WO2008126940A1 - Novel t cell - Google Patents

Novel t cell Download PDF

Info

Publication number
WO2008126940A1
WO2008126940A1 PCT/JP2008/057460 JP2008057460W WO2008126940A1 WO 2008126940 A1 WO2008126940 A1 WO 2008126940A1 JP 2008057460 W JP2008057460 W JP 2008057460W WO 2008126940 A1 WO2008126940 A1 WO 2008126940A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive
cells
lag
cell
negative
Prior art date
Application number
PCT/JP2008/057460
Other languages
French (fr)
Japanese (ja)
Inventor
Keishi Fujio
Tomohisa Okamura
Kazuhiko Yamamoto
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to JP2009509387A priority Critical patent/JPWO2008126940A1/en
Publication of WO2008126940A1 publication Critical patent/WO2008126940A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4621Cellular immunotherapy characterized by the effect or the function of the cells immunosuppressive or immunotolerising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/46433Antigens related to auto-immune diseases; Preparations to induce self-tolerance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/24Immunology or allergic disorders

Definitions

  • the present invention relates to providing a novel ⁇ cell population derived from a mammal. More specifically, the present invention relates to providing a novel regulatory rod cell population derived from mammals.
  • Organism's immune system is inherently tolerant to its constituent proteins, but under certain conditions an immune response to the self-protein may occur.
  • autoimmune diseases occur.
  • collagen diseases, rheumatoid arthritis, etc. are known as autoimmune diseases, but it is becoming clear that autoimmune responses are also involved in arteriosclerosis, cancer, and neurodegenerative diseases.
  • Autoimmune response is thought to be involved in the pathology of various diseases.
  • non-antigen-specific treatment methods such as administration of corticosteroids and administration of immunosuppressants are used.
  • these currently applied therapies also cause severe problems such as opportunistic infections because they cause systemic high immune suppression.
  • Such a situation also occurs when an immunosuppressant is administered after organ transplantation. Therefore, in the field of treatment of autoimmune diseases and organ transplantation, there is a strong demand for immunosuppressive treatments specific to autoantigens that cause autoimmune diseases and immunosuppressive treatments specific to transplanted antigens. Yes.
  • regulatory atory cells are important in the formation of autoimmune tolerance specific to self-antigens.
  • Mammalian T cells are a type of lymphocyte that refers to the progenitor cells produced in the bone marrow that have been differentiated and matured through selection in the thymus. It is known that 70-80% of lymphocytes in peripheral blood are T cells. This T cell is characterized by expressing CD4 or CD8 as a cell surface marker molecule. T4 cells that express CD4 function as helper T cells that induce the functional expression of other T cells, induce the differentiation and maturation of B cells, and induce antibody production by producing lymphoin, etc. . On the other hand, CD8 positive T The cell functions as a CTL (killer T cell) that destroys virus-infected cells.
  • CTL killer T cell
  • CD4 positive regulatory T cells have a function of suppressing the activity of other T cells.
  • Regulatory T cells known so far include regulatory T cells (Foxp3 Treg cells) that express CD4 and CD25 molecules on the cell surface and express the transcription factor Foxp3 (Non-patent Document 1). It was known to be the most common.
  • regulatory T cells that produce IL-10 T R 1 cells
  • regulatory T cells that produce TGF3 T H 3 cells
  • T R 1 cells regulatory T cells that produce TGF3
  • T H 3 cells regulatory T cells that produce TGF3
  • the expression profile of the cell surface antigen of these cells is unknown, and its substance has not been clarified.
  • the Egr-2 (Early Growth Response Gene-2) gene is 2862 bp (CDS), also called Krox20, NGF1-B, Zfp-25, Zfp-6, NGFl-) 3 (nerve growth factor inducible gene 1- / 3) Is a molecule that is cloned from mouse and human as a Zinc-finger type transcription factor (Non-patent document 5; Non-patent document 6).
  • This gene has been reported to be a transcription factor associated with T cell anagenesis (refractory) (Non-patent Document 7). However, none of the known regulatory T cells mentioned above was associated with this.
  • Non-Patent Document 1 Sakaguchi S., et al., J Immunol 1995; 155: 1151-1164
  • Non-Patent Document 2 Groux H. A, et al., Nature 1997; 389: 737-742
  • Non-Patent Document 3 Chen Y., et al., Science 1994; 265: 1237-1240
  • Non-Patent Document 4 Chen Z. et al., Pro atl. Acad. Sci. USA, 2005, 102, 14735-14740
  • Non-Patent Document 5 Chavrier P, et al., Mol. Cell. Biol. 8 1988, pp. 1319-1326
  • Non-Patent Document 6 Joseph LJ, et al., Proc. Nat l. Acad. Sci. USA 85 1988, 7164-716
  • Non-Patent Document 7 Saf ford M. et al., Nat. Immunol., 2005, 6, 472-480 Disclosure of the Invention
  • CD4 positive CD25 positive regulatory T cells which are conventionally known regulatory T cells, cannot sufficiently control autoimmune diseases. Therefore, CD4 can sufficiently control autoimmune diseases.
  • the objective is to search for regulatory T cells other than positive CD25 positive regulatory T cells.
  • the inventors of the present invention examined the relationship between the Egr-2 gene reported to be a transcription factor related to T cell anergy (refractory) and regulatory T cells, and thus developed novel T cells. It was shown that the above problems can be solved by isolating and clarifying the action.
  • Novel T cells with negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) properties are shown to have a function as regulatory T cells.
  • the function as a regulatory T cell is to suppress the activation reaction of other T cells, and its characteristics include anaphylaxis (refractory).
  • These cells are derived from any mammal (eg, human, primate, Inu, cat, etc.), and may be isolated from any mammal.
  • the present invention also provides from a mammalian lymphocyte population or T cell population that: (i) CD4 is positive; Collecting a certain cell (CD4 +), (ii) collecting a CD25 negative cell (CD25-), (iii) a CD45RB negative (low positive) cell (CD45RB- (low)) or CD45R0 By collecting the cells (CD45R0 +) positive for, and (iv) collecting the cells (LAG3 +) positive for LAG-3, by performing steps (i) to (iv) in any order.
  • a method for isolating mammalian T cells having the cell surface antigen characteristics of CD45R0 positive (CD45R0 +) and LAG-3 positive (LAG-3 +) can be provided.
  • the mammal may be any mammal (eg, human, primate, Inu, cat, etc.).
  • a mammalian lymphocyte population or T cell population may be collected from peripheral blood and then the steps (i) to (iv) may be performed as they are, or a mammalian lymphocyte population or T cell population. May be collected from peripheral blood and the lymphocyte population or T cell population may be expanded before the steps (i) to (iv) are performed.
  • the T cell population isolated by performing the steps (i) to (iv) may be used as it is, or the steps (i) to (iv) are performed.
  • a more isolated T cell population of the present invention may be used after being expanded.
  • a pharmaceutical composition comprising mammalian T cells having negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen characteristics. It can. By administering this pharmaceutical composition, it is possible to induce functional suppression of pathogenic T cells that cause inflammation. Therefore, the pharmaceutical composition of the present invention is capable of eliminating an antigen by an antigen-antibody reaction. It can be used to treat various diseases caused.
  • various diseases caused by an immune reaction against an autoantigen or due to an antigen being eliminated by an antigen-antibody reaction include, for example, autoimmune diseases (eg, rheumatoid arthritis, collagen disease, inflammatory bowel disease) , Multiple sclerosis, type 1 diabetes, etc.) or transplant organ rejection.
  • CD4 positive CD4 +
  • CD25 CD25 negative
  • CD45RB negative low positive
  • LAG-3 positive LAG3 +
  • CD4 positive CD4 +
  • CD25 Screen for compounds to increase the number of mammalian T cells with negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen properties
  • a method is also provided. The method for screening the target compound having the above-mentioned action is:
  • CD4 positive CD4 +
  • CD25 negative CD25-
  • CD45RB negative low positive
  • LAG-3 + LAG-3 positive
  • CD4 positive CD4 +
  • CD25 negative CD25-
  • CD45R0 CD45R0 +
  • LAG-3 positive LAG-3 +
  • FIG. 1 shows a schematic diagram of a retroviral vector pMX-Egr2-IRES-GFP and a control vector mock pMX-IRES-GFP vector used in the present invention.
  • FIG. 2 shows mouse CD4-positive splenocytes infected with Mock (pMX-IRES-GFP) or Egr2 (p X-Egr2-IRES-GFP) using a flow cytometer and GFP expression as an indicator. The process of separating and collecting in 4 groups (negative, low, mid, high) is shown.
  • Fig. 3 shows the results of real-time PCR analysis of cDNA synthesis from each of the 4 groups of cells collected and collected in Fig. 2, and the expression at the Egr2 mRNA and LAG-3 mRNA levels. Show.
  • Fig. 4 shows that co-transfer of OVA-specific T cell receptor (D01 1.10) significantly enhances its suppressive effect and enables antigen-specific immunosuppression. It is.
  • Fig. 5 shows the spleen mononuclear cells of mice co-transfected with Egr2 and D01 1.10 by flow cytometry. After lymphocyte and CD4 positive cell gate, D01 1.10 T cell receptor This is the process of developing each cell population separately using the KJ-1 antibody and GFP.
  • Figure 6 shows that Egr2 (pMX-Egr2-IRES-GFP) and DO 1 1.10 (pMX-DOTAE, pMX-DOTBE) co-transfected cells were treated with pMX-Egr2-IRES-GFP. Overexpression,
  • Fig. 7 shows that among mouse spleen mononuclear cells, LAG-3 surface antigen is CD4 positive among CD25 negative cells (Fig. 7a) and CD45RB negative to CD45RB weak positive cells (Fig. 7b). It is a figure which shows that expression is enhanced.
  • FIG. 8 is a graph showing that expression of Egr2 mRNA, IL-10 mRNA, and LAG-3 mRNA is enhanced in mouse LAG-3 expression cells that are CD45RB negative to CD45RB weak positive.
  • FIG. 9 shows cells gated in CD4 positive CD45RB ex low cell group, LAG-3,
  • FIG. 4 shows the results of separating and collecting three groups of cell populations, CD45RB ex low and CD4 + CD25 + CD45RB ex low.
  • FIG. 10 shows that Egr2 expression was strongest in CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg), and the same expression tendency was not observed in Foxp3 expression.
  • Fig. 1 1 shows cells gated in CD4 positive CD25 negative cells group developed with LAG-3 and CD45RB, and each cell group was separated and collected by flow cytometry as shown in the figure. Show process It is a figure.
  • FIG. 12 shows that Egr2 expression is strongest in CD4 + CD25-LAG3 + CD45RB ex low, and Egr2-Treg different from the known Foxp3-Treg exists.
  • FIG. 13 shows that CD4 + CD25-LAG3 + CD45RBex low (Egr2-Treg) is still present after type II collagen immunization, and further enhancement of I-10 expression occurs in “Egr2-Treg” after immunization
  • FIG. 13 shows that CD4 + CD25-LAG3 + CD45RBex low (Egr2-Treg) is still present after type II collagen immunization, and further enhancement of I-10 expression occurs in “Egr2-Treg” after immunization
  • FIG. 14 shows a process in which CD4 + CD25- CD45RB ex low cell population (Thyl.2 +) is divided into high, low and nega '3 groups by LAG-3 expression as suppressor cells.
  • FIG. 15 shows that Egr-2Treg cells suppress cell division of a cytotoxic T cell subset (CD45RBhi cells), and the suppressive ability depends on LAG-3 expression.
  • Fig.16 shows the suppression of enteritis caused by CD4 + CD25- CD45RBM cells administration in CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) cells in RAG ⁇ /-mice. It is a figure which shows what can be done.
  • Fig. 17 shows CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) in the histology of the large intestine. ) It is a figure showing that the improvement was observed by co-transfer of cells.
  • Figure 18 shows that CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells are also present in the splenocytes of Scurfy mice lacking the functional Foxp3 gene as analyzed by flow cytometry.
  • FIG. 1 shows that CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells are also present in the splenocytes of Scurfy mice lacking the functional Foxp3 gene as analyzed by flow cytometry.
  • FIG. 19 is a view showing that Egr2-Treg cells of Scurfy mice have an in vitro suppressive ability, and that the suppressive ability is attenuated by LAG-3 neutralizing antibody.
  • Figure 20 shows the results of intraperitoneal administration of C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1X10 5 cells to Rag ⁇ /-mice. It is a figure which shows suppressing the enteritis in.
  • FIG. 21 is a schematic diagram showing a technique for producing a shRNA-Egr2 bone marrow chimeric mouse in which Egr2 gene expression is suppressed.
  • FIG. 22 is a diagram showing that shRNA-Egr2 bone marrow chimeric mice develop marked thickening of the intestinal tract, which is characteristic of the onset of enteritis.
  • Fig. 23 shows that CD4 + CD25- LAG3 + CD45RB ex l ow (Egr2-Treg) cells were hardly observed in At MT mice lacking B cells, and Egr2- Treg cells were introduced by adoptive introduction of B cells. It is a figure which shows that this cell population is induced
  • Figure 24 shows flow cytometry of LAG-3 expression and CD45RB expression in thymus and spleen of OT-11 TCR transgenic mice with or without RIP-mOVA transgene.
  • Figure 25 shows a normal TEa offspring (left) gated with CD4 + CD25 "T cells
  • FIG. 4 shows flow cytometry of LAG-3 expression and CD45RB expression in spleen and Peyer's patch (PP) of 0T-I I (middle) and TEa TCR transgenic mice (right).
  • FIG. 26 shows the number of Egr-2 positive cells in the follicle.
  • FIG. 4 shows the results of immunohistochemical examination of cells expressing Egr-2 molecules in spleen tissue sections derived from TEa mice, 0T-I I mice and 7BL / 6 mice.
  • FIG. 27 shows that spontaneous development of colitis is inhibited in TEa TCR transgenic mice by adoptive transfer of CD4 + CD25 "LAG3 + T cells.
  • Fig. 28 shows that LAG-3 surface antigen is enhanced in CD25 negative cells (Fig. 28a) and CD45R0 positive cells (Fig. 28b) among human tonsil cells.
  • FIG. 28a shows that LAG-3 surface antigen is enhanced in CD25 negative cells (Fig. 28a) and CD45R0 positive cells (Fig. 28b) among human tonsil cells.
  • FIG. 29 shows the expression of Egr2 mRNA, CD45R0 positive human LAG-3 expressing cells
  • the inventors of the present invention first examined whether the Egr-2 gene, a gene reported to be a transcription factor associated with T cell anergy (refractory), is associated with the activity of regulatory T cells. Went. Specifically, the Egr-2 gene was introduced into CD4 + T cells, and the traits were introduced When T cells were transferred to mice, it was revealed that delayed hypersensitivity reaction to foreign antigens was remarkably suppressed. This indicates that the Egr-2 gene is associated with the activity of regulatory T cells. It was also shown that co-introduction of antigen-specific T cell receptor with Egr-2 gene enhances its suppressive ability and induces antigen-specific suppression.
  • T cells having such cell surface antigen characteristics have never been known, the present inventors have developed a new T cell population having the characteristics of CD positive CD25 negative CD45RB negative LAG-3 positive. A detailed analysis was performed, considering that it is a regulatory T cell that plays an important role in the immune tolerance induction mechanism of T cells and can sufficiently control autoimmune diseases.
  • IL-10 which is known as a cytokine with strong anti-inflammatory action, is highly expressed, and as a characteristic of the cell itself, in vitro, CD4 positive CD45RB highly expressed naive T cell division is observed.
  • enteritis model in which naive T cells with high expression of CD4 + CD45RB are transferred to RAG1-mouse mice, the onset of enteritis is induced by transfer of CD4 + CD25 negative CD45RB negative LAG-3 + T cells. It became clear to suppress.
  • T cells with cell surface antigen characteristics of CD positive CD4 +
  • CD25 negative CD25-
  • CD45RB negative low positive
  • LAG3 + LAG3 positive
  • CD4 positive CD25 negative CD45R0 positive LAG-3 positive T cells The mRNA expression level of 2 was found to be extremely high.
  • the CD45RB negative (low positive) memory T cell population in mice is the CD45R0 fluorescence intensity in humans.
  • the CD4 positive CD25 negative CD45R0 positive LAG-3 positive T cells like mouse CD4 positive CD25 negative CD45RB negative LAG-3 positive T cells, also show high IL-10 expression. It was done.
  • the inventors of the present invention named these cells “Egr-2 Treg cells” because these cells have the feature that the expression level of Egr-2 is extremely high.
  • the “Egr-2 Treg cells” obtained in the present invention were compared with the regulatory T cells “Foxp3 Treg cells” (CD4-positive CD25-positive Foxp3-positive T cells) known so far.
  • the regulatory T cells “Foxp3 Treg cells” CD4-positive CD25-positive Foxp3-positive T cells
  • high expression of the Foxp3 gene was not observed in the “Egr-2 Treg cell” of the present invention
  • the high Egr-2 gene was found in the conventionally known regulatory T cell “Foxp3 Treg cell”. It became clear that it showed a contrasting characteristic that no expression was seen. From these results, it was considered that the “Egr-2 Treg cells” of the present invention and the “Foxp3 Treg cells” of the prior art are independent T cell populations different from each other.
  • a mouse called scur fy which lacks the functional Foxp3 gene, is known to cause autoimmune-like disease with inflammatory cell infiltration into various organs and die within 4 weeks of birth.
  • T cells in the spleen of this scur fy mouse were examined, the same T4 subcells with the characteristics of CD4 positive CD25 negative CD45RB negative LAG-3 positive as the "Egr-2 Treg cells" of the present invention proliferated remarkably. It was shown that T cell subsets with this cell surface antigen profile were collected and examined for function in vitro.
  • T cell subsets with CD4-positive CD25-negative CD45RB-negative LAG-3 positive characteristics in scur fy mice are ⁇ Egr-2 "Treg cells”.
  • Egr-2 Treg cells are prominently present in scur fy mice even though scur fy mice lack the Foxp3 gene, “Egr-2 Treg cells” are It was confirmed that it has independent characteristics.
  • Egr-2 gene knockout mice are known to have the characteristics of embryonic lethality that develops symptoms such as impaired formation of the hindbrain and myelination of peripheral nerves and die during fetal period ( Genes Dev. 7 1993, pp. 207-2084). Therefore, the present inventors produced a bone marrow chimeric mouse in which a sh-RNA sequence that suppresses the expression of the Egr-2 gene was expressed in bone marrow cells using a retrovirus vector.
  • the mouse died approximately 4 weeks after bone marrow transplantation, and histological examination revealed that it developed enteritis.
  • the Egr-2 gene deficiency reduces the number of CD4-positive, CD25-negative, CD45RB-negative, LAG-3-positive cells that should be present in the body, resulting in the mechanism of regulatory T cells such as enteritis. It was shown to develop clinical symptoms associated with reduced performance.
  • CD4 positive CD25 negative CD45RB negative LAG-3 positive T cells or CD positive CD25 negative CD45R0 positive LAG-3 positive T cells are active in vitro or in vivo While the Tgr cell body and its transcription factor Egr-2 gene plays an important role in its differentiation, this regulatory T cell is shown to be independent of the functional control by the Foxp3 gene. It was done.
  • the present invention provides a novel regulatory T cell as a CD positive CD25 negative CD45RB negative LAG-3 positive T cell or CD4 positive CD25 negative CD45R0 positive LAG-3 positive T cell, "Egr-2 Treg cells” are provided. As described above, these cells are a cell population belonging to a T cell subset different from “Foxp3 Treg cells” which are regulatory T cells known so far.
  • Egr-2 refers to the protein having the amino acid sequence represented by GenBank Accession No. P 1 1 161 and the nucleotide sequence encoding it for human “Egr-2”.
  • GenBank Accession No. P 1 1 161 the protein having the amino acid sequence indicated by GenBank accession number NP_034248 and the nucleotide sequence encoding the protein, and for rat “Egr-2”, the amino acid indicated by GenBank accession number NP—446085.
  • a protein having a sequence and a nucleotide sequence encoding the protein are respectively referred to.
  • mRNA expressed from the Egr-2 gene or cDNA prepared therefrom is used as a saddle, and in the case of human gcaccagc tg tctgacaaca tctac (SEQ ID NO: 1) as a forward primer and agcaaagctg ctgggatatgg (SEQ ID NO: 2) as a reverse primer, for mice agccgt t tec ctgtcctctg (SEQ ID NO: 3) as a forward primer and gtccctcacc acctccactt (SEQ ID NO: 4) can be detected as a reverse primer by amplification according to a general PCR protocol.
  • LAG-3 for human “LAG-3”, the protein having the amino acid sequence represented by GenBank accession number P_002277 and the nucleotide sequence encoding it are as follows:
  • mouse “LAG-3” refer to the protein having the amino acid sequence indicated by GenBank accession number P_032505 and the nucleotide sequence encoding it.
  • GenBank accession number NP. refers to the protein having the amino acid sequence represented by 997678 and the nucleotide sequence encoding it, respectively.
  • mRNA expressed from the LAG-3 gene or cDNA prepared therefrom is used as a saddle type, and in humans atctgcagga acagcagctcaa (SEQ ID NO: 5) is forwarded.
  • Reverse primer as a primer and agggatccag gtgacccaaag (SEQ ID NO: 6) as reverse primer, for mice t tgct tctgg gactgctttg (SEQ ID NO: 7) as forward primer and gccactgtct ggttgatgtt g (SEQ ID NO: 8) As a primer, it can be detected by amplification according to a general PCR protocol.
  • the term “Foxp3” in the present invention refers to the protein having the amino acid sequence represented by GenBank accession number NP-054728 and the nucleotide sequence encoding the same for human “Foxp3”, and for mouse “Foxp3” It refers to the protein having the amino acid sequence represented by GenBank accession number NP-473380 and the nucleotide sequence encoding it.
  • mRNA expressed from the Foxp3 gene or cDNA prepared therefrom is used as a saddle type, and in the case of a mouse, cagctgccta cagtgccctag (SEQ ID NO: 9) is used as a forward primer and catttgccag cagtgggtag (SEQ ID NO: 10) as a reverse primer and a general PCR protocol Can be detected by amplification according to
  • Egr-2 Treg cells are CD4, CD25, CD45RB or CD45R0, and LAG-3 cell surface antigens, CD4 positive, CD25 negative, CD45RB negative ( (Low positive) or CD45R0 positive, and LAG-3 positive as an indicator, isolated from a leukocyte population or T cell population collected from a living body as a single cell population it can.
  • the “Egr-2 Treg cell” of the present invention can be isolated by sorting with CD5, CD25, CD45RB or CD45R0 and LAG-3 in a cell saw. Sorting based on the expression of CD4, CD25, CD45RB or CD45R0, and LAG-3 may be done in any order.
  • the lymphocyte population or T cell population obtained from the peripheral blood of the living body can be used as the T cell population that is the source of ⁇ 81 "-268 cells".
  • peripheral blood mononuclear cells are separated by extracorporeal circulation (pheresis) using the blood component separation device of peripheral blood, and four types of CD4, CD25, CD45RB or CD45R0, and LAG-3
  • the Egr-2 Treg cells can be isolated and collected using Celso overnight.
  • “Egr-2 Treg cells” can be separated and collected using a magnetic cell separation device such as Isolex or CliniMACS instead of Cell Soryu.
  • the above-mentioned lymphocyte population or T cell population may be subjected to cell sorter treatment for the above-mentioned CD4, CD25, CD45RB or CD45RO, and LAG-3 as it is to isolate “Egr-2 Treg cells”. If the number of cells is insufficient, the above-mentioned lymphocyte population or T-cell population is expanded to a desired level, and then subjected to cell sorter treatment for the above-mentioned CD4, CD25, CD45RB or CD45R0, and LAG-3. “Egr-2 Treg cells” may be isolated. In such cases, lymphocyte populations or T cell populations can be grown by culturing in the presence of CD3.CD28 costimulation, TGF-beta and IL-2.
  • CD81, CD25, CD45RB or CD45RO, and LAG-3 can be used as they are. If the number is insufficient, the isolated ⁇ 1-2 6 ⁇ cells can be further expanded by culturing in the presence of CD3 'CD28 co- stimulation , TGF- beta and IL-2. . In addition, for treatments that require strong organ migration, they were isolated using the above method.
  • the antigen-specific therapeutic effect can be enhanced.
  • cells that are positive for the cell surface antigen CD4 are sorted based on the fact that the cells are clearly one group in which the CD4 fluorescence intensity is enhanced more and more by Celso using an antibody against CD4. Can be isolated.
  • antibodies to CD4 Al 1 ophycocyan in (APC) labeled anti-CD antibody (available from BDbioscience, Beckman Coulter, AbD Serotec, etc.) for humans, FITC labeled anti-CD4 antibody (BD bioscience) for mice Available from Beckman Coulter, BioLegend, etc.).
  • cells that are negative for the cell surface antigen CD25 are sorted based on the fact that the cells are a population obtained by removing one population in which the CD25 fluorescence intensity is clearly enhanced by a cell sorter using an antibody against CD25. Can be isolated.
  • antibodies against CD25 allophycocyanin-Cyanin-7 (APC-Cy7) labeled anti-CD25 antibody (available from BD bioscience, BioLegend, etc.) for humans, and APC-labeled anti-CD25 antibody (BD bioscience) for mice. Available from BioLegend, etc.).
  • cells that are negative (low positive) for the cell surface antigen CD45RB are 70% of cells that are relatively strongly expressing CD45RB among CD4 positive cells according to CELSO overnight using an antibody against CD45RB.
  • the antibody against CD45RB can be isolated by using Phycoerythrin (PE) as an antibody against CD45RB (hereinafter, synonymous with “CD45RB ex low” in the main text).
  • PE Phycoerythrin
  • the cells positive for the cell surface antigen LAG-3 in the present invention are based on the fact that the cells are a group in which the LAG-3 fluorescence intensity is clearly enhanced by a cell saw using an antibody against LAG-3. It can be isolated by separating it.
  • ATT0 488-labeled anti-LAG-3 antibody available from Alex is Biochem ls
  • PE-labeled anti-LAG-3 antibody available from companies.
  • the present invention provides an isolated “Egr-2 Treg cell”.
  • ”A As a constituent component, for treating various diseases caused by an immune reaction against a self-antigen or due to an antigen being eliminated by an antigen-antibody reaction, such as various autoimmune diseases, transplanted organ rejection, etc.
  • a pharmaceutical composition can be provided.
  • the isolated “Egr-2 Treg cell” of the present invention When used in a pharmaceutical composition for treating various autoimmune diseases, transplant organ rejection, etc., 2 ⁇ 10 6 cells / kg to 4 This can be done by intravenous administration of 100 to 500 ml of a cell suspension of X 10 6 cels / kg.
  • the isolated “Egr-2 Treg cells” of the present invention administered in this manner are carried throughout the body in the bloodstream and can induce local immune tolerance.
  • variable diseases caused by antigens being eliminated by antigen-antibody reaction mainly refers to diseases such as rejection of transplanted organs, but is not limited thereto.
  • variant diseases caused by immune responses to self antigens refers to autoimmune diseases such as rheumatoid arthritis, collagen disease, inflammatory bowel disease, multiple sclerosis, type 1 diabetes.
  • the present invention also provides a method of screening for a compound capable of inducing the proliferation of the isolated ⁇ ⁇ 1 "-26 £ cell” of the present invention. Specifically, (a) ⁇ 1 of the present invention "-2 1 ⁇ a ⁇ cell", step culturing in the presence of a test compound; (b) cultured "Egr-2
  • Such compounds can also be used to grow "Egr-2 Treg cells” isolated in vitro or immunize by growing "Egr-2 Treg cells” in vivo. It can also be used to induce tolerance.
  • the purpose of this example is to clarify the mechanism by which the transcription factor Egr-2, which is expected to be related to T cell analogy, is related to the T cell suppressive ability.
  • the Egr-2 gene was introduced into T cells, and the effects of Egr-2 transformed T cells were examined.
  • Egr2 cDNA obtained from the cDNA library was introduced into the retroviral vector pMX (Onishi M, et al., 1996 Exp. Hematol. 24: 324-329) and pMX-Egr2-IRES-GFP A retroviral vector was prepared ( Figure 1).
  • pMX Foxp3, D0TAE, and D0TBE
  • OVA ovalbumin
  • Mock pMX-IRES-GFP
  • Egr2 pMX-Egr2-IRES-GFP
  • flow cytometry cells were divided into 4 groups each using GFP expression as an indicator.
  • Fig. 2 Separated and collected (negative, low, mid, high) (Fig. 2). Then, cDNA synthesis was performed from each cell of each of the 4 groups separated and collected in Fig. 2, and Egr2 mRNA and LAG-3 mRNA were synthesized. Expression at the level was examined by real-time PCR ( Figure 3). The mRNA expression is a relative expression level normalized with / 3 -actin. The real-time PCR method was analyzed using the same method. As a result, LAG-3 expression was enhanced along with Egr2 expression (Fig. 3).
  • OVA ovalbumin
  • isolated splenic mononuclear cells (Balb / c mice (6-8 weeks old)) were treated with pMX-Egr2- IRES-GFP, pMX-Foxp3-IRES-GFP, pMX-DOTAE, 72 hours after each infection with pMX-DOTBE retrovirus, CD8, -CDl lb, -CD19 positive cells were biotinylated using a MACS column (Milttenyi Biotec), and CD19 antibody and Strepton were biotinylated.
  • Egr2 suppressed delayed hypersensitivity reaction like Foxp3.
  • co-transfer of 0VA-specific T cell receptor significantly enhanced the suppressive effect, indicating that antigen-specific immunosuppression was possible (Fig. 4).
  • mice co-transfected with Egr2 p X-Egr2-IRES-GFP
  • DO 11.10 pMX-DOTAE, pMX-DOTBE
  • the cells were separated and analyzed by flow cytometry. Spleen mononuclear cells are lymphocytes and flow cytometry
  • CD positive cell gate After CD positive cell gate, it was developed with D011. 10T cell receptor specific antibody 26-26 antibody and GFP, and each cell population was separated and collected as shown in the figure.
  • the cells isolated and collected in Fig. 3 CDNA synthesis was performed, and expression at the Egr2 mRNA, LAG-3 mRNA, and Foxp3 mRNA levels was examined by real-time PCR.
  • the transferred cells overexpress Egr2 with PMX-Egr2-IRES-GFP, enhance the expression of LAG-3, and co-express the OVA-specific T cell receptor. Expression was further enhanced, indicating that an antigen-specific T cell receptor signal is important for the ability to suppress Egr-2 ( Figures 5 and 6).
  • Egr2 induces regulatory T cell-like activity in vivo.
  • Egr2-transformed sputum cells express LAG-3 significantly, and the expression level of Egr2 and LAG-3 are positively correlated.
  • LAG-3 expression is consistent with antigen-specific T cell reception. It became clear that it was strengthened more.
  • cell sorting was performed for the purpose of collecting T cells expressing the Egr-2 gene.
  • CD4 positive T cells were isolated and collected using flow cytometry according to the presence or absence of LAG-3 expression.
  • LAG-3 mRNA, Egr2 mRNA, Foxp3 mRNA, and IL were synthesized by real-time PCR.
  • -10 mRNA expression was examined, and enhanced expression of Egr 2 mRNA, IL-10 mRNA, and LAG-3 mRNA in LAG-3 expressing cells was observed (Fig. 8). Foxp3 expression did not show significant correlation with LAG expression.
  • CD4 positive CD45RB ex low cell group were expanded with LAG-3 and CD25, and then CD4 + CD25- LAG3 + CD45RB ex low (Egr2- Treg), CD4 + CD25- LAG3- CD45RB ex l ow,
  • Egr2 mRNA and Foxp3 mRNA were examined by the method. As a result, it was shown that Egr2 expression was strongest in CD4 + CD25- LAG-3 + CD45RB ex low, and there was Egr2-Treg different from the known Foxp3-Treg (Fig. 11, Fig. 12).
  • Egr2-Treg was examined using a type II collagen-induced arthritis onset model.
  • DBA-1J mice (6-8 weeks old) were injected intradermally with a mixture of sushi-derived collagen type II and complete Freund's adjuvant (complete Freund's adjuvant, CFA, Chondrex or BD Di fco) (dayO) ), And then boosted with type II collagen (day 21) to induce type II collagen-induced arthritis.
  • each cell group was separated and collected by the same method as in Fig. 11 and analyzed by real-time PCR.
  • CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) still existed after immunization with type II collagen, and further enhancement of IL-10 expression in “Egr2-Treg” was observed after immunization (FIG. 13).
  • Egr-2 remained highly expressed even after the onset of arthritis.
  • CD25-LAG-3 + CD45RB ex low (Egr2-Treg) was examined.
  • CFSE-labeled CD4 + CD25-CD45RB high cell population (Thyl. H) 5X10 4 cells and spleen cells (Thy 1.2+) lX10 5 cells irradiated with 1500 rad as antigen-presenting cells were used.
  • the CD4 + CD25- CD45RB ex low cell population (Thyl.2 +) was separated and collected into 3 groups of high, low and nega by LAG-3 expression (each group 5X10 4 cells) (Fig. 14) .
  • C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1X10 5 cells were intraperitoneally administered to Rag ⁇ / ⁇ mice to produce an inflammatory enteritis model.
  • Enteritis was assessed by weight loss and histology. Body weight was 100% on the day of cell transfer (dayO). Each group consists of 3 groups of CD4 + CD25- CD45RBhi cells 1X10 5 cells only, CD4 + CD25- CD45RBhi cells 1X10 5 cells + CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) cells IX 10 5 cells and PBS only (control) Evaluated.
  • Egr2-Treg enteritis caused by C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cell administration could be suppressed by co-transfer of CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells (Fig.
  • CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells co-transferred with inflammatory cell infiltration and intestinal wall thickening, etc., observed with single administration of CD4 + CD25- CD45RBhi cells. (Fig. 17).
  • Foxp3 is currently thought to be a mass gene for suppressor T cells. Therefore, in this example, Scurfy mice lacking the Foxp3 functional gene were used.
  • spleen cells of Scurfy mice lacking the functional gene of Foxp3 were analyzed by flow cytometry using CD4-Cy7AP CD25-APC and CD45RB-FIT LAG-3-PE. As a result, CD4 + was also detected in spleen cells of Scurfy mice.
  • CD25- LAG3 + CD45RB ex low (Egr2- Treg) cells were shown to be present ( Figure 18).
  • the CD45RB high cell population (Thyl.) 5X10 4 cells was used as antigen-presenting cells, and whole splenocyte (Thyl.2 +) 1X10 5 cells of 1500 rad irradiated C57BL / 6 mice were used.
  • Suppressor cells include Scurfy mouse CD4 + CD25- CD45RB ex low cell population (Thyl.2 +)
  • C57BL / 6 mouse spleen CD4 + CD25- CD45RBh i cells 1X10 5 cells were intraperitoneally administered to Ragl ⁇ / ⁇ mice to prepare a model for the development of inflammatory bowel disease. Enteritis was assessed by weight loss and histology. Body weight was defined as 100% on the day of cell transfer (dayO).
  • Each group consists of C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1X10 5 cells only, C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1 X 10 5 cells + Scurfy mouse CD4 + CD25- LAG-3 + CD45RB ex low (Egr2 -Treg) Cells were evaluated in 3 groups: 1 x 10 5 eel Is and PBS only (control). As a result, it was shown that enteritis in the inflammatory enteritis onset model of Ragl-/-mice was also suppressed in vivo (Fig. 20).
  • Egr2- Treg cells are a novel inhibitory T cell population that exerts suppressive ability independent of Foxp3 function, and that the suppressive ability is mediated by LAG-3.
  • a shRNA-Egr2 retrovirus was prepared, the Egr2 gene was silencing, and mouse phenotype analysis was performed. Specifically, bone marrow cells of C57BL / 6 mice treated with 5FU were collected, infected with shRNA-Egr2 retrovirus, and then transferred to irradiated C57BL / 6 mice, so that shRNA-Egr2 bone marrow chimeric mice were Fabricated (Fig. 21). As a result, LAG-3 expression was suppressed by silencing Egr2 gene expression, and shRNA-Egr2 bone marrow chimeric mice showed marked thickening of the intestinal tract. . After bone marrow transplantation, he developed severe enteritis and died in about 4 weeks.
  • CD4 + T cells were collected from genase (Sigma-Aldrich, St. Louis, MO) and PE-anti-LAG-3 monoclonal antibody (LAG-3-PE) was used as described in Example 2 for these cells.
  • the analysis was performed on a flow cytometer using the FITC-anti-CD45RB monoclonal antibody (CD45RB-FITC).
  • both spleen-derived cells and Peyer's patch-derived cells have T cells with the same phenotype as the Egr2-Treg cells of the present invention (ie, LAG-3 + CD45RB ex low).
  • LAG-3 + CD45RB ex low the Egr2-Treg cells of the present invention
  • B cells may have some function in inducing differentiation of Egr2-Treg cells in vivo.
  • it is further a B cell-deficient mouse;
  • B cells collected from the spleen of C57BL / 6 mice were transplanted to examine whether the Egr2- Treg cells of the present invention were induced in the living mouse.
  • C57BL / 6 mouse sputum cells can be obtained from MACS using a single cell suspension of spleen from C57BL / 6 mice using the S cell isolation kit (Miltenyi Biotec, Auburn, CA) according to the manufacturer's protocol. Purification was done by negative selection. The purity of B cells sorted by MACS was> 98%. 2X10 7 B cells purified in this way were injected intravenously into / MT mice. Control mice were irradiated with PBS. Nine weeks after cell transplantation, mice were sacrificed and spleen cells were analyzed by flow cytometry.
  • T cells having the same phenotype (LAG-3 + CD45RB ex low) as the Egr2-Treg cells of the present invention were significantly compared to ⁇ mice. (Fig. 23). Therefore, it has been clarified that the presence of B cells is indispensable for inducing differentiation of the Egr2-Treg cells of the present invention in vivo.
  • Foxp3 + Treg cells are required to have higher affinity agonist interactions with self-peptide / MHC expressed by thymic stromal cells to induce differentiation.
  • CD4 + CD25— LAG3 + T cells were induced to differentiate through the same thymic selection process as Foxp3 + Treg cells.
  • TCR Transgenic 0T-II mice (Taconic) and RIP-mOVA mice (Jackson Laborat ory) Transgenic TCRs that express membrane-bound OVA under the control of the rat insulin gene promoter in the islets and thymus while simultaneously recognizing OVA peptides in the context of IA b RIP-mOVA / OT-I I double-transgenic mice were also generated that also express V a 2 and V) 3 5.1 / 5.
  • 0T-II transgenic mice contained as many CD4 + CD25- LAG3 + T cells as normal mice in the spleen and Peyer's patches, but ⁇ - ⁇ ⁇ -chain-specific IA b -restricted transgenig TEa transgenic mice expressing TCR had few CD4 + CD25- LAG3 + T cells, especially in the spleen ( Figure 25).
  • TEa mice also contained very few 1 ⁇ 2r-2-expressing cells in splenic follicles in histological examination (FIG. 26).
  • each bar indicates the number of measurements from one follicle. This data was collected from 3 mice in each group. All error bars indicate standard deviation; an asterisk indicates ⁇ 0. 01.
  • Example 2 based on the mouse knowledge obtained in Example 2, cell sorting was performed for the purpose of collecting T cells expressing the Egr-2 gene from human tonsil-derived cells. .
  • CD4 positive T cells were isolated and collected using flow cytometry according to the presence or absence of LAG-3 expression.
  • LAG-3 mRNA, Egr2 mRNA, Foxp3 mRNA, and IL were synthesized by real-time PCR.
  • -10 When mRNA expression was examined, enhanced expression of Egr 2 mRNA, IL-10 mRNA, and LAG-3 mRNA in LAG-3 expressing cells was observed (Fig. 29). Foxp3 expression was not significantly correlated with LAG expression.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Physics & Mathematics (AREA)
  • Obesity (AREA)
  • Neurology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pain & Pain Management (AREA)

Abstract

A CD4-positive, CD25-positive regulatory T cell, which is a known regulatory T cell, cannot control an autoimmune disease by itself satisfactorily. Thus, the object is to search a regulatory T cell other than a CD4-positive, CD25-positive regulatory T cell, which can control an autoimmune disease satisfactorily. A study was made on the relationship between a regulatory T cell and Egr-2 gene which has been reported to be a transcription factor involved in T cell anergy. As a result, a novel T cell can be isolated, and the activities of the T cell can be elucidated.

Description

明細書  Specification
新規 T細胞  New T cells
技術分野 Technical field
本発明は、 哺乳動物由来の新規の τ細胞集団を提供することに関する。 より具体的 には、 本発明は哺乳動物由来の新規の制御性 Τ細胞集団を提供することに関する。 背景技術  The present invention relates to providing a novel τ cell population derived from a mammal. More specifically, the present invention relates to providing a novel regulatory rod cell population derived from mammals. Background art
生体は、 免疫系により、 自己と非自己を精密に区別している。 生物の免疫系は、 本 来、 自己の構成タンパク質に対しては寛容 (トレランス) の状態となっているが、 何 らかの条件により自己タンパク質に対する免疫応答が生じることがあり、 このような 自己に対する免疫応答の結果、自己免疫疾患が生じる。現在、自己免疫疾患としては、 膠原病、 関節リウマチなどが知られているが、 動脈硬化や癌、 神経変性疾患において も、 自己免疫応答が関与していることが明らかにされつつあるなど、 広範な疾患の病 態に自己免疫応答が関与していると考えられている。  The living body precisely distinguishes between self and non-self by the immune system. Organism's immune system is inherently tolerant to its constituent proteins, but under certain conditions an immune response to the self-protein may occur. As a result of the immune response to, autoimmune diseases occur. Currently, collagen diseases, rheumatoid arthritis, etc. are known as autoimmune diseases, but it is becoming clear that autoimmune responses are also involved in arteriosclerosis, cancer, and neurodegenerative diseases. Autoimmune response is thought to be involved in the pathology of various diseases.
このような自己免疫疾患の治療には、副腎皮質ホルモンの投与や免疫抑制剤の投与 など、 抗原非特異的な治療方法が用いられている。 しかしながら、 これら現在適用さ れている治療方法では、 全身的に高度の免疫抑制が引き起こされるため、 日和見感染 などの重大な問題もまた、 生じている。 このような状況は、 臓器移植後の免疫抑制剤 の投与に際しても同様に生じている。 そのため、 自己免疫疾患の治療や臓器移植によ る治療の現場においては、 自己免疫疾患を引き起こす自己抗原に特異的な免疫抑制療 法や、 移植抗原に特異的な免疫抑制療法が強く求められている。  For the treatment of such autoimmune diseases, non-antigen-specific treatment methods such as administration of corticosteroids and administration of immunosuppressants are used. However, these currently applied therapies also cause severe problems such as opportunistic infections because they cause systemic high immune suppression. Such a situation also occurs when an immunosuppressant is administered after organ transplantation. Therefore, in the field of treatment of autoimmune diseases and organ transplantation, there is a strong demand for immunosuppressive treatments specific to autoantigens that cause autoimmune diseases and immunosuppressive treatments specific to transplanted antigens. Yes.
最近、 自己抗原に特異的な自己免疫寛容の形成において、 制御性 Τ細胞 (レギユラ トリー Τ細胞、 regul atory T cel l) が重要であることが分かってきた。  Recently, it has been found that regulatory atory cells (regulatory T cells) are important in the formation of autoimmune tolerance specific to self-antigens.
哺乳動物の T細胞は、 リンパ球の一種であり、 骨髄で産生された前駆細胞が胸腺で の選択を経て分化成熟したもののことをいう。 末梢血中のリンパ球の 70〜80 %が T 細胞であることが知られている。 この T細胞は、 細胞表面のマーカー分子として CD4 または CD8などを発現することを特徴としている。 そして、 CD4を発現した T細胞は リンフォ力インを産生するなどして、他の T細胞の機能発現を誘導したり B細胞の分 化成熟、抗体産生を誘導したりするヘルパー T細胞として機能する。一方、 CD8陽性 T 細胞は、 ウィルス感染細胞などを破壊する CTL (キラ一 T細胞) として機能する'。 このような T細胞とは別に、他の T細胞の活性を抑制する働きを有する CD4陽性制 御性 T細胞が存在することが示されている。 これまでに知られている制御性 T細胞と しては、細胞表面に CD4分子、 CD25分子を発現し、転写因子 Foxp3を発現する制御性 T細胞 (Foxp3 Treg細胞) (非特許文献 1) が最も一般的であることが知られていた。 一方、 この Foxp3Treg細胞以外に、 IL- 10を産生する制御性 T細胞 (TR1細胞) (非特 許文献 2)、 TGF3を産生する制御性 T細胞 (TH3細胞) (非特許文献 3)、 などの存在も 示唆されていたが、 これらの細胞の細胞表面抗原の発現プロファイルは未知であり、 その実体は明らかになっていなかった。 Mammalian T cells are a type of lymphocyte that refers to the progenitor cells produced in the bone marrow that have been differentiated and matured through selection in the thymus. It is known that 70-80% of lymphocytes in peripheral blood are T cells. This T cell is characterized by expressing CD4 or CD8 as a cell surface marker molecule. T4 cells that express CD4 function as helper T cells that induce the functional expression of other T cells, induce the differentiation and maturation of B cells, and induce antibody production by producing lymphoin, etc. . On the other hand, CD8 positive T The cell functions as a CTL (killer T cell) that destroys virus-infected cells. In addition to such T cells, it has been shown that CD4 positive regulatory T cells have a function of suppressing the activity of other T cells. Regulatory T cells known so far include regulatory T cells (Foxp3 Treg cells) that express CD4 and CD25 molecules on the cell surface and express the transcription factor Foxp3 (Non-patent Document 1). It was known to be the most common. On the other hand, in addition to Foxp3Treg cells, regulatory T cells that produce IL-10 (T R 1 cells) (Non-patent document 2), regulatory T cells that produce TGF3 (T H 3 cells) (Non-patent document 3) However, the expression profile of the cell surface antigen of these cells is unknown, and its substance has not been clarified.
これらの制御性 T細胞は、 他の T細胞の活性を抑制する働きを有し、 結果として生 体内で自己免疫寛容を担っていることが予想されていた。しかしながら、機能的 Foxp3 遺伝子を欠損したマウスの場合や、 胸腺での中枢性免疫寛容を担う Aire遺伝子を欠 損したマウスの場合でも、 中枢神経、 関節、 小腸、 内分泌腺などには明らかな障害を 認めない (非特許文献 4)。 このことから、 CD4陽性 CD25陽性の制御性 T細胞単独で は、 自己免疫疾患を十分にコントロールできない可能性が予想された。  These regulatory T cells had the function of suppressing the activity of other T cells, and as a result were expected to be responsible for autoimmune tolerance in vivo. However, even in mice lacking a functional Foxp3 gene or in mice lacking the Aire gene, which is responsible for central immune tolerance in the thymus, there are obvious disorders in the central nervous system, joints, small intestine, endocrine glands, etc. Not allowed (Non-Patent Document 4). This suggests that CD4 + CD25 + regulatory T cells alone may not be able to adequately control autoimmune diseases.
Egr-2 (Early Growth Response Gene-2)遺伝子は、 Krox20、 NGF1- B、 Zfp- 25、 Zfp- 6、 NGFl-)3 (nerve growth factor inducible gene 1-/3) とも呼ばれる全長 2862 bp (CDS は 393- 1655) である分子であり、 Zinc-finger型転写因子としてマウス、 ヒトよりク ローニングされた遺伝子である (非特許文献 5;非特許文献 6)。 この遺伝子は、 T細 胞ァナジ一 (不応性) に関連する転写因子であると報告された遺伝子である (非特許 文献 7)。 し力、しながら、 上述した既知の制御性 T細胞の中には、 これと関連するもの はなかった。  The Egr-2 (Early Growth Response Gene-2) gene is 2862 bp (CDS), also called Krox20, NGF1-B, Zfp-25, Zfp-6, NGFl-) 3 (nerve growth factor inducible gene 1- / 3) Is a molecule that is cloned from mouse and human as a Zinc-finger type transcription factor (Non-patent document 5; Non-patent document 6). This gene has been reported to be a transcription factor associated with T cell anagenesis (refractory) (Non-patent Document 7). However, none of the known regulatory T cells mentioned above was associated with this.
非特許文献 1 Sakaguchi S., et al. , J Immunol 1995; 155: 1151-1164 非特許文献 2 Groux H. A, et al., Nature 1997;389:737-742  Non-Patent Document 1 Sakaguchi S., et al., J Immunol 1995; 155: 1151-1164 Non-Patent Document 2 Groux H. A, et al., Nature 1997; 389: 737-742
非特許文献 3 Chen Y. , et al. , Science 1994; 265:1237-1240  Non-Patent Document 3 Chen Y., et al., Science 1994; 265: 1237-1240
非特許文献 4 : Chen Z. et al., Pro atl. Acad. Sci. USA, 2005, 102, 14735-14740  Non-Patent Document 4: Chen Z. et al., Pro atl. Acad. Sci. USA, 2005, 102, 14735-14740
非特許文献 5 : Chavrier P, et al., Mol. Cell. Biol. 8 1988, pp. 1319-1326 非特許文献 6 : Joseph LJ, et al . , Proc. Nat l . Acad. Sc i . USA 85 1988, 7164-716 Non-Patent Document 5: Chavrier P, et al., Mol. Cell. Biol. 8 1988, pp. 1319-1326 Non-Patent Document 6: Joseph LJ, et al., Proc. Nat l. Acad. Sci. USA 85 1988, 7164-716
非特許文献 7 : Saf ford M. et al . , Nat. Immunol . , 2005, 6, 472-480 発明の開示  Non-Patent Document 7: Saf ford M. et al., Nat. Immunol., 2005, 6, 472-480 Disclosure of the Invention
発明が解決しょうとする課題 Problems to be solved by the invention
本発明は、従来から知られていた制御性 T細胞である CD4陽性 CD25陽性の制御性 T 細胞単独では自己免疫疾患を十分にコントロールできないことから、 自己免疫疾患を 十分にコントロールすることができる CD4陽性 CD25陽性の制御性 T細胞以外の制御 性 T細胞を探索することを課題とする。  In the present invention, CD4 positive CD25 positive regulatory T cells, which are conventionally known regulatory T cells, cannot sufficiently control autoimmune diseases. Therefore, CD4 can sufficiently control autoimmune diseases. The objective is to search for regulatory T cells other than positive CD25 positive regulatory T cells.
課題を解決するための手段 Means for solving the problem
本発明の発明者らは、 T細胞アナジー (不応性) に関連する転写因子であると報告 された Egr-2遺伝子と制御性 T細胞との関連を検討することにより、新規の T細胞-を 単離し、 その作用を明らかにすることにより、 上記の課題を解決することができるこ とを示した。  The inventors of the present invention examined the relationship between the Egr-2 gene reported to be a transcription factor related to T cell anergy (refractory) and regulatory T cells, and thus developed novel T cells. It was shown that the above problems can be solved by isolating and clarifying the action.
具体的には、 本発明においては、 CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45RB陰 性 (低陽性) (CD45RB- (low) ) ,および LAG-3陽性 (LAG- 3+) または CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45R0陽性 (CD45R0+) , および LAG-3陽性 (LAG- 3+) の細胞表 面抗原特性を有する、哺乳動物由来の新規な T細胞を単離しそして提供することによ り、 上記の課題を解決することができる。  Specifically, in the present invention, CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG-3 +) or Isolate new T cells from mammals with CD4 positive (CD4 +), CD25 negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen properties. By providing this, the above problems can be solved.
本発明において単離された CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45RB陰性 (低 陽性) (CD45RB- (low)) , および LAG- 3陽性 (LAG3+) または CD4陽性 (CD4+)、 CD25 陰性 (CD25- )、 CD45R0陽性 (CD45R0+)、 および LAG- 3陽性 (LAG-3+) の特性を有する 新規の T細胞は、 制御性 T細胞としての機能を有することが示される。 具体的には、 制御性 T細胞としての機能とは、 他の T細胞の活性化反応を抑制することであり、 そ の特性としてはァナジ一 (不応性) が含まれる。  CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG3 +) or CD4 positive (CD4 +), CD25 isolated in the present invention Novel T cells with negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) properties are shown to have a function as regulatory T cells. Specifically, the function as a regulatory T cell is to suppress the activation reaction of other T cells, and its characteristics include anaphylaxis (refractory).
これらの細胞は、 哺乳動物のいずれか (例えば、 ヒト、 霊長類、 ィヌ、 ネコなど) に由来するものであり、 いずれの哺乳動物から単離してもよい。  These cells are derived from any mammal (eg, human, primate, Inu, cat, etc.), and may be isolated from any mammal.
本発明はまた、 哺乳動物のリンパ球集団または T細胞集団から、 (i) CD4が陽性で ある細胞 (CD4+) を採取する工程、 (i i) CD25が陰性である細胞 (CD25-) を採取する 工程、 (i i i) CD45RB が陰性 (低陽性) である細胞 (CD45RB- (low) ) または CD45R0 が陽性である細胞 (CD45R0+) を採取する工程、 そして (iv) LAG-3が陽性である細胞 (LAG3+) を採取する工程、 を、 (i) 〜 (iv) の工程を順不同で行うことにより、 CD4 陽性 (CD4+)、 CD25陰性 (CD25-)、 CD45RB陰性 (低陽性) (CD45RB - (low) ) , および LAG-3陽性(LAG- 3+)または CD4陽性(CD4+)、 CD25陰性(CD25-)、 CD45R0陽性(CD45R0+)、 および LAG-3陽性 (LAG- 3+) の細胞表面抗原特性を有する、 哺乳動物由来の T細胞を 単離する方法を提供することができる。 , The present invention also provides from a mammalian lymphocyte population or T cell population that: (i) CD4 is positive; Collecting a certain cell (CD4 +), (ii) collecting a CD25 negative cell (CD25-), (iii) a CD45RB negative (low positive) cell (CD45RB- (low)) or CD45R0 By collecting the cells (CD45R0 +) positive for, and (iv) collecting the cells (LAG3 +) positive for LAG-3, by performing steps (i) to (iv) in any order. , CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB-(low)), and LAG-3 positive (LAG-3 +) or CD4 positive (CD4 +), CD25 negative (CD25 -), A method for isolating mammalian T cells having the cell surface antigen characteristics of CD45R0 positive (CD45R0 +) and LAG-3 positive (LAG-3 +) can be provided. ,
この方法において、哺乳動物は、 いずれの哺乳動物(例えば、 ヒト、霊長類、ィヌ、 ネコなど) であってもよい。  In this method, the mammal may be any mammal (eg, human, primate, Inu, cat, etc.).
本発明において、哺乳動物のリンパ球集団または T細胞集団を末梢血から採取して からそのまま (i) 〜 (iv) の工程を行ってもよく、 あるいは哺乳動物のリンパ球集 団または T細胞集団を末梢血から採取し、そのリンパ球集団または T細胞集団を増殖 させてから (i) 〜 (iv) の工程を行ってもよい。  In the present invention, a mammalian lymphocyte population or T cell population may be collected from peripheral blood and then the steps (i) to (iv) may be performed as they are, or a mammalian lymphocyte population or T cell population. May be collected from peripheral blood and the lymphocyte population or T cell population may be expanded before the steps (i) to (iv) are performed.
本発明においてはまた、 (i) 〜 (iv) の工程を行うことにより単離した本発明の T 細胞集団をそのまま使用してもよく、 あるいは (i) 〜 (iv) の工程を行うことによ り単離した本発明の T細胞集団を増殖してから使用してもよい。  In the present invention, the T cell population isolated by performing the steps (i) to (iv) may be used as it is, or the steps (i) to (iv) are performed. A more isolated T cell population of the present invention may be used after being expanded.
本発明においてはまた、 CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45RB陰性 (低陽 性) (CD45RB- (low)) , および LAG- 3陽性 (LAG3+) または CD4陽性 (CD4+)、 CD25陰 性 (CD25- )、 CD45R0陽性 (CD45R0+) , および LAG- 3陽性 (LAG - 3+) の細胞表面抗原特 性を有する、 哺乳動物由来の T細胞を含む、 医薬組成物を提供することができる。 こ の医薬組成物を投与することにより、炎症を引き起こす病原性 T細胞の機能的抑制を 誘導することができることから、 本発明の医薬組成物は、 抗原-抗体反応により抗原 が排除されることに起因する種々の疾患を治療するために使用することができる。本 発明における自己抗原に対する免疫反応に起因または抗原-抗体反応により抗原が排 除されることに起因する種々の疾患には、 例えば自己免疫疾患 (例えば、 関節リウマ チ、 膠原病、 炎症性腸疾患、 多発性硬化症、 1型糖尿病など) または移植臓器拒絶な どが含まれる。 本発明においては、上述した CD4陽性 (CD4+)、 CD25陰性 (CD25-) , CD45RB陰性(低 陽性) (CD45RB- (low)) , および LAG-3陽性 (LAG3+) または CD4陽性 (CD4+)、 CD25 陰性 (CD25-)、 CD45R0陽性 (CD45R0+)、 および LAG-3陽性 (LAG - 3+) の細胞表面抗原 特性を有する、哺乳動物由来の T細胞の細胞数を増加させるための化合物をスクリー ニングする方法もまた、 提供する。 上述した作用を有する目的化合物をスクリ一ニン グする方法は: In the present invention, CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG3 +) or CD4 positive (CD4 +), CD25 To provide a pharmaceutical composition comprising mammalian T cells having negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen characteristics. it can. By administering this pharmaceutical composition, it is possible to induce functional suppression of pathogenic T cells that cause inflammation. Therefore, the pharmaceutical composition of the present invention is capable of eliminating an antigen by an antigen-antibody reaction. It can be used to treat various diseases caused. In the present invention, various diseases caused by an immune reaction against an autoantigen or due to an antigen being eliminated by an antigen-antibody reaction include, for example, autoimmune diseases (eg, rheumatoid arthritis, collagen disease, inflammatory bowel disease) , Multiple sclerosis, type 1 diabetes, etc.) or transplant organ rejection. In the present invention, the aforementioned CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG3 +) or CD4 positive (CD4 +), CD25 Screen for compounds to increase the number of mammalian T cells with negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen properties A method is also provided. The method for screening the target compound having the above-mentioned action is:
(a) CD4陽性(CD4+)、 CD25陰性 (CD25- )、 CD45RB陰性 (低陽性) (CD45RB- (low) ) , および LAG- 3陽性 (LAG3+) または CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45R0陽 性 (CD45R0+)、 および LAG- 3陽性 (LAG- 3+) の細胞表面抗原特性を有する、 哺乳動物 由来の T細胞を、 被検化合物の存在下にて培養する工程;  (a) CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG3 +) or CD4 positive (CD4 +), CD25 negative (CD25- ) Culturing T cells derived from mammals having CD45R0 positive (CD45R0 +) and LAG-3 positive (LAG-3 +) cell surface antigen characteristics in the presence of a test compound;
(b) 培養した T細胞中での Egr-2遺伝子の発現の変化または LAG-3遺伝子の発現 の変化を測定する工程;  (b) measuring the change in the expression of the Egr-2 gene or the change in the expression of the LAG-3 gene in the cultured T cells;
(c) Egr-2遺伝子の発現の増加または LAG-3遺伝子の発現の増加を導く化合物を、 CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45RB陰性.(低陽性) (CD45RB- (low) ) , およ び LAG- 3陽性 (LAG-3+)または CD4陽性(CD4+)、 CD25陰性(CD25-)、 CD45R0陽性(CD45R0+)、 および LAG-3陽性(LAG-3+) の細胞表面抗原特性を有する哺乳動物由来の T細胞を増 加させる化合物として選択する工程;  (c) Compounds that lead to increased Egr-2 gene expression or LAG-3 gene expression are CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative. (low positive) (CD45RB- (low )), And LAG-3 positive (LAG-3 +) or CD4 positive (CD4 +), CD25 negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surfaces Selecting as a compound that increases T cells from mammals having antigenic properties;
からなることを特徴とする。 It is characterized by comprising.
発明の効果 The invention's effect
本発明の制御性 T細胞により、局所的な免疫寛容を誘導することができることから、 これまでは免疫抑制剤の投与など全身的に免疫機能を抑制する処置を行うことによ る副作用に悩まされていた自己免疫疾患や移植臓器拒絶などの種々の疾患を、患者体 内において上述したような副作用を引き起こすことなく、 治療することができる。 図面の簡単な説明  Since the regulatory T cells of the present invention can induce local immune tolerance, the side effects caused by systemic suppression of immune function such as administration of immunosuppressants have been plagued so far. Various diseases such as autoimmune diseases and rejection of transplanted organs can be treated without causing the above-mentioned side effects in the patient body. Brief Description of Drawings
[図 1 ] 図 1 は、 本発明において使用するレトロウイルスベクタ一 pMX-Egr2-IRES-GFPおよび対照べクタ一 mock pMX-IRES-GFPベクタ一の概略図を示す。  FIG. 1 shows a schematic diagram of a retroviral vector pMX-Egr2-IRES-GFP and a control vector mock pMX-IRES-GFP vector used in the present invention.
[図 2 ] 図 2は、 Mock (pMX-IRES-GFP) または Egr2 (p X-Egr2-IRES-GFP) を 感染させたマウス CD4陽性脾細胞をフローサイ卜メーターを用い、 GFP発現を指標に 各 4群 (negat ive, low、 mi d、 h igh) に分け分離採取した工程を示す。 [Fig. 2] Fig. 2 shows mouse CD4-positive splenocytes infected with Mock (pMX-IRES-GFP) or Egr2 (p X-Egr2-IRES-GFP) using a flow cytometer and GFP expression as an indicator. The process of separating and collecting in 4 groups (negative, low, mid, high) is shown.
[図 3 ] 図 3は、 図 2にて分離採取した各 4群のそれぞれの細胞より cDNA合 成を行い、 Egr2 mRNA、 および LAG- 3 mRNAレベルにおける発現をリアルタイム PCR法 にて検討した結果を示す。  [Fig. 3] Fig. 3 shows the results of real-time PCR analysis of cDNA synthesis from each of the 4 groups of cells collected and collected in Fig. 2, and the expression at the Egr2 mRNA and LAG-3 mRNA levels. Show.
[図 4 ] 図 4は、 OVA特異的 T細胞レセプ夕一 (D01 1. 10) を共移入することに より、 その抑制効果が著しく増強され、 抗原特異的免疫抑制が可能なことを示す図で ある。  [Fig. 4] Fig. 4 shows that co-transfer of OVA-specific T cell receptor (D01 1.10) significantly enhances its suppressive effect and enables antigen-specific immunosuppression. It is.
[図 5 ] 図 5は、 Egr2および D01 1. 10をレトロウイルスにて共移入したマウス の脾単核細胞をフローサイトメトリ一にてリンパ球および CD4 陽性細胞 gate後、 D01 1. 10T細胞レセプ夕一特異抗体 KJ- 1抗体および GFPにて展開し、 各細胞集団を分 離採取した工程を示す。  [Fig. 5] Fig. 5 shows the spleen mononuclear cells of mice co-transfected with Egr2 and D01 1.10 by flow cytometry. After lymphocyte and CD4 positive cell gate, D01 1.10 T cell receptor This is the process of developing each cell population separately using the KJ-1 antibody and GFP.
[図 6 ] 図 6は、 Egr2 (pMX-Egr2-IRES-GFP)と DO 1 1. 10 (pMX-DOTAE, pMX-DOTBE) を共移入された細胞は pMX-Egr2-IRES- GFP により Egr2 を過剰発現するとともに、 [Figure 6] Figure 6 shows that Egr2 (pMX-Egr2-IRES-GFP) and DO 1 1.10 (pMX-DOTAE, pMX-DOTBE) co-transfected cells were treated with pMX-Egr2-IRES-GFP. Overexpression,
LAG-3の発現がさらに増強されることを示す図である。 It is a figure which shows that the expression of LAG-3 is further enhanced.
[図 7 ] 図 7は、 マウス脾単核細胞のうち、 LAG-3表面抗原は CD4陽性細胞の うち CD25陰性の細胞 (図 7a)、 かつ CD45RB陰性から CD45RB弱陽性の細胞 (図 7b) において発現が増強されることを示す図である。  [Fig. 7] Fig. 7 shows that among mouse spleen mononuclear cells, LAG-3 surface antigen is CD4 positive among CD25 negative cells (Fig. 7a) and CD45RB negative to CD45RB weak positive cells (Fig. 7b). It is a figure which shows that expression is enhanced.
[図 8 ] 図 8は、 CD45RB陰性から CD45RB弱陽性のマウス LAG-3発現細胞にお いて、 Egr2 mRNA、 IL-10 mRNA, LAG-3 mRNAの発現が増強されることを示す図である。  FIG. 8 is a graph showing that expression of Egr2 mRNA, IL-10 mRNA, and LAG-3 mRNA is enhanced in mouse LAG-3 expression cells that are CD45RB negative to CD45RB weak positive.
[図 9 ] 図 9は、 CD4陽性 CD45RB ex l ow細胞群にて gateした細胞を、 LAG - 3、 [FIG. 9] FIG. 9 shows cells gated in CD4 positive CD45RB ex low cell group, LAG-3,
CD25にて展開し、 CD4+ CD25- LAG3+ CD45RB ex l ow (Egr2- Treg)、 CD4+ CD25- LAG3-Expanded on CD25, CD4 + CD25- LAG3 + CD45RB ex l ow (Egr2- Treg), CD4 + CD25- LAG3-
CD45RB ex l ow, CD4+ CD25+ CD45RB ex lowの 3群の細胞集団を分離採取した結果を 示す図である。 FIG. 4 shows the results of separating and collecting three groups of cell populations, CD45RB ex low and CD4 + CD25 + CD45RB ex low.
[図 1 0 ] 図 10は、 CD4+ CD25- LAG3+ CD45RB ex l ow (Egr2- Treg) において Egr2発現が最も強く、 Foxp3発現では同様の発現傾向は認められなかったことを示す 図である。  [FIG. 10] FIG. 10 shows that Egr2 expression was strongest in CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg), and the same expression tendency was not observed in Foxp3 expression.
[図 1 1 ] 図 1 1は、 CD4陽性 CD25陰性細胞群にて gateした細胞を LAG-3、 CD45RB にて展開し、図示の如く各細胞群をフローサイトメ一夕一にて分離採取した工程を示 す図である。 [Fig. 1 1] Fig. 1 1 shows cells gated in CD4 positive CD25 negative cells group developed with LAG-3 and CD45RB, and each cell group was separated and collected by flow cytometry as shown in the figure. Show process It is a figure.
[図 12 ] 図 12は、 CD4+ CD25- LAG3+ CD45RB ex lowにおいて Egr2発現が最 も強く、既知の Foxp3-Tregとは異なった Egr2-Tregが存在することを示す図である。  FIG. 12 shows that Egr2 expression is strongest in CD4 + CD25-LAG3 + CD45RB ex low, and Egr2-Treg different from the known Foxp3-Treg exists.
[図 13] 図 13は、 II型コラーゲン免疫後も CD4+CD25- LAG3+CD45RBex low (Egr2-Treg) は存在し、 免疫後 「Egr2- Treg」 における Iい 10発現のさらなる増強が 生じていることを示す図である。  [Fig. 13] Fig. 13 shows that CD4 + CD25-LAG3 + CD45RBex low (Egr2-Treg) is still present after type II collagen immunization, and further enhancement of I-10 expression occurs in “Egr2-Treg” after immunization FIG.
[図 14] 図 14は、 抑制性細胞として、 CD4+ CD25- CD45RB ex low細胞集団 (Thyl.2+) を LAG-3発現により high, low, negaの' 3群に分け分離採取した工程を 示す図である。  [FIG. 14] FIG. 14 shows a process in which CD4 + CD25- CD45RB ex low cell population (Thyl.2 +) is divided into high, low and nega '3 groups by LAG-3 expression as suppressor cells. FIG.
· [図 15] 図 15は、 Egr-2Treg細胞が、細胞傷害性 T細胞サブセット(CD45RBhi 細胞)の細胞分裂を抑制し、その抑制能は LAG-3発現に依存することを示す図である。  [FIG. 15] FIG. 15 shows that Egr-2Treg cells suppress cell division of a cytotoxic T cell subset (CD45RBhi cells), and the suppressive ability depends on LAG-3 expression.
[図 16] 図 16は、 RAG卜 /-マウスにおいて、 C57BL/6マウス睥臓 CD4+ CD25- CD45RBM細胞投与により生じる腸炎を、 CD4+ CD25-LAG3+ CD45RB ex low (Egr2-Treg) 細胞の共移入により抑制することができることを示す図である。  [Fig.16] Fig.16 shows the suppression of enteritis caused by CD4 + CD25- CD45RBM cells administration in CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) cells in RAG 卜 /-mice. It is a figure which shows what can be done.
[図 17 ] 図 17は、 大腸の組織像において、 CD4+ CD25- CD45RBhi細胞投与単 独投与において認められた炎症細胞浸潤、腸管壁肥厚などの所見が、 CD4+ CD25-LAG3+ CD45RB ex low (Egr2-Treg) 細胞の共移入により改善していることが認められたこと を示す図である。  [Fig. 17] Fig. 17 shows CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) in the histology of the large intestine. ) It is a figure showing that the improvement was observed by co-transfer of cells.
[図 18] 図 18は、 フローサイトメ一夕一にて解析にて機能的 Foxp3遺伝子 を欠損した Scurfyマウスの脾細胞にも CD4+ CD25- LAG3+ CD45RB ex low (Egr2-Treg) 細胞が存在することを示す図である。  [Figure 18] Figure 18 shows that CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells are also present in the splenocytes of Scurfy mice lacking the functional Foxp3 gene as analyzed by flow cytometry. FIG.
[図 19] 図 19は、 Scurfyマウスの Egr2-Treg細胞は in vitroにおける抑制 能を有し、 その抑制能は LAG- 3中和抗体にて減弱することを示す図である。  FIG. 19 is a view showing that Egr2-Treg cells of Scurfy mice have an in vitro suppressive ability, and that the suppressive ability is attenuated by LAG-3 neutralizing antibody.
[図 20] 図 20は、 Rag卜/-マウスに C57BL/6マウス脾臓 CD4+CD25- CD45RBhi 細胞 1X105 cellsを腹腔内投与した結果、 in vivoにおいても Ragl-/-マウスの炎症 性腸炎発症モデルにおける腸炎を抑制することを示す図である。 [Figure 20] Figure 20 shows the results of intraperitoneal administration of C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1X10 5 cells to Rag 卜 /-mice. It is a figure which shows suppressing the enteritis in.
[図 2 1] 図 21は、 Egr2遺伝子発現が抑制された shRNA-Egr2骨髄キメラマウ スを作製する手法を示すスキーム図である。 [図 2 2 ] 図 22は、 shRNA-Egr2骨髄キメラマウスは腸炎発症の特徴である腸 管の著しい肥厚を生じることを示す図である。 FIG. 21 is a schematic diagram showing a technique for producing a shRNA-Egr2 bone marrow chimeric mouse in which Egr2 gene expression is suppressed. [FIG. 22] FIG. 22 is a diagram showing that shRNA-Egr2 bone marrow chimeric mice develop marked thickening of the intestinal tract, which is characteristic of the onset of enteritis.
[図 2 3 ] 図 23は、 B細胞を欠損する At MTマウスでは CD4+ CD25- LAG3+ CD45RB ex l ow (Egr2-Treg) 細胞がほとんど認められず、 B 細胞を養子導入することで Egr2- Treg細胞が増殖することより、 この細胞集団が B細胞依存性に誘導されること を示す図である。  [Fig. 2 3] Fig. 23 shows that CD4 + CD25- LAG3 + CD45RB ex l ow (Egr2-Treg) cells were hardly observed in At MT mice lacking B cells, and Egr2- Treg cells were introduced by adoptive introduction of B cells. It is a figure which shows that this cell population is induced | guided | derived by B cell dependence by growing.
[図 2 4 ] 図 24は、 RIP-mOVAトランスジーンを含むかまたは含まない OT- 1 1 TCR トランスジエニックマウスの胸腺および脾臓中での LAG-3の発現および CD45RBの発 現のフローサイトメトリーを示す図である。  [Figure 24] Figure 24 shows flow cytometry of LAG-3 expression and CD45RB expression in thymus and spleen of OT-11 TCR transgenic mice with or without RIP-mOVA transgene. FIG.
[図 2 5 ] 図 25は、 CD4+ CD25" T細胞でゲートされた、 TEa正常産仔 (左)、 [Figure 25] Figure 25 shows a normal TEa offspring (left) gated with CD4 + CD25 "T cells,
0T-I I (中)、 および TEa TCRトランスジエニックマウス (右) の脾臓およびパイエル 板 (PP) における LAG-3の発現および CD45RBの発現のフローサイトメトリーを示す 図である。 FIG. 4 shows flow cytometry of LAG-3 expression and CD45RB expression in spleen and Peyer's patch (PP) of 0T-I I (middle) and TEa TCR transgenic mice (right).
[図 2 6 ] 図 26は、 濾胞中の Egr-2陽性細胞の数を示す。 TEaマウス、 0T-I I マウスおよび 7BL/6マウスに由来する脾臓の組織切片中の Egr-2分子を発現する細 胞を、 免疫組織化学により調べた結果を示す図である。  [Fig. 26] Fig. 26 shows the number of Egr-2 positive cells in the follicle. FIG. 4 shows the results of immunohistochemical examination of cells expressing Egr-2 molecules in spleen tissue sections derived from TEa mice, 0T-I I mice and 7BL / 6 mice.
[図 2 7 ] 図 27は、 CD4+ CD25" LAG3+ T細胞の養子導入による TEa TCRトラン スジエニックマウスにおける大腸炎の自然発生的発症が阻害されることを示す図で ある。 [FIG. 27] FIG. 27 shows that spontaneous development of colitis is inhibited in TEa TCR transgenic mice by adoptive transfer of CD4 + CD25 "LAG3 + T cells.
[図 2 8 ] 図 28は、 ヒト扁桃腺細胞のうち、 LAG-3表面抗原は CD4陽性細胞の うちの CD25陰性の細胞 (図 28a)、 かつ CD45R0陽性の細胞 (図 28b) において発現が 増強されることを示す図である。  [Fig. 28] Fig. 28 shows that LAG-3 surface antigen is enhanced in CD25 negative cells (Fig. 28a) and CD45R0 positive cells (Fig. 28b) among human tonsil cells. FIG.
[図 2 9 ] 図 29は、 CD45R0陽性のヒト LAG-3発現細胞において、 Egr2 mRNA、 [FIG. 29] FIG. 29 shows the expression of Egr2 mRNA, CD45R0 positive human LAG-3 expressing cells,
IL-10 mRNA、 LAG-3 mRNAの発現が増強されることを示す図である。 It is a figure which shows that the expression of IL-10 mRNA and LAG-3 mRNA is enhanced.
発明の実施の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の発明者らはまず、 T細胞アナジー (不応性) に関連する転写因子であると 報告された遺伝子、 Egr-2遺伝子が、 制御性 T細胞の活性と関連があるかどうかの検 討を行った。 具体的には、 CD4+ T細胞に Egr-2遺伝子を導入し、 その形質を導入した T細胞をマウスに移入したところ、 外来性抗原に対する遅延型過敏反応が顕著に抑制 されることが明らかになった。 このことから、 Egr- 2遺伝子が、 制御性 T細胞の活性 と関連があることが示された。 さらに、 抗原特異的 T細胞レセプ夕一を Egr- 2遺伝子 と共導入することにより、 その抑制能は増強され、 抗原特異的抑制誘導が可能である ことも合わせて示された。 The inventors of the present invention first examined whether the Egr-2 gene, a gene reported to be a transcription factor associated with T cell anergy (refractory), is associated with the activity of regulatory T cells. Went. Specifically, the Egr-2 gene was introduced into CD4 + T cells, and the traits were introduced When T cells were transferred to mice, it was revealed that delayed hypersensitivity reaction to foreign antigens was remarkably suppressed. This indicates that the Egr-2 gene is associated with the activity of regulatory T cells. It was also shown that co-introduction of antigen-specific T cell receptor with Egr-2 gene enhances its suppressive ability and induces antigen-specific suppression.
この知見に基づいて、 Egr-2遺伝子を導入した T細胞の遺伝子発現プロファイルを 詳細に検討したところ、 この細胞は制御性 T細胞に関連する細胞表面分子 LAG-3につ いての mRNA発現と、 細胞表面でのそのタンパク質の発現が亢進していることが分か つた。 このような特徴を手掛かりとしてマウス脾臓内に存在する細胞について Egr-2 の高発現細胞集団を探索したところ、 CD4陽性 CD25陰性 CD45RB陰性 LAG-3陽性の T 細胞において、 Egr-2の mRNA発現量が極めて高いことが明らかになった。  Based on this finding, we examined the gene expression profile of T cells into which Egr-2 gene was introduced in detail. It was found that the expression of the protein on the cell surface was enhanced. Using these characteristics as a clue, we searched for a cell population that highly expresses Egr-2 in cells present in the mouse spleen. As a result, we found that the expression level of Egr-2 mRNA in CD4 positive CD25 negative CD45RB negative LAG-3 positive T cells. Was found to be extremely high.
このような細胞表面抗原特性を有する T細胞はこれまでに全く知られていないこと から、 本願発明者らは、 CD 陽性 CD25陰性 CD45RB陰性 LAG-3陽性の特徴を有する新 規な T細胞集団が、 T細胞の免疫寛容誘導機構に重要な役割を果たし、 そして自己免 疫疾患を十分にコントロールすることができる制御性 T細胞であると考え、詳細な解 析を行った。  Since T cells having such cell surface antigen characteristics have never been known, the present inventors have developed a new T cell population having the characteristics of CD positive CD25 negative CD45RB negative LAG-3 positive. A detailed analysis was performed, considering that it is a regulatory T cell that plays an important role in the immune tolerance induction mechanism of T cells and can sufficiently control autoimmune diseases.
この細胞の特徴として、抗炎症作用の強いサイトカインとして知られる IL-10が高 発現しており、 また細胞自体の特性として、 in vi troにおいて CD4陽性 CD45RB高発 現のナイーブ T細胞の細胞分裂を抑制し、 また in vivoでは、 RAG1-んマウスへ CD4 陽性 CD45RB高発現のナイーブ T細胞を移入する腸炎モデルにおいて CD4陽性 CD25陰 性 CD45RB陰性 LAG- 3陽性 T細胞を移入することにより腸炎の発症を抑制することが 明らかになった。これらの細胞特性から、 CD 陽性(CD4+)、 CD25陰性 (CD25- )、 CD45RB 陰性 (低陽性) (CD45RB- (low) ) , および LAG3陽性 (LAG3+) の細胞表面抗原特性を 有する T細胞は、 制御性 Γ細胞であることが示唆された。  As a characteristic of this cell, IL-10, which is known as a cytokine with strong anti-inflammatory action, is highly expressed, and as a characteristic of the cell itself, in vitro, CD4 positive CD45RB highly expressed naive T cell division is observed. In vivo, in vivo enteritis model in which naive T cells with high expression of CD4 + CD45RB are transferred to RAG1-mouse mice, the onset of enteritis is induced by transfer of CD4 + CD25 negative CD45RB negative LAG-3 + T cells. It became clear to suppress. From these cell characteristics, T cells with cell surface antigen characteristics of CD positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG3 positive (LAG3 +) It was suggested that it is a regulatory Γ cell.
また、上述のマウスの知見に基づいて、ヒト扁桃腺内に存在する細胞について Egr-2 の高発現細胞集団を探索したところ、 CD4陽性 CD25陰性 CD45R0陽性 LAG-3陽性の T 細胞において、 Egr-2の mRNA発現量が極めて高いことが明らかになった。マウスの場 合に CD45RB陰性 (低陽性) のメモリー T細胞集団は、 ヒトの場合に CD45R0蛍光強度 が増強している一集団として分取することも出来ることが知られていたが、、ヒ卜から 上述の T細胞が得られたことは、 この従来の知見と整合していた。 また、 この CD4陽 性 CD25陰性 CD45R0陽性 LAG- 3陽性の T細胞は、 マウスの CD4陽性 CD25陰性 CD45RB 陰性 LAG-3陽性の T細胞と同様に、 IL-10が高発現していることも示された。 In addition, based on the knowledge of the mouse described above, a search was made for a cell population that highly expresses Egr-2 for cells present in the human tonsils. As a result, CD4 positive CD25 negative CD45R0 positive LAG-3 positive T cells The mRNA expression level of 2 was found to be extremely high. The CD45RB negative (low positive) memory T cell population in mice is the CD45R0 fluorescence intensity in humans. However, the fact that the above-mentioned T cells were obtained from rabbits was consistent with this conventional finding. The CD4 positive CD25 negative CD45R0 positive LAG-3 positive T cells, like mouse CD4 positive CD25 negative CD45RB negative LAG-3 positive T cells, also show high IL-10 expression. It was done.
そして、 本発明の発明者らは、 これらの細胞が Egr-2の発現量が極めて高いという 特徴を有することにちなんで、 この細胞を 「Egr-2 Treg細胞」 と命名した。  The inventors of the present invention named these cells “Egr-2 Treg cells” because these cells have the feature that the expression level of Egr-2 is extremely high.
本発明において得られた 「Egr-2 Treg細胞」 を、 これまでも知られていた制御性 T 細胞 「Foxp3 Treg細胞」 (CD4陽性 CD25陽性 Foxp3陽性 T細胞) と比較した。 その結 果、 本発明の 「Egr-2 Treg細胞」 においては Foxp3遺伝子の高い発現は見られず、 一 方従来から知られていた制御性 T細胞「Foxp3 Treg細胞」 では Egr-2遺伝子の高発現 が見られない、 という対照的な特徴を示すことが明らかになった。 この結果から、 本 発明の 「Egr-2 Treg細胞」 と従来技術の 「Foxp3 Treg細胞」 とは、 相互に異なる独 立した T細胞集団と考えられた。  The “Egr-2 Treg cells” obtained in the present invention were compared with the regulatory T cells “Foxp3 Treg cells” (CD4-positive CD25-positive Foxp3-positive T cells) known so far. As a result, high expression of the Foxp3 gene was not observed in the “Egr-2 Treg cell” of the present invention, whereas the high Egr-2 gene was found in the conventionally known regulatory T cell “Foxp3 Treg cell”. It became clear that it showed a contrasting characteristic that no expression was seen. From these results, it was considered that the “Egr-2 Treg cells” of the present invention and the “Foxp3 Treg cells” of the prior art are independent T cell populations different from each other.
機能的 Foxp3遺伝子を欠損する scur fyというマウスは、 様々な臓器への炎症性細 胞浸潤を伴った自己免疫様疾患を引き起こし、生後 4週以内に死亡することが知られ ている。この scur fyマウスの脾臓内の T細胞を検討したところ、本発明の「Egr- 2 Treg 細胞」 と同じ CD4陽性 CD25陰性 CD45RB陰性 LAG- 3陽性の特徴を有する T細胞サブセ ッ卜が顕著に増殖していることが示された。 この細胞表面抗原プロファイルを有する T細胞サブセットを回収し、 i n vi t roにおいて機能を調べた。その結果、この細胞は、 in v i t roにおいて CD4陽性 CD45RB高発現のナイーブ T細胞の細胞分裂を抑制し、 ま た in v ivoにおいては腸炎を引き起こす CD4陽性 CD45RB高発現のナイーブ T細胞を 移入した RAGl -んマウスへ移入したところ腸炎の発症を抑制する活性を有することが 明らかになった。 このような細胞表面抗原プロフアイルの共通性および細胞の機能の 共通性から判断して、 scur fyマウスにおける CD4陽性 CD25陰性 CD45RB陰性 LAG - 3 陽性の特徴を有する T細胞サブセットは、 「Egr-2 Treg細胞」 であると考えられる。 scur fyマウスは Foxp3遺伝子を欠損するにも関わらず、 「Egr- 2 Treg細胞」が scur fy マウスにおいて顕著に存在していることから判断して、 「Egr-2 Treg細胞」 は Foxp3 遺伝子からは独立した特徴を有していることが裏付けられた。 一方、 Egr-2遺伝子ノックアウトマウスは、 菱脳の形成障害、 末梢神経の髄鞘化障 害等の症状を発症し、 胎児期に死亡する、 胎生致死の特徴を有することが知られてい る (Genes Dev. 7 1993, pp. 207卜 2084)。 そこで、 本発明者らは、 レトロウイルス ベクタ一を用いて Egr-2遺伝子の発現を抑制する sh-RNA配列を骨髄細胞中で発現し た、 骨髄キメラマウスを作製した。 このマウスは、 骨髄移植後、 約 4週間で死亡し、 組織学的に検討したところ腸炎を発症していることが明らかになった。 このように、 Egr-2 遺伝子の欠損により、 本来生体内に存在しているはずの CD4 陽性 CD25 陰性 CD45RB陰性 LAG-3陽性の細胞が減少し、その結果として腸炎などの制御性 T細胞の機 能低下に伴う臨床症状を発現することが示された。 A mouse called scur fy, which lacks the functional Foxp3 gene, is known to cause autoimmune-like disease with inflammatory cell infiltration into various organs and die within 4 weeks of birth. When T cells in the spleen of this scur fy mouse were examined, the same T4 subcells with the characteristics of CD4 positive CD25 negative CD45RB negative LAG-3 positive as the "Egr-2 Treg cells" of the present invention proliferated remarkably. It was shown that T cell subsets with this cell surface antigen profile were collected and examined for function in vitro. As a result, these cells suppressed the cell division of naive T cells with high expression of CD4 + CD45RB in vitro, and RAGl transfected with naive T cells with high expression of CD4 + CD45RB causing intestinal inflammation in vivo. -When transferred to mice, it was found to have an activity to suppress the onset of enteritis. Judging from the commonality of these cell surface antigen profiles and the common function of cells, T cell subsets with CD4-positive CD25-negative CD45RB-negative LAG-3 positive characteristics in scur fy mice are `` Egr-2 "Treg cells". Judging from the fact that “Egr-2 Treg cells” are prominently present in scur fy mice even though scur fy mice lack the Foxp3 gene, “Egr-2 Treg cells” are It was confirmed that it has independent characteristics. On the other hand, Egr-2 gene knockout mice are known to have the characteristics of embryonic lethality that develops symptoms such as impaired formation of the hindbrain and myelination of peripheral nerves and die during fetal period ( Genes Dev. 7 1993, pp. 207-2084). Therefore, the present inventors produced a bone marrow chimeric mouse in which a sh-RNA sequence that suppresses the expression of the Egr-2 gene was expressed in bone marrow cells using a retrovirus vector. The mouse died approximately 4 weeks after bone marrow transplantation, and histological examination revealed that it developed enteritis. Thus, the Egr-2 gene deficiency reduces the number of CD4-positive, CD25-negative, CD45RB-negative, LAG-3-positive cells that should be present in the body, resulting in the mechanism of regulatory T cells such as enteritis. It was shown to develop clinical symptoms associated with reduced performance.
これらの知見を総合すると、 CD4陽性 CD25陰性 CD45RB陰性 LAG-3陽性の T細胞ま たは CD 陽性 CD25陰性 CD45R0陽性 LAG-3陽性の T細胞が in vi t roまたは in vivo において活性を有する制御性 T細胞の本体であり、その分化のために転写因子である Egr-2遺伝子が重要な役割を果たしている一方、 この制御性 T細胞は、 Foxp3遺伝子 による機能制御とは独立していることが示された。  Taken together these findings, CD4 positive CD25 negative CD45RB negative LAG-3 positive T cells or CD positive CD25 negative CD45R0 positive LAG-3 positive T cells are active in vitro or in vivo While the Tgr cell body and its transcription factor Egr-2 gene plays an important role in its differentiation, this regulatory T cell is shown to be independent of the functional control by the Foxp3 gene. It was done.
以上の知見に基づき、 本発明はその一態様において、 新規の制御性 T細胞として、 CD 陽性 CD25陰性 CD45RB陰性 LAG- 3陽性の T細胞または CD4陽性 CD25陰性 CD45R0 陽性 LAG-3陽性の T細胞、 「Egr-2 Treg細胞」 を提供する。 この細胞は、 上述したよ うに、 これまで知られていた制御性 T細胞である 「Foxp3 Treg細胞」 とは異なる T 細胞サブセッ卜に属する細胞集団である。  Based on the above findings, in one embodiment of the present invention, the present invention provides a novel regulatory T cell as a CD positive CD25 negative CD45RB negative LAG-3 positive T cell or CD4 positive CD25 negative CD45R0 positive LAG-3 positive T cell, "Egr-2 Treg cells" are provided. As described above, these cells are a cell population belonging to a T cell subset different from “Foxp3 Treg cells” which are regulatory T cells known so far.
本発明において 「Egr- 2」 という場合、 ヒト 「Egr-2」 については GenBankァクセッ シヨン番号 P 1 1 161により示されるアミノ酸配列を有するタンパク質およびそれをコ —ドするヌクレオチド配列のことを、 マウス 「Egr-2」 については GenBankァクセッ ション番号 NP_034248により示されるアミノ酸配列を有するタンパク質およびそれを コードするヌクレオチド配列のことを、 ラット 「Egr- 2」 については GenBankァクセ ッション番号 NP— 446085により示されるァミノ酸配列を有する夕ンパク質およびそれ をコードするヌクレオチド配列のことを、 それぞれいう。  In the present invention, the term “Egr-2” refers to the protein having the amino acid sequence represented by GenBank Accession No. P 1 1 161 and the nucleotide sequence encoding it for human “Egr-2”. For Egr-2, the protein having the amino acid sequence indicated by GenBank accession number NP_034248 and the nucleotide sequence encoding the protein, and for rat “Egr-2”, the amino acid indicated by GenBank accession number NP—446085. A protein having a sequence and a nucleotide sequence encoding the protein are respectively referred to.
本発明において Egr- 2遺伝子の発現の有無を検出する場合、 Egr- 2遺伝子から発現 された mRNA またはそれから作成した cDNA を铸型として、 ヒトの場合 gcaccagc tg tctgacaaca tctac (SEQ ID NO: 1) をフォワードプライマーとしてそして agcaaagctg ctgggatatgg (SEQ ID NO: 2) をリバースプライマーとして、 マウスの場合 agccgt t tec ctgtcctctg (SEQ ID NO: 3) をフォワードプライマ一としてそして gtccctcacc acctccactt (SEQ ID NO: 4) をリバースプライマ一として、 一般的な PCRプロトコル にしたがって増幅させることにより検出することができる。 In the present invention, when detecting the presence or absence of expression of the Egr-2 gene, mRNA expressed from the Egr-2 gene or cDNA prepared therefrom is used as a saddle, and in the case of human gcaccagc tg tctgacaaca tctac (SEQ ID NO: 1) as a forward primer and agcaaagctg ctgggatatgg (SEQ ID NO: 2) as a reverse primer, for mice agccgt t tec ctgtcctctg (SEQ ID NO: 3) as a forward primer and gtccctcacc acctccactt (SEQ ID NO: 4) can be detected as a reverse primer by amplification according to a general PCR protocol.
一方、 本発明において 「LAG-3」 という場合、 ヒト 「LAG- 3」 については GenBankァク セッション番号 P_002277により示されるァミノ酸配列を有する夕ンパク質およびそ れをコードするヌクレオチド配列のことを、 マウス 「LAG-3」 については GenBankァ クセッション番号 P_032505により示されるァミノ酸配列を有する夕ンパク質および それをコードするヌクレオチド配列のことを、 ラット 「LAG-3」 については GenBank ァクセッション番号 NP— 997678により示されるアミノ酸配列を有するタンパク質およ びそれをコードするヌクレオチド配列のことを、 それぞれいう。 On the other hand, when referring to “LAG-3” in the present invention, for human “LAG-3”, the protein having the amino acid sequence represented by GenBank accession number P_002277 and the nucleotide sequence encoding it are as follows: For mouse “LAG-3”, refer to the protein having the amino acid sequence indicated by GenBank accession number P_032505 and the nucleotide sequence encoding it. For rat “LAG-3”, GenBank accession number NP. — Refers to the protein having the amino acid sequence represented by 997678 and the nucleotide sequence encoding it, respectively.
本発明において LAG-3遺伝子の発現の有無を検出する場合、 LAG-3遺伝子から発現 された mRNA またはそれから作成した cDNA を铸型として、 ヒトの場合 atctgcagga acagcagctc aa (SEQ ID NO: 5) をフォワードプライマ一としてそして agggatccag gtgacccaaag (SEQ ID NO: 6) をリバースプライマーとして、 マウスの場合 t tgct tctgg gactgctttg (SEQ ID NO: 7) をフォワードプライマ一としてそして gccactgtct ggttgatgtt g (SEQ ID NO: 8) をリバースプライマ一として、 一般的な PCRプロトコ ルにしたがって増幅させることにより検出することができる。  In the present invention, when detecting the presence or absence of expression of the LAG-3 gene, mRNA expressed from the LAG-3 gene or cDNA prepared therefrom is used as a saddle type, and in humans atctgcagga acagcagctcaa (SEQ ID NO: 5) is forwarded. Reverse primer as a primer and agggatccag gtgacccaaag (SEQ ID NO: 6) as reverse primer, for mice t tgct tctgg gactgctttg (SEQ ID NO: 7) as forward primer and gccactgtct ggttgatgtt g (SEQ ID NO: 8) As a primer, it can be detected by amplification according to a general PCR protocol.
一方、 本発明において 「Foxp3」 という場合、 ヒト 「Foxp3」 については GenBankァ クセッション番号 NP— 054728により示されるアミノ酸配列を有するタンパク質および それをコードするヌクレオチド配列のことを、 マウス 「Foxp3」 については GenBank ァクセッション番号 NP— 473380により示されるァミノ酸配列を有する夕ンパク質およ びそれをコードするヌクレオチド配列のことを、 それぞれいう。  On the other hand, the term “Foxp3” in the present invention refers to the protein having the amino acid sequence represented by GenBank accession number NP-054728 and the nucleotide sequence encoding the same for human “Foxp3”, and for mouse “Foxp3” It refers to the protein having the amino acid sequence represented by GenBank accession number NP-473380 and the nucleotide sequence encoding it.
本発明において Foxp3遺伝子の発現の有無を検出する場合、 Foxp3遺伝子から発現 された mRNAまたはそれから作成した cDNAを铸型として、 マウスの場合 cagctgccta cagtgcccct ag (SEQ ID NO: 9) をフォワードプライマーとしてそして catttgccag cagtgggtag (SEQ ID NO: 10) をリバースプライマーとして、 一般的な PCRプロトコ ルにしたがって増幅させることにより検出することができる。 In the present invention, when detecting the presence or absence of the expression of the Foxp3 gene, mRNA expressed from the Foxp3 gene or cDNA prepared therefrom is used as a saddle type, and in the case of a mouse, cagctgccta cagtgcccctag (SEQ ID NO: 9) is used as a forward primer and catttgccag cagtgggtag (SEQ ID NO: 10) as a reverse primer and a general PCR protocol Can be detected by amplification according to
上述した 「Egr-2 Treg細胞」 は、 CD4、 CD25、 CD45RBまたは CD45R0、 および LAG - 3 の 4種類の細胞表面抗原について、 CD4が陽性であること、 CD25が陰性であること、 CD45RBが陰性 (低陽性) または CD45R0が陽性であること、 そして LAG-3が陽性であ ることを指標として、生体から採取される白血球集団または T細胞集団の中から単一 の細胞集団として単離することができる。 具体的には、 本発明の 「Egr-2 Treg細胞」 は、 CD4、 CD25、 CD45RBまたは CD45R0、 および LAG-3についてセルソー夕一にて選別 することにより、 単離することができる。 CD4、 CD25、 CD45RBまたは CD45R0、 および LAG- 3の発現に基づく選別は、 どのような順番で行ってもよい。  The above-mentioned “Egr-2 Treg cells” are CD4, CD25, CD45RB or CD45R0, and LAG-3 cell surface antigens, CD4 positive, CD25 negative, CD45RB negative ( (Low positive) or CD45R0 positive, and LAG-3 positive as an indicator, isolated from a leukocyte population or T cell population collected from a living body as a single cell population it can. Specifically, the “Egr-2 Treg cell” of the present invention can be isolated by sorting with CD5, CD25, CD45RB or CD45R0 and LAG-3 in a cell saw. Sorting based on the expression of CD4, CD25, CD45RB or CD45R0, and LAG-3 may be done in any order.
ヒトにおいては ^81"-2 68細胞」 の供給源となる T細胞集団は、 生体の末梢血か ら得られたリンパ球集団または T細胞集団を使用することができる。 具体的には、 末 梢血を血液成分分離装置を用いて体外循環(ァフェレ一シス) を行い末梢血単核球を 分離し、 さらに CD4、 CD25、 CD45RBまたは CD45R0、 および LAG-3の 4種類の抗体で染 色を行い、 セルソ一夕一を用い 「Egr-2 Treg細胞」 を単離'採取することができる。 また、 セルソー夕一の代わりに、 I solex、 Cl iniMACSなどの磁気細胞分離装置を用い て、 「Egr-2 Treg細胞」 を分離採取することもできる。  In humans, the lymphocyte population or T cell population obtained from the peripheral blood of the living body can be used as the T cell population that is the source of ^ 81 "-268 cells". Specifically, peripheral blood mononuclear cells are separated by extracorporeal circulation (pheresis) using the blood component separation device of peripheral blood, and four types of CD4, CD25, CD45RB or CD45R0, and LAG-3 The Egr-2 Treg cells can be isolated and collected using Celso overnight. In addition, “Egr-2 Treg cells” can be separated and collected using a magnetic cell separation device such as Isolex or CliniMACS instead of Cell Soryu.
上述したリンパ球集団または T細胞集団を、 そのまま上述した CD4、 CD25、 CD45RB または CD45RO、 および LAG-3についてセルソ一ターの処理に供して 「Egr-2 Treg細 胞」 を単離してもよいが、 細胞数が不足する場合には、 上述したリンパ球集団または T細胞集団を所望の程度まで増殖させた後に、 上述した CD4、 CD25, CD45RB または CD45R0, および LAG-3についてセルソーターの処理に供して 「Egr-2 Treg細胞」 を単 離してもよい。 その様な場合、 リンパ球集団または T細胞集団を CD3 . CD28共刺激、 TGF-betaおよび IL- 2存在下で培養することにより増殖させることが出来る。  The above-mentioned lymphocyte population or T cell population may be subjected to cell sorter treatment for the above-mentioned CD4, CD25, CD45RB or CD45RO, and LAG-3 as it is to isolate “Egr-2 Treg cells”. If the number of cells is insufficient, the above-mentioned lymphocyte population or T-cell population is expanded to a desired level, and then subjected to cell sorter treatment for the above-mentioned CD4, CD25, CD45RB or CD45R0, and LAG-3. “Egr-2 Treg cells” may be isolated. In such cases, lymphocyte populations or T cell populations can be grown by culturing in the presence of CD3.CD28 costimulation, TGF-beta and IL-2.
さらに、 上述した CD4、 CD25, CD45RBまたは CD45RO、 および LAG-3についてセルソ —夕一の処理により単離された ^81"-2 1: 8細胞」 を、 そのまま使用することもでき るが、 細胞数が不足する場合には、 単離された §1-2 細胞」 を CD3 ' CD28共刺 激、 TGF- be t aおよび IL-2存在下で培養することによりさらに増殖させることもでき る。 また、 強力な臓器移行性が求められる治療に関しては、 上記手法にて単離したIn addition, the above-mentioned CD81, CD25, CD45RB or CD45RO, and LAG-3 can be used as they are. If the number is insufficient, the isolated § 1-2 6 § cells can be further expanded by culturing in the presence of CD3 'CD28 co- stimulation , TGF- beta and IL-2. . In addition, for treatments that require strong organ migration, they were isolated using the above method.
「Egr-2 Treg細胞」 に、 臓器特異的抗原に対する T細胞レセプ夕一遺伝子をレトロゥ ィルスベクターで導入することでより抗原特異的な治療効果を増強することが出来 る。 By introducing a T cell receptor gene against an organ-specific antigen into “Egr-2 Treg cells” using a retrovirus vector, the antigen-specific therapeutic effect can be enhanced.
本発明において細胞表面抗原 CD4が陽性である細胞は、細胞を CD4に対する抗体を 使用するセルソ一夕一により明確に CD4蛍光強度が増強している一集団であることに 基づいて分取することにより、 単離することができる。 CD4に対する抗体としては、 ヒトの場合 Al 1 ophycocyan i n (APC)標識抗 CD 抗体 (BDbiosci ence社、 Beckman Coulter 社、 AbD Serotec 社などから入手可能)、 マウスの場合 FITC標識抗 CD4抗体 (BD bioscience社、 Beckman Coulter社、 BioLegend社などから入手可能) を利用するこ とができる。  In the present invention, cells that are positive for the cell surface antigen CD4 are sorted based on the fact that the cells are clearly one group in which the CD4 fluorescence intensity is enhanced more and more by Celso using an antibody against CD4. Can be isolated. As antibodies to CD4, Al 1 ophycocyan in (APC) labeled anti-CD antibody (available from BDbioscience, Beckman Coulter, AbD Serotec, etc.) for humans, FITC labeled anti-CD4 antibody (BD bioscience) for mice Available from Beckman Coulter, BioLegend, etc.).
本発明において細胞表面抗原 CD25が陰性である細胞は、細胞を CD25に対する抗体 を使用するセルソーターにより明確に CD25蛍光強度が増強している一集団を除去し た集団であることに基づいて分取することにより、単離することができる。 CD25に対 する抗体としては、 ヒトの場合 Allophycocyanin-Cyanin-7 (APC-Cy7) 標識抗 CD25 抗体 (BD bioscience社、 BioLegend社などから入手可能)、 マウスの場合 APC標識抗 CD25抗体 (BD bioscience社、 BioLegend社などから入手可能) を利用することがで さる。  In the present invention, cells that are negative for the cell surface antigen CD25 are sorted based on the fact that the cells are a population obtained by removing one population in which the CD25 fluorescence intensity is clearly enhanced by a cell sorter using an antibody against CD25. Can be isolated. As for antibodies against CD25, allophycocyanin-Cyanin-7 (APC-Cy7) labeled anti-CD25 antibody (available from BD bioscience, BioLegend, etc.) for humans, and APC-labeled anti-CD25 antibody (BD bioscience) for mice. Available from BioLegend, etc.).
本発明において細胞表面抗原 CD45RBが陰性(低陽性)である細胞は、細胞を CD45RB に対する抗体を使用するセルソ一夕一により CD4陽性細胞のうち相対的に CD45RBを 強発現している 70%の細胞を除去すること (以下本文中における 「CD45RB ex low] と同義とする) に基づいて分取することにより、 単離することができる。 CD45RBに対 する抗体としては、ヒ卜の場合 Phycoerythrin (PE)標識抗 CD45RB抗体 (BD bioscience 社、 AbD Serotec 社、 BioLegend 社などから入手可能)、 マウスの場合 Fluorescein isothiocyanate (FITC) 標識抗 CD45RB抗体 (BD bioscience社、 BioLegend社、 Dako 社などから入手可能) を利用することができる。 尚、 ヒ卜の場合 CD45RB陰性 (低陽 性)の細胞集団は、 CD45R0蛍光強度が増強している一集団として分取することも出来 る。 この場合、 細胞を CD45RB に対する抗体を使用するセルソー夕一により明確に CD45R0蛍光強度が増強している一集団であることに基づいて分取することにより、単 離することができる。 CD45R0 に対する抗体としては、 ヒトの場合 PE標識抗 CD45R0 抗体 (BD b i osc i ence社などから入手可能) を利用することができる。 According to the present invention, cells that are negative (low positive) for the cell surface antigen CD45RB are 70% of cells that are relatively strongly expressing CD45RB among CD4 positive cells according to CELSO overnight using an antibody against CD45RB. The antibody against CD45RB can be isolated by using Phycoerythrin (PE) as an antibody against CD45RB (hereinafter, synonymous with “CD45RB ex low” in the main text). ) Labeled anti-CD45RB antibody (available from BD bioscience, AbD Serotec, BioLegend, etc.) For mice Fluorescein isothiocyanate (FITC) labeled anti-CD45RB antibody (available from BD bioscience, BioLegend, Dako, etc.) In the case of rabbits, the CD45RB negative (low positive) cell population can also be sorted as a single population with enhanced CD45R0 fluorescence intensity. versus Clearly by cell sorting evening one to use that antibody Isolation can be performed by sorting based on the fact that the CD45R0 fluorescence intensity is enhanced. As an antibody against CD45R0, a PE-labeled anti-CD45R0 antibody (available from BD bioscience, etc.) can be used for humans.
本発明において細胞表面抗原 LAG-3が陽性である細胞は、細胞を LAG- 3に対する抗 体を使用するセルソー夕一により明確に LAG-3蛍光強度が増強している一集団である ことに基づいて分取することにより、 単離することができる。 LAG-3に対する抗体と しては、 ヒトの場合 ATT0 488標識抗 LAG-3抗体 (Al ex i s Bi ochemi ca l s社などから入 手可能)、 マウスの場合 PE標識抗 LAG-3抗体 (BD pharmingen社などから入手可能) を利用することができる。  The cells positive for the cell surface antigen LAG-3 in the present invention are based on the fact that the cells are a group in which the LAG-3 fluorescence intensity is clearly enhanced by a cell saw using an antibody against LAG-3. It can be isolated by separating it. As an antibody against LAG-3, ATT0 488-labeled anti-LAG-3 antibody (available from Alex is Biochem ls) is available for humans, and PE-labeled anti-LAG-3 antibody (BD pharmingen) for mice. Available from companies).
上述したように、 本発明の 「Egr- 2 Treg細胞」 は、 制御性 T細胞として局所的な免 疫寬容を引き起こす機能を有することから、本発明は、単離された「Egr-2 Treg細胞」 を構成成分として含む、 自己抗原に対する免疫反応に起因または抗原-抗体反応によ り抗原が排除されることに起因する種々の疾患、 例えば、 種々の自己免疫疾患、 移植 臓器拒絶など、 を治療するための医薬組成物を提供することができる。  As described above, since the “Egr-2 Treg cell” of the present invention has a function of causing local immune tolerance as a regulatory T cell, the present invention provides an isolated “Egr-2 Treg cell”. ”As a constituent component, for treating various diseases caused by an immune reaction against a self-antigen or due to an antigen being eliminated by an antigen-antibody reaction, such as various autoimmune diseases, transplanted organ rejection, etc. A pharmaceutical composition can be provided.
本発明の単離された 「Egr-2 Treg細胞」 を、 例えば種々の自己免疫疾患、 移植臓器 拒絶などを治療するための医薬組成物において利用する場合、 2 X 106 ce l l s/kgから 4 X 106 ce l l s/kgの細胞懸濁液 100 mlから 500 mlを経静脈的に投与することにより行 うことができる。このようにして投与した本発明の単離された「Egr- 2 Treg細胞」は、 血流に乗って全身に運ばれ、 局所的な免疫寛容を誘導することができる。 When the isolated “Egr-2 Treg cell” of the present invention is used in a pharmaceutical composition for treating various autoimmune diseases, transplant organ rejection, etc., 2 × 10 6 cells / kg to 4 This can be done by intravenous administration of 100 to 500 ml of a cell suspension of X 10 6 cels / kg. The isolated “Egr-2 Treg cells” of the present invention administered in this manner are carried throughout the body in the bloodstream and can induce local immune tolerance.
本発明において 「抗原-抗体反応により抗原が排除されることに起因する種々の疾 患」 という場合、 主として移植臓器拒絶などの疾患のことをいうが、 これらには限定 されない。 また、 「自己抗原に対する免疫反応に起因する種々の疾患」 という場合、 主として関節リウマチ、 膠原病、 炎症性腸疾患、 多発性硬化症、 1型糖尿病などの自 己免疫疾患のことをいう。  In the present invention, “various diseases caused by antigens being eliminated by antigen-antibody reaction” mainly refers to diseases such as rejection of transplanted organs, but is not limited thereto. The term “various diseases caused by immune responses to self antigens” refers to autoimmune diseases such as rheumatoid arthritis, collagen disease, inflammatory bowel disease, multiple sclerosis, type 1 diabetes.
本発明はまた、 本発明の単離された ^§1"-2 6£細胞」 の増殖を誘導することがで きる化合物をスクリーニングする方法もまた、 提供する。 具体的には、 (a) 本発明の §1"-2 1^§細胞」 を、 被検化合物の存在下にて培養する工程;(b)培養した「Egr-2The present invention also provides a method of screening for a compound capable of inducing the proliferation of the isolated ^ §1 "-26 £ cell" of the present invention. Specifically, (a) §1 of the present invention "-2 1 ^ a § cell", step culturing in the presence of a test compound; (b) cultured "Egr-2
Treg細胞」 中での Egr-2遺伝子の発現の変化または LAG3遺伝子の発現の変化を測定 する工程;(c) Egr-2遺伝子の発現の増加または LAG3遺伝子の発現の増加を導く化合 物を、 本発明の 「Egr-2Treg細胞」 を増加させる化合物として選択する工程;からな る、 「Egr- 2 Treg細胞」 を増加させる化合物のスクリーニング方法を提供する。 Changes in Egr-2 gene expression or LAG3 gene expression in Treg cells (C) selecting a compound that leads to increased expression of Egr-2 gene or increased expression of LAG3 gene as a compound that increases “Egr-2 Treg cells” of the present invention; A method for screening a compound that increases “Egr-2 Treg cells” is provided.
このような化合物は、 in vitro において単離された 「Egr- 2 Treg細胞」 を増殖さ せる際に利用することもでき、 または in vivoで 「Egr-2 Treg細胞」 を増殖させるこ とにより免疫寛容を誘導するために利用することもできる。  Such compounds can also be used to grow "Egr-2 Treg cells" isolated in vitro or immunize by growing "Egr-2 Treg cells" in vivo. It can also be used to induce tolerance.
実施例 Example
実施例 1:  Example 1:
本実施例においては、 T細胞アナジ一に関連すると予想される転写因子 Egr-2が、 どのような機序で T細胞の抑制能に関連しているのかを明らかにすることを目的とし て、 T細胞に Egr-2遺伝子を導入して、 Egr-2形質転換 T細胞の作用を調べた。  The purpose of this example is to clarify the mechanism by which the transcription factor Egr-2, which is expected to be related to T cell analogy, is related to the T cell suppressive ability. The Egr-2 gene was introduced into T cells, and the effects of Egr-2 transformed T cells were examined.
まず、 cDNAライブラリより得られた Full lengthの Egr2 cDNAをレトロウイルスべ クタ一 pMX (Onishi M, et al., 1996 Exp. Hematol. 24: 324-329) に導入し、 pMX-Egr2-IRES-GFPレトロウイルスベクターを作製した(図 1)。同様の手法にて、 Foxp3、 D0TAE、 D0TBEを導入したレトロウイルスベクタ一を作製した (D0TAE、 D0TBEはそれ ぞれニヮトリ卵白アルブミン (OVA) に対する特異的 T細胞レセプター α鎖、 ]3鎖に 対応する cDNAである)。 尚、 Egr2および Foxp3は GFP (green fluorescent protein) 発現により移入遺伝子の発現を評価するため、 レトロウイルスベクタ一に IRES First, the full-length Egr2 cDNA obtained from the cDNA library was introduced into the retroviral vector pMX (Onishi M, et al., 1996 Exp. Hematol. 24: 324-329) and pMX-Egr2-IRES-GFP A retroviral vector was prepared (Figure 1). Using the same method, we created a retrovirus vector that introduced Foxp3, D0TAE, and D0TBE (D0TAE and D0TBE correspond to the specific T cell receptor α-chain for chicken ovalbumin (OVA), respectively] cDNA). Since Egr2 and Foxp3 are used to evaluate the expression of transferred genes by GFP (green fluorescent protein) expression,
(internal ribosomal entry site) /GFPを共導入したものを作製した。 また、 コン トロールとして mock pMX-IRES-GFPベクターを使用した (図 1)。 各プラスミドはパッ ケージング細胞株の PLAT- E細胞にトランスフエクシヨンすることにより遺伝子組み 換えレトロウィルス産生細胞を得た。ついでその培養上清より得られたレトロウィル スを RetroNectin (Takara, Japan) を用い脾細胞に感染させた。 (internal ribosomal entry site) / GFP was co-introduced. The mock pMX-IRES-GFP vector was used as a control (Fig. 1). Each plasmid was transfected into a packaging cell line, PLAT-E cells, to obtain genetically modified retrovirus-producing cells. The retrovirus obtained from the culture supernatant was then infected into splenocytes using RetroNectin (Takara, Japan).
このようにして得られた Mock (pMX-IRES-GFP) または Egr2 (pMX-Egr2-IRES-GFP) レトロウイルスベクタ一をマウス脾臓細胞に感染させて Egr2 を発現させ、 得られた マウス CD4 陽性脾細胞をフローサイトメ一夕一を用い、 GFP 発現を指標に各 4群 Mock (pMX-IRES-GFP) or Egr2 (pMX-Egr2-IRES-GFP) retrovirus vector obtained in this way was infected with mouse spleen cells to express Egr2, and the resulting mouse CD4-positive spleen Using flow cytometry, cells were divided into 4 groups each using GFP expression as an indicator.
(negative, low, mid, high) に分け分離採取した (図 2)。 そして、 図 2にて分離採 取した各 4群のそれぞれの細胞より cDNA合成を行い、 Egr2mRNA、 および LAG- 3 mRNA レベルにおける発現をリアルタイム PCR法にて検討した (図 3)。 尚、 mRNA発現は /3 - ァクチンにて標準化した相対的発現量である。 以下、 リアルタイム PCR法は同様の手 法を用いて解析を行った。その結果、 Egr2の発現とともに LAG- 3も発現増強を認めた (図 3)。 Separated and collected (negative, low, mid, high) (Fig. 2). Then, cDNA synthesis was performed from each cell of each of the 4 groups separated and collected in Fig. 2, and Egr2 mRNA and LAG-3 mRNA were synthesized. Expression at the level was examined by real-time PCR (Figure 3). The mRNA expression is a relative expression level normalized with / 3 -actin. The real-time PCR method was analyzed using the same method. As a result, LAG-3 expression was enhanced along with Egr2 expression (Fig. 3).
さらに、 in vivoにおける Egr2の抑制能評価のため、ニヮトリ卵白アルブミン(OVA) に対する遅延型過敏反応を検討した。 具体的には、 OVA 200 gと完全フロイン卜アジ ュバント (complete Freund's adj uvant, CFA、 Chondrexまたは BD Di fco) を混和し たものを Balb/cマウス (6〜8週齢) の尾部に皮内注射した。 初回免疫の 6日後に、 単離した脾単核細胞 (Balb/c マウス (6〜8 週齢)) に先述の pMX- Egr2- IRES- GFP、 pMX-Foxp3-IRES-GFP, pMX-DOTAE, pMX-DOTBE レトロウイルスをそれぞれ感染させ 72 時間後、 MACSカラム (Mi l tenyi Biotec) を用いて CD8、 - CDl lb、 - CD19陽性細胞をビ ォチン化抗 CD8抗体、 CDl lb抗体、 CD19抗体及びストレプトアビジン結合マグネット ビーズにより negat ive select ion し、 CD4 陽性細胞を濃縮させた後、 1 X 107 cel l s/mouseを 0VA免疫されたマウス尾部より静脈注射にて移入した。 各実験群は、 Mock (pMX-IRES-GFP)、 D011. 10 (pMX- D0TAE、 pMX-DOTBE)、 Foxp3 (pMX-Foxp3-IRES-GFP)、 Egr2 (pMX-Egr2-IRES-GFP) の各レトロウイルスを図表の如く感染させた (各群 n=12 匹)。 各レトロウイルス感染細胞移入 48時間後、 右足底部に OVA20 /x g/PBS100 lを 追加免疫し、 同時に左足底部に PBS 100 /^を投与、 追加免疫 24時間後に Δフットパ ッド (右フットパッド厚-左フッ hパッド厚) 匪を計測し遅延型過敏反応の指標 (Δ フットパッド (再免疫 24時間後 -再免疫前) mm) とした。 Furthermore, a delayed hypersensitivity reaction to chicken ovalbumin (OVA) was examined to evaluate the ability of Egr2 to suppress in vivo. Specifically, a mixture of OVA 200 g and complete Freund's adj uvant (CFA, Chondrex or BD Di fco) was intradermally applied to the tail of Balb / c mice (6-8 weeks old). Injected. Six days after the first immunization, isolated splenic mononuclear cells (Balb / c mice (6-8 weeks old)) were treated with pMX-Egr2- IRES-GFP, pMX-Foxp3-IRES-GFP, pMX-DOTAE, 72 hours after each infection with pMX-DOTBE retrovirus, CD8, -CDl lb, -CD19 positive cells were biotinylated using a MACS column (Milttenyi Biotec), and CD19 antibody and Strepton were biotinylated. After negative selection with avidin-coupled magnetic beads and CD4 positive cells were concentrated, 1 × 10 7 cells / mouse was transferred by intravenous injection from the tail of a mouse immunized with 0VA. Each experimental group consists of Mock (pMX-IRES-GFP), D011.10 (pMX-D0TAE, pMX-DOTBE), Foxp3 (pMX-Foxp3-IRES-GFP), Egr2 (pMX-Egr2-IRES-GFP) Retroviruses were infected as shown (n = 12 animals in each group). 48 hours after transfer of each retrovirus-infected cell, booster immunization with OVA20 / xg / PBS100 l on the right foot and PBS 100 / ^ at the same time on the left foot, Δ footpad (right footpad thickness- Left foot pad thickness) 匪 was measured and used as an index of delayed hypersensitivity reaction (Δ foot pad (24 hours after reimmunization-before reimmunization) mm).
この結果、 Egr2は Foxp3と同様、 遅延型過敏反応を抑制した。 また、 0VA特異的 T 細胞レセプ夕一を共移入することによりその抑制効果は著しく増強され、抗原特異的 免疫抑制が可能なことが示された (図 4)。  As a result, Egr2 suppressed delayed hypersensitivity reaction like Foxp3. In addition, co-transfer of 0VA-specific T cell receptor significantly enhanced the suppressive effect, indicating that antigen-specific immunosuppression was possible (Fig. 4).
さらに、図 2と同実験条件にて Egr2 (p X-Egr2-IRES-GFP)と DO 11. 10 (pMX-DOTAE, pMX-DOTBE)を共移入したマウスの追加免疫 24時間後の脾単核細胞をフローサイトメ トリーにて分離解析した。 脾単核細胞はフローサイトメ十リーにてリンパ球および In addition, spleen mononuclear 24 hours after booster immunization of mice co-transfected with Egr2 (p X-Egr2-IRES-GFP) and DO 11.10 (pMX-DOTAE, pMX-DOTBE) under the same experimental conditions as in Fig. 2. The cells were separated and analyzed by flow cytometry. Spleen mononuclear cells are lymphocytes and flow cytometry
CD 陽性細胞 gate後、 D011. 10T細胞レセプ夕一特異抗体 ΚΠ- 26抗体および GFPにて 展開し、 図中の如く各細胞集団を分離採取した。 また、 図 3中にて分離採取した細胞 より cDNA合成を行い、 Egr2 mRNA、 LAG-3 mRNA、 および Foxp3 mRNAレベルにおける 発現をリアルタイム PCR 法にて検討した。 この結果、 移入した細胞は PMX-Egr2-IRES-GFPにより Egr2を過剰発現するとともに、 LAG- 3の発現も増強され、 OVA特異的 T細胞レセプ夕一が共発現することにより、 LAG-3も発現がさらに著しく 増強され、 Egr- 2の抑制能には抗原特異的な T細胞レセプ夕一シグナルが重要である ことも示された (図 5、 図 6)。 After CD positive cell gate, it was developed with D011. 10T cell receptor specific antibody 26-26 antibody and GFP, and each cell population was separated and collected as shown in the figure. In addition, the cells isolated and collected in Fig. 3 CDNA synthesis was performed, and expression at the Egr2 mRNA, LAG-3 mRNA, and Foxp3 mRNA levels was examined by real-time PCR. As a result, the transferred cells overexpress Egr2 with PMX-Egr2-IRES-GFP, enhance the expression of LAG-3, and co-express the OVA-specific T cell receptor. Expression was further enhanced, indicating that an antigen-specific T cell receptor signal is important for the ability to suppress Egr-2 (Figures 5 and 6).
以上のことにより、 Egr2が in v ivoにおいて制御性 T細胞様の活性誘導をすること が示された。 また、 Egr2形質転換 Τ細胞が、 LAG- 3を顕著に発現し、 Egr2の発現量と LAG- 3の発現量が正相関を示し、 さらに LAG-3発現は抗原特異的 T細胞レセプ夕一に より増強されることが明らかになった。  These results indicate that Egr2 induces regulatory T cell-like activity in vivo. In addition, Egr2-transformed sputum cells express LAG-3 significantly, and the expression level of Egr2 and LAG-3 are positively correlated. Furthermore, LAG-3 expression is consistent with antigen-specific T cell reception. It became clear that it was strengthened more.
実施例 2:  Example 2:
本実施例においては、 Egr- 2遺伝子を発現する T細胞を採取することを目的として 細胞分取を行った。  In this example, cell sorting was performed for the purpose of collecting T cells expressing the Egr-2 gene.
マウス脾単核細胞を CD4-Cy7AP CD25- AP CD45RB- FIT LAG- 3- PEを用いてフロ 一サイトメータ一にて解析をおこなった。 その結果、 LAG-3表面抗原は CD4陽性細胞 のうち CD25陰性の細胞 (図 7a) CD45RB陰性から CD45RB弱陽性の細胞 (図 7b) に発 現の増強を認めた (Egr-2 Treg細胞)。 尚、 Foxp3-Tregは CD4陽性、 CD25陽性 T細胞 群と定義され、 Egr2-Tregとは異なった細胞集団である。  Mouse spleen mononuclear cells were analyzed with a flow cytometer using CD4-Cy7AP CD25-AP CD45RB-FIT LAG-3-PE. As a result, LAG-3 surface antigen showed enhanced expression in CD25 negative cells (Fig. 7a) CD45RB negative to CD45RB weak positive cells (Fig. 7b) among CD4 positive cells (Egr-2 Treg cells). Foxp3-Treg is defined as a CD4-positive and CD25-positive T cell group, and is a cell population different from Egr2-Treg.
さらに、 CD4陽性 T細胞を LAG-3発現の有無によりフロ一サイトメ一夕一を用いて 分離採取し、 cDNA合成後、リアルタイム PCR法にて LAG-3 mRNA、Egr2 mRNA、Foxp3 mRNA、 および I L- 10 mRNA発現を検討したところ、 LAG- 3発現細胞での Egr 2 mRNA, IL-10 mRNA, LAG-3 mRNAの発現増強を認めた (図 8)。 また、 Foxp3発現は LAG発現と有意な相関は 示さなかった。  In addition, CD4 positive T cells were isolated and collected using flow cytometry according to the presence or absence of LAG-3 expression. After cDNA synthesis, LAG-3 mRNA, Egr2 mRNA, Foxp3 mRNA, and IL were synthesized by real-time PCR. -10 mRNA expression was examined, and enhanced expression of Egr 2 mRNA, IL-10 mRNA, and LAG-3 mRNA in LAG-3 expressing cells was observed (Fig. 8). Foxp3 expression did not show significant correlation with LAG expression.
次に、 CD4陽性 CD45RB ex l ow細胞群にて gateした細胞を、 LAG- 3、 CD25にて展開 し、 CD4+ CD25- LAG3+ CD45RB ex l ow (Egr2- Treg)、 CD4+ CD25- LAG3- CD45RB ex l ow, Next, the cells gated in the CD4 positive CD45RB ex low cell group were expanded with LAG-3 and CD25, and then CD4 + CD25- LAG3 + CD45RB ex low (Egr2- Treg), CD4 + CD25- LAG3- CD45RB ex l ow,
CD4+ CD25+ CD45RB ex l owの 3群の細胞集団を分離採取した (図 9)。 Three cell populations, CD4 + CD25 + CD45RB ex low, were isolated and collected (FIG. 9).
図 9にて分離採取した細胞より cDNA合成を行い、リアルタイム PCR法にて Egr2 mRNA および Foxp3 mRNAの発現につき検討した。 その結果、 CD4+ CD25- LAG3+ CD45RB ex l ow (Egr2-Treg) において Egr2発現が最も強く、 Foxp3発現では同様の発現傾向は認め られなかった (図 10)。 CDNA was synthesized from the cells isolated and collected in Fig. 9, and the expression of Egr2 mRNA and Foxp3 mRNA was examined by real-time PCR. As a result, CD4 + CD25- LAG3 + CD45RB ex l ow (Egr2-Treg) showed the strongest expression of Egr2, and Foxp3 expression did not show the same expression tendency (Fig. 10).
さらに、 CD4陽性 CD25陰性細胞群にて gateした細胞を LAG-3、 CD45RBにて展開し、 図示の如く各細胞群をフローサイトメ一夕一にて分離採取、 cDNA合成後、 リアルタイ ム PCR法にて Egr2 mRNAおよび Foxp3 mRNAの発現につき検討した。 その結果、 CD4+ CD25- LAG- 3+ CD45RB ex lowにおいて Egr2発現が最も強く、 既知の Foxp3-Tregとは 異なった Egr2-Tregが存在することが示された (図 11、 図 12)。  In addition, cells gated in CD4 positive CD25 negative cell groups are expanded with LAG-3 and CD45RB, and each cell group is separated and collected by flow cytometry as shown in the figure, synthesized cDNA, and real-time PCR The expression of Egr2 mRNA and Foxp3 mRNA was examined by the method. As a result, it was shown that Egr2 expression was strongest in CD4 + CD25- LAG-3 + CD45RB ex low, and there was Egr2-Treg different from the known Foxp3-Treg (Fig. 11, Fig. 12).
実施例 3:  Example 3:
本実施例においては、 II 型コラーゲン誘導関節炎発症モデルを用いて Egr2-Treg の検討を行った。 ,  In this example, Egr2-Treg was examined using a type II collagen-induced arthritis onset model. ,
DBA- 1Jマウス (6〜8週齢) の尾部にゥシ由来 II型コラーゲンと完全フロイントァ ジュバント (complete Freund' s adjuvant, CFA、 Chondrexまたは BD Di fco) を混和 したものを皮内注射し (dayO)、 その後 II型コラーゲンの追加免疫 (day21) を行う ことにより II型コラーゲン誘導関節炎発症誘発を行った。 関節炎誘発後、 図 11と同 様の手法により各細胞群を分離採取しリアルタイム PCR法による解析を行った。その 結果、 II型コラーゲン免疫後も CD4+ CD25- LAG3+ CD45RB ex low (Egr2- Treg) は存 在し、免疫後「Egr2- Treg」における IL- 10発現のさらなる増強を認めた(図 13)。尚、 DBA-1J mice (6-8 weeks old) were injected intradermally with a mixture of sushi-derived collagen type II and complete Freund's adjuvant (complete Freund's adjuvant, CFA, Chondrex or BD Di fco) (dayO) ), And then boosted with type II collagen (day 21) to induce type II collagen-induced arthritis. After induction of arthritis, each cell group was separated and collected by the same method as in Fig. 11 and analyzed by real-time PCR. As a result, CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) still existed after immunization with type II collagen, and further enhancement of IL-10 expression in “Egr2-Treg” was observed after immunization (FIG. 13). still,
Egr-2は関節炎発症後も高発現を維持していた。 Egr-2 remained highly expressed even after the onset of arthritis.
実施例 4: '  Example 4: '
本実施例においては、 C57BL/6 マウスの脾細胞を用いて in vitro における CD4+ In this example, CD4 + in vitro using spleen cells from C57BL / 6 mice.
CD25- LAG- 3+ CD45RB ex low (Egr2-Treg) の抑制能につき検討した。 The inhibitory ability of CD25-LAG-3 + CD45RB ex low (Egr2-Treg) was examined.
ナイーブ T細胞サブセットとして CFSEラベルした CD4+ CD25- CD45RB highの細胞 集団 (Thyl. H) 5X104 cellsを、 抗原提示細胞として 1500 rad放射線照射した脾細 胞 (Thy 1.2+) lX105cellsを用いた。 抑制性細胞として、 CD4+ CD25- CD45RB ex low 細胞集団 (Thyl.2+) を LAG-3発現により high、 low, negaの 3群に分け分離採取し た (各群 5X104 cells) (図 14)。 各細胞群を図中の如く可溶性 CD3抗体存在下に 72 時間共培養し、 Thyl.1+CD4+にて gateした細胞の CFSE発現減弱を CD4+ CD25- CD45RB highの細胞集団分裂増殖の指標として評価を行った。 その結果、 Egr- 2 Treg細胞は、 ナイーブ T細胞サブセット (CD45RBhi細胞) の細 胞分裂を抑制し、その抑制能は LAG- 3発現に依存することが明らかになった(図 15)。 実施例 5: As a naive T cell subset, CFSE-labeled CD4 + CD25-CD45RB high cell population (Thyl. H) 5X10 4 cells and spleen cells (Thy 1.2+) lX10 5 cells irradiated with 1500 rad as antigen-presenting cells were used. As suppressor cells, the CD4 + CD25- CD45RB ex low cell population (Thyl.2 +) was separated and collected into 3 groups of high, low and nega by LAG-3 expression (each group 5X10 4 cells) (Fig. 14) . Each cell group was co-cultured for 72 hours in the presence of soluble CD3 antibody as shown in the figure, and the attenuation of CFSE expression in cells gated with Thyl.1 + CD4 + was evaluated as an indicator of CD4 + CD25- CD45RB high cell population proliferation. went. As a result, Egr-2 Treg cells suppressed cell division of the naive T cell subset (CD45RBhi cells), and the suppression ability was dependent on LAG-3 expression (Fig. 15). Example 5:
本実施例においては、 Rag卜 /-マウスに C57BL/6マウス脾臓 CD4+ CD25- CD45RBhi 細胞 1X105 cellsを腹腔内投与し、 炎症性腸炎発症モデルを作製した。 In this example, C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1X10 5 cells were intraperitoneally administered to Rag 卜 / − mice to produce an inflammatory enteritis model.
腸炎は体重減少および組織像にて評価した。 体重は細胞移入日 (dayO) を 100%と した。 各群は、 CD4+ CD25- CD45RBhi細胞 1X105 cellsのみ、 CD4+ CD25- CD45RBhi 細胞 1X105 cells + CD4+ CD25 - LAG3+ CD45RB ex low (Egr2-Treg) 細胞 IX 105 cells および、 PBSのみ (control) の 3群にて評価した。 RAG卜 /-マウスにおいて、 C57BL/6 マウス脾臓 CD4+ CD25- CD45RBhi 細胞投与により生じる腸炎を、 CD4+ CD25- LAG3+ CD45RB ex low (Egr2-Treg) 細胞の共移入により抑制することが出来た (図 16)。 ま た、 大腸の組織像においても、 CD4+ CD25- CD45RBhi細胞投与単独投与において認め られた炎症細胞浸潤、 腸管壁肥厚などの所見が、 CD4+ CD25- LAG3+ CD45RB ex low (Egr2-Treg) 細胞の共移入により改善していることが認められた (図 17)。 Enteritis was assessed by weight loss and histology. Body weight was 100% on the day of cell transfer (dayO). Each group consists of 3 groups of CD4 + CD25- CD45RBhi cells 1X10 5 cells only, CD4 + CD25- CD45RBhi cells 1X10 5 cells + CD4 + CD25-LAG3 + CD45RB ex low (Egr2-Treg) cells IX 10 5 cells and PBS only (control) Evaluated. In RAG 卜 /-mice, enteritis caused by C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cell administration could be suppressed by co-transfer of CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells (Fig. 16) . In addition, in the histology of the large intestine, CD4 + CD25- LAG3 + CD45RB ex low (Egr2-Treg) cells co-transferred with inflammatory cell infiltration and intestinal wall thickening, etc., observed with single administration of CD4 + CD25- CD45RBhi cells. (Fig. 17).
実施例 6 :  Example 6:
現在 Foxp3は抑制性 T細胞のマス夕一遺伝子と考えられている。 そこで、 本実施例 においては、 その Foxp3 の機能的遺伝子を欠損している Scurfy マウスを使用して Foxp3 is currently thought to be a mass gene for suppressor T cells. Therefore, in this example, Scurfy mice lacking the Foxp3 functional gene were used.
Egr2-Tregに関する検討を行った。 A study on Egr2-Treg was conducted.
まず、 Foxp3の機能的遺伝子を欠損している Scurfyマウスの脾細胞を CD4-Cy7AP CD25-APC, CD45RB- FIT LAG-3- PEを用いてフローサイトメ一夕一にて解析をおこな つた。その結果、フローサイトメ一夕一にて解析にて Scurfyマウスの脾細胞にも CD4+ First, spleen cells of Scurfy mice lacking the functional gene of Foxp3 were analyzed by flow cytometry using CD4-Cy7AP CD25-APC and CD45RB-FIT LAG-3-PE. As a result, CD4 + was also detected in spleen cells of Scurfy mice.
CD25- LAG3+ CD45RB ex low (Egr2- Treg) 細胞が存在することが示された (図 18)。 また、ナイーブ T細胞サブセッ卜として CFSEラベルした C57BL/6マウス CD4+ CD25-CD25- LAG3 + CD45RB ex low (Egr2- Treg) cells were shown to be present (Figure 18). In addition, as a naive T cell subset, CFSE-labeled C57BL / 6 mouse CD4 + CD25-
CD45RB highの細胞集団 (Thyl. ) 5X104 cellsを、 抗原提示細胞として 1500 rad 放射線照射 C57BL/6マウスの whole splenocyte (Thyl.2+) 1X105 cellsを用いた。 抑制性細胞としては、 Scurfyマウス CD4+ CD25- CD45RB ex low細胞集団 (Thyl.2+)The CD45RB high cell population (Thyl.) 5X10 4 cells was used as antigen-presenting cells, and whole splenocyte (Thyl.2 +) 1X10 5 cells of 1500 rad irradiated C57BL / 6 mice were used. Suppressor cells include Scurfy mouse CD4 + CD25- CD45RB ex low cell population (Thyl.2 +)
2.5X104 cellsを用いた。 各細胞群を図中の如く soluble CD3抗体存在下に 72時間 共培養し、 Thyl. II CD4+にて gateした細胞の CFSE発現減弱を CD4+ CD25- CD45RB high の細胞集団分裂増殖の指標として評価を行った。また、同条件にて培養上清中に LAG- 3 中和抗体を加えた系も検討した。 その結果、 機能的 Foxp3遺伝子を欠損した Scurfy マウスの Egr2-Treg細胞は in vitroにおける抑制能を有し、 その抑制能は LAG-3中 和抗体にて減弱することが示された (図 19)。 2.5 × 10 4 cells were used. Each cell group was co-cultured for 72 hours in the presence of soluble CD3 antibody as shown in the figure, and the CFSE expression attenuation of cells gated with Thyl. II CD4 + was CD4 + CD25- CD45RB high The cell population was evaluated as an indicator of cell division and proliferation. A system in which LAG-3 neutralizing antibody was added to the culture supernatant under the same conditions was also examined. As a result, it was shown that Egr2-Treg cells of Scurfy mice lacking the functional Foxp3 gene have suppressive ability in vitro, and the suppressive ability is attenuated by LAG-3 neutralizing antibody (Fig. 19). .
さらに、 Ragl -/ -マウスに C57BL/6マウス脾臓 CD4+ CD25- CD45RBh i細胞 1X105 cells を腹腔内投与し、 炎症性腸炎発症モデルを作製した。 腸炎は体重減少および組織像に て評価した。 体重は細胞移入日 (dayO) を 100%とした。 各群は、 C57BL/6マウス脾 臓 CD4+ CD25- CD45RBhi 細胞 1X105 cells のみ、 C57BL/6 マウス脾臓 CD4+ CD25- CD45RBhi 細胞 1 X 105 cells + Scurfy マウス CD4+ CD25- LAG- 3+ CD45RB ex low (Egr2-Treg) 細胞 1 X 105 eel Isおよび、 PBSのみ (control) の 3群にて評価した。 その結果、 in vivoにおいても Ragl- /-マウスの炎症性腸炎発症モデルにおける腸炎 を抑制することが示された (図 20)。 Furthermore, C57BL / 6 mouse spleen CD4 + CD25- CD45RBh i cells 1X10 5 cells were intraperitoneally administered to Ragl − / − mice to prepare a model for the development of inflammatory bowel disease. Enteritis was assessed by weight loss and histology. Body weight was defined as 100% on the day of cell transfer (dayO). Each group consists of C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1X10 5 cells only, C57BL / 6 mouse spleen CD4 + CD25- CD45RBhi cells 1 X 10 5 cells + Scurfy mouse CD4 + CD25- LAG-3 + CD45RB ex low (Egr2 -Treg) Cells were evaluated in 3 groups: 1 x 10 5 eel Is and PBS only (control). As a result, it was shown that enteritis in the inflammatory enteritis onset model of Ragl-/-mice was also suppressed in vivo (Fig. 20).
以上のことより、 Egr2- Treg細胞は Foxp3の機能に依存せず抑制能を発揮する新規 抑制性 T細胞集団であり、 その抑制能は LAG-3を介していることが示された。  From the above, it was shown that Egr2- Treg cells are a novel inhibitory T cell population that exerts suppressive ability independent of Foxp3 function, and that the suppressive ability is mediated by LAG-3.
実施例 7 :  Example 7:
本実施例においては、 Egr2遺伝子の機能を解析する為、 shRNA-Egr2 レトロウィル スを作製し、 Egr2遺伝子を silencingし、 マウスのフエノタイプ解析を行った。 具体的には、 5FUを投与した C57BL/6マウスの骨髄細胞を採取し、 shRNA-Egr2レト ロウィルスを感染させた後、放射線照射 C57BL/6マウスに移入することで、 shRNA-Egr2 骨髄キメラマウスを作製した (図 21)。 その結果、 Egr2遺伝子発現が silencingされ ることにより、 LAG-3発現は抑制され、 shRNA- Egr2骨髄キメラマウスは腸管の著しい 肥厚を認めた (写真は骨髄移植 30日後のマウス大腸) (図 22)。 また、 骨髄移植後、 著しい腸炎を発症し約 4週間で死亡した。  In this example, in order to analyze the function of the Egr2 gene, a shRNA-Egr2 retrovirus was prepared, the Egr2 gene was silencing, and mouse phenotype analysis was performed. Specifically, bone marrow cells of C57BL / 6 mice treated with 5FU were collected, infected with shRNA-Egr2 retrovirus, and then transferred to irradiated C57BL / 6 mice, so that shRNA-Egr2 bone marrow chimeric mice were Fabricated (Fig. 21). As a result, LAG-3 expression was suppressed by silencing Egr2 gene expression, and shRNA-Egr2 bone marrow chimeric mice showed marked thickening of the intestinal tract. . After bone marrow transplantation, he developed severe enteritis and died in about 4 weeks.
実施例 8:  Example 8:
本実施例においては、 本発明の Egr2-Treg細胞が、 生体内でどのような機序で誘導 されるかを明らかにすることを目的として、 Egr2- Treg細胞の誘導実験を行った。  In this example, in order to clarify the mechanism by which Egr2-Treg cells of the present invention are induced in vivo, an induction experiment of Egr2-Treg cells was performed.
C57BL/6マウスまたは B細胞欠損マウスである/ χΜΤマウス (Jackson Laboratory, Bar Harbor, ME) の脾臓およびパイエル板を小さな組織片に細かく切断し、 IV型コラ ゲナーゼ (Sigma-Aldrich, St. Louis, MO) から CD4+の T細胞を採取し、 この細胞に ついて実施例 2に記載する様に、 PE-抗 LAG-3モノクローナル抗体 (LAG- 3-PE) およ び FITC-抗 CD45RBモノクローナル抗体 (CD45RB-FITC) を用いてフローサイトメ一夕 一にて解析をおこなった。 その結果、 C57BL/6マウスでは脾臓由来の細胞およびパイ エル板由来の細胞ともに、 本発明の Egr2-Treg細胞と同じ表現型 (すなわち、 LAG-3+ CD45RB ex low)を有する T細胞が存在するが、 j MTマウスでは、 LAG- 3+ CD45RB ex low を有する T細胞が存在しないことが明らかになった (図 23)。 Finely cut the spleen and Peyer's patch of C57BL / 6 mice or B cell-deficient mice / χΜΤ mice (Jackson Laboratory, Bar Harbor, ME) into small pieces of tissue. CD4 + T cells were collected from genase (Sigma-Aldrich, St. Louis, MO) and PE-anti-LAG-3 monoclonal antibody (LAG-3-PE) was used as described in Example 2 for these cells. The analysis was performed on a flow cytometer using the FITC-anti-CD45RB monoclonal antibody (CD45RB-FITC). As a result, in C57BL / 6 mice, both spleen-derived cells and Peyer's patch-derived cells have T cells with the same phenotype as the Egr2-Treg cells of the present invention (ie, LAG-3 + CD45RB ex low). However, it was revealed that no T cells with LAG-3 + CD45RB ex low were present in jMT mice (Fig. 23).
この結果から、 生体内における Egr2 - Treg細胞の分化誘導に際して、 B細胞が何ら かの機能を果たしている可能性が示されたので、 本実施例においてはさらに、 B細胞 欠損マウスである; ΜΤマウスに対して C57BL/6マウス脾臓から採取した B細胞を移植 して、本発明の Egr2- Treg細胞が ΙΜΤマウス生体内で誘導されるかどうかを検討した。  From this result, it was shown that B cells may have some function in inducing differentiation of Egr2-Treg cells in vivo. In this example, it is further a B cell-deficient mouse; On the other hand, B cells collected from the spleen of C57BL / 6 mice were transplanted to examine whether the Egr2- Treg cells of the present invention were induced in the living mouse.
C57BL/6マウスの Β細胞は、 C57BL/6マウスから採取した脾臓の単一細胞懸濁液を Β 細胞単離キット (Miltenyi Biotec, Auburn, CA) を製造者のプロトコルに従って使 用する MACSにより、 ネガティブ選択をすることによって精製した。 MACSでソートさ れた B細胞の精製度は、 >98%であった。 このように精製された 2X107B細胞を/ MT マウスの静脈内に注射した。 対照マウスには、 PBSを 射した。 細胞移植後 9週間後 に、 マウスを犠死させ、 そして脾臓細胞をフローサイトメトリ一により解析した。 その結果、 C57BL/6マウスの B細胞を移植した MTマウスでは、本発明の Egr2-Treg 細胞と同じ表現型 (LAG- 3+ CD45RB ex low) を有する T細胞が、 ζΜΤマウスと比較し て有意に増加することが明らかになった (図 23)。 従って、 生体内における本発明の Egr2-Treg細胞の分化誘導に際しては、 B細胞の存在が必要不可欠であることが明ら かになつた。 C57BL / 6 mouse sputum cells can be obtained from MACS using a single cell suspension of spleen from C57BL / 6 mice using the S cell isolation kit (Miltenyi Biotec, Auburn, CA) according to the manufacturer's protocol. Purification was done by negative selection. The purity of B cells sorted by MACS was> 98%. 2X10 7 B cells purified in this way were injected intravenously into / MT mice. Control mice were irradiated with PBS. Nine weeks after cell transplantation, mice were sacrificed and spleen cells were analyzed by flow cytometry. As a result, in MT mice transplanted with B cells from C57BL / 6 mice, T cells having the same phenotype (LAG-3 + CD45RB ex low) as the Egr2-Treg cells of the present invention were significantly compared to ζΜΤ mice. (Fig. 23). Therefore, it has been clarified that the presence of B cells is indispensable for inducing differentiation of the Egr2-Treg cells of the present invention in vivo.
実施例 9:  Example 9:
次いで、 Foxp3+Treg細胞が分化誘導のために胸腺間質細胞により発現される自己 - ペプチド/ MHC とのより高い親和性のァゴニスト性相互作用を必要とされることが知 られていたことから、 本実施例においては、 CD4+ CD25— LAG3+ T細胞が、 Foxp3+ Treg 細胞と同様の胸腺の選択プロセスを通じて、 分化誘導されるのかどうかを調べた。 Next, it was known that Foxp3 + Treg cells are required to have higher affinity agonist interactions with self-peptide / MHC expressed by thymic stromal cells to induce differentiation. In this example, it was examined whether CD4 + CD25— LAG3 + T cells were induced to differentiate through the same thymic selection process as Foxp3 + Treg cells.
TCRトランスジエニック 0T-IIマウス (Taconic)および RIP- mOVAマウス (Jackson Laborat ory) を使用して、 膝島および胸腺中でラットインスリン遺伝子プロモータの 調節下で膜結合型の OVAを発現すると同時に、 I-Abとの関連で OVAぺプチドを認識す るトランスジエニック TCR (V a 2および V )3 5. 1/5. 2) も発現する、 RIP-mOVA/OT-I I 二重-トランスジエニックマウスを作出した。 この RIP-mOVA/OT-I I二重-トランスジ エニックマウスにおいて、 CD4+ CD25" LAG3+ T細胞の頻度は、 CD4+ CD25+ Treg細胞の 頻度がこれらの臓器中で増加したのとは対照的に、胸腺および脾臓において増加しな かった (図 24)。 この図において、 上パネルおよび下パネルのプロットはそれぞれ、 CD4+ V j3 5. 1/5. 2+および CD4+ CD25" V /3 5. 1/5. 2+ T細胞についてゲートされたもので ある。 TCR Transgenic 0T-II mice (Taconic) and RIP-mOVA mice (Jackson Laborat ory) Transgenic TCRs that express membrane-bound OVA under the control of the rat insulin gene promoter in the islets and thymus while simultaneously recognizing OVA peptides in the context of IA b RIP-mOVA / OT-I I double-transgenic mice were also generated that also express V a 2 and V) 3 5.1 / 5. In this RIP-mOVA / OT-I I double-transgenic mouse, the frequency of CD4 + CD25 "LAG3 + T cells, as opposed to the increased frequency of CD4 + CD25 + Treg cells in these organs And the spleen did not increase (Figure 24), where the top and bottom panel plots are CD4 + V j3 5.1 / 5.2 + and CD4 + CD25 "V / 3 5.1 / 1 respectively. 5. Gated for 2 + T cells.
一方、 0T-I I トランスジエニックマウスは、 脾臓およびパイエル板において正常マ ウスと同等数の CD4+ CD25- LAG3+ T細胞を含有したが、 Ι-Ε α鎖-特異的 I-Ab-拘束性 トランスジェニッグ TCRを発現する TEaトランスジエニックマウスは、特に脾臓にお いて、 CD4+ CD25- LAG3+ T細胞をほとんど有さなかった (図 25)。 On the other hand, 0T-II transgenic mice contained as many CD4 + CD25- LAG3 + T cells as normal mice in the spleen and Peyer's patches, but Ι-Ε α-chain-specific IA b -restricted transgenig TEa transgenic mice expressing TCR had few CD4 + CD25- LAG3 + T cells, especially in the spleen (Figure 25).
さらに、 TEaマウスは、 組織学的検討においても脾臓濾胞中に非常に少数の ½r-2- 発現細胞しか含有しなかった (図 26)。 この図において、 それぞれのバーは、 1 つの 濾胞からの測定数を示す。 このデータは、 各群 3匹のマウスから集めたものである。 すべてのエラーバーは、 標準偏差を示す; 1つのアスタリスクは、 <0. 01 であるこ とを示す。  Furthermore, TEa mice also contained very few ½r-2-expressing cells in splenic follicles in histological examination (FIG. 26). In this figure, each bar indicates the number of measurements from one follicle. This data was collected from 3 mice in each group. All error bars indicate standard deviation; an asterisk indicates <0. 01.
これらの結果を合わせると、 Egr2-Treg細胞は、胸腺における自己抗原ペプチド/ MHC 複合体との高い親和性相互作用が分化に必要である Fox - Tregとは分化誘導の形態 が全く異なる抑制性 T細胞であることも明らかとなった。 興味深いことに、 TEa トラ ンスジエニックマウスは、本発明者の飼育環境下において、 10週齢で自然発生的な大 腸炎を発症し、この動物をマウスを大腸炎モデルとして使用することができた(図 27)。 この図において、 TEaマウスの大腸、 CD4+ CD25- LAG3+ T細胞の養子導入を受けた TEa マウスの大腸、 そして正常の Tea同腹子の大腸 (対照) の代表的な肉眼的写真 (左) およびへマトキシリン-ェォジン組織切片 (右) を示す。 そして、 TEaトランスジェニ ックマウスに正常な C57BL/6マウスから CD4+ CD25— LAG3+ T細胞を移植すると、 TEa トランスジエニックマウスにおける大腸炎の自然発症が顕著に抑制されることが示 された (図 27)。 これらの知見から、 CD4+ CD25" LAG3+ T細胞が、 大腸炎誘導性 T細 胞応答を調節するための治療能力を有することが示唆される。 Taken together these results indicate that Egr2-Treg cells have a high affinity interaction with the autoantigen peptide / MHC complex in the thymus for differentiation. It became clear that it was a cell. Interestingly, TEa transgenic mice developed spontaneous enterocolitis at 10 weeks of age in the breeding environment of the inventor, and this animal could be used as a model for colitis. (Figure 27). In this figure, representative macroscopic photographs (left) and hematoxylin of the colon of TEa mice, the colon of TEa mice adopting CD4 + CD25- LAG3 + T cells, and the colon (control) of normal Tea littermates -Shows eosin tissue section (right). In addition, when CD4 + CD25— LAG3 + T cells were transplanted from normal C57BL / 6 mice into TEa transgenic mice, the spontaneous development of colitis in TEa transgenic mice was markedly suppressed. (Figure 27). These findings suggest that CD4 + CD25 "LAG3 + T cells have therapeutic potential to modulate colitis-induced T cell responses.
実施例 10:  Example 10:
本実施例においては、 実施例 2において得られたマウスの知見に基づいて、 ヒト扁 桃腺由来細胞から、 Egr- 2遺伝子を発現する T細胞を採取することを目的として細胞 分取を行った。  In this example, based on the mouse knowledge obtained in Example 2, cell sorting was performed for the purpose of collecting T cells expressing the Egr-2 gene from human tonsil-derived cells. .
ヒト扁桃腺由来細胞を CD4-Cy7AP CD25-APC, CD45R0-FITC, LAG- 3-PEを用いてフ ローサイトメ一夕一にて解析をおこなった。 CD45RB陰性(低陽性) の細胞集団は、 ヒ 卜の場合には CD45R0蛍光強度が増強している一集団として分取することも出来るこ とが知られていたため、 実施例 2において使用した CD45RB-FITCの代わりに、 本実施 例においては CD45R0-FITCを使用した。  Human tonsil-derived cells were analyzed by flow cytometry using CD4-Cy7AP CD25-APC, CD45R0-FITC, and LAG-3-PE. Since it was known that the CD45RB negative (low positive) cell population could be sorted as a population with enhanced CD45R0 fluorescence intensity in rabbits, the CD45RB- Instead of FITC, CD45R0-FITC was used in this example.
その結果、 LAG-3表面抗原は CD4陽性細胞のうち CD25陰性の細胞 (図 28a) CD45R0 陽性の細胞 (図 28b) に発現の増強を認めた (Egr-2 Treg細胞)。  As a result, enhanced expression of LAG-3 surface antigen was observed in CD25 negative cells (Fig. 28a) and CD45R0 positive cells (Fig. 28b) among CD4 positive cells (Egr-2 Treg cells).
さらに、 CD4陽性 T細胞を LAG-3発現の有無によりフローサイトメ一夕一を用いて 分離採取し、 cDNA合成後、リアルタイム PCR法にて LAG- 3 mRNA、Egr2 mRNA、Foxp3 mRNA、 および I L- 10 mRNA発現を検討したところ、 LAG- 3発現細胞での Egr 2 mRNA、 IL-10 mRNA、 LAG-3 mRNAの発現増強を認めた (図 29)。 また、 Foxp3発現は LAG発現と有意な相関 は示さなかった。  Furthermore, CD4 positive T cells were isolated and collected using flow cytometry according to the presence or absence of LAG-3 expression. After cDNA synthesis, LAG-3 mRNA, Egr2 mRNA, Foxp3 mRNA, and IL were synthesized by real-time PCR. -10 When mRNA expression was examined, enhanced expression of Egr 2 mRNA, IL-10 mRNA, and LAG-3 mRNA in LAG-3 expressing cells was observed (Fig. 29). Foxp3 expression was not significantly correlated with LAG expression.
産業上の利用可能性 Industrial applicability
現在、 自己免疫疾患や移植臓器拒絶などの、 望まれない抗原-抗体反応により抗原 が排除されることに起因する種々の疾患を治療するためには、免疫抑制剤の投与など 全身的に免疫機能を抑制する処置を必要としており、それに伴う重症感染症を含めた 副作用が大きな問題となっていたが、 本発明の制御性 T細胞を投与することにより、 局所的な免疫寛容を誘導することができることから、患者体内において上述したよう な副作用を引き起こすことなく、 自己抗原に対する免疫反応に起因するかまたは望ま れない抗原-抗体反応により抗原が排除されることに起因する、 自己免疫疾患や移植 臓器拒絶などの種々の疾患を治療することができる。  Currently, to treat various diseases caused by the elimination of antigens due to unwanted antigen-antibody reactions, such as autoimmune diseases and transplanted organ rejection, administration of immunosuppressive agents, etc. However, side effects including severe infections associated therewith have been a major problem. However, administration of the regulatory T cells of the present invention can induce local immune tolerance. Therefore, autoimmune diseases and transplanted organs caused by immune responses to self-antigens or elimination of antigens by unwanted antigen-antibody reactions without causing side effects as described above in the patient's body. Various diseases such as rejection can be treated.

Claims

請求の範囲 The scope of the claims
1 . CD4陽性(CD4+)、 CD25陰性(CD25- )、 CD45RB陰' 14.· (低陽性) (CD45RB- (low) ) , および LAG- 3陽性 (LAG3+) または CD4陽性 (CD4+)、 CD25陰性 (CD25 -)、 CD45RO陽 性 (CD45R0+)、 および LAG-3陽性 (LAG3+) の細胞表面抗原特性を有する、 哺乳動物 由来の単離された T細胞。  1. CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative '14. · (low positive) (CD45RB- (low)), and LAG-3 positive (LAG3 +) or CD4 positive (CD4 +), CD25 negative An isolated T cell from a mammal with cell surface antigenic properties of (CD25-), CD45RO positive (CD45R0 +), and LAG-3 positive (LAG3 +).
2 . 制御性 T細胞としての機能を有する、 請求項 1に記載の単離された T細胞。  2. The isolated T cell according to claim 1, which has a function as a regulatory T cell.
3 . 制御性 T細胞としての機能が、 T細胞免疫寛容 (トレランス) の誘導機能であ る、 請求項 1または 2に記載の単離された T細胞。  3. The isolated T cell according to claim 1 or 2, wherein the function as a regulatory T cell is a function of inducing T cell tolerance (tolerance).
4. 哺乳動物がヒトである、 請求項 1〜3のいずれか 1項に記載の単離された T細 胞。  4. The isolated T cell according to any one of claims 1 to 3, wherein the mammal is a human.
5 . 哺乳動物のリンパ球集団または T細胞集団から、  5. From a mammalian lymphocyte population or T cell population,
(i) CD4が陽性である細胞 (CD4+) を採取する工程;  (i) collecting CD4 positive cells (CD4 +);
(i i) CD25が陰性である細胞 (CD25-) を採取する工程;  (i i) collecting cells that are negative for CD25 (CD25-);
(i i i) CD45RBが陰性 (低陽性) である細胞 (CD45RB- (low)) または CD45R0が陽 性である細胞 (CD45R0+) を採取する工程;そして  (i i i) collecting CD45RB negative (low positive) cells (CD45RB- (low)) or CD45R0 positive cells (CD45R0 +); and
(iv) LAG-3が陽性である細胞 (LAG3+) を採取する工程;  (iv) collecting a cell (LAG3 +) positive for LAG-3;
を、 ( i )〜( i V)の工程を順不同で行うことにより、 CD4陽性 (CD4+)、 CD25陰性(CD25-)、 CD45RB陰性 (低陽性) (CD45RB- (low) ) , および LAG-3陽性 (LAG- 3+) または CD4陽 性(CD4+)、 CD25陰性 (CD25-)、 CD45R0陽性 (CD45R0+)、 および LAG- 3陽性 (LAG - 3+) の細胞表面抗原特性を有する、 哺乳動物由来の T細胞を単離する方法。 By performing the steps (i) to (iV) in any order, CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 Mammalian origin with positive (LAG-3 +) or CD4 positive (CD4 +), CD25 negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen properties Of isolating T cells.
6 . 哺乳動物のリンパ球集団または T細胞集団を末梢血から採取してからそのまま (i) 〜 (iv) の工程を行う、 請求項 5に記載の哺乳動物由来の T細胞を単離する方 法。  6. The method for isolating a mammal-derived T cell according to claim 5, wherein the steps (i) to (iv) are performed after collecting a mammalian lymphocyte population or T cell population from peripheral blood. Law.
7 . 哺乳動物のリンパ球集団または T細胞集団を末梢血から採取し、 そのリンパ球集 団または T細胞集団を増殖させてから (i) 〜 (iv) の工程を行う、 請求項 5に記載 の哺乳動物由来の T細胞を単離する方法。  7. The mammalian lymphocyte population or T cell population is collected from peripheral blood, and the lymphocyte population or T cell population is expanded, and then the steps (i) to (iv) are performed. Of isolating mammalian T cells.
8 . 前記 (i) 〜 (iv) の工程を行うことにより単離した本発明の T細胞集団をそ のまま使用する、 請求項 5〜7のいずれか 1項に記載の哺乳動物由来の T細胞を単離 する方法。 8. The mammal-derived T according to any one of claims 5 to 7, wherein the T cell population of the present invention isolated by performing the steps (i) to (iv) is used as it is. Isolate cells how to.
9 . 前記 (i) 〜 (iv) の工程を行うことにより単離した本発明の T細胞集団を増 殖してから使用する、 請求項 5〜7のいずれか 1項に記載の哺乳動物由来の Τ細胞を 単離する方法。  9. The mammalian origin according to any one of claims 5 to 7, wherein the T cell population of the present invention isolated by performing the steps (i) to (iv) is used after being expanded. A method of isolating the sputum cells.
1 0 . 哺乳動物がヒ卜である、 請求項 5〜9のいずれか 1項に記載の哺乳動物由来 の Τ細胞を単離する方法。  10. The method for isolating a mammal-derived sputum cell according to any one of claims 5 to 9, wherein the mammal is baboon.
1 1 . CD4陽性(CD4+)、 CD25陰性 (CD25 -)、 CD45RB陰性 (低陽性) (CD45RB- (low) ) , および LAG- 3陽性 (LAG - 3+) または CD4陽性 (CD4+)、 CD25陰性 (CD25-) , CD45R0陽 性 (CD45R0+)、 および LAG-3陽性 (LAG- 3+) の細胞表面抗原特性を有する、 哺乳動物 由来の単離された T細胞を含む医薬組成物。  1 1. CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG-3+) or CD4 positive (CD4 +), CD25 negative A pharmaceutical composition comprising an isolated T cell from a mammal having (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen properties.
1 2 . 自己抗原に対する免疫反応に起因するかまたは抗原-抗体反応により抗原が 排除されることに起因する種々の疾患を治療するための、 請求項 11 に記載の医薬組 成物。  12. The pharmaceutical composition according to claim 11, for treating various diseases caused by an immune reaction against a self-antigen or caused by elimination of an antigen by an antigen-antibody reaction.
1 3 . 自己免疫疾患または移植臓器拒絶を治療するための、 請求項 12に記載の医 薬組成物。  1 3. The pharmaceutical composition according to claim 12, for treating autoimmune disease or transplanted organ rejection.
1 4 . 自己免疫疾患が、 関節リウマチ、 膠原病、 炎症性腸疾患、 多発性硬化症、 1 型糖尿病などから選択される、 請求項 13に記載の医薬組成物。  14. The pharmaceutical composition according to claim 13, wherein the autoimmune disease is selected from rheumatoid arthritis, collagen disease, inflammatory bowel disease, multiple sclerosis, type 1 diabetes and the like.
1 5 . (a) CD4陽性 (CD4+)、 CD25陰性 (CD25 -)、 CD45RB陰性 (低陽性) (CD45RB- (low)) , および LAG-3陽性 (LAG - 3+) または CD4陽性 (CD4+)、 CD25陰性 (CD25 )、 CD45R0陽性 (CD45R0+) , および LAG-3陽性 (LAG-3+) の細胞表面抗原特性を有する、 哺乳動物由来の T細胞を、 被検化合物の存在下にて培養する工程;  1 5. (A) CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG-3+) or CD4 positive (CD4 +) Culturing T cells derived from mammals with cell surface antigen characteristics of CD25 negative (CD25), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) in the presence of the test compound Process;
(b) 培養した T細胞中での Egr-2遺伝子の発現の変化または LAG- 3遺伝子の発現 の変化を測定する工程;  (b) measuring the change in the expression of the Egr-2 gene or the change in the expression of the LAG-3 gene in the cultured T cells;
(c) Egr-2遺伝子の発現の増加または LAG-3遺伝子の発現の増加を導く化合物を、 CD4陽性 (CD4+)、 CD25陰性 (CD25- )、 CD45RB陰性 (低陽性) (CD45RB- (low)) , およ び LAG-3陽性(LAG3+)または CD4陽性(CD4+)、 CD25陰性(CD25- )、 CD45R0陽性(CD45R0+)、 および LAG-3陽性 (LAG3+) の細胞表面抗原特性を有する哺乳動物由来の T細胞を増 加させる化合物として選択する工程; からなる、 CD 陽性 (CD4+)、 CD25陰性 (CD25-)、 CD45RB陰性 (低陽性) (CD45RB- (low) ) , および LAG-3陽性 (LAG - 3+) または CD4陽性 (CD4+)、 CD25陰性 (CD25-)、 CD45R0陽 性 (CD45R0+)、 および LAG- 3陽性 (LAG- 3+) の細胞表面抗原特性を有する哺乳動物由 来の T細胞を増加させる化合物のスクリーニング方法。 (c) Compounds that increase Egr-2 gene expression or increase LAG-3 gene expression are CD4 positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low) ), And LAG-3 positive (LAG3 +) or CD4 positive (CD4 +), CD25 negative (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG3 +) cell surface antigens Selecting as a compound that increases the number of T cells; CD positive (CD4 +), CD25 negative (CD25-), CD45RB negative (low positive) (CD45RB- (low)), and LAG-3 positive (LAG-3+) or CD4 positive (CD4 +), CD25 negative A screening method for compounds that increase T cells derived from mammals having (CD25-), CD45R0 positive (CD45R0 +), and LAG-3 positive (LAG-3 +) cell surface antigen properties.
PCT/JP2008/057460 2007-04-10 2008-04-10 Novel t cell WO2008126940A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009509387A JPWO2008126940A1 (en) 2007-04-10 2008-04-10 New T cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007102669 2007-04-10
JP2007-102669 2007-04-10

Publications (1)

Publication Number Publication Date
WO2008126940A1 true WO2008126940A1 (en) 2008-10-23

Family

ID=39864027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057460 WO2008126940A1 (en) 2007-04-10 2008-04-10 Novel t cell

Country Status (2)

Country Link
JP (1) JPWO2008126940A1 (en)
WO (1) WO2008126940A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518796A (en) * 2008-04-28 2011-06-30 ティクセル Composition for treating inflammatory autoimmune conditions
JP2013523886A (en) * 2010-04-13 2013-06-17 イミュノバティブ セラピーズ, リミテッド Methods and compositions for inhibition of regulatory T cells
WO2016084412A1 (en) * 2014-11-28 2016-06-02 国立大学法人東京大学 B cell activation inhibitor, and therapeutic agent for autoimmune diseases
JP2019208501A (en) * 2018-05-31 2019-12-12 公益財団法人ヒューマンサイエンス振興財団 Methods for evaluating specificity of regulatory t cells in vitro

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078928A2 (en) * 2003-02-28 2004-09-16 The Johns Hopkins University T cell regulation
WO2005070090A2 (en) * 2004-01-08 2005-08-04 Regents Of The University Of California Regulatory t cells suppress autoimmunity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078928A2 (en) * 2003-02-28 2004-09-16 The Johns Hopkins University T cell regulation
WO2005070090A2 (en) * 2004-01-08 2005-08-04 Regents Of The University Of California Regulatory t cells suppress autoimmunity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOSEPH L.J. ET AL.: "Molecular cloning, sequencing, and mapping of EGR2, a human early growth response gene encoding a protein with "zinc-binding finger" structure", PROC. NATL. ACAD. SCI. U.S.A., vol. 85, 1988, pages 7164 - 7168 *
SAFFORD M. ET AL.: "Egr-2 and Egr-3 and negative regulators of T cell activation", NAT. IMMUNOL., vol. 6, 2005, pages 472 - 480 *
SAKAGUCHI S. ET AL.: "Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases", J. IMMUNOL., vol. 155, 1995, pages 1151 - 1164, XP001180326 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518796A (en) * 2008-04-28 2011-06-30 ティクセル Composition for treating inflammatory autoimmune conditions
JP2014167019A (en) * 2008-04-28 2014-09-11 Txcell Compositions for treating inflammatory autoimmune condition
JP2013523886A (en) * 2010-04-13 2013-06-17 イミュノバティブ セラピーズ, リミテッド Methods and compositions for inhibition of regulatory T cells
WO2016084412A1 (en) * 2014-11-28 2016-06-02 国立大学法人東京大学 B cell activation inhibitor, and therapeutic agent for autoimmune diseases
JP2019208501A (en) * 2018-05-31 2019-12-12 公益財団法人ヒューマンサイエンス振興財団 Methods for evaluating specificity of regulatory t cells in vitro
JP7277255B2 (en) 2018-05-31 2023-05-18 佳寛 大矢 Method for evaluating specificity of regulatory T cells in vitro

Also Published As

Publication number Publication date
JPWO2008126940A1 (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US11326147B2 (en) Redirected, genetically-engineered T regulatory cells and their use in suppression of autoimmune and inflammatory disease
US10751373B2 (en) PD-L1 expressing hematopoietic stem cells and uses
US8053235B2 (en) Methods of generating antigen-specific CD4+CD25+regulatory T cells, compositions and methods of use
McMurchy et al. Moving to tolerance: clinical application of T regulatory cells
Longhi et al. Regulatory T cells in autoimmune hepatitis: an updated overview
US20140101786A1 (en) Generation of autologous t-cells in mice
US9592259B2 (en) APC-mediated tolerance induction for therapy of multiple sclerosis
JPH07505892A (en) Suppression of proliferative responses and induction of tolerance using polymorphic class II MHC allopeptides
Becker et al. B lymphocytes contribute to indirect pathway T cell sensitization via acquisition of extracellular vesicles
KR20140137444A (en) Isolation and use of human lymphoid organ-derived suppressive stromal cells
Bosco et al. Peripheral T cells in the thymus: have they just lost their way or do they do something?
WO2008126940A1 (en) Novel t cell
FR2864546A1 (en) METHOD OF IDENTIFYING AND PREPARING T REGULATORY / SUPPRESSOR T CELLS, COMPOSITIONS AND USES
JP2004208548A (en) Antigen-specific suppression of immunoreaction
Robijn et al. Intestinal T lymphocytes
Lombard-Vadnais B and T Lymphocyte Crosstalk in Autoimmune Diabetes
Ihantola T-cell dysfunction and autoantigen recognition in type 1 diabetes
Scott Mechanisms and inhibition of CD4+ T cell migration in pre-clinical and humanised mouse models of type 1 diabetes
Milward Investigation of the cell biology of human regulatory T cells in the context of transplantation
Sitnik Phenotypic and functional analysis of the mesenchymal stromal cell compartment in the thymus
Ashwell et al. FRONTIERS IN BASIC IMMUNOLOGY 2015
MacDonald Understanding & optimizing human T regulatory cell function in patients with autoimmunity and/or undergoing transplantation
Brandmaier TRP-1 as a Model Tumor Antigen for Immunotherapy and Immune Tolerance in the Thymus
Li Characterization and modulation of autoreactive CD4+ T cells in type 1 diabetes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009509387

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740530

Country of ref document: EP

Kind code of ref document: A1