WO2008131936A2 - Highly stable electrolytic water with reduced nmr half line width - Google Patents
Highly stable electrolytic water with reduced nmr half line width Download PDFInfo
- Publication number
- WO2008131936A2 WO2008131936A2 PCT/EP2008/003383 EP2008003383W WO2008131936A2 WO 2008131936 A2 WO2008131936 A2 WO 2008131936A2 EP 2008003383 W EP2008003383 W EP 2008003383W WO 2008131936 A2 WO2008131936 A2 WO 2008131936A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- less
- line width
- acid
- half line
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/20—Elemental chlorine; Inorganic compounds releasing chlorine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0014—Skin, i.e. galenical aspects of topical compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/04—Antipruritics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/08—Antiseborrheics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/10—Anti-acne agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/16—Emollients or protectives, e.g. against radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/4618—Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
- C02F1/4674—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B13/00—Diaphragms; Spacing elements
- C25B13/04—Diaphragms; Spacing elements characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/005—Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
- C02F2001/46142—Catalytic coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/026—Treating water for medical or cosmetic purposes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the present invention relates to highly stable alkaline and acid waters produced by electrolysis, to methods for making and using the alkaline and acid waters, and to devices for making the waters of the present invention.
- aqueous solutions of salts, particularly sodium chloride, as a consequence of an electrolytic treatment are split into two liquid products, one having basic and reducing characteristics (generally known as cathode water or alkaline water) and another (generally known as anode water or acid water) having acid and oxidizing characteristics.
- alkaline water for drinking purposes, and tout the water based upon its antioxidant characteristics. These waters are made by numerous processes, on industrial and single-home scales, by processes including electrolysis and ultrasound. In general these waters have a pH not far from neutral, generally no greater than 9 or 10. The waters of the present invention are not intended for consumption, and generally have a much higher pH than manufactured drinking waters.
- the band width in an 17 O-NMR spectrum of water, taken half way along the amplitude of the water's peak is reportedly 80 Hz or more for tap water obtained from underground water, and about 120 Hz for tap water obtained by purifying river water or ordinary waste water (a journal, "Shokuhin To Kaihatsu", Vol. 24, No. 7, 1991, p. 83).
- U.S. Patent No. 5,824,353 reports water having an 17 O-NMR half line width of less than 50 Hz. The water is produced by ultrasonic vibration, and depends on the presence of specific concentrations of potassium, magnesium and calcium ions for its stability and small NMR half line width.
- One object of the present invention is to provide electrolytic alkaline and acid waters which overcome the drawbacks of the background art.
- one of the objects of the present invention is to provide electrolytic alkaline and acid waters that have high stability over time, a low production cost and easy preparation.
- Another object of the present invention is to provide pharmaceutical and cosmetic compositions that are capable of imparting improved skin hydration, or delivering active pharmaceutical ingredients, preferably using the alkaline water of the present invention.
- Another object of the invention is to provide an electrolytic water as defined above which has a high capacity for penetration into mammalian tissues, such as the deep layers of the skin and, and that can treat or prevent various skin disorders and pathologies.
- Still other objects of the present invention are to provide methods for preparing the electrolytic alkaline and acid waters of the present invention, and devices and apparatuses that can be used for preparing electrolytic alkaline and acid waters of the present invention.
- an electrolysis process that employs special nano-coated electrodes in anode and cathode chambers, and a special nano-coated membrane between the anode and cathode chambers, to produce electrolytic alkaline and acid waters that are essentially free from heavy metals, and that have an 17 O NMR half line width that is much lower than electrolytic water produced in the prior art, on the order of 45-51 Hz.
- the NMR half line width is a direct reflection of the quality and consistency of the water produced by the methods of the current invention, since it varies depending on the mean cluster size and distribution of molecular cluster sizes in the water.
- the invention provides electrolytic acid or alkaline water having a NMR half line width using 17 O of from about 45 to less than 51 Hz, and an oxide reduction potential of from -900 to +200 mV, or from +600 to +1300 mV.
- the alkaline waters of the present invention are characterized by an oxide reduction potential of from about -900 to about -200 mV, a pH of from about 8.5 to about 13.0, and/or an absence of any detectable heavy metals.
- the acid waters of the present invention are preferably characterized by an oxide reduction potential of from about +1000 to abut +1300 mV, a pH of from about 1.0 to about 3.0, and/or an absence of any detectable heavy metals.
- the water has a stability, in terms of pH, ORP or NMR half line width, that exceeds 30, 90, 180 or even 365 days, when stored under appropriate conditions that shield the product from light, air and heat.
- the invention provides for topical compositions that include the alkaline and acid waters of the present invention.
- the invention provides a topical composition comprising as ingredients an electrolytic acid or alkaline water having a NMR half line width using 17 O of from about 45 to less than 51 Hz; and one or more cosmetically or pharmaceutically acceptable topical excipients.
- the invention provides an electrolysis unit, and a method of using such unit for making electrolytic acid or alkaline water having a NMR half line width using 17 O of from about 45 to less than 51 Hz, comprising:
- an electrolysis unit comprising: (i) a cathode chamber, an anode chamber, and a filter separating said chambers (preferably characterized by a porosity that allows ionized fractions of nano-clustered H 2 O to pass, such as when the porosity is predominantly characterized by pores of from about 120 to about 180 run in diameter (preferably having a mean diameter between 120 and 180 nm)); and (ii) a cathode situated in said cathode chamber and an anode situated within said anode chamber, wherein at least one of said anode and cathode is coated by a residue of particles in which greater than 70% by weight of said particles have a diameter of from 40 to 100 nm;
- the water is used as a skin hydrating agent either by itself or as part of a topical cosmetic or pharmaceutical composition, or for assisting the delivery of one or more pharmaceutical agents.
- the water is also useful in the treatment or prevention of superficial or deep disorders or lesions of the skin or dermis or mucosa, including sores, inflammatory disorders, infections, burns and abrasions.
- the acid water has been found to be particularly useful in the treatment of skin and mucosal lesions, because of its curative effects on skin and mucosa, and its ability to promote collagen production and other metabolic processes necessary for skin and mucosal healing.
- compositions which comprises an acid or alkaline water as defined above and one or more ingredients (preferably viscosity increasing agents) selected from the group that consists of: i) excipients and carriers which are pharmaceutically acceptable for preparing pharmaceutical compositions for human or animal use, ii) excipients and carriers which are cosmetically acceptable for preparing cosmetic compositions for human or animal use, iii) excipients and carriers used in the food sector to prepare disinfectant compositions, and iv) excipients and carriers used in the agricultural sector to prepare antiparasitic or fungicide compositions.
- ingredients preferably viscosity increasing agents
- kit which comprises an electrolytic alkaline or acid water as defined herein and means for applying it to a substrate, such as a dispensing container, a wipe or a bandage.
- the aim and objects of the invention are also achieved by the use of an alkaline or acid water as defined above to prepare a medication for treating and preventing superficial or deep skin and mucosa disorders or lesions of the human or animal body.
- the aim and objects of the invention are also achieved by the use of an electrolytic alkaline or acid water as defined above to sanitize a substrate.
- the aim and objects of the invention are also achieved by the use of an electrolytic alkaline water or acid water- as defined above to provide a solution for over-oxidation of the human or animal body.
- the aim and objects of the invention are also achieved by the use of an alkaline or acid water as defined above for cosmetic treatment of the human or animal body or of isolated parts thereof, especially as a topical anti-aging product, or to dispel black sedimentation on the skin from oxidation processes.
- the aim and objects of the invention are also achieved by the use of an alkaline water or acid water as defined above to carry preparations suitable for bone reconstruction.
- the aim and objects of the invention are also achieved by the use of an electrolytic alkaline water or acid water as defined above to rehydrate dehydrated human or animal tissues for reimplantation.
- FIG. 1 is a schematic view of the electrolytic device 1 according to the invention, which comprises an electrolysis chamber 2 and two electrodes 3 and 4.
- Figure 2 is a bar graph depicting the results of trans-epithelial electrical resistance testing of a tissue sample in physiologic water as described in Example 7.
- Figure 3 is a bar graph depicting the results of trans-epithelial electrical resistance testing of a tissue sample in SDS as described in Example 7.
- Figure 4 is a comparison bar graph depicting the results of trans-epithelial electrical resistance testing of a tissue sample in physiologic water and a tissue sample in reduced NMR half line width alkaline water, as described in Example 7.
- Figure 5 is a comparison bar graph depicting the results of trans-epithelial electrical resistance testing of a tissue sample in a placebo cream and a tissue sample in a cream made from reduced NMR half line width alkaline water, as described in Example 7.
- Figure 6 is a comparison bar graph depicting the results of trans-epithelial electrical resistance testing of a tissue sample in a placebo cream and a tissue sample in a cream made from reduced NMR half line width alkaline water, as described in Example 7.
- Figures 7 and 8 depict 17 O NMR spectroscopy data obtained on alkaline water produced by the methods of the present invention, for samples LCOIV/ 143 (after one month standing at 25° C, in a dark airtight glass bottle), and LCOIV/143 (after one month standing at 40° C, in a dark airtight glass bottle).
- Figures 9 and 10 are comparison bar graphs depicting the results of trans-epithelial electrical resistance testing of physiologic water, a tissue sample in acid water meeting the specifications set forth in Table Q, in addition to the formulations described in Table S.
- fluid is used to reference any pure fluid, solution or suspension which is capable of producing a non-spontaneous chemical reaction if subjected to electrolysis.
- One highly preferred fluid is water.
- water is used to reference any type of water, such as tap water, filtered water, deionized water, and distilled water.
- a water which can be treated with the invention can have a higher percentage of solid pollutants in solution than waters which can be treated with conventional devices, by virtue of the possibility to provide a continuous reversal of polarity between the electrodes (polarity swapping, as defined below).
- Electrolytic water means water produced by the process of electrolysis, and is preferably characterized by an oxide reduction potential (ORP) and/or pH that reflects its acid or alkaline nature.
- ORP oxide reduction potential
- the ORP of electrolytic alkaline water preferably ranges from -1000 to +200 or 0 mV, -900 to -200 mV, or -900 to -600 mV.
- the pH of electrolytic alkaline water preferably ranges from 8.0 to 13.0, 8.5 to 12.5, or 10 to 12.
- the pH of the alkaline water may range from 11.0 to 13.0 or from 11.5 to 13.0.
- the ORP of electrolytic acid water preferably ranges from +600 to +1350 mV, more preferably from +800, +900, or +1000 mV to +1300 mV, most preferably from +1100 to +1250 mV.
- the pH of the acid water preferably ranges from 0.5 or 1.0 to 6.0, 5.0, 4.0, or 3.0, and most preferably ranges from 1.0 to 3.0.
- the term skin is used in its ordinary sense, and includes the epidermis or outer layer of the skin, the dermis or middle layer of the skin, and the subcutaneous or deepest layer of the skin.
- the term “skin or dermis,” is employed it is not intended to impart a different meaning to skin; rather, it is simply meant to emphasize the ability of the waters of the present invention to penetrate and influence deep skin pathologies.
- Treating" or “treatment” of a disease includes (1) preventing the disease from occurring in an animal that may be predisposed to the disease but does not yet experience or display symptoms of the disease, (2) inhibiting the disease, i.e. arresting its development, or (3) relieving the disease, i.e. causing regression of the disease.
- the terms “sanitize”, “sanitization” or “sanitizing” in the invention reference the provision of a combined effect of disinfection, sanitization and cleaning.
- the disinfection effect comprises a bactericidal, fungicide, sporicidal and virucidal effect.
- “Pharmaceutically acceptable” means that which is useful in preparing a pharmaceutical composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes that which is acceptable for veterinary use as well as human pharmaceutical use.
- Cosmetically acceptable means that which is useful in preparing a cosmetic composition that is generally safe, non-toxic and neither biologically nor otherwise undesirable and includes that which is acceptable for human cosmetic use.
- “Therapeutically effective amount” means that amount which, when administered to an animal for treating a disease, is sufficient to effect such treatment for the disease.
- a pharmaceutically active agent When administered in accordance with this invention it will be administered in a therapeutically effective amount.
- ranges are given by specifying the lower end of a range separately from the upper end of the range, it will be understood that the range can be defined by selectively combining any one of the lower end variables with any one of the upper end variables that is mathematically possible.
- the invention relates partly to an electrode (i.e. a cathode 1 or anode 2), particularly for electrolytic cells, characterized in that it comprises a surface coating which comprises nano-particles of one or more metals.
- the electrode comprises a core which is made of a metallic material, a nonmetallic material or combinations thereof.
- the core is made of metallic material, it can be made for example of an alloy of titanium and platinum or an alloy of steel and graphite. If the core is made of a nonmetallic material, it can be made for example of graphite.
- the core may also comprise different layers, such as for example a core made of graphite which is coated with an outer layer of metal, for example titanium.
- metal references both a metal and chemical compounds which comprise said metal, such as its oxides.
- a preferred core is made of TiO 2 .
- the electrode according to the invention is characterized with respect to known electrodes substantially due to the presence of a nanometer covering (hereinafter also referenced as coating) which is extremely smooth, i.e., a layer for covering the core which includes metallic nano-particles.
- a nanometer covering hereinafter also referenced as coating
- the metals of which the nano-particles of the coating are made are selected preferably among one or more of titanium, iridium, yttrium, ruthenium, zinc, zirconium platinum, selenium, tantalum and compounds thereof.
- Preferred metal compounds are oxides of the mentioned metals.
- a preferred coating comprises ZrO 2 , ZnO, Ru 2 O 3 , IrO 2 and Y 2 O 3 , or TiO 2 , Pt/ZrO ⁇ , SnO 2 , Ta 2 O5, and IrO 2 .
- the various metals are used in powder form.
- the coating can also comprise a nonmetallic carrier material, for example particles of one or more polymers.
- the polymer can be synthetic (such as for example plastics, acrylic polymers, et cetera) or partly synthetic (such as for example modified celluloses, modified starches, et cetera).
- the metallic nano-particles comprised within the coating are preferably used in powder form. As regards the size distribution within the powder, preferably an amount at least equal to 70%, 75%, or 80% by weight of the particles that are present in the powder, more preferably at least equal to 85%, has a particle diameter ranging from 40 to 100 ran, 50 to 90 nm, or 60 to 80 nm.
- the invention in another aspect, relates to a method for obtaining an electrode.
- the coating can be provided by means of nanotechnology techniques which are known to a person skilled in the art and are adapted to produce a smooth surface, for example by sintering the powder or the mixtures of metallic nano-powders.
- the individual metals in powder form can be applied to the electrode so as to produce the coating: 1) as a preformed mixture, and/or 2) in the form of discrete layers which are applied sequentially and mutually superimposed and wherein each layer consists of a single metal, and/or 3) in the form of discrete layers which are applied sequentially and mutually superimposed and in which each layer consists of two or more metals but not simultaneously of all the metals that are present in the coating.
- the method comprises the step (A) of preparing the coating of the electrode by sintering powders of nano-particles of one or more metals as defined above directly on the core of the electrode.
- step (A) comprises the following steps to be performed in the order in which they are listed here:
- the one or more powders of metallic nano-particles of step (Al) is a combination of powders of ZrO 2 , ZnO, Ru 2 O 3 , IrO 2 and Y 2 O 3 , or TiO 2 , Pt/ZrO 2 , SnO 2 , Ta 2 O5, and IrO 2 , advantageously obtained by hydrothermal chemical processing, at least 70%, 75%, or 80% and more preferably at least 85% by weight of the particles in the powder have a diameter ranging from 60 to 80 nm;
- step (A2) in which each powder is dissolved is preferably a 30% solution by weight of hydrochloric acid in water, in at least such an amount as to be able to dissolve all the powder to be applied,
- step (A3) consists in sintering the aqueous solutions of hydrochloric acid obtained from step A(2) on both faces of a TiO 2 plate which is passivated on its surface and has a thickness ranging from 0.15 to 0.35 mm, wherein sintering may occur according to the following steps:
- An electrode as defined above, used as part of a device for providing the electrolysis of water, produces the following advantages:
- both electrodes are electrodes according to the invention
- polarity swapping the possibility to provide a continuous change of polarity of the electrodes.
- the sudden change of polarity allows the charged particles that are present in the fluid subjected to electrolysis to circulate in both directions instead of just in one (forced by the charge of the particles and by the unchangeable sign of the electrodes), thus avoiding the forming of deposit-producing masses at the level of the electrodes and thus keeping their surface clean and their efficiency at the maximum level.
- the presence of a nanometer coating determines an accumulation of charge by the upper electrode to more than 100% with respect to conventional electrodes. This allows to provide a qualitatively and quantitatively different electrolysis at significantly higher potentials, with the effect of, for example, reducing the size of molecular clusters;
- nano-effects by means of the nanometer dimensions of the coating particles.
- quantum effects known in the literature also by the term “nano-effects”
- the optical, magnetic and electrical properties of matter change radically.
- quantum size effect a discretization of the energy levels (quantization) becomes apparent in the electron structure and depends on the size of the cluster, this phenomenon is known as “quantum size effect” and entirely new characteristics, which contrast with the ones that are typical of the material at ordinary dimensions, depend from it.
- the best performance has been obtained with powders which have a size distribution centered in an interval ranging from 60 to 80 nra as indicated above.
- the effects described above produce the simultaneous presence of three factors which are a key aspect of the invention: stability of the resulting alkaline water, ease of its production (for example thanks to the lower maintenance costs and to the greater durability of the device as a whole) and an increase in its quality (especially in terms of purity and constancy of properties over time).
- the increase in the quality of the alkaline water can be measured both in terms of uniformity of the dimensions of the molecular clusters (higher percentage of micromolecules with respect to the number of macromolecular clusters) and in terms of increased stability over time of the properties given to the water by the electrolysis itself (above all alkalinity, ORP and cluster size).
- the stability increase presumably achieves the preservation over time of the structural surface characteristics of the electrodes coated with a nano-coating as described here.
- the device comprises a single electrolysis chamber 3 divided into two portions by a membrane 4, and a single pair of electrodes 1 and 2 within said chamber is described hereinafter.
- the person skilled in the art will know how to adapt the description to other embodiments which comprise more than one electrolysis chamber and more than one pair of the electrodes.
- the number of chambers can be changed, for example, in order to achieve higher treatment speeds or flow-rates of water in output.
- both electrodes of the device are nano-coated electrodes as defined above.
- the advantages in terms of low cost and efficiency of the electrolysis process, as well as the advantages in terms of stability over time of alkaline water, can be obtained also if only one of the two electrodes is nano-coated as defined above.
- the device according to the invention also comprises a membrane 4 adapted to divide the at least one chamber into two half-chambers, wherein the half-chamber that contains the anode is termed an anode half-chamber, and the half-chamber that contains the cathode is termed a cathode half-chamber.
- the membrane is advantageously an ultrafiltration membrane which can occupy the chamber partially or totally.
- the membrane 4 can be of the type used in conventional electrolytic cells, but is preferably based on size exclusion technology at the nano-scale.
- the membrane is made of ceramic material with open porosity, coated with metallic nano-particles, preferably nano-particles of oxides of zirconium, yttrium, aluminum or mixtures thereof.
- the metallic nano-particles used to make the coating are preferably in powder form.
- the size distribution within the powder preferably an amount at least equal to 70%, 75%, or 80% by weight of the particles that are present in the powder, more preferably at least equal to 85%, has a particle diameter ranging from 30 to 100 ran, 40 to 70 nm, or 50 to 60 ran.
- the average pore size of the final membrane has been found to be extremely constant over time and adaptable according to the requirements of how the water is to be processed.
- the average pore size is from about 120 to about 180 nm (mean or median). Size constancy over time and constancy of the pore dimensions themselves are two aspects which differentiate the ceramic membrane described here from the textile membranes conventionally used in equivalent devices (which are instead subject to rapid deterioration over time).
- at least 50%, 70%, 90%, 95%, 98% or 99% of the pores have a diameter between 120 and 180 nm.
- each half-chamber is connected to the outside of the device through:
- each half chamber is provided with closure means (not shown) which is adapted to prevent the water that has not yet separated from leaving the half-chamber and are adapted to be opened at the end of the electrolytic process.
- the operating mechanism of a device as described above provided with all the essential and optional elements that have been listed, therefore entails treating water by introducing it from above, by means of the water input ducts, into the two half-chambers of the main chamber.
- the water under the action of the cathode and of the anode previously connected to the negative and positive poles of an electric voltage source, is split into positive and negative ions, which, as is known, are attracted by the respective opposite poles.
- the nano-porous membrane acts as a filter for said ions and for any charged particles, allowing only the particles of sufficiently small size to pass.
- the water input to the unit is characterized by its conductivity, preferably measured in ⁇ S/cm.
- the water can be described by the consistency of conductivity in the water input.
- the conductivity should vary by no more than 50, 20, 10, 5 or even 2 ⁇ S/cm, or 100, 50, 20 or 10%.
- the water may also be described by the conductivity of the water itself.
- the conductivity ranges from 0.5, 1.0 or 1.5 ⁇ S/cm to 50, 25, 10, 5 or even 3 ⁇ S/cm, based on any selection of endpoints.
- the conductivity ranges from 1 to 10 or 1 to 3 ⁇ S/cm, and in a most preferred embodiment the conductivity is about 2 ⁇ S/cm. It has been discovered that by controlling the consistency of the conductivity, and by lowering the conductivity to the preferred values, one is able to obtain much more consistent quality electrolyzed water, with a consequent reduction in NMR half line width.
- a preferred type of water due to its constant conductivity is osmotic water prepared by reverse osmosis.
- the filter prevents the transmission of heavy metals from one chamber to the other.
- the filter prevents the transmission of heavy metals from one chamber to the other.
- the present invention relates to an electrolytic alkaline or acid water which can be obtained with a water electrolysis method as defined above.
- the electrolytic alkaline and acid waters according to the present invention differ from known similar products substantially in their stability, which is due to the higher performance of the nano- coated electrodes and the electrolysis process.
- the electrodes tend to break up on their surface during the process, releasing large amounts of heavy metals (particularly of the metal or metals of which the cathode and anode are made).
- the alkaline and acid waters according to the invention are instead free from heavy metals in that said metals, if present, are present in a quantity which is below the limits that can be detected with ordinary analytical methods.
- the alkaline water according to the invention has a cadmium concentration of less than 5 ⁇ g/1, less than 10 ⁇ g/1 of chromium, less than 5 ⁇ g/1 of lead, and less than 20 ⁇ g/1 of nickel. Suitable test methods for these heavy metals are described in Table 1 below: Table 1
- the absence of heavy metals is one of the main reasons for the unusual and advantageous stability over time of the electrolytic alkaline and acid waters obtained with the present invention.
- the expression "stability over time” is used to mean that the alkaline water of the present invention, if kept sheltered from the light, air and heat, keeps its chemical and physical properties, particularly its pH, ORP and/or NMR half line width, substantially unchanged for greater than 60 or 90 days, preferably greater than 180 days, even more preferably greater than 365 days.
- substantially unchanged it is meant that the property under evaluation does not vary by more than 50, 30, 15, 10, 5, or even 3% during the applicable time frame.
- the topical compositions in which the alkaline or alkaline water may be integrated benefit from an improved stability, particularly as measured by pH and/or viscosity.
- These physical properties preferably remain substantially unchanged in these formulations for greater than 60 or 90 days, preferably greater than 180 days, even more preferably greater than 365 days.
- substantially unchanged it is meant that the viscosity or pH does not vary by more than 50, 30, 15, 10, 5, or even 3% during the applicable time frame.
- the stability time depends on the steps taken to preserve the solution, it must be noted that for equal storage conditions, an acidic water obtained by using an electrolytic device as defined above has shown a distinctly higher stability than known similar products, which in the best cases have shown a shelf life of only 60-90 days. Therefore, these products must be obtained and used over a short period or even simultaneously with their production. Therefore, the electrolytic acidic water according to the invention can be useful also for applications in locations (Third World countries) and situations (scarcity of water to provide electrolysis) in which, although it is necessary to have for example a valid disinfectant, favorable conditions for its production are not available.
- the electrolytic alkaline water according to the invention has a pH which is advantageously equal to, or higher than, 8.5, 9.0, 10.0, 10.5, 11.0 or 11.5, and equal to or less than 13.5, 13.0 or 12.5most preferably ranging from 8.5 to 13.0 or 10.0 to 12.5.
- Alternative pH ranges for the alkaline water are from 1 1.0 to 13.0 or 11.5 to 13.0.
- the water preferably has an ORP (oxide reduction potential) when initially produced of from -200 mV to -900 or -1000 mV, and preferably from -600 mV to -900 mV.
- the ORP of electrolytic acid water preferably ranges from +600 to +1350 mV, more preferably from +800, +900, 1000 or +1100 mV to +1300, 1250 or +1200 mV, most preferably from +1100 to +1250 mV.
- the pH of the acid water preferably ranges from 0.5 or 1.0 to 6.0, 5.0, 4.0, or 3.0, and most preferably ranges from 1.0 to 3.0.
- Nuclear magnetic resonance 17 O NMR measures particularly when evaluated at the half way point of the water peak, is useful to measure the quality of acid and alkaline waters of the current invention, because it reflects intrinsic properties of the water structure such as the median molecular cluster size of H 2 O molecules, and the distribution of molecular cluster sizes, in addition to contaminants such as ionic species within the water.
- the expression "molecular cluster” designates the number of molecules of water which are coordinated in an ordered structure.
- Nuclear magnetic resonance 17 O NMR testing of the alkaline waters of the present invention shows that the frequency width halfway up the peak (i.e. the " 17 O NMR half line width) of an alkaline water according to the invention is 45-55 Hz, while for known products it is 110-130 Hz.
- the 17 O NMR half line width for alkaline and acid water is equal to or greater than 45, 46, or 47, and less than 51, 50 or 49 Hz, wherein the range can be selected from any of the foregoing endpoints.
- the alkaline or acid water of the present invention has an NMR half line width ranging from 45 to less than 51 Hz, or 45 to less than 50 Hz, or 46 to less than 50 Hz.
- the acid water may also be characterized by the presence and quantity of chlorine species in the water.
- One of the following assays or any combination of the following assays may be used to characterize the water.
- the water may be defined as containing less than 70, 60, 55, 52 or even 50 mg/1 of chlorine species.
- the total chlorine assay iodometric method
- the water may be defined as containing less than 80, 70, 65, or even 62 mg/1 of chlorine species.
- the UNI 24012 (Mercurimetric method) chloride assay the water may contain greater than 130, 150 or even 170 mg/1 of chloride.
- Chlorites (as ClO 2 -), when measured by EPA 300.1 (1997) (detection limit 100 ug/1), are preferably non-detectable. Chlorates (ClO 3 -), when measured by EPA 300.1 (1997) (detection limit 0.1 mg/1), are preferably present in an amount less than 10, 5, 2, or even 1 mg/1.
- the acid water may be characterized by a combination of assays, in which free chlorine measured spectrophotometrically is present at less than 10 or 5 or 2 mg/1, total chlorine measured spectrophotometrically is present at less than 10 or 5 or 3 mg/1, and total chlorine measured iodometrically ranges from 100, 200 or 250 mg/1 to 500, 400, or 350 mg/1.
- the alkaline water may contain oxidizing chlorine species in amounts of up to 60 or even 100 mg/1
- the alkaline water according to the invention is essentially free of oxidizing chlorine species, or other anionic residues of salts that are generated during the electrolytic process, i.e. less than 10 or even 5 mg/1, and preferably undetectable.
- the present invention relates to a composition particularly for sanitizing a substrate which comprises an alkaline or acid water as defined above and one or more ingredients selected from the group that comprises (preferably viscosity increasing ingredients): i) excipients and carriers which are pharmaceutically acceptable for preparing pharmaceutical compositions for human or animal use, ii) excipients and carriers which are cosmetically acceptable for preparing cosmetic compositions for human or animal use, iii) excipients and carriers used to prepare disinfectant compositions, and iv) excipients and carriers used in the agricultural sector to prepare antiparasitic or fungicide compositions.
- excipients and carriers which are pharmaceutically acceptable for preparing pharmaceutical compositions for human or animal use
- excipients and carriers which are cosmetically acceptable for preparing cosmetic compositions for human or animal use
- excipients and carriers used to prepare disinfectant compositions iii) excipients and carriers used in the agricultural sector to prepare antiparasitic or fungicide compositions.
- the fixed residue of an electrolytic alkaline or acid water is distinctly lower than the fixed residue of any other differently obtained disinfectant composition. Therefore, thanks to its stability, the acidic water according to the invention can be used for example in all those disinfectant sectors, such as cleaning and maintaining the hygiene of contact lenses, in which one wishes to combine a high but prolonged disinfectant power with the need to not leave deposits or residues on the treated surfaces.
- the use of electrolytic acidic waters for this purpose is prevented by the limited stability over time of the disinfectant power.
- the present invention relates to a kit which comprises an electrolytic alkaline or acid water as defined above or a composition which comprises said water and means for applying it to a substrate, such as a container dispenser system, a gauze or a bandage.
- a substrate such as a container dispenser system, a gauze or a bandage.
- the substrate is advantageously selected among 1) inanimate objects and surfaces, 2) the human or animal body, and 3) isolated parts of the human or animal body. Examples of the three classes mentioned above are provided below with reference to the aspect of the sanitizing use of an alkaline or acid water as defined above.
- an alkaline or acid water according to the invention provides for the use of an electrolytic alkaline or acid water as defined herein in a composition for hydrating the skin, or for delivering an active pharmaceutical ingredient to or through the skin or mucosa.
- Dosage forms in which the water can be integrated include transdermal patches, gels, creams, ointments, topical washes and the like.
- the pharmaceutical agent to be delivered can be a locally acting agent, such as a topical anesthetic or topical antimicrobial, or the pharmaceutical agent may be a systemically acting agent which must penetrate the skin and enter the bloodstream to exert its therapeutic effect.
- the hydrating composition preferably omits penetration accelerators that disrupt the skin's barrier mechanisms.
- the composition can be developed as a medication for treating and preventing superficial or deep skin or mucosa disorders or lesions of the human or animal body.
- the use to prepare a medication is described with explicit reference to the use of an alkaline or acid water according to the invention. However, it will be immediately evident to the person skilled in the art that the same advantages in terms of use can be achieved by using not the alkaline or acid water per se but a composition as defined above which comprises it.
- treatment or prevention means that thanks to its properties, an electrolytic alkaline or acid water according to the invention or a composition which comprises it have been found to be effective for the treatment and remission of surface or deep skin or mucosa pathologies or lesions that are already occurring (for example healing of injuries or lesions of the skin or dermis, control and remission of bacterial, mycotic or viral infections affecting the skin or dermis or mucosa), or to reduce the risk of developing deep or superficial pathologies or lesions of the skin or mucosa.
- treatment effects and prevention also apply to disorders which are systemic but in which the etiogenesis can be ascribed to the cutaneous penetration of infectious agents.
- Early treatment of the skin infection in fact allows elimination of the infectious agent before it achieves systemic diffusion.
- the invention provides a use for the waters of the present invention in the treatment or prevention of skin or dermis or mucosa disorders or lesions, preferably selected from: (i) physical injuries and lesions of the skin or mucosa, including abrasions, ulcers, burns, sunburns and bedsores, (ii) bacterial infections affecting the skin or dermis or mucosa including cellulites, folliculitis, boils, carbuncles, erysipelas, erythrasma, impetigo, paronychia, and staphylococcal infections, (iii) parasitic infections including lice, creeping eruption and scabies, (iv) viral infections affecting the skin or dermis or mucosa including cold sores (including herpes simplex virus Type 1 and Type 2), HIV, moluscum contagiosum, chicken pox, measles, shingles and warts, (v) fungal infections affecting the skin or derm
- irritations are nettle rashes, dermatitides (allergic or contact-related), eczemas, psoriases and dandruff.
- irritations are nettle rashes, dermatitides (allergic or contact-related), eczemas, psoriases and dandruff.
- the effectiveness of the water according to the invention is probably due to the exfoliating effect of the active chlorine contained therein;
- the acid water according to the invention can be used for the treatment and remission of burns or sunburns of the skin or for the healing of wounds, by virtue of their low toxicity and high penetration capacity.
- One aspect which demonstrates the high penetration capacity of the alkaline and acid waters described here is its high swelling power seen on tissues which are dehydrated and preserved in appropriate banks while waiting for transplants in humans or animals (reimplantation tissues).
- the aqueous solution according to the invention in view of its broad range of action against microorganisms or viruses, can be used for example to eliminate parasitoses of viral and/or bacterial origin of plants intended for food use (for example fruits, leafy vegetables, et cetera) or for domestic/decorative use (apartment plants, flowers).
- the present invention relates to the use of an electrolytic acid water as defined above or to a composition which comprises it to sanitize a substrate.
- the substrate is selected among 1) inanimate objects and surfaces, 2) surfaces of the human or animal body, and 3) surfaces of isolated parts of a human or animal body.
- Preferred inanimate surfaces and objects are domestic spaces and objects, medical and medical-surgical devices and instruments (for example teats, endoscopes or other medical tools), contact lenses and optical instruments in general, surfaces of edible products, for example fruits or vegetables.
- medical and medical-surgical devices and instruments for example teats, endoscopes or other medical tools
- contact lenses and optical instruments in general, surfaces of edible products, for example fruits or vegetables.
- Preferred surfaces of the human or animal body are parts of a patient or surgeon before or after surgery, and human breasts or animal udders.
- Preferred surfaces of isolated parts of the human or animal body are human or animal reimplantation tissues, such as tendons, wherein said tissues can be dehydrated or not.
- the present invention relates to the use of an electrolytic alkaline or acidic water as defined above or of a composition which comprises it for cosmetic treatment of the human or animal body or of isolated parts thereof.
- Cosmetic use relates in particular to the treatment of the skin, particularly the skin of areas of the human body which are subject to rashes, such as the skin of hands, feet and face, that would benefit from an acid or alkaline treatment.
- the water is used as a delivery vehicle for vitamin E, vitamin Bl, vitamin B2, vitamin B6, vitamin B 12, vitamin C, and other topically applied nutrients, to increase the absorption thereof.
- the alkaline and acid waters according to the invention have exhibited a surprising capacity to dissolve the cutaneous lipid secretion, so that they can be used in the cosmetic treatment of acne and blackheads.
- the present invention relates to the use of an electrolytic alkaline or acid water as defined above or of a composition which comprises it to rehydrate human or animal dehydrated tissues for reimplantation.
- Tissues for human or animal reimplantation are preserved, after being explanted from the donor and while waiting for reimplantation, in appropriately provided sterile banks, usually after dehydration (for example by freeze drying), so as to slow and prevent the growth of bacteria.
- dehydration for example by freeze drying
- the alkaline or acidic water according to the invention has been used to rehydrate the tissues before reimplantation, a drastic reduction of rehydration times has been observed compared to the aqueous solutions conventionally used for this purpose.
- the application described above was unthinkable for conventional alkaline and acid waters due to their low purity (especially in terms of heavy metals) and low stability.
- the water When the water is used per se without integration into a particular composition or dosage form, it may be used exactly as it is produced, or it may be altered by, for example, the addition of a pH modifying agent.
- the alkaline water may also be modified prior to integration into a finished formulation.
- the pH of the alkaline water can be reduced by mixing it with an acid (i.e. an organic acid) or with acid water produced by electrolysis.
- a preferred acid with which to modify the alkaline water is lactic acid.
- the pH of the water is adjusted so that the pH of the water is less than or equal to 8, and greater than or equal to 3. Preferred ranges include from 3 to 4, from 4 to 5, from 5 to 6, from 6 to 7, and from 7 to 8.
- the final product When integrated into a finished formulation, the final product can be defined by several physical parameters including viscosity and pH.
- the final pH of the topical composition may be adjusted for stability or physiologic reasons, and preferably ranges from about 3.0 to about 8.0, more preferably from about 3.5 to about 7.0, and most preferably from about 4.0 to about 5.0, or from about 5.0 to about 6.0.
- the alkaline or acid water can be present in any percentage that does not compromise the structure of the desired composition.
- the formulation preferably comprises from about 20 to about 95 wt.% of the alkaline water, and more preferably comprises from about 50, 70 or 80 wt.% to about 90 wt.% water.
- the excipients used may be any excipients conventional in the topical pharmaceutical and cosmetic arts.
- Preferred pharmaceutically acceptable excipients and carriers are excipients and carriers usually used to prepare topical disinfectant compositions or to prepare skin treatment compositions.
- examples are polymers of vegetable origin (derivatives of cellulose or starch) or synthetic ones (acrylic polymers) or animal-derived polymers (collagen).
- the topical formulation may include at least one water- insoluble, pharmacologically approved, alkyl cellulose or hydroxyalkyl cellulose, and the like.
- Alkyl cellulose or hydroxyalkyl cellulose polymers for use in this invention include ethyl cellulose, propyl cellulose, butyl cellulose, cellulose acetate, hydroxypropyl cellulose, hydroxybutyl cellulose, and ethylhydroxyethyl cellulose, alone or in combination.
- a plasticizer or a cross linking agent may be used to modify the polymer's characteristics.
- esters such as dibutyl or diethyl phthalate, amides such as diethyldiphenyl urea, vegetable oils, fatty acids and alcohols such as acid oleic and myristyl may be used in combination with the cellulose derivative.
- the formulation may contain liposoluble ingredients like tea polyphenols, aloe or other botanic ingredients.
- the topical formulation may further include hydrocarbons such as liquid paraffin, Vaseline®, solid paraffin, microcrystalline wax, etc.; higher aliphatic alcohols such as cetyl alcohol, hexadecyl, alcohol, stearyl alcohol, oleyl alcohol, etc.; esters of higher fatty acids with higher alcohols such as beeswax, etc.; esters of higher fatty acids with lower alcohols such as isopropyl myristate, isopropyl palmitate, etc.; vegetable oils, modified vegetable oils, hydrous lanolin and its derivative, squalene, squalane; higher fatty acids such as palmitic acid, stearic acid, etc. and the like.
- hydrocarbons such as liquid paraffin, Vaseline®, solid paraffin, microcrystalline wax, etc.
- higher aliphatic alcohols such as cetyl alcohol, hexadecyl, alcohol, stearyl alcohol, oleyl alcohol, etc.
- the topical formulation may further include emulsifiers and dispersing agents which include, for example, anionic, cationic and nonionic surfactants.
- Nonionic surfactants are preferred because of their low levels of irritation to skin.
- Typical of nonionic surfactants are fatty acid monoglycerides such as glyceryl monostearate, etc.; sorbitan fatty acid esters such as sorbitan monolaurate, etc.; sucrose fatty acid esters; polyoxyethylene fatty acid esters such as polyoxyethylene stearate, etc.; and polyoxyethylene higher alcohol ethers such as polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, etc.
- the topical formulation may include a gelling agent such as methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl-cellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, carbomer, and the like.
- a gelling agent such as methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl-cellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, carbomer, and the like.
- Electrode Titanium processed after passivation is used as the base carrier material for the electrode.
- TiO 2 , Pt/ZrC « 2 , SnO 2 , Ta 2 O5, and IrO 2 powders having a mean particle diameter of 40-80 nm are obtained by hydrothermal chemical processing.
- Step 1 Formed a TiO 2 base carrier layer by plasma spraying, sinter the carrier layer for 30 minutes at a temperature of temperature 55O 0 C, and anneal the sintered layer for 60 minutes.
- Step 2 Coat the carrier layer from step 1 with a solution formed by dissolving SnO 2 in hydrochloric acid, and ultrasonically vibrating the solution for 20 minutes. The solution is then coated on the carrier layer, sintered for 30 minutes at 400 0 C, and annealed for 50 minutes.
- Step 3 Coat the carrier material from step 2 with a solution formed by dissolving IrO 2 in hydrochloric acid, and vibrating ultrasonically for 20 minutes. The applied coating is then sintered for 30 minutes at a temperature of 400 °C, and annealed for 50 minutes.
- Step 4 Coat the carrier material from step 3 with a solution formed by dissolving IrO 2 in hydrochloric acid and ultrasonically vibrating for 20 minutes. The applied coating is then sintered for 40 minutes at a temperature of 450 °C, and annealed for 55 minutes.
- Step 5 Coat the carrier material from step 4 with a solution formed by dissolving Ta 2 O5 in hydrochloric acid and ultrasonically vibrating for 20 minutes. The coated layer is then sintered for 30 minutes at 450 0 C, and annealed for 60 minutes.
- Step 6 Coat the carrier material from step 5 with a solution formed by dissolving Ta 2 O5 in hydrochloric acid and vibrating for 20 minutes with an ultrasonic device. The coated later is then sintered for 40 minutes at 450 0 C, and annealed for 60 minutes.
- Step 7 Coat the carrier material from step 6 with a solution formed by dissolving Ta 2 O5 in a 1 : 1 :1 mixture of hydrochloric acid, normal butanol and isopropanol, and ultrasonically vibrating for 30 minutes. The coated layer is then sintered for 40 minutes at 450 0 C, and annealed for 60 minutes.
- Step 8 Coat the carrier material from step 7 with a solution formed by dissolving Pt/ZrO 2 , in a 1 :1 :1 mixture of hydrochloric acid, normal butanol and isopropanol (ratio 1 :1 : 1), and ultrasonically vibrating the solution for 30 minutes. The coated layer is then sintered for 40 minutes at 450 0 C, and annealed for 60 minutes. Step 9. Coat the carrier material from step 8 with a solution formed by dissolving Pt/ZrO 2 in a
- Nano-ceramic powders of ZrO 2 and Al 2 O 3 are first obtained by hydrothermal chemical processing. The powders obtained are defined by the following features:
- Step 2 The mixture of two nano-composite powders is fed into a cubic metal container, and pressed under a hydraulic press to form a billet for sintering with a thickness of 10-12 mm.
- Step 3 The billet is sintered by packing into a ceramic container in a furnace at a temperature of 1050-1150 °C. The temperature is increased at a rate at 3.5 - 4 0 C /minute, for about 2 hours, forming a final ceramic separation membrane with a thickness of 2.5-3 mm.
- alkaline water meeting the following chemical characteristics can be produced:
- ORP -200 to -900 mV (preferably -600 to -900 mV)
- the alkaline water used had a pH of 12.0 and an ORP of -750 mV, except for test 3 of example 4, in which water having a pH of 9.0, and an ORP of -25OmV was used.
- the alkaline water of Example 2 is categorized as having no toxicity.
- the accumulative toxicity of the alkaline water of example 2 is categorized as weak.
- the alkaline water of example 2 was determined not to cause any morphological changes to the micronucleus of a polychromatic erythrocyte.
- Viscous Cream Color White Odour: Characteristic pH at 20° C: 5.18 viscosity: (57.000 mPas)
- Viscous Cream Color White Odour: Characteristic pH at 20° C: 4.41 viscosity: (60.000 mPas)
- the instrument Millicell-ERS (range 0-20k ⁇ ) is placed with the two electrodes in the two chambers and the measure is recorded directly and reported in the laboratory note book.
- the basal TEER value is measured on all the tissue as described in the method.
- the tissues have been recovered in maintenance medium (ImI) and the test items have been applied at the dose of 50 ⁇ l.
- Tissues have been finally incubated at 37 0 C in 5% CO 2 incubator .
- Day 2 24 h exposure measurements
- the tissues have been rinsed with saline solution and the second TEER measurement, corresponding to the 24h exposure, has been performed.
- the RHEs have been recovered in fresh maintenance medium (ImI) for a 24h post - incubation time .
- Day 3 24h + 24ft post incubation measurements
- a TEER decrease is observed in all the Nano-clustered waters and related formulations, compared to related placebo.
- a dehydrated section of tendon is dipped into the gels described in Tables G and H, and left for 60 minutes and pull out and observed.
- the alkaline gel of the present invention resulted in a 25.62% increase in tendon volume.
- the placebo gel resulted in a 14.58% increase in tendon volume.
- Tables I - O present examples of other topical formulations for use in the present invention.
- a dehydrated section of tendon is dipped into the gels described in Tables T and U, and left for 60 minutes and pull out and observed.
- the acidic gel of the present invention resulted in a 40.58% increase in tendon volume.
- the placebo gel resulted in a 13.43% increase in tendon volume.
- VitroScreen has developed an experimental in vitro model of skin wound healing on a "Full-thickness skin model (FT)" monitored during 3 days after injury by using positive and negative controls.
- the biological model has been injured in order to reproduce, in a simplified in vitro model, the molecular response (gene expression) in vivo with a complementary morphological analysis.
- mRNA (gene expression) quantification was used to measure various expression parameters that reflect the biochemical and molecular response of the tissue in response to a physical insult.
- the different phases of the wound healing process are quantified by the following markers: Epidermis:
- Integrine ⁇ -1 fundamental for keratinocytes migration
- TNF- ⁇ inflammation marker but acting also as a stimulus for the healing process
- MMP-9 specific matrix metal protease (gelatinase) directly involved in determining keratinocytes migration
- Dermal compartment Fibronectin responsible for the anchoring of cells to the matrix
- Collagen I first collagen type that is destroyed
- Collagen VII newly formed collagen , first sign of tissue regeneration .
- test item by a micropipette at the dose of 50 ⁇ l, has been carefully applied on each tissue injured.
- One single application has been done on duplicate cultures, daily, for 3 days after the initial injury.
- Non treated tissues and non treated but injured ones have been used as negative controls.
- the activity of the acidic water can thus be summarized as follows:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Environmental & Geological Engineering (AREA)
- Dermatology (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Geology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Pain & Pain Management (AREA)
- Virology (AREA)
- Rheumatology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Pulmonology (AREA)
- Toxicology (AREA)
- Cosmetics (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
Claims
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL08749157T PL2162140T3 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
KR1020097023641A KR101500990B1 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
BRPI0810848A BRPI0810848B8 (en) | 2007-04-25 | 2008-04-25 | highly stable electrolytic water with reduced nmr half line width |
CN200880013628A CN101702880A (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced NMR half line width |
ES08749157T ES2425594T3 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced average NMR line width |
US12/597,587 US8709495B2 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced NMR half line width |
DK08749157.7T DK2162140T3 (en) | 2007-04-25 | 2008-04-25 | EXTREMELY STABLE ELECTROLYSE WATER WITH REDUCED NMR BANDWIDTH AT HALF AMPLITUDE HEIGHT (FWHM) |
NZ580371A NZ580371A (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
RU2009143541/15A RU2494748C2 (en) | 2007-04-25 | 2008-04-25 | High-stable electrolytic water with reduced width of nuclear magnetic resonance peak at half height |
JP2010504563A JP5690587B2 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolyzed water with reduced NMR half-width |
EP08749157.7A EP2162140B1 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
CA2684065A CA2684065C (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
SI200831010T SI2162140T1 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
AU2008243353A AU2008243353B2 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced NMR half line width |
MX2009011291A MX2009011291A (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width. |
IL201715A IL201715A0 (en) | 2007-04-25 | 2009-10-22 | Highly stable electrolytic water with reduced nmr half line width |
HRP20130741AT HRP20130741T1 (en) | 2007-04-25 | 2013-08-06 | Highly stable electrolytic water with reduced nmr half line width |
US14/196,192 US9404192B2 (en) | 2007-04-25 | 2014-03-04 | Highly stable electrolytic water with reduced NMR half line width |
US15/214,334 US9889153B2 (en) | 2007-04-25 | 2016-07-19 | Highly stable electrolytic water with reduced NMR half line width |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92618207P | 2007-04-25 | 2007-04-25 | |
US60/926,182 | 2007-04-25 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/597,587 A-371-Of-International US8709495B2 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced NMR half line width |
US14/196,192 Continuation US9404192B2 (en) | 2007-04-25 | 2014-03-04 | Highly stable electrolytic water with reduced NMR half line width |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2008131936A2 true WO2008131936A2 (en) | 2008-11-06 |
WO2008131936A3 WO2008131936A3 (en) | 2009-10-01 |
Family
ID=39671410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/003383 WO2008131936A2 (en) | 2007-04-25 | 2008-04-25 | Highly stable electrolytic water with reduced nmr half line width |
Country Status (21)
Country | Link |
---|---|
US (3) | US8709495B2 (en) |
EP (2) | EP2162140B1 (en) |
JP (2) | JP5690587B2 (en) |
KR (1) | KR101500990B1 (en) |
CN (1) | CN101702880A (en) |
AU (1) | AU2008243353B2 (en) |
BR (1) | BRPI0810848B8 (en) |
CA (1) | CA2684065C (en) |
DK (1) | DK2162140T3 (en) |
ES (2) | ES2524152T3 (en) |
HR (1) | HRP20130741T1 (en) |
IL (1) | IL201715A0 (en) |
MX (1) | MX2009011291A (en) |
NZ (1) | NZ580371A (en) |
PL (2) | PL2162140T3 (en) |
PT (1) | PT2162140E (en) |
RU (1) | RU2494748C2 (en) |
SG (1) | SG186670A1 (en) |
SI (1) | SI2162140T1 (en) |
WO (1) | WO2008131936A2 (en) |
ZA (1) | ZA200907186B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010146460A1 (en) | 2009-06-17 | 2010-12-23 | Apr Nanotechnologies S.A. | Methods of treating outer eye disorders using high orp acid water and compositions thereof |
EP2366294A1 (en) * | 2010-03-11 | 2011-09-21 | Dany Wachter | Alkaline water |
US8277634B2 (en) | 2005-10-28 | 2012-10-02 | Apr Nanotechnologies S.A. | Electrolytic water treatment device having sintered nanoparticle coated electrode and method for making acid or basic water therewith |
WO2012150477A2 (en) | 2010-12-16 | 2012-11-08 | Apr Nanotechnologies S.A. | Medical uses of nanoclustered water |
US8709495B2 (en) | 2007-04-25 | 2014-04-29 | Apr Nanotechnologies S.A. | Highly stable electrolytic water with reduced NMR half line width |
CN108163906A (en) * | 2017-12-01 | 2018-06-15 | 杭州凯博特环保科技开发有限公司 | The free from corrosion sewage-treating agent to equipment |
FR3088543A1 (en) * | 2018-11-21 | 2020-05-22 | Waterdiam France | Treatment of skin conditions based on electrolyzed water |
FR3088542A1 (en) * | 2018-11-21 | 2020-05-22 | Waterdiam France Sas | Healing composition comprising electrolyzed water |
WO2021001789A1 (en) | 2019-07-03 | 2021-01-07 | Apr Applied Pharma Research, S.A. | Therapeutic uses of oxidising hypotonic acid solutions |
US11420885B2 (en) | 2018-02-28 | 2022-08-23 | Waterdiam Group Llc | Electrolysis method and device for water |
US11655163B2 (en) | 2020-05-19 | 2023-05-23 | Waterdiam Group Llc | Clean water for bathing and medical treatments |
RU2822544C2 (en) * | 2019-07-03 | 2024-07-09 | Апр Эпплайд Фарма Рисерч, С.А. | Therapeutic use of oxidative hypotonic acid solutions |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012132828A1 (en) * | 2011-03-29 | 2012-10-04 | 住友化学株式会社 | Process for producing organic photoelectric conversion element |
DE102011055182A1 (en) * | 2011-11-09 | 2013-05-16 | Monopharm Beratungs- Und Handelsgesellschaft Mbh | Anolyte, process for its preparation and its use |
JP2014062297A (en) * | 2012-09-20 | 2014-04-10 | Toshiba Corp | Processing apparatus, method for producing processing liquid, and method for producing electronic device |
CN104884677B (en) * | 2012-12-26 | 2018-01-02 | 皇家飞利浦有限公司 | PH adjusters, including the method for the device of PH adjusters and regulation pH value |
US10094030B2 (en) | 2015-02-03 | 2018-10-09 | Tipul Biotechnology, LLC | Devices and methods for electrolytic production of disinfectant solution from salt solution in a container |
JP5945358B1 (en) * | 2015-10-19 | 2016-07-05 | 雅彦 勝田 | Tire beat lubricant and its use |
MX2016013933A (en) * | 2016-10-24 | 2017-07-31 | Esteripharma México S A De C V | Homeostatic agent based on activated salt solution. |
GB201619493D0 (en) * | 2016-11-17 | 2017-01-04 | Garcia Vicente | Portable water dispenser having a pressure booster faucet for pushing water through an ionizing device |
TWI629246B (en) * | 2017-04-26 | 2018-07-11 | 昆山納諾新材料科技有限公司 | Nano super ion water and preparation method of the same |
RU2663907C1 (en) * | 2017-05-04 | 2018-08-13 | Ринат Маратович Урузбаев | Method of accelerating healing of skin damage |
CN109248320A (en) * | 2017-07-12 | 2019-01-22 | 北京甲护生物科技有限公司 | A kind of stable high oxidation electrolyzed-oxidizing water medical ultrasonic coupling agent |
CN109248099A (en) * | 2017-07-12 | 2019-01-22 | 北京甲护生物科技有限公司 | A kind of stable high oxidation electrolyzed-oxidizing water sterilization creme |
RU174803U1 (en) * | 2017-08-15 | 2017-11-02 | Общество с ограниченной ответственностью "Высота-М" | Anchor device for individual protection against falling when working at height |
RU174805U1 (en) * | 2017-08-22 | 2017-11-02 | Общество с ограниченной ответственностью "Высота-М" | Anchor device for individual protection against falling when working at height |
CN109655609B (en) * | 2019-02-20 | 2022-03-01 | 军事科学院军事医学研究院军事兽医研究所 | Platinum-nanoflower and preparation method and application thereof |
CN110981068B (en) * | 2019-12-25 | 2022-08-09 | 山东夙沙高科生物有限公司 | Preparation method of acidic water for cosmetics |
CN111110609A (en) * | 2020-03-03 | 2020-05-08 | 深层海水(海南)科技有限公司 | Acidic skin-care spray containing mineral elements and preparation method thereof |
US20230248001A1 (en) * | 2022-02-09 | 2023-08-10 | Zep, Inc. | Storage stable solution comprising hypochlorous acid and/or hypochlorite |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04235904A (en) * | 1991-01-17 | 1992-08-25 | Sony Kurieiteibu Prod:Kk | Cosmetics |
JPH06126287A (en) * | 1992-10-16 | 1994-05-10 | Taisho Pharmaceut Co Ltd | Averagely small cluster water |
WO1997019707A1 (en) * | 1995-11-28 | 1997-06-05 | Ist Instant Surface Technology S.A. | Method for preparing liquid sterilising and/or stimulating agents, and device therefor |
US5824353A (en) * | 1995-01-13 | 1998-10-20 | Taisho Pharmaceutical Co., Ltd. | Mineral water |
JPH1135472A (en) * | 1997-07-22 | 1999-02-09 | Agaribi:Kk | Active water and its production |
US5900127A (en) * | 1996-04-02 | 1999-05-04 | Permelec Electrode Ltd. | Electrode for electrolysis and electrolytic cell using the electrode |
EP0933332A1 (en) * | 1998-01-26 | 1999-08-04 | Hee Jung Kim | Electrolysis of water resulting in the reduction of fat content in the human liver |
US6033678A (en) * | 1990-01-12 | 2000-03-07 | Lorenzen; Lee H. | Microclustered Water |
JP2000229815A (en) * | 1999-02-05 | 2000-08-22 | Toshimitsu Hattori | Liposome and its utilization |
JP2001096272A (en) * | 1999-09-28 | 2001-04-10 | Japan Organo Co Ltd | Production of water |
US6235186B1 (en) * | 1998-05-26 | 2001-05-22 | Permelec Elctrode Ltd. | Apparatus for producing electrolytic water |
US20020134691A1 (en) * | 1996-10-18 | 2002-09-26 | Fumitake Satoh | Reducing electrolyzed water and method for producing same |
WO2004078654A2 (en) * | 2003-03-04 | 2004-09-16 | Frs Waterware, Inc. (D.B.A. Waterware, Inc.) | Free radical solution water |
EP1600426A2 (en) * | 2004-05-29 | 2005-11-30 | Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V. | Method and device for separating off sulfate anions from water and for introducing buffer capacity in water |
US20060275387A1 (en) * | 2005-06-03 | 2006-12-07 | BAGLEY David | Processed water and therapeutic uses thereof |
WO2008091032A1 (en) * | 2007-01-25 | 2008-07-31 | Dong Yang Living Quest Co., Ltd. | Atopy eczema relaxant composition using natural material |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0293088A (en) | 1988-09-29 | 1990-04-03 | Permelec Electrode Ltd | Method and device for water electrolysis |
US5622848A (en) | 1990-05-23 | 1997-04-22 | Medical Discoveries, Inc. | Electrically hydrolyzed salines as microbiocides for in vitro treatment of contaminated fluids containing blood |
US5334383A (en) | 1990-05-23 | 1994-08-02 | Medical Discoveries, Inc. | Electrically hydrolyzed salines as in vivo microbicides for treatment of cardiomyopathy and multiple sclerosis |
US5622828A (en) | 1990-06-11 | 1997-04-22 | Nexstar Pharmaceuticals, Inc. | High-affinity oligonucleotide ligands to secretory phospholipase A2 (sPLA2) |
US5234563A (en) | 1992-06-01 | 1993-08-10 | Janix Kabushiki Kaisha | Electrolytic ionized water producer of a continuous type |
DE69409996T2 (en) | 1993-02-22 | 1999-01-14 | Nippon Intek Co., Ltd., Kawagoe, Saitama | Method and device for producing electrolytic water |
JP2652609B2 (en) | 1993-05-31 | 1997-09-10 | ミズ株式会社 | Electrolyzed water generator |
US6207201B1 (en) | 1993-06-03 | 2001-03-27 | Amuchina International, Inc. | Sodium hypochlorite based disinfectant and sterilizer for medical-surgical instruments |
JP3321256B2 (en) | 1993-07-30 | 2002-09-03 | ミズ株式会社 | Water storage type electrolyzed water generator |
US5507932A (en) | 1994-08-26 | 1996-04-16 | Schlumberger Technology Corporation | Apparatus for electrolyzing fluids |
JP3181796B2 (en) | 1994-10-28 | 2001-07-03 | 日本電気株式会社 | Electrolyzed water production equipment |
JP3181795B2 (en) | 1994-10-28 | 2001-07-03 | オルガノ株式会社 | Electrolyzed water production equipment |
JPH08252310A (en) | 1995-01-17 | 1996-10-01 | Miura Denshi Kk | Washing and disinfecting method of artificial dialyzing device using electrolytically generated acidic water, and device therefor |
JP3785219B2 (en) | 1996-03-27 | 2006-06-14 | ペルメレック電極株式会社 | Method for producing acidic water and alkaline water |
JP3716042B2 (en) | 1996-04-24 | 2005-11-16 | ペルメレック電極株式会社 | Acid water production method and electrolytic cell |
GB9620167D0 (en) | 1996-09-27 | 1996-11-13 | Enigma Uk Ltd | Electrochemical processing of liquid such as water |
RU2119802C1 (en) | 1996-12-18 | 1998-10-10 | Стерилокс Текнолоджиз, Инк. | Device for performing electrochemical treatment of liquid media |
JPH10286571A (en) | 1997-04-16 | 1998-10-27 | Permelec Electrode Ltd | Electrolytic cell for acidic water and alkaline water preparation |
JPH10314740A (en) | 1997-05-19 | 1998-12-02 | Permelec Electrode Ltd | Electrolytic bath for acidic water production |
US6093292A (en) | 1997-06-17 | 2000-07-25 | Shimadzu Corporation | Electrolyte producing apparatus with monitoring device |
US6294073B1 (en) | 1997-10-22 | 2001-09-25 | Chemicoat & Co., Ltd. | Manufacturing method and apparatus of alkaline ionized water |
JP3783149B2 (en) | 1997-12-26 | 2006-06-07 | 株式会社オメガ | Electrolyzer |
US6126810A (en) | 1998-04-27 | 2000-10-03 | Steris Corporation | Generation of active chlorine in the presence of an organic load from sodium chloride in water |
JP2000042556A (en) | 1998-05-28 | 2000-02-15 | Shimadzu Corp | Electrolytic water production device |
DE19911746A1 (en) | 1999-03-16 | 2000-09-21 | Basf Ag | Diamond electrodes |
CA2315355C (en) | 1999-08-06 | 2011-12-20 | Sterilox Medical (Europe) Limited | Electrochemical treatment of an aqueous solution |
GB2355190B (en) | 1999-08-23 | 2004-07-28 | Sterilox Medical | Improvements in or relating to sterilising preparations |
JP2001139477A (en) | 1999-11-17 | 2001-05-22 | Coherent Technology:Kk | Tissue cell growth-promoting liquid for wounded part |
US6426066B1 (en) | 2000-01-12 | 2002-07-30 | California Pacific Labs, Inc. | Use of physiologically balanced, ionized, acidic solution in wound healing |
US20030185704A1 (en) | 2000-01-12 | 2003-10-02 | Suzanne Bernard | Physiologically balanced, ionized, acidic solution and methodology for use in wound healing |
US7393522B2 (en) | 2000-01-12 | 2008-07-01 | Novabay Pharmaceuticals, Inc. | Physiologically balanced, ionized, acidic solution and methodology for use in wound healing |
US20070051640A1 (en) | 2000-08-07 | 2007-03-08 | Sterilox Technologies, Inc. | Electrochemical treatment of an aqueous solution |
BR0116541A (en) * | 2000-12-27 | 2003-10-07 | Hydro Entpr Inc | Activated water apparatus and processes |
US7291314B2 (en) * | 2001-12-20 | 2007-11-06 | Hydro Enterprises, Inc. | Activated water apparatus and methods |
JP5140218B2 (en) | 2001-09-14 | 2013-02-06 | 有限会社コヒーレントテクノロジー | Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use |
BRPI0117143B1 (en) | 2001-10-01 | 2015-07-14 | Aquilabs S A | Hypochlorous acid composition and its applications |
US20040055896A1 (en) | 2002-09-20 | 2004-03-25 | Sterilox Technologies, Inc. | Biocidal solution |
JP2004107304A (en) * | 2002-09-20 | 2004-04-08 | Nara Camicee Japan:Kk | Method for conditioning skin or hair, and cosmetic material |
GB2393737B (en) | 2002-10-03 | 2005-08-17 | Sterilox Tech Int Ltd | Electronic treatment of an aqueous salt solution |
US7566479B2 (en) | 2003-06-23 | 2009-07-28 | Lg Chem, Ltd. | Method for the synthesis of surface-modified materials |
US20050196462A1 (en) | 2003-12-30 | 2005-09-08 | Oculus Innovative Sciences, Inc. | Topical formulation containing oxidative reductive potential water solution and method for using same |
US20050139808A1 (en) | 2003-12-30 | 2005-06-30 | Oculus Innovative Sciences, Inc. | Oxidative reductive potential water solution and process for producing same |
JP5528657B2 (en) | 2003-12-30 | 2014-06-25 | オキュラス イノヴェイティヴ サイエンシズ、インコーポレイテッド | Redox potential aqueous solution and method for producing and using the same |
US9168318B2 (en) | 2003-12-30 | 2015-10-27 | Oculus Innovative Sciences, Inc. | Oxidative reductive potential water solution and methods of using the same |
US7238272B2 (en) * | 2004-02-27 | 2007-07-03 | Yoichi Sano | Production of electrolytic water |
EP1863502B1 (en) | 2005-03-23 | 2018-09-12 | Sonoma Pharmaceuticals, Inc. | Method of treating skin ulcers using oxidative reductive potential water solution |
BRPI0610901B1 (en) | 2005-05-02 | 2019-04-16 | Oculus Innovative Sciences, Inc. | USE OF A WATER OXY-REDUCING POTENTIAL (ORP) SOLUTION. |
US20060249375A1 (en) | 2005-05-06 | 2006-11-09 | Aoun Walid A | Electrochemical cell with elastomeric cap |
CA2623576A1 (en) | 2005-09-21 | 2007-03-29 | Novabay Pharmaceuticals, Inc. | System and method for the prevention and treatment of bacterial and fungal infections including urinary tract infections (uti) using a hypohalous acid compositions |
NZ598070A (en) * | 2005-10-28 | 2013-03-28 | Akuatech S R L | New highly stable aqueous solution, electrode with nanocoating for preparing the solution and method for making this electrode |
JP5449780B2 (en) | 2006-01-20 | 2014-03-19 | オキュラス イノヴェイティヴ サイエンシズ、インコーポレイテッド | Method for treating or preventing inflammation and hypersensitivity using redox potential aqueous solution |
US7540517B2 (en) * | 2007-03-05 | 2009-06-02 | B.E.W. Squared, Llc | Three-wheeled rear-steering scooter |
CN101702880A (en) * | 2007-04-25 | 2010-05-05 | 阿夸特克股份有限公司 | Highly stable electrolytic water with reduced NMR half line width |
US8945630B2 (en) | 2008-04-11 | 2015-02-03 | Aquilabs S.A. | Method of producing and applications of composition of hypochlorous acid |
WO2012150477A2 (en) * | 2010-12-16 | 2012-11-08 | Apr Nanotechnologies S.A. | Medical uses of nanoclustered water |
-
2008
- 2008-04-25 CN CN200880013628A patent/CN101702880A/en active Pending
- 2008-04-25 JP JP2010504563A patent/JP5690587B2/en active Active
- 2008-04-25 ES ES12193285.9T patent/ES2524152T3/en active Active
- 2008-04-25 ES ES08749157T patent/ES2425594T3/en active Active
- 2008-04-25 PT PT87491577T patent/PT2162140E/en unknown
- 2008-04-25 DK DK08749157.7T patent/DK2162140T3/en active
- 2008-04-25 KR KR1020097023641A patent/KR101500990B1/en active IP Right Grant
- 2008-04-25 RU RU2009143541/15A patent/RU2494748C2/en active
- 2008-04-25 PL PL08749157T patent/PL2162140T3/en unknown
- 2008-04-25 PL PL12193285T patent/PL2594276T3/en unknown
- 2008-04-25 EP EP08749157.7A patent/EP2162140B1/en active Active
- 2008-04-25 MX MX2009011291A patent/MX2009011291A/en active IP Right Grant
- 2008-04-25 NZ NZ580371A patent/NZ580371A/en unknown
- 2008-04-25 EP EP20120193285 patent/EP2594276B1/en active Active
- 2008-04-25 US US12/597,587 patent/US8709495B2/en active Active
- 2008-04-25 WO PCT/EP2008/003383 patent/WO2008131936A2/en active Application Filing
- 2008-04-25 CA CA2684065A patent/CA2684065C/en active Active
- 2008-04-25 AU AU2008243353A patent/AU2008243353B2/en active Active
- 2008-04-25 BR BRPI0810848A patent/BRPI0810848B8/en active IP Right Grant
- 2008-04-25 SG SG2012093175A patent/SG186670A1/en unknown
- 2008-04-25 SI SI200831010T patent/SI2162140T1/en unknown
-
2009
- 2009-10-14 ZA ZA200907186A patent/ZA200907186B/en unknown
- 2009-10-22 IL IL201715A patent/IL201715A0/en unknown
-
2013
- 2013-08-06 HR HRP20130741AT patent/HRP20130741T1/en unknown
- 2013-09-09 JP JP2013186425A patent/JP2014028369A/en active Pending
-
2014
- 2014-03-04 US US14/196,192 patent/US9404192B2/en active Active
-
2016
- 2016-07-19 US US15/214,334 patent/US9889153B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033678A (en) * | 1990-01-12 | 2000-03-07 | Lorenzen; Lee H. | Microclustered Water |
JPH04235904A (en) * | 1991-01-17 | 1992-08-25 | Sony Kurieiteibu Prod:Kk | Cosmetics |
JPH06126287A (en) * | 1992-10-16 | 1994-05-10 | Taisho Pharmaceut Co Ltd | Averagely small cluster water |
US5824353A (en) * | 1995-01-13 | 1998-10-20 | Taisho Pharmaceutical Co., Ltd. | Mineral water |
WO1997019707A1 (en) * | 1995-11-28 | 1997-06-05 | Ist Instant Surface Technology S.A. | Method for preparing liquid sterilising and/or stimulating agents, and device therefor |
US5900127A (en) * | 1996-04-02 | 1999-05-04 | Permelec Electrode Ltd. | Electrode for electrolysis and electrolytic cell using the electrode |
US20020134691A1 (en) * | 1996-10-18 | 2002-09-26 | Fumitake Satoh | Reducing electrolyzed water and method for producing same |
JPH1135472A (en) * | 1997-07-22 | 1999-02-09 | Agaribi:Kk | Active water and its production |
EP0933332A1 (en) * | 1998-01-26 | 1999-08-04 | Hee Jung Kim | Electrolysis of water resulting in the reduction of fat content in the human liver |
US6235186B1 (en) * | 1998-05-26 | 2001-05-22 | Permelec Elctrode Ltd. | Apparatus for producing electrolytic water |
JP2000229815A (en) * | 1999-02-05 | 2000-08-22 | Toshimitsu Hattori | Liposome and its utilization |
JP2001096272A (en) * | 1999-09-28 | 2001-04-10 | Japan Organo Co Ltd | Production of water |
WO2004078654A2 (en) * | 2003-03-04 | 2004-09-16 | Frs Waterware, Inc. (D.B.A. Waterware, Inc.) | Free radical solution water |
EP1600426A2 (en) * | 2004-05-29 | 2005-11-30 | Verein für Kernverfahrenstechnik und Analytik Rossendorf e.V. | Method and device for separating off sulfate anions from water and for introducing buffer capacity in water |
US20060275387A1 (en) * | 2005-06-03 | 2006-12-07 | BAGLEY David | Processed water and therapeutic uses thereof |
WO2008091032A1 (en) * | 2007-01-25 | 2008-07-31 | Dong Yang Living Quest Co., Ltd. | Atopy eczema relaxant composition using natural material |
Non-Patent Citations (6)
Title |
---|
"Antimicrobial activity of electrolyzed oxidizing water using standard in-vitro test procedures for the evaluation of chemical disinfectants" , [Online] 6 October 2005 (2005-10-06), XP002491600 Retrieved from the Internet: URL:http://www.water4u.net/file_download.php?filename=63ff8dbc4bb2121cc20add56549dcbe2> [retrieved on 2008-08-07] * |
"BioCera(R) Alkaline Purifier" , [Online] XP002491598 Retrieved from the Internet: URL:http://www.biocera.co.kr/eng/Antioxidant_Alkaline_Water_Filter.htm> [retrieved on 2008-08-08] * |
ANONYMOUS: "Aquatech Amsterdam 2006 Press information" , [Online] 28 August 2006 (2006-08-28), XP002491599 Retrieved from the Internet: URL:www.amsterdam.aquatechtrade.com/_uploa d/aquatech2006/docs/Noviteiten_supplement_ ENG.doc> [retrieved on 2008-08-08] * |
GORDON C.C. YANG ET AL: JOURNAL OF MEMBRANE SCIENCE, vol. 233, 2004, pages 151-159, XP002531100 elsevier DOI: 10.1016/j.memsci.2004.01.011 * |
HIDEMITSU HAYASHI: "Benefits of Alkaline, Ionized Water" , [Online] 6 October 2005 (2005-10-06), XP002491602 Retrieved from the Internet: URL:http://www.ionizers.org/water.html> [retrieved on 2008-08-08] * |
VENKITANRAYANAN KS ET AL: "Efficacy of Electrolyzed Oxidising Water for Inctivating Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 65, no. 9, September 2006 (2006-09), pages 4276-4279, XP002491601 * |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8277634B2 (en) | 2005-10-28 | 2012-10-02 | Apr Nanotechnologies S.A. | Electrolytic water treatment device having sintered nanoparticle coated electrode and method for making acid or basic water therewith |
US8709495B2 (en) | 2007-04-25 | 2014-04-29 | Apr Nanotechnologies S.A. | Highly stable electrolytic water with reduced NMR half line width |
US9404192B2 (en) | 2007-04-25 | 2016-08-02 | Apr Nanotechnologies S.A. | Highly stable electrolytic water with reduced NMR half line width |
US9889153B2 (en) | 2007-04-25 | 2018-02-13 | Apr Nanotechnologies S.A. | Highly stable electrolytic water with reduced NMR half line width |
WO2010146460A1 (en) | 2009-06-17 | 2010-12-23 | Apr Nanotechnologies S.A. | Methods of treating outer eye disorders using high orp acid water and compositions thereof |
US8691289B2 (en) | 2009-06-17 | 2014-04-08 | Apr Nanotechnologies S.A. | Methods of treating outer eye disorders using high ORP acid water and compositions thereof |
EP2954901A1 (en) | 2009-06-17 | 2015-12-16 | APR Nanotechnologies S.A. | Methods of treating outer eye disorders using high orp acid water and compositions thereof |
EP2366294A1 (en) * | 2010-03-11 | 2011-09-21 | Dany Wachter | Alkaline water |
WO2012150477A2 (en) | 2010-12-16 | 2012-11-08 | Apr Nanotechnologies S.A. | Medical uses of nanoclustered water |
WO2012150477A3 (en) * | 2010-12-16 | 2012-12-27 | Apr Nanotechnologies S.A. | Medical uses of nanoclustered water |
CN108163906A (en) * | 2017-12-01 | 2018-06-15 | 杭州凯博特环保科技开发有限公司 | The free from corrosion sewage-treating agent to equipment |
US11420885B2 (en) | 2018-02-28 | 2022-08-23 | Waterdiam Group Llc | Electrolysis method and device for water |
FR3088543A1 (en) * | 2018-11-21 | 2020-05-22 | Waterdiam France | Treatment of skin conditions based on electrolyzed water |
FR3088542A1 (en) * | 2018-11-21 | 2020-05-22 | Waterdiam France Sas | Healing composition comprising electrolyzed water |
WO2020104631A1 (en) * | 2018-11-21 | 2020-05-28 | Waterdiam France Sas | Healing composition comprising electrolyzed water |
WO2020104630A1 (en) * | 2018-11-21 | 2020-05-28 | Waterdiam France Sas | Treatment of skin disorders based on electrolysed water |
CN113242737A (en) * | 2018-11-21 | 2021-08-10 | 沃特蒂阿姆集团有限公司 | Healing composition comprising electrolyzed water |
CN113316561A (en) * | 2018-11-21 | 2021-08-27 | 沃特蒂阿姆集团有限公司 | Electrolytic water based treatment of skin disorders |
CN113242737B (en) * | 2018-11-21 | 2024-01-16 | 韦奥公司 | Healing composition comprising electrolyzed water |
WO2021001789A1 (en) | 2019-07-03 | 2021-01-07 | Apr Applied Pharma Research, S.A. | Therapeutic uses of oxidising hypotonic acid solutions |
US20220241324A1 (en) * | 2019-07-03 | 2022-08-04 | Apr Applied Pharma Research Sa | Therapeutic uses of oxidising hypotonic acid solutions |
RU2822544C2 (en) * | 2019-07-03 | 2024-07-09 | Апр Эпплайд Фарма Рисерч, С.А. | Therapeutic use of oxidative hypotonic acid solutions |
US11655163B2 (en) | 2020-05-19 | 2023-05-23 | Waterdiam Group Llc | Clean water for bathing and medical treatments |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9889153B2 (en) | Highly stable electrolytic water with reduced NMR half line width | |
RU2472713C2 (en) | Novel highly stable aqueous solution, nano-coated electrode for preparing said solution and method of making said electrode | |
EP2442818B1 (en) | Methods of treating outer eye disorders using high orp acid water and compositions thereof | |
CN101346315B (en) | Highly stable aqueous solution, electrode with nanocoating for preparing the solution and method for making this electrode | |
MX2008005535A (en) | New highly stable aqueous solution, electrode with nanocoating for preparing the solution and method for making this electrode | |
ITMI20061252A1 (en) | NEW AQUEOUS SOLUTION WITH HIGH STABILITY. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880013628.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08749157 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1870/MUMNP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 580371 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008243353 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2684065 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/011291 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201715 Country of ref document: IL Ref document number: 2008749157 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010504563 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20097023641 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009143541 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12597587 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0810848 Country of ref document: BR Kind code of ref document: A2 Effective date: 20091023 |