WO2008140897A1 - Cam mounted accumulator - Google Patents

Cam mounted accumulator Download PDF

Info

Publication number
WO2008140897A1
WO2008140897A1 PCT/US2008/060965 US2008060965W WO2008140897A1 WO 2008140897 A1 WO2008140897 A1 WO 2008140897A1 US 2008060965 W US2008060965 W US 2008060965W WO 2008140897 A1 WO2008140897 A1 WO 2008140897A1
Authority
WO
WIPO (PCT)
Prior art keywords
phaser
camshaft
housing
rotor
accumulator
Prior art date
Application number
PCT/US2008/060965
Other languages
French (fr)
Inventor
Roger T. Simpson
Original Assignee
Borgwarner Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borgwarner Inc. filed Critical Borgwarner Inc.
Publication of WO2008140897A1 publication Critical patent/WO2008140897A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0475Hollow camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/033Hydraulic engines

Definitions

  • the invention pertains to the field of accumulators. More particularly, the invention pertains to cam mounted accumulator.
  • phasers require a source of supply oil to move the vane or aid in moving the vane of the phaser.
  • the oil supplied to the phaser must be maintained at a relative constant pressure in order to achieve maximum shift rates.
  • One problem with phasers in the prior art is that as the phaser shifts the oil pressure between the chambers on either side of the vanes, oil pressure may drop to a low level and even zero. In some cases, the force from the rotor and vane can cause the pressure to create a partial vacuum in the chambers and supply line. The partial vacuum leads to air being drawn in to the phaser, resulting in poor performance and NVH concerns.
  • one solution to the partial vacuum that may result is to provide a leak path from the source oil to the advance and retard inlet oil passages leading to the chambers on either side of the vane.
  • the leak path by adding the leak path, the overall oil usage of the system increases, as well as the parasitic losses of the engine.
  • Accumulators are used when an additional oil supply is necessary, for example as the engine starts.
  • U.S. Patent No. 5,707,317 a method of operating a hydraulically controlled/regulated camshaft adjuster is disclosed, where when the engine starts, the pressure medium is supplied to the piston from an essentially full accumulator as a function of a start signal under valve control in order to advance the camshaft using the adjusting device.
  • the accumulator is present in the engine and is connected to a hydraulic circuit that includes the valve controlling the position of the hydraulic actuating device, a pump, the feed line, and the return line from the hydraulic actuating device.
  • Accumulators are also present in various parts of the engine. For example, in U.S. Patent No.
  • an accumulator piston is present in a valve gear for the engine and arranged within an accumulator chamber.
  • the accumulator chamber includes a piston spring. The piston is moved against the force of the spring by pressure acting in the accumulator chamber.
  • the accumulator chamber is connected to an actuating chamber of the valve through a solenoid.
  • a phaser has a volume accumulator disposed a) in the hydraulic fluid circuit, between the phaser and the hydraulic valve; b) in the vane; or c) as a separate unit or integrated into the locking element/locking pin.
  • the volume accumulator may be a compression spring controlled piston accumulator, a diaphragm accumulator, or a bladed accumulator.
  • the volume of the accumulator is variable and solely determined by the pressure in the hydraulic fluid circuit. If the pressure in the hydraulic fluid circuit then increases abruptly, the volume available for the hydraulic fluid is increased by the volume accumulator.
  • the volume accumulator can also reduce the volume available for the hydraulic fluid in the hydraulic fluid circuit. If the inertia of the volume accumulator is low, it can also act as an oscillating circuit damper and counteract a pulsation generated by a pressure peak.
  • U.S. Patent No. 6,782,856 discloses an accumulator provided in the camshaft.
  • the accumulator may be in the rearward end, the middle, or the front end of the camshaft.
  • a phaser is connected to the camshaft.
  • An external solenoid valve controls the fluid to and from the phaser.
  • the accumulator has a rearward internal cavity provided by the internal cavity of the camshaft.
  • a stop within the cavity provides a limit for the piston.
  • the piston is biased by a coil spring. The tension of the spring may be adjusted by a core screw.
  • the accumulator is used to specifically provide fluid to the solenoid valve and subsequently the VCT system when engine rotational speed is low and therefore the pressure of the oil delivered to the main oil pump will not be sufficiently high to operate the solenoid valve external from the phaser itself.
  • the accumulator provides additional volume when short duration, high volume pressurized oil is needed by the VCT phaser. In another words, an auxiliary supply from the accumulator is necessary so that the phaser can function at all.
  • U.S. Patent No. 5,158,049 discloses deactivatable cams that are axially and slidably arranged on a camshaft.
  • the cams are axially slidable to couple with claw clutches arranged on each cam by increasing the pressure of a pressure medium of pressure chambers adjacent to the cams.
  • pressure accumulators forced by spring are arranged in the pressure chambers for pressure accumulation.
  • the housing has an outer circumference for accepting a drive force.
  • the rotor is connected to the camshaft coaxially located within the housing, The housing and the rotor define a vane separating a chamber in the housing, the vane being capable of rotation to shift the relative angular position of the housing and the rotor.
  • a control valve is received by the rotor for directing fluid to the chambers.
  • the accumulator is located within a hollow of the camshaft adjacent to the control valve.
  • Fig. 1 shows a cross-section of phaser mounted to a camshaft with an accumulator without oil pressure present.
  • Fig. 2 shows a cross-section of a phaser mounted to a camshaft with an accumulator with oil pressure present.
  • variable camshaft timing (VCT) mechanisms use one or more "vane phasers" on the engine camshaft (or camshafts, in a multiple-camshaft engine).
  • the phasers 122 have a rotor 103 with one or more vanes (not shown), mounted to the end of the camshaft 108, surrounded by a housing 104 with the vane chambers into which the vanes fit, dividing the vane chambers into advance chambers and retard chambers 124, 126. It is possible to have the vanes mounted to the housing, and the chambers in the rotor, as well.
  • the housing's outer circumference 104a forms the sprocket, pulley or gear accepting drive force through a chain, belt, or gears, usually from the crankshaft, or possible from another camshaft in a multiple-cam engine.
  • an accumulator 120 is mounted within the camshaft 108 adjacent to the phaser.
  • the accumulator 120 may be a spring and plunger as shown in Figures 1 and 2 or a bladder type accumulator.
  • FIG. 1 shows a sectional view of the variable cam timing system without oil in the accumulator 120.
  • Figure 2 shows a sectional view of the variable cam timing system with fluid in the accumulator 120.
  • the phaser 122 has a rotor 103 with one or more vanes mounted to the end of the camshaft 108, surrounded by a housing 104 with vane chambers into which the vanes fit, dividing the vane chambers into advance and retard chambers. It is possible to have the vanes mounted to the housing 104, and the chambers in the rotor 103, as well.
  • the housing 104 of the phaser has an outer circumference 104a for accepting drive force through a chain, usually from the crankshaft (not shown), or possibly from another camshaft in a multiple-cam engine.
  • a control valve 106 is present in the rotor 103.
  • the control valve includes a spool with plurality of lands slidably received in a bore of the rotor.
  • the spool is biased in one direction by a spring and in an opposite direction by an actuator 102.
  • the control valve 106 aids in moving the vane and thus altering the timing of the engine.
  • the camshaft 108 is at least partially hollow 108 a to accommodate an accumulator 120.
  • the accumulator 120 comprises a piston 116 within the hollow 108a of the camshaft 108 with a head 115 at one end.
  • the piston 116 is biased towards the phaser 122 by a spring 114.
  • a reservoir 117 is formed within the hollow 108a of the camshaft 108 between the stops 113 and head 115 of the piston 116 and the control valve 106 of the phaser 122.
  • Extension of the spring 114 towards the phaser 122 within the reservoir 117 formed in the hollow 108a of the camshaft 108 is limited by contact of the head 115 of the piston 116 with stops 113.
  • the spring 114 provides compliance to pressurize accumulated oil within the reservoir 117.
  • a vent 107 is provided at the end of the hollow 108a of the camshaft 108 to allow any fluid between the head 115 of the piston 116 and the end of the hollow near the spring 114 to exit the cam
  • Supply fluid is provided to the phaser 122 and the accumulator 120 through a supply line 110 in a bearing 105 adjacent to the phaser 122.
  • An inlet check 118 valve may be present in the supply line 110 to help maintain oil pressure during short periods of low pressure and to prevent any backflow to supply.
  • the accumulator 120 regulates oil pressure at the input of the oil supply to the chambers 124, 126 of the phaser 122. In other words, the accumulator 120 provides a constant pressure on the spool of the control valve 106.
  • the accumulator 120 present within the hollow 108a of the camshaft 108 also provides pressure to the phaser 122 when the oil pressure drops during the phaser's shifting from one position to another position.
  • the drop in oil pressure in the main oil gallery may occur in oil pressure actuated (OPA) phasers and torsion assist (TA) phasers when a torque pulse occurs.
  • OPA oil pressure actuated
  • TA torsion assist
  • the torsion assist (TA) phasers may be as disclosed in U.S. Patent No. 6,883,481, issued April 26, 2005, entitled “TORSIONAL ASSISTED MULTI- POSITION CAM INDEXER HAVING CONTROLS LOCATED IN ROTOR" with a single check valve TA, and is herein incorporated by reference and/or U.S. Patent No.
  • the accumulator 120 is sized such that enough oil is stored within the reservoir 117 to maximize the shift rate of the phaser 122.
  • phaser 122 may operate without the accumulator 120, but, as stated earlier the force from the rotor 103 and vane during shifting of the phaser 122when the pressure drops to a low level may cause the pressure to create a partial vacuum in the chambers 124, 126 and the supply line 110 leading air to be drawn into the phaser 122, resulting in poor performance.
  • fluid from the accumulator 120 of the present invention is used to provide additional fluid to the advance and retard chambers 124, 126 on opposite sides of the vanes to prevent oil pressure from dropping to a low level when the fluid is shifted from the advance chamber 124 to the retard chamber 126 or vice versa.
  • the accumulator 120 is located within the camshaft 108 such that it is integral to the phaser 122, providing a constant pressure to the spool and regulating oil pressure at the input from the oil supply 110 to the chambers 124, 126 of the phaser.
  • the accumulator in U.S. Patent No. 6,782,856 provides fluid to an external solenoid valve when the engine rotational speed is low and the oil pressure from the main oil pump is insufficient to operate the external solenoid valve and the phaser itself.
  • engine rotational speed is not directly related to oil pressure.
  • the engine rotational speed may be low and the oil pressure may be engineered to be high or the engine rotational speed may be low and the oil pressure may be engineered to be low.
  • pressure is regulated at the oil supply far down within the hydraulic circuit input at the VCT check valve or a significant distance from the phaser itself.
  • oil travels from the accumulator through a pressurized oil line in the camshaft bearing to a line with a T connection.
  • Pressurized oil from the T connection moves into a line leading through a VCT oil filter to other VCTs or to an external solenoid valve.
  • fluid is delivered into the camshaft through multiple lines.
  • One of the lines connects a first passage that includes a cross bore, an axial cross bore, a VCT fastener bore, and fastener cross bore leading to a retard chamber.
  • Another line connects to a second passage that includes a longitudinal bore which connects to the advance chamber.
  • the fluid path from the accumulator to the advance and retard chambers must run through two cam bearings, an external solenoid valve, and multiple passages, increasing the amount of leakage of fluid that occurs during travel between the accumulator and chambers.
  • the oil supply is not regulated by the chambers of the phaser, but near the inlet check valve and the oil filter leading to the external solenoid valve.
  • the pressure regulated near the inlet check valve the fluid is subjected to numerous passages and crossing of the cam bearing leading to significant oil leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A phaser for an internal combustion engine with at least one camshaft with a housing, a rotor, a control valve, and an accumulator. The housing has an outer circumference for accepting a drive force. The rotor is connected to the camshaft coaxially located within the housing, The housing and the rotor define a vane separating a chamber in the housing, the vane being capable of rotation to shift the relative angular position of the housing and the rotor. A control valve is received by the rotor for directing fluid to the chambers. The accumulator is located within a hollow of the camshaft adjacent to the control valve. When the relative angular position of the housing and the rotor shifts, fluid from the accumulator is provided to the chamber in the housing, preventing fluid pressure within the chambers from dropping to a low level and creating a vacuum within the chambers.

Description

CAM MOUNTED ACCUMULATOR
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention pertains to the field of accumulators. More particularly, the invention pertains to cam mounted accumulator.
DESCRIPTION OF RELATED ART
Many phasers require a source of supply oil to move the vane or aid in moving the vane of the phaser. The oil supplied to the phaser must be maintained at a relative constant pressure in order to achieve maximum shift rates. One problem with phasers in the prior art is that as the phaser shifts the oil pressure between the chambers on either side of the vanes, oil pressure may drop to a low level and even zero. In some cases, the force from the rotor and vane can cause the pressure to create a partial vacuum in the chambers and supply line. The partial vacuum leads to air being drawn in to the phaser, resulting in poor performance and NVH concerns.
In the prior art, one solution to the partial vacuum that may result is to provide a leak path from the source oil to the advance and retard inlet oil passages leading to the chambers on either side of the vane. However by adding the leak path, the overall oil usage of the system increases, as well as the parasitic losses of the engine.
Accumulators are used when an additional oil supply is necessary, for example as the engine starts. In U.S. Patent No. 5,707,317, a method of operating a hydraulically controlled/regulated camshaft adjuster is disclosed, where when the engine starts, the pressure medium is supplied to the piston from an essentially full accumulator as a function of a start signal under valve control in order to advance the camshaft using the adjusting device. The accumulator is present in the engine and is connected to a hydraulic circuit that includes the valve controlling the position of the hydraulic actuating device, a pump, the feed line, and the return line from the hydraulic actuating device. Accumulators are also present in various parts of the engine. For example, in U.S. Patent No. 6,227,154, an accumulator piston is present in a valve gear for the engine and arranged within an accumulator chamber. The accumulator chamber includes a piston spring. The piston is moved against the force of the spring by pressure acting in the accumulator chamber. The accumulator chamber is connected to an actuating chamber of the valve through a solenoid.
In US Publication No. 2005/0274344, a phaser has a volume accumulator disposed a) in the hydraulic fluid circuit, between the phaser and the hydraulic valve; b) in the vane; or c) as a separate unit or integrated into the locking element/locking pin. The volume accumulator may be a compression spring controlled piston accumulator, a diaphragm accumulator, or a bladed accumulator. The volume of the accumulator is variable and solely determined by the pressure in the hydraulic fluid circuit. If the pressure in the hydraulic fluid circuit then increases abruptly, the volume available for the hydraulic fluid is increased by the volume accumulator. The volume accumulator can also reduce the volume available for the hydraulic fluid in the hydraulic fluid circuit. If the inertia of the volume accumulator is low, it can also act as an oscillating circuit damper and counteract a pulsation generated by a pressure peak.
U.S. Patent No. 6,782,856 discloses an accumulator provided in the camshaft. The accumulator may be in the rearward end, the middle, or the front end of the camshaft. A phaser is connected to the camshaft. An external solenoid valve controls the fluid to and from the phaser. The accumulator has a rearward internal cavity provided by the internal cavity of the camshaft. A stop within the cavity provides a limit for the piston. The piston is biased by a coil spring. The tension of the spring may be adjusted by a core screw. The accumulator is used to specifically provide fluid to the solenoid valve and subsequently the VCT system when engine rotational speed is low and therefore the pressure of the oil delivered to the main oil pump will not be sufficiently high to operate the solenoid valve external from the phaser itself. The accumulator provides additional volume when short duration, high volume pressurized oil is needed by the VCT phaser. In another words, an auxiliary supply from the accumulator is necessary so that the phaser can function at all. U.S. Patent No. 5,158,049 discloses deactivatable cams that are axially and slidably arranged on a camshaft. The cams are axially slidable to couple with claw clutches arranged on each cam by increasing the pressure of a pressure medium of pressure chambers adjacent to the cams. When the claws of the claw clutches are not in relative rotation positions that are necessary for coupling, pressure accumulators, forced by spring are arranged in the pressure chambers for pressure accumulation.
SUMMARY OF THE INVENTION
A phaser for an internal combustion engine with at least one camshaft with a housing, a rotor, a control valve, and an accumulator. The housing has an outer circumference for accepting a drive force. The rotor is connected to the camshaft coaxially located within the housing, The housing and the rotor define a vane separating a chamber in the housing, the vane being capable of rotation to shift the relative angular position of the housing and the rotor. A control valve is received by the rotor for directing fluid to the chambers. The accumulator is located within a hollow of the camshaft adjacent to the control valve. When the relative angular position of the housing and the rotor shifts, fluid from the accumulator is provided to the chamber in the housing, preventing fluid pressure within the chambers from dropping to a low level and creating a partial vacuum within the chambers.
BRIEF DESCRIPTION OF THE DRAWING
Fig. 1 shows a cross-section of phaser mounted to a camshaft with an accumulator without oil pressure present.
Fig. 2 shows a cross-section of a phaser mounted to a camshaft with an accumulator with oil pressure present.
DETAILED DESCRIPTION OF THE INVENTION
Internal combustion engines have employed various mechanisms to vary the angle between the camshaft and the crankshaft for improved engine performance or reduced emissions. The phasers may also be used to change the timing of the valves or vary the duration of the vale depending on the cam and lifter arrangement of the engine. The majority of these variable camshaft timing (VCT) mechanisms use one or more "vane phasers" on the engine camshaft (or camshafts, in a multiple-camshaft engine). In most cases, the phasers 122 have a rotor 103 with one or more vanes (not shown), mounted to the end of the camshaft 108, surrounded by a housing 104 with the vane chambers into which the vanes fit, dividing the vane chambers into advance chambers and retard chambers 124, 126. It is possible to have the vanes mounted to the housing, and the chambers in the rotor, as well. The housing's outer circumference 104a forms the sprocket, pulley or gear accepting drive force through a chain, belt, or gears, usually from the crankshaft, or possible from another camshaft in a multiple-cam engine.
In the phaser 122 of the present invention, an accumulator 120 is mounted within the camshaft 108 adjacent to the phaser. The accumulator 120 may be a spring and plunger as shown in Figures 1 and 2 or a bladder type accumulator.
Figure 1 shows a sectional view of the variable cam timing system without oil in the accumulator 120. Figure 2 shows a sectional view of the variable cam timing system with fluid in the accumulator 120. The phaser 122 has a rotor 103 with one or more vanes mounted to the end of the camshaft 108, surrounded by a housing 104 with vane chambers into which the vanes fit, dividing the vane chambers into advance and retard chambers. It is possible to have the vanes mounted to the housing 104, and the chambers in the rotor 103, as well. The housing 104 of the phaser has an outer circumference 104a for accepting drive force through a chain, usually from the crankshaft (not shown), or possibly from another camshaft in a multiple-cam engine. A control valve 106 is present in the rotor 103. The control valve includes a spool with plurality of lands slidably received in a bore of the rotor. The spool is biased in one direction by a spring and in an opposite direction by an actuator 102. The control valve 106 aids in moving the vane and thus altering the timing of the engine.
The camshaft 108 is at least partially hollow 108 a to accommodate an accumulator 120. The accumulator 120 comprises a piston 116 within the hollow 108a of the camshaft 108 with a head 115 at one end. The piston 116 is biased towards the phaser 122 by a spring 114. A reservoir 117 is formed within the hollow 108a of the camshaft 108 between the stops 113 and head 115 of the piston 116 and the control valve 106 of the phaser 122. Extension of the spring 114 towards the phaser 122 within the reservoir 117 formed in the hollow 108a of the camshaft 108 is limited by contact of the head 115 of the piston 116 with stops 113. The spring 114 provides compliance to pressurize accumulated oil within the reservoir 117. A vent 107 is provided at the end of the hollow 108a of the camshaft 108 to allow any fluid between the head 115 of the piston 116 and the end of the hollow near the spring 114 to exit the camshaft 108.
Supply fluid is provided to the phaser 122 and the accumulator 120 through a supply line 110 in a bearing 105 adjacent to the phaser 122. An inlet check 118 valve may be present in the supply line 110 to help maintain oil pressure during short periods of low pressure and to prevent any backflow to supply. The accumulator 120 regulates oil pressure at the input of the oil supply to the chambers 124, 126 of the phaser 122. In other words, the accumulator 120 provides a constant pressure on the spool of the control valve 106.
The accumulator 120 present within the hollow 108a of the camshaft 108 also provides pressure to the phaser 122 when the oil pressure drops during the phaser's shifting from one position to another position. The drop in oil pressure in the main oil gallery may occur in oil pressure actuated (OPA) phasers and torsion assist (TA) phasers when a torque pulse occurs. The torsion assist (TA) phasers may be as disclosed in U.S. Patent No. 6,883,481, issued April 26, 2005, entitled "TORSIONAL ASSISTED MULTI- POSITION CAM INDEXER HAVING CONTROLS LOCATED IN ROTOR" with a single check valve TA, and is herein incorporated by reference and/or U.S. Patent No. 6,763,791, issued July 20, 2004, entitled "CAM PHASER FOR ENGINES HAVING TWO CHECK VALVES IN ROTOR BETWEEN CHAMBERS AND SPOOL VALVE" which discloses two check valve TA, and is herein incorporated by reference. The accumulator 120 is sized such that enough oil is stored within the reservoir 117 to maximize the shift rate of the phaser 122.
When the engine first starts, fluid is supplied to the phaser and reservoir 117 in the camshaft from supply line 110 as shown in Figure 1. Prior to the phaser altering the timing between the rotor 103 and the housing 104, the reservoir 117 is filled, such that the pressure of the fluid in the reservoir 117 against the head 115 of the piston 116 is greater than the force of spring 114, moving the piston 116 to the position shown in Figure 2. A constant pressure is now present on the spool of the control valve 106.
It should be noted that the phaser 122 may operate without the accumulator 120, but, as stated earlier the force from the rotor 103 and vane during shifting of the phaser 122when the pressure drops to a low level may cause the pressure to create a partial vacuum in the chambers 124, 126 and the supply line 110 leading air to be drawn into the phaser 122, resulting in poor performance.
Unlike in the prior art, fluid from the accumulator 120 of the present invention is used to provide additional fluid to the advance and retard chambers 124, 126 on opposite sides of the vanes to prevent oil pressure from dropping to a low level when the fluid is shifted from the advance chamber 124 to the retard chamber 126 or vice versa. The accumulator 120 is located within the camshaft 108 such that it is integral to the phaser 122, providing a constant pressure to the spool and regulating oil pressure at the input from the oil supply 110 to the chambers 124, 126 of the phaser.
Again, the accumulator in U.S. Patent No. 6,782,856 provides fluid to an external solenoid valve when the engine rotational speed is low and the oil pressure from the main oil pump is insufficient to operate the external solenoid valve and the phaser itself. It should also be noted that engine rotational speed is not directly related to oil pressure. The engine rotational speed may be low and the oil pressure may be engineered to be high or the engine rotational speed may be low and the oil pressure may be engineered to be low. Furthermore, in U.S. Patent No. 6,782,856, pressure is regulated at the oil supply far down within the hydraulic circuit input at the VCT check valve or a significant distance from the phaser itself. In order for fluid from the accumulator to reach the chambers of the phaser, oil travels from the accumulator through a pressurized oil line in the camshaft bearing to a line with a T connection. Pressurized oil from the T connection moves into a line leading through a VCT oil filter to other VCTs or to an external solenoid valve. From the external solenoid valve, fluid is delivered into the camshaft through multiple lines. One of the lines connects a first passage that includes a cross bore, an axial cross bore, a VCT fastener bore, and fastener cross bore leading to a retard chamber. Another line connects to a second passage that includes a longitudinal bore which connects to the advance chamber. The fluid path from the accumulator to the advance and retard chambers must run through two cam bearings, an external solenoid valve, and multiple passages, increasing the amount of leakage of fluid that occurs during travel between the accumulator and chambers. In other words, the oil supply is not regulated by the chambers of the phaser, but near the inlet check valve and the oil filter leading to the external solenoid valve. By having the pressure regulated near the inlet check valve, the fluid is subjected to numerous passages and crossing of the cam bearing leading to significant oil leakage.
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.

Claims

What is claimed is:
L A method of providing additional fluid to a variable cam timing phaser for an internal combustion engine with at least one camshaft comprising the steps of:
a) supplying and filling an accumulator within a hollow of the camshaft, adjacent to the variable cam timing phaser from a supply; and
b) providing fluid from the accumulator directly to chambers in the phaser through a control valve when the phaser shifts from one position to another position.
2. A variable cam timing phaser for an internal combustion engine with at least one camshaft comprising:
a housing with an outer circumference for accepting a drive force;
a rotor for connection to a camshaft coaxially located within the housing, the housing and the rotor defining at least one vane separating a chamber in the housing, the vane being capable of rotation to shift the relative angular position of the housing and the rotor;
a control valve comprising a spool slidably received by a bore in the rotor providing an input for oil supply to the chambers; and
an accumulator located within a hollow of the camshaft adjacent to the control valve;
wherein when the relative angular position of the housing and the rotor shifts, fluid from the accumulator regulates oil pressure at the input of the oil supply to the chambers, preventing fluid pressure within the chambers from dropping to a low level and creating a partial vacuum within the chambers.
3. The phaser of claim 2, wherein the accumulator further comprises a piston with a head at a first end and biased towards the phaser by a spring on a second end.
4. The phaser of claim 3, wherein a reservoir is formed within the hollow of the camshaft between the control valve and the head of the piston.
5. The phaser of claim 3, wherein extension of the spring towards the phaser within the hollow of the camshaft is limited by contact of the head of the piston with stops.
6. The phaser of claim 2, wherein the hollow of camshaft further comprises a vent.
7. The phaser of claim 2, wherein the phaser is an oil pressure actuated phaser.
8. The phaser of claim 2, wherein the phaser is a torsion assist phaser.
9. The phaser of claim 2, further comprising a supply line for supplying fluid to the phaser for shifting the relative angular position of the housing and the rotor.
10. The phaser of claim 9, further comprising an inlet check valve within the supply line.
11. A variable cam timing phaser for an internal combustion engine with at least one camshaft comprising:
a housing with an outer circumference for accepting a drive force;
a rotor for connection to a camshaft coaxially located within the housing, the housing and the rotor defining at least one vane separating a chamber in the housing, the vane being capable of rotation to shift the relative angular position of the housing and the rotor;
a control valve comprising a spool slidably received by a bore in the rotor for directing fluid to the chambers; and
an accumulator located within a hollow of the camshaft integral to the phaser;
wherein the accumulator provides a constant pressure on the spool of the control valve, preventing fluid pressure within the chambers from dropping to a low level and creating a partial vacuum within the chambers.
12. The phaser of claim 11, wherein the accumulator further comprises a piston with a head at a first end and biased towards the phaser by a spring on a second end.
13. The phaser of claim 12, wherein a reservoir is formed within the hollow of the camshaft between the control valve and the head of the piston.
14. The phaser of claim 12, wherein extension of the spring towards the phaser within the hollow of the camshaft is limited by contact of the head of the piston with stops.
15. The phaser of claim 11, wherein the hollow of camshaft further comprises a vent.
16. The phaser of claim 11, wherein the phaser is an oil pressure actuated phaser.
17. The phaser of claim 11, wherein the phaser is a torsion assist phaser.
18. The phaser of claim 11, further comprising a supply line for supplying fluid to the phaser for shifting the relative angular position of the housing and the rotor.
19. The phaser of claim 18, further comprising an inlet check valve within the supply line.
PCT/US2008/060965 2007-05-14 2008-04-21 Cam mounted accumulator WO2008140897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91768507P 2007-05-14 2007-05-14
US60/917,685 2007-05-14

Publications (1)

Publication Number Publication Date
WO2008140897A1 true WO2008140897A1 (en) 2008-11-20

Family

ID=40002574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/060965 WO2008140897A1 (en) 2007-05-14 2008-04-21 Cam mounted accumulator

Country Status (1)

Country Link
WO (1) WO2008140897A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020636A1 (en) * 2009-08-01 2011-02-24 Schaeffler Technologies Gmbh & Co. Kg Volume store
WO2011045368A1 (en) * 2009-10-15 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Volume accumulator
EP2322769A1 (en) * 2009-11-13 2011-05-18 Hydraulik-Ring GmbH Cartridge for a cam shaft
WO2011061219A1 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
WO2011061218A1 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Mounting assembly and method for mounting a pressure accumulator for internal combustion engines
WO2011061216A2 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device comprising a passive auxiliary pressure accumulator
WO2011061217A2 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
WO2011098330A1 (en) * 2010-02-15 2011-08-18 Schaeffler Technologies Gmbh & Co. Kg Device for variable adjustment of the control times of gas exchange valves of an internal combustion engine
US20110197835A1 (en) * 2010-02-15 2011-08-18 Schaeffler Technologies Gmbh & Co. Kg Device for the variable adjustment of valve lift curves of gas exchange valves of an internal combustion engine
WO2011134740A1 (en) * 2010-04-26 2011-11-03 Schaeffler Technologies Gmbh & Co. Kg Pressure accumulator arrangement for a camshaft adjusting system
WO2012000786A1 (en) * 2010-07-02 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Device for changing the relative angular position of a camshaft relative to a crankshaft of an internal combustion engine
US20120079998A1 (en) * 2009-07-25 2012-04-05 Schaeffler Technologies Gmbh & Co. Kg Device for the variable adjusting of the control timing of gas exchange valves of an internal combustion engine
US20120234271A1 (en) * 2011-03-14 2012-09-20 Schaeffler Technologies AG & Co. KG Pressure storage unit for a camshaft and piston for a pressure storage unit
WO2012152456A1 (en) * 2011-05-10 2012-11-15 Schaeffler Technologies AG & Co. KG Reciprocating internal combustion engine with camshaft adjusting device
EP2487339A3 (en) * 2011-02-11 2013-01-23 Schaeffler Technologies AG & Co. KG Camshaft adjuster with a pressure storage unit
US8453616B2 (en) 2009-10-27 2013-06-04 Hilite Germany Gmbh Vane-type motor cam phaser with a friction disc and mounting method
US8505582B2 (en) 2010-05-03 2013-08-13 Hilite Germany Gmbh Hydraulic valve
US8662040B2 (en) 2010-04-10 2014-03-04 Hilite Germany Gmbh Oscillating-motor camshaft adjuster having a hydraulic valve
US8752514B2 (en) 2010-12-20 2014-06-17 Hilite Germany Gmbh Hydraulic valve for an oscillating motor adjuster
DE102009034804B4 (en) 2009-07-25 2018-03-01 Schaeffler Technologies AG & Co. KG Pressure accumulator to support the pressure medium supply of a camshaft adjuster an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172659A (en) * 1989-10-16 1992-12-22 Borg-Warner Automotive Transmission & Engine Components Corporation Differential pressure control system for variable camshaft timing system
JP2004108370A (en) * 2002-09-19 2004-04-08 Borgwarner Inc Variable cam shaft timing mechanism
US6745732B2 (en) * 2002-06-17 2004-06-08 Borgwarner Inc. VCT cam timing system utilizing calculation of intake phase for dual dependent cams
US6883481B2 (en) * 2001-08-14 2005-04-26 Borgwarner Inc. Torsional assisted multi-position cam indexer having controls located in rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172659A (en) * 1989-10-16 1992-12-22 Borg-Warner Automotive Transmission & Engine Components Corporation Differential pressure control system for variable camshaft timing system
US6883481B2 (en) * 2001-08-14 2005-04-26 Borgwarner Inc. Torsional assisted multi-position cam indexer having controls located in rotor
US6745732B2 (en) * 2002-06-17 2004-06-08 Borgwarner Inc. VCT cam timing system utilizing calculation of intake phase for dual dependent cams
JP2004108370A (en) * 2002-09-19 2004-04-08 Borgwarner Inc Variable cam shaft timing mechanism

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120079998A1 (en) * 2009-07-25 2012-04-05 Schaeffler Technologies Gmbh & Co. Kg Device for the variable adjusting of the control timing of gas exchange valves of an internal combustion engine
DE102009034804B4 (en) 2009-07-25 2018-03-01 Schaeffler Technologies AG & Co. KG Pressure accumulator to support the pressure medium supply of a camshaft adjuster an internal combustion engine
US8833318B2 (en) * 2009-07-25 2014-09-16 Schaeffler Technologies Gmbh & Co. Kg Device for the variable adjusting of the control timing of gas exchange valves of an internal combustion engine
CN102713171A (en) * 2009-07-25 2012-10-03 谢夫勒科技股份两合公司 Device for the variable adjusting of the control timing of gas exchange valves of an internal combustion engine
US9222377B2 (en) 2009-08-01 2015-12-29 Schaeffler Technologies Gmbh & Co. Kg Volume store
WO2011020636A1 (en) * 2009-08-01 2011-02-24 Schaeffler Technologies Gmbh & Co. Kg Volume store
CN102472128A (en) * 2009-08-01 2012-05-23 谢夫勒科技有限两合公司 Volume store
WO2011045368A1 (en) * 2009-10-15 2011-04-21 Schaeffler Technologies Gmbh & Co. Kg Volume accumulator
US8453616B2 (en) 2009-10-27 2013-06-04 Hilite Germany Gmbh Vane-type motor cam phaser with a friction disc and mounting method
EP2322769A1 (en) * 2009-11-13 2011-05-18 Hydraulik-Ring GmbH Cartridge for a cam shaft
CN102061953A (en) * 2009-11-13 2011-05-18 海德里克林有限公司 Camshaft insert
US20110114047A1 (en) * 2009-11-13 2011-05-19 Hydraulik-Ring Gmbh Camshaft insert
WO2011061217A3 (en) * 2009-11-20 2011-07-21 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
US8752518B2 (en) 2009-11-20 2014-06-17 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
DE102009054052B4 (en) 2009-11-20 2018-08-23 Schaeffler Technologies AG & Co. KG Switchable device for pressure supply
WO2011061219A1 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
WO2011061218A1 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Mounting assembly and method for mounting a pressure accumulator for internal combustion engines
CN102612591A (en) * 2009-11-20 2012-07-25 谢夫勒科技股份两合公司 Switchable pressure supply device
CN102667073A (en) * 2009-11-20 2012-09-12 谢夫勒科技股份两合公司 Switchable pressure supply device
WO2011061216A2 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device comprising a passive auxiliary pressure accumulator
WO2011061216A3 (en) * 2009-11-20 2011-07-21 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device comprising a passive auxiliary pressure accumulator
US8813709B2 (en) 2009-11-20 2014-08-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
US8485152B2 (en) 2009-11-20 2013-07-16 Schaeffler Technologies AG & Co. KG Switchable pressure supply device comprising a passive auxiliary pressure accumulator
WO2011061217A2 (en) * 2009-11-20 2011-05-26 Schaeffler Technologies Gmbh & Co. Kg Switchable pressure supply device
US8662041B2 (en) 2010-02-15 2014-03-04 Schaeffler Technologies AG & Co. KG Device for variable adjustment of the control times of gas exchange valves of an internal combustion engine
US8689746B2 (en) * 2010-02-15 2014-04-08 Schaeffler Technologies AG & Co. KG Device for the variable adjustment of valve lift curves of gas exchange valves of an internal combustion engine
US20110197835A1 (en) * 2010-02-15 2011-08-18 Schaeffler Technologies Gmbh & Co. Kg Device for the variable adjustment of valve lift curves of gas exchange valves of an internal combustion engine
WO2011098330A1 (en) * 2010-02-15 2011-08-18 Schaeffler Technologies Gmbh & Co. Kg Device for variable adjustment of the control times of gas exchange valves of an internal combustion engine
US8662040B2 (en) 2010-04-10 2014-03-04 Hilite Germany Gmbh Oscillating-motor camshaft adjuster having a hydraulic valve
US8820282B2 (en) 2010-04-26 2014-09-02 Schaeffler Technologies Gmbh & Co. Kg Pressure accumulator arrangement for a camshaft adjusting system
CN102859129A (en) * 2010-04-26 2013-01-02 谢夫勒科技股份两合公司 Pressure accumulator arrangement for a camshaft adjusting system
WO2011134740A1 (en) * 2010-04-26 2011-11-03 Schaeffler Technologies Gmbh & Co. Kg Pressure accumulator arrangement for a camshaft adjusting system
US8505582B2 (en) 2010-05-03 2013-08-13 Hilite Germany Gmbh Hydraulic valve
WO2012000786A1 (en) * 2010-07-02 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Device for changing the relative angular position of a camshaft relative to a crankshaft of an internal combustion engine
US8752514B2 (en) 2010-12-20 2014-06-17 Hilite Germany Gmbh Hydraulic valve for an oscillating motor adjuster
EP2487339A3 (en) * 2011-02-11 2013-01-23 Schaeffler Technologies AG & Co. KG Camshaft adjuster with a pressure storage unit
US8534248B2 (en) 2011-02-11 2013-09-17 Schaeffler Technologies AG & Co. KG Camshaft adjuster having a pressure accumulator
US20120234271A1 (en) * 2011-03-14 2012-09-20 Schaeffler Technologies AG & Co. KG Pressure storage unit for a camshaft and piston for a pressure storage unit
US8910600B2 (en) * 2011-03-14 2014-12-16 Schaeffler Technologies Gmbh & Co. Kg Pressure storage unit for a camshaft and piston for a pressure storage unit
WO2012152456A1 (en) * 2011-05-10 2012-11-15 Schaeffler Technologies AG & Co. KG Reciprocating internal combustion engine with camshaft adjusting device

Similar Documents

Publication Publication Date Title
WO2008140897A1 (en) Cam mounted accumulator
KR101084960B1 (en) Cta phaser with proportional oil pressure for actuation at engine condition with low cam torsionals
JP4377183B2 (en) Variable camshaft timing mechanism
US7318401B2 (en) Variable chamber volume phaser
US9080471B2 (en) Cam torque actuated phaser with mid position lock
EP2337932B1 (en) Phaser built into a camshaft or concentric camshafts
US8707920B2 (en) Valve timing control apparatus for internal combustion engine
EP1672184B1 (en) Variable camshaft timing control valve with lock pin control
KR101600123B1 (en) Device for variably adjusting the control times of gas exchange valves of an internal combustion engine
US6772721B1 (en) Torsional assist cam phaser for cam in block engines
JP5960616B2 (en) Variable displacement oil pump
US6745735B2 (en) Air venting mechanism for variable camshaft timing devices
US5119691A (en) Hydraulic phasers and valve means therefor
EP1398466B1 (en) Differential pressure control apparatus for camshaft phaser with locking pin
US7194992B2 (en) Hydraulic cushioning of a variable valve timing mechanism
WO2006119210A2 (en) Timing phaser with offset spool valve
KR20030096051A (en) A method to ensure robust operation of a pin lock in a vane style cam phaser
US6935290B2 (en) Avoid drawing air into VCT chamber by exhausting oil into an oil ring
US7008198B2 (en) Cam operated pump having lost motion shuttle
US6758184B1 (en) Method and apparatus for reducing oscillatory camshaft torque in an internal combustion engine
EP2050934A1 (en) Oil flow control valve for a cam phaser
JP3507648B2 (en) Engine hydraulic circuit
JP3507649B2 (en) Engine hydraulic circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08746394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08746394

Country of ref document: EP

Kind code of ref document: A1