WO2008147239A1 - Récipient pour lithium - Google Patents

Récipient pour lithium Download PDF

Info

Publication number
WO2008147239A1
WO2008147239A1 PCT/RU2007/000276 RU2007000276W WO2008147239A1 WO 2008147239 A1 WO2008147239 A1 WO 2008147239A1 RU 2007000276 W RU2007000276 W RU 2007000276W WO 2008147239 A1 WO2008147239 A1 WO 2008147239A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
neutron
container
thin
target
Prior art date
Application number
PCT/RU2007/000276
Other languages
English (en)
Russian (ru)
Inventor
Boris Fedorovich Bayanov
Sergei Yuryevich Taskaev
Original Assignee
Budker Institute Of Nuclear Physics Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Budker Institute Of Nuclear Physics Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk filed Critical Budker Institute Of Nuclear Physics Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority to PCT/RU2007/000276 priority Critical patent/WO2008147239A1/fr
Publication of WO2008147239A1 publication Critical patent/WO2008147239A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams

Definitions

  • the invention relates to nuclear physics and medicine and can be used in neutron sources based on charged particle accelerators. Such sources are intended for use mainly in medical equipment used in neutron therapy, mainly in neutron capture therapy (NRT). The concept of neutron capture therapy in oncology was proposed in
  • boron neutron capture therapy allows the selective destruction of malignant tumor cells.
  • a proton beam of 10 mA 2.5 MeV leads to a neutron flux of 8.9 x 10 12 s -1 at an average neutron energy of 0.55 MeV.
  • the therapeutic beam of epithermal neutrons is formed by a system consisting of a moderator, a reflector and a collimator.
  • reaction 7 Li (p, n) 7 Be is a threshold and is characterized by an unusually rapid increase in the reaction cross section near the threshold, this property allows us to consider the additional possibility of working in a threshold mode, when the proton energy exceeds the reaction threshold of 1.882 MeV by 30–40 keV, in this case kinematically ollimirovanny forward neutron beam with an average energy of 30 keV can be directly used for neutron capture therapy.
  • the accelerator-based lithium target concept has a number of critical problems, mainly related to the poor mechanical, chemical, and thermal properties of lithium.
  • the specific heat flux can reach 1 kW / cm 2 .
  • a static target for a relatively small specific heat flux we can cite neutron-producing targets described by Pat. US 4,666,651, A61N5 / 10, 05/19/1987; Rat. US 5920601, A61N5 / 10, 07/06/1999.
  • lithium compounds have a significantly higher melting point, the neutron yield from lithium hydride is 30% less, and from lithium oxide 2 times less.
  • the next important aspect of the lithium target is its thickness, since inelastic proton scattering on lithium nuclei leads to a significant flux of ⁇ -quanta with an energy of 0.477 MeV.
  • the optimal thickness of lithium is such a thickness at which the proton is inhibited to 1.882 MeV - the energy of the threshold of the neutron generation reaction. At an initial proton energy of 2.5 MeV, this size is 88 ⁇ m, and at 1.915 MeV it is 4.3 ⁇ m [H. Andersen (Ed.). Well gogep storripg rovers apd rappes ip all elepts, Regamop Press Ips, 1977]. Further absorption of protons should be carried out in tungsten, molybdenum, or any other substance in which, unlike lithium, proton scattering does not lead to the emission of gamma rays.
  • the optimal neutron-generating layer is a layer of pure lithium metal with a thickness of 10 to 100 microns.
  • accelerators existing in a number of countries are being adapted for conducting experiments on the production of epithermal neutron beams.
  • Birmingham [A. Wowp, C. Forseu, and M. Sott. The desigp apd testigp high rover lithium tagget fog asseleretog-based bogop suture sarte teraru.
  • the thickness of lithium is 1 mm.
  • a lithium layer about 1 mm thick is usually obtained by melting lithium in an inert atmosphere.
  • the need to work in an inert atmosphere is due to the fact that when lithium is placed in the air, its compounds (nitride, hydride and lithium oxide) are instantly formed. Therefore, lithium is stored, as a rule, in sealed vessels, either in kerosene or in mineral oil with paraffin, and any operations with lithium are carried out in an inert atmosphere.
  • lithium chromate tablets are commonly used, which can be used in a normal atmosphere.
  • titanium or zirconium powders are used, which, together with lithium chromate, are heated to a temperature of about 600 ° C.
  • zirconium powder ignites in a normal atmosphere, working with it requires special precautions.
  • the objective of the invention is to simplify the creation of a lithium layer of a neutron-generating target of a neutron source based on an accelerator.
  • a lithium container which is a closed hollow metal (for example, aluminum) thin-walled body, completely filled with pure lithium in the solid state.
  • Thin-walled housing can be made in the form of a cylinder.
  • the metal case may be prefabricated and then filled with lithium.
  • the metal case can be made parallel to the lithium filling process. So, if lithium is stored in a bellows and squeezed out under pressure in the form of a rod, then a thin-walled aluminum tube enveloping lithium can be squeezed out in parallel. Thin-walled metal housing can be made in the form of a thin plate, which is wrapped with lithium.
  • the lithium container allows you to save lithium in a metallic state, as it prevents the interaction of lithium with the surrounding air.
  • a lithium container allows you to transport and perform any other operations with it in a normal atmosphere, rather than inert, typical for working with pure lithium.
  • a lithium container made of aluminum allows the deposition of lithium at a temperature below the melting point of aluminum (660 C).
  • the lithium container was installed in the developed lithium deposition system, consisting of a heater and a system of holes for the formation of a uniform stream of lithium vapor. It was experimentally determined that heating a lithium container to a temperature of 450 ° C, which is 210 ° C lower than the melting temperature of aluminum, leads to the deposition of a dense clean lithium layer of controlled thickness from 10 to 100 ⁇ m on the target substrate. Most likely, when the lithium container is heated, an alloy is formed whose melting point is lower than the melting temperature of aluminum. Since at a temperature of 450 ° C the vapor pressure of aluminum is of the order of 10 ⁇ 12 Torr, and lithium 10 ⁇ Torr, only lithium evaporates. The possibility of deposition of lithium when heated to a temperature of the order of

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

L'invention est utilisée principalement à s'utiliser dans la thérapie par neutrons ou par capture des neutrons et sert à déposer par pulvérisation une couche de lithium d'une cible d'une source de neutrons utilisant un accélérateur. Le récipient pour lithium se présente comme un boîtier complètement clos à parois minces, fait d'un métal tel que l'aluminium, et entièrement rempli de lithium à l'état solide. Le récipient de lithium assure la conservation du lithium dans un état métallique s'il se trouve sous une atmosphère ordinaire. Cette propriété simplifie sensiblement le transport du récipient et le processus de chargement de lithium dans une unité de pulvérisation car aucune atmosphère inerte n'est nécessaire. Le récipient pour lithium, fait d'aluminium à parois minces, permet de déposer par pulvérisation une couche de lithium pur sur un substrat de cible lorsqu'il est chauffé à une température inférieure à la température de fusion de l'aluminium. Cette propriété réduit sensiblement les charges et simplifie sensiblement la structure du système de pulvérisation. L'invention vise à simplifier la procédure de dépôt par pulvérisation de la couche de lithium.
PCT/RU2007/000276 2007-05-28 2007-05-28 Récipient pour lithium WO2008147239A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2007/000276 WO2008147239A1 (fr) 2007-05-28 2007-05-28 Récipient pour lithium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2007/000276 WO2008147239A1 (fr) 2007-05-28 2007-05-28 Récipient pour lithium

Publications (1)

Publication Number Publication Date
WO2008147239A1 true WO2008147239A1 (fr) 2008-12-04

Family

ID=40316846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000276 WO2008147239A1 (fr) 2007-05-28 2007-05-28 Récipient pour lithium

Country Status (1)

Country Link
WO (1) WO2008147239A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434072B2 (en) 2012-06-21 2016-09-06 Rethink Robotics, Inc. Vision-guided robots and methods of training them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993910A (en) * 1975-12-02 1976-11-23 The United States Of America As Represented By The United States Energy Research & Development Administration Liquid lithium target as a high intensity, high energy neutron source
US5392319A (en) * 1992-12-22 1995-02-21 Eggers & Associates, Inc. Accelerator-based neutron irradiation
RU2282908C2 (ru) * 2003-10-06 2006-08-27 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Технической Физики Имени Академика Е.И. Забабахина (Рфяц Вниитф) Нейтронопродуцирующий мишенный узел

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993910A (en) * 1975-12-02 1976-11-23 The United States Of America As Represented By The United States Energy Research & Development Administration Liquid lithium target as a high intensity, high energy neutron source
US5392319A (en) * 1992-12-22 1995-02-21 Eggers & Associates, Inc. Accelerator-based neutron irradiation
RU2282908C2 (ru) * 2003-10-06 2006-08-27 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Технической Физики Имени Академика Е.И. Забабахина (Рфяц Вниитф) Нейтронопродуцирующий мишенный узел

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLJUSCHEVA V.E.: "SPRAVOCHNIK PO REDKIM METALLAM", 1965, MIR, M., pages: 353 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9434072B2 (en) 2012-06-21 2016-09-06 Rethink Robotics, Inc. Vision-guided robots and methods of training them
US9669544B2 (en) 2012-06-21 2017-06-06 Rethink Robotics, Inc. Vision-guided robots and methods of training them

Similar Documents

Publication Publication Date Title
Spencer et al. Laser generation of proton beams for the production of short-lived positron emitting radioisotopes
Allen et al. A design study for an accelerator-based epithermal neutron beam for BNCT
RU2717363C1 (ru) Блок формирования пучка для нейтрон-захватной терапии
EP2606489B1 (fr) Procédé de production d'isotopes et plus particulièrement procédé de production de radio-isotopes par irradiation avec un faisceau de rayons gamma
Taskaev Development of an accelerator-based epithermal neutron source for boron neutron capture therapy
EP3421089B1 (fr) Système de thérapie par capture de neutrons pour éliminer une plaque de protéine bêta-amyloïde
WO2018076787A1 (fr) Corps de mise en forme de faisceau pour thérapie par capture de neutrons
WO2008025737A1 (fr) Dispositif générateur de neutrons pour boroneutrothérapie
JP2008022920A (ja) ホウ素中性子捕捉療法用の医療装置
Ma et al. Photonuclear production of medical isotopes 62, 64Cu using intense laser-plasma electron source
RU2594020C1 (ru) Способ получения радионуклида лютеций-177
US20140226774A1 (en) Production of actinium-227 and thorium-228 from radium-226 to supply alpha-emitting isotopes radium-223, thorium-227, radium-224, bismuth-212
Vatulin et al. Searching for stimulated de-excitation of the 186 m Re nuclei isomeric state in ISKRA-5 laser plasma
Habs et al. Neutron halo isomers in stable nuclei and their possible application for the production of low energy, pulsed, polarized neutron beams of high intensity and high brilliance
RU2282909C2 (ru) Способ получения нейтронов
JP7126733B2 (ja) 中性子捕捉療法のための中性子源
WO2008147239A1 (fr) Récipient pour lithium
RU2540124C2 (ru) Система формирования пучка нейтронов
CN109925610B (zh) 中子捕获治疗系统
JP7292345B2 (ja) 癌治療のためのビーム成形装置を有する中性子源
RU2610301C1 (ru) Нейтроногенерирующая мишень
Benzi et al. Feasibility analysis of a Plasma Focus neutron source for BNCT treatment of transplanted human liver
JP2004191190A (ja) 核変換処理による高温発生方法及び装置
JP2013031600A (ja) 癌治療システム
Sitarz Research on production of new medical radioisotopes with cyclotron

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007128278

Country of ref document: RU

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07861010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07861010

Country of ref document: EP

Kind code of ref document: A1