WO2008130158A1 - A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof - Google Patents

A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof Download PDF

Info

Publication number
WO2008130158A1
WO2008130158A1 PCT/KR2008/002216 KR2008002216W WO2008130158A1 WO 2008130158 A1 WO2008130158 A1 WO 2008130158A1 KR 2008002216 W KR2008002216 W KR 2008002216W WO 2008130158 A1 WO2008130158 A1 WO 2008130158A1
Authority
WO
WIPO (PCT)
Prior art keywords
microsphere
drug
polymer
glucose
biodegradable
Prior art date
Application number
PCT/KR2008/002216
Other languages
French (fr)
Inventor
Hyun Hee Kwak
Ghun Il Lee
Yong Man Park
Mi Kyung Son
Hi Chang Yang
Tae Hyoung Kim
Yoon Ji Kim
Byong Moon Kim
Sung Hee Lee
Soo Hyung Kang
Moohi Yoo
Original Assignee
Dong-A Pharmaceutical. Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dong-A Pharmaceutical. Co., Ltd filed Critical Dong-A Pharmaceutical. Co., Ltd
Priority to MX2009011275A priority Critical patent/MX2009011275A/en
Priority to AU2008241699A priority patent/AU2008241699B2/en
Priority to US12/595,434 priority patent/US8282990B2/en
Priority to BRPI0810140-0A2A priority patent/BRPI0810140A2/en
Priority to JP2010503980A priority patent/JP5302952B2/en
Priority to NZ580700A priority patent/NZ580700A/en
Priority to CA2683698A priority patent/CA2683698C/en
Priority to CN2008800123273A priority patent/CN101657190B/en
Priority to EP08741460A priority patent/EP2139458A4/en
Publication of WO2008130158A1 publication Critical patent/WO2008130158A1/en
Priority to IL201523A priority patent/IL201523A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a biodegradable polymeric microsphere comprising a biodegradable polymer carrier with a glucose-regulating peptide encapsulated therein, capable of releasing the glucose-regulating peptide in a controlled manner, and a method for the preparation thereof.
  • protein and peptide drugs After being administered orally, most protein and peptide drugs lose their active structures in the acidic environment of the stomach or undergo enzymatic degradation. Also, they are adsorbed at very low rates through the gastric or intestinal mucosa. For these reasons, protein or peptide drugs usually take non-oral administration routes, that is, are usually administered by injection. The non-oral administration of protein or peptide drugs must be repeated because most non-orally administered protein or peptide drugs show short half lives and low bioavailability in the body. In addition, their administration may be continued for a long time period, e.g., months, in many cases.
  • Aliphatic polyesters currently used as polymeric carriers for protein or peptide drugs, received FDA permission for the use thereof because their biocompatibility was recognized. They are widely used as carriers for drug delivery or sutures for operations .
  • aliphatic polyesters include poly-L- lactic acid, polyglycolic acid, poly-D-lactic acid-co- glycolic acid, poly-L-lactic acid-co-glycolic acid, poly- D,L-lactic acid-co-glycolic acid (hereinafter referred to as ⁇ PLGA' ) , poly-caprolactone, poly-valerolactone, poly- hydroxy butyrate and poly-hydroxy valerate [Peppas, L. B., Int. J. Pharm., 116, 1-9, 1995].
  • ⁇ PLGA' poly-caprolactone
  • poly-valerolactone poly-valerolactone
  • poly- hydroxy butyrate poly-hydroxy valerate
  • the dosage forms comprising polyester microspheres with protein drugs encapsulated therein suffer from the disadvantages of showing an initial burst effect, an uncontrolled release rate for a period of time due to various factors, or an incomplete release of the encapsulated drug.
  • model protein drugs such as bovine serum albumin, lysozyme, etc. are released in large amounts in an initial stage, but show a final release of around 50% [Crotts, G. and Park, T. G., J. Control. Release, 44, 123- 134, 1997; Leonard, N. B., Michael, L. H., Lee, M. M. J. Pharm. Sci., 84, 707-712].
  • microspheres using aliphatic polyester carriers with recombinant human growth hormone encapsulated therein they initially release the drug in an amount of 30 ⁇ 50 %, but 40 ⁇ 60 % of the drug remains in the microspheres [Yan, C, et al., J. Control. Release, 32, 231-241, 1994; Kim, H. K. and Park, T. G., Biotechnol. Bioeng., 65, 659-667, 1999].
  • the initial burst release of the drug is attributed to the fact that proteinous drugs aggregated at or adsorbed to microsphere surfaces or holes are released through rapid diffusion in an initial stage.
  • Proteinous drugs may be denatured by the interface between water and an organic solvent during the manufacture of microspheres, and thus form irreversible aggregates which lead to unstable release.
  • surfactants e.g., non-ionic type surfactant Tween, Pluronic F68, Brij 35, etc.
  • stabilizers e.g., mannitol, gelatin, trehalose, carboxymethylcellulose, etc.
  • an organic solvent free of water in the preparation of microspheres has been reported [Gombotz, W. R., Healy, M., Brown, L., U. S. Patent No. 5019400].
  • microspheres for the sustained release of drugs which include encapsulating a drug in a mixture of two or more polymers with different degradation rates at a predetermined ratio [Ravivarapu, H. B., Bu t ton, K., Deluca, P.P., Eur J Pharm Biopharm 50(2) 263-270, 2000; Korean Patent Application No. 1998-0062142] or mixing two or more polymeric microspheres having different degradation rates with respective drugs encapsulated therein at a predetermined ratio (U. S. Pat. No.
  • the products degraded from the polymer with a high degradation rate e.g., lactic acid and glycolic acid
  • decrease the pH value which promotes the degradation of the polymer having a low degradation rate, resulting in a release rate quite different from the calculated means of the release rates of the drugs encapsulated in respective polymers.
  • the preparation of two or more microspheres for one dosage form is disadvantageous in terms of manufacturing processes and economy (Korean Patent Application No. 2000-0036178) .
  • phase separation U. S. Pat. No. 4673595, Korean Pat. Application No. 2007-0031304
  • spray-drying Korean Pat. Application No. 2003-0023130
  • organic solvent evaporation U. S. Pat. No. 4389330
  • a phase separation method a methylene chloride solvent is used in combination with silicon oil, heptene and ethyl alcohol, but all of them have to be eliminated and thus are economically disadvantageous .
  • the spray-drying method may incur the denaturation of a peptide or proteinous drug because it requires the spray-drying of the peptide or proteinous drug at a high temperature, such as 60 0 C or higher, along with an organic solvent.
  • a high temperature such as 60 0 C or higher
  • an organic solvent evaporation method is most widely applied to the preparation of peptide or proteinous drugs .
  • One of the most technically important factors in this method is encapsulation efficiency (Korean Patent Application No. 2003-0081179) .
  • Glucose-regulating peptides belong to a group of peptides which have therapeutic potential for the treatment of insulin-dependent diabetes mellitus, gestational diabetes mellitus or insulin-independent diabetes mellitus, obesity and lipid dysmetabolism (U. S. Pat. No. 6506724).
  • glucose-regulating peptides include Exendin-3, Exendin-4 and homologs and agonists thereof,- and glucagons, glucagons-like peptides (e.g., GLP-I, GLP-2) and homologs and agonists thereof (Korean Patent Application No. 2006- 7015029) .
  • Exendin-4 isolated from the salivary secretions of the lizard Heloderma horridum or Heloderma suspectum, is a physiologically active peptide consisting of 39 amino acid residues. Exendin-4 functions to stimulate the secretion of insulin from pancreatic beta cells, reduce elevated glucagons secretion and induce a decrease of appetite, thereby being useful for the treatment of diabetes and obesity [Eng. J. et al. 1990; Raufman, J. P. 1992; Goeke, R. 1993; Thorens, B. 1993] . For the effective prevention and treatment of diabetes mellitus, studies on microspheres for the sustained release of exendin-4 have been conducted (Korean Patent Application No. 2006-7023921) .
  • the present invention provides biodegradable polymeric microspheres comprising a biodegradable polymer carrier with a glucose- regulating peptide encapsulated therein, capable of releasing the glucose-regulating peptide in a controlled manner . Also, the present invention provides a method for preparing the biodegradable polymeric microspheres .
  • the microspheres according to the present invention show the zero-order release of drugs, e.g., exendin-4 and thus allow the drugs to be steadily released in vitro and in vivo therefrom over three to four weeks, with neither initial burst effect nor incomplete release.
  • drugs e.g., exendin-4
  • FIG. 1 is a graph showing the in vitro release pattern of the microspheres prepared through a drug dispersion process in Example 1 in accordance with the present invention.
  • FIG. 2 is a graph showing the in vitro release patterns of the microspheres prepared in Examples 4 to 8 in accordance with the present invention.
  • FIG. 3 is a graph showing the in vitro release patterns of the microspheres prepared in Comparative Examples 1 and 2.
  • FIG. 4 shows the in vivo release pattern of the microspheres prepared in Example 1-1.
  • FIG. 5 is a chromatogram of the exendin-4 obtained from the microspheres prepared in Example 1-1, analyzed by reverse phase-high performance liquid chromatography (RP- HPLC) .
  • the present invention pertains to a biodegradable polymeric microsphere for the controlled release of a glucose-regulating peptide, comprising a biodegradable polymer carrier with the glucose-regulating peptide encapsulated therein.
  • glucose-regulating peptide suitable for use in the present invention examples include natural, recombinant or synthetic exendin-3, exendin-4 and homologs and agonists thereof, glucagon, glucagon-like peptides (e.g., GLP-I, GLP-2) and homologs and agonists thereof, with preference for synthetic exendin-3, exendin-4 and homologs and agonists thereof. Most preferable is synthetic exendin-4.
  • the content of the glucose-regulating peptide in the microsphere may vary depending on administration routes, dosages, and protein properties.
  • biodegradable polyester polymers Suitable for use as the biodegradable polymer carrier are biodegradable polyester polymers . While serving as a scaffold for the microsphere and containing a glucose- regulating peptide therein, biodegradable polyester polymers gradually degrade to thus release the glucose- regulating peptide.
  • the biodegradable polyester polymer include poly-L-lactic acid, poly-glycolic acid, poly-D-lactic acid-co-glycolic acid, poly-L-lactic acid-co- glycolic acid, poly-D, L-lactic acid-co-glycolic acid, poly- caprolactone, poly-valerolactone, poly-hydroxy butyrate and poly-hydroxy valerate, but are not limited thereto.
  • the polymer is preferably selected from a group consisting of poly-L-lactic acid, poly-D-lactic acid-co-glycolic acid, poly-L-lactic acid-co- glycolic acid, poly-D, L-lactic acid-co-glycolic acid (PLGA), and a combination thereof. More preferable is poly- D, L-lactic acid-co-glycolic acid (PLGA), alone or in combination with poly-L-lactic acid.
  • the present invention pertains to a method for preparing the biodegradable polymeric microsphere for the controlled release of a glucose-regulating peptide.
  • the method for the preparation of the biodegradable polymeric microsphere comprises : adding an organic solvent to a polymer to give a polymer solution (step 1) : dispersing a glucose-regulating peptide in the polymer solution of step 1 to give a dispersion, followed by adding an alcohol or a mixture of an alcohol and an organic acid to the dispersion to give a drug-dispersed solution (step 2) ; and forming microspheres from the drug-dispersed solution of step 2 (step 3) .
  • step 1 dispersing a glucose-regulating peptide in the polymer solution of step 1 to give a dispersion, followed by adding an alcohol or a mixture of an alcohol and an organic acid to the dispersion to give a drug-dispersed solution (step 2) ; and forming microspheres from the drug-dispersed solution of step 2 (step 3) .
  • step 1 is to yield a polymer solution.
  • a polymer is dissolved in an organic solvent.
  • the polymer is biodegradable and can be used as a carrier.
  • Preferable is a biodegradable polyester polymer.
  • any volatile organic solvent may be used without particular limitation.
  • the organic solvent acts not only as a solubilizer for dissolving the polymer, but also as a dispersant for uniformly dispersing the glucose-regulating peptide in the polymer solution.
  • organic solvent suitable for use in the present invention examples include methylene chloride, ethyl acetate, chloroform, acetone, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, dioxane, tetrahydrofuran, ethylacetate, methylethylketone, acetonitrile, and combinations thereof, with preference for methylene chloride, ethylacetate and chloroform and the greatest preference for methylene chloride.
  • step 2 is to yield a drug-dispersed solution.
  • a glucose-regulating peptide is dispersed in the polymer solution.
  • the glucose-regulating peptide is as described above.
  • synthetic exendin-4 is added to obtain a drug dispersion.
  • the ratio of the glucose-regulating peptide to the polymer is selected within a range sufficient to dissolve the glucose-regulating peptide.
  • alcohol alone or in combination with an organic acid is dissolved in the drug dispersion.
  • the alcohol and the organic acid act as solubilizers capable of dissolving both the polymer and the glucose-regulating peptide.
  • a stabilizer or a surfactant may be further added.
  • the preparation of the drug dispersion in the order of adding an organic solvent to a polymer, adding a glucose-regulating peptide, and adding alcohol or a mixture of alcohol and organic acid.
  • the addition order is changed, that is, when the polymer is added with the organic solvent and alcohol or a mixture of alcohol and organic acid, followed by dissolving the glucose-regulating peptide, or when a solution of the glucose-regulating peptide in alcohol or a mixture of alcohol and organic acid is added to the polymer solution, the resulting microsphere shows an incomplete release pattern.
  • methyl alcohol ethyl alcohol, isopropyl alcohol and butyl alcohol
  • methyl alcohol being preferred due to high solubility for the biodegradable polymeric carrier and the glucose- regulating peptide.
  • the alcohol which is to dissolve the drug dispersion is preferably used in as small an amount as possible, but must be sufficient to dissolve the drug dispersion. The amount may be determined depending on the kind of alcohol.
  • the ratio of the drug dispersion to alcohol (v/v) preferably ranges from 1:1 to 6:1, and more preferably from 3:1 to 4:1 in order to completely dissolve the drug dispersion.
  • any organic acid may be used without particular limitation.
  • organic solvent suitable for the present invention examples include oxalic acid, oxaloacetic acid, fumaric acid, maJ ic acid, succinic acid, acetic acid, butyric acid, palmitic acid, tartaric acid, ascorbic acid, uric acid, sulfonic acid, sulfinic acid, formic acid, citric acid, isocitric acid, alpha-ketoglutaric acid, succinic acid and nucleic acids, with preference for acetic acid, formic acid and a combination thereof.
  • the amount of the organic acid is determined depending on the kind thereof.
  • additives No particular limitations are imposed on additives as long as they can dissolve the drug dispersion and are soluble in a solvent for the drug dispersion.
  • polyethylene glycols Solutol HS-I5TM, TPGSTM, GelucireTM
  • oils LabrafilTM, LabrasolTM, Medium Chain TriglycerideTM
  • proteins Lectin
  • surfactants N-Methyl pyrrolidone, Polyvinyl pyrrolidone, Tween,TM, SpanTM, CremophorTM, PoloxamerTM, BrijTM, Sunsoft 818HTM
  • hydropropyl methylcellulose may be used.
  • concentration thereof in the solubilizer ranges from 0.01 to 15% (w/v) and preferably from 0.1 to 12.5% (w/v).
  • step 3 is to form microspheres from the drug-dispersed solution of step 2.
  • the formation of the microsphere may be achieved by dispersing the drug-dispersed solution in an aqueous solution containing an emulsifier or using a spray drier.
  • a stirrer and a homogenizer are used to form microspheres, which are then dried.
  • the emulsifier useful in the present invention may be a lipophilic emulsifier dispersible in organic solvents or a hydrophilic emulsifier dispersible in aqueous solvents. Examples of the hydrophilic emulsifier include
  • the organic solvent may or may not be saturated with the emulsifier.
  • Methylene chloride, ethyl acetate or chloroform may be preferably used as the organic solvent, with the greatest preference for methylene chloride.
  • concentration of the emulsifier in aqueous solution ranges from 0.01 to 5.0% (w/v) and preferably from 0.5 to 2% (w/v) .
  • the drying may be implemented as freeze-drying or vacuum-drying.
  • the resulting microspheres may be harvested through centrifugation upon freeze-drying or through a vacuum filter system upon vacuum-drying before final drying.
  • the microspheres prepared according to the method are of an O/W type and range in mean size from 5 to 70 urn, and preferably from 10 to 30 urn, which is suitable for injection.
  • the particle size can be set at various values by controlling the volume ratio of the oil phase, that is, the drug-dispersed solution, to the water phase in which the emulsifier is dissolved.
  • microspheres can be prepared simply by spraying the drug-dispersed solution from a spray-drier.
  • the spray-drier is set at 115-125 °C for the influx and at 80-90 0 C for the efflux. Thereafter, the spray-dried microspheres may be allowed to undergo an additional drying process, such as freeze-drying or vacuum- drying, to remove residual solvents therefrom.
  • biodegradable polymeric microsphere according to the present invention may be prepared by a method comprising: adding an organic solvent to a polymer to give a polymer solution (step 1) : emulsifying the polymer solution of step 1 with an aqueous glucose-regulating peptide solution containing a surfactant to give a primary emulsion (step 2' ) ; and forming microspheres from the primary emulsion of step 2' (step 3' ) .
  • a polymer is dissolved in an organic solvent.
  • the polymer is biodegradable and can be used as a carrier.
  • Preferable is a biodegradable polyester polymer.
  • any volatile organic solvent may be used without particular limitation.
  • the organic solvent acts not only as a solubilizer for dissolving the polymer, but also as a dispersant for uniformly dispersing the glucose-regulating peptide in the polymer solution.
  • organic solvent suitable for use in the present invention examples include methylene chloride, ethyl acetate, chloroform, acetone, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, dioxane, tetrahydrofuran, ethylacetate, methylethylketone, acetonitrile, and combinations thereof, with preference for methylene chloride, ethylacetate and chloroform and most preference for methylene chloride.
  • step 2' an aqueous glucose-regulating peptide solution containing a surfactant is added to the polymer solution, followed by emulsification with a stirrer or a homogenizer to give a primary emulsion.
  • Synthetic exendin-4 may be preferably employed as a glucose-regulating peptide.
  • aqueous glucose-regulating peptide solution containing a surfactant results in the formation of W/O/W type double emulsion microspheres .
  • any surfactant may be contained in the aqueous glucose-regulating peptide solution as long as it can dissolve the glucose-regulating peptide in the aqueous solution.
  • the surfactant available in the present invention include Tween, Triton, Brij, polyvinylpyrrolidone, and polyvinylalcohol .
  • microspheres may be achieved by dispersing the primary emulsion of step 2' in an aqueous solution containing an emulsifier, stirring with a stirrer and a homogenizer, and drying.
  • the emulsifier useful in the present invention may be a lipophilic emulsifier dispersible in organic solvents or a hydrophilic emulsifier dispersible in aqueous solvents.
  • the hydrophilic emulsifier include Tween, Triton, Brij, polyvinylpyrrolidone, and polyvinylalcohol, with preference for polyvinylalcohol.
  • An emulsifier, whether saturated in the organic solvent or not, may be used.
  • Methylene chloride, ethyl acetate or chloroform may be preferably used as the organic solvent, with greatest preference for methylene chloride.
  • concentration of the emulsifier in aqueous solution ranges from 0.01 to 5.0% (w/v) , and preferably from 0.5 to 2% (w/v) .
  • the drying may resort to freeze-drying or vacuum-drying.
  • the resulting microspheres may be harvested through centrifugation upon freeze-drying or through a vacuum filter system upon vacuum-drying before final drying.
  • the microspheres prepared according to the present invention are useful as an agent for releasing exendin-4 in a controlled manner.
  • exendin-4 American Peptide
  • the polymer that was used was one polymer product or a mixture of two different polymer products in various mixture ratios.
  • methyl alcohol was added in a predetermined amount (alcohol : drug dispersion 1:4 v/v) to give drug-dispersed solutions.
  • EXAMPLE 2 Preparation of Microspheres According to Ratios of Alcohol to Drug Dispersion (O/W Emulsion)
  • Microspheres were prepared in the same manner as in Example 1-1, with the exception that various additives were mixed in an amount of 0.1 or 12.5 vol% of the solvent with the drug-dispersed solution.
  • Table 3 the additives and their vol% mixed with the solution are summarized.
  • Microspheres were prepared in the same manner as in Example 1-1 with the exception that the drug-dispersed solution was added to 250 ml of an aqueous polyvinyl alcohol 1% solution (w/v) not saturated with methylene chloride and emulsified using a stirrer or a homogenizer.
  • EXAMPLE 5 Preparation of Microspheres Having Different Particle Sizes (O/W Emulsion)
  • Microspheres were prepared in the same manner as in Example 1-1 with the exception that the volume ratio of the methylene chloride-saturated polyvinyl alcohol 1% aqueous solution (w/v) to the drug-dispersed solution, that is, the volume ratio of the water phase to the oil phase, was set as shown in Table 4, below.
  • microspheres solidified after the methylene chloride was gradually evaporated by stirring at room temperature under atmospheric pressure for several hours as in Example 1-1, were filtered through a vacuum filter system, washed with distilled water and dewatered before final drying at room temperature under pressure of 50 mTorr for 3 days using an advantage dryer (VirTis, NY, U. S. A).
  • EXAMPLE 7 Preparation of Microspheres Using Spray Drying (0/W Emulsion)
  • Example 1-1 The drug-dispersed solution obtained in Example 1-1 was not mixed with an aqueous emulsifier solution, but was injected at a rate of 2.5 ml per min into a spray dryer
  • EXAMPLE 8 Preparation of Microspheres Using Aqueous Drug Solution (W/O/W Emulsion)
  • aqueous exendin-4 solution obtained by dissolving 9 mg of exendin-4 (American Peptide) in 0.3 ml of a polyvinylalcohol 0.5% aqueous solution (w/v) , was added, followed by stirring with a homogenizer to give a primary emulsion. 10 ml of the primary emulsion was emulsified with 250 ml of a methylene chloride-saturated, aqueous polyvinylalcohol 1% solution (w/v) using a stirrer or a homogenizer to form microspheres.
  • microspheres While the methylene chloride was allowed to slowly evaporate in air by stirring at room temperature for several hours under atmospheric pressure, the microspheres were solidified. Following centrifugation, the microspheres thus harvested were washed with distilled water, frozen at -70 0 C and freeze-dried at room temperature under 50 mTorr for 3 days using an advantage freeze dryer (VirTis, NY, U. S.A) to afford W/O/W type microspheres which can release exendin-4 in a controlled manner.
  • an advantage freeze dryer VirtualTis, NY, U. S.A
  • COMPARATIVE EXAMPLE 2 Preparation of O/W Type Microsphere without Drug Dispersion Process (2) Microspheres were prepared in the same manner as in Example 1 with the exception that a solution of 9 mg of exendin-4 in 0.2 ml of methyl alcohol was added to a solution of 300 mg of a polymer (RG502H Boehringer Ingelheim) in 0.8 ml of methylene chloride to give a drug- dispersed solution without conducting the drug dispersion process .
  • a polymer RG502H Boehringer Ingelheim
  • the encapsulation efficiencies of the microspheres prepared according to the present invention were calculated to be 80% or higher.
  • the microspheres prepared according to the present invention ranged, in mean particle size, from 8 to 65 ⁇ m, which is small enough to be used with small size injection needles.
  • microspheres prepared in Examples and Comparative Examples were evaluated for exendin-4 release in vitro.
  • FIGS. 1 and 2 show the amounts of exendin-4 released in vitro over time from the microspheres prepared through an exendin dispersion process according to the present invention in Examples 1 and 4-8 while FIG. 3 shows the amounts of exendin-4 released in vitro over time from the microspheres prepared in Comparative Examples 1 and 2 when the exendin dispersion process was excluded.
  • the microspheres prepared through the exendin dispersion process according to the present invention show neither initial burst release (exendin-4 released 3% during the first one day) , nor incomplete release, with the maintenance of zero-order release over 21 days.
  • the microspheres prepared without an exendin dispersion process showed incomplete release, with only 83% (Comparative Example 1) and 49% (Comparative Example 2) released over 21 days.
  • exendin 4 containing microspheres prepared in accordance with the present invention showed neither initial burst release nor incomplete release, but maintained zero-order release of exendin-4 over three weeks and therefore can be effectively used as agents for the sustained release of exendin-4.
  • microspheres prepared in Examples and Comparative Examples were evaluated for exendin-4 release in vivo and pharmacokinetic properties .
  • a predetermined amount of the microspheres prepared in Examples 1 and 4-8 and Comparative Examples 1 and 2 (corresponding to 140 ⁇ g of exendin-4) was suspended in an aqueous solution containing 1.5% CMC, 0.5% Tween 20 and 0.9% NaCl, followed by the subcutaneous injection of the suspension at a dosage of 0.2 ml into each of five Sprague- Dawley rats. Thereafter, blood was sampled from the rats at predetermined time intervals and quantitatively analyzed for exendin-4 level using ELISA to determine the release of exendin-4 from the microspheres.
  • FIG. 4 shows the in vivo release pattern of exendin-4 from the microspheres prepared in Example 1-1.
  • the microspheres prepared according to the present invention show neither initial burst release nor incomplete release, but maintain zero-order release over 20 days in the experimental animals, as in the in vitro experiment.
  • the present invention provides biodegradable polymeric microspheres which are not only excellent in encapsulation efficiency, but also can steadily release exendin-4 for 2 to 4 weeks to completion without a lag phase .
  • FIG. 5 is a chromatogram of exendin-4 obtained from the microspheres prepared in Example 1-1. As seen in this chromatogram, a single peak was observed and the retention time was the same as that of the control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Obesity (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Emergency Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Disclosed are biodegradable microspheres, capable of releasing a glucose-regulating peptide in a controlled manner, comprising a biodegradable polymer carrier with the glucose-regulating peptide encapsulated therein, and methods for the preparation thereof. In addition to ensuring high encapsulation efficiency and high stability of the encapsulated drug, the microspheres shows neither an initial burst effect nor incomplete release and allows the zero-order release of drugs over a prolonged period of time, thus improving the therapeutic effect of the drug.

Description

[DESCRIPTION]
[invention Title]
A BIODEGRADABLE MICROSPHERE COMPOSITION SUITABLE FOR THE CONTROLLED RELEASE OF GLUCOSE CONTROLLING PEPTIDE AND FORMULATION THEREOF
[Technical Field]
The present invention relates to a biodegradable polymeric microsphere comprising a biodegradable polymer carrier with a glucose-regulating peptide encapsulated therein, capable of releasing the glucose-regulating peptide in a controlled manner, and a method for the preparation thereof.
[Background Art]
After being administered orally, most protein and peptide drugs lose their active structures in the acidic environment of the stomach or undergo enzymatic degradation. Also, they are adsorbed at very low rates through the gastric or intestinal mucosa. For these reasons, protein or peptide drugs usually take non-oral administration routes, that is, are usually administered by injection. The non-oral administration of protein or peptide drugs must be repeated because most non-orally administered protein or peptide drugs show short half lives and low bioavailability in the body. In addition, their administration may be continued for a long time period, e.g., months, in many cases. In order to avoid these problems, active research into sustained-release dosage formulations has been conducted, resulting in the use of biodegradable polymeric carriers with protein or peptide drugs encapsulated therein, which can release the protein or peptide drugs therefrom as the biodegradation of the polymeric carriers progresses [Heller, J. et al . , Controlled release of water-soluble macromolecules from bioerodible hydrogels, Biomaterials, 4, 262-266, 1983; Langer, R., New methods of drug delivery, Science, 249, 1527-1533, 1990; Langer, R., Chem. Eng. Commun., 6, 1-48, 1980; Langer, R. S. and Peppas, N. A., Biomaterials, 2, 201-214, 1981; Heller, J., CRC Crit. Rev. Ther. Drug Carrier Syst., 1(1), 39-90, 1984; Holland, S.J. Tighe, B. J. and Gould, P. L., J. Controlled Release, 155-180, 1986].
Aliphatic polyesters, currently used as polymeric carriers for protein or peptide drugs, received FDA permission for the use thereof because their biocompatibility was recognized. They are widely used as carriers for drug delivery or sutures for operations .
Concrete examples of aliphatic polyesters include poly-L- lactic acid, polyglycolic acid, poly-D-lactic acid-co- glycolic acid, poly-L-lactic acid-co-glycolic acid, poly- D,L-lactic acid-co-glycolic acid (hereinafter referred to as λPLGA' ) , poly-caprolactone, poly-valerolactone, poly- hydroxy butyrate and poly-hydroxy valerate [Peppas, L. B., Int. J. Pharm., 116, 1-9, 1995]. With the development of high-molecular weight peptides or proteins as novel therapeutics in recent years, various attempts have been made to release them from polymeric carriers in a controlled manner. The dosage forms comprising polyester microspheres with protein drugs encapsulated therein, however, suffer from the disadvantages of showing an initial burst effect, an uncontrolled release rate for a period of time due to various factors, or an incomplete release of the encapsulated drug. For example, model protein drugs, such as bovine serum albumin, lysozyme, etc. are released in large amounts in an initial stage, but show a final release of around 50% [Crotts, G. and Park, T. G., J. Control. Release, 44, 123- 134, 1997; Leonard, N. B., Michael, L. H., Lee, M. M. J. Pharm. Sci., 84, 707-712]. As for microspheres using aliphatic polyester carriers with recombinant human growth hormone encapsulated therein, they initially release the drug in an amount of 30~50 %, but 40~60 % of the drug remains in the microspheres [Yan, C, et al., J. Control. Release, 32, 231-241, 1994; Kim, H. K. and Park, T. G., Biotechnol. Bioeng., 65, 659-667, 1999]. The initial burst release of the drug is attributed to the fact that proteinous drugs aggregated at or adsorbed to microsphere surfaces or holes are released through rapid diffusion in an initial stage. Proteinous drugs may be denatured by the interface between water and an organic solvent during the manufacture of microspheres, and thus form irreversible aggregates which lead to unstable release. In order to prevent the interface-induced denaturation of proteinous drugs, the use of surfactants (e.g., non-ionic type surfactant Tween, Pluronic F68, Brij 35, etc.) and stabilizers (e.g., mannitol, gelatin, trehalose, carboxymethylcellulose, etc.) or an organic solvent free of water in the preparation of microspheres has been reported [Gombotz, W. R., Healy, M., Brown, L., U. S. Patent No. 5019400].
In order to solve the problem of uncontrollable drug release rates for a period of time and the incomplete release of encapsulated drugs, many recent studies are associated with alternative methods of preparing microspheres for the sustained release of drugs, which include encapsulating a drug in a mixture of two or more polymers with different degradation rates at a predetermined ratio [Ravivarapu, H. B., Button, K., Deluca, P.P., Eur J Pharm Biopharm 50(2) 263-270, 2000; Korean Patent Application No. 1998-0062142] or mixing two or more polymeric microspheres having different degradation rates with respective drugs encapsulated therein at a predetermined ratio (U. S. Pat. No. 4897268), thereby controlling both the initial release and the continuous release of the drug or drugs from the microspheres . In the microspheres prepared by the conventional methods, however, the products degraded from the polymer with a high degradation rate, e.g., lactic acid and glycolic acid, decrease the pH value, which promotes the degradation of the polymer having a low degradation rate, resulting in a release rate quite different from the calculated means of the release rates of the drugs encapsulated in respective polymers. Further, the preparation of two or more microspheres for one dosage form is disadvantageous in terms of manufacturing processes and economy (Korean Patent Application No. 2000-0036178) .
As techniques for preparing microspheres, phase separation (U. S. Pat. No. 4673595, Korean Pat. Application No. 2007-0031304), spray-drying (Korean Pat. Application No. 2003-0023130) and organic solvent evaporation (U. S. Pat. No. 4389330) are generally known. In a phase separation method, a methylene chloride solvent is used in combination with silicon oil, heptene and ethyl alcohol, but all of them have to be eliminated and thus are economically disadvantageous . As for the spray-drying method, it may incur the denaturation of a peptide or proteinous drug because it requires the spray-drying of the peptide or proteinous drug at a high temperature, such as 600C or higher, along with an organic solvent. For these reasons, the organic solvent evaporation method is most widely applied to the preparation of peptide or proteinous drugs . One of the most technically important factors in this method is encapsulation efficiency (Korean Patent Application No. 2003-0081179) .
Therefore, there is the need for a preparation method of microspheres that shows neither an initial burst effect nor incomplete release, allows the zero --order release of drugs, is simple and economically advantageous and ensures high encapsulation efficiency and high stability of the encapsulated drug .
Glucose-regulating peptides belong to a group of peptides which have therapeutic potential for the treatment of insulin-dependent diabetes mellitus, gestational diabetes mellitus or insulin-independent diabetes mellitus, obesity and lipid dysmetabolism (U. S. Pat. No. 6506724). Examples of glucose-regulating peptides include Exendin-3, Exendin-4 and homologs and agonists thereof,- and glucagons, glucagons-like peptides (e.g., GLP-I, GLP-2) and homologs and agonists thereof (Korean Patent Application No. 2006- 7015029) . Exendin-4, isolated from the salivary secretions of the lizard Heloderma horridum or Heloderma suspectum, is a physiologically active peptide consisting of 39 amino acid residues. Exendin-4 functions to stimulate the secretion of insulin from pancreatic beta cells, reduce elevated glucagons secretion and induce a decrease of appetite, thereby being useful for the treatment of diabetes and obesity [Eng. J. et al. 1990; Raufman, J. P. 1992; Goeke, R. 1993; Thorens, B. 1993] . For the effective prevention and treatment of diabetes mellitus, studies on microspheres for the sustained release of exendin-4 have been conducted (Korean Patent Application No. 2006-7023921) . However, conventional methods are complicated and inefficient, as exemplified by the use and removal of many organic solvents in the phase separation method, peptide degradation attributable to the use of high energy in an ultrasonic process, and the use of many excipients including stabilizers such as sugar, and release enhancers (e.g., inorganic acids and inorganic salts) .
[Disclosure] [Technical Problem]
It is therefore an object of the present invention to provide microspheres that show neither an initial burst effect nor incomplete release, allow the zero-order release of drugs irrespective of a stable release period of time, are simple and economically advantageous in the preparation thereof, and ensure high encapsulation efficiency and high stability of the encapsulated drug, and a method for the preparation thereof, which employs neither many organic solvents, high-energy treatment such as ultrasonication, nor release promoters, and are simple.
[Technical Solution]
In order to accomplish the above object, the present invention provides biodegradable polymeric microspheres comprising a biodegradable polymer carrier with a glucose- regulating peptide encapsulated therein, capable of releasing the glucose-regulating peptide in a controlled manner . Also, the present invention provides a method for preparing the biodegradable polymeric microspheres .
[Advantageous Effects]
In addition to being simple and economically advantageous in the preparation thereof and ensuring high encapsulation efficiency and high stability of the encapsulated drug, the microspheres according to the present invention show the zero-order release of drugs, e.g., exendin-4 and thus allow the drugs to be steadily released in vitro and in vivo therefrom over three to four weeks, with neither initial burst effect nor incomplete release.
[Description of Drawings]
FIG. 1 is a graph showing the in vitro release pattern of the microspheres prepared through a drug dispersion process in Example 1 in accordance with the present invention.
FIG. 2 is a graph showing the in vitro release patterns of the microspheres prepared in Examples 4 to 8 in accordance with the present invention.
FIG. 3 is a graph showing the in vitro release patterns of the microspheres prepared in Comparative Examples 1 and 2.
FIG. 4 shows the in vivo release pattern of the microspheres prepared in Example 1-1.
FIG. 5 is a chromatogram of the exendin-4 obtained from the microspheres prepared in Example 1-1, analyzed by reverse phase-high performance liquid chromatography (RP- HPLC) .
[Best Mode]
Below, a detailed description is given of the present invention.
The present invention pertains to a biodegradable polymeric microsphere for the controlled release of a glucose-regulating peptide, comprising a biodegradable polymer carrier with the glucose-regulating peptide encapsulated therein.
Examples of the glucose-regulating peptide suitable for use in the present invention include natural, recombinant or synthetic exendin-3, exendin-4 and homologs and agonists thereof, glucagon, glucagon-like peptides (e.g., GLP-I, GLP-2) and homologs and agonists thereof, with preference for synthetic exendin-3, exendin-4 and homologs and agonists thereof. Most preferable is synthetic exendin-4.
The content of the glucose-regulating peptide in the microsphere may vary depending on administration routes, dosages, and protein properties.
Suitable for use as the biodegradable polymer carrier are biodegradable polyester polymers . While serving as a scaffold for the microsphere and containing a glucose- regulating peptide therein, biodegradable polyester polymers gradually degrade to thus release the glucose- regulating peptide. Examples of the biodegradable polyester polymer include poly-L-lactic acid, poly-glycolic acid, poly-D-lactic acid-co-glycolic acid, poly-L-lactic acid-co- glycolic acid, poly-D, L-lactic acid-co-glycolic acid, poly- caprolactone, poly-valerolactone, poly-hydroxy butyrate and poly-hydroxy valerate, but are not limited thereto. As long as a biodegradable polyester polymer is usually used in the art, no particular limitations are imposed on the use thereof in the present invention. The polymer is preferably selected from a group consisting of poly-L-lactic acid, poly-D-lactic acid-co-glycolic acid, poly-L-lactic acid-co- glycolic acid, poly-D, L-lactic acid-co-glycolic acid (PLGA), and a combination thereof. More preferable is poly- D, L-lactic acid-co-glycolic acid (PLGA), alone or in combination with poly-L-lactic acid.
Also, the present invention pertains to a method for preparing the biodegradable polymeric microsphere for the controlled release of a glucose-regulating peptide.
The method for the preparation of the biodegradable polymeric microsphere comprises : adding an organic solvent to a polymer to give a polymer solution (step 1) : dispersing a glucose-regulating peptide in the polymer solution of step 1 to give a dispersion, followed by adding an alcohol or a mixture of an alcohol and an organic acid to the dispersion to give a drug-dispersed solution (step 2) ; and forming microspheres from the drug-dispersed solution of step 2 (step 3) . A detailed description will be given of the method in a stepwise manner.
First, step 1 is to yield a polymer solution.
In step 1, a polymer is dissolved in an organic solvent. The polymer is biodegradable and can be used as a carrier. Preferable is a biodegradable polyester polymer.
As long as the biodegradable polymer carrier has high solubility therein and it can be easily removed through evaporation, any volatile organic solvent may be used without particular limitation. In the present invention, the organic solvent acts not only as a solubilizer for dissolving the polymer, but also as a dispersant for uniformly dispersing the glucose-regulating peptide in the polymer solution. Examples of the organic solvent suitable for use in the present invention include methylene chloride, ethyl acetate, chloroform, acetone, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, dioxane, tetrahydrofuran, ethylacetate, methylethylketone, acetonitrile, and combinations thereof, with preference for methylene chloride, ethylacetate and chloroform and the greatest preference for methylene chloride.
Next, step 2 is to yield a drug-dispersed solution. In step 2, a glucose-regulating peptide is dispersed in the polymer solution. The glucose-regulating peptide is as described above. Preferably, synthetic exendin-4 is added to obtain a drug dispersion. In the drug dispersion, the ratio of the glucose-regulating peptide to the polymer (w/w) is selected within a range sufficient to dissolve the glucose-regulating peptide.
Then, alcohol alone or in combination with an organic acid is dissolved in the drug dispersion. The alcohol and the organic acid act as solubilizers capable of dissolving both the polymer and the glucose-regulating peptide. A stabilizer or a surfactant may be further added.
In the method according to the present invention, it is very important to conduct the preparation of the drug dispersion in the order of adding an organic solvent to a polymer, adding a glucose-regulating peptide, and adding alcohol or a mixture of alcohol and organic acid. When the addition order is changed, that is, when the polymer is added with the organic solvent and alcohol or a mixture of alcohol and organic acid, followed by dissolving the glucose-regulating peptide, or when a solution of the glucose-regulating peptide in alcohol or a mixture of alcohol and organic acid is added to the polymer solution, the resulting microsphere shows an incomplete release pattern.
Useful in the present invention are methyl alcohol, ethyl alcohol, isopropyl alcohol and butyl alcohol, with methyl alcohol being preferred due to high solubility for the biodegradable polymeric carrier and the glucose- regulating peptide. The alcohol which is to dissolve the drug dispersion is preferably used in as small an amount as possible, but must be sufficient to dissolve the drug dispersion. The amount may be determined depending on the kind of alcohol. In the case of methyl alcohol, the ratio of the drug dispersion to alcohol (v/v) preferably ranges from 1:1 to 6:1, and more preferably from 3:1 to 4:1 in order to completely dissolve the drug dispersion. Also, as long as it can dissolve the polymeric carrier and the glucose-regulating peptide, any organic acid may be used without particular limitation. Examples of the organic solvent suitable for the present invention include oxalic acid, oxaloacetic acid, fumaric acid, maJ ic acid, succinic acid, acetic acid, butyric acid, palmitic acid, tartaric acid, ascorbic acid, uric acid, sulfonic acid, sulfinic acid, formic acid, citric acid, isocitric acid, alpha-ketoglutaric acid, succinic acid and nucleic acids, with preference for acetic acid, formic acid and a combination thereof. Like the alcohol, the amount of the organic acid is determined depending on the kind thereof.
No particular limitations are imposed on additives as long as they can dissolve the drug dispersion and are soluble in a solvent for the drug dispersion. For example, polyethylene glycols (Solutol HS-I5™, TPGS™, Gelucire™) , oils (Labrafil™, Labrasol™, Medium Chain Triglyceride™) , proteins (Lectin) , surfactants (N-Methyl pyrrolidone, Polyvinyl pyrrolidone, Tween,™, Span™, Cremophor™, Poloxamer™, Brij™, Sunsoft 818H™) and hydropropyl methylcellulose may be used. The concentration thereof in the solubilizer ranges from 0.01 to 15% (w/v) and preferably from 0.1 to 12.5% (w/v).
Finally, step 3 is to form microspheres from the drug-dispersed solution of step 2.
The formation of the microsphere may be achieved by dispersing the drug-dispersed solution in an aqueous solution containing an emulsifier or using a spray drier.
When the drug-dispersed solution is dispersed in an aqueous solution containing an emulsifier, a stirrer and a homogenizer are used to form microspheres, which are then dried. The emulsifier useful in the present invention may be a lipophilic emulsifier dispersible in organic solvents or a hydrophilic emulsifier dispersible in aqueous solvents. Examples of the hydrophilic emulsifier include
Tween, Triton, Brij, polyvinylpyrrolidone, and polyvinylalcohol, with preference for polyvinylalcohol . The organic solvent may or may not be saturated with the emulsifier. Methylene chloride, ethyl acetate or chloroform may be preferably used as the organic solvent, with the greatest preference for methylene chloride. The concentration of the emulsifier in aqueous solution ranges from 0.01 to 5.0% (w/v) and preferably from 0.5 to 2% (w/v) .
In this step, the drying may be implemented as freeze-drying or vacuum-drying. The resulting microspheres may be harvested through centrifugation upon freeze-drying or through a vacuum filter system upon vacuum-drying before final drying.
The microspheres prepared according to the method are of an O/W type and range in mean size from 5 to 70 urn, and preferably from 10 to 30 urn, which is suitable for injection. The particle size can be set at various values by controlling the volume ratio of the oil phase, that is, the drug-dispersed solution, to the water phase in which the emulsifier is dissolved.
In the case of spray-drying, microspheres can be prepared simply by spraying the drug-dispersed solution from a spray-drier. In the interests of preparation efficiency, the spray-drier is set at 115-125 °C for the influx and at 80-900C for the efflux. Thereafter, the spray-dried microspheres may be allowed to undergo an additional drying process, such as freeze-drying or vacuum- drying, to remove residual solvents therefrom.
Further, the biodegradable polymeric microsphere according to the present invention may be prepared by a method comprising: adding an organic solvent to a polymer to give a polymer solution (step 1) : emulsifying the polymer solution of step 1 with an aqueous glucose-regulating peptide solution containing a surfactant to give a primary emulsion (step 2' ) ; and forming microspheres from the primary emulsion of step 2' (step 3' ) .
In step 1, a polymer is dissolved in an organic solvent. The polymer is biodegradable and can be used as a carrier. Preferable is a biodegradable polyester polymer. As long as it has high solubility for the biodegradable polymer carrier and can be easily removed through evaporation, any volatile organic solvent may be used without particular limitation. In the present invention, the organic solvent acts not only as a solubilizer for dissolving the polymer, but also as a dispersant for uniformly dispersing the glucose-regulating peptide in the polymer solution.
Examples of the organic solvent suitable for use in the present invention include methylene chloride, ethyl acetate, chloroform, acetone, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, dioxane, tetrahydrofuran, ethylacetate, methylethylketone, acetonitrile, and combinations thereof, with preference for methylene chloride, ethylacetate and chloroform and most preference for methylene chloride.
In step 2' , an aqueous glucose-regulating peptide solution containing a surfactant is added to the polymer solution, followed by emulsification with a stirrer or a homogenizer to give a primary emulsion. Synthetic exendin-4 may be preferably employed as a glucose-regulating peptide.
The addition of the aqueous glucose-regulating peptide solution containing a surfactant to the polymer solution results in the formation of W/O/W type double emulsion microspheres .
In step 2' , any surfactant may be contained in the aqueous glucose-regulating peptide solution as long as it can dissolve the glucose-regulating peptide in the aqueous solution. Examples of the surfactant available in the present invention include Tween, Triton, Brij, polyvinylpyrrolidone, and polyvinylalcohol .
The formation of microspheres may be achieved by dispersing the primary emulsion of step 2' in an aqueous solution containing an emulsifier, stirring with a stirrer and a homogenizer, and drying. The emulsifier useful in the present invention may be a lipophilic emulsifier dispersible in organic solvents or a hydrophilic emulsifier dispersible in aqueous solvents. Examples of the hydrophilic emulsifier include Tween, Triton, Brij, polyvinylpyrrolidone, and polyvinylalcohol, with preference for polyvinylalcohol. An emulsifier, whether saturated in the organic solvent or not, may be used. Methylene chloride, ethyl acetate or chloroform may be preferably used as the organic solvent, with greatest preference for methylene chloride. The concentration of the emulsifier in aqueous solution ranges from 0.01 to 5.0% (w/v) , and preferably from 0.5 to 2% (w/v) .
In this step, the drying may resort to freeze-drying or vacuum-drying. The resulting microspheres may be harvested through centrifugation upon freeze-drying or through a vacuum filter system upon vacuum-drying before final drying.
Enjoying the advantages of showing neither initial burst effect nor incomplete release, maintaining the zero- order release of exendin-4, ensuring high encapsulation efficiency due to the simple preparation method thereof and high stability for the encapsulated exendin-4, and steadily releasing exendin-4 therefrom in vitro and in vivo over three or more weeks, the microspheres prepared according to the present invention are useful as an agent for releasing exendin-4 in a controlled manner. [Mode for Invention]
A better understanding of the present invention may be obtained through the following examples which are set forth to illustrate, but are not to be construed as the limit of the present invention.
EXAMPLE 1 : Preparation of Microspheres According to Kinds of Polymers and Mixture Ratios (0/W Emulsion)
300 mg of a polymer (Boehringer Ingelheim) was completely dissolved in methylene chloride. In this polymer solution, 9 mg of exendin-4 (American Peptide) was dispersed to give an exendin-4 dispersion. The polymer that was used, as listed in Table 1, was one polymer product or a mixture of two different polymer products in various mixture ratios. To each of the drug dispersions which were different in polymer kind and mixture ratio, methyl alcohol was added in a predetermined amount (alcohol : drug dispersion 1:4 v/v) to give drug-dispersed solutions. 10 ml of each of the drug-dispersed solutions was emulsified with 250 ml of a methylene chloride-saturated polyvinylalcohol 1% aqueous solution (w/v) using a stirrer or a homogenizer to form microspheres. While the methylene chloride was allowed to slowly evaporate in air by stirring at room temperature for several hours under atmospheric pressure, the microspheres were solidified. Following centrifugation, the microspheres thus harvested were washed with distilled water, frozen at -700C and freeze-dried at room temperature under 50 mTorr for 3 days using an advantage freeze dryer (VirTis, NY, U. S.A) to afford O/W type microspheres, which can release exendin-4 in a controlled manner.
TABLE 1
Figure imgf000023_0001
EXAMPLE 2 : Preparation of Microspheres According to Ratios of Alcohol to Drug Dispersion (O/W Emulsion)
300 mg of a polymer (RG502H, Boehringer Ingelheim) was completely dissolved in methylene chloride. In this polymer solution, 9 mg of exendin-4 (American Peptide) was dispersed to give an exendin-4 dispersion. To the drug dispersion were added predetermined amounts of methyl alcohol (alcohol : drug dispersion: 1:1 - 1:7 v/v) , as shown in Table 2, to give drug-dispersed solutions. They were emulsified and dried in the same manner as in Example 1 to afford microspheres. TABLE 2
Figure imgf000024_0001
As shown in Table 2, a solution was not formed when the volume ratio of the drug dispersion to methyl alcohol was 7 or greater.
EXAMPLE 3 : Preparation of Microspheres from Drug-Dispersed Solution Containing Additive (0/W Emulsion)
Microspheres were prepared in the same manner as in Example 1-1, with the exception that various additives were mixed in an amount of 0.1 or 12.5 vol% of the solvent with the drug-dispersed solution. In Table 3, the additives and their vol% mixed with the solution are summarized.
TABLE 3
Figure imgf000024_0002
Figure imgf000025_0001
As shown in FIG. 3, various additives in a broad concentration range can be mixed with the drug-dispersed solution.
EXAMPLE 4 : Preparation of Microspheres from Aqueous Emulsifier Solution not Saturated with Organic Solvent (0/W Emulsion)
Microspheres were prepared in the same manner as in Example 1-1 with the exception that the drug-dispersed solution was added to 250 ml of an aqueous polyvinyl alcohol 1% solution (w/v) not saturated with methylene chloride and emulsified using a stirrer or a homogenizer. EXAMPLE 5: Preparation of Microspheres Having Different Particle Sizes (O/W Emulsion)
Microspheres were prepared in the same manner as in Example 1-1 with the exception that the volume ratio of the methylene chloride-saturated polyvinyl alcohol 1% aqueous solution (w/v) to the drug-dispersed solution, that is, the volume ratio of the water phase to the oil phase, was set as shown in Table 4, below.
TABLE 4
Figure imgf000026_0001
EXAMPLE 6: Preparation of Microspheres According to Drying (0/W Emulsion)
The microspheres, solidified after the methylene chloride was gradually evaporated by stirring at room temperature under atmospheric pressure for several hours as in Example 1-1, were filtered through a vacuum filter system, washed with distilled water and dewatered before final drying at room temperature under pressure of 50 mTorr for 3 days using an advantage dryer (VirTis, NY, U. S. A). EXAMPLE 7 : Preparation of Microspheres Using Spray Drying (0/W Emulsion)
The drug-dispersed solution obtained in Example 1-1 was not mixed with an aqueous emulsifier solution, but was injected at a rate of 2.5 ml per min into a spray dryer
(Buchi Mini spray dryer, B-290) while being sprayed at a rate of 400 Nl/h through a 0.7 mm nozzle. The microspheres thus formed were dried in a vacuum to afford a microsphere dosage form which could steadily release exendin-4. The temperature of the spray drier was set at 120+20C for influx and 85+20C for efflux.
EXAMPLE 8: Preparation of Microspheres Using Aqueous Drug Solution (W/O/W Emulsion)
300 mg of a polymer (RG502H, Boehringer Ingelheim) was completely dissolved in methylene chloride. To this polymer solution, an aqueous exendin-4 solution, obtained by dissolving 9 mg of exendin-4 (American Peptide) in 0.3 ml of a polyvinylalcohol 0.5% aqueous solution (w/v) , was added, followed by stirring with a homogenizer to give a primary emulsion. 10 ml of the primary emulsion was emulsified with 250 ml of a methylene chloride-saturated, aqueous polyvinylalcohol 1% solution (w/v) using a stirrer or a homogenizer to form microspheres. While the methylene chloride was allowed to slowly evaporate in air by stirring at room temperature for several hours under atmospheric pressure, the microspheres were solidified. Following centrifugation, the microspheres thus harvested were washed with distilled water, frozen at -700C and freeze-dried at room temperature under 50 mTorr for 3 days using an advantage freeze dryer (VirTis, NY, U. S.A) to afford W/O/W type microspheres which can release exendin-4 in a controlled manner.
COMPARATIVE EXAMPLE 1: Preparation of O/W Type Microsphere without Drug Dispersion Process (1)
To a solution of 300 mg of a polymer (RG502H Boehringer Ingelheim) in methylene chloride, methyl alcohol was added in an amount corresponding to one fourth of the volume of methylene chloride to give a polymer/methylene chloride/methyl alcohol solution. Exendin-4 was mixed at a ratio of 9:300 exendin-4 : polymer (w/w) with the polymer/methylene chloride/methyl alcohol to give a drug- dispersed solution without conducting a drug dispersion process . Microspheres were prepared from the drug-dispersed solution in the same manner as in Example 1.
COMPARATIVE EXAMPLE 2: Preparation of O/W Type Microsphere without Drug Dispersion Process (2) Microspheres were prepared in the same manner as in Example 1 with the exception that a solution of 9 mg of exendin-4 in 0.2 ml of methyl alcohol was added to a solution of 300 mg of a polymer (RG502H Boehringer Ingelheim) in 0.8 ml of methylene chloride to give a drug- dispersed solution without conducting the drug dispersion process .
EXPERIMENTAL EXAMPLE 1: Encapsulation Efficiency of Exendin-4 within Microspheres
30 mg of each of the microspheres with exendin-4 encapsulated therein, prepared in Examples 1 and 4-8, was sufficiently dissolved in 0.5 ml of DMSO in a polystyrene vessel and added with 1.5 ml of distilled water, followed by stirring for 12 hours or longer to extract exendin-4 as an water phase. The extracted exendin-4 was quantitatively analyzed to calculate the encapsulation efficiency, which is expressed as a percentage of the actual encapsulation amount to a theoretical encapsulation amount.
Calculations are summarized in Table 5, below.
TABLE 5
ExamplesEncapsulation Efficiencies (%]
1-1 85 1-2
Figure imgf000030_0001
As shown in Table 5, the encapsulation efficiencies of the microspheres prepared according to the present invention were calculated to be 80% or higher.
EXPERIMENTAL EXAMPLE 2: Measurement of Mean Particle Size of Microspheres
30 mg of the microspheres with exendin-4 encapsulated therein, prepared in Examples 1 and 4-8, was dispersed in 1 L of distilled water containing Tween 20 in an amount of 0.02 % (v/v) , followed by measuring mean particle sizes using a particle size analyzer. The measurements are shown in Table 6, below.
TABLE 6
Examples Mean Particle Sizes (μm)
1-1 22
Figure imgf000031_0001
As shown in Table 6, the microspheres prepared according to the present invention ranged, in mean particle size, from 8 to 65 μm, which is small enough to be used with small size injection needles.
EXPERIMENTAL EXAMPLE 3: In Vitro Release of Drug from Microspheres
In the following conditions, the microspheres prepared in Examples and Comparative Examples were evaluated for exendin-4 release in vitro.
30 mg of the microspheres placed in a polystyrene vessel was dispersed in 1.5 ml of PBS (phosphate buffered saline, pH 7.4) containing Tween 20 in an amount of 0.02 % (v/v) . During incubation at 370C, the dispersion was centrifuged according to the incubation time to precipitate the microspheres. The supernatant was analysed for exendin- 4 level to determine the amount of exendin-4 released from the microspheres. The precipitated microspheres were again dispersed in fresh PBS for subsequent analysis experiments. The release (%) of the exendin-4 from the microspheres is plotted against incubation time period in FIGS. 1 to 3.
FIGS. 1 and 2 show the amounts of exendin-4 released in vitro over time from the microspheres prepared through an exendin dispersion process according to the present invention in Examples 1 and 4-8 while FIG. 3 shows the amounts of exendin-4 released in vitro over time from the microspheres prepared in Comparative Examples 1 and 2 when the exendin dispersion process was excluded.
As is apparent from the plots of FIGS. 1 and 2, the microspheres prepared through the exendin dispersion process according to the present invention show neither initial burst release (exendin-4 released 3% during the first one day) , nor incomplete release, with the maintenance of zero-order release over 21 days. In contrast, as seen in FIG. 3, the microspheres prepared without an exendin dispersion process showed incomplete release, with only 83% (Comparative Example 1) and 49% (Comparative Example 2) released over 21 days.
Thus, the exendin 4 containing microspheres prepared in accordance with the present invention showed neither initial burst release nor incomplete release, but maintained zero-order release of exendin-4 over three weeks and therefore can be effectively used as agents for the sustained release of exendin-4.
EXPERIMENTAL EXAMPLE 4: Pharmacokinetic Evaluation of Microspheres
In the following conditions, the microspheres prepared in Examples and Comparative Examples were evaluated for exendin-4 release in vivo and pharmacokinetic properties .
A predetermined amount of the microspheres prepared in Examples 1 and 4-8 and Comparative Examples 1 and 2 (corresponding to 140 μg of exendin-4) was suspended in an aqueous solution containing 1.5% CMC, 0.5% Tween 20 and 0.9% NaCl, followed by the subcutaneous injection of the suspension at a dosage of 0.2 ml into each of five Sprague- Dawley rats. Thereafter, blood was sampled from the rats at predetermined time intervals and quantitatively analyzed for exendin-4 level using ELISA to determine the release of exendin-4 from the microspheres. FIG. 4 shows the in vivo release pattern of exendin-4 from the microspheres prepared in Example 1-1.
As is apparent from the release pattern of FIG. 4, the microspheres prepared according to the present invention show neither initial burst release nor incomplete release, but maintain zero-order release over 20 days in the experimental animals, as in the in vitro experiment.
Also, the pharmacokinetic parameters, maximum blood concentration (Cn^x) and AUC0-i4d, were calculated from the measurements of the exendin-4 release using a WinNonlin program, and are summarized in Table 7, below.
TABLE 7
Figure imgf000034_0001
As shown in Table 7, all of the microspheres of Examples 1-1 to 1-7, 4, 5-1 to 5-3, and 6 to 8 were calculated to be higher in Qn3x and AUC values than those of Comparative Examples 1 and 2, indicating that the microspheres prepared according to the present invention are agents for the excellent controlled release of exendin- 4.
On the basis of the data of FIG. 4 and Table 7, consequently, the present invention provides biodegradable polymeric microspheres which are not only excellent in encapsulation efficiency, but also can steadily release exendin-4 for 2 to 4 weeks to completion without a lag phase .
EXPERIMENTAL EXAMPLE 5: Assay for Stability of Exendin-4 in Microsphere
10 mg of the exendin-4 containing microspheres prepared in Example 1-1 was placed in a polystyrene vessel and sufficiently dissolved in 1 ml of DMSO. The resulting solution was diluted fivefold with ammonium bicarbonate, followed by conducting reverse phase high performance liquid chromatography (RP-HPLC) to observe peaks and the retention time of exendin-4. The results are shown in FIG.
5.
FIG. 5 is a chromatogram of exendin-4 obtained from the microspheres prepared in Example 1-1. As seen in this chromatogram, a single peak was observed and the retention time was the same as that of the control.

Claims

[CLAIMS]
[Claim l]
A biodegradable microsphere, capable of releasing a glucose-regulating peptide in a controlled manner, comprising a biodegradable polymer carrier with the glucose-regulating peptide encapsulated therein.
[Claim 2]
The biodegradable microsphere according to claim 1, wherein the glucose-regulating peptide is selected from a group consisting of synthetic exedin-3, exedin-4, and homologs and agonists thereof.
[Claim 3] The biodegradable microsphere according to claim 2, wherein the glucose-regulating peptide is exendin-4.
[Claim 4]
The biodegradable microsphere according to claim 1, wherein the biodegradable polymer is selected from a group consisting of poly-L-lactic acid, poly-D-lactic acid-co- glycolic acid, poly-L-lactic acid-co-glycolic acid and poly-D, L-lactic acid-co-glycolic acid.
[Claim 5] The biodegradable microsphere according to claim 4, wherein the biodegradable polymer is poly-D,L-lactic acid- co-glycolic acid.
[Claim 6]
A method for preparing a biodegradable polymer microsphere of claim 1, comprising: adding an organic solvent to a polymer to yield a polymer solution (step 1) ; dispersing a glucose-regulating peptide in the polymer solution of step 1 to yield a drug dispersion and mixing an alcohol or a mixture of an alcohol and an organic acid with the drug dispersion to yield a drug-dispersed solution (step 2) ; and producing a microsphere from the drug-dispersed solution of step 2 (step 3) .
[Claim 7]
The method according to claim 6, wherein the organic solvent is selected form a group consisting of methylene chloride, ethylacetate and chloroform.
[Claim 8]
The method according to claim 6, wherein the alcohol of step 2 is methyl alcohol.
[Claim 9]
The method according to claim 6, wherein the alcohol of step 2 is used at a ratio of 1:1-1:6 of the alcohol : the polymer solution.
[Claim 10]
The method according to claim 6, further comprising an additive to the drug-dispersed solution of step 2.
[Claim 11]
The method according to claim 10, wherein the additive is selected from a group consisting of polyethylene glycol, Labrafil, Labrasol, medium chain triglyceride, lecithin, N-methyl pyrrolidone, polyvinly pyrrolidone, hydropropyl methylcellulose, Tween, Span, Cremophor, Poloxamer, Brij, and Sunsoft 818H.
[Claim 12]
The method according to claim 10, wherein the additive is used in an amount of 0.01 to 15% (w/v) of the volume of the solution.
[Claim 13]
The method according to claim 6, wherein the step 3 is carried out by dispersing the drug-dispersed solution of step 2 in an aqueous solution containing an emulsifier, forming the microsphere using a stirrer or a homogenizer, and drying the microsphere in a freeze-drying or vacuum- drying manner.
[Claim 14]
The method according to claim 13, wherein the emulsifier is selected from a group consisting of Triton, Brij , polyvinyl pyrrolidone and polyvinyl alcohol.
[Claim 15]
The method according to claim 13, wherein the emulsifier is saturated in an organic solvent selected from a group consisting of methylene chloride, ethyl acetate and chloroform.
[Claim 16]
The method according to 6, wherein the step 3 is carried out by spraying the drug-dispersed solution of step 2 using a spray-drier.
[Claim 17]
The method according to claim 16, wherein the spray drier is set at a temperature of 115~125°C for an influx thereof and at a temperature of 80~90°C for an efflux thereof.
[Claim 18 ]
The method according to 16, wherein the spray-drying is followed by additional freeze-drying or vacuum-drying.
[Claim 19]
A method for preparing a biodegradable polymer microsphere, comprising: adding an organic solvent to a polymer to yield a polymer solution (step 1) ; emulsifying the polymer solution of step 1 with an aqueous glucose-regulating peptide solution containing a surfactant to yield a primary emulsion (step 2' ) ; and dispersing the primary emulsion of step 2' in an aqueous solution containing an emulsifier, stirring with a stirrer and a homogenizer to form the microsphere, and drying the microsphere through a freeze-drying or vacuum- drying process (step 3' ) .
[Claim 20] The method according to claim 19, wherein the organic solvent of step 1 is selected from a group consisting of methylene chloride, ethyl acetate and chloroform.
[Claim 21] The method according to claim 19, wherein the surfactant is selected from a group consisting of polyvinyl alcohol, polyethyl glycol, Labrafil, Labrasol, medium chain triglyceride, lecithin, N-methyl pyrrolidone, polyvinyl pyrrolidone, hydropropyl methylcellulose, Tween, Span, Cremophor, Poloxamer, Brij and Sunsoft 818H.
[Claim 22]
The method according to claim 19, wherein the emulsifier is selected from Triton, Brij, polyvinyl pyrrolidone, and polyvinyl alcohol.
[Claim 23]
The method according to claim 19, wherein the emulsifier is saturated in an organic solvent selected from a group consisting of methylene chloride, ethyl acetate and chloroform.
[Claim 24]
A biodegradable polymeric microsphere for controlled release of a glucose-regulating peptide, prepared using the method of one of claims 6 to 23.
PCT/KR2008/002216 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof WO2008130158A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX2009011275A MX2009011275A (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof.
AU2008241699A AU2008241699B2 (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof
US12/595,434 US8282990B2 (en) 2007-04-19 2008-04-18 Method for preparing a biodegradable polymer microsphere containing a glucose-regulating peptide
BRPI0810140-0A2A BRPI0810140A2 (en) 2007-04-19 2008-04-18 BIODEGRADABLE MICRO-ENTERPRISE COMPOSITION SUITABLE FOR THE CONTROLLED RELEASE OF A GLUCOSE CONTROL PEPTIDE AND FORMULATION OF THE SAME
JP2010503980A JP5302952B2 (en) 2007-04-19 2008-04-18 Biodegradable microsphere composition suitable for controlled release of glycoregulatory peptide and method for producing the same
NZ580700A NZ580700A (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof
CA2683698A CA2683698C (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof
CN2008800123273A CN101657190B (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof
EP08741460A EP2139458A4 (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof
IL201523A IL201523A0 (en) 2007-04-19 2009-10-14 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20070038467 2007-04-19
KR10-2007-0038467 2007-04-19

Publications (1)

Publication Number Publication Date
WO2008130158A1 true WO2008130158A1 (en) 2008-10-30

Family

ID=39875642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/002216 WO2008130158A1 (en) 2007-04-19 2008-04-18 A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof

Country Status (14)

Country Link
US (1) US8282990B2 (en)
EP (1) EP2139458A4 (en)
JP (1) JP5302952B2 (en)
KR (2) KR101034888B1 (en)
CN (1) CN101657190B (en)
AU (1) AU2008241699B2 (en)
BR (1) BRPI0810140A2 (en)
CA (1) CA2683698C (en)
CO (1) CO6241098A2 (en)
IL (1) IL201523A0 (en)
MX (1) MX2009011275A (en)
NZ (1) NZ580700A (en)
RU (1) RU2422134C1 (en)
WO (1) WO2008130158A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111617A2 (en) 2009-03-27 2010-09-30 Van Andel Research Institute Parathyroid hormone peptides and parathyroid hormone-related protein peptides and methods of use
WO2011032099A1 (en) 2009-09-11 2011-03-17 The Board Of Trustees Of The University Of Illinois Methods of treating diastolic dysfunction and related conditions
WO2011056572A1 (en) 2009-10-27 2011-05-12 The Board Of Trustees Of The University Of Illinois Methods of diagnosing diastolic dysfunction
WO2011075393A2 (en) 2009-12-18 2011-06-23 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2011094337A1 (en) 2010-01-27 2011-08-04 Indiana University Research And Technology Corporation Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
WO2011116026A2 (en) 2010-03-15 2011-09-22 The Board Of Trustees Of The University Of Illinois Inhibitors of beta integrin-g protein alpha subunit binding interactions
WO2011159895A2 (en) 2010-06-16 2011-12-22 Indiana University Research And Technology Corporation Single chain insulin agonists exhibiting high activity at the insulin receptor
WO2012088116A2 (en) 2010-12-22 2012-06-28 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2012087943A2 (en) 2010-12-20 2012-06-28 The Regents Of The University Of Michigan Inhibitors of the epidermal growth factor receptor-heat shock protein 90 binding interaction
WO2012177443A2 (en) 2011-06-22 2012-12-27 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2013074910A1 (en) 2011-11-17 2013-05-23 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
WO2013096386A1 (en) 2011-12-20 2013-06-27 Indiana University Research And Technology Corporation Ctp-based insulin analogs for treatment of diabetes
WO2013188740A1 (en) 2012-06-14 2013-12-19 Ambrx, Inc. Anti-psma antibodies conjugated to nuclear receptor ligand polypeptides
WO2013192130A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Analogs of glucagon exhibiting gip receptor activity
WO2013192129A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2014052451A2 (en) 2012-09-26 2014-04-03 Indiana University Research And Technology Corporation Insulin analog dimers
WO2014158900A1 (en) 2013-03-14 2014-10-02 Indiana University Research And Technology Corporation Insulin-incretin conjugates
AU2011297045B2 (en) * 2010-09-02 2014-12-18 Nippon Kayaku Kabushiki Kaisha Process for producing drug-block-copolymer composite and pharmaceutical product containing same
WO2016049190A1 (en) 2014-09-24 2016-03-31 Indiana University Research And Technology Corporation Incretin-insulin conjugates
WO2016123143A1 (en) 2015-01-26 2016-08-04 The University Of Chicago CAR T-CELLS RECOGNIZING CANCER-SPECIFIC IL 13Rα2
US9415123B2 (en) 2011-10-10 2016-08-16 The Regents Of The University Of Michigan Polymeric nanoparticles for ultrasound imaging and therapy
WO2017053346A1 (en) 2015-09-21 2017-03-30 Teva Pharmaceuticals International Gmbh Sustained release olanzapine formulations
WO2018172850A1 (en) 2017-03-20 2018-09-27 Teva Pharmaceuticals International Gmbh Sustained release olanzapine formulaitons
WO2019006235A1 (en) 2017-06-30 2019-01-03 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
US10189908B2 (en) 2014-02-05 2019-01-29 The University Of Chicago Chimeric antigen receptors recognizing cancer-specific TN glycopeptide variants
WO2019028316A1 (en) 2017-08-03 2019-02-07 Amgen Inc. Interleukin-21 muteins and methods of treatment
WO2019056023A2 (en) 2017-09-18 2019-03-21 The Regents Of The University Of California Claudin6 antibodies and methods of treating cancer
US10308719B2 (en) 2015-01-26 2019-06-04 The University Of Chicago IL13Rα2 binding agents and use thereof in cancer treatment
WO2019140196A1 (en) 2018-01-12 2019-07-18 Amgen Inc. Anti-pd-1 antibodies and methods of treatment
WO2020055913A1 (en) 2018-09-10 2020-03-19 Cardax, Inc. Methods of reducing- c-reactive protein and/or treating cardiovascular disease
US10640504B2 (en) 2017-09-08 2020-05-05 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
WO2020191342A1 (en) 2019-03-20 2020-09-24 The Regents Of The University Of California Claudin-6 antibodies and drug conjugates
WO2020191344A1 (en) 2019-03-20 2020-09-24 The Regents Of The University Of California Claudin-6 bispecific antibodies
WO2020210376A1 (en) 2019-04-09 2020-10-15 The Board Of Trustees Of The University Of Illinois Drug adsorbed highly porous activated carbon for enhanced drug delivery
WO2020223177A1 (en) 2019-04-29 2020-11-05 The Board Of Trustees Of The University Of Illinois Mek inhibitors for corneal scarring and neovascularization
WO2020222668A1 (en) 2019-04-30 2020-11-05 Instituto de Medicina Molecular João Lobo Antunes Rank pathway inhibitors in combination with cdk inhibitors
WO2020263793A1 (en) 2019-06-24 2020-12-30 Amgen Inc. Inhibition of sirp-gamma for cancer treatment
WO2021042048A1 (en) 2019-08-30 2021-03-04 Research Institute At Nationwide Children's Hospital Copper-atsm for treating neurodegenerative disorders associated with mitochondrial dysfunction
US11034962B2 (en) 2015-08-04 2021-06-15 The University Of Chicago Inhibitors of CACNA1A/ALPHA1A subunit internal ribosomal entry site (IRES) and methods of treating spinocerebellar ataxia type 6
WO2022015853A2 (en) 2020-07-15 2022-01-20 Amgen Inc. Tigit and cd112r blockade
WO2022153262A1 (en) 2021-01-18 2022-07-21 Anton Frenkel Pharmaceutical dosage form
WO2022159575A1 (en) 2021-01-20 2022-07-28 Bioentre Llc Ctla4-binding proteins and methods of treating cancer
WO2023281406A1 (en) 2021-07-06 2023-01-12 Mark Hasleton Treatment of serotonin reuptake inhibitor withdrawal syndrome
WO2023137161A1 (en) 2022-01-14 2023-07-20 Amgen Inc. Triple blockade of tigit, cd112r, and pd-l1
US11986474B1 (en) 2023-06-27 2024-05-21 Cytokinetics, Incorporated Methods for treating heart failure by administering cardiac sarcomere activators

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102370624A (en) * 2010-08-17 2012-03-14 东莞太力生物工程有限公司 Exendin-4 sustained release microsphere, its injection and preparation method
KR20120048811A (en) * 2010-11-08 2012-05-16 에스케이케미칼주식회사 Pharmaceutical composition containing microspheres loaded with anastrozole as an active ingredient
KR101785515B1 (en) * 2010-11-08 2017-10-16 에스케이케미칼주식회사 Pharmaceutical composition containing microspheres loaded with olanzapine as an active ingredient
KR101486132B1 (en) * 2013-03-20 2015-01-23 씨제이헬스케어 주식회사 A method for preparing microspheres by using a polymer having sol-gel transition property and microspheres prepared thereby
KR101706254B1 (en) * 2015-11-17 2017-02-13 주식회사 동일팜텍 Manufacturing method of polymeric microparticles for restoring or regenerating biological tissue
US10406336B2 (en) 2016-08-03 2019-09-10 Neil S. Davey Adjustable rate drug delivery implantable device
KR102047983B1 (en) * 2017-11-30 2019-11-22 주식회사 지투지바이오 Method for preparing biodegradable microsphere with improved safety and storage stability
US20200353127A1 (en) * 2018-01-10 2020-11-12 G2Gbio, Inc. Collagen peptide-containing polycaprolactone microsphere filler and preparation method therefor
KR102137786B1 (en) * 2018-07-19 2020-07-24 주식회사 아울바이오 Preparation method of microspheres for injectables
RU2696773C1 (en) * 2018-08-13 2019-08-06 Алексей Николаевич Осинцев Method for producing a medicinal preparation of peptide nature with controlled and sequential release
KR102583029B1 (en) * 2020-05-28 2023-09-26 주식회사 아울바이오 Controlled release microspheres containing glucagon-like peptide-1 receptor agonist and method for preparing the same
KR102469409B1 (en) * 2020-08-24 2022-11-23 주식회사 메피온 Method for manufacturing embolic material
CN114588115B (en) * 2022-04-20 2023-01-13 上海瑞凝生物科技有限公司 Preparation method of PLGA drug sustained-release microspheres

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
KR20030081179A (en) * 2002-04-13 2003-10-17 주식회사 펩트론 Preparation method of sustained release microspheres containing LHRH analogue
WO2005009356A2 (en) * 2003-07-15 2005-02-03 Pr Pharmaceuticals, Inc. Method for the preparation of controlled release formulations
WO2005102293A1 (en) * 2004-04-15 2005-11-03 Amylin Pharmaceuticals, Inc. Poly (lactide-co-glycolide)-based sustained release microcapsules comprising a polypeptide and a sugar
WO2005110425A1 (en) * 2004-04-15 2005-11-24 Alkermes, Inc. Polymer-based sustained release device
KR100805208B1 (en) * 2007-03-27 2008-02-21 주식회사 펩트론 Composition and microsphere for controlled-release of exendin and method of preparing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861627A (en) 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US5271961A (en) * 1989-11-06 1993-12-21 Alkermes Controlled Therapeutics, Inc. Method for producing protein microspheres
US6143211A (en) * 1995-07-21 2000-11-07 Brown University Foundation Process for preparing microparticles through phase inversion phenomena
US6433040B1 (en) * 1997-09-29 2002-08-13 Inhale Therapeutic Systems, Inc. Stabilized bioactive preparations and methods of use
SE512663C2 (en) * 1997-10-23 2000-04-17 Biogram Ab Active substance encapsulation process in a biodegradable polymer
KR100584634B1 (en) * 1998-12-15 2006-05-30 다케다 야쿠힌 고교 가부시키가이샤 Process for producing polymer
DE60120372T2 (en) * 2000-03-24 2007-07-05 Genentech Inc., San Francisco USE OF INSULIN FOR THE TREATMENT OF CORTICAL DISEASES
AU2001266392A1 (en) * 2000-06-27 2002-01-08 Mi Tech Company Limited The controlled release preparation of insulin and its method
JP2004516262A (en) * 2000-12-21 2004-06-03 ネクター セラピューティクス Induced phase transition method for the production of microparticles containing hydrophilic activators
WO2002074340A1 (en) 2001-03-16 2002-09-26 Takeda Chemical Industries, Ltd. Process for producing sustained release preparation
JP2003212758A (en) * 2001-03-16 2003-07-30 Takeda Chem Ind Ltd Method for producing sustained release preparation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389330A (en) * 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
KR20030081179A (en) * 2002-04-13 2003-10-17 주식회사 펩트론 Preparation method of sustained release microspheres containing LHRH analogue
WO2005009356A2 (en) * 2003-07-15 2005-02-03 Pr Pharmaceuticals, Inc. Method for the preparation of controlled release formulations
WO2005102293A1 (en) * 2004-04-15 2005-11-03 Amylin Pharmaceuticals, Inc. Poly (lactide-co-glycolide)-based sustained release microcapsules comprising a polypeptide and a sugar
WO2005110425A1 (en) * 2004-04-15 2005-11-24 Alkermes, Inc. Polymer-based sustained release device
KR100805208B1 (en) * 2007-03-27 2008-02-21 주식회사 펩트론 Composition and microsphere for controlled-release of exendin and method of preparing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2139458A4 *

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111617A2 (en) 2009-03-27 2010-09-30 Van Andel Research Institute Parathyroid hormone peptides and parathyroid hormone-related protein peptides and methods of use
WO2011032099A1 (en) 2009-09-11 2011-03-17 The Board Of Trustees Of The University Of Illinois Methods of treating diastolic dysfunction and related conditions
WO2011056572A1 (en) 2009-10-27 2011-05-12 The Board Of Trustees Of The University Of Illinois Methods of diagnosing diastolic dysfunction
WO2011075393A2 (en) 2009-12-18 2011-06-23 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
WO2011094337A1 (en) 2010-01-27 2011-08-04 Indiana University Research And Technology Corporation Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
WO2014043594A1 (en) 2010-03-15 2014-03-20 The Board Of Trustees Of The University Of Illinois Inhibitors of beta integrin-g protein alpha subunit binding interactions
WO2011116026A2 (en) 2010-03-15 2011-09-22 The Board Of Trustees Of The University Of Illinois Inhibitors of beta integrin-g protein alpha subunit binding interactions
WO2011159895A2 (en) 2010-06-16 2011-12-22 Indiana University Research And Technology Corporation Single chain insulin agonists exhibiting high activity at the insulin receptor
AU2011297045B2 (en) * 2010-09-02 2014-12-18 Nippon Kayaku Kabushiki Kaisha Process for producing drug-block-copolymer composite and pharmaceutical product containing same
US9675521B2 (en) 2010-09-02 2017-06-13 Nippon Kayaku Kabushiki Kaisha Process for producing drug-block copolymer composite and pharmaceutical preparation containing same
WO2012087943A2 (en) 2010-12-20 2012-06-28 The Regents Of The University Of Michigan Inhibitors of the epidermal growth factor receptor-heat shock protein 90 binding interaction
WO2012088116A2 (en) 2010-12-22 2012-06-28 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2012177443A2 (en) 2011-06-22 2012-12-27 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
US9415123B2 (en) 2011-10-10 2016-08-16 The Regents Of The University Of Michigan Polymeric nanoparticles for ultrasound imaging and therapy
WO2013074910A1 (en) 2011-11-17 2013-05-23 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
WO2013096386A1 (en) 2011-12-20 2013-06-27 Indiana University Research And Technology Corporation Ctp-based insulin analogs for treatment of diabetes
WO2013188740A1 (en) 2012-06-14 2013-12-19 Ambrx, Inc. Anti-psma antibodies conjugated to nuclear receptor ligand polypeptides
WO2013192129A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Glucagon analogs exhibiting gip receptor activity
WO2013192130A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Analogs of glucagon exhibiting gip receptor activity
EP3395358A1 (en) 2012-09-26 2018-10-31 Indiana University Research and Technology Corporation Insulin analog dimers
WO2014052451A2 (en) 2012-09-26 2014-04-03 Indiana University Research And Technology Corporation Insulin analog dimers
WO2014158900A1 (en) 2013-03-14 2014-10-02 Indiana University Research And Technology Corporation Insulin-incretin conjugates
US10189908B2 (en) 2014-02-05 2019-01-29 The University Of Chicago Chimeric antigen receptors recognizing cancer-specific TN glycopeptide variants
WO2016049190A1 (en) 2014-09-24 2016-03-31 Indiana University Research And Technology Corporation Incretin-insulin conjugates
WO2016123143A1 (en) 2015-01-26 2016-08-04 The University Of Chicago CAR T-CELLS RECOGNIZING CANCER-SPECIFIC IL 13Rα2
US10308719B2 (en) 2015-01-26 2019-06-04 The University Of Chicago IL13Rα2 binding agents and use thereof in cancer treatment
US10851169B2 (en) 2015-01-26 2020-12-01 The University Of Chicago Conjugates of IL13Rα2 binding agents and use thereof in cancer treatment
US11673935B2 (en) 2015-01-26 2023-06-13 The University Of Chicago Car T-cells recognizing cancer-specific IL 13Ra2
US11827712B2 (en) 2015-01-26 2023-11-28 The University Of Chicago IL13Rα2 binding agents and use thereof
US11034962B2 (en) 2015-08-04 2021-06-15 The University Of Chicago Inhibitors of CACNA1A/ALPHA1A subunit internal ribosomal entry site (IRES) and methods of treating spinocerebellar ataxia type 6
EP4331570A1 (en) 2015-09-21 2024-03-06 Teva Pharmaceuticals International GmbH Sustained release olanzapine formulations
WO2017053346A1 (en) 2015-09-21 2017-03-30 Teva Pharmaceuticals International Gmbh Sustained release olanzapine formulations
WO2018172850A1 (en) 2017-03-20 2018-09-27 Teva Pharmaceuticals International Gmbh Sustained release olanzapine formulaitons
US10646443B2 (en) 2017-03-20 2020-05-12 Teva Pharmaceuticals International Gmbh Sustained release olanzapine formulations
US11813359B2 (en) 2017-03-20 2023-11-14 Teva Pharmaceuticals International Gmbh Sustained release olanzapine formulations
US11931358B2 (en) 2017-06-30 2024-03-19 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
US11576910B2 (en) 2017-06-30 2023-02-14 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
WO2019006235A1 (en) 2017-06-30 2019-01-03 Amgen Inc. Methods of treating heart failure with cardiac sarcomere activators
WO2019028316A1 (en) 2017-08-03 2019-02-07 Amgen Inc. Interleukin-21 muteins and methods of treatment
US11541103B2 (en) 2017-08-03 2023-01-03 Amgen Inc. Interleukin-21 mutein/ anti-PD-1 antibody conjugates
EP4029877A1 (en) 2017-08-03 2022-07-20 Amgen, Inc Interleukin-21 muteins and methods of treatment
US10640504B2 (en) 2017-09-08 2020-05-05 Amgen Inc. Inhibitors of KRAS G12C and methods of using the same
WO2019056023A2 (en) 2017-09-18 2019-03-21 The Regents Of The University Of California Claudin6 antibodies and methods of treating cancer
EP4435009A2 (en) 2017-09-18 2024-09-25 The Regents of the University of California Claudin6 antibodies and methods of treating cancer
WO2019140196A1 (en) 2018-01-12 2019-07-18 Amgen Inc. Anti-pd-1 antibodies and methods of treatment
US11518808B2 (en) 2018-01-12 2022-12-06 Amgen Inc. Anti-PD-1 antibodies and methods of treatment
WO2020055913A1 (en) 2018-09-10 2020-03-19 Cardax, Inc. Methods of reducing- c-reactive protein and/or treating cardiovascular disease
WO2020191342A1 (en) 2019-03-20 2020-09-24 The Regents Of The University Of California Claudin-6 antibodies and drug conjugates
WO2020191344A1 (en) 2019-03-20 2020-09-24 The Regents Of The University Of California Claudin-6 bispecific antibodies
WO2020210376A1 (en) 2019-04-09 2020-10-15 The Board Of Trustees Of The University Of Illinois Drug adsorbed highly porous activated carbon for enhanced drug delivery
WO2020223177A1 (en) 2019-04-29 2020-11-05 The Board Of Trustees Of The University Of Illinois Mek inhibitors for corneal scarring and neovascularization
WO2020222668A1 (en) 2019-04-30 2020-11-05 Instituto de Medicina Molecular João Lobo Antunes Rank pathway inhibitors in combination with cdk inhibitors
WO2020263793A1 (en) 2019-06-24 2020-12-30 Amgen Inc. Inhibition of sirp-gamma for cancer treatment
WO2021042048A1 (en) 2019-08-30 2021-03-04 Research Institute At Nationwide Children's Hospital Copper-atsm for treating neurodegenerative disorders associated with mitochondrial dysfunction
US11919953B2 (en) 2020-07-15 2024-03-05 Amgen Inc. TIGIT and CD112R blockade
WO2022015853A2 (en) 2020-07-15 2022-01-20 Amgen Inc. Tigit and cd112r blockade
WO2022153262A1 (en) 2021-01-18 2022-07-21 Anton Frenkel Pharmaceutical dosage form
WO2022159575A1 (en) 2021-01-20 2022-07-28 Bioentre Llc Ctla4-binding proteins and methods of treating cancer
WO2023281406A1 (en) 2021-07-06 2023-01-12 Mark Hasleton Treatment of serotonin reuptake inhibitor withdrawal syndrome
WO2023137161A1 (en) 2022-01-14 2023-07-20 Amgen Inc. Triple blockade of tigit, cd112r, and pd-l1
US11986474B1 (en) 2023-06-27 2024-05-21 Cytokinetics, Incorporated Methods for treating heart failure by administering cardiac sarcomere activators

Also Published As

Publication number Publication date
KR20110044192A (en) 2011-04-28
KR20080094616A (en) 2008-10-23
AU2008241699B2 (en) 2011-02-03
BRPI0810140A2 (en) 2014-10-29
CN101657190B (en) 2013-09-11
US20100129459A1 (en) 2010-05-27
CO6241098A2 (en) 2011-01-20
CA2683698A1 (en) 2008-10-30
CN101657190A (en) 2010-02-24
JP2010524924A (en) 2010-07-22
AU2008241699A1 (en) 2008-10-30
RU2009142608A (en) 2011-05-27
MX2009011275A (en) 2009-11-02
IL201523A0 (en) 2010-05-31
US8282990B2 (en) 2012-10-09
JP5302952B2 (en) 2013-10-02
EP2139458A4 (en) 2013-01-23
RU2422134C1 (en) 2011-06-27
EP2139458A1 (en) 2010-01-06
NZ580700A (en) 2012-01-12
CA2683698C (en) 2013-09-10
KR101034888B1 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
CA2683698C (en) A biodegradable microsphere composition suitable for the controlled release of glucose controlling peptide and formulation thereof
US9877922B2 (en) Process of preparing microspheres for sustained release having improved dispersibility and syringeability
JP5135428B2 (en) Exendin-containing sustained-release pharmaceutical composition, exendin-containing sustained-release microsphere, and method for producing the same
US8871269B2 (en) Method for the preparation of controlled release formulations
EP3434263B1 (en) Method for preparing sustained release microparticle
US7691412B2 (en) Prolonged release biodegradable microspheres and method for preparing same
WO2013189282A1 (en) Polypeptide-medicine-slow-releasing microsphere preparation and preparation method therefor
US8431161B2 (en) Microparticle and pharmaceutical composition thereof
JP2011144208A (en) Controlled release composition
EP3434262B1 (en) Method for preparing sustained-release microgranules
JP2015502939A (en) Microspheres for controlled or sustained release of medication
KR20110076783A (en) A polymer for protein, polypeptide or peptide drug delivery and a method for preparing the same, and a composition for sustained release of protein, polypeptide or peptide drug and a method for preparing the same
WO2017186076A1 (en) Solid dispersion, preparation method for same, and applications thereof
WO2006093390A1 (en) Nonporous microspheres including drug and manufacturing method thereof
US20220133630A1 (en) Preparation method of sustained-release microparticles
US20210154147A1 (en) Preparation method of sustained-release microparticles
KR100566573B1 (en) Preparation method of sustained release microspheres containing LHRH analogue
KR20100042768A (en) A biodegradable microsphere and production method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880012327.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08741460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12595434

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2683698

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 201523

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2010503980

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2009/011275

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 580700

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2008241699

Country of ref document: AU

Ref document number: 2008741460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2145/MUMNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009142608

Country of ref document: RU

Ref document number: 09131818

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2008241699

Country of ref document: AU

Date of ref document: 20080418

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0810140

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091015