WO2008142316A1 - Oligomeres de cyclodextrines, vecteurs de molecules actives - Google Patents

Oligomeres de cyclodextrines, vecteurs de molecules actives Download PDF

Info

Publication number
WO2008142316A1
WO2008142316A1 PCT/FR2008/050567 FR2008050567W WO2008142316A1 WO 2008142316 A1 WO2008142316 A1 WO 2008142316A1 FR 2008050567 W FR2008050567 W FR 2008050567W WO 2008142316 A1 WO2008142316 A1 WO 2008142316A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
oligomer according
cyclodextrins
biorecognition
active molecule
Prior art date
Application number
PCT/FR2008/050567
Other languages
English (en)
Inventor
El Mustapha Belgsir
Pierre Ferchaud
Isabelle Opalinski
Frédéric TURPIN
Yves Cenatiempo
Jean-Pierre Gesson
Original Assignee
Biocydex
Cnrs
Universite De Poitiers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biocydex, Cnrs, Universite De Poitiers filed Critical Biocydex
Publication of WO2008142316A1 publication Critical patent/WO2008142316A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • A61K47/6951Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes using cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to cyclodextrin oligomers capable of capturing, solubilizing and vectorizing active molecules and targeting their release on specific areas.
  • the invention also relates to their use for the production of medicaments.
  • a prodrug designates any molecule, intended for a therapeutic use, which must undergo a biotransformation after its administration to an organism so that a pharmacological activity is exerted.
  • a prodrug designates any molecule, intended for a therapeutic use, which must undergo a biotransformation after its administration to an organism so that a pharmacological activity is exerted.
  • ADEPT Antibody Directed Enzyme Prodrug Therapy
  • the ADEPT protocol aims to modify the distribution of a cytotoxic agent by selectively generating it at the level of the tumor.
  • a fusion protein with an antibody specific for the tumor cells is used to ensure the targeting, and a specific enzyme of a nontoxic prodrug to ensure the activation of the latter and release the anti-cancer agent in the tumor zone.
  • PMT is the activation of a prodrug by stimuli predominantly present in the tumor areas. They may be enzymes that are overexpressed in this zone, such as phosphatase acid, collagenases or ⁇ -glucuronidase.
  • prodrugs that may work according to these protocols. Activation with ⁇ -glucuronidase has particularly demonstrated its efficacy in vivo in the case of a prodrug of doxorubicin HMR 1826, as described in patent EP-648,503.
  • Cyclodextrins or cyclomaltooligosaccharides, are cyclic oligosaccharides which have a frustoconical structure, with a hydrophilic outer surface and a relatively hydrophobic inner surface. Because of this particular structure, cyclodextrins have many properties, the most notable being their ability to include in their cavity, various molecular structures, preferably of the hydrophobic type, to form water-soluble inclusion complexes.
  • Cyclodextrins are generally used in the form of monomer or dimer, defined as two molecules of cyclodextrins coupled or crosslinked together.
  • the patent application FR-2 862 649 describes cyclodextrin dimers capable of solubilizing anticancer agents of the taxane family, and having a biological recognition motif. Breslow et al., J. Am. Chem. Soc., 2001, 123, 12488-1294, which describes a series of photocleavable cyclodextrin dimers capable of transporting phthalocyanines and selectively activating them at the tumor zone.
  • the present invention aims to overcome the disadvantages of the prior art. Its objective is to avoid any degradation or premature release of the drugs carried while allowing their pharmacological action on the targeted areas. It also aims to improve the capture, solubilization and vectorization of drugs of different natures.
  • the invention provides a cyclodextrin oligomer which comprises at least two cyclodextrin molecules covalently coupled to each other via one or more self-immolating spacer arms associated with one or more elements ( s) of biorecognition, said oligomer of cyclodextrins forming a transporter capable of complexing, solubilizing and vectorizing at least one active molecule.
  • the element of biorecognition is such that its decomposition causes an elimination or intramolecular cyclization reaction of the spacer arm resulting in the dissociation of the cyclodextrins and the release of the at least one active molecule.
  • the term "cyclodextrin” means any natural or modified cyclodextrin.
  • modified cyclodextrins are used.
  • the modified cyclodextrins are preferably chosen on their primary or secondary side and in particular 6-monoamino-6-desoxy- ⁇ -cyclodextrin.
  • the modified cyclodextrins are preferably chosen on their primary or secondary side.
  • Di-O-methyO cyclomaltoheptaose the term "self-immolating spacer arm" refers to any multi-branched multiplication element capable of irreversibly destroying itself according to an intramolecular elimination or cyclization reaction mechanism.
  • the spacer arm (s) contain at least one cresol or bisphenol unit.
  • biorecognition element means any structure capable of targeting the administration of active molecules to their site of action, such as, for example, a ⁇ -glucuronide unit. It is any molecular structure complementary to a biological receptor, capable of being recognized by the latter and leading to a specific response such as, for example, the induction and regulation of the biosynthesis of an enzyme. inhibition of the enzymatic activity of an enzyme by binding to its active site, induction of an immune response following a bacterial infection, or inhibition of an inflammatory process by blocking the active site
  • the active molecule or molecules are molecules for therapeutic purposes. They are preferably chosen from anti-cancer drugs, anti-tumor drugs, neurological drugs, alkaloids and bioactive peptides.
  • the present invention also relates to the use of the cyclodextrin oligomer for the preparation of medicaments, in particular for the preparation of medicaments intended for the treatment of tumors.
  • FIG. 1 is a schematic representation of an oligomer of cyclodextrins according to the invention and of the decomposition principle leading to the release of an active molecule
  • FIG. ZA is a representation of a particular oligomer according to the invention comprising a bisphenol A 1 unit
  • FIG ZA 1 - Figure 3 A is a representation of a particular oligomer according to the invention comprising a cresol pattern
  • FIG. 3B represents the principle of decomposition of the oligomer of FIG. 3A.
  • the oligomer according to the invention is a well-defined structure, perfectly characterized and of high purity. It consists mainly of three distinct parts: at least one biorecognition pattern (1), at least one self-immolating spacer arm (2) and cyclodextrins (3).
  • the cyclodextrins (3) serve to complex at least one molecule (4) to take it to its site of action. They are covalently coupled together via one or more self-immolatable spacer arms (2) associated with one or more biorecognition element (s) (1).
  • the biorecognition pattern (1) serves as a trigger for the system according to the invention. It must be specific to the area to be treated. It is included in the spacer arm and it is at the origin of the degradation of the latter.
  • the element of biorecognition thus makes it possible both to drive the system to its target and to trigger its degradation.
  • the oligomer according to the invention must be the substrate of an enzyme that is specific or overexpressed in the targeted zone so that the oligomer according to the invention can effectively vectorize the active molecule (4).
  • the pattern of biorecognition (1) must be the substrate of an enzyme specific or overexpressed in the tumor areas.
  • a biorecognition pattern (1) particularly suitable for the present invention beta-glucuronide, which can be used in the context of a PMT strategy As shown diagrammatically in FIG.
  • a decomposition of the biorecognition element (1) results in an intramolecular elimination or cyclization reaction of the spacer arm (2) which causes a cleavage between this spacer arm (2) and the cyclodextrins (3) resulting in the release of the cyclodextrins (3) complexed with the active molecule (4)
  • the decomposition of the biorecognition element is preferably an enzymatic hydrolysis
  • the release of the cyclodextrins causes a modification of the complexing constant which allows the delivery of the molecule (4).
  • the particular structure of the present invention makes it possible to deliver the active molecule as close as possible to its site of action.
  • the presence of at least two cyclodextrin molecules that are coupled or covalently cross-linked between them makes it possible to ensure a strong cooperative complexation with at least one active active molecule.
  • This strong complexation makes it possible to get rid of its premature release and avoid its side effects.
  • the complexation according to the invention is a dynamic equilibrium, the active molecule is not trapped. Its release is favored by the decrease of the association constant consecutive to the degradation of the spacer.
  • the oligomer according to the present invention is capable of complexing different types of therapeutic molecules, without having to be chemically modified.
  • reaction precursors are used which make it possible to integrate the biorecognition pattern into the final molecule.
  • preparative precursors of integrating a glucuronide in the final oligomer, which are particularly suitable for the present invention:
  • the oligomer according to the invention comprises: two cyclodextrins (3),
  • spacer arm (2) namely a 2,2-bis (4-hydroxy-hydroxymethylphenyl) propane backbone, that is to say bisphenol A having two benzyl alcohols, and
  • the principle of decomposition is presented in FIG. 2B.
  • the two biorecognition patterns (1) can be hydrolyzed separately.
  • the second glucuronide (1) can then be hydrolyzed and generate a second decomposition in an identical manner.
  • 2,2-bis (4-hydroxy-hydroxymethylphenyl) propane spacer arms that may be incorporated into a cyclodextrin oligomer according to the invention may be mentioned: 2,2-bis (4-tert-butyldimethylsilanoxy-3-methyl-phenyl) propane, corresponding to the following formula:
  • Cb corresponding to cyclodextrins unmethylated or methylated, such as e.g. -monoamino 6 I-6 I -deoxy-cyclomaltoheptaose and 6 1 - 6 x monoamino -desoxy- ⁇ 2 -0- methyl-hexakis (2 1 TM, VII- di-O-methyl) cyclomaltoheptaose.
  • the oligomer according to the invention comprises: two cyclodextrins (3),
  • a spacer arm (2) namely a cresol pattern
  • biorecognition (1) namely a glucuronide unit.
  • the decomposition principle is shown in FIG. 3 B.
  • the hydrolysis of the biorecognition pattern (1) results in a double elimination 1,4.
  • the system is decomposed in favor of two monomers of cyclodextrins (3).
  • a first amino-cyclodextrin (3) is released which causes a sharp decrease in the complexation constant and the active molecule (4) is released.
  • the methylene quinone is then hydrated before carrying out the second elimination which leads to the formation of a second amino-cyclodextrin (3) and cresol (2).
  • cresol oligomers of cyclodextrins methyl (2,3,4-tri-O-acetyl- ⁇ -D-glucopyranosiduronate) -2,6 bis cyclodextrins-methyl carbamate -p-cresol, corresponding to the following formula:
  • Cb corresponding to cyclodextrins unmethylated or methylated, such as e.g. -monoamino 6 I-6 I -deoxy-cyclomaltoheptaose and 6 1 - 6 x monoamino -desoxy- ⁇ 2 -0- methyl-hexakis (2 1 TM, VII- di-O-methyl) cyclomaltoheptaose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Neurosurgery (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

L'objet de l'invention est un oligomère de cyclodextrines comportant au moins deux molécules de cyclodextrines couplées entre elles de façon covalente via au moins un bras espaceur auto-immolable associé à au moins un élément de bioreconnaissance, ledit oligomère de cyclodextrines formant un transporteur capable de complexer, solubiliser et vectoriser au moins une molécule active. L' invention couvre aussi leur utilisation pour la réalisation de médicaments.

Description

OLIGOMERES DE CYCLODEXTRINES, VECTEURS DE MOLECULES
ACTIVES
La présente invention se rapporte à des oligomères de cyclodextrines capables de capturer, solubiliser et vectoriser des molécules actives et de cibler leur libération sur des zones spécifiques.
L'invention concerne également leur utilisation pour la réalisation de médicaments.
Aujourd'hui, la plupart des médicaments et thérapies utilisés pour le traitement de pathologies humaines lourdes, notamment de type cancer, posent d'importants problèmes d'effets secondaires et de tolérance par les patients. En effet, les principes actifs thérapeutiques administrés ne sont pas spécifiques des cellules à traiter et peuvent fortement endommager les cellules saines.
De nombreuses recherches sont donc menées pour trouver des moyens d'agir sélectivement sur les cellules à traiter, à l'exclusion des cellules saines. En particulier, la vectorisation desdits principes actifs constitue un axe de recherche important. La vectorisation des médicaments correspond au transport de molécules biologiquement actives jusqu'à leur cible biologique. Parmi les différentes stratégies envisagées, les prodrogues présentent un intérêt notable. Une prodrogue désigne toute molécule, destinée à un usage thérapeutique, qui doit subir une biotransformation après son administration à un organisme pour que s'exerce une activité pharmacologique. Dans le domaine du traitement du cancer l'utilisation de propriétés biologiques, physiques et chimiques des cellules cancéreuses, permet d'activer sélectivement une prodrogue. Notamment, on connaît les protocoles ADEPT (Antibody Directed Enzyme Prodrug Therapy) et
PMT(Prodrug Mono Therapy).
Le protocole ADEPT vise à modifier la distribution d'un agent cytotoxique en le générant sélectivement au niveau de la tumeur. Pour cela on utilise une protéine de fusion avec un anticorps spécifique des cellules tumorales pour assurer le ciblage, et une enzyme spécifique d'une prodrogue non toxique pour assurer l'activation de cette dernière et libérer l'agent anticancéreux dans la zone tumorale.
La PMT correspond à l'activation d'une prodrogue par des stimuli majoritairement présents dans les zones tumorales. Il peut s'agir d'enzymes qui sont surexprimées dans cette zone comme l'acide phosphatase, des collagènases ou encore de la β-glucuronidase.
Il existe un certain nombre de prodrogues susceptibles de fonctionner selon ces protocoles. L'activation par la β-glucuronidase a particulièrement démontré son efficacité in vivo dans le cas d'une prodrogue de la doxorubicine HMR 1826, tel que décrit dans le brevet EP-648.503.
On connaît également le brevet US WO- 2004/019993 qui décrit une prodrogue capable de libérer deux unités de molécule active après une hydrolyse d'un motif central reliant les deux unités.
Toutefois les prodrogues existantes demandent des procédés de préparation complexes avec une mise en oeuvre lourde et coûteuse nécessitant une modification chimique de la drogue elle-même.
En outre elles ne sont pas adaptées à la diversité des fonctions chimiques de la plupart des molécules thérapeutiques.
Il existe donc un besoin pour un système simple, stable et efficace, capable de transporter dans l'organisme différentes substances médicamenteuses et de les libérer pour qu'elles exercent leur activité pharmacologique uniquement sur leur site d'action.
Pour y répondre, la présente invention se propose d'utiliser des cyclodextrines. Les cyclodextrines, ou cyclomaltooligosaccharides, sont des oligosaccharides cycliques qui possèdent une structure tronconique, avec une surface externe hydrophile et une surface interne relativement hydrophobe. Du fait de cette structure particulière, les cyclodextrines présentent de nombreuses propriétés, la plus notable étant leur aptitude à inclure dans leur cavité, des structures moléculaires diverses, préférentiellement de type hydrophobe, pour former des complexes d'inclusions solubles dans l'eau.
Cette spécificité a donné lieu notamment à des applications en pharmacie pour la formulation de médicaments. Les cyclodextrines sont généralement utilisées sous forme de monomère ou de dimère, défini comme deux molécules de cyclodextrines couplées ou réticulées ensemble. A ce sujet, la demande de brevet FR-2.862.649 décrit des dimères de cyclodextrines capables de solubiliser des anticancéreux de la famille des taxanes, et possédant un motif de reconnaissance biologique. On peut citer également Breslow et coll., J. Am. Chem. Soc, 2001, 123, 12488-1294, qui décrit une série de dimères de cyclodextrines photoclivables capables de transporter des phtalocyanines et de les rendre actives sélectivement au niveau de la zone tumorale.
Toutefois, ces différentes structures sont très spécifiques à certaines catégories de molécules, peu efficaces et ne permettent pas de cibler correctement les sites d'action. On connaît également le brevet US-6.048.736 qui décrit des principes actifs complexés dans des cyclodextrines. Après complexation les cyclodextrines sont associées entre elles par des espaceurs, et un élément de bioreconnaissance est fixé en surface du polymère ainsi formé. La substance active est emprisonnée dans le polymère et n'est libérée que lorsque celui-ci se dégrade. Là encore ces polymères à ramification aléatoires de structure non définie ne sont pas satisfaisants. En particulier ils présentent des impuretés, et les substances actives ont tendance à se dégrader, si bien que leur utilisation reste purement théorique et qu'aucune application n'est envisageable.
La présente invention vise à pallier les inconvénients de l'art antérieur. Elle a pour objectif d'éviter toute dégradation ou toute libération prématurée des drogues transportées tout en permettant leur action pharmacologique sur les zones visées. Elle a également pour but d'améliorer la capture, la solubilisation et la vectorisation de drogues de différentes natures.
Pour cela, l'invention propose un oligomère de cyclodextrines qui comporte au moins deux molécules de cyclodextrines couplées entre elles de façon covalente via un ou plusieurs bras espaceur(s) auto-immolable(s) associé(s) à un ou plusieurs élément(s) de bioreconnaissance, ledit oligomère de cyclodextrines formant un transporteur capable de complexer, solubiliser et vectoriser au moins une molécule active. L'élément de bioreconnaissance est tel que sa décomposition entraîne une réaction d'élimination ou de cyclisation intramoléculaire du bras espaceur ayant pour conséquence la dissociation des cyclodextrines et la libération de la au moins une molécule active. Dans la présente description, on entend par « cyclodextrine » toute cyclodextrine naturelle ou modifiée.
De façon avantageuse on utilise des cyclodextrines modifiées. Dans le cas de cyclodextrines mono-modifiées, on choisit préférentiellement les cyclodextrines modifiées sur leur face primaire ou secondaire et en particulier la 6-monoamino-6-desoxy-β>-cyclodextrine.
Dans le cas de cyclodextrines poly-modifiées, on choisit préférentiellement les cyclodextrines modifiées sur leur face primaire ou secondaire. On peut citer comme particulièrement efficace pour la présente invention, la 6I-monoamino-6I- desoxy-Z^O-méthyl-hexakisCZ^^. ό^^-di-O-methyO cyclomaltoheptaose. De même, on désigne par « bras espaceur auto-immolable» tout élément de multiplication à plusieurs ramifications capable de se détruire par lui-même de manière irréversible selon un mécanisme de réaction d'élimination ou de cyclisation intramoléculaire. De manière préférentielle, le ou les bras espaceurs contiennent au moins un motif crésol ou bisphénol.
Par « élément de bioreconnaissance » on entend toute structure capable de cibler l'administration de molécules actives vers leur site d'action, comme par exemple un motif β-glucuronide. Il s'agit de toute structure moléculaire complémentaire d'un récepteur biologique, susceptible d'être reconnue par ce dernier et de conduire à une réponse spécifique telle que par exemple l'induction et la régulation de la biosynthèse d'une enzyme, l'inhibition de l'activité enzymatique d'une enzyme par fixation sur son site actif, l'induction d'une réponse immunitaire suite à une infection bactérienne, ou encore l'inhibition d'un processus inflammatoire par blocage du site actif
La ou les molécules actives sont des molécules à visée thérapeutique. Elles sont préférentiellement choisies parmi les médicaments anti-cancéreux, les médicaments anti-tumoraux, les médicaments neurologiques, les alcaloïdes et les peptides bioactifs.
Selon un autre aspect, la présente invention vise également l'utilisation de l'oligomère de cyclodextrines pour la préparation de médicaments, en particulier pour la préparation de médicaments destinés au traitement des tumeurs. L'invention est maintenant décrite en détail en regard d'exemples non limitatifs et des figures annexées sur lesquelles :
- la figure 1 est une représentation schématique d'un oligomère de cyclodextrines selon l'invention et du principe de décomposition conduisant à la libération d'une molécule active, - la figure ZA est une représentation d'un oligomère particulier selon l'invention comportant un motif bisphénol A1
- la figure 2B représente le principe de décomposition de l'oligomère de la figure ZA1 - la figure 3 A est une représentation d'un oligomère particulier selon l'invention comportant un motif crésol, et
- la figure 3 B représente le principe de décomposition de l'oligomère de la figure 3A.
L'oligomère selon l'invention est une structure bien définie, parfaitement caractérisée et d'une grande pureté. Il est principalement constitué de trois parties distinctes : au moins un motif de bioreconnaissance (1), au moins un bras espaceur auto-immolable (2) et des cyclodextrines (3).
Les cyclodextrines (3) servent à complexer au moins une molécule (4) pour l'emmener vers son site d'action. Elles sont couplées entre elles de façon covalente via un ou plusieurs bras espaceur(s) (2) auto-immolable(s) associé(s) à un ou plusieurs élément(s) de bioreconnaissance (1).
Le motif de bioreconnaissance (1) sert de déclencheur au système selon l'invention. Il doit être spécifique de la zone à traiter. Il est inclus dans le bras espaceur et il est à l'origine de la dégradation de ce dernier. Avantageusement l'élément de bioreconnaissance permet donc à la fois de conduire le système à sa cible et de déclencher sa dégradation.
Selon un mode de réalisation préféré il doit s'agir du substrat d'une enzyme spécifique ou surexprimée dans la zone visée pour que l'oligomère selon l'invention puisse vectoriser efficacement la molécule active (4). Dans le cas où la molécule active (4) a une visée anti-tumorale, le motif de bioreconnaissance (1) doit être le substrat d'une enzyme spécifique ou surexprimée dans les zones tumorales. A titre d'exemple, on peut citer comme motif de bioreconnaissance (1) particulièrement adapté à la présente invention le (b-glucuronide, qui peut être utilisé dans le cadre d'une stratégie PMT. Comme schématisé sur la figure 1, une décomposition de l'élément de bioreconnaissance (1) entraîne une réaction d'élimination ou de cyclisation intramoléculaire du bras espaceur (2) qui entraîne une coupure entre ce bras espaceur (2) et les cyclodextrines (3) ayant pour conséquence la libération des cyclodextrines (3) complexées avec la molécule active (4). La décomposition de l'élément de bioreconnaissance est préférentiellement une hydrolyse enzymatique. La libération des cyclodextrines entraîne une modification de la constante de complexation qui permet la délivrance de la molécule (4).
Avantageusement, la structure particulière de la présente invention permet de délivrer la molécule active au plus près de son site d'action. La présence d'au moins deux molécules de cyclodextrines couplées ou réticulées entre elles de façon covalente permet d'assurer une complexation coopérative importante avec au moins une molécule active invitée. Cette forte complexation permet de s'affranchir de sa libération prématurée et d'éviter ses effets secondaires. La complexation selon l'invention est un équilibre dynamique, la molécule active n'est pas piégée. Sa libération est favorisée par la diminution de la constante d'association consécutive à la dégradation de l'espaceur.
En outre, l'oligomère selon la présente invention est capable de complexer différents types de molécules thérapeutiques, sans avoir à être modifié chimiquement.
Selon un mode de réalisation particulier, pour obtenir l'oligomère de cyclodextrines selon l'invention on utilise des précurseurs réactionnels qui permettent d'intégrer le motif de bioreconnaissance dans la molécule finale. A titre d'exemple, on peut citer comme précurseurs réαctionnels permettant d'intégrer un glucuronide dans l'oligomère final, particulièrement adaptés pour la présente invention :
-le 1,2,3,4-tétra-O-acétyl-β-D-glucopyranosiduronate de méthyle, de formule :
Figure imgf000009_0001
OAc
- le 2,3,4-tri-O-acétyl-l-bromo-β-D-glucopyranosiduronate de méthyle, de formule :
Figure imgf000009_0002
Br
- le 4-méthyl-2-hydroxy-isophtalaldéhyde, de formule
O OH O
H H
le 4-méthyl-2-(2,3,4-tri-O-acétyl-β>-D-glucopyranosiduronate de méthyle)- isophtalaldéhyde, de formule :
Figure imgf000009_0003
Exemples d'oliqomères de cyclodextrines selon l'invention I. Oliqomères bisphénol A
Selon un mode de réalisation particulier présenté sur la figure ZA1 l'oligomère selon l'invention comporte : - deux cyclodextrines (3),
- un bras espaceur (2), à savoir un squelette 2,2-bis-(4-hydroxy 3- hydroxyméthylephényl)-propane, c'est-à-dire le bisphénol A possédant deux alcools benzyliques, et
- deux motifs de bioreconnaissance (1), à savoir deux motifs glucuronides. Le squelette général du bisphénol A (2) possède un gem diméthyle sur le carbone central. La présence de ces deux groupements méthyle contraignent la structure globale dans une forme de « pince ». Les deux cyclodextrines (3) sont alors dans une conformation favorable à la complexation dans un ratio 1 :1.
Le principe de décomposition est présenté sur la figure 2 B. Les deux motifs de bioreconnaissance (1) peuvent être hydrolyses séparément.
Quand un glucuronide (1) est hydrolyse, le phénol formé initie une décomposition par une élimination 1,4 du carbamate benzylique.
Après décarboxylation, une amino-β-cyclodextrine est obtenue. La constante de complexation est fortement diminuée et la molécule active (4) est relarguée. Le deuxième glucuronide (1) peut ensuite être hydrolyse et engendrer une seconde décomposition de manière identique.
On peut citer plusieurs exemples de bras espaceurs 2,2-bis-(4-hydroxy 3- hydroxyméthylephényl)-propane pouvant être intégrés à un oligomère de cyclodextrines selon l'invention : - le 2,2-bis-(4-tert-butyldiméthylsilαnoxy-3-méthyl-phényl) propane, répondant à la formule suivante :
Figure imgf000011_0001
- le 2,2-bis-(4-tert-butyldiméthylsilanoxy-3-hydroxyméthyl-phényl) propane, répondant à la formule suivante :
Figure imgf000011_0002
- le 2,2-bis-(4-tert-butyldiméthylsilanoxy-3-formyl-phényl) propane, répondant à la formule suivante :
Figure imgf000011_0003
- le 2,2-bis-(4-hydroxy-3-formyl-phényl) propane, répondant à la formule suivante :
HO' "OH cr ^O - le 2,2-bis-[4-(2,3,4-tri-O-αcétyl-β>-D-glucopyrαnosiduronαte de méthyle-1- oxy)-3-formyl-phényl] propane, répondant à la formule suivante :
Figure imgf000012_0001
On peut citer plusieurs exemples particuliers d'oligomères bisphénol (A) de cyclodextrines selon l'invention :
- le Z^-bis-^-^SΛ-tri-O-acétyl-β-D-glucopyranosiduronate de méthyle-l-oxy)-3-(mono carbamoyloxyméthyl cyclodextrinyl)-phényl] propane, répondant à la formule suivante :
Figure imgf000012_0002
- le 2,2-bis-[4-(β-D-glucopyranosiduronate de méthyle-l-oxy)-3-(mono carbamoyloxyméthyl cyclodextrinyl)-phényl] propane, répondant à la formule suivante :
Figure imgf000013_0001
le 2,2-bis-[4-( acide β>-D-glucopyranosiduronique-l-oxy)-3-(mono carbamoyloxyméthyl cyclodextrinyl)-phényl] propane, répondant à la formule suivante :
Figure imgf000013_0002
avec Cb correspondant à des cyclodextrines non méthylées ou méthylées, telles que par exemple la 6I-monoamino-6I-désoxy-cyclomaltoheptaose et la 61- monoamino- 6x-desoxy- 2τ-0- méthyl-hexakis (21™, 6II VII-di-0- méthyl) cyclomaltoheptaose.
II. Oliqomères crésol
Selon un autre mode de réalisation particulier, présenté sur la figure 3A, l'oligomère selon l'invention comporte : - deux cyclodextrines (3),
- un bras espaceur (2), à savoir un motif crésol, et
- un motif de bioreconnaissance (1), à savoir un motif glucuronide. Le principe de décomposition est présenté sur la figure 3 B. L'hydrolyse du motif de bioreconnaissance (1) entraîne une double élimination 1,4. Mais comme pour le mode de réalisation avec le bisphénol A1 dès la première élimination le système est décomposé au profit de deux monomères de cyclodextrines (3). Une première amino-cyclodextrine (3) est libérée ce qui entraîne une forte diminution de la constante de complexation et la molécule active (4) est relarguée. La méthylène quinone est ensuite hydratée avant de réaliser la seconde élimination qui conduit à la formation d'une deuxième amino-cyclodextrine (3) et au crésol (2).
On peut citer plusieurs exemples particuliers d'oligomères crésol de cyclodextrines selon l'invention : - le (2,3,4-tri-O-acétyl-β-D-glucopyranosiduronate de méthyle)-2,6 bis cyclodextrines-carbamate de méthyle-p-crésol, répondant à la formule suivante :
Figure imgf000014_0001
- le (β-D-glucopyranosiduronate de méthyle)-2,6 bis cyclodextrines- carbamate de méthyle-p-crésol, répondant à la formule suivante :
Figure imgf000014_0002
- le (Acide-β>-D-glucopyrαnosiduronique)-2,6 bis cyclodextrines-cαrbαmαte de méthyle-p-crésol, répondant à la formule suivante :
Figure imgf000015_0001
avec Cb correspondant à des cyclodextrines non méthylées ou méthylées, telles que par exemple la 6I-monoamino-6I-désoxy-cyclomaltoheptaose et la 61- monoamino- 6x-desoxy- 2τ-0- méthyl-hexakis (21™, 6II VII-di-0- méthyl) cyclomaltoheptaose.
Bien entendu, l'invention n'est évidemment pas limitée aux exemples représentés et décrits ci-dessus, mais couvre au contraire toutes les variantes, notamment en ce qui concerne la nature des cyclodextrines, des bras espaceurs et des motifs de bioreconnaissance, ainsi que les utilisations des oligomères de cyclodextrines obtenus.

Claims

REVENDICATIONS
1. Oligomère de cyclodextrines comportant au moins deux molécules de cyclodextrines couplées entre elles de façon covalente via au moins un bras espaceur auto-immolable associé à au moins un élément de bioreconnaissance, ledit oligomère de cyclodextrines formant un transporteur capable de complexer, solubiliser et vectoriser au moins une molécule active, caractérisé en ce qu'une décomposition de l'élément de bioreconnaissance entraîne une réaction d'élimination ou de cyclisation intramoléculaire du bras espaceur ayant pour conséquence la dissociation des cyclodextrines et la libération de la au moins une molécule active.
2. Oligomère de cyclodextrines selon la revendication 1, caractérisé en ce que la décomposition de l'élément de bioreconnaissance est une hydrolyse.
3. Oligomère de cyclodextrines selon l'une quelconque des précédentes revendications, caractérisé en ce que l'élément de bioreconnaissance est un substrat d'au moins une enzyme.
4. Oligomère de cyclodextrines selon l'une quelconque des précédentes revendications, caractérisé en ce que l'élément de bioreconnaissance est un substrat d'une enzyme spécifique ou surexprimée dans les zones tumorales.
5. Oligomère de cyclodextrines selon l'une quelconque des précédentes revendications, caractérisé en ce que l'élément de bioreconnaissance est le β>- glucuronide.
6. Oligomère de cyclodextrines selon l'une quelconque des précédentes revendications, caractérisé en ce que les cyclodextrines sont mono- et/ou poly- modif iées et liées par leur face secondaire ou primaire.
7. Oligomère de cyclodextrines selon l'une quelconque des précédentes revendications, caractérisé en ce que le bras espaceur est auto-immolable de manière irréversible et contient un motif de type crésol ou bisphénol A.
8. Oligomère de cyclodextrines selon l'une quelconque des précédentes revendications, caractérisé en ce que la ou les molécule(s) active(s) sont choisies parmi les médicaments anti-cancéreux, les médicaments anti-tumoraux, les médicaments neurologiques, les alcaloïdes et les peptides bioactifs.
9. Utilisation de l'oligomère selon l'une quelconque des précédentes revendications pour la préparation d'un médicament destiné au traitement des tumeurs.
PCT/FR2008/050567 2007-04-02 2008-04-01 Oligomeres de cyclodextrines, vecteurs de molecules actives WO2008142316A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754202 2007-04-02
FR0754202A FR2914306B1 (fr) 2007-04-02 2007-04-02 Oligomeres de cyclodextrines, vecteurs de molecules actives

Publications (1)

Publication Number Publication Date
WO2008142316A1 true WO2008142316A1 (fr) 2008-11-27

Family

ID=38657972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050567 WO2008142316A1 (fr) 2007-04-02 2008-04-01 Oligomeres de cyclodextrines, vecteurs de molecules actives

Country Status (2)

Country Link
FR (1) FR2914306B1 (fr)
WO (1) WO2008142316A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048736A (en) * 1998-04-29 2000-04-11 Kosak; Kenneth M. Cyclodextrin polymers for carrying and releasing drugs
WO2007011968A2 (fr) * 2005-07-18 2007-01-25 Seattle Genetics, Inc. Conjugues lieur a base de beta-glucuronide-medicament

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048736A (en) * 1998-04-29 2000-04-11 Kosak; Kenneth M. Cyclodextrin polymers for carrying and releasing drugs
WO2007011968A2 (fr) * 2005-07-18 2007-01-25 Seattle Genetics, Inc. Conjugues lieur a base de beta-glucuronide-medicament

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUGH ET AL.: "Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 123, 2001, pages 12488 - 12494, XP002458589 *

Also Published As

Publication number Publication date
FR2914306A1 (fr) 2008-10-03
FR2914306B1 (fr) 2009-07-03

Similar Documents

Publication Publication Date Title
Wang et al. Infection microenvironment-related antibacterial nanotherapeutic strategies
Gorantla et al. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status
KR102008768B1 (ko) 공유결합된 치료제 전달을 위한 사이클로덱스트린-기초 중합체
Senanayake et al. Novel anticancer polymeric conjugates of activated nucleoside analogues
KR101179471B1 (ko) 자기 집합체 고분자 나노입자를 이용한 siRNA 전달 시스템
US20220054633A1 (en) Nanoparticles, controlled-release dosage forms, and methods for delivering an immunotherapeutic agent
Zhu et al. Nanodiamond mediated co-delivery of doxorubicin and malaridine to maximize synergistic anti-tumor effects on multi-drug resistant MCF-7/ADR cells
Gupta et al. Covalent functionalized self-assembled lipo-polymerosome bearing amphotericin B for better management of leishmaniasis and its toxicity evaluation
Doerflinger et al. Biotin-functionalized targeted polydiacetylene micelles
Jin et al. Folate receptor targeting and cathepsin B-sensitive drug delivery system for selective cancer cell death and imaging
KR102063571B1 (ko) 다양한 세포로부터의 표면개질된 엑소좀의 제조방법
Song et al. Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization
Chinnagounder Periyasamy et al. Nanomaterials for the local and targeted delivery of osteoarthritis drugs
Altangerel et al. PEGylation of 6-amino-6-deoxy-curdlan for efficient in vivo siRNA delivery
Jia et al. Bottlebrush polymer-conjugated melittin exhibits enhanced antitumor activity and better safety profile
Koenig et al. New aspects of gene-silencing for the treatment of cardiovascular diseases
Zhou et al. ROS/electro dual-reactive nanogel for targeting epileptic foci to remodel aberrant circuits and inflammatory microenvironment
Ge et al. Polywraplex, functionalized polyplexes by post‐polyplexing assembly of a rationally designed triblock copolymer membrane
Zhang et al. Specific surface modification of liposomes for gut targeting of food bioactive agents
Darji et al. Recent method to improve stability profile, pharmacokinetic and pharmacodynamic properties in anticancer drugs
WO2012138731A2 (fr) Conjugués d'analogue de nucléoside activé et procédés d'utilisation correspondants
KR101757840B1 (ko) 암세포 선택적 약물 전달이 가능한 다중 일렬 헤어핀 dna 및 이의 약물전달체로서의 용도
WO2008142316A1 (fr) Oligomeres de cyclodextrines, vecteurs de molecules actives
CA3008095C (fr) Composition pharmaceutique comprenant une matrice a base d'apatite et un agent de modification de surface
KR20130022671A (ko) 전립선암 특이적 siRNA 전달체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08788093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08788093

Country of ref document: EP

Kind code of ref document: A1