a much more robust immune response against virus infection or against tumors.
  • the phenotype analysis of mice deficient for DGK ⁇ and ⁇ suggests Ia importance of both isoforms in the control of the immune response (Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, Zhong XP. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol.
  • An object of the present invention constitutes a diagnostic and prognostic procedure of a disease that is stimulated by the immune system, hereinafter diagnostic procedure of the invention, based on the in vitro determination of the level of phosphorylation of DGK ⁇ in the residue.
  • diagnostic procedure of the invention based on the in vitro determination of the level of phosphorylation of DGK ⁇ in the residue.
  • tyrosine Y335 in cells of the immune system in a biological sample and comprising the following steps: a) identification or determination of the level of phosphorylation of the DGK ⁇ protein in the tyrosine residue Y335, in a biological sample of immune origin, and b) comparison of said determination observed in a) with a control sample, and where its increased presence is indicative of the existence of a disease that occurs with stimulation of the immune system.
  • Another object of the invention constitutes an antibody, either monoclonal or polyclonal, hereinafter antibody of the invention, specific to the phosphorylated DGK ⁇ protein in the tyrosine residue Y335, preferably a peptide specific polyclonal antibody of SEQ ID NO3, as the antibody anti pY335 (anti-pTyr335DGK ⁇ ).
  • Another object of the invention constitutes a phosphorylated DGK ⁇ protein, hereinafter phosphorylated protein of the invention, which contains the phosphorylated 355 tyrosine residue or the like, or a fragment or peptide thereof comprising said phosphorylated 355 tyrosine.
  • Another particular object of the invention constitutes a phosphorylated DGK ⁇ protein of a mammal belonging, illustrative title and without limiting the scope of the invention, to the following group: mouse, pig, rat and human being, preferably of human origin, and more preferably , The human protein DGK ⁇ phosphorylated in tyrosine 355 of SEQ ID NO2.
  • Another object of the present invention constitutes a compound or agent that inhibits the activity of the phosphorylated DGK ⁇ protein, hereinafter, an inhibitor compound of the present invention, useful for the preparation of a medicament or pharmaceutical composition for the treatment of a process that involves stimulation of immune system cells.
  • Another particular object of the invention constitutes an inhibitor compound of the DGK ⁇ protein in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human DGK ⁇ protein (SEQ ID NO1) and that includes a nucleotide sequence selected from: a) a specific antisense nucleotide sequence specific to the sequence of the gene or mRNA of the DGK ⁇ protein, b) a ribozyme specific to the mRNA of the DGK ⁇ protein, c) a specific aptamer of the mRNA of the DGK ⁇ protein , d) an interference RNA (siRNA or shRNA) specific to the mRNA of the DGK ⁇ protein, and e) a microRNA (miRNA) specific to the mRNA of the DGK ⁇ protein.
  • the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human
  • Another object of the present invention constitutes a pharmaceutical composition or a medicament useful for the treatment of diseases that occur with stimulation of the immune system, hereinafter pharmaceutical composition of the present invention, which comprises a therapeutically effective amount of a compound or agent that inhibits The protein DGK ⁇ , together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • Another object of the present invention constitutes the use of the pharmaceutical composition of the invention in a method of treating a mammal, preferably a human being, affected by a disease that stimulates the immune system, henceforth using the pharmaceutical composition. of the present invention, consisting of the administration of said therapeutic composition that inhibits the stimulation of the immune system.
  • the present invention is based on the fact that the inventors have demonstrated that the activation of T cells, carried out by means of TCR stimulation, induces the phosphorylation of DGK ⁇ in tyrosine 335 (Y335) by a mechanism that depends on the p56Lck tyrosine kinase.
  • This Y335 residue is preserved in other DGK ⁇ orthologs such as mouse, pig and rat and in the present invention its phosphorylation has been examined using a specific antibody.
  • the use of a non-phosphorylable mutant revealed that this tyrosine is essential for the location of the DGK ⁇ in the plasma membrane of the lymphocyte after immune stimulation.
  • an object of the present invention constitutes a diagnostic and prognostic procedure of a disease that is stimulated by immune system stimulation, hereinafter diagnostic procedure of the invention, based on the in vitro determination of the phosphorylation level of Ia DGK ⁇ in the tyrosine residue Y335 in cells of the immune system, in a biological sample and comprising the following steps: a) identification or determination of the level of phosphorylation of the DGK ⁇ protein in the tyrosine residue Y335, in a biological sample of immune origin, and b) comparison of said determination observed in a) with a control sample, and where its increased presence is indicative of the existence of a disease that occurs with stimulation of the immune system.
  • the term "diseases that occur with stimulation of the immune system” refers to a disease in which the stimulation and proliferation of cells of the immune system, preferably T lymphocytes, and belonging, by way of illustration, occurs. and without limiting the scope of the invention, to the following group: autoimmune, allergic, inflammatory diseases, lymphoproliferative disorders such as leukemias and Hodking and non-Hodking lymphomas.
  • This identification of the level of phosphorylation of the DGK ⁇ protein in the Y335 tyrosine residue in a biological sample of a human subject can be extracted therefrom and subsequently ex vivo, the presence or absence of said phosphorylation, which would correlate with the diagnosis of an immune alteration in said subject, which would allow the definition and execution of a therapeutic or diagnostic and / or prognostic approach.
  • T lymphocytes which may or may not be purified prior to analysis. Said purification can be easily carried out by an expert in the field.
  • a particular object of the invention constitutes the diagnostic method of the invention where the determination is made with a phosphorylated tyrosine specific antibody (pY335) of the DGK ⁇ protein, more preferably, a polyclonal antibody, and more preferably, with an antibody Polyclonal synthesis of the synthetic peptide of SEQ ID NO3, such as the anti pY335 antibody (anti-pTyr335DGK ⁇ ) developed in the present invention (see Example 2).
  • pY335 phosphorylated tyrosine specific antibody
  • SEQ ID NO335 antibody anti-pTyr335DGK ⁇
  • Another object of the invention constitutes an antibody, either monoclonal or polyclonal, hereinafter antibody of the invention, specific to the phosphorylated DGK ⁇ protein in the tyrosine residue Y335, preferably a peptide specific polyclonal antibody of SEQ ID NO3, as the antibody anti pY335 developed in the present invention (anti-pTyr335DGK ⁇ ).
  • the antibody of the invention can be used, in addition to the previous use as a diagnostic tool, in other biotechnological methods of identifying the phosphorylated DGK ⁇ protein belonging, by way of illustration and without limiting the scope of the invention, to the following group: i) identification procedure of compounds that alter, activators or inhibitors, the kinase activity of the DGK ⁇ protein, ii) identification procedure of compounds that alter, activators or inhibitors, the phosphorylation of the DGK ⁇ protein, and iii) method of making a composition Therapeutic treatment for the treatment of diseases that occur with an increase in the immune response.
  • this phosphorylated DGK ⁇ protein or a fragment thereof comprising this phosphorylated residue tyrosine Y335, either of synthetic origin or isolated from eukaryotes, can be used in different fields as a biotechnological tool with biomedical applications.
  • another object of the invention constitutes a phosphorylated DGK ⁇ protein, hereinafter phosphorylated protein of the invention, which contains the phosphorylated 355 tyrosine residue or the like, or a fragment or peptide thereof comprising said phosphorylated 355 tyrosine.
  • Another particular object of the invention constitutes a phosphorylated DGK ⁇ protein of a mammal belonging, illustrative title and without limiting the scope of the invention, to the following group: mouse, pig, rat and human being, preferably of human origin, and more preferably , The human protein DGK ⁇ phosphorylated in tyrosine 355 of SEQ ID NO2.
  • phosphorylated DGK ⁇ protein in tyrosine residue 355" also refers to a protein, of different animal origin, preferably human, as well as any amino acid sequence (aás.) Analogous to the protein of SEQ ID NO2.
  • analog is intended to include any amino acid sequence that can be isolated or constructed based on the amino acid sequences shown herein, for example, by the introduction of conservative or non-conservative amino acid substitutions, including the insertion of one or more amino acids, the addition of one or more amino acids at any of the ends of the molecule or the deletion of one or more amino acids at any end or inside the sequence, and that constitutes a peptide sequence with activity similar to the sequence SEQ ID NO2 of the invention.
  • an analogous amino acid sequence is substantially homologous to the amino acid sequence discussed above.
  • the expression "substantially homologous” means that the amino acid sequences in question have a degree of identity of at least 40%, preferably of at least 85%, or more preferably of At least 95%.
  • Another particular embodiment of the invention constitutes the phosphorylated DGK ⁇ protein of the invention that is constituted by a peptide or fragment, for example synthetic or isolated, of the DGK ⁇ comprising the phosphorylated amino acid Y335, for example a fragment corresponding to the sequence of the Ia human protein DGK ⁇ P329-A339, NH 2 - CPPSS (phosphoY) PSVLA-COOH (SEQ ID NO3), which contains a phosphorylated tyrosine in a position similar to the tyrosine 335 of the human DGK ⁇ protein.
  • SEQ ID NO3 phosphorylated tyrosine
  • Another object of the invention constitutes the use of phosphorylated DGK ⁇ protein in the tyrosine residue 355 of the invention in a biotechnological process belonging, by way of illustration and without limiting the scope of the invention, to the following group: i) preparation procedure of monoclonal antibodies and / or polyclonal and / or recombinant anti-phosphorylated DGK ⁇ , ii) identification procedure for compounds that alter their phosphorylation, iii) identification procedure for activating or inhibiting compounds of the kinase activity of the DGK ⁇ protein itself.
  • Another particular embodiment of the invention constitutes the use of a fragment or peptide, synthetic or isolated, of the DGK ⁇ protein of SEQ ID NO2 containing said phosphorylated tyrosine 355, preferably, the synthetic peptide corresponding to the sequence of DGK ⁇ P329-A339, NH 2 - CPPSS (phosphoY) PSVLA-COOH of SEQ ID NO3 for the preparation of monoclonal and / or polyclonal and / or recombinant anti-DGK ⁇ protein antibodies.
  • These peptides can be isolated or synthesized and subsequently used by a person skilled in the art to produce a specific antibody against a phosphorylated DGK ⁇ form, preferably human.
  • Another object of the present invention constitutes a compound or agent that inhibits the activity of the phosphorylated DGK ⁇ protein, hereinafter, an inhibitor compound of the present invention, useful for the preparation of a medicament or pharmaceutical composition for the treatment of a process that involves stimulation of immune system cells.
  • an inhibitor compound of the present invention useful for the preparation of a medicament or pharmaceutical composition for the treatment of a process that involves stimulation of immune system cells.
  • the term "compound or inhibitor or antagonist agent” refers to a molecule that when bound or interacts with the phosphorylated DGK ⁇ protein (for example, SEQ ID NO2), or with functional fragments thereof , decreases or eliminates the intensity or duration of the biological activity of said protein.
  • This definition also includes those compounds that prevent or decrease the expression of the gene coding for the DGK ⁇ protein (for example, SEQ ID NO1), that is, that prevent or diminish the transcription of the gene, the maturation of the mRNA, the translation of the MRNA and post-translational modification.
  • An inhibitory agent may consist of a peptide, a protein, a nucleic acid or polynucleotide, a carbohydrate, an antibody, a chemical compound or any other type of molecule that diminishes or eliminates the effect and / or the function of the DGK ⁇ protein.
  • said polynucleotide can be a polynucleotide that encodes a specific antisense nucleotide sequence of the gene or mRNA sequence of the DGK ⁇ protein, or a polynucleotide encoding a specific ribozyme of the mRNA of the DGK ⁇ protein, or a polynucleotide encoding a specific mRNA aptamer of the DGK ⁇ protein, either polynucleotide encoding an interference RNA ("small interference RNA" or siRNA or a shRNA) specific to the mRNA of the DGK ⁇ protein or a microRNA (miRNA).
  • interference RNA small interference RNA
  • siRNA siRNA
  • shRNA microRNA
  • polynucleotides mentioned can be used in a process of gene therapy in which by any technique or procedure the integration of them into the cells of a human patient is allowed.
  • This objective can be achieved by administering to these cells of the immune system, in vivo or ex vivo, of a gene construct comprising one of the aforementioned polynucleotides in order to transform said cells allowing their expression inside them so that the expression of the DGK ⁇ protein is inhibited.
  • said gene construct may be included within a vector, such as, for example, an expression vector or a transfer vector.
  • vector refers to systems used in the process of transferring an exogenous gene or an exogenous gene construct into a cell, thus allowing the vehicle to generate genes and gene constructs.
  • exogenous Said vectors can be non-viral vectors or viral vectors (Pfeifer and Verma, 2001) and their administration can be prepared by an expert in the field according to the needs and specificities of each case.
  • another particular object of the invention constitutes an inhibitor compound of the DGK ⁇ protein in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the coding gene (SEQ ID NO1) of the human DGK ⁇ protein and that includes, at least, a nucleotide sequence selected from: a) a specific antisense nucleotide sequence of the sequence of the gene or mRNA of the DGK ⁇ protein, b) a ribozyme specific to the mRNA of the DGK ⁇ protein, c) a specific aptamer of the mRNA of the DGK ⁇ protein, d) an interfering RNA (siRNA or shRNA) specific to the mRNA of Ia DGK ⁇ protein, and e) a microRNA (miRNA) specific to the DGK ⁇ protein mRNA.
  • the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the coding gene (
  • these gene inhibition techniques and more specifically the vehiculization of the compounds - antisense oligonucleotides, iRNA, ribozymes or aptamers - can be carried out through the use of liposomes, nanoparticles or other vehicles that increase the success of said transfer to inside the cell, preferably to the cell nucleus (Lu and Woodle, 2005; Hawker and Wooley, 2005).
  • inhibitors of DGK ⁇ mRNA translation can be used that bind both their coding and non-coding regions, for example against the 3 'non-coding zone.
  • a particular embodiment of the invention constitutes a siRNA of d) in which the RNAi preferentially binds to the fragment sequence of the DGK ⁇ mRNA AAGCCAGAAGACCATGGATGA (SEQ ID NO4) or to another sequence comprising this or a shorter fragment of The same.
  • RNAi of d constitutes an RNAi of d) in which the siRNA is constituted by a double stranded DNA oligonucleotide comprising an interference sequence, for example, the sequence SEQ ID NO4 and a sequence complementary to it (for example, TCATCCATGGTCTTCTGGC (SEQ ID NO5) for the case of SEQ ID NO4) ( Figure 10), originating a pair of sense and antisense nucleotide sequences, respectively (for the previous case, SEQ ID NO6 and 7, respectively).
  • these double-stranded RNAi sequences comprise other sequences for their activity (by way of illustration, adapter, fork or polydimine sequences, see example 5).
  • nucleotide sequences a) -e) mentioned above prevent the expression of the gene in mRNA or mRNA in the DGK ⁇ protein, and, thus, cancel its biological function, and can be developed by an expert in the genetic engineering sector in role of existing knowledge in the state of the art on transgenesis and cancellation of gene expression (Clarke, 2002; US20020128220; Miyake et al., 2000; Puerta-Ferández et al., 2003; Kikuchi et al., 2003; Reynolds and cois., 2004).
  • Another object of the present invention constitutes a pharmaceutical composition or a medicament useful for the treatment of diseases that occur with stimulation of the immune system, hereinafter pharmaceutical composition of the present invention, which comprises a therapeutically effective amount of a compound or agent that inhibits The DGK ⁇ protein, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
  • Another particular object of the present invention constitutes a pharmaceutical composition in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human DGK ⁇ protein (SEQ ID NO1) and that includes, at least, a nucleotide sequence selected from: a) a specific antisense nucleotide sequence specific to the sequence of the gene or mRNA of the DGK ⁇ protein, b) a ribozyme specific to the mRNA of the DGK ⁇ protein, c) a specific mRNA aptamer of the protein DGK ⁇ , d) an interference RNA (iRNA) specific to the mRNA of the DGK ⁇ protein, and e) a microRNA (miRNA) specific to the mRNA of the DGK ⁇ protein.
  • a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human DGK ⁇ protein (SEQ ID NO1) and that
  • Another particular embodiment of the invention constitutes the pharmaceutical composition of the invention in which the DGK ⁇ inhibitor compound is a siRNA that preferentially binds to the DGK ⁇ mRNA fragment sequence AAGCCAGAAGACCATGGATGA (SEQ ID NO4) or another sequence comprising it. or to a shorter fragment thereof (see Example 5).
  • the DGK ⁇ inhibitor compound is a siRNA that preferentially binds to the DGK ⁇ mRNA fragment sequence AAGCCAGAAGACCATGGATGA (SEQ ID NO4) or another sequence comprising it. or to a shorter fragment thereof (see Example 5).
  • RNAi constituted by a double stranded DNA oligonucleotide comprising an interference sequence, for example, the sequence SEQ ID NO4 and a complementary sequence to it (for example, TCATCCATGGTCTTCTGGC (SEQ ID NO5) for the case of SEQ ID NO4) ( Figure 10), originating a pair of sense and antisense nucleotide sequences, respectively (for the previous case, SEQ ID NO6 and 7, respectively).
  • these double-stranded RNAi sequences comprise other sequences necessary for their activity (by way of illustration, adapter, fork or polydimine sequences, see example 5) and can be prepared by one skilled in the art.
  • Another particular object of the present invention constitutes a pharmaceutical composition in which the inhibitor compound is an antibody, either monoclonal or polyclonal, specific for the phosphorylated DGK ⁇ protein in the Y335 tyrosine residue, or of a peptide or fragment containing it, preferably a polyclonal antibody specific to the peptide or sequence fragment SEQ ID NO3, more preferably the anti-pTyr335DGK ⁇ antibody developed in the invention.
  • the inhibitor compound is an antibody, either monoclonal or polyclonal, specific for the phosphorylated DGK ⁇ protein in the Y335 tyrosine residue, or of a peptide or fragment containing it, preferably a polyclonal antibody specific to the peptide or sequence fragment SEQ ID NO3, more preferably the anti-pTyr335DGK ⁇ antibody developed in the invention.
  • compositions are the adjuvants and vehicles known to those skilled in the art and commonly used in the elaboration of therapeutic compositions.
  • therapeutically effective amount refers to the amount of the agent or compound inhibitor of the activity of the DGK ⁇ protein, calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of the compounds, including the age, condition of the patient, the severity of the alteration or disorder , and of the route and frequency of administration.
  • said therapeutic composition is prepared in the form of a solid form or aqueous suspension, in a pharmaceutically acceptable diluent.
  • the therapeutic composition provided by this invention can be administered by any appropriate route of administration, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen.
  • the administration of the therapeutic composition provided by this invention is carried out parenterally, orally, intraperitoneally, subcutaneously, etc.
  • Another object of the present invention constitutes the use of the pharmaceutical composition of the invention in a method of treating a mammal, preferably a human being, affected by a disease that stimulates the immune system, henceforth using the pharmaceutical composition. of the present invention, consisting of the administration of said therapeutic composition that inhibits the stimulation of the immune system.
  • Another particular object of the invention constitutes the use of the pharmaceutical composition of the invention in which disease that occurs with stimulation of the immune system belongs, by way of illustration and without limiting the scope of the invention, to the following group: autoimmune diseases, allergic, inflammatory, lymphoproliferative disorders such as leukemia and Hodking and non-Hodking lymphomas. DESCRIPTION OF THE FIGURES
  • FIG. 1 DGK ⁇ is phosphorylated in tyrosine in response to TCR stimulation.
  • A) Jurkat cells were stimulated during the indicated times with an anti-CD3 antibody. The cells were used and the proteins were immunoprecipitated using an anti-phosphotyrosine (anti-PY) antibody and the membrane was revealed with an anti-DGK ⁇ antibody.
  • FIG. 1 A) Sequence comparison in Type I DGKs. A green sequence indicates a Pro-rich sequence conserved in all members of the DGK family. The Y335 preserved in the different DGK ⁇ orthologs is indicated by an arrow. B) p56LcK phosphorylate DGK ⁇ in Ia Y335. Jurkat cells were transfected with plasmids encoding wild GFP-DGK ⁇ (wt) and mutated GFP-DGK ⁇ Y335F together with an empty plasmid or a plasmid encoding p56Lck (505). At 24 hours, the cells were used and the GFP-DGK ⁇ was immunoprecipitated using anti-GFP antibodies. Proteins were analyzed by SDS-PAGE and immunoblot. Phosphorylation of DGK ⁇ was determined with anti-pY monoclonal antibodies, and the level of expression with anti-DGK ⁇ .
  • Figure 3. The phosphorylation of DGK ⁇ in Y335 is essential for its translocation to the plasma membrane.
  • Jurkat cells were transfected with wild DGK ⁇ (wt) or the Y335F mutant fused to GFP. 24 hours after the transfection, the cells were plated on plates coated with antiCD3 / antiCD28 antibodies and the subcellular location of the enzyme was determined by confocal microscopy.
  • Figure 4. The anti pTyr335 DGK ⁇ antibody of the invention recognizes the phosphorylated DGK ⁇ in Y335.
  • HEK293 cells were transfected with different concentrations of a human DGK ⁇ coding plasmid fused to a myc epitope together with control plasmid or a Lck coding plasmid. 24 hours later the cells were collected, used and the levels of pDGK ⁇ Y335, DGK ⁇ and Lck were determined using the corresponding antibodies.
  • HEK293 cells were transfected with HA-DGK ⁇ or HA-DGK ⁇ Y335F mutant plasmids together with Lck. After 24 hours post-transfection, phosphorylation of DGK ⁇ was determined using the anti-pTyr335 antibody.
  • FIG. 5 A) The phosphorylation of DGK ⁇ is dependent on Src kinases. Jurkat cells were incubated with the Src kinase PP2 inhibitor at the indicated concentrations for 1 hour. Cells were collected and used. The proteins were separated by SDS PAGE and the phosphorylation of DGK ⁇ was determined with the anti pTyr335 DGK ⁇ antibody of the invention.
  • FIG. 7 - Phosphorylation kinetics of Y335 in DGK ⁇ in response to TCR.
  • Jurkat cells were stimulated with anti-CD3 or anti-CD3 / -CD28 during the indicated times. Where indicated, the cells were incubated with the DGK pharmacological inhibitor for 30 minutes before antibody stimulation.
  • the phosphorylation of DGK ⁇ was determined using the anti-pDGK ⁇ -Y335 antibody of the invention as described in previous experiments.
  • the membranes were re-incubated with anti-DGK ⁇ antibodies to detect the total protein. Samples from the same lysate were analyzed to determine the phosphorylation of Erk1 / 2.
  • the phosphorylation level was quantified using the lmage J software.
  • FIG. 8 The flow of Ca 2+ increases the phosphorylation of DGKD in Tyr335.
  • Jurkat cells were treated with the indicated stimuli for 5 min.
  • the phosphorylation status of DGK was determined as in previous experiments.
  • NFAT dephosphorylation was determined as well as ERK1 / 2 phosphorylation.
  • FIG. 9 DGK ⁇ activation model.
  • Lck activates and initiates a cascade of signals that lead to the activation of PLC ⁇ that generates DAG and IP 3 .
  • the latter favors the flow of Ca +2 from the endoplasmic reticulum that promotes a conformational change that "opens" the DGK ⁇ .
  • This allows its interaction with Lck in the plasma membrane and its phosphorylation in Tyr335, which allows its stabilization in the membrane and its rapid dissociation of Lck.
  • the pY335 DGK ⁇ protein is active and, since it locates in the membrane, it can metabolize the DAG generated by the TCR.
  • FIG. 11 DGKs expression levels after the expression of specific human sRNAi.
  • FIG. 12 Analysis of the effect of attenuating the expression of DGKs on the Ras / ERK route.
  • the cells were transfected with the corresponding human sRNAi and the activation of the Ras route after the TCR stimulation was determined by analysis of the ERK phosphorylation using antiphosphoresiduous antibodies (pERK, above), the total Erk level in the samples was determined as a control (below) at different times.
  • FIG. 13 Effect of the attenuation of DGKs in the translocation of PKCs.
  • Jurkat cells, transfected with the indicated human sRNAi were stimulated with antiCD3 / antiCD28 antibodies during the indicated times.
  • the cells were homogenized and membranes were isolated by ultracentrifugation.
  • the location of the indicated PKC isoforms was determined by Western Blot analysis with the corresponding antibodies.
  • FIG. 14 Analysis of the effect of attenuating the expression of DGKs on the PI3K / AKT route.
  • the cells were transfected with the corresponding human sRNAi and the phosphorylation of AKT was determined by using the corresponding antiphosphoresiduous antibodies.
  • Example 1 The endogenous DG Ka is phosphorylated in tyrosines in response to the stimulation of the TCR receptor, and more specifically in the Y355 residue, this Y355 residue being necessary for the mobilization of the DGK ⁇ from the cytosol to the membrane.
  • the tyrosine phosphorylation of the endogenous DGK ⁇ was verified in response to the stimulation of the TCR.
  • the stimulation of the TCR was mimicked by specific antibodies of the CD3 (anti-CD3) of the Jurkat cells and the tyrosine phosphorylated proteins of the lysate of these cells were immunoprecipitated, by means of a specific antibody of said proteins.
  • Immunoprecipitate proteins were separated in polyacrylamide gels under reducing conditions (SDS-PAGE) and transferred to a nitrocellulose membrane by Western blot techniques.
  • Proteins were separated by SDS-PAGE and transferred to a nitrocellulose membrane by Western blot.
  • the analysis of the membrane through the use of an antibody that recognizes phosphorylated proteins in tyrosine (anti-pY) revealed that the DGK ⁇ protein was phosphorylation in tyrosine in response to the stimulation of TCR and that this phosphorylation, in addition to being stoichiometrically low, was rapid and transient, when it was verified that the phosphorylation level reaches its maximum between five and fifteen minutes and then decay after thirty minutes (Figure 1 B).
  • DGK ⁇ in response to the TCR the mobilization of the wild GFP-DGK ⁇ (w ⁇ ) and the muierie in response to said recipient was studied.
  • Jurka ⁇ line cells were transfected with expression neighbors for both proieins and the mobilization of the proiein was analyzed by confocal microscopy in response to the mimicking of the mimicked TCR with ani-CD3 and CD28 aniic antibodies.
  • the result showed that, unlike of the wild GFP-DGK ⁇ (wt), the GFP-DGK ⁇ Y335F mutant was unable to mobilize to the plasma membrane in response to the TCR stimulus (Figure 3).
  • Example 2 Generation of an antibody that specifically recognizes the phosphorylated Y355 residue (anti-phosphotyrosine antibody 335; pTyr335)
  • anti-pTyr335 antibody a specific antibody capable of recognize this phosphorylated tyrosine.
  • an expression vector for the human origin DGK ⁇ coupled to a myc marker was co-transfected in the HEK293 cell line, together with another for the expression of p56Lck.
  • the DGK ⁇ of the cell lysate was immunoprecipitated by a specific antibody of the myc marker (anti-myc), and both this immunoprecipitate and a sample of the lysate were separated by SDS-PAGE and transferred to nitrocellulose membranes by Western blot
  • the antibody also recognizes the wild form of mouse DGK ⁇ labeled with HA (wild HA-DGK ⁇ , wt) when overexpressed with Lck ( Figure 4C).
  • the antibody recognizes a weaker signal in the absence of Lck in longer exposures. Since HEK293 cells express other TKs of the Src family, that signal may correspond to endogenous Tk phosphorylation.
  • an expression vector coding for the p56Lck was co-transfected into cells of the HEK293 line together with another that expresses the wild form of mouse DGK ⁇ labeled with HA (wild HA-DGK ⁇ , wt) or the mutant form in tyrosine 335 substituted by phenylalanine (HA-DGK ⁇ Y335F) of the same species. Twenty-four hours later, the proteins from the cell phones were separated by SDS-PAGE techniques, and transferred to a nitrocellulose membrane by Western blot.
  • Example 3 The phosphorylation of DGK ⁇ in Y355 is dependent on p56Lck, being located mostly in the plasma membrane, being induced by TCR stimulation and regulated by the DGK ⁇ kinase activity itself.
  • the p56Lck protein phosphorylates DGK ⁇ in tyrosine 335 when both are expressed ectopically in HEK293 cells.
  • the Jurkat cell line expressing both the DGK ⁇ and the p56Lck was used, and the tyrosine kinase activity of the members of the Src family was inhibited for one hour by a specific inhibitor, PP2, used at different concentrations.
  • the JCaM cell line derived from Jurkat but not expressing p56Lck and the Molt4 cell line was used, which, at Like Jurkat, it expresses the p56Lck and the DGK ⁇ .
  • the cellular proteins of Jurkat, JCaM and Molt4 were separated as in Figure 5A and the analysis of the phosphorylation in tyrosine 335 was carried out by means of the anti-pTyr335 antibody. The result showed that, even expressing the same levels of DGK ⁇ , the phosphorylation in tyrosine 335 can only be detected when cells express p56Lck ( Figure 5B).
  • the mobilization of the DGK ⁇ protein from the cytosol to the membrane depends on the flow of calcium and the activation of tyrosine kinases (Sanjuan, Jones et al. 2001).
  • tyrosine kinases Sanjuan, Jones et al. 2001.
  • a subcellular fractionation of Jurkat cells was performed. After fractionation, cell proteins were separated by SDS-PAGE techniques and transferred to a nitrocellulose membrane by Western blotting techniques.
  • Anti-p56Lck, membrane control, anti-l ⁇ B ⁇ , cytosol and anti-vimentin control, cytoskeleton control antibodies were used for fractionation controls.
  • Example 4.- The phosphorylation of DGK ⁇ in Y355 is regulated by its own kinase activity and is increased by an increase in the flow of Ca 2+ .
  • the inhibition of the kinase activity of the DGK ⁇ causes that the location of the protein, in response to the TCR, instead of being transient is sustained (Sanjuan, Jones et al. 2001), showing the relationship between the activity of the protein and its location in the membrane. Since the DGK ⁇ is phosphorylated in tyrosine also with a rapid and transient kinetics in response to the TCR, it was determined if there was any relationship between the increase in the phosphorylated state of the tyrosine 335 and the kinase activity of the DGK ⁇ , for which the Ia same for thirty minutes by means of the inhibitor of DGKs of type I, R59949, and before the stimulation with anti-CD3 antibodies.
  • Example 5 Validation of the use of human interference RNA (hRNAi) to inhibit the expression of DGK ⁇ as a tool to define its function in the immune response
  • RNA interference represents the most recent and promising technology for gene silencing. This technology is based on the use of a conserved innate defense mechanism, whereby double-stranded RNAs silence the expression of specific genes, catalyzing the degradation of the homologous mRNA (Fire A et al. 1998 Nature 391, 806-811; Elbashir SM et al. 2001 Nature 411; 494-498).
  • RNA interference can be carried out, either by introducing into the presynthesized hRNAi duplex cells or by intracellular expression of hRNAi from plasmid subcloned DNA templates.
  • the use of plasmids is much more versatile, in addition to that the silencing can be prolonged for much longer, even silently stating using retroviral and / or lentiviral vectors (Hemann MT et al 2003, 33; 396-400). Both synthesized and intracellularly expressed RNAi converge in the RISC complex and are capable of inducing gene silencing.
  • RNAi against each of the isoforms of the DGK protein was carried out by means of the synthesis of two oligonucleotides of 21 bp corresponding to the regions selected in the corresponding sequence to perform the RNAi (nucleotide sequence of the human DGKD, nt 1153-1173: AAGCCAGAAGACCATGGATGA (SEQ ID NO4); nucleotide sequence of the human DGK. ⁇ , nt 2290-2310: AACTATGTGACTGAGATCGCA (SEQ ID NO8) ( Figure 10).
  • the selected sequences (SEQ ID NO3 and 8) were subsequently used to generate double stranded DNA oligonucleotides that included a seven bp adapter sequence followed by the last 19 nucleotides corresponding to the interference sequence plus a nine bp sequence that originates a hairpin in the produced RNA and the complementary sequence at 19 pb above (TCATCCATGGTCTTCTGGC (SEQ ID NO5) and TGCGATCTCAGTCACATAG (SEQ ID NO8), complementary to DGK ⁇ and human DGK ⁇ , respectively) (Figure 10), originating a pair of sense and antisense nucleotide sequences for human DGK ⁇ , (SEQ ID NO6 and 7) as for DGKD (SEQ ID NO10 and 11), respectively.
  • the oligonucleotide contains a polyimidine sequence that allows the termination of transcription by RNA polymerase III.
  • the RNA obtained by the transcription of this insert consists of a double-stranded RNA with a hairpin ("short hairpin RNA or shRNAi), which is effectively recognized by the Dicer complex or RNA silencing complex.
  • the generated DNA sequences were cloned into the vector pSUPER and pSUPERGFP (Oligoengine). Vectors were transfected into Jurkat cells by electroporation. Cells were collected 96 hours post-transfection and DGK ⁇ and. Y protein levels were evaluated by Western blotting with antibodies specific for both isoforms (Sanjuan, MA, DR Jones, et al. (2001). "Role of diacylglycerol kinase alpha in the attenuation of receptor signaling. "J CeII Biol 153 (1): 207-20.
  • the stimulation of the TCR antigen receptor induces translocation to the membrane of the PKC alpha isoform with biphasic kinetics.
  • the attenuation of DGK ⁇ expression induces a much more transient translocation kinetics, losing the second translocation peak.
  • the attenuation of DGK ⁇ expression induced a much more sustained translocation kinetics.
  • a similar effect was observed on the translocation kinetics of PKC ⁇ , which, as is the case for PKCD, translocated much more intensely in cells with reduced levels of DGK ⁇ .
  • the activation of the TCR induces a higher PI3K activity which, in turn, regulates the activation of the PDK1 kinase that phosphorylates and activates the AKT kinase.
  • the activation of this kinase is essential for lymphocyte activation.
  • the phosphorylation of AKT in Ia T308, the phosphorylation site by PDK1 is elevated in cells with less expression of both DGK ⁇ and DGK ⁇ , the effect being more pronounced in the case of the latter.
  • the phosphorylation of AKT in S473 was not affected by the alteration of the levels of either of the two DGKs.
  • the BaF3 cell line was maintained in culture in RPMI medium supplemented with 2mM glutamine, 10% fetal bovine serum (FCS), 50 nM ⁇ -mercaptoethanol and 50 U / ml recombinant interleukin-2 (I L2) or supernatant of Wehi3B cells that provides interleukin-3 (IL-3) to 10%
  • FCS fetal bovine serum
  • I L2 interleukin-2
  • IL-3 interleukin-3
  • the HEK293, Jurkat and JCAM lines were maintained with DMEM medium supplemented with 2 mM glutamine, 10% FCS.
  • the SU-DHL1 and Karpas 299 cell lines were maintained with RPMI medium supplemented with 2 mM glutamine, 10% FCS. All lines were maintained at 37C and 10% CO 2 .
  • the cells of the Jurkat line in exponential growth were collected in HBSS buffer (25 mM of hepes KOH pH 7.4, 1 mM MgCI 2 , 1 mM CaCI 2 , 132 mM NaCI, 0.1% BSA) in 1.5 ml tubes, one for each point of stimulation, at a concentration never exceeding 5x10 6 cells / ml.
  • the cells were stimulated with anti-CD3 or anti-CD3 and anti-CD28 antibodies at a final concentration of 1 ⁇ g / ml each.
  • the cells were incubated 30 minutes before stimulation with the inhibitor at a concentration of 30 ⁇ M. After stimulation during the indicated times, the cells were frozen at -8O 0 C and subsequently used to analyze the proteins by SDS-PAGE and western blot techniques.
  • the cells were used in the p70 buffer (10 mM Hepes, pH 7.5, 15 mM KCI, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 0.2% Nonidet P-40, 1 mM dithiothreitol, 50 mM NaF, 10 ⁇ g / ml of leupeptin and aprotinin, 1 mM PMSF,
  • the amount of protein was quantified, once quantified by means of the SDS detergent, the proteins were reduced with Laemmli buffer and these were separated in polyacrylamidated gels and SDS-PAGE electrophoresis. The proteins were transferred to nitrocellulose membranes and these were analyzed with specific antibodies against the protein of interest.
  • the proteins of the used cell phones were separated in polyacrylamide gels under denaturing conditions (SDS-PAGE). The percentage of gels varied depending on the protein analyzed between 7.5% and 12%. In the case of DGK ⁇ the percentage was 10%. Once the separation of the proteins was carried out, they were transferred to nitrocellulose membranes by western blotting techniques.
  • nitrocellulose membranes were incubated with 5% milk in TBS for one hour at room temperature to block them. Then, 2 10 minute washes were performed with 0.1% TBS / Tween-20, followed by a 1 hour incubation with the primary antibody at room temperature. After 1 hour, the nitrocellulose membrane was washed with 3 washes of 0.1% TBS / Tween-20 and incubated with the secondary antibody coupled to the HRP enzyme for one hour at room temperature.
  • a synthetic peptide corresponding to the sequence of DGK ⁇ P329-A339, NH 2 -CPPSS (phosphoY) PSVLA-COOH was conjugated to KLH.
  • 300 ⁇ g of the KLH conjugated antigen was emulsified with complete Freund's adjuvant and injected into 10 month old rabbits. Every two weeks, another 150 ⁇ g of antigen is reinjected with incomplete Freund's adjuvant. Three days after the sixth reinjection, the rabbit was bled and the antiserum was collected.
  • the specificity of the antibody was confirmed by dot blot and western blot using a non-phosphorylated peptide, NH 2 -CPPSSIYPSVLA-COOH, and a DGK ⁇ mutant that cannot be phosphorylated in tyrosine 335, Y335F.
  • the antibody reacted with the phosphorylated peptide but not with the non-phosphorylated peptide or with the Y335F mutant.
  • the cells were used in NP-40 buffer (1% Nonide ⁇ P-40, 50 mM Tris-HCI, pH 7.5, 150 mM NaCI, 10 mM NaF, 10 mM Na 4 P 2 O 7 , 1 mM Na3VO 4 , 1 mM PMSF, 10 ng / ⁇ l approprinin, 10 ng / ⁇ l leupepine), then centrifuged at 15.00Og, 4 0 C. Once the supernatany is collected, the amount of proiein thereof was quantified. Immunoprecipiation was performed according to the specifications of each antibody, generally 1-5 ⁇ g / ml of an antibody in 300-500 ⁇ g of proiein lasting 1 hour at 4 0 C.
  • the secondary antibody capable of recognizing the Immunoprecipitate used, Gamma-Bind G proiein shepharose, 1 hour at 4 0 C.
  • the immunoprecipitate was collected by centrifugation, and washed twice with the NP40 lysis buffer used for lysing, once with a LiCI iampon ( 0.5 M LiCI and 50 mM Hepes pH 7.4) and 3 times with 50 mM Hepes buffer pH 7.4.
  • the fractionation was performed as described in Cao, Janssen e ⁇ al. 2002 with the following modifications.
  • Jurkat cells were harvested and resuspended in previously cooled lysis buffer 1 (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 40 ⁇ g / ml digitonin) supplemented with the mixture of protein inhibitors.
  • the cells were used for 15 minutes at 4 0 C, then centrifuged at 4500 g for 4 minutes at 4 0 C and the supernatant (cytosolic fraction, C) was collected.
  • the insoluble fraction was resuspended in previously cooled lysis buffer 2 (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 0.2% NP40) and used for 10 minutes at 4 0 C, then centrifuged at 15,000 g, 15 minutes at 4 0 C and the supernatant (membrane fraction, M1) was collected.
  • lysis buffer 2 5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 0.2% NP40
  • the insoluble fraction of this second lysate is resuspended in lysis buffer 3 (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 1% NP40) and subject thereto process than with buffer 2.
  • the supernatant of this second fraction contains the proteins most strongly associated with cell membranes (membrane fraction, M2).
  • the last insoluble fraction was resuspended in protein loading buffer (Laemmli buffer) and corresponds to the protein fraction of the cytoskeleton (Ck).
  • the different fractions are separated by SDS-PAGE and western blot techniques.
  • the proteins were immunoprecipitated according to their protocol and their activity was tested by incorporating the gamma phosphate of a radioactively labeled ATP molecule (P 32 ) into the chain DAG molecule of eight carbon atoms, 1,2-octanoyl-sn-glycerol (C8-DAG), to give rise to phosphatidic acid with a chain of eight carbon atoms labeled with phosphorus 32 (C8-P 32 A).
  • the reaction was carried out at room temperature for 10 minutes, and once it occurred, the lipids were extracted using a solvent composed of CHCL 3 / Me0H / HCL (2N) (20: 10: 5, v / v / v) .
  • the lipids were dried by centrifugal medium in atmospheric vacuum, then to be resuspended in a solvent of CHCL 3 , MeOH, and 4 M ammonium (9: 7: 2, v / v / v). These lipids were separated in thin layer chromatography (TLC) and the result of the separation was visualized by autoradiography thereof.
  • TLC thin layer chromatography
  • Jurkat cells 24 hours after transfection, were centrifuged and resuspended in HBSS (25 mM of hepes KOH pH 7.4, 1 mM MgCI 2 , 1 mM CaCI 2 , 132 mM NaCI, 0.1% BSA), then transfer them to microscopy chambers coated with poly-D, L-lysine and, after allowing them to adhere, they were kept at 37 ° C.
  • the images were captured with a Leica confocal microscope and analyzed with the ImageJ program.
  • the surface of the microscopy chambers were incubated with a mixture of anti-CD3 / anti-CD28 antibodies (5 ⁇ g / ml each) in 150 mM Tris-HCI pH8, at room temperature for 1 hour or at 4 0 C for 16 hours.
  • Jurkat cells transfected 24 hours before with the indicated construction, were centrifuged and resuspended in HBSS. These cells were incorporated into cameras microscopy previously tempered at 37 0 C, and images were collected by confocal microscopy at the indicated times taking as zero time the time when the cells are incorporated. The images were analyzed with the ImageJ program.
  • the cells of the Jurkat line in exponential growth were collected in HBSS buffer (25 mM of hepes KOH pH 7.4, 1 mM MgCI 2 , 1 mM CaCI 2 , 132 mM NaCI, 0.1% BSA) in 1.5 ml tubes, one for each point of stimulation, at a concentration never exceeding 5x10 6 cells / ml.
  • the cells were stimulated with anti-CD3 or anti-CD3 and anti-CD28 antibodies at a final concentration of 1 ⁇ g / ml each.
  • the cells were incubated 30 minutes before stimulation with the inhibitor at a concentration of 30 ⁇ M. After stimulation during the indicated times, the cells were frozen at -8O 0 C and subsequently used to analyze the proteins by SDS-PAGE and western blot techniques.
  • T cell activation in vivo targets diacylglycerol kinase alpha to the membrane: a novel mechanism for

Abstract

The invention relates to a method for the diagnosis and prognosis of a disease associated with stimulation of the immune system, based on the in vitro determination of the phosphorylation level of DGK in the Y335 tyrosine residue in cells of the immune system, as well as a specific antibody of the protein. In addition, the invention relates to nucleotides which inhibit the expression of said protein and can be used in the treatment of autoimmune diseases and cancers of the immune system.

Description

PROCEDIMIENTO DE DIAGNÓSTICO DE ENFERMEDADES DEL SISTEMA INMUNE Y COMPUESTOS ÚTILES PARA EL TRATAMIENTO DE LAS MISMAS PROCEDURE FOR DIAGNOSIS OF IMMUNE SYSTEM DISEASES AND USEFUL COMPOUNDS FOR THE TREATMENT OF THE SAME
CAMPO TÉCNICO DE LA INVENCIÓNTECHNICAL FIELD OF THE INVENTION
La presente invención se enmarca en el campo de Ia biomedicina, y más concretamente en Ia aplicación de herramientas biotecnológicas para el diagnóstico y tratamiento de enfermedades humanas, y más concretamente de enfermedades con alteración de Ia respuesta inmune.The present invention is framed in the field of biomedicine, and more specifically in the application of biotechnological tools for the diagnosis and treatment of human diseases, and more specifically of diseases with impaired immune response.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Durante Ia activación de los linfocitos T, en respuesta a Ia estimulación del receptor de células T (TCR), se producen una serie de eventos ordenados que llevan al desarrollo de Ia respuesta inmune (Berridge 1997). Dentro de estos eventos juegan un papel primordial las tirosinas quinasas, entre las que destaca p56lck como eje de toda Ia respuesta desencadenada. La proteína p56lck es una tirosina quinasa de Ia familia Src que se recluta al TCR tras Ia estimulación del receptor. En este complejo, p56lck fosforila las moléculas adaptadoras LAT y SPL76 proporcionando sitios de anclaje para otras proteínas como PLCγ y ZAP 70. La proteína PLCγ hidroliza el fosfatidil inositol (4,5) bi-fosfato (PI(4,5)P2) y genera dos importantes mensajeros: Inositol tri-fosfato (IP3), el cual provoca Ia salida de Ca2+ del retículo endoplásmico dando lugar a Ia activación del factor de transcripción NFAT, y diacilglicerol (DAG), segundo mensajero lipídico involucrado en Ia activación de Ia vía PKC/Ras/MAPK, y que da lugar a Ia activación de los factores de transcripción AP-1 y NFKB. La acción del complejo NFAT-AP1 junto con NFKB permite Ia expresión de genes necesarios para que se produzca una respuesta inmune correcta. La activación de NFAT en ausencia de activación de AP-1 da lugar a Ia regulación diferencial de una serie de genes que provocan en las células un estado de no respuesta llamado anergia (Macian, Garcia-Cozar et al. 2002). El mantenimiento de Ia tolerancia inmunológica de las células T efectoras en Ia periferia está mediado por Ia inducción de anergia en aquellas células T que son capaces de reconocer los antígenos propios, es decir, los antígenos generados a partir de proteínas procedentes del propio organismo, evitando con ello procesos auto-inmunes.During the activation of the T lymphocytes, in response to the stimulation of the T cell receptor (TCR), a series of ordered events occur that lead to the development of the immune response (Berridge 1997). Within these events, the tyrosine kinases play a fundamental role, among which p56lck stands out as the axis of all the triggered response. The p56lck protein is a tyrosine kinase of the Src family that is recruited to the TCR after receptor stimulation. In this complex, p56lck phosphorylates the LAT and SPL76 adapter molecules providing anchor sites for other proteins such as PLCγ and ZAP 70. The PLCγ protein hydrolyzes phosphatidyl inositol (4,5) bi-phosphate (PI (4,5) P2) and generates two important messengers: Inositol tri-phosphate (IP3), which causes the Ca 2+ exit from the endoplasmic reticulum resulting in the activation of the NFAT transcription factor, and diacylglycerol (DAG), the second lipid messenger involved in the activation of The PKC / Ras / MAPK route, and which results in the activation of the transcription factors AP-1 and NFKB. The action of the NFAT-AP1 complex together with NFKB allows the expression of genes necessary for a correct immune response to occur. The activation of NFAT in the absence of activation of AP-1 results in Ia differential regulation of a series of genes that cause a state of non-response called anergy in cells (Macian, Garcia-Cozar et al. 2002). The maintenance of the immunological tolerance of effector T cells in the periphery is mediated by the induction of anergy in those T cells that are capable of recognizing their own antigens, that is, the antigens generated from proteins from the body itself, avoiding with it auto-immune processes.
El metabolismo del DAG está implicado en los mecanismos de inducción de procesos anérgicos donde se ha descrito Ia disminución de PLCγ (Heissmeyer, Macian et al. 2004) y el aumento de DGKα (Macian, Garcia-Cozar et al. 2002) (Zha, Marks et al. 2006). Este aumento de DGKα provoca una disminución en Ia localización de RasGRP y con ello se ve disminuida Ia activación de Ia ruta Ras/Raf/Erk1-2 (Zha, Marks et al. 2006). Por el contrario, Ia ausencia de DGKα en un modelo de ratón da lugar a un aumento en Ia activación de Ia ruta Ras/Raf/Erk1-2, interfiriendo con ello en los procesos de inducción de anergia (Olenchock, Guo et al. 2006).The metabolism of DAG is involved in the induction mechanisms of anaerobic processes where the decrease in PLCγ (Heissmeyer, Macian et al. 2004) and the increase in DGKα (Macian, Garcia-Cozar et al. 2002) (Zha, Marks et al. 2006). This increase in DGKα causes a decrease in the location of RasGRP and with this the activation of the Ras / Raf / Erk1-2 route (Zha, Marks et al. 2006) is diminished. On the contrary, the absence of DGKα in a mouse model results in an increase in the activation of the Ras / Raf / Erk1-2 route, thereby interfering with the processes of induction of anergy (Olenchock, Guo et al. 2006 ).
El control del DAG producido por Ia PLCγ es esencial para modular Ia respuesta inmune desencadenada por el TCR. Las diacilglicerolquinasas (DGKs) forman una familia de enzimas que fosforilan el DAG para dar lugar a ácido fosfatídico (PA), modulando el balance entre ambos segundos mensajeros. La familia de las DGKs de mamíferos está compuesta de diez isoformas clasificadas a su vez en cinco subgrupos atendiendo a sus dominios de regulación y de expresión tisular/celular (Sakane and Kanoh 1997; Topham and Prescott 1999; van Blitterswijk and Houssa 2000; Imai, Kai et al. 2005). Todas las DGKs comparten un dominio catalítico muy conservado, dentro del cual destaca Ia secuencia aminoacídica GGDG. La alteración de esta secuencia da lugar a Ia pérdida de actividad de Ia proteína (Sanjuan, Jones et al. 2001 ). Todas las DGKs presentan al menos dos dominios ricos en cisteína (C1 ), denominados C1A y C1 B según el orden que ocupan dentro de Ia secuencia de aminoácidos. La función original de los dominios C1 descrita en las PKCs es Ia de responder al DAG. En el caso de las DGK, los dominios C1 son atípicos, y excepto el C1A de DGKβ y γ (Shindo, Irie et al. 2003), el resto de dominios C1 de las DGKs no son capaces de unir DAG. Además, el dominio C1 B presenta una extensión de quince aminoácidos que ha servido para postular que su función es Ia de presentar el DAG al dominio catalítico (van Blitterswijk and Houssa 1999), si bien otros trabajos demuestran que estos dominios son dispensables para Ia actividad de Ia DGK (Abe, Lu et al. 2003).The control of the DAG produced by the PLCγ is essential to modulate the immune response triggered by the TCR. Diacylglycerolinases (DGKs) form a family of enzymes that phosphorylate DAG to give rise to phosphatidic acid (PA), modulating the balance between both second messengers. The family of mammalian DGKs is composed of ten isoforms classified in turn into five subgroups according to their domains of regulation and tissue / cellular expression (Sakane and Kanoh 1997; Topham and Prescott 1999; van Blitterswijk and Houssa 2000; Imai, Kai et al. 2005). All DGKs share a highly conserved catalytic domain, within which the GGDG amino acid sequence stands out. The alteration of this sequence results in the loss of activity of the protein (Sanjuan, Jones et al. 2001). All DGKs have at least two domains rich in cysteine (C1), called C1A and C1 B according to the order they occupy within the amino acid sequence. The original function of C1 domains described in PKCs is to respond to DAG. If of the DGKs, C1 domains are atypical, and except for C1A of DGKβ and γ (Shindo, Irie et al. 2003), the remaining C1 domains of DGKs are not able to join DAG. In addition, the C1 B domain has an extension of fifteen amino acids that has served to postulate that its function is to present the DAG to the catalytic domain (van Blitterswijk and Houssa 1999), although other works show that these domains are dispensable for the activity of the DGK (Abe, Lu et al. 2003).
La DGKα pertenece a las DGKs de tipo I (DGKα, β y γ) que se caracterizan por tener dos dominios de unión a Ca2+ (EF-hands) que les permiten responder al incremento de Ca2+, siendo Ia afinidad por el Ca2+ dependiente de Ia isoforma (Yamada, Sakane et al. 1997). La DGKα ejerce diferentes funciones durante Ia respuesta inmune desencadenada en las células T, por un lado, actúa como regulador negativo de Ia activación mediada por el TCR de Ia ruta RasGRP/PKCΘ (Sanjuan, Jones et al. 2001 ; Sanjuan, Pradet-Balade et al. 2003) y, por el otro, tiene una función positiva en respuesta al receptor de IL2 (Flores, Casaseca et al. 1996; Flores, Jones et al. 1999), donde el PA generado es necesario para Ia proliferación. Además, el mecanismo de activación de Ia DGKα es también diferente en función del receptor. En el caso del TCR, Ia acción coordinada del Ca2+ y de las tirosinas quinasas es Ia responsable de Ia localización de Ia DGKα en Ia membrana (Sanjuan, Jones et al. 2001 ). Por el contrario, en respuesta al receptor de IL2, donde no se produce ningún incremento de Ca2+, Ia acción de Ia PI3K, que da lugar a lípidos fosforilados en Ia posición 3 del anillo de inositol, es Ia encargada de modular Ia función Ia DGKα (Ciprés, Carrasco et al. 2003).The DGKα belongs to the DGKs of type I (DGKα, β and γ) that are characterized by having two domains of union to Ca 2+ (EF-hands) that allow them to respond to the increase of Ca 2+ , being the affinity for the Ca 2+ dependent on the isoform (Yamada, Sakane et al. 1997). The DGKα exerts different functions during the immune response triggered in the T cells, on the one hand, it acts as a negative regulator of the activation mediated by the TCR of the RasGRP / PKCΘ route (Sanjuan, Jones et al. 2001; Sanjuan, Pradet-Balade et al. 2003) and, on the other hand, it has a positive function in response to the IL2 receptor (Flores, Casaseca et al. 1996; Flores, Jones et al. 1999), where the generated PA is necessary for proliferation. In addition, the activation mechanism of DGKα is also different depending on the receptor. In the case of TCR, the coordinated action of Ca 2+ and tyrosine kinases is responsible for the location of the DGKα in the membrane (Sanjuan, Jones et al. 2001). On the contrary, in response to the IL2 receptor, where there is no increase in Ca 2+ , the action of PI3K, which results in phosphorylated lipids in position 3 of the inositol ring, is responsible for modulating the function Ia DGKα (Cypress, Carrasco et al. 2003).
Las tirosinas quinasas juegan un papel fundamental en Ia activación de Ia DGKα, no sólo a través de Ia activación del TCR en el sistema inmune, sino, además, fuera de él, ya que se ha asociado con Ia respuesta al factor de crecimiento hepático (HGF) (Cutrupi, Baldanzi et al. 2000) y α-D-tocoferol (Fukunaga-Takenaka, Shirai et al. 2005), así como a Ia actividad tirosina quinasa de Ia proteína NPM-ALK en ciertos tumores (Bacchiocchi, Baldanzi et al. 2005). Todo ello sugiere que esta mediación puede ser común y necesaria en respuesta a diferentes receptores. Por otro lado, Ia activación de Ia DGKα en estos sistemas pone de manifiesto Ia importancia de Ia familia de tirosinas quinasas Src en Ia activación y función de las DGKα, y señala a Ia tirosina 335 como un aminoácido importante para Ia movilización de Ia DGKα desde el citosol a Ia membrana aunque no se muestran pruebas directas de su acción o que esta translocación se deba únicamente a Ia acción de Ia DGKα, siendo además el estímulo distinto de Ia activación a través de TCR (Fukunaga-Takenaka, Shirai et al. 2005).Tyrosine kinases play a fundamental role in the activation of DGKα, not only through the activation of TCR in the immune system, but also outside it, since it has been associated with the response to liver growth factor ( HGF) (Cutrupi, Baldanzi et al. 2000) and α-D-tocopherol (Fukunaga-Takenaka, Shirai et al. 2005), as well as tyrosine activity NPM-ALK protein kinase in certain tumors (Bacchiocchi, Baldanzi et al. 2005). All this suggests that this mediation may be common and necessary in response to different receptors. On the other hand, the activation of the DGKα in these systems shows the importance of the family of tyrosine kinases Src in the activation and function of the DGKα, and points to the tyrosine 335 as an important amino acid for the mobilization of the DGKα from the cytosol to the membrane although no direct evidence of its action is shown or that this translocation is due solely to the action of the DGKα, being also the stimulus other than the activation through TCR (Fukunaga-Takenaka, Shirai et al. 2005 ).
Esta tirosina 335 se encuentra en una región muy conservada dentro de Ia DGKα de todas las especies conocidas, pero no así DGKβ o DGKγ, Io que sugiere cierta especificidad funcional de Ia tirosina 335. Por otro lado, Ia DGKD no es Ia única isoforma presente en linfocitos T. La DGKD, que se expresa de forma ubicua en numerosos tejidos, se expresa en linfocitos T y B. La DGKD, es una DGK de tipo IV que se caracterizó originalmente como una proteína nuclear (Goto et al. 1996) y que presenta unas características estructurales únicas. Además del dominio catalítico y los dos dominios C1 atípicos, comunes a todas las DGKs, esta proteína posee un dominio tipo MARKS próximo a su dominio de localización nuclear. La regulación por fosforilación de este dominio en Ia DGKD, regula su localización nuclear, Io que a su vez resulta fundamental en el control de Ia proliferación celular (Topham M, 1998).This tyrosine 335 is in a very conserved region within the DGKα of all known species, but not DGKβ or DGKγ, which suggests some functional specificity of the tyrosine 335. On the other hand, the DGKD is not the only isoform present in T lymphocytes. DGKD, which is ubiquitously expressed in numerous tissues, is expressed in T and B lymphocytes. DGKD is a type IV DGK that was originally characterized as a nuclear protein (Goto et al. 1996) and which presents unique structural characteristics. In addition to the catalytic domain and the two atypical C1 domains, common to all DGKs, this protein has a MARKS type domain close to its nuclear localization domain. The regulation by phosphorylation of this domain in the DGKD regulates its nuclear location, which in turn is fundamental in the control of cell proliferation (Topham M, 1998).
Como se ha comentado anteriormente Ia DGKζ es muy abundante en linfocitos T y Ia reciente generación de ratones deficientes en esta isoforma ha confirmado su función como un modulador negativo de Ia respuesta inmune (Zhong, 2003). Los linfocitos T de ratones deficientes en DGKζ mostraron una hiperrespuesta a Ia estimulación y una respuesta inmune mucho más robusta frente a Ia infección por virus o frente a tumores. El análisis del fenotipo de ratones deficientes para DGKα y ζ, sugiere Ia importancia de ambas isoformas en el control de Ia respuesta inmune (Olenchock BA, Guo R, Carpenter JH, Jordán M, Topham MK, Koretzky GA, Zhong XP. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol. 2006 Nov;7(11 ):1174-81. Epub 2006 Oct 8). Sin embargo, estos estudios no permiten evaluar Ia posible redundancia en Ia función de cada una de estas isoformas, Io que resulta esencial a Ia hora de definir el posible interés diagnóstico o terapéutico de inhibidores específicos de cada una de estas isoformas.As previously mentioned, DGKζ is very abundant in T lymphocytes and the recent generation of mice deficient in this isoform has confirmed its function as a negative modulator of the immune response (Zhong, 2003). T lymphocytes of DGKζ-deficient mice showed a hyper-response to stimulation and a much more robust immune response against virus infection or against tumors. The phenotype analysis of mice deficient for DGKα and ζ suggests Ia importance of both isoforms in the control of the immune response (Olenchock BA, Guo R, Carpenter JH, Jordan M, Topham MK, Koretzky GA, Zhong XP. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat Immunol. 2006 Nov ; 7 (11): 1174-81. Epub 2006 Oct 8). However, these studies do not allow the possible redundancy in the function of each of these isoforms to be evaluated, which is essential when defining the possible diagnostic or therapeutic interest of specific inhibitors of each of these isoforms.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Descripción brevebrief description
Un objeto de Ia presente invención Io constituye un procedimiento de diagnóstico y pronóstico de una enfermedad que cursa con estimulación del sistema inmune, en adelante procedimiento de diagnóstico de Ia invención, basado en Ia determinación in vitro del nivel de fosforilación de Ia DGKα en el residuo tirosina Y335 en células del sistema inmune, en una muestra biológica y que comprende las siguientes etapas: a) identificación o determinación del nivel de fosforilación de Ia proteína DGKα en el residuo tirosina Y335, en una muestra biológica de origen inmune, y b) comparación de dicha determinación observada en a) con una muestra control, y donde su presencia incrementada es indicativa de Ia existencia de una enfermedad que cursa con estimulación del sistema inmune.An object of the present invention constitutes a diagnostic and prognostic procedure of a disease that is stimulated by the immune system, hereinafter diagnostic procedure of the invention, based on the in vitro determination of the level of phosphorylation of DGKα in the residue. tyrosine Y335 in cells of the immune system, in a biological sample and comprising the following steps: a) identification or determination of the level of phosphorylation of the DGKα protein in the tyrosine residue Y335, in a biological sample of immune origin, and b) comparison of said determination observed in a) with a control sample, and where its increased presence is indicative of the existence of a disease that occurs with stimulation of the immune system.
Otro objeto de Ia invención Io constituye un anticuerpo, ya sea monoclonal o policlonal, en adelante anticuerpo de Ia invención, específico de Ia proteína DGKα fosforilada en el residuo tirosina Y335, preferentemente un anticuerpo policlonal específico del péptido de SEQ ID NO3, como el anticuerpo anti pY335 (anti-pTyr335DGKα). Otro objeto de Ia invención Io constituye una proteína DGKα fosforilada, en adelante proteína fosforilada de Ia invención, que contiene el residuo tirosina 355 fosforilado o similar, o un fragmento o péptido de Ia misma que comprenda dicha tirosina 355 fosforilada. Otro objeto particular de Ia invención Io constituye una proteína DGKα fosforilada de un mamífero perteneciente, título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: ratón, cerdo, rata y ser humano, preferentemente de origen humano, y más preferentemente, Ia proteína humana DGKα fosforilada en Ia tirosina 355 de SEQ ID NO2. Otro objeto de Ia presente invención Io constituye un compuesto o agente inhibidor de Ia actividad de Ia proteína DGKα fosforilada, en adelante compuesto inhibidor de Ia presente invención, útil para Ia elaboración de un medicamento o composición farmacéutica para el tratamiento de un proceso que cursa con estimulación de las células del sistema inmune. Otro objeto particular de Ia invención Io constituye un compuesto inhibidor de Ia proteína DGKα en el que el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de Ia proteína DGKα humana (SEQ ID NO1) y que incluye una secuencia de nucleótidos seleccionada entre: a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína DGKα, b) una ribozima específica del mRNA de Ia proteína DGKα, c) un aptámero específico del mRNA de Ia proteína DGKα, d) un RNA de interferencia (siRNA o shRNA) específico del mRNA de Ia proteína DGKα, y e) un microRNA (miRNA) específico del mRNA de Ia proteína DGKα. Otro objeto de Ia presente invención Io constituye una composición farmacéutica o un medicamento útil para el tratamiento de enfermedades que cursen con estimulación del sistema inmune, en adelante composición farmacéutica de Ia presente invención, que comprende una cantidad terapéuticamente efectiva de un compuesto o agente inhibidor de Ia proteína DGKα, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.Another object of the invention constitutes an antibody, either monoclonal or polyclonal, hereinafter antibody of the invention, specific to the phosphorylated DGKα protein in the tyrosine residue Y335, preferably a peptide specific polyclonal antibody of SEQ ID NO3, as the antibody anti pY335 (anti-pTyr335DGKα). Another object of the invention constitutes a phosphorylated DGKα protein, hereinafter phosphorylated protein of the invention, which contains the phosphorylated 355 tyrosine residue or the like, or a fragment or peptide thereof comprising said phosphorylated 355 tyrosine. Another particular object of the invention constitutes a phosphorylated DGKα protein of a mammal belonging, illustrative title and without limiting the scope of the invention, to the following group: mouse, pig, rat and human being, preferably of human origin, and more preferably , The human protein DGKα phosphorylated in tyrosine 355 of SEQ ID NO2. Another object of the present invention constitutes a compound or agent that inhibits the activity of the phosphorylated DGKα protein, hereinafter, an inhibitor compound of the present invention, useful for the preparation of a medicament or pharmaceutical composition for the treatment of a process that involves stimulation of immune system cells. Another particular object of the invention constitutes an inhibitor compound of the DGKα protein in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human DGKα protein (SEQ ID NO1) and that includes a nucleotide sequence selected from: a) a specific antisense nucleotide sequence specific to the sequence of the gene or mRNA of the DGKα protein, b) a ribozyme specific to the mRNA of the DGKα protein, c) a specific aptamer of the mRNA of the DGKα protein , d) an interference RNA (siRNA or shRNA) specific to the mRNA of the DGKα protein, and e) a microRNA (miRNA) specific to the mRNA of the DGKα protein. Another object of the present invention constitutes a pharmaceutical composition or a medicament useful for the treatment of diseases that occur with stimulation of the immune system, hereinafter pharmaceutical composition of the present invention, which comprises a therapeutically effective amount of a compound or agent that inhibits The protein DGKα, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles.
Otro objeto de Ia presente invención Io constituye el uso de Ia composición farmacéutica de Ia invención en un método de tratamiento de un mamífero, preferentemente un ser humano, afectado por una enfermedad que cursa con estimulación del sistema inmune, en adelante uso de Ia composición farmacéutica de Ia presente invención, consistente en Ia administración de dicha composición terapéutica que inhibe Ia estimulación del sistema inmune.Another object of the present invention constitutes the use of the pharmaceutical composition of the invention in a method of treating a mammal, preferably a human being, affected by a disease that stimulates the immune system, henceforth using the pharmaceutical composition. of the present invention, consisting of the administration of said therapeutic composition that inhibits the stimulation of the immune system.
Descripción detalladaDetailed description
La presente invención se basa en que los inventores han demostrado que Ia activación de células T, llevada a cabo mediante Ia estimulación del TCR, induce Ia fosforilación de DGKα en Ia tirosina 335 (Y335) por un mecanismo que depende de Ia tirosina quinasa p56Lck. Este residuo de Y335 está conservado en otros ortólogos de DGKα como ratón, cerdo y rata y en Ia presente invención se ha examinado su fosforilación empleando un anticuerpo específico. El uso de un muíante no fosforilable reveló que esta tirosina es esencial para Ia localización de Ia DGKα en Ia membrana plasmática del linfocito tras Ia estimulación inmune. El análisis mediante fraccionamiento subcelular demuestra que esta forma fosforilada de DGKα se localiza de forma específica en Ia membrana, sugiriendo que Ia fosforilación de Ia Y335 estabiliza su localización en Ia membrana (Ejemplo 3). Esta es Ia primera descripción de Ia fosforilación en tirosina de Ia DGKα endógena en linfocitos T e identifica Ia Y355 como un residuo esencial para Ia localización y estabilización en Ia membrana de Ia enzima donde ejerce su acción terminando las señales reguladas por el DAG generado por el TCR al metabolizarlo, constituyéndose de esta manera e un marcador de proliferación de linfocitos T, proceso que tiene lugar en procesos autoinmunes o alteraciones linfoproliferativas como leucemias y linfomas Hodking y non-Hodking. La activación de DGKα permite Ia inactivación de Ia ruta de Ras/ERK y al mismo tiempo su propia inactivación a través de fosfatasas sensibles a PA. Además, se ha observado que Ia fosforilación de esta tirosina 335The present invention is based on the fact that the inventors have demonstrated that the activation of T cells, carried out by means of TCR stimulation, induces the phosphorylation of DGKα in tyrosine 335 (Y335) by a mechanism that depends on the p56Lck tyrosine kinase. This Y335 residue is preserved in other DGKα orthologs such as mouse, pig and rat and in the present invention its phosphorylation has been examined using a specific antibody. The use of a non-phosphorylable mutant revealed that this tyrosine is essential for the location of the DGKα in the plasma membrane of the lymphocyte after immune stimulation. The analysis by subcellular fractionation demonstrates that this phosphorylated form of DGKα is located specifically in the membrane, suggesting that the phosphorylation of Y335 stabilizes its location in the membrane (Example 3). This is the first description of the tyrosine phosphorylation of the endogenous DGKα in T lymphocytes and identifies the Y355 as an essential residue for the location and stabilization in the membrane of the enzyme where it exerts its action by terminating the signals regulated by the DAG generated by the TCR when metabolized, thus constituting a marker of proliferation of T lymphocytes, a process that takes place in processes autoimmune or lymphoproliferative alterations such as leukemia and Hodking and non-Hodking lymphomas. The activation of DGKα allows the inactivation of the Ras / ERK route and at the same time its own inactivation through PA-sensitive phosphatases. In addition, it has been observed that the phosphorylation of this tyrosine 335
(Y335) está regulada por Ia generación de [Ca2+] intracelular, sugiriendo que Ia movilización de Ca2+, probablemente mediante Ia interacción directa con los dominios EF, es responsable de un cambio conformacional que favorece Ia fosforilación de Ia enzima (Ejemplo 4). Finalmente, se observó que empleando sRNAi humanos específicos de DGKα se obtiene una eficaz atenuación de Ia expresión DGKα, demostrándose además una acción diferencial de esta isoforma frente a DGKζ (Ejemplo 5). Estos experimentos indican el potencial uso de esta herramienta para atenuar Ia expresión de DGKα en aquellas células o tejidos donde su expresión pueda originar patologías. Estos polinucleótidos mencionados pueden ser utilizados en un proceso de terapia génica en el que mediante cualquier técnica o procedimiento se permita Ia integración de los mismos en dichas células afectadas de un paciente humano.(Y335) is regulated by the generation of intracellular [Ca 2+ ], suggesting that mobilization of Ca 2+ , probably through direct interaction with the EF domains, is responsible for a conformational change that favors the phosphorylation of the enzyme (Example 4). Finally, it was observed that using DGKα-specific human sRNAi, an efficient attenuation of the DGKα expression is obtained, demonstrating also a differential action of this isoform against DGKζ (Example 5). These experiments indicate the potential use of this tool to attenuate the expression of DGKα in those cells or tissues where its expression may cause pathologies. These aforementioned polynucleotides can be used in a gene therapy process in which by any technique or procedure the integration thereof into said affected cells of a human patient is allowed.
Por Io tanto, un objeto de Ia presente invención Io constituye un procedimiento de diagnóstico y pronóstico de una enfermedad que cursa con estimulación del sistema inmune, en adelante procedimiento de diagnóstico de Ia invención, basado en Ia determinación in vitro del nivel de fosforilación de Ia DGKα en el residuo tirosina Y335 en células del sistema inmune, en una muestra biológica y que comprende las siguientes etapas: a) identificación o determinación del nivel de fosforilación de Ia proteína DGKα en el residuo tirosina Y335, en una muestra biológica de origen inmune, y b) comparación de dicha determinación observada en a) con una muestra control, y donde su presencia incrementada es indicativa de Ia existencia de una enfermedad que cursa con estimulación del sistema inmune. Tal como se utiliza en Ia presente invención el término "enfermedades que cursan con estimulación del sistema inmune" se refiere a una enfermedad en Ia que se produce Ia estimulación y proliferación de células del sistema inmune, preferentemente linfocitos T, y perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: enfermedades autoinmunes, alérgicas, inflamatorias, alteraciones linfoproliferativas como leucemias y linfomas Hodking y non-Hodking. Esta identificación de nivel de fosforilación de Ia proteína DGKα en el residuo tirosina Y335 en una muestra biológica de un sujeto humano puede ser extraída del mismo y posteriormente ex vivo identificarse sobre Ia misma Ia presencia o no dicha fosforilación, que se correlacionaría con el diagnóstico de una alteración inmune en dicho sujeto, Io que permitiría Ia definición y Ia ejecución de una aproximación terapéutica o de diagnóstico y/o pronóstico.Therefore, an object of the present invention constitutes a diagnostic and prognostic procedure of a disease that is stimulated by immune system stimulation, hereinafter diagnostic procedure of the invention, based on the in vitro determination of the phosphorylation level of Ia DGKα in the tyrosine residue Y335 in cells of the immune system, in a biological sample and comprising the following steps: a) identification or determination of the level of phosphorylation of the DGKα protein in the tyrosine residue Y335, in a biological sample of immune origin, and b) comparison of said determination observed in a) with a control sample, and where its increased presence is indicative of the existence of a disease that occurs with stimulation of the immune system. As used in the present invention, the term "diseases that occur with stimulation of the immune system" refers to a disease in which the stimulation and proliferation of cells of the immune system, preferably T lymphocytes, and belonging, by way of illustration, occurs. and without limiting the scope of the invention, to the following group: autoimmune, allergic, inflammatory diseases, lymphoproliferative disorders such as leukemias and Hodking and non-Hodking lymphomas. This identification of the level of phosphorylation of the DGKα protein in the Y335 tyrosine residue in a biological sample of a human subject can be extracted therefrom and subsequently ex vivo, the presence or absence of said phosphorylation, which would correlate with the diagnosis of an immune alteration in said subject, which would allow the definition and execution of a therapeutic or diagnostic and / or prognostic approach.
La determinación de dichos niveles de dicha muestra biológica se lleva a cabo, preferentemente, en linfocitos T, los cuales pueden ser purificados o no previamente a su análisis. Dicha purificación puede llevarse a cabo fácilmente por un experto en Ia materia.The determination of said levels of said biological sample is preferably carried out in T lymphocytes, which may or may not be purified prior to analysis. Said purification can be easily carried out by an expert in the field.
Un objeto particular de Ia invención Io constituye el procedimiento de diagnóstico de Ia invención donde Ia determinación se realiza con un anticuerpo específico de Ia tirosina fosforilada (pY335) de Ia proteína DGKα, más preferentemente, un anticuerpo policlonal, y más preferentemente, con un anticuerpo policlonal específico del péptido sintético de SEQ ID NO3, como el anticuerpo anti pY335 (anti-pTyr335DGKα) desarrollado en Ia presente invención (ver Ejemplo 2). Otro objeto de Ia invención Io constituye un anticuerpo, ya sea monoclonal o policlonal, en adelante anticuerpo de Ia invención, específico de Ia proteína DGKα fosforilada en el residuo tirosina Y335, preferentemente un anticuerpo policlonal específico del péptido de SEQ ID NO3, como el anticuerpo anti pY335 desarrollado en Ia presente invención (anti- pTyr335DGKα). El anticuerpo de Ia invención puede ser utilizado, además del anterior uso como herramienta de diagnóstico, en otros procedimientos biotecnológicos de identificación de Ia proteína DGKα fosforilada pertenecientes, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: i) procedimiento de identificación de compuestos que alteran, activadores o inhibidores, Ia actividad kinasa de Ia proteína DGKα, ii) procedimiento de identificación de compuestos que alteran, activadores o inhibidores, Ia fosforilación de Ia proteína DGKα, y iii) procedimiento de elaboración de una composición terapéutica útil para el tratamiento de enfermedades que cursen con un incremento de Ia respuesta inmune.A particular object of the invention constitutes the diagnostic method of the invention where the determination is made with a phosphorylated tyrosine specific antibody (pY335) of the DGKα protein, more preferably, a polyclonal antibody, and more preferably, with an antibody Polyclonal synthesis of the synthetic peptide of SEQ ID NO3, such as the anti pY335 antibody (anti-pTyr335DGKα) developed in the present invention (see Example 2). Another object of the invention constitutes an antibody, either monoclonal or polyclonal, hereinafter antibody of the invention, specific to the phosphorylated DGKα protein in the tyrosine residue Y335, preferably a peptide specific polyclonal antibody of SEQ ID NO3, as the antibody anti pY335 developed in the present invention (anti-pTyr335DGKα). The antibody of the invention can be used, in addition to the previous use as a diagnostic tool, in other biotechnological methods of identifying the phosphorylated DGKα protein belonging, by way of illustration and without limiting the scope of the invention, to the following group: i) identification procedure of compounds that alter, activators or inhibitors, the kinase activity of the DGKα protein, ii) identification procedure of compounds that alter, activators or inhibitors, the phosphorylation of the DGKα protein, and iii) method of making a composition Therapeutic treatment for the treatment of diseases that occur with an increase in the immune response.
Por otro lado, esta proteína DGKα fosforilada o un fragmento de Ia misma que comprenda este residuo fosforilado tirosina Y335, ya sea de origen sintético o aislado de eucariotas, puede ser utilizado en distintos ámbitos como herramienta biotecnológica con aplicaciones biomédicas.On the other hand, this phosphorylated DGKα protein or a fragment thereof comprising this phosphorylated residue tyrosine Y335, either of synthetic origin or isolated from eukaryotes, can be used in different fields as a biotechnological tool with biomedical applications.
Así, otro objeto de Ia invención Io constituye una proteína DGKα fosforilada, en adelante proteína fosforilada de Ia invención, que contiene el residuo tirosina 355 fosforilado o similar, o un fragmento o péptido de Ia misma que comprenda dicha tirosina 355 fosforilada.Thus, another object of the invention constitutes a phosphorylated DGKα protein, hereinafter phosphorylated protein of the invention, which contains the phosphorylated 355 tyrosine residue or the like, or a fragment or peptide thereof comprising said phosphorylated 355 tyrosine.
Otro objeto particular de Ia invención Io constituye una proteína DGKα fosforilada de un mamífero perteneciente, título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: ratón, cerdo, rata y ser humano, preferentemente de origen humano, y más preferentemente, Ia proteína humana DGKα fosforilada en Ia tirosina 355 de SEQ ID NO2.Another particular object of the invention constitutes a phosphorylated DGKα protein of a mammal belonging, illustrative title and without limiting the scope of the invention, to the following group: mouse, pig, rat and human being, preferably of human origin, and more preferably , The human protein DGKα phosphorylated in tyrosine 355 of SEQ ID NO2.
Tal como se utiliza en Ia presente invención el término "proteína DGKα fosforilada en el residuo tirosina 355" se refiere también a una proteína, de distinto origen animal, preferentemente humana, así como a cualquier secuencia de aminoácidos (aás.) análoga a Ia proteína de SEQ ID NO2. En el sentido utilizado en esta descripción, el término "análoga" pretende incluir cualquier secuencia de aminoácidos que pueda ser aislada o construida en base a las secuencias de aminoácidos mostradas en Ia presente memoria, por ejemplo, mediante Ia introducción de sustituciones de aminoácidos conservativas o no conservativas, incluyendo Ia inserción de uno o más aminoácidos, Ia adición de uno o más aminoácidos en cualquiera de los extremos de Ia molécula o Ia deleción de uno o más aminoácidos en cualquier extremo o en el interior de Ia secuencia, y que constituya una secuencia peptídica con actividad similar a Ia secuencia SEQ ID NO2 de Ia invención.As used in the present invention the term "phosphorylated DGKα protein in tyrosine residue 355" also refers to a protein, of different animal origin, preferably human, as well as any amino acid sequence (aás.) Analogous to the protein of SEQ ID NO2. In the sense used in this description, the term "analog" is intended to include any amino acid sequence that can be isolated or constructed based on the amino acid sequences shown herein, for example, by the introduction of conservative or non-conservative amino acid substitutions, including the insertion of one or more amino acids, the addition of one or more amino acids at any of the ends of the molecule or the deletion of one or more amino acids at any end or inside the sequence, and that constitutes a peptide sequence with activity similar to the sequence SEQ ID NO2 of the invention.
En general, una secuencia de aminoácidos análoga es sustancialmente homologa a Ia secuencia de aminoácidos comentada anteriormente. En el sentido utilizado en esta descripción, Ia expresión "sustancialmente homologa" significa que las secuencias de aminoácidos en cuestión tienen un grado de identidad de, al menos, un 40%, preferentemente de, al menos, un 85%, o más preferentemente de, al menos, un 95%.In general, an analogous amino acid sequence is substantially homologous to the amino acid sequence discussed above. In the sense used in this description, the expression "substantially homologous" means that the amino acid sequences in question have a degree of identity of at least 40%, preferably of at least 85%, or more preferably of At least 95%.
Otra realización particular de Ia invención Io constituye Ia proteína DGKα fosforilada de Ia invención que está constituida por un péptido o fragmento, por ejemplo sintético o aislado, de Ia DGKα que comprenda el aminoácido Y335 fosforilado, por ejemplo un fragmento correspondiente a Ia secuencia de Ia proteína humana DGKα P329-A339, NH2- CPPSS(fosfoY)PSVLA-COOH (SEQ ID NO3), que contiene una tirosina fosoforilada en una posición similar a Ia tirosina 335 de Ia proteína DGKα humana. La obtención de distintos fragmentos o péptidos que contengan esta secuencia SEQ ID NO3 o secuencia similar, representativa de este dominio de Ia DGKα con Ia tirosina fosforilada, pueden ser fácilmente llevada a cabo por un experto en Ia materia.Another particular embodiment of the invention constitutes the phosphorylated DGKα protein of the invention that is constituted by a peptide or fragment, for example synthetic or isolated, of the DGKα comprising the phosphorylated amino acid Y335, for example a fragment corresponding to the sequence of the Ia human protein DGKα P329-A339, NH 2 - CPPSS (phosphoY) PSVLA-COOH (SEQ ID NO3), which contains a phosphorylated tyrosine in a position similar to the tyrosine 335 of the human DGKα protein. The obtaining of different fragments or peptides that contain this sequence SEQ ID NO3 or similar sequence, representative of this domain of the DGKα with the phosphorylated tyrosine, can be easily carried out by one skilled in the art.
Otro objeto de Ia invención Io constituye el uso de Ia proteína DGKα fosforilada en el residuo tirosina 355 de Ia invención en un procedimiento biotecnológico perteneciente, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: i) procedimiento de elaboración de anticuerpos monoclonales y/o policlonales y/o recombinantes anti DGKα fosforilada, ii) procedimiento de identificación de compuestos que alteren su fosforilación, iii) procedimiento de identificación de compuestos activadores o inhibidores de Ia propia actividad kinasa de Ia proteína DGKα.Another object of the invention constitutes the use of phosphorylated DGKα protein in the tyrosine residue 355 of the invention in a biotechnological process belonging, by way of illustration and without limiting the scope of the invention, to the following group: i) preparation procedure of monoclonal antibodies and / or polyclonal and / or recombinant anti-phosphorylated DGKα, ii) identification procedure for compounds that alter their phosphorylation, iii) identification procedure for activating or inhibiting compounds of the kinase activity of the DGKα protein itself.
Otra realización particular de Ia invención Io constituye el uso de un fragmento o péptido, sintético o aislado, de Ia proteína DGKα de SEQ ID NO2 que contenga dicha tirosina 355 fosforilada, preferentemente, el péptido sintético correspondiente a Ia secuencia de DGKα P329-A339, NH2- CPPSS(fosfoY)PSVLA-COOH de SEQ ID NO3 para Ia elaboración de anticuerpos monoclonales y/o policlonales y/o recombinantes anti proteína DGKα. Estos péptidos pueden ser aislados o sintetizados y usados posteriormente por un experto en Ia materia para producir un anticuerpo específico contra una forma DGKα fosforilada, preferentemente humana. Otro objeto de Ia presente invención Io constituye un compuesto o agente inhibidor de Ia actividad de Ia proteína DGKα fosforilada, en adelante compuesto inhibidor de Ia presente invención, útil para Ia elaboración de un medicamento o composición farmacéutica para el tratamiento de un proceso que cursa con estimulación de las células del sistema inmune. Tal como se utiliza en Ia presente invención el término "compuesto o agente inhibidor o antagonista" se refiere a una molécula que cuando se une o interactúa con Ia proteína DGKα fosforilada (por ejemplo, SEQ ID NO2), o con fragmentos funcionales de Ia misma, disminuye o elimina Ia intensidad o Ia duración de Ia actividad biológica de dicha proteína. En esta definición se incluye además aquellos compuestos que impiden o disminuyen Ia expresión del gen codificante de Ia proteína DGKα (por ejemplo, SEQ ID NO1 ), es decir, que impiden o diminuyen Ia transcripción del gen, Ia maduración del RNAm, Ia traducción del RNAm y Ia modificación post-traduccional. Un agente inhibidor puede estar constituido por un péptido, una proteína, un ácido nucleico o polinucleótido, un carbohidrato, un anticuerpo, un compuesto químico o cualquier otro tipo de molécula que disminuya o elimine el efecto y/o Ia función de Ia proteína DGKα.Another particular embodiment of the invention constitutes the use of a fragment or peptide, synthetic or isolated, of the DGKα protein of SEQ ID NO2 containing said phosphorylated tyrosine 355, preferably, the synthetic peptide corresponding to the sequence of DGKα P329-A339, NH 2 - CPPSS (phosphoY) PSVLA-COOH of SEQ ID NO3 for the preparation of monoclonal and / or polyclonal and / or recombinant anti-DGKα protein antibodies. These peptides can be isolated or synthesized and subsequently used by a person skilled in the art to produce a specific antibody against a phosphorylated DGKα form, preferably human. Another object of the present invention constitutes a compound or agent that inhibits the activity of the phosphorylated DGKα protein, hereinafter, an inhibitor compound of the present invention, useful for the preparation of a medicament or pharmaceutical composition for the treatment of a process that involves stimulation of immune system cells. As used in the present invention the term "compound or inhibitor or antagonist agent" refers to a molecule that when bound or interacts with the phosphorylated DGKα protein (for example, SEQ ID NO2), or with functional fragments thereof , decreases or eliminates the intensity or duration of the biological activity of said protein. This definition also includes those compounds that prevent or decrease the expression of the gene coding for the DGKα protein (for example, SEQ ID NO1), that is, that prevent or diminish the transcription of the gene, the maturation of the mRNA, the translation of the MRNA and post-translational modification. An inhibitory agent may consist of a peptide, a protein, a nucleic acid or polynucleotide, a carbohydrate, an antibody, a chemical compound or any other type of molecule that diminishes or eliminates the effect and / or the function of the DGKα protein.
A modo ilustrativo, dicho polinucleótido puede ser un polinucleótido que codifica una secuencia de nucleótidos antisentido específica de Ia secuencia del gen o del mRNA de Ia proteína DGKα, o bien un polinucleótido que codifica una ribozima específica del mRNA de Ia proteína DGKα, o bien un polinucleótido que codifica un aptámero específico del mRNA de Ia proteína DGKα, bien polinucleótido que codifica un RNA de interferencia ("small interference RNA" o siRNA o un shRNA) específico del mRNA de Ia proteína DGKα o bien un microRNA (miRNA).By way of illustration, said polynucleotide can be a polynucleotide that encodes a specific antisense nucleotide sequence of the gene or mRNA sequence of the DGKα protein, or a polynucleotide encoding a specific ribozyme of the mRNA of the DGKα protein, or a polynucleotide encoding a specific mRNA aptamer of the DGKα protein, either polynucleotide encoding an interference RNA ("small interference RNA" or siRNA or a shRNA) specific to the mRNA of the DGKα protein or a microRNA (miRNA).
Estos polinucleótidos mencionados pueden ser utilizados en un proceso de terapia génica en el que mediante cualquier técnica o procedimiento se permita Ia integración de los mismos en las células de un paciente humano. Este objetivo puede conseguirse mediante Ia administración a estas células del sistema inmune, in vivo o ex vivo, de una construcción génica que comprende uno de los polinucleótidos mencionados con el fin de transformar dichas células permitiendo su expresión en el interior de las mismas de manera que se inhiba Ia expresión de Ia proteína DGKα. Ventajosamente, dicha construcción génica puede estar incluida dentro de un vector, tal como, por ejemplo, un vector de expresión o un vector de transferencia.These polynucleotides mentioned can be used in a process of gene therapy in which by any technique or procedure the integration of them into the cells of a human patient is allowed. This objective can be achieved by administering to these cells of the immune system, in vivo or ex vivo, of a gene construct comprising one of the aforementioned polynucleotides in order to transform said cells allowing their expression inside them so that the expression of the DGKα protein is inhibited. Advantageously, said gene construct may be included within a vector, such as, for example, an expression vector or a transfer vector.
Tal como se utiliza en Ia presente invención el término "vector" se refiere a sistemas utilizados en el proceso de transferencia de un gen exógeno o de una construcción génica exógena al interior de una célula, permitiendo de este modo Ia vehiculación de genes y construcciones génicas exógenas. Dichos vectores pueden ser vectores no virales o vectores virales (Pfeifer y Verma, 2001) y su administración puede ser preparada por un experto en Ia materia en función de las necesidades y especificidades de cada caso. Por tanto, otro objeto particular de Ia invención Io constituye un compuesto inhibidor de Ia proteína DGKα en el que el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante (SEQ ID NO1 ) de Ia proteína DGKα humana y que incluye, al menos, una secuencia de nucleótidos seleccionada entre: a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína DGKα, b) una ribozima específica del mRNA de Ia proteína DGKα, c) un aptámero específico del mRNA de Ia proteína DGKα, d) un RNA de interferencia (siRNA o shRNA) específico del mRNA de Ia proteína DGKα, y e) un microRNA (miRNA) específico del mRNA de Ia proteína DGKα.As used in the present invention, the term "vector" refers to systems used in the process of transferring an exogenous gene or an exogenous gene construct into a cell, thus allowing the vehicle to generate genes and gene constructs. exogenous Said vectors can be non-viral vectors or viral vectors (Pfeifer and Verma, 2001) and their administration can be prepared by an expert in the field according to the needs and specificities of each case. Therefore, another particular object of the invention constitutes an inhibitor compound of the DGKα protein in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the coding gene (SEQ ID NO1) of the human DGKα protein and that includes, at least, a nucleotide sequence selected from: a) a specific antisense nucleotide sequence of the sequence of the gene or mRNA of the DGKα protein, b) a ribozyme specific to the mRNA of the DGKα protein, c) a specific aptamer of the mRNA of the DGKα protein, d) an interfering RNA (siRNA or shRNA) specific to the mRNA of Ia DGKα protein, and e) a microRNA (miRNA) specific to the DGKα protein mRNA.
Por otro lado, estas técnicas de inhibición génica, y más concretamente Ia vehiculización de los compuestos -oligonucleótidos antisentido, iRNA, ribozimas o aptámeros- puede llevarse a cabo mediante el uso de liposomas, nanopartículas u otros vehiculizantes que incrementan el éxito de dicha transferencia al interior de Ia célula, preferentemente al núcleo celular (Lu y Woodle, 2005; Hawker y Wooley, 2005). En principio, pueden utilizarse inhibidores de Ia traducción del RNAm de DGKα que se unen tanto a su región codificante como a Ia no codificante, por ejemplo frente a Ia zona 3' no codificante. Así, una realización particular de Ia invención Io constituye un siRNA de d) en el que el RNAi se une preferentemente a Ia secuencia fragmento del RNAm de DGKα AAGCCAGAAGACCATGGATGA (SEQ ID NO4) o a otra secuencia que comprenda a ésta o a un fragmento más corto de Ia misma. Otra realización particular de Ia invención Io constituye un RNAi de d) en el que el siRNA está constituido por un oligonucleótido de doble cadena de DNA que comprende una secuencia de interferencia, por ejemplo, Ia secuencia SEQ ID NO4 y una secuencia complementaria a ésta (por ejemplo, TCATCCATGGTCTTCTGGC (SEQ ID NO5) para el caso de Ia SEQ ID NO4) (Figura 10), originándose una pareja de secuencias de nucleótidos sentido y antisentido, respectivamente (para el caso anterior, SEQ ID NO6 y 7, respectivamente). Además, estas secuencias RNAi de doble cadena comprenden otras secuencias para Ia actividad de las mismas (a título ilustrativo, secuencias adaptadoras, horquilla o de polidiminas, ver ejemplo 5). Las secuencias de nucleótidos a)-e) mencionadas previamente impiden Ia expresión del gen en mRNA o del mRNA en Ia proteína DGKα, y, por tanto, anulan su función biológica, y pueden ser desarrolladas por un experto en el sector de ingeniería genética en función del conocimiento existente en el estado del arte sobre transgénesis y anulación de Ia expresión génica (Clarke, 2002; Patente US20020128220; Miyake y cois., 2000; Puerta-Ferández y cois., 2003; Kikuchi y cois., 2003; Reynolds y cois., 2004).On the other hand, these gene inhibition techniques, and more specifically the vehiculization of the compounds - antisense oligonucleotides, iRNA, ribozymes or aptamers - can be carried out through the use of liposomes, nanoparticles or other vehicles that increase the success of said transfer to inside the cell, preferably to the cell nucleus (Lu and Woodle, 2005; Hawker and Wooley, 2005). In principle, inhibitors of DGKα mRNA translation can be used that bind both their coding and non-coding regions, for example against the 3 'non-coding zone. Thus, a particular embodiment of the invention constitutes a siRNA of d) in which the RNAi preferentially binds to the fragment sequence of the DGKα mRNA AAGCCAGAAGACCATGGATGA (SEQ ID NO4) or to another sequence comprising this or a shorter fragment of The same. Another particular embodiment of the invention constitutes an RNAi of d) in which the siRNA is constituted by a double stranded DNA oligonucleotide comprising an interference sequence, for example, the sequence SEQ ID NO4 and a sequence complementary to it ( for example, TCATCCATGGTCTTCTGGC (SEQ ID NO5) for the case of SEQ ID NO4) (Figure 10), originating a pair of sense and antisense nucleotide sequences, respectively (for the previous case, SEQ ID NO6 and 7, respectively). In addition, these double-stranded RNAi sequences comprise other sequences for their activity (by way of illustration, adapter, fork or polydimine sequences, see example 5). The nucleotide sequences a) -e) mentioned above prevent the expression of the gene in mRNA or mRNA in the DGKα protein, and, thus, cancel its biological function, and can be developed by an expert in the genetic engineering sector in role of existing knowledge in the state of the art on transgenesis and cancellation of gene expression (Clarke, 2002; US20020128220; Miyake et al., 2000; Puerta-Ferández et al., 2003; Kikuchi et al., 2003; Reynolds and cois., 2004).
Otro objeto de Ia presente invención Io constituye una composición farmacéutica o un medicamento útil para el tratamiento de enfermedades que cursen con estimulación del sistema inmune, en adelante composición farmacéutica de Ia presente invención, que comprende una cantidad terapéuticamente efectiva de un compuesto o agente inhibidor de Ia proteína DGKα, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables. Otro objeto particular de Ia presente invención Io constituye una composición farmacéutica en Ia que el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de Ia proteína DGKα humana (SEQ ID NO1 ) y que incluye, al menos, una secuencia de nucleótidos seleccionada entre: a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína DGKα, b) una ribozima específica del mRNA de Ia proteína DGKα, c) un aptámero específico del mRNA de Ia proteína DGKα, d) un RNA de interferencia (iRNA) específico del mRNA de Ia proteína DGKα, y e) un microRNA (miRNA) específico del mRNA de Ia proteína DGKα. Otra realización particular de Ia invención Io constituye Ia composición farmacéutica de Ia invención en Ia que el compuesto inhibidor de DGKα es un siRNA que se une preferentemente a Ia secuencia fragmento del RNAm de DGKα AAGCCAGAAGACCATGGATGA (SEQ ID NO4) o a otra secuencia que comprenda a ésta o a un fragmento más corto de Ia misma (ver Ejemplo 5).Another object of the present invention constitutes a pharmaceutical composition or a medicament useful for the treatment of diseases that occur with stimulation of the immune system, hereinafter pharmaceutical composition of the present invention, which comprises a therapeutically effective amount of a compound or agent that inhibits The DGKα protein, together with, optionally, one or more pharmaceutically acceptable adjuvants and / or vehicles. Another particular object of the present invention constitutes a pharmaceutical composition in which the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human DGKα protein (SEQ ID NO1) and that includes, at least, a nucleotide sequence selected from: a) a specific antisense nucleotide sequence specific to the sequence of the gene or mRNA of the DGKα protein, b) a ribozyme specific to the mRNA of the DGKα protein, c) a specific mRNA aptamer of the protein DGKα, d) an interference RNA (iRNA) specific to the mRNA of the DGKα protein, and e) a microRNA (miRNA) specific to the mRNA of the DGKα protein. Another particular embodiment of the invention constitutes the pharmaceutical composition of the invention in which the DGKα inhibitor compound is a siRNA that preferentially binds to the DGKα mRNA fragment sequence AAGCCAGAAGACCATGGATGA (SEQ ID NO4) or another sequence comprising it. or to a shorter fragment thereof (see Example 5).
Otra realización particular de Ia invención Io constituye Ia composición farmacéutica de Ia invención en Ia que el compuesto inhibidor de DGKα es un RNAi constituido por un oligonucleótido de doble cadena de DNA que comprende una secuencia de interferencia, por ejemplo, Ia secuencia SEQ ID NO4 y una secuencia complementaria a ésta (por ejemplo, TCATCCATGGTCTTCTGGC (SEQ ID NO5) para el caso de Ia SEQ ID NO4) (Figura 10), originándose una pareja de secuencias de nucleótidos sentido y antisentido, respectivamente (para el caso anterior, SEQ ID NO6 y 7, respectivamente). Además, estas secuencias RNAi de doble cadena comprenden otras secuencias necesarias para Ia actividad de las mismas (a título ilustrativo, secuencias adaptadoras, horquilla o de polidiminas, ver ejemplo 5) y pueden ser elaboradas por un experto en Ia materia.Another particular embodiment of the invention constitutes the pharmaceutical composition of the invention in which the DGKα inhibitor compound is an RNAi constituted by a double stranded DNA oligonucleotide comprising an interference sequence, for example, the sequence SEQ ID NO4 and a complementary sequence to it (for example, TCATCCATGGTCTTCTGGC (SEQ ID NO5) for the case of SEQ ID NO4) (Figure 10), originating a pair of sense and antisense nucleotide sequences, respectively (for the previous case, SEQ ID NO6 and 7, respectively). In addition, these double-stranded RNAi sequences comprise other sequences necessary for their activity (by way of illustration, adapter, fork or polydimine sequences, see example 5) and can be prepared by one skilled in the art.
Otro objeto particular de Ia presente invención Io constituye una composición farmacéutica en Ia que el compuesto inhibidor es un anticuerpo, ya sea monoclonal o policlonal, específico de Ia proteína DGKα fosforilada en el residuo tirosina Y335, o de un péptido o fragmento que Io contenga, preferentemente un anticuerpo policlonal específico del péptido o fragmento de secuencia SEQ ID NO3, más preferentemente el anticuerpo anti- pTyr335DGKα desarrollado en Ia invención.Another particular object of the present invention constitutes a pharmaceutical composition in which the inhibitor compound is an antibody, either monoclonal or polyclonal, specific for the phosphorylated DGKα protein in the Y335 tyrosine residue, or of a peptide or fragment containing it, preferably a polyclonal antibody specific to the peptide or sequence fragment SEQ ID NO3, more preferably the anti-pTyr335DGKα antibody developed in the invention.
Los adyuvantes y vehículos farmacéuticamente aceptables que pueden ser utilizados en dichas composiciones son los adyuvantes y vehículos conocidos por los técnicos en Ia materia y utilizados habitualmente en Ia elaboración de composiciones terapéuticas. En el sentido utilizado en esta descripción, Ia expresión "cantidad terapéuticamente efectiva" se refiere a Ia cantidad del agente o compuesto inhibidor de Ia actividad de Ia proteína DGKα, calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de los compuestos, incluyendo Ia edad, estado del paciente, Ia severidad de Ia alteración o trastorno, y de Ia ruta y frecuencia de administración.The pharmaceutically acceptable adjuvants and vehicles that can be used in said compositions are the adjuvants and vehicles known to those skilled in the art and commonly used in the elaboration of therapeutic compositions. In the sense used in this description, the expression "therapeutically effective amount" refers to the amount of the agent or compound inhibitor of the activity of the DGKα protein, calculated to produce the desired effect and, in general, will be determined, among other causes, by the characteristics of the compounds, including the age, condition of the patient, the severity of the alteration or disorder , and of the route and frequency of administration.
En una realización particular, dicha composición terapéutica se prepara en forma de una forma sólida o suspensión acuosa, en un diluyente farmacéuticamente aceptable. La composición terapéutica proporcionada por esta invención puede ser administrada por cualquier vía de administración apropiada, para Io cual dicha composición se formulará en Ia forma farmacéutica adecuada a Ia vía de administración elegida. En una realización particular, Ia administración de Ia composición terapéutica proporcionada por esta invención se efectúa por vía parenteral, por vía oral, por vía intraperitoneal, subcutánea, etc. Una revisión de las distintas formas farmacéuticas de administración de medicamentos y de los excipientes necesarios para Ia obtención de las mismas puede encontrarse, por ejemplo, en Faulí i Trillo, 1993.In a particular embodiment, said therapeutic composition is prepared in the form of a solid form or aqueous suspension, in a pharmaceutically acceptable diluent. The therapeutic composition provided by this invention can be administered by any appropriate route of administration, for which said composition will be formulated in the pharmaceutical form appropriate to the route of administration chosen. In a particular embodiment, the administration of the therapeutic composition provided by this invention is carried out parenterally, orally, intraperitoneally, subcutaneously, etc. A review of the different pharmaceutical forms of drug administration and of the excipients necessary for obtaining them can be found, for example, in Faulí and Trillo, 1993.
Otro objeto de Ia presente invención Io constituye el uso de Ia composición farmacéutica de Ia invención en un método de tratamiento de un mamífero, preferentemente un ser humano, afectado por una enfermedad que cursa con estimulación del sistema inmune, en adelante uso de Ia composición farmacéutica de Ia presente invención, consistente en Ia administración de dicha composición terapéutica que inhibe Ia estimulación del sistema inmune. Otro objeto particular de Ia invención Io constituye el uso de Ia composición farmacéutica de Ia invención en el que enfermedad que cursa con estimulación del sistema inmune pertenece, a título ilustrativo y sin que limite el alcance de Ia invención, al siguiente grupo: enfermedades autoinmunes, alérgicas, inflamatorias, alteraciones linfoproliferativas como leucemias y linfomas Hodking y non-Hodking. DESCRIPCIÓN DE LAS FIGURASAnother object of the present invention constitutes the use of the pharmaceutical composition of the invention in a method of treating a mammal, preferably a human being, affected by a disease that stimulates the immune system, henceforth using the pharmaceutical composition. of the present invention, consisting of the administration of said therapeutic composition that inhibits the stimulation of the immune system. Another particular object of the invention constitutes the use of the pharmaceutical composition of the invention in which disease that occurs with stimulation of the immune system belongs, by way of illustration and without limiting the scope of the invention, to the following group: autoimmune diseases, allergic, inflammatory, lymphoproliferative disorders such as leukemia and Hodking and non-Hodking lymphomas. DESCRIPTION OF THE FIGURES
Figura 1.- DGKα se fosforila en tirosina en respuesta a Ia estimulación del TCR. A) Las células Jurkat se estimularon durante los tiempos indicados con un anticuerpo anti-CD3. Las células se usaron y las proteínas se inmunoprecipitaron empleando un anticuerpo anti-fosfotirosina (anti-PY) y Ia membrana se reveló con un anticuerpo anti-DGKα. B) Las células se trataron como en A. DGKα se inmunoprecipitó empleando un anticuerpo específico y Ia membrana se reveló con un anticuerpo anti PY y después con anti-DGKα .Figure 1.- DGKα is phosphorylated in tyrosine in response to TCR stimulation. A) Jurkat cells were stimulated during the indicated times with an anti-CD3 antibody. The cells were used and the proteins were immunoprecipitated using an anti-phosphotyrosine (anti-PY) antibody and the membrane was revealed with an anti-DGKα antibody. B) The cells were treated as in A. DGKα was immunoprecipitated using a specific antibody and the membrane was revealed with an anti PY antibody and then with anti-DGKα.
Figura 2.- A) Comparación de secuencias en las DGKs de Tipo I. En color verde se indica una secuencia rica en Pro conservadas en todos los miembros de Ia familia de DGKs. La Y335 conservada en los diferentes ortólogos de DGKα se indica con una flecha. B) p56LcK fosforila DGKα en Ia Y335. Las células Jurkat se transfectaron con plásmidos codificando GFP- DGKα silvestre (wt) y GFP-DGKα mutada Y335F junto con un plásmido vacío o un plásmido codificando p56Lck (505). A las 24 horas, las células se usaron y Ia GFP-DGKα se inmunoprecipitó empleando anticuerpos anti-GFP. Las proteínas se analizaron por SDS-PAGE e inmunoblot. La fosforilación de DGKα se determinó con anticuerpos monoclonales anti-pY, y el nivel de expresión con anti-DGKα.Figure 2.- A) Sequence comparison in Type I DGKs. A green sequence indicates a Pro-rich sequence conserved in all members of the DGK family. The Y335 preserved in the different DGKα orthologs is indicated by an arrow. B) p56LcK phosphorylate DGKα in Ia Y335. Jurkat cells were transfected with plasmids encoding wild GFP-DGKα (wt) and mutated GFP-DGKα Y335F together with an empty plasmid or a plasmid encoding p56Lck (505). At 24 hours, the cells were used and the GFP-DGKα was immunoprecipitated using anti-GFP antibodies. Proteins were analyzed by SDS-PAGE and immunoblot. Phosphorylation of DGKα was determined with anti-pY monoclonal antibodies, and the level of expression with anti-DGKα.
Figura 3.- La fosforilación de DGKα en Y335 es esencial para su translocación a Ia membrana plasmática. Las células Jurkat se transfectaron con DGKα silvestre (wt) o el muíante Y335F fusionado a GFP. 24 horas tras Ia transfección las células se plaquearon en placas recubiertas de anticuerpos antiCD3/antiCD28 y se determinó Ia localización subcelular de Ia enzima mediante microscopía confocal. Figura 4.- El anticuerpo anti pTyr335 DGKα de Ia invención reconoce Ia DGKα fosforilada en Y335. A) Células HEK293 se transfectaron con diferentes concentraciones de un plásmido codificante de DGKα humana fusionada a un epítopo de myc junto con plásmido control o un plásmido codificante de Lck. 24 horas después las células se recogieron, usaron y los niveles de pDGKαY335, DGKα y Lck se determinaron empleando los anticuerpos correspondientes. B) myc-DGKα se inmunoprecipitó empleando anticuerpo anti-myc y el estado de fosforilación se determinó con el anticuerpo anti-pDGK Y335. C) Mismo experimento que en A pero empleando un plásmido que codifica Ia DGKα de ratón fusionada a un epítopo HA. D) Las células HEK293 se transfectaron con plásmidos codificantes de HA-DGKα o del muíante HA-DGKα Y335F junto con Lck. A las 24 horas post-transfección se determinó Ia fosforilación de DGKα empleando el anticuerpo anti-pTyr335.Figure 3.- The phosphorylation of DGKα in Y335 is essential for its translocation to the plasma membrane. Jurkat cells were transfected with wild DGKα (wt) or the Y335F mutant fused to GFP. 24 hours after the transfection, the cells were plated on plates coated with antiCD3 / antiCD28 antibodies and the subcellular location of the enzyme was determined by confocal microscopy. Figure 4.- The anti pTyr335 DGKα antibody of the invention recognizes the phosphorylated DGKα in Y335. A) HEK293 cells were transfected with different concentrations of a human DGKα coding plasmid fused to a myc epitope together with control plasmid or a Lck coding plasmid. 24 hours later the cells were collected, used and the levels of pDGKαY335, DGKα and Lck were determined using the corresponding antibodies. B) myc-DGKα was immunoprecipitated using anti-myc antibody and the phosphorylation status was determined with the anti-pDGK Y335 antibody. C) Same experiment as in A but using a plasmid encoding the mouse DGKα fused to an HA epitope. D) HEK293 cells were transfected with HA-DGKα or HA-DGKα Y335F mutant plasmids together with Lck. After 24 hours post-transfection, phosphorylation of DGKα was determined using the anti-pTyr335 antibody.
Figura 5.- A) La fosforilación de DGKα es dependiente de Src quinasas. Células Jurkat se incubaron con el inhibidor de Src quinasas PP2 a las concentraciones indicadas durante 1 hora. Las células se recogieron y se usaron. Las proteínas se separaron por SDS PAGE y Ia fosforilación de DGKα se determinó con el anticuerpo anti pTyr335 DGKα de Ia invención. B) La fosforilación de DGK en linfocitos T depende de Lck. Lisados celulares obtenidos a partir de células HEK293, Jurkat, JcaM and Molt4 se analizaron por SDS PAGE e inmunoblot. La fosforilación de DGKα se determinó empleando el anticuerpo anti-pTyr335 DGKα. La expresión de DGKα y Lck se determinó empleando anticuerpos específicos.Figure 5.- A) The phosphorylation of DGKα is dependent on Src kinases. Jurkat cells were incubated with the Src kinase PP2 inhibitor at the indicated concentrations for 1 hour. Cells were collected and used. The proteins were separated by SDS PAGE and the phosphorylation of DGKα was determined with the anti pTyr335 DGKα antibody of the invention. B) The phosphorylation of DGK in T lymphocytes depends on Lck. Cell lysates obtained from HEK293, Jurkat, JcaM and Molt4 cells were analyzed by SDS PAGE and immunoblot. Phosphorylation of DGKα was determined using the anti-pTyr335 DGKα antibody. The expression of DGKα and Lck was determined using specific antibodies.
Figura 6.- Distribución subcelular de Ia DGKα fosforilada en Y355.Figure 6.- Subcellular distribution of the phosphorylated DGKα in Y355.
Fracciones subcelulares obtenidas a partir de células Jurkat se analizaron mediante SDS PAGE y Western Blot con los anticuerpos indicados. Figura 7.- Cinéticas de fosforilación de Ia Y335 en DGKα en respuesta a TCR. Las células Jurkat se estimularon con anti-CD3 o anti-CD3/-CD28 durante los tiempos indicados. Donde se indica, las células se incubaron con el inhibidor farmacológico de DGK durante 30 minutos antes de Ia estimulación con anticuerpos. Las fosforilación de DGKα se determinó empleando el anticuerpo anti pDGKα-Y335 de Ia invención como se ha descrito en experimentos anteriores. Las membranas fueron re-incubadas con anticuerpos anti-DGKα para detectar Ia proteína total. Muestras procedentes del mismo lisado se analizaron para determinar Ia fosforilación de Erk1/2. El nivel de fosforilación se cuantificó empleando el software lmage J software.Subcellular fractions obtained from Jurkat cells were analyzed by SDS PAGE and Western Blot with the indicated antibodies. Figure 7.- Phosphorylation kinetics of Y335 in DGKα in response to TCR. Jurkat cells were stimulated with anti-CD3 or anti-CD3 / -CD28 during the indicated times. Where indicated, the cells were incubated with the DGK pharmacological inhibitor for 30 minutes before antibody stimulation. The phosphorylation of DGKα was determined using the anti-pDGKα-Y335 antibody of the invention as described in previous experiments. The membranes were re-incubated with anti-DGKα antibodies to detect the total protein. Samples from the same lysate were analyzed to determine the phosphorylation of Erk1 / 2. The phosphorylation level was quantified using the lmage J software.
Figura 8.- El flujo de Ca2+ aumenta Ia fosforilación de DGKD en Ia Tyr335. Las células Jurkat se trataron con los estímulos indicados durante 5 min. El estado de fosforilación de DGK se determinó como en experimentos anteriores. Como controles se determinó Ia defosforilación de NFAT así como Ia fosforilación de ERK1/2.Figure 8.- The flow of Ca 2+ increases the phosphorylation of DGKD in Tyr335. Jurkat cells were treated with the indicated stimuli for 5 min. The phosphorylation status of DGK was determined as in previous experiments. As controls, NFAT dephosphorylation was determined as well as ERK1 / 2 phosphorylation.
Figura 9.- Modelo de activación de DGKα. En respuesta a Ia estimulación del TCR, Lck se activa e inicia una cascada de señales que conducen a Ia activación de PLCγ que genera DAG e IP3. Este último favorece el flujo de Ca+2 desde el retículo endoplásmico que promueve un cambio conformacional que "abre" Ia DGKα. Esto permite su interacción con Lck en Ia membrana plasmática y su fosforilación en Ia Tyr335, Io que permite su estabilización en Ia membrana y su rápida disociación de Lck. La proteína pY335 DGKα es activa y, dado que localiza en Ia membrana puede metabolizar el DAG generado por el TCR. La activación de DGKα permite Ia inactivación de Ia ruta de Ras/ERK y al mismo tiempo su propia inactivación a través de fosfatasas sensibles a PA. Figura 10.- Esquema de cada una de las DGKs indicando Ia secuencia de oligonucleótidos empleada para generación de los sRNAi humanos de Ia invención.Figure 9.- DGKα activation model. In response to the stimulation of the TCR, Lck activates and initiates a cascade of signals that lead to the activation of PLCγ that generates DAG and IP 3 . The latter favors the flow of Ca +2 from the endoplasmic reticulum that promotes a conformational change that "opens" the DGKα. This allows its interaction with Lck in the plasma membrane and its phosphorylation in Tyr335, which allows its stabilization in the membrane and its rapid dissociation of Lck. The pY335 DGKα protein is active and, since it locates in the membrane, it can metabolize the DAG generated by the TCR. The activation of DGKα allows the inactivation of the Ras / ERK route and at the same time its own inactivation through PA-sensitive phosphatases. Figure 10.- Scheme of each of the DGKs indicating the oligonucleotide sequence used to generate the human sRNAi of the invention.
Figura 11.- Niveles de expresión de DGKs tras Ia expresión de sRNAi humanos específicos. Análisis por Western Blot de Ia expresión de DGKD (arriba), DGKζ en medio, y tubulina (abajo) en usados de células transfectadas con shRNAi control (C), y específicos para cada una de las isoformas.Figure 11.- DGKs expression levels after the expression of specific human sRNAi. Western blot analysis of the expression of DGKD (above), DGKζ in the middle, and tubulin (below) in used cells transfected with shRNAi control (C), and specific for each of the isoforms.
Figura 12.- Análisis del efecto de atenuar Ia expresión de DGKs sobre Ia ruta de Ras/ERK. Las células se transfectaron con los sRNAi humanos correspondientes y Ia activación de Ia ruta de Ras tras Ia estimulación del TCR se determinó mediante análisis de Ia fosforilación de ERK empleando anticuerpos antifosforesiduo (pERK, arriba), el nivel total de Erk en las muestras se determinó como control (abajo) a distintos tiempos.Figure 12.- Analysis of the effect of attenuating the expression of DGKs on the Ras / ERK route. The cells were transfected with the corresponding human sRNAi and the activation of the Ras route after the TCR stimulation was determined by analysis of the ERK phosphorylation using antiphosphoresiduous antibodies (pERK, above), the total Erk level in the samples was determined as a control (below) at different times.
Figura 13.- Efecto de Ia atenuación de DGKs en Ia translocación de PKCs. Las células Jurkat, transfectadas con los sRNAi humanos indicados se estimularon con anticuerpos antiCD3/antiCD28 durante los tiempos indicados. Las células se homogenizaron y se aislaron membranas mediante ultracentrifugación. La localización de las isoformas indicadas de PKC se determinó mediante análisis de Western Blot con los anticuerpos correspondientes.Figure 13.- Effect of the attenuation of DGKs in the translocation of PKCs. Jurkat cells, transfected with the indicated human sRNAi were stimulated with antiCD3 / antiCD28 antibodies during the indicated times. The cells were homogenized and membranes were isolated by ultracentrifugation. The location of the indicated PKC isoforms was determined by Western Blot analysis with the corresponding antibodies.
Figura 14.- Análisis del efecto de atenuar Ia expresión de DGKs sobre Ia ruta de PI3K/AKT. Las células se transfectaron con los sRNAi humanos correspondientes y Ia fosforilación de AKT se determinó mediante el empleo de los anticuerpos antifosforesiduo correspondientes. EJEMPLOS DE LA INVENCIÓNFigure 14.- Analysis of the effect of attenuating the expression of DGKs on the PI3K / AKT route. The cells were transfected with the corresponding human sRNAi and the phosphorylation of AKT was determined by using the corresponding antiphosphoresiduous antibodies. EXAMPLES OF THE INVENTION
Ejemplo 1.- La DG Ka endógena se fosforila en tirosinas en respuesta a Ia estimulación del receptor TCR, y más concretamente en el residuo Y355, siendo necesario este residuo Y355 para Ia movilización de Ia DGKα desde el citosol a Ia membrana.Example 1.- The endogenous DG Ka is phosphorylated in tyrosines in response to the stimulation of the TCR receptor, and more specifically in the Y355 residue, this Y355 residue being necessary for the mobilization of the DGKα from the cytosol to the membrane.
Dada Ia importancia de las tirosinas quinasas en Ia activación de Ia DGKα en respuesta a Ia señal desencadenada por el TCR, se comprobó Ia fosforilación en tirosina de Ia DGKα endógena en respuesta a Ia estimulación del TCR. Para este fin, se mimetizó Ia estimulación del TCR mediante anticuerpos específicos del CD3 (anti-CD3) de Ia células Jurkat y se inmunoprecipitaron las proteínas fosforiladas en tirosina del lisado de estas células, mediante un anticuerpo específico de dichas proteínas. Se separaron las proteínas del inmunoprecipitado en geles de poliacrilamida en condiciones reductoras (SDS-PAGE) y se transfirieron las mismas a una membrana de nitrocelulosa por técnicas de Western blot. El análisis de Ia membrana con un anticuerpo específico de DGKα permitió detectar Ia presencia de Ia proteína, entre todas las proteínas del inmunoprecipitado, sólo en respuesta a Ia estimulación del TCR y de una manera rápida, cinco minutos después de Ia estimulación, que fue el tiempo más corto analizado (Figura 1A). Sin embargo, este resultado no permitió discriminar entre fosforilación directa de Ia proteína y/o asociación a proteínas fosforiladas en tirosina. Para discriminar entre fosforilación directa de Ia DGKα y asociación a proteínas fosforiladas en respuesta al TCR, se estimuló el TCR de las células Jurkat con anticuerpos anti-CD3 y se inmunoprecipitó Ia DGKα mediante una mezcla de tres anticuerpos monoclonales que reconocen tres epítopos diferentes de Ia proteína. Se separaron las proteínas por SDS- PAGE y se transfirieron a una membrana de nitrocelulosa por Western blot. El análisis de Ia membrana mediante el uso de un anticuerpo que reconoce proteínas fosforiladas en tirosina (anti-pY) reveló que Ia proteína DGKα se fosforila en tirosina en respuesta a Ia estimulación del TCR y que esta fosforilación, además de ser estequiométricamente baja, era rápida y transitoria, al comprobarse que el nivel de fosforilación alcanza su máximo entre los cinco y los quince minutos para después decaer a los treinta minutos (Figura 1 B).Given the importance of tyrosine kinases in the activation of the DGKα in response to the signal triggered by the TCR, the tyrosine phosphorylation of the endogenous DGKα was verified in response to the stimulation of the TCR. For this purpose, the stimulation of the TCR was mimicked by specific antibodies of the CD3 (anti-CD3) of the Jurkat cells and the tyrosine phosphorylated proteins of the lysate of these cells were immunoprecipitated, by means of a specific antibody of said proteins. Immunoprecipitate proteins were separated in polyacrylamide gels under reducing conditions (SDS-PAGE) and transferred to a nitrocellulose membrane by Western blot techniques. The analysis of the membrane with a specific DGKα antibody allowed to detect the presence of the protein, among all the proteins of the immunoprecipitate, only in response to the stimulation of the TCR and in a rapid manner, five minutes after the stimulation, which was the Shortest time analyzed (Figure 1A). However, this result did not allow discriminating between direct phosphorylation of the protein and / or association with phosphorylated proteins in tyrosine. To discriminate between direct phosphorylation of the DGKα and association with phosphorylated proteins in response to the TCR, the TCR of the Jurkat cells was stimulated with anti-CD3 antibodies and the DGKα was immunoprecipitated by a mixture of three monoclonal antibodies that recognize three different epitopes of the Ia protein. Proteins were separated by SDS-PAGE and transferred to a nitrocellulose membrane by Western blot. The analysis of the membrane through the use of an antibody that recognizes phosphorylated proteins in tyrosine (anti-pY) revealed that the DGKα protein was phosphorylation in tyrosine in response to the stimulation of TCR and that this phosphorylation, in addition to being stoichiometrically low, was rapid and transient, when it was verified that the phosphorylation level reaches its maximum between five and fifteen minutes and then decay after thirty minutes (Figure 1 B).
El alineamiento de Ia secuencia correspondiente a los ortólogos de DGKa humanos, de cerdo, de rata y ratón (Figura 2A) demuestra el alto grado de conservación de Ia Y355 (numeración según Ia secuencia humana), localizada entre el segundo dominio C1 y el dominio catalítico. Este residuo que no está presente en otras isoformas del tipo I se ha propuesto que se fosforila por Src en respuesta a factores de crecimiento (Baldanzi, Cutrupi et al. 2002) o alphaD-tocopherol (Fukunaga- Takenalk,Shirai et al. 2003). Para definir el posible papel de Ia Tyr 335 en el mecanismo de activación de DGKα por Lck, se realizó un muíante de sustitución de Ia Tyr 335 por Phe sobre Ia proteína de fusión GFP-DGKα (Figura 2A). Lo primero que se analizó fue el nivel de fosforilación en presencia de Lck, para Io cual se usaron las células de Ia línea Ba/F3, que es una línea proB que no expresa ni Fyn ni Lck, aunque sí otros miembros de Src como Lyn o BIk. En estas células, se transfectaron las construcciones GFP-DGKα silvestre (wt) y el muíante Y335F y se analizó Ia fosforilación de las proteínas expresadas en el lisado íoíal, deíecíándose un menor nivel de fosforilación del muíaníe GFP-DGKαY335F respecío a Ia forma silvesíre (Figura 2B). Esíe resulíado indica que Ia Tyr 335 es accesible a Ia íirosina quinasa Lck Para deíerminar Ia importancia de Ia Tyr 335 en Ia movilización de IaThe alignment of the sequence corresponding to the human, pig, rat and mouse DGKa orthologs (Figure 2A) demonstrates the high degree of conservation of the Y355 (numbering according to the human sequence), located between the second domain C1 and the domain catalytic. This residue that is not present in other type I isoforms has been proposed to be phosphorylated by Src in response to growth factors (Baldanzi, Cutrupi et al. 2002) or alphaD-tocopherol (Fukunaga-Takenalk, Shirai et al. 2003) . To define the possible role of Tyr 335 in the mechanism of DGKα activation by Lck, a substitution mutant of Tyr 335 by Phe was performed on the GFP-DGKα fusion protein (Figure 2A). The first thing that was analyzed was the level of phosphorylation in the presence of Lck, for which the cells of the Ba / F3 line were used, which is a proB line that does not express either Fyn or Lck, although other members of Src such as Lyn or BIk. In these cells, the wild GFP-DGKα (wt) and the Y335F mutant constructs were transfected and the phosphorylation of the proteins expressed in the iodine lysate was analyzed, a lower level of phosphorylation of the muffiness GFP-DGKαY335F being observed respecting the silvesíre form ( Figure 2B). This result indicates that the Tyr 335 is accessible to the Lck tyrosine kinase To determine the importance of the Tyr 335 in the mobilization of the
DGKα en respuesía al TCR, se esíudió Ia movilización de Ia GFP-DGKα salvaje (wí) y el muíaníe en respuesía a dicho recepíor. Con esíe fin, se íransfecíaron células de Ia línea Jurkaí con vecíores de expresión para ambas proíeínas y se analizó por microscopía confocal Ia movilización de Ia proíeína en respuesía a Ia esíimulación del TCR mimeíizada con aníicuerpos aníi-CD3 y aníi CD28 pegados placa. El resulíado mosíró que, a diferencia de Ia GFP-DGKα silvestre (wt), el mutante GFP-DGKα Y335F era incapaz de movilizarse a Ia membrana plasmática en respuesta al estímulo del TCR (Figura 3). Estos resultados demuestran que Ia Y335 es esencial para el mecanismo de movilización de Ia DGKα desde el citosol a Ia membrana en respuesta al TCR.DGKα in response to the TCR, the mobilization of the wild GFP-DGKα (wí) and the muierie in response to said recipient was studied. For this purpose, Jurkaí line cells were transfected with expression neighbors for both proieins and the mobilization of the proiein was analyzed by confocal microscopy in response to the mimicking of the mimicked TCR with ani-CD3 and CD28 aniic antibodies. The result showed that, unlike of the wild GFP-DGKα (wt), the GFP-DGKα Y335F mutant was unable to mobilize to the plasma membrane in response to the TCR stimulus (Figure 3). These results demonstrate that Y335 is essential for the mechanism of mobilization of DGKα from the cytosol to the membrane in response to the TCR.
Ejemplo 2.- Generación de un anticuerpo que reconoce de forma específica el residuo Y355 fosforilado (anticuerpo anti-fosfotirosina 335; pTyr335) Para analizar mejor el papel de Ia tirosina 335 en Ia fosforilación directa de Ia DGKα, se desarrolló un anticuerpo específico capaz de reconocer esta tirosina fosforilada (anticuerpo anti-pTyr335). Para valorar Ia especificidad del nuevo anticuerpo, se co-transfectó, en Ia línea celular HEK293, un vector de expresión para Ia DGKα de origen humano acoplada a un marcador de myc (myc-DGKα), junto con otro para Ia expresión de p56Lck. Veinticuatro horas después de Ia transfección, se inmunoprecipitó Ia DGKα del lisado celular mediante un anticuerpo específico del marcador de myc (anti-myc), y tanto este inmunoprecipitado como una muestra del lisado fueron separadas por SDS-PAGE y transferidas a membranas de nitrocelulosa por Western blot. El análisis de Ia membrana, tanto del lisado total (Figura 4A), como del inmunoprecipitado anti-myc (Figura 4B), mostró que el nuevo anticuerpo anti-fosfotirosina 335 (pTyr335) sólo reconoce Ia DGKα cuando se expresa junto con Ia p56Lck. El anticuerpo también reconoce Ia forma silvestre de DGKα de ratón marcada con HA (HA-DGKα salvaje, wt) cuando se sobreexpresa con Lck (Figura 4C). El anticuerpo reconoce una señal más débil en ausencia de Lck en exposiciones más largas. Dado que las células HEK293 expresan otras TK de Ia familia de Src, esa señal puede corresponder a fosforilación por Tk endógenas.Example 2.- Generation of an antibody that specifically recognizes the phosphorylated Y355 residue (anti-phosphotyrosine antibody 335; pTyr335) To better analyze the role of tyrosine 335 in the direct phosphorylation of DGKα, a specific antibody capable of recognize this phosphorylated tyrosine (anti-pTyr335 antibody). To assess the specificity of the new antibody, an expression vector for the human origin DGKα coupled to a myc marker (myc-DGKα) was co-transfected in the HEK293 cell line, together with another for the expression of p56Lck. Twenty-four hours after the transfection, the DGKα of the cell lysate was immunoprecipitated by a specific antibody of the myc marker (anti-myc), and both this immunoprecipitate and a sample of the lysate were separated by SDS-PAGE and transferred to nitrocellulose membranes by Western blot The analysis of the membrane, both of the total lysate (Figure 4A), and of the anti-myc immunoprecipitate (Figure 4B), showed that the new anti-phosphotyrosine 335 antibody (pTyr335) only recognizes the DGKα when expressed together with the p56Lck. The antibody also recognizes the wild form of mouse DGKα labeled with HA (wild HA-DGKα, wt) when overexpressed with Lck (Figure 4C). The antibody recognizes a weaker signal in the absence of Lck in longer exposures. Since HEK293 cells express other TKs of the Src family, that signal may correspond to endogenous Tk phosphorylation.
Para comprobar si el anticuerpo anti-pTyr335 era capaz de reconocer específicamente a Ia tirosina 335 fosforilada y no una fosforilación inespecífica de Ia proteína, se co-transfectó, en unas células de Ia línea HEK293, un vector de expresión que codifica para Ia p56Lck junto con otro que expresa Ia forma silvestre de DGKα de ratón marcada con HA (HA- DGKα silvestre, wt) o Ia forma muíante en tirosina 335 sustituida por fenilalanina (HA-DGKα Y335F) de Ia misma especie. Veinticuatro horas después, se separaron las proteínas de los usados celulares por técnicas de SDS-PAGE, y se transfirieron a una membrana de nitrocelulosa por Western blot. El análisis de Ia membrana con el anticuerpo anti-pTyr335 mostró que el anticuerpo es capaz de reconocer Ia fosforilación directa por p56Lck sólo cuando Ia tirosina 335 está presente en Ia DGKα demostrando Ia especificidad y Ia capacidad de discriminación del anticuerpo anti-pTyr335 (Figura 4D).To check if the anti-pTyr335 antibody was able to specifically recognize phosphorylated 335 tyrosine and not a phosphorylation nonspecific of the protein, an expression vector coding for the p56Lck was co-transfected into cells of the HEK293 line together with another that expresses the wild form of mouse DGKα labeled with HA (wild HA-DGKα, wt) or the mutant form in tyrosine 335 substituted by phenylalanine (HA-DGKα Y335F) of the same species. Twenty-four hours later, the proteins from the cell phones were separated by SDS-PAGE techniques, and transferred to a nitrocellulose membrane by Western blot. Analysis of the membrane with the anti-pTyr335 antibody showed that the antibody is capable of recognizing the direct phosphorylation by p56Lck only when the tyrosine 335 is present in the DGKα demonstrating the specificity and the discriminating ability of the anti-pTyr335 antibody (Figure 4D ).
Ejemplo 3.- La fosforilación de DGKα en Y355 es dependiente de p56Lck, localizándose mayoritariamente en Ia membrana plasmática, siendo inducida por Ia estimulación de TCR y regulada por Ia propia actividad quinasa de Ia DGKα.Example 3.- The phosphorylation of DGKα in Y355 is dependent on p56Lck, being located mostly in the plasma membrane, being induced by TCR stimulation and regulated by the DGKα kinase activity itself.
La proteína p56Lck fosforila a Ia DGKα en Ia tirosina 335 cuando ambas son expresadas de manera ectópica en células HEK293. Para corroborar si ocurría Io mismo con Ia las proteínas expresadas de forma endógena, se usó Ia línea celular Jurkat que expresa tanto Ia DGKα como Ia p56Lck, y se inhibió, durante una hora, Ia actividad tirosina quinasa de los miembros de Ia familia Src mediante un inhibidor específico, PP2, usado a diferentes concentraciones. El análisis de las proteínas de los usados celulares, a través de su separación por SDS-PAGE y posterior transferencia a membrana de nitrocelulosa por Western blot, por medio del anticuerpo anti-pTyr335 y del anticuerpo anti-pY, mostró que el nivel de fosforilación es inversamente proporcional a Ia dosis de inhibidor de Src, PP2, utilizado, tanto en Ia fosforilación de Ia tirosina 335 de Ia DGKα como en Ia fosforilación del resto de las proteínas de lisado (Figura 4A). Sin embargo, este resultado no descartó que otros miembros de Ia familia Src como p59Fyn pudieran estar fosforilando a Ia DGKα en Ia tirosina 335. Para descartarlo, se usó Ia línea celular JCaM que deriva de Jurkat pero que no expresa p56Lck y Ia línea celular Molt4 que, al igual que Jurkat, expresa Ia p56Lck y Ia DGKα. Se separaron las proteínas celulares de Jurkat, JCaM y Molt4 igual que en Ia Figura 5A y se llevó a cabo el análisis de Ia fosforilación en Ia tirosina 335 por medio del anticuerpo anti-pTyr335. El resultado mostró que, aun expresando los mismos niveles de Ia DGKα, Ia fosforilación en Ia tirosina 335 sólo se puede detectar cuando las células expresan Ia p56Lck (Figura 5B).The p56Lck protein phosphorylates DGKα in tyrosine 335 when both are expressed ectopically in HEK293 cells. To corroborate if the same occurred with the endogenously expressed proteins, the Jurkat cell line expressing both the DGKα and the p56Lck was used, and the tyrosine kinase activity of the members of the Src family was inhibited for one hour by a specific inhibitor, PP2, used at different concentrations. The analysis of the proteins of the used cell phones, through their separation by SDS-PAGE and subsequent transfer to nitrocellulose membrane by Western blot, by means of the anti-pTyr335 antibody and the anti-pY antibody, showed that the phosphorylation level It is inversely proportional to the dose of Src inhibitor, PP2, used, both in the phosphorylation of tyrosine 335 of the DGKα and in the phosphorylation of the rest of the lysate proteins (Figure 4A). But nevertheless, This result did not rule out that other members of the Src family such as p59Fyn could be phosphorylating the DGKα in the tyrosine 335. To discard it, the JCaM cell line derived from Jurkat but not expressing p56Lck and the Molt4 cell line was used, which, at Like Jurkat, it expresses the p56Lck and the DGKα. The cellular proteins of Jurkat, JCaM and Molt4 were separated as in Figure 5A and the analysis of the phosphorylation in tyrosine 335 was carried out by means of the anti-pTyr335 antibody. The result showed that, even expressing the same levels of DGKα, the phosphorylation in tyrosine 335 can only be detected when cells express p56Lck (Figure 5B).
La movilización de Ia proteína DGKα desde el citosol a Ia membrana depende del flujo de calcio y Ia activación de tirosinas quinasas (Sanjuan, Jones et al. 2001 ). Para determinar como influía en Ia localización subcelular de Ia DGKα Ia fosforilación de Ia tirosina 335 por parte de Ia p56Lck, se realizó un fraccionamiento subcelular de células Jurkat. Tras el fraccionamiento, se separaron las proteínas celulares por técnicas de SDS- PAGE y se transfirieron a una membrana de nitrocelulosa por técnicas de Western blot. Para los controles del fraccionamiento se usaron los anticuerpos anti-p56Lck, control de membrana, anti-lκBα, control de citosol y anti-vimentina, control de citoesqueleto. El resultado del fraccionamiento permitió corroborar los datos ya descritos de que Ia mayor parte de Ia DGKα era citosólica frente a una pequeña fracción que está presente en Ia membrana plasmática (Sanjuan, Pradet-Balade et al. 2003), y, además, determinar que parte de Ia proteína está en el citoesqueleto (Figura 6). La visualización de Ia fosforilación de Ia DGKα en Ia tirosina 335 por medio del anticuerpo anti-pTyr335 mostró que Ia proteína fosforilada está presente exclusivamente en Ia fracciones de membrana plasmática, mayoritariamente, y de citoesqueleto, coincidiendo, en las mismas, con Ia presencia de Ia p56Lck. Los resultados de Ia fosforilación de Ia proteína DGKα endógena proponían que Ia fosforilación era rápida y transitoria. Para estudiar Ia posible fosforilación de Ia DGKα en Ia tirosina 335 en respuesta al TCR, se mimetizó Ia estimulación del TCR mediante anticuerpos anti-CD3 y anti- CD3/-CD28 en células Jurkat. Tras Ia separación de las proteínas del lisado celular por SDS-PAGE y Ia posterior transferencia a membrana de nitrocelulosa por Western blot, se analizó el estado fosforilado de DGKα utilizando el anticuerpo anti-pTyr335. El resultado mostró que Ia fosforilación aumenta de una manera rápida, a los cinco minutos ya se ve aumento de Ia fosforilación, transitoria, a los quince minutos Ia fosforilación vuelve a sus niveles básales, y estequiométricamente baja (Figura 7). Además, Ia señal de co-estimulación procedente del CD28 provocó un ligero aumento del nivel de fosforilación de Ia tirosina 335 respecto a Ia señal del CD3 ejerciendo, por tanto, un papel positivo en Ia fosforilación.The mobilization of the DGKα protein from the cytosol to the membrane depends on the flow of calcium and the activation of tyrosine kinases (Sanjuan, Jones et al. 2001). To determine how the phosphorylation of tyrosine 335 by p56Lck influenced the subcellular location of DGKα, a subcellular fractionation of Jurkat cells was performed. After fractionation, cell proteins were separated by SDS-PAGE techniques and transferred to a nitrocellulose membrane by Western blotting techniques. Anti-p56Lck, membrane control, anti-lκBα, cytosol and anti-vimentin control, cytoskeleton control antibodies were used for fractionation controls. The result of the fractionation allowed to corroborate the data already described that most of the DGKα was cytosolic compared to a small fraction that is present in the plasma membrane (Sanjuan, Pradet-Balade et al. 2003), and, in addition, to determine that part of the protein is in the cytoskeleton (Figure 6). The visualization of the phosphorylation of the DGKα in the tyrosine 335 by means of the anti-pTyr335 antibody showed that the phosphorylated protein is present exclusively in the plasma membrane fractions, mostly, and cytoskeleton, coinciding therein with the presence of Ia p56Lck. The results of the phosphorylation of the endogenous DGKα protein proposed that the phosphorylation was rapid and transient. To study the possible phosphorylation of DGKα in tyrosine 335 in response to TCR, the stimulation of TCR was mimicked by anti-CD3 and anti-CD3 / -CD28 antibodies in Jurkat cells. After the separation of the proteins from the cell lysate by SDS-PAGE and the subsequent transfer to nitrocellulose membrane by Western blotting, the phosphorylated state of DGKα was analyzed using the anti-pTyr335 antibody. The result showed that phosphorylation increases rapidly, after five minutes there is an increase in transient phosphorylation, at fifteen minutes the phosphorylation returns to its basal levels, and stoichiometrically low (Figure 7). In addition, the co-stimulation signal from the CD28 caused a slight increase in the level of phosphorylation of the tyrosine 335 with respect to the signal of the CD3, thus exerting a positive role in the phosphorylation.
Ejemplo 4.- La fosforilación de DGKα en Y355 está regulada por su propia actividad quinasa y se incrementa por un aumento del flujo de Ca2+.Example 4.- The phosphorylation of DGKα in Y355 is regulated by its own kinase activity and is increased by an increase in the flow of Ca 2+ .
La inhibición de Ia actividad quinasa de Ia DGKα provoca que Ia localización de Ia proteína, en respuesta al TCR, en lugar de ser transitoria sea sostenida (Sanjuan, Jones et al. 2001 ), poniendo de manifiesto Ia relación entre Ia actividad de Ia proteína y su localización en Ia membrana. Puesto que Ia DGKα se fosforila en tirosina también con un cinética rápida y transitoria en respuesta al TCR, se determinó si había alguna relación entre el aumento del estado fosforilado de Ia tirosina 335 y Ia actividad quinasa de Ia DGKα, para Io cual se inhibió Ia misma durante treinta minutos por medio del inhibidor de las DGKs de tipo I, R59949, y antes de Ia estimulación con anticuerpos anti-CD3. Las proteínas del lisado celular se separaron por técnicas de SDS-PAGE y Western blot. Se analizó Ia fosforilación en Ia tirosina 335 con el anticuerpo anti-pTyr335 Io que mostró que Ia actividad DGKα era importante para disminuir el estado fosforilado de Ia DGKα durante Ia activación del TCR (Figura 7). Esto sugiere que, a través de su actividad quinasa, Ia DGKα regula su nivel de fosforilación tras Ia estimulación del TCR Por otro lado, Ia DGKα posee dos dominios tipo manos EF, característicos de Ia unión a Ca2+ y resulta activada por Ca2+ in vitro. La deleción de los dominios EF induce Ia localización constitutiva de Ia enzima en Ia membrana Io que sugiere que es necesario un cambio conformacional dependiente de EF para permitir Ia localización en Ia membrana de Ia enzima. Se evaluó el efecto tanto del Ca2+ como del DAG en Ia fosforilación de DGKα en Ia Y355. Los niveles de Ca2+ intracelulares se aumentaron empleando el ionóforo ionomicina mientras que los efectos de DAG se mimetizaron empleando PMA. Como se observa en Ia Figura 8, el tratamiento con ionomicina promovió Ia fosforilación de DGKα en Ia Y335. Aunque Ia adición de PMA potenciaba Ia fosforilación de Erk no tuvo efecto en Ia fosforilación de Ia Y355. Finalmente, Ia máxima fosforilación se observó empleando los dos estímulos de forma conjunta. Estos resultados demuestran que Ia acción concertada de las señales reguladas por DAGα y Ca2+ induce Ia máxima fosforilación en el residuo Y355. La movilización de Ca2+, probablemente mediante Ia interacción directa con los dominios EF, es responsable de un cambio conformacional que favorece Ia fosforilación de Ia enzima.The inhibition of the kinase activity of the DGKα causes that the location of the protein, in response to the TCR, instead of being transient is sustained (Sanjuan, Jones et al. 2001), showing the relationship between the activity of the protein and its location in the membrane. Since the DGKα is phosphorylated in tyrosine also with a rapid and transient kinetics in response to the TCR, it was determined if there was any relationship between the increase in the phosphorylated state of the tyrosine 335 and the kinase activity of the DGKα, for which the Ia same for thirty minutes by means of the inhibitor of DGKs of type I, R59949, and before the stimulation with anti-CD3 antibodies. Cell lysate proteins were separated by SDS-PAGE and Western blot techniques. The phosphorylation in tyrosine 335 was analyzed with the anti-pTyr335 Io antibody which showed that the activity DGKα was important to decrease the phosphorylated state of DGKα during TCR activation (Figure 7). This suggests that, through its kinase activity, the DGKα regulates its phosphorylation level after the stimulation of the TCR. On the other hand, the DGKα has two hands-like domains EF, characteristic of the Ca 2+ binding and is activated by Ca 2 + in vitro. The deletion of the EF domains induces the constitutive localization of the enzyme in the membrane which suggests that a conformational change dependent on EF is necessary to allow the location in the membrane of the enzyme. The effect of both Ca 2+ and DAG on the phosphorylation of DGKα in Y355 was evaluated. Intracellular Ca 2+ levels were increased using the ionomycin ionophore while the effects of DAG were mimicked using PMA. As can be seen in Figure 8, ionomycin treatment promoted the phosphorylation of DGKα in Y335. Although the addition of PMA enhanced the phosphorylation of Erk had no effect on the phosphorylation of Y355. Finally, maximum phosphorylation was observed using the two stimuli together. These results demonstrate that the concerted action of the signals regulated by DAGα and Ca 2+ induces the maximum phosphorylation in the Y355 residue. The mobilization of Ca 2+ , probably through direct interaction with the EF domains, is responsible for a conformational change that favors the phosphorylation of the enzyme.
Ejemplo 5.- Validación del empleo de RNA de interferencia humanos (hRNAi) para inhibir Ia expresión de DGKα como herramienta para definir su función en Ia respuesta inmuneExample 5.- Validation of the use of human interference RNA (hRNAi) to inhibit the expression of DGKα as a tool to define its function in the immune response
Para evaluar Ia relevancia de cada una de las isoformas de Ia proteínaTo evaluate the relevance of each of the isoforms of the protein
DGK presentes en linfocitos T se decidió atenuar de forma independiente Ia expresión de cada una de estas isoformas empleando Ia técnica de silenciamiento génico mediante RNA interferente. La interferencia de RNA (RNAi) representa Ia tecnología más reciente y prometedora para silenciamiento génico. Dicha tecnología se basa en el uso de un mecanismo conservado de defensa innata, mediante el que RNAs de doble cadena silencian Ia expresión de genes específicos, catalizando Ia degradación del mRNA homólogo (Fire A et al.1998 Nature 391 , 806-811 ; Elbashir SM et al. 2001 Nature 411 ; 494-498). La interferencia de RNA puede realizarse, bien introduciendo en las células dúplex de hRNAi presintetizados o mediante Ia expresión intracelular de hRNAi a partir de moldes de DNAs subclonados en plásmidos. El uso de plásmidos es mucho más versátil, además de que el silenciamiento puede prolongarse por mucho más tiempo, incluso silenciarse de forma estable empleando vectores retrovirales y/o lentivirales (Hemann MT et al 2003, 33; 396-400). Tanto los RNAi sintetizados como expresados intracelularmente convergen en el complejo RISC y son capaces de inducir silenciamiento génico. La generación de RNAi humanos frente a cada una de las isoformas de Ia proteína DGK se realizó mediante Ia síntesis de dos oligonucleótidos de 21 bp correspondientes a las regiones seleccionadas en Ia secuencia correspondiente para efectuar el RNAi (secuencia de nucleótidos de Ia DGKD humana, nt 1153-1173: AAGCCAGAAGACCATGGATGA (SEQ ID NO4); secuencia de nucleótidos de Ia DGK.ζ humana, nt 2290-2310: AACTATGTGACTGAGATCGCA (SEQ ID NO8) (Figura 10). Las secuencias seleccionadas (SEQ ID NO3 y 8) se emplearon posteriormente para generar oligonucleótidos de doble cadena de DNA que incluían una secuencia adaptadora de siete bp seguida de los 19 últimos nucleótidos correspondientes a Ia secuencia de interferencia más una secuencia de nueve bp que origina una horquilla en el RNA producido y de Ia secuencia complementaria a los 19 pb anteriores (TCATCCATGGTCTTCTGGC (SEQ ID NO5) y TGCGATCTCAGTCACATAG (SEQ ID NO8), complementarias de DGKα y DGKζ humana, respectivamente) (Figura 10), originando una pareja de secuencias de nucleótidos sense y antisense para DGKα humana, (SEQ ID NO6 y 7) como para DGKD(SEQ ID NO10 y 11 ), respectivamente. Por último, el oligonucleótido contiene una secuencia de polimidinas que permiten Ia terminación de Ia transcripción por Ia RNA polimerasa III. El RNA obtenido por Ia transcripción de este inserto consta de un RNA de doble cadena con una horquilla ("short hairpin RNA o shRNAi), el cuál es efectivamente reconocido por el complejo Dicer o complejo de silenciamiento de RNA.DGK present in T lymphocytes was decided to independently attenuate the expression of each of these isoforms using the gene silencing technique by interfering RNA. RNA interference (RNAi) represents the most recent and promising technology for gene silencing. This technology is based on the use of a conserved innate defense mechanism, whereby double-stranded RNAs silence the expression of specific genes, catalyzing the degradation of the homologous mRNA (Fire A et al. 1998 Nature 391, 806-811; Elbashir SM et al. 2001 Nature 411; 494-498). RNA interference can be carried out, either by introducing into the presynthesized hRNAi duplex cells or by intracellular expression of hRNAi from plasmid subcloned DNA templates. The use of plasmids is much more versatile, in addition to that the silencing can be prolonged for much longer, even silently stating using retroviral and / or lentiviral vectors (Hemann MT et al 2003, 33; 396-400). Both synthesized and intracellularly expressed RNAi converge in the RISC complex and are capable of inducing gene silencing. The generation of human RNAi against each of the isoforms of the DGK protein was carried out by means of the synthesis of two oligonucleotides of 21 bp corresponding to the regions selected in the corresponding sequence to perform the RNAi (nucleotide sequence of the human DGKD, nt 1153-1173: AAGCCAGAAGACCATGGATGA (SEQ ID NO4); nucleotide sequence of the human DGK.ζ, nt 2290-2310: AACTATGTGACTGAGATCGCA (SEQ ID NO8) (Figure 10). The selected sequences (SEQ ID NO3 and 8) were subsequently used to generate double stranded DNA oligonucleotides that included a seven bp adapter sequence followed by the last 19 nucleotides corresponding to the interference sequence plus a nine bp sequence that originates a hairpin in the produced RNA and the complementary sequence at 19 pb above (TCATCCATGGTCTTCTGGC (SEQ ID NO5) and TGCGATCTCAGTCACATAG (SEQ ID NO8), complementary to DGKα and human DGKζ, respectively) (Figure 10), originating a pair of sense and antisense nucleotide sequences for human DGKα, (SEQ ID NO6 and 7) as for DGKD (SEQ ID NO10 and 11), respectively. By Finally, the oligonucleotide contains a polyimidine sequence that allows the termination of transcription by RNA polymerase III. The RNA obtained by the transcription of this insert consists of a double-stranded RNA with a hairpin ("short hairpin RNA or shRNAi), which is effectively recognized by the Dicer complex or RNA silencing complex.
La secuencias de DNA generados se clonaron en el vector pSUPER y pSUPERGFP (Oligoengine). Los vectores se transfectaron en células Jurkat mediante electroporación. Las células se recogieron 96 horas post- transfección y los niveles de las proteínas DGKα y .ζse evaluaron mediante Western blot con anticuerpos específicos para ambas isoformas (Sanjuan, M. A., D. R. Jones, et al. (2001 ). "Role of diacylglycerol kinase alpha in the attenuation of receptor signaling." J CeII Biol 153(1 ): 207-20.Anticuerpo antidgkalfa; Topham, M. K. and S. M. Prescott (1999). "Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions." J Biol Chem 274(17): 11447-50.Anticuerpo antiDGKzeta; respectivamente). La transfección con los plásmidos correspondientes (pSUPERGFP-1153: AAGCCAGAAGACCATGGATGA y pSUPERGFP-2450:The generated DNA sequences were cloned into the vector pSUPER and pSUPERGFP (Oligoengine). Vectors were transfected into Jurkat cells by electroporation. Cells were collected 96 hours post-transfection and DGKα and. Y protein levels were evaluated by Western blotting with antibodies specific for both isoforms (Sanjuan, MA, DR Jones, et al. (2001). "Role of diacylglycerol kinase alpha in the attenuation of receptor signaling. "J CeII Biol 153 (1): 207-20. Antidgkalfa antibody; Topham, MK and SM Prescott (1999)." Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. "J Biol Chem 274 (17): 11447-50. Anti-DGGzeta antibody; respectively). Transfection with the corresponding plasmids (pSUPERGFP-1153: AAGCCAGAAGACCATGGATGA and pSUPERGFP-2450:
AAGGTGAAGAGCTGATTGAGG) indujo una fuerte reducción en los niveles de cada una de las proteínas DGKα y .ζ (Figura 11 ).AAGGTGAAGAGCTGATTGAGG) induced a sharp reduction in the levels of each of the DGKα and .ζ proteins (Figure 11).
A continuación se evaluó el efecto de atenuar Ia expresión de cada una de las isoformas de DGK en Ia regulación de las señales originadas por estimulación del TCR. Los experimentos demostraron previamente el importante papel de DGKα como modulador negativo de Ia ruta Ras/ERK mediante Ia localización a Ia membrana de RasGRPI . Como puede observarse, Ia atenuación de DGKα tuvo un marcado efecto sobre Ia cinética de fosforilación de ERK que resultó más intensa y transitoria comparada con Ia estimulación en células expresando niveles normales de DGKα (Figura 12) Sin embargo, en estas condiciones Ia atenuación de DGKζ no tuvo ningún efecto aparente mediante modulación de RasGRPI . La generación de DAG regula Ia localización a Ia membrana de proteínas quinasas de Ia familia C (PKCs). La estimulación del receptor de antígeno TCR induce Ia translocación a Ia membrana de las isoforma alfa de PKC con una cinética bifásica. Como se observa en Ia Figura 13, Ia atenuación de Ia expresión de DGKα induce una cinética de translocación mucho más transitoria perdiéndose el segundo pico de translocación. Por el contrario, Ia atenuación de Ia expresión de DGKζ indujo una cinética de translocación mucho más sostenida. Un efecto similar se observó sobre Ia cinética de translocación de PKCΘ, que, como es el caso para PKCD translocaba de forma mucho más intensa en las células con niveles reducidos de DGKΘ.Next, the effect of attenuating the expression of each of the DGK isoforms on the regulation of the signals originated by TCR stimulation was evaluated. The experiments previously demonstrated the important role of DGKα as a negative modulator of the Ras / ERK route through the location of the RasGRPI membrane. As can be seen, the attenuation of DGKα had a marked effect on the kinetics of ERK phosphorylation that was more intense and transitory compared to the stimulation in cells expressing normal levels of DGKα (Figure 12) However, under these conditions the attenuation of DGKζ had no apparent effect by modulating RasGRPI. The generation of DAG regulates the location to the membrane of protein kinases of the family C (PKCs). The stimulation of the TCR antigen receptor induces translocation to the membrane of the PKC alpha isoform with biphasic kinetics. As can be seen in Figure 13, the attenuation of DGKα expression induces a much more transient translocation kinetics, losing the second translocation peak. On the contrary, the attenuation of DGKζ expression induced a much more sustained translocation kinetics. A similar effect was observed on the translocation kinetics of PKCΘ, which, as is the case for PKCD, translocated much more intensely in cells with reduced levels of DGKΘ.
La activación del TCR induce una mayor actividad PI3K que, a su vez, regula Ia activación de Ia quinasa PDK1 que fosforila y activa Ia quinasa AKT. La activación de esta quinasa es esencial para Ia activación linfocitaria. Como puede verse en Ia Figura 14 Ia fosforilación de AKT en Ia T308, el sitio de fosforilación por PDK1 , resulta elevada en células con menor expresión tanto de DGKα como de DGKζ, siendo más pronunciado el efecto en el caso de esta última. Por el contrario, Ia fosforilación de AKT en Ia S473 no se vio afectada por Ia alteración de los niveles de ninguna de las dos DGKs. En resumen, estos experimentos demuestran Ia eficaz atenuación deThe activation of the TCR induces a higher PI3K activity which, in turn, regulates the activation of the PDK1 kinase that phosphorylates and activates the AKT kinase. The activation of this kinase is essential for lymphocyte activation. As can be seen in Figure 14, the phosphorylation of AKT in Ia T308, the phosphorylation site by PDK1, is elevated in cells with less expression of both DGKα and DGKζ, the effect being more pronounced in the case of the latter. On the contrary, the phosphorylation of AKT in S473 was not affected by the alteration of the levels of either of the two DGKs. In summary, these experiments demonstrate the effective attenuation of
DGKα empleando shRNAi y demuestran Ia acción diferencial de esta isoforma frente a DGKζ. Estos experimentos indican el potencial uso de esta herramienta para atenuar Ia expresión de DGKD en aquellas células o tejidos donde su expresión pueda originar patologías.DGKα using shRNAi and demonstrate the differential action of this isoform against DGKζ. These experiments indicate the potential use of this tool to attenuate the expression of DGKD in those cells or tissues where its expression may cause pathologies.
MATERIAL Y MÉTODOSMATERIAL AND METHODS
Líneas celulares La línea celular BaF3 se mantuvo en cultivo en medio RPMI suplementado con 2mM de glutamina, 10% suero fetal bovino (FCS), 50 nM β-mercaptoetanol y 50 U/ml de interleuquina-2 (I L2) recombinante o sobrenadante de células Wehi3B que aporta interleuquina-3 (IL-3) al 10%. Las líneas HEK293, Jurkat y JCAM se mantuvieron con medio DMEM suplementado con 2 mM de glutamina, 10% de FCS. Las líneas celulares SU-DHL1 y Karpas 299 se mantuvieron con medio RPMI suplementado con 2 mM de glutamina, 10% FCS. Todas las líneas se mantuvieron a 37C y 10% de CO2.Cell lines The BaF3 cell line was maintained in culture in RPMI medium supplemented with 2mM glutamine, 10% fetal bovine serum (FCS), 50 nM β-mercaptoethanol and 50 U / ml recombinant interleukin-2 (I L2) or supernatant of Wehi3B cells that provides interleukin-3 (IL-3) to 10% The HEK293, Jurkat and JCAM lines were maintained with DMEM medium supplemented with 2 mM glutamine, 10% FCS. The SU-DHL1 and Karpas 299 cell lines were maintained with RPMI medium supplemented with 2 mM glutamine, 10% FCS. All lines were maintained at 37C and 10% CO 2 .
Estimulación de células con anticuerpos solubles CD3/CD8Stimulation of cells with soluble CD3 / CD8 antibodies
Las células de Ia línea Jurkat en crecimiento exponencial se recogieron en tampón HBSS (25 mM de hepes KOH pH 7.4, 1 mM MgCI2, 1 mM CaCI2, 132 mM NaCI, 0,1% BSA) en tubos de 1.5 mi, uno por cada punto de estimulación, a una concentración nunca superior a 5x106 células/ml. Las células fueron estimuladas con anticuerpos anti-CD3 o anti- CD3 y anti-CD28 a una concentración final de 1 μg/ml cada uno. En el caso de usar el inhibidor de DGK, R59949, las células se incubaron 30 minutos antes de Ia estimulación con el inhibidor a una concentración de 30 μM. Tras Ia estimulación durante los tiempos indicados, las células se congelaron a - 8O0C y posteriormente se usaron para analizar las proteínas por técnicas de SDS-PAGE y western blot.The cells of the Jurkat line in exponential growth were collected in HBSS buffer (25 mM of hepes KOH pH 7.4, 1 mM MgCI 2 , 1 mM CaCI 2 , 132 mM NaCI, 0.1% BSA) in 1.5 ml tubes, one for each point of stimulation, at a concentration never exceeding 5x10 6 cells / ml. The cells were stimulated with anti-CD3 or anti-CD3 and anti-CD28 antibodies at a final concentration of 1 μg / ml each. In the case of using the DGK inhibitor, R59949, the cells were incubated 30 minutes before stimulation with the inhibitor at a concentration of 30 μM. After stimulation during the indicated times, the cells were frozen at -8O 0 C and subsequently used to analyze the proteins by SDS-PAGE and western blot techniques.
Lisis celularCell lysis
Las células se usaron en el tampón p70 (10 mM Hepes, pH 7.5, 15 mM KCI, 1 mM EDTA, 1 mM EGTA, 10% glicerol, 0.2% Nonidet P-40, 1 mM ditiotreitol, 50 mM NaF, 10 μg/ml de leupeptina y de aprotinina, 1 mM PMSF,The cells were used in the p70 buffer (10 mM Hepes, pH 7.5, 15 mM KCI, 1 mM EDTA, 1 mM EGTA, 10% glycerol, 0.2% Nonidet P-40, 1 mM dithiothreitol, 50 mM NaF, 10 μg / ml of leupeptin and aprotinin, 1 mM PMSF,
1 mM ortovanadaro sódico, y 20 mM -glicerolfosfato) a 4o durante 10 minutos. Después el lisado se centrifugó a 15.00Og, a 4o durante 15 minutos.1 mM orthovanadaro sodium, and 20 mM-glycerol phosphate) at 4 or for 10 minutes. The lysate was then centrifuged at 15.00Og, 4 or for 15 minutes.
En el sobrenadante se cuantificó Ia cantidad de proteína, una vez cuantificada mediante el detergente SDS se redujeron las proteínas con tampón de Laemmli y se separan éstas en geles de poliacrilamidada y electroforesis SDS-PAGE. Las proteínas se transfirieron a membranas de nitrocelulosa y estas se analizaron con anticuerpos específicos frente a Ia proteína de interés.In the supernatant, the amount of protein was quantified, once quantified by means of the SDS detergent, the proteins were reduced with Laemmli buffer and these were separated in polyacrylamidated gels and SDS-PAGE electrophoresis. The proteins were transferred to nitrocellulose membranes and these were analyzed with specific antibodies against the protein of interest.
Plásmidos y TransfeccionesPlasmids and Transfections
Los vectores de expresión para GFP-DGKα silvestre (wt), GFP-DGKα Δ(1-196) y HA-DGKα usados fueron previamente generados y descritos en el laboratorio (Sanjuan, Jones et al. 2001 ; Ciprés, Carrasco et al. 2003). Sobre los mismos se realizaron Ia mutación puntual de Ia tirosina 335 por alanina o por aspártico.Expression vectors for wild GFP-DGKα (wt), GFP-DGKα Δ (1-196) and HA-DGKα used were previously generated and described in the laboratory (Sanjuan, Jones et al. 2001; Cypress, Carrasco et al. 2003). On them, the punctual mutation of tyrosine 335 was performed by alanine or aspartic.
Los oligos de ADN usados para realizar Ia mutagénesis dirigida se resumen en Ia Tabla Materiales 1 :The DNA oligos used to perform the directed mutagenesis are summarized in Table Materials 1:
Tabla Materiales 1Materials Table 1
Figure imgf000034_0001
Figure imgf000034_0001
Para obtener las mutaciones puntuales de Ia tirosina 335 se usó el sistema "QuickChange Site-directed mutagénesis kit" de Stratagene, siguiendo las instrucciones del fabricante.To obtain the specific mutations of tyrosine 335, the Stratagene "QuickChange Site-directed mutagenesis kit" system was used, following the manufacturer's instructions.
Para Ia transfección de las células Ba/F3 se recogieron 12.5 x 106 de células en crecimiento exponencial y se resuspenden en un volumen de 500 μl de medio sin suero previamente atemperado. Se transfectaron 20 μg de ADN del plásmido de interés con un electrochoque que se realiza a 304 v y 975 μF. Después del electrochoque, las células se recuperaron con 30 mi de medio completo y 24 horas después se realizó el ensayo correspondiente. En el caso de las células Jurkat, se transfectaron 20 μg de ADN del plásmido de interés en el mismo número de células que en BaF3 pero se resuspenden en 400 μl de medio sin suero previamente atemperado. El electrochoque se realizó a 270 v y 975 μF y las células se recuperaron con 20 mi de medio completo, 24 horas después se realizó el ensayo. Las células HEK293 se transfectaron con lipofectamina según las instrucciones del fabricante.For the transfection of the Ba / F3 cells, 12.5 x 10 6 of exponentially growing cells were collected and resuspended in a volume of 500 µl of medium without previously tempered serum. 20 μg of transfected Plasmid DNA of interest with an electric shock that is performed at 304 v and 975 μF. After the electric shock, the cells were recovered with 30 ml of complete medium and 24 hours later the corresponding assay was performed. In the case of Jurkat cells, 20 μg of plasmid DNA of interest was transfected in the same number of cells as in BaF3 but resuspended in 400 μl of medium without previously tempered serum. The electro shock was performed at 270 v and 975 μF and the cells were recovered with 20 ml of complete medium, 24 hours later the assay was performed. HEK293 cells were transfected with lipofectamine according to the manufacturer's instructions.
Geles de poliacri lamida y Western BlotPolyacrylamide gels and Western Blot
Las proteínas de los usados celulares se separaron en geles de poliacrilamida en condiciones desnaturalizantes (SDS-PAGE). El porcentaje de los geles varió en función de Ia proteína analizada entre el 7.5% y el 12%. En el caso de DGKα el porcentaje fue del 10%. Una vez realizada Ia separación de las proteínas, éstas se transfirieron a membranas de nitrocelulosa por técnicas de western blot.The proteins of the used cell phones were separated in polyacrylamide gels under denaturing conditions (SDS-PAGE). The percentage of gels varied depending on the protein analyzed between 7.5% and 12%. In the case of DGKα the percentage was 10%. Once the separation of the proteins was carried out, they were transferred to nitrocellulose membranes by western blotting techniques.
El análisis de las membranas de nitrocelulosas se realizó con anticuerpos específicos siguiendo las instrucciones del fabricante. Excepto variaciones puntuales, en el protocolo básico se incubaron las membranas de nitrocelulosa con leche al 5% en TBS durante una hora a temperatura ambiente para bloquearlas. Después se realizaron 2 lavados de 10 minutos con TBS/Tween-20 0,1 %, seguido de una incubación de 1 hora con el anticuerpo primario a temperatura ambiente. Pasada Ia hora, se lavó Ia membrana de nitrocelulosa con 3 lavados de TBS/Tween-20 0,1 % y se incubó con el anticuerpo secundario acoplado a Ia enzima HRP durante una hora a temperatura ambiente. Finalmente, se lavó 2 veces Ia membrana con TBS/Tween-20 0,1%, y se reveló mediante Ia reacción luminiscente que genera Ia HRP en presencia de su sustrato para Io cual se usó el reactivo ECL. Esta reacción luminiscente se recogió por autoradiografía y se cuantificó mediante el programa lmage J. Generación del anticuerpo, no comercial, anti-pY335DGKαThe analysis of nitrocellulose membranes was performed with specific antibodies following the manufacturer's instructions. Except for specific variations, in the basic protocol the nitrocellulose membranes were incubated with 5% milk in TBS for one hour at room temperature to block them. Then, 2 10 minute washes were performed with 0.1% TBS / Tween-20, followed by a 1 hour incubation with the primary antibody at room temperature. After 1 hour, the nitrocellulose membrane was washed with 3 washes of 0.1% TBS / Tween-20 and incubated with the secondary antibody coupled to the HRP enzyme for one hour at room temperature. Finally, the membrane was washed twice with 0.1% TBS / Tween-20, and revealed by the luminescent reaction that generates the HRP in the presence of its substrate for which the ECL reagent was used. This luminescent reaction was collected by autoradiography and quantified using the lmage J. program. Antibody generation, non-commercial, anti-pY335DGKα
Un péptido sintético correspondiente a Ia secuencia de DGKα P329- A339, NH2-CPPSS(fosfoY)PSVLA-COOH se conjugó a KLH. 300 μg del antígeno conjugado a KLH se emulsionaron con adyuvante de Freund completo y se inyectaron en conejas de 10 meses de edad. Cada dos semanas, se reinyectan otros 150 μg de antígeno con adyuvante de Freund incompleto. Tres días después de Ia sexta reinyección, se sangró el conejo y el antisuero fue recolectado. La especificidad del anticuerpo se confirmó por dot blot y western blot usando un péptido no fosforilado, NH2- CPPSSIYPSVLA-COOH, y un muíante de DGKα que no puede ser fosforilado en Ia tirosina 335, Y335F. El anticuerpo reaccionó con el péptido fosforilado pero no con el no fosforilado o con el muíante Y335F.A synthetic peptide corresponding to the sequence of DGKα P329-A339, NH 2 -CPPSS (phosphoY) PSVLA-COOH was conjugated to KLH. 300 μg of the KLH conjugated antigen was emulsified with complete Freund's adjuvant and injected into 10 month old rabbits. Every two weeks, another 150 μg of antigen is reinjected with incomplete Freund's adjuvant. Three days after the sixth reinjection, the rabbit was bled and the antiserum was collected. The specificity of the antibody was confirmed by dot blot and western blot using a non-phosphorylated peptide, NH 2 -CPPSSIYPSVLA-COOH, and a DGKα mutant that cannot be phosphorylated in tyrosine 335, Y335F. The antibody reacted with the phosphorylated peptide but not with the non-phosphorylated peptide or with the Y335F mutant.
InmunoprecipitaciónImmunoprecipitation
Las células se usaron en tampón NP-40 (1 % Nonideí P-40, 50 mM Tris-HCI, pH 7.5, 150 mM NaCI, 10 mM NaF, 10 mM Na4P2O7, 1 mM Na3VO4, 1 mM PMSF, 10 ng/μl aproíinina, 10 ng/μl leupepíina), después se cenírifugaron a 15.00Og, 40C. Una vez se recoge el sobrenadaníe, se cuaníificó Ia caníidad de proíeína del mismo. La inmunoprecipiíación se realizó según las especificaciones de cada aníicuerpo, por Io general 1-5 μg/ml de aníicuerpo en 300-500 μg de proíeína duraníe 1 hora a 40C. Pasado ese íiempo, se incorporó el aníicuerpo secundario capaz de reconocer el aníicuerpo uíilizado para inmunoprecipiíar, Gamma-Bind G proíein shepharose, 1 hora a 40C. Finalmeníe, el inmunoprecipiíado se recolecíó por cenírifugación, y se lavó 2 veces con el íampón de lisis NP40 usado para lisar, una vez con un íampón LiCI (0.5 M LiCI y Hepes 50 mM pH 7.4) y 3 veces con íampón Hepes 50 mM pH 7.4.The cells were used in NP-40 buffer (1% Nonideí P-40, 50 mM Tris-HCI, pH 7.5, 150 mM NaCI, 10 mM NaF, 10 mM Na 4 P 2 O 7 , 1 mM Na3VO 4 , 1 mM PMSF, 10 ng / μl approprinin, 10 ng / μl leupepine), then centrifuged at 15.00Og, 4 0 C. Once the supernatany is collected, the amount of proiein thereof was quantified. Immunoprecipiation was performed according to the specifications of each antibody, generally 1-5 μg / ml of an antibody in 300-500 μg of proiein lasting 1 hour at 4 0 C. After that time, the secondary antibody capable of recognizing the Immunoprecipitate used, Gamma-Bind G proiein shepharose, 1 hour at 4 0 C. Finally, the immunoprecipitate was collected by centrifugation, and washed twice with the NP40 lysis buffer used for lysing, once with a LiCI iampon ( 0.5 M LiCI and 50 mM Hepes pH 7.4) and 3 times with 50 mM Hepes buffer pH 7.4.
Fraccionamiento subcelularSubcellular fractionation
El fraccionamienío se realizó como se describe en Cao, Janssen eí al. 2002 con las siguientes modificaciones. Las células Jurkat se recolectaron y se resuspendieron en tampón de lisis 1 previamente enfriado (5 mM Tris- HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI2, 1 mM EGTA, 1 mM DTT y 40 μg/ml de digitonina) suplementado con Ia mezcla de inhibidores de proteínas. Se usaron las células durante 15 minutos a 40C, después se centrifugaron a 4500 g durante 4 minutos a 40C y se recogió el sobrenadante (fracción citosólica, C). La fracción insoluble se resuspendió en tampón de lisis 2 previamente enfriado (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI2, 1 mM EGTA, 1 mM DTT y 0.2% NP40) y se usaron durante 10 minutos a 40C, después se centrifugó a 15000 g, 15 minutos a 40C y se recogió el sobrenadante (fracción de membrana, M1). La fracción insoluble de este segundo lisado es resuspendida en el tampón de lisis 3 (5 mM Tris- HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI2, 1 mM EGTA, 1 mM DTT y 1 % NP40) y sujeta al mismo proceso que con el tampón 2. El sobrenadante de esta segunda fracción contiene las proteínas más fuertemente asociadas a las membranas celulares (fracción de membrana, M2). La última fracción insoluble fue resuspendida en tampón de carga de proteínas (tampón de Laemmli) y corresponde a Ia fracción de proteínas del citoesqueleto (Ck). Las diferentes fracciones son separadas por técnicas de SDS-PAGE y western blot.The fractionation was performed as described in Cao, Janssen eí al. 2002 with the following modifications. Jurkat cells were harvested and resuspended in previously cooled lysis buffer 1 (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 40 μg / ml digitonin) supplemented with the mixture of protein inhibitors. The cells were used for 15 minutes at 4 0 C, then centrifuged at 4500 g for 4 minutes at 4 0 C and the supernatant (cytosolic fraction, C) was collected. The insoluble fraction was resuspended in previously cooled lysis buffer 2 (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 0.2% NP40) and used for 10 minutes at 4 0 C, then centrifuged at 15,000 g, 15 minutes at 4 0 C and the supernatant (membrane fraction, M1) was collected. The insoluble fraction of this second lysate is resuspended in lysis buffer 3 (5 mM Tris-HCI, pH 7.5, 10 mM NaCI, 0.5 mM MgCI 2 , 1 mM EGTA, 1 mM DTT and 1% NP40) and subject thereto process than with buffer 2. The supernatant of this second fraction contains the proteins most strongly associated with cell membranes (membrane fraction, M2). The last insoluble fraction was resuspended in protein loading buffer (Laemmli buffer) and corresponds to the protein fraction of the cytoskeleton (Ck). The different fractions are separated by SDS-PAGE and western blot techniques.
Ensayo DGKDGK test
Las proteínas fueron inmunoprecipitadas según su protocolo y su actividad se ensayó mediante incorporación del fosfato gamma de una molécula de ATP marcado radiactivamente (P32) en Ia molécula de DAG de cadena de ocho átomos de carbono, 1 ,2-octanoil- sn-glicerol (C8-DAG), para dar lugar a ácido fosfatídico con una cadena de ocho átomos de carbono marcado con fósforo 32 (C8-P32A). La reacción se llevó a cabo a temperatura ambiente durante 10 minutos, y una vez se produjo, los lípidos fueron extraídos mediante un solvente compuesto de CHCL3/Me0H/HCL(2N) (20:10:5, v/v/v). Los lípidos fueron secados por medio de centrifugación en vacío atmosférico, para después ser resuspendidos en un solvente de CHCL3, MeOH, y amonio 4 M (9:7:2, v/v/v). Estos lípidos fueron separados en cromatografía en capa fina (TLC) y el resultado de Ia separación se visualizó por autoradioagrafía de Ia misma.The proteins were immunoprecipitated according to their protocol and their activity was tested by incorporating the gamma phosphate of a radioactively labeled ATP molecule (P 32 ) into the chain DAG molecule of eight carbon atoms, 1,2-octanoyl-sn-glycerol (C8-DAG), to give rise to phosphatidic acid with a chain of eight carbon atoms labeled with phosphorus 32 (C8-P 32 A). The reaction was carried out at room temperature for 10 minutes, and once it occurred, the lipids were extracted using a solvent composed of CHCL 3 / Me0H / HCL (2N) (20: 10: 5, v / v / v) . The lipids were dried by centrifugal medium in atmospheric vacuum, then to be resuspended in a solvent of CHCL 3 , MeOH, and 4 M ammonium (9: 7: 2, v / v / v). These lipids were separated in thin layer chromatography (TLC) and the result of the separation was visualized by autoradiography thereof.
Microscopía confocalConfocal microscopy
Las células Jurkat, 24 horas después de Ia transfección, se centrifugaron y se resuspendieron en HBSS (25 mM de hepes KOH pH 7.4, 1 mM MgCI2, 1 mM CaCI2, 132 mM NaCI, 0,1 % BSA), para después transferirlas a cámaras de microscopía recubiertas con poli-D,L-lisina y, tras permitir que se adhieran, se mantuvieron a 37° C. Las imágenes fueron capturadas con un microscopio confocal Leica y analizadas con el programa ImageJ.Jurkat cells, 24 hours after transfection, were centrifuged and resuspended in HBSS (25 mM of hepes KOH pH 7.4, 1 mM MgCI 2 , 1 mM CaCI 2 , 132 mM NaCI, 0.1% BSA), then transfer them to microscopy chambers coated with poly-D, L-lysine and, after allowing them to adhere, they were kept at 37 ° C. The images were captured with a Leica confocal microscope and analyzed with the ImageJ program.
Estimulación de células con anticuerpos anti-CD3/CD28 pegados a Ia placaStimulation of cells with anti-CD3 / CD28 antibodies attached to the plate
La superficie de las cámaras de microscopía se incubaron con una mezcla de anticuerpos anti-CD3/anti-CD28 (5 μg/ml cada uno) en 150 mM Tris-HCI pH8, a temperatura ambiente durante 1 hora ó a 40C durante 16 horas. Las células Jurkat, transfectadas 24 horas antes con Ia construcción indicada, se centrifugaron y se resuspendieron en HBSS. Estas células se incorporaron a las cámaras de microscopía previamente atemperadas a 370C, y se recogieron las imágenes por microscopía confocal a los tiempos indicados tomando como tiempo cero el momento en que se incorporan las células. Las imágenes fueron analizadas con el programa ImageJ.The surface of the microscopy chambers were incubated with a mixture of anti-CD3 / anti-CD28 antibodies (5 μg / ml each) in 150 mM Tris-HCI pH8, at room temperature for 1 hour or at 4 0 C for 16 hours. Jurkat cells, transfected 24 hours before with the indicated construction, were centrifuged and resuspended in HBSS. These cells were incorporated into cameras microscopy previously tempered at 37 0 C, and images were collected by confocal microscopy at the indicated times taking as zero time the time when the cells are incorporated. The images were analyzed with the ImageJ program.
Estimulación de células con anticuerpos solubles CD3/CD28Stimulation of cells with soluble CD3 / CD28 antibodies
Las células de Ia línea Jurkat en crecimiento exponencial se recogieron en tampón HBSS (25 mM de hepes KOH pH 7.4, 1 mM MgCI2, 1 mM CaCI2, 132 mM NaCI, 0,1% BSA) en tubos de 1.5 mi, uno por cada punto de estimulación, a una concentración nunca superior a 5x106 células/ml. Las células fueron estimuladas con anticuerpos anti-CD3 o anti- CD3 y anti-CD28 a una concentración final de 1 μg/ml cada uno. En el caso de usar el inhibidor de DGK, R59949, las células fueron incubadas 30 minutos antes de Ia estimulación con el inhibidor a una concentración de 30 μM. Tras Ia estimulación durante los tiempos indicados, las células se congelaron a -8O0C y posteriormente se usaron para analizar las proteínas por técnicas de SDS-PAGE y western blot.The cells of the Jurkat line in exponential growth were collected in HBSS buffer (25 mM of hepes KOH pH 7.4, 1 mM MgCI 2 , 1 mM CaCI 2 , 132 mM NaCI, 0.1% BSA) in 1.5 ml tubes, one for each point of stimulation, at a concentration never exceeding 5x10 6 cells / ml. The cells were stimulated with anti-CD3 or anti-CD3 and anti-CD28 antibodies at a final concentration of 1 μg / ml each. In the case of using the DGK inhibitor, R59949, the cells were incubated 30 minutes before stimulation with the inhibitor at a concentration of 30 μM. After stimulation during the indicated times, the cells were frozen at -8O 0 C and subsequently used to analyze the proteins by SDS-PAGE and western blot techniques.
BIBLIOGRAFÍA Abe, T., X. Lu, et al. (2003). "Site-directed mutagenesis of the active site of diacylglycerol kinase alpha: calcium and phosphatidylserine stimulate enzyme activity via distinct mechanisms." Biochem J 375(Pt 3): 673-80. Bacchiocchi, R., G. Baldanzi, et al. (2005). "Activation of alpha-diacylglycerol kinase is critical for the mitogenic properties of anaplastic lymphoma kinase." Blood 106(6): 2175-82.BIBLIOGRAPHY Abe, T., X. Lu, et al. (2003). "Site-directed mutagenesis of the active site of diacylglycerol kinase alpha: calcium and phosphatidylserine stimulate enzyme activity via distinct mechanisms." Biochem J 375 (Pt 3): 673-80. Bacchiocchi, R., G. Baldanzi, et al. (2005). "Activation of alpha-diacylglycerol kinase is critical for the mitogenic properties of anaplastic lymphoma kinase." Blood 106 (6): 2175-82.
Berridge, M. J. (1997). "Lymphocyte activation in health and disease." Crit Rev Immunol 17(2): 155-78.Cipres, A., S. Carrasco, et al. (2003). "Regulation of diacylglycerol kinase alpha by phosphoinositide 3-kinase lipid producís." J Biol Chem 278(37): 35629-35. Cutrupi, S., G. Baldanzi, et al. (2000). "Src-mediated activation of alpha- diacylglycerol kinase is required for hepatocyte growth factor-induced cell motility." Embo J 19(17): 4614-22.Berridge, M. J. (1997). "Lymphocyte activation in health and disease." Crit Rev Immunol 17 (2): 155-78.Cipres, A., S. Carrasco, et al. (2003). "Regulation of diacylglycerol kinase alpha by phosphoinositide 3-kinase lipid producís." J Biol Chem 278 (37): 35629-35. Cutrupi, S., G. Baldanzi, et al. (2000). "Src-mediated activation of alpha-diacylglycerol kinase is required for hepatocyte growth factor-induced cell motility." Embo J 19 (17): 4614-22.
Flores, I., T. Casaseca, et al. (1996). "Phosphatidic acid generation through interleukin 2 (IL-2)-induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation." J Biol Chem 271(17): 10334-40.Flores, I., T. Casaseca, et al. (nineteen ninety six). "Phosphatidic acid generation through interleukin 2 (IL-2) -induced alpha-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation." J Biol Chem 271 (17): 10334-40.
Flores, I., D. R. Jones, et al. (1999). "Diacylglycerol kinase inhibition prevenís IL-2-induced G1 to S íransiíion íhrough a phosphaíidylinosiíol-3 kinase- independent mechanism." J Immunol 163(2): 708-14. Fukunaga-Takenaka, R., Y. Shirai, et al. (2005). "Importance of chroman ring and tyrosine phosphorylation in the subtype-specific translocation and activation of diacylglycerol kinase alpha by D-alpha-tocopherol." Genes CeIIsFlores, I., DR Jones, et al. (1999). "Diacylglycerol kinase inhibition prevents IL-2-induced G1 to S íransiíion íhrough a phosphaíidylinosiíol-3 kinase- independent mechanism." J Immunol 163 (2): 708-14. Fukunaga-Takenaka, R., Y. Shirai, et al. (2005). "Importance of chroman ring and tyrosine phosphorylation in the subtype-specific translocation and activation of diacylglycerol kinase alpha by D-alpha-tocopherol. "Genes CeIIs
10(4): 311-9.10 (4): 311-9.
Heissmeyer, V., F. Macian, et al. (2004). "Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins." Nat Immunol 5(3): 255-65.Heissmeyer, V., F. Macian, et al. (2004). "Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins." Nat Immunol 5 (3): 255-65.
Imai, S. I., M. Kai, et al. (2005). "Identification and characterization of a novel human type Il diacylglycerol kinase, DGKkappa." J Biol Chem.Imai, S. I., M. Kai, et al. (2005). "Identification and characterization of a novel human type Il diacylglycerol kinase, DGKkappa." J Biol Chem.
Macian, F., F. Garcia-Cozar, et al. (2002). "Transcriptional mechanisms underlying lymphocyte tolerance." CeII 109(6): 719-31. Olenchock, B. A., R. Guo, et al. (2006). "Disruption of diacylglycerol metabolism impairs the induction of T cell anergy." Nat Immunol.Macian, F., F. Garcia-Cozar, et al. (2002). "Transcriptional mechanisms underlying lymphocyte tolerance." CeII 109 (6): 719-31. Olenchock, B. A., R. Guo, et al. (2006). "Disruption of diacylglycerol metabolism impairs the induction of T cell anergy." Nat Immunol
Sakane, F. and H. Kanoh (1997). "Molecules in focus: diacylglycerol kinase." lnt J Biochem Cell Biol 29(10): 1139-43.Sakane, F. and H. Kanoh (1997). "Molecules in focus: diacylglycerol kinase." lnt J Biochem Cell Biol 29 (10): 1139-43.
Sanjuan, M. A., D. R. Jones, et al. (2001 ). "Role of diacylglycerol kinase alpha in the attenuation of receptor signaling." J Cell Biol 153(1 ): 207-20.Sanjuan, M. A., D. R. Jones, et al. (2001). "Role of diacylglycerol kinase alpha in the attenuation of receptor signaling." J Cell Biol 153 (1): 207-20.
Sanjuan, M. A., B. Pradet-Balade, et al. (2003). "T cell activation in vivo targets diacylglycerol kinase alpha to the membrane: a novel mechanism forSanjuan, M. A., B. Pradet-Balade, et al. (2003). "T cell activation in vivo targets diacylglycerol kinase alpha to the membrane: a novel mechanism for
Ras attenuation." J Immunol 170(6): 2877-83.Ras attenuation. "J Immunol 170 (6): 2877-83.
Shindo, M., K. Irie, et al. (2003). "Synthesis and phorbol ester binding of the cysteine-rich domains of diacylglycerol kinase (DGK) isozymes. DGKgamma and DGKbeta are new targets of tumor-promoting phorbol esters." J BiolShindo, M., K. Irie, et al. (2003). "Synthesis and phorbol ester binding of the cysteine-rich domains of diacylglycerol kinase (DGK) isozymes. DGKgamma and DGKbeta are new targets of tumor-promoting phorbol esters." J Biol
Chem 278(20): 18448-54.Chem 278 (20): 18448-54.
Topham, M. K. and S. M. Prescott (1999). "Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions." J Biol Chem 274(17): 11447-50. van Blitterswijk, W. J. and B. Houssa (1999). "Diacylglycerol kinases in signal transduction." Chem Phvs Lipids 98(1-2): 95-108. van Blitterswijk, W. J. and B. Houssa (2000). "Properties and functions of diacylglycerol kinases." Cell Siαnal 12(9-10): 595-605. Yamada, K., F. Sakane, et al. (1997). "EF-hand motifs of alpha, beta and gamma isoforms of diacylglycerol kinase bind calcium with different affinities and conformational changes." Biochem J 321 (Pt 1 ): 59-64.Topham, MK and SM Prescott (1999). "Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions." J Biol Chem 274 (17): 11447-50. van Blitterswijk, WJ and B. Houssa (1999). "Diacylglycerol kinases in signal transduction." Chem Phvs Lipids 98 (1-2): 95-108. van Blitterswijk, WJ and B. Houssa (2000). "Properties and functions of diacylglycerol kinases." Cell Siαnal 12 (9-10): 595-605. Yamada, K., F. Sakane, et al. (1997). "EF-hand motifs of alpha, beta and gamma isoforms of diacylglycerol kinase bind calcium with different affinities and conformational changes. "Biochem J 321 (Pt 1): 59-64.
Zha, Y., R. Marks, et al. (2006). "T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha." Nat Immunol. Zha, Y., R. Marks, et al. (2006). "T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha." Nat Immunol

Claims

REIVINDICACIONES
1.- Procedimiento de diagnóstico y pronóstico de una enfermedad que cursa con estimulación del sistema inmune caracterizado porque se basa en Ia determinación in vitro del nivel de fosforilación de Ia DGKα en el residuo tirosina Y335 en células del sistema inmune, en una muestra biológica y porque comprende las siguientes etapas: a) identificación o determinación del nivel de fosforilación de Ia proteína DGKα en el residuo tirosina Y335, en una muestra biológica de origen inmune, y b) comparación de dicha determinación observada en a) con una muestra control, y donde su presencia incrementada es indicativa de Ia existencia de una enfermedad que cursa con estimulación del sistema inmune.1.- Diagnostic and prognostic procedure of a disease that is stimulated by the immune system characterized in that it is based on the in vitro determination of the level of phosphorylation of DGKα in the tyrosine residue Y335 in cells of the immune system, in a biological sample and because it comprises the following steps: a) identification or determination of the level of phosphorylation of the DGKα protein in the tyrosine residue Y335, in a biological sample of immune origin, and b) comparison of said determination observed in a) with a control sample, and where Its increased presence is indicative of the existence of a disease that involves immune system stimulation.
2.- Procedimiento según Ia reivindicación 1 caracterizado porque Ia determinación se realiza con un anticuerpo específico de Ia tirosina fosforilada (pY335) de Ia proteína DGKα (SEQ ID NO2).2. Method according to claim 1 characterized in that the determination is made with a specific antibody of the phosphorylated tyrosine (pY335) of the DGKα protein (SEQ ID NO2).
3.- Procedimiento según Ia reivindicación 2 caracterizado porque el anticuerpo es un anticuerpo policlonal.3. Method according to claim 2 characterized in that the antibody is a polyclonal antibody.
A - Procedimiento según Ia reivindicación 3 caracterizado porque el anticuerpo policlonal es un anticuerpo específico del péptido sintético deA - Method according to claim 3 characterized in that the polyclonal antibody is a specific antibody of the synthetic peptide of
SEQ ID NO3, preferentemente el anticuerpo anti-pTyr335DGKα.SEQ ID NO3, preferably the anti-pTyr335DGKα antibody.
5.- Procedimiento según las reivindicaciones 1 a Ia 4 caracterizado porque Ia enfermedad que cursa con estimulación del sistema inmune pertenece al siguiente grupo: enfermedades autoinmunes, alérgicas, inflamatorias, alteraciones linfoproliferativas como leucemias y linfomas Hodking y non-5.- Procedure according to claims 1 to 4, characterized in that the disease that occurs with stimulation of the immune system belongs to the following group: autoimmune, allergic, inflammatory diseases, lymphoproliferative alterations such as leukemia and Hodking and non- lymphomas.
Hodking.Hodking
6.- Anticuerpo, ya sea monoclonal o policlonal, específico de Ia proteína6.- Antibody, either monoclonal or polyclonal, specific to the protein
DGKα fosforilada en el residuo tirosina Y335.DGKα phosphorylated in tyrosine residue Y335.
7.- Anticuerpo según Ia reivindicación 6 caracterizado porque es el anticuerpo policlonal específico del péptido-pY335 (SEQ ID NO3), preferentemente el anticuerpo anti-pTyr335DGKα. 7. Antibody according to claim 6 characterized in that it is the specific polyclonal antibody of the peptide-pY335 (SEQ ID NO3), preferably the anti-pTyr335DGKα antibody.
8.- Uso del anticuerpo según las reivindicaciones 6 y 7 en un procedimiento biotecnológico de identificación de Ia proteína DGKα fosforilada perteneciente al siguiente grupo: i) procedimiento de identificación de compuestos que alteran, activadores o inhibidores, Ia actividad kinasa de Ia proteína DGKα, ii) procedimiento de identificación de compuestos que alteran, activadores o inhibidores, Ia fosforilación de Ia proteína DGKα, y iii) procedimiento de elaboración de una composición terapéutica útil para el tratamiento de enfermedades que cursen con un incremento de Ia respuesta inmune.8. Use of the antibody according to claims 6 and 7 in a biotechnological method of identifying the phosphorylated DGKα protein belonging to the following group: i) method of identifying compounds that alter, activators or inhibitors, the kinase activity of the DGKα protein, ii) procedure for the identification of compounds that alter, activators or inhibitors, the phosphorylation of the DGKα protein, and iii) procedure for preparing a therapeutic composition useful for the treatment of diseases that occur with an increase in the immune response.
9.- Proteína DGKα fosforilada caracterizada porque contiene el residuo tirosina 355 fosforilado o similar, o un fragmento o péptido de Ia misma que comprenda dicha tirosina 355 fosforilada.9.- Phosphorylated DGKα protein characterized in that it contains the phosphorylated 355 tyrosine residue or the like, or a fragment or peptide thereof comprising said phosphorylated 355 tyrosine.
10.- Proteína DGKα fosforilada según Ia reivindicación 9 caracterizada porque es de un mamífero perteneciente, al siguiente grupo: ratón, cerdo, rata y ser humano.10. Phosphorylated DGKα protein according to claim 9 characterized in that it belongs to a mammal belonging to the following group: mouse, pig, rat and human being.
11.- Proteína DGKα fosforilada según Ia reivindicación 10 caracterizada porque es Ia proteína humana DGKα fosforilada en Ia tirosina 355 de SEQ11. Phosphorylated DGKα protein according to claim 10 characterized in that it is the human DGKα protein phosphorylated in tyrosine 355 of SEQ
ID NO2. 12.- Proteína DGKα fosforilada según Ia reivindicación 9 caracterizada porque es un péptido o fragmento sintético correspondiente a Ia secuencia de Ia proteína humana DGKα P329-A339, NH2-CPPSS(fosfoY)PSVLA-ID NO2. 12. Phosphorylated DGKα protein according to claim 9 characterized in that it is a synthetic peptide or fragment corresponding to the sequence of the human protein DGKα P329-A339, NH 2 -CPPSS (phosphoy) PSVLA-
COOH (SEQ ID NO3).COOH (SEQ ID NO3).
13.- Uso de Ia proteína DGKα fosforilada en el residuo tirosina 355 en un procedimiento biotecnológico perteneciente al siguiente grupo: i) procedimiento de elaboración de anticuerpos monoclonales y/o policlonales y/o recombinantes anti DGKα fosforilada, ii) procedimiento de identificación de compuestos que alteren su fosforilación, y iii) procedimiento de identificación de compuestos activadores o inhibidores de Ia propia actividad kinasa de Ia proteína DGKα. 13.- Use of the phosphorylated DGKα protein in the tyrosine residue 355 in a biotechnological process belonging to the following group: i) method of making monoclonal and / or polyclonal antibodies and / or recombinant anti-phosphorylated DGKα, ii) compound identification procedure that alter their phosphorylation, and iii) identification procedure of activating or inhibiting compounds of the kinase activity of the DGKα protein itself.
14.- Uso según Ia reivindicación 13 caracterizado porque se usa un fragmento o péptido, sintético o aislado, de Ia proteína DGKα de SEQ ID NO2 que contenga dicha tirosina 355 fosforilada para Ia elaboración de anticuerpos monoclonales y/o policlonales y/o recombinantes anti proteína DGKα.14. Use according to claim 13 characterized in that a fragment or peptide, synthetic or isolated, of the DGKα protein of SEQ ID NO2 containing said phosphorylated tyrosine 355 is used for the preparation of monoclonal and / or polyclonal and / or recombinant anti-recombinant antibodies DGKα protein.
15.- Uso según Ia reivindicación 14 caracterizado porque el péptido es el péptido sintético correspondiente a Ia secuencia de DGKα P329-A339, NH2- CPPSS(fosfoY)PSVLA-COOH de SEQ ID NO3. 16.- Compuesto útil para Ia elaboración de un medicamento o composición farmacéutica para el tratamiento de un proceso que cursa con estimulación de las células del sistema inmune caracterizado porque es un inhibidor de Ia actividad de Ia proteína DGKα fosforilada.15. Use according to claim 14 characterized in that the peptide is the synthetic peptide corresponding to the sequence of DGKα P329-A339, NH 2 -CPPSS (phosphoY) PSVLA-COOH of SEQ ID NO3. 16.- Useful compound for the elaboration of a drug or pharmaceutical composition for the treatment of a process that involves stimulation of the cells of the immune system characterized in that it is an inhibitor of the activity of the phosphorylated DGKα protein.
17.- Compuesto según Ia reivindicación 16 caracterizado porque es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante (SEQ ID NO1 ) de Ia proteína DGKα humana y porque incluye, al menos, una secuencia de nucleótidos seleccionada entre: a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína DGKα, b) una ribozima específica del mRNA de Ia proteína DGKα, c) un aptámero específico del mRNA de Ia proteína DGKα, d) un RNA de interferencia (siRNA o shRNA) específico del mRNA de Ia proteína DGKα, y e) un microRNA (miRNA) específico del mRNA de Ia proteína DGKα. 18.- Compuesto según Ia reivindicación 17 caracterizado porque el siRNA de d) es un RNAi que se une preferentemente a Ia secuencia fragmento del RNAm de DGKα AAGCCAGAAGACCATG GATGA (SEQ ID NO4) o a otra secuencia que comprenda a ésta o a un fragmento más corto de Ia misma. 19.- Compuesto según Ia reivindicación 18 caracterizado porque el siRNA de d) es un RNAi constituido por un oligonucleótido de doble cadena de DNA que comprende, al menos, una secuencia de interferencia de DGKα y una secuencia complementaria a ésta, originándose una pareja de secuencias de nucleótidos sentido y antisentido, respectivamente.17. Compound according to claim 16 characterized in that it is a nucleic acid or polynucleotide that prevents or decreases the expression of the coding gene (SEQ ID NO1) of the human DGKα protein and because it includes, at least, a nucleotide sequence selected from: a ) a specific antisense nucleotide sequence of the gene or mRNA sequence of the DGKα protein, b) a specific ribozyme of the DGKα protein mRNA, c) a specific mRNA aptamer of the DGKα protein, d) an interference RNA (siRNA or shRNA) specific to the mRNA of the DGKα protein, and e) a microRNA (miRNA) specific to the mRNA of the DGKα protein. 18. Compound according to claim 17 characterized in that the siRNA of d) is an RNAi that preferentially binds to the fragment sequence of the DGKα mRNA AAGCCAGAAGACCATG GATGA (SEQ ID NO4) or to another sequence comprising this or a shorter fragment of The same. 19. Compound according to claim 18 characterized in that the siRNA of d) is an RNAi constituted by a double stranded DNA oligonucleotide comprising at least one DGKα interference sequence and a complementary sequence to this, originating a pair of sense and antisense nucleotide sequences, respectively.
20.- Compuesto según Ia reivindicación 19 caracterizado porque Ia secuencia de interferencia es Ia secuencia SEQ ID NO4 y Ia secuencia complementaria a ésta es Ia secuencia SEQ ID NO5, siendo Ia pareja secuencias de nucleótidos sentido y antisentido las SEQ ID NO6 y 7, respectivamente.20. Compound according to claim 19, characterized in that the interference sequence is the sequence SEQ ID NO4 and the sequence complementary to it is the sequence SEQ ID NO5, the pair of nucleotide sequences being sense and antisense the SEQ ID NO6 and 7, respectively. .
21.- Composición farmacéutica o un medicamento útil para el tratamiento de enfermedades que cursen con estimulación del sistema inmune caracterizada porque comprende una cantidad terapéuticamente efectiva de un compuesto o agente inhibidor de Ia proteína DGKα, junto con, opcionalmente, uno o más adyuvantes y/o vehículos farmacéuticamente aceptables.21.- Pharmaceutical composition or a medicament useful for the treatment of diseases that occur with immune system stimulation characterized in that it comprises a therapeutically effective amount of a compound or agent inhibiting the DGKα protein, together with, optionally, one or more adjuvants and / or pharmaceutically acceptable vehicles.
22.- Composición farmacéutica según Ia reivindicación 21 caracterizada porque el compuesto inhibidor es un ácido nucleico o polinucleótido que impide o disminuye Ia expresión del gen codificante de Ia proteína DGKα humana y porque incluye, al menos, una secuencia de nucleótidos seleccionada entre: a) una secuencia de nucleótidos antisentido especifica de Ia secuencia del gen o del mRNA de Ia proteína DGKα, b) una ribozima específica del mRNA de Ia proteína DGKα, c) un aptámero específico del mRNA de Ia proteína DGKα, d) un RNA de interferencia (iRNA) específico del mRNA de Ia proteína DGKα, y e) un microRNA (miRNA) específico del mRNA de Ia proteína DGKα.22. Pharmaceutical composition according to claim 21 characterized in that the inhibitor compound is a nucleic acid or polynucleotide that prevents or decreases the expression of the gene coding for the human DGKα protein and because it includes, at least, a nucleotide sequence selected from: a) an antisense nucleotide sequence specific to the sequence of the gene or mRNA of the DGKα protein, b) a ribozyme specific to the mRNA of the DGKα protein, c) a specific aptamer of the mRNA of the DGKα protein, d) an interference RNA ( iRNA) specific for the mRNA of the DGKα protein, and e) a microRNA (miRNA) specific for the mRNA of the DGKα protein.
23.- Composición farmacéutica según Ia reivindicación 22 caracterizada porque el inhibidor de DGKα de d) es un siRNA que se une preferentemente a Ia secuencia fragmento del RNAm de DGKα AAGCCAGAAGACCATGGATGA (SEQ ID NO4) o a otra secuencia que comprenda a ésta o a un fragmento más corto de Ia misma. 23. Pharmaceutical composition according to claim 22, characterized in that the DGKα inhibitor of d) is a siRNA that preferentially binds to the DGKα mRNA fragment sequence AAGCCAGAAGACCATGGATGA (SEQ ID NO4) or another sequence comprising this or a fragment short of it.
24.- Composición farmacéutica según Ia reivindicación 22 caracterizada porque el inhibidor de DGKα de d) es un RNAi constituido por un oligonucleótido de doble cadena de DNA que comprende, al menos, una secuencia de interferencia de DGKα y una secuencia complementaria a ésta, originándose una pareja de secuencias de nucleótidos sentido y antisentido, respectivamente.24. Pharmaceutical composition according to claim 22, characterized in that the DGKα inhibitor of d) is an RNAi constituted by a double stranded DNA oligonucleotide comprising at least one DGKα interference sequence and a complementary sequence to it, originating a pair of sense and antisense nucleotide sequences, respectively.
25.- Composición farmacéutica según Ia reivindicación 24 caracterizada porque Ia secuencia de interferencia es Ia secuencia SEQ ID NO4 y Ia secuencia complementaria a ésta es Ia secuencia SEQ ID NO5, siendo Ia pareja secuencias de nucleótidos sentido y antisentido las SEQ ID NO6 y 7, respectivamente.25. Pharmaceutical composition according to claim 24, characterized in that the interference sequence is the sequence SEQ ID NO4 and the sequence complementary to it is the sequence SEQ ID NO5, the couple being nucleotide sequences sense and antisense SEQ ID NO6 and 7, respectively.
26.- Composición farmacéutica según Ia reivindicación 21 caracterizada porque el compuesto inhibidor es un anticuerpo, ya sea monoclonal o policlonal, específico de Ia proteína DGKα fosforilada en el residuo tirosina Y335.26.- Pharmaceutical composition according to claim 21, characterized in that the inhibitor compound is an antibody, either monoclonal or polyclonal, specific for the phosphorylated DGKα protein in the Y335 tyrosine residue.
27.- Composición farmacéutica según Ia reivindicación 26 caracterizada porque es un anticuerpo policlonal específico del péptido o fragmento pY335 (SEQ ID NO3), preferentemente el anticuerpo anti-pTyr335DGKα. 28.- Uso de Ia composición farmacéutica según las reivindicaciones 21 a Ia 27 en un método de tratamiento de un mamífero, preferentemente un ser humano, afectado por una enfermedad que cursa con estimulación del sistema inmune, en adelante uso de Ia composición farmacéutica de Ia presente invención, consistente en Ia administración de dicha composición terapéutica que inhibe Ia estimulación del sistema inmune. 29.- Uso de Ia composición farmacéutica según Ia reivindicación 28 caracterizado porque Ia enfermedad que cursa con estimulación del sistema inmune pertenece al siguiente grupo: enfermedades autoinmunes, alérgicas, inflamatorias, alteraciones linfoproliferativas como leucemias y linfomas Hodking y non-Hodking. 27.- Pharmaceutical composition according to claim 26 characterized in that it is a polyclonal antibody specific to the peptide or fragment pY335 (SEQ ID NO3), preferably the anti-pTyr335DGKα antibody. 28.- Use of the pharmaceutical composition according to claims 21 to 27 in a method of treating a mammal, preferably a human being, affected by a disease that stimulates the immune system, henceforth using the pharmaceutical composition of Ia present invention, consisting of the administration of said therapeutic composition that inhibits the stimulation of the immune system. 29.- Use of the pharmaceutical composition according to claim 28, characterized in that the disease that occurs with stimulation of the immune system belongs to the following group: autoimmune, allergic, inflammatory diseases, lymphoproliferative alterations such as leukemia and Hodking and non-Hodking lymphomas.
PCT/ES2008/070111 2007-06-05 2008-06-04 Method for diagnosing immune system diseases and compounds that can be used to treat said diseases WO2008148926A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200701552A ES2322422B1 (en) 2007-06-05 2007-06-05 PROCEDURE FOR DIAGNOSIS OF IMMUNE SYSTEM DISEASES.
ESP200701552 2007-06-05

Publications (2)

Publication Number Publication Date
WO2008148926A2 true WO2008148926A2 (en) 2008-12-11
WO2008148926A3 WO2008148926A3 (en) 2009-05-28

Family

ID=40094231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070111 WO2008148926A2 (en) 2007-06-05 2008-06-04 Method for diagnosing immune system diseases and compounds that can be used to treat said diseases

Country Status (2)

Country Link
ES (1) ES2322422B1 (en)
WO (1) WO2008148926A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099060A2 (en) * 2001-06-05 2002-12-12 Exelixis, Inc. Dgks as modifiers of the p53 pathway and methods of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099060A2 (en) * 2001-06-05 2002-12-12 Exelixis, Inc. Dgks as modifiers of the p53 pathway and methods of use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALONSO R. ET AL.: 'Diacylglycerol kinase alpha regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes.' THE JOURNAL OF BIOLOGICAL CHEMISTRY vol. 280, no. 31, 05 August 2005, ISSN 0021-9258 pages 28439 - 28450 *
DATABASE GENEBANK [Online] EBI 12 December 2002 'Esta secuencia muestra un 99.7% identidad con SEQ ID No.2 con solapamiento in 735 aa' Database accession no. AAE36086 & WO 02 099060 A2 *
SANJUAN M. A. ET AL.: 'Role of diacylglycerol kinase alpha in the attenuation of receptor signalling' THE JOURNAL OF CELL BIOLOGY vol. 153, no. 1, 02 April 2001, ISSN 0021-9525 pages 207 - 220 *

Also Published As

Publication number Publication date
ES2322422A1 (en) 2009-06-19
WO2008148926A3 (en) 2009-05-28
ES2322422B1 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
Keil et al. Phosphorylation of Atg5 by the Gadd45β–MEKK4-p38 pathway inhibits autophagy
Ma et al. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression
Basak et al. The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation
EP2334791B1 (en) Method for controlling cancer metastasis or cancer cell migration by modulating the cellular level of lysyl trna synthetase
ES2293114T3 (en) MEANS AND METHODS TO DIAGNOSE AND TREAT AFFECTIVE DISORDERS.
Barro-Soria et al. ER-localized bestrophin 1 activates Ca 2+-dependent ion channels TMEM16A and SK4 possibly by acting as a counterion channel
Vihma et al. Regulation of different human NFAT isoforms by neuronal activity
Yang et al. Cervical cancer growth is regulated by a c-ABL–PLK1 signaling axis
Liu et al. p130CAS is required for netrin signaling and commissural axon guidance
CN106659758A (en) Methods and compositions for immunomodulation
Fujimoto et al. KRAS-induced actin-interacting protein is required for the proper localization of inositol 1, 4, 5-trisphosphate receptor in the epithelial cells
Chakrabarti et al. Chronic morphine acts via a protein kinase Cγ–Gβ–adenylyl cyclase complex to augment phosphorylation of Gβ and Gβγ stimulatory adenylyl cyclase signaling
ES2262819T3 (en) NATURAL BINDING FOR THE GPR86 RECEPTOR COUPLED TO G ORPHAN PROTEINS AND METHODS OF USE.
TWI804669B (en) AHR-ROR-γt COMPLEX AS A BIOMARKER AND THERAPEUTIC TARGET FOR AUTOIMMUNE DISEASE AND IL-17A-ASSOCIATED DISEASE
ES2322422B1 (en) PROCEDURE FOR DIAGNOSIS OF IMMUNE SYSTEM DISEASES.
EP2766730B1 (en) Method for screening an agent preventing or treating cancer using glycyl-trna synthetase and cadherin
Nicholson et al. ShcA tyrosine phosphorylation sites can replace ShcA binding in signalling by middle T-antigen
Wasserman Fam122a Ensures Cell Cycle Interphase Progression and Checkpoint Control as a SLiM-Dependent Substrate-Competitive Inhibitor to the B55α/PP2a Phosphatase
Ihle Differential Activity of the KRAS Oncogene by Method of Activation: Implications for Signaling and Therapeutic Intervention
Cruz-Rangel et al. Missense mutations in the calcium-activated chloride channel TMEM16A promote tumor growth by activating oncogenic signaling in Human Cancer.
JP4674332B2 (en) Txk complex and use thereof
SONG et al. Association and contribution of ERK to IL-6-induced activation of signal transducer and activator of transcription in a human myeloma cell line
Gama Braga The function of the pseudokinase domain of BUBR1 in mitosis
Mohanty The effect of palmitoylation on RGS10 subcellular localization and mediating inflammation
Perl Leveraging Small Molecule Activators of Protein Phosphatase 2A (PP2A) to Elucidate PP2As Role in Regulating DNA Replication and Apoptosis

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08787645

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08787645

Country of ref document: EP

Kind code of ref document: A2