WO2008119864A1 - Generador para tubina eólica con bobinados independientes - Google Patents
Generador para tubina eólica con bobinados independientes Download PDFInfo
- Publication number
- WO2008119864A1 WO2008119864A1 PCT/ES2008/070059 ES2008070059W WO2008119864A1 WO 2008119864 A1 WO2008119864 A1 WO 2008119864A1 ES 2008070059 W ES2008070059 W ES 2008070059W WO 2008119864 A1 WO2008119864 A1 WO 2008119864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- generator
- converter
- windings
- wind turbine
- network
- Prior art date
Links
- 238000004804 winding Methods 0.000 title claims abstract description 43
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 238000000429 assembly Methods 0.000 claims description 4
- 230000000712 assembly Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K16/00—Machines with more than one rotor or stator
- H02K16/04—Machines with one rotor and two stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/16—Synchronous generators
- H02K19/34—Generators with two or more outputs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/48—Generators with two or more outputs
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/02—Details of the control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/06—Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/12—Machines characterised by the modularity of some components
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
- H02K7/183—Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
- H02K7/1838—Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention is in the field of wind turbines and their coupling to the power grid by means of the corresponding electric drive system; more specifically, it refers to an electric drive system, converter and generator, to connect the wind turbine to the power grid. It also refers to the design of the winding arrangements in the generator in connection with such a converter system.
- the rotor or blades of wind turbines are directly or indirectly connected by a gearbox to an AC generator, which in turn is connected to the network, usually by means of a lifting transformer.
- a lifting transformer For example, in large wind turbines, above 100-150 kW, the voltage
- the current is subsequently sent through the elevator transformer to raise the voltage to approximately between 10 and 36 kV, depending on the standard in the local electrical network.
- the AC generator When the AC generator is part of a wind turbine with variable rotor speed, said AC generator is connected to the power grid through an electronic energy converter.
- US-70421 10-B2 discloses a wind turbine with variable speed that employs a rotor connected to a multiplicity of synchronous generators with winding field or permanent magnet rotors.
- a passive rectifier and an inverter are used to transfer energy back to the network.
- a turbine control unit (TCU) orders a necessary generator torque based on available power and rotor speed of the turbine inverters. The torque is controlled by regulating the DC direct current by controlling the inverter.
- All electronic power converter units are interconnected, and it also has a common connection with the generator, presenting only one set of windings for all the power units. converter. This implies a problem with respect to the circulation currents flowing between the converter units, and a subsequent loss of energy between the converter units. That is, these converter units are producing circulation currents on the ground and in the converter system, due to the floating DC link circuit in the voltage source converter system. Therefore, the size of the converter system must be increased to handle these additional circulation currents.
- the invention relates to an electric drive system for a wind turbine according to claim 1.
- Preferred embodiments of the electric drive system are defined in the dependent claims.
- the two or more converter modules are totally independent of each other, with virtually no magnetic coupling between them, and therefore avoiding circulation currents, which is a problem in parallel converter systems in the prior art.
- each generator winding set is formed by two or more winding subsets, each of said N2 winding sets having two pairs of poles.
- there are at least two pairs of poles per set of windings that is to say a total of at least 2xN2 pairs of poles. Therefore, with this winding arrangement with double pairs of poles a mechanical balance of the radial forces of the generator is achieved. That is, there are no imbalance forces in the generator or bearings.
- the converter system also includes switching means for switching one or more of the converter modules, thus making it possible to disconnect the converter module that has failed. Therefore, the overall availability of the wind turbine increases.
- each converter module comprises a generator inverter and a network inverter; in this way, it is possible to include control algorithms for the generator converter.
- This preferred embodiment achieves better mechanical characteristics in the resulting generator, together with a better quality in the available power, as already mentioned above.
- the electric drive system further comprises control means to enable / disable the operation of at least one of said N1 converter modules in response to a parameter related to the amount of electric power supplied to the network.
- Figure 1 illustrates a part of an electric drive system of a wind turbine generator according to a first embodiment of the invention.
- Figure 2 illustrates another possible design of a part of an electric drive system of a wind turbine generator system, including a preferred winding arrangement.
- Figure 3 is an enlarged view of a generator and its winding arrangement according to the invention.
- Figure 4 is a diagram of a possible embodiment for a converter module whereby the wind turbine is connected to the network.
- Figure 1 shows a permanent magnet synchronous generator PMSG ⁇ permanent magnet synchronous generato ⁇ with three phases, which generates the electric power output or the input of the torque, presenting the generator three sets of windings 20, 21, 22, connected respectively independently of one of three parallel converters 10 4Q that form a converter system that is directly coupled to the main network.
- the generator can also be a synchronous generator, a synchronous brushless generator or an asynchronous generator.
- Each converter module 10 is connected separately to a set of windings in the generator 20, 21, 22, and each set of generator windings is magnetically decoupled from the others. To ensure this decoupling, each set of windings is placed in its own generator slots (for reasons of clarity, the slots have not been represented in the drawing).
- the generator 1 ' is connected to three converter modules 10 connected in parallel, each having two sections to equalize the forces, that is, there are a total of six sections.
- Each set of windings in the generator 1 ' is formed by two subsets of windings 20-20', 21 -21 'and 22-22', and each subset of windings has a pair of poles 30 to ensure that the magnetic forces are equalized , especially in operations where only some of the converter modules are operating.
- FIG 3 is an enlarged view of the preferred embodiment of the generator 1 '(shown in Figure 2) and its winding arrangement according to the invention.
- each converter module 10 comprises a generator inverter 1 1 and a network inverter 12.
- Generator inverters convert AC generator currents (energy) from the actual generator voltage and frequency to a DC current
- Generator inverters can be an active or passive converter.
- the generator energy is transmitted to the network by means of the network inverter 12, which converts the DC voltage to a fixed voltage and frequency; network voltage and frequency
- the network inverter controls the flow of energy to the DC link, and also the demand for reactive energy from the wind turbine.
- the network converters are connected to a respective network reducing transformer 14 (the starting inductance for the network inverter).
- the converter system can be connected to the network by means of a transformer that transforms the main voltage level from 10 to 36 KV to the low voltage system in the wind turbine, which is normally 690 V.
- a switch separates the wind turbine from the network, and protects the wind turbine in the event of a short circuit in the transformer.
- the present invention relates to an electric drive system for a wind turbine and a winding arrangement for a generator thereof. It is to be understood that the above description is an example of the principles of the invention and does not limit the invention to the illustrated embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
Generador para tubina eólica con bobinados independientes que comprende, un sistema (1) convertidor para acoplar un generador (2) de una turbina eólica a una red (3), sistema convertidor que comprende Nl módulos de convertidor (10) conectados en paralelo, en el que N1>1, caracterizado porque cada uno de dichos Nl módulos convertidores (10) está conectado a un conjunto separado de bobinados (20) de generador, existiendo N2 conjuntos de bobinados de generador y Nl= N2, de manera que el generador comprende tantos conjuntos de bobinados (20) como módulos convertidores (10), y cada uno de dichos N2 conjuntos de bobinados se coloca en una sección limitada del estator de la turbina eólica.
Description
Generador para tubina eólica con bobinados independientes
Campo de Ia invención La presente invención se encuentra en el campo de las turbinas eólicas y su acoplamiento a Ia red eléctrica mediante el sistema de accionamiento eléctrico correspondiente; más específicamente, se refiere a un sistema de accionamiento eléctrico, convertidor y generador, para conectar Ia turbina eólica a Ia red eléctrica. También se refiere al diseño de las disposiciones de bobinado en el generador en conexión con un sistema convertidor de este tipo.
Antecedentes de Ia invención
El rotor o alabes de turbinas eólicas están conectados directa o indirectamente mediante una caja de cambios a un generador AC, que a su vez está conectado con Ia red, normalmente mediante un transformador elevador. Por ejemplo, en turbinas eólicas grandes, por encima de 100-150 kW, el voltaje
(tensión) generado por Ia turbina se encuentra normalmente entre 400 a 1000 V
AC trifásica; Ia corriente se envía posteriormente a través del transformador elevador para elevar el voltaje a aproximadamente entre 10 y 36 kV, en función de Ia norma en Ia red eléctrica local.
Cuando el generador AC es parte de una turbina eólica con velocidad de rotor variable, dicho generador AC se conecta a Ia red eléctrica a través de un convertidor electrónico de energía.
La patente estadounidense US-70421 10-B2 da a conocer una turbina eólica con velocidad variable que emplea un rotor conectado a una multiplicidad de generadores síncronos con campo bobinado o rotores de imanes permanentes. Un rectificador pasivo y un inversor se emplean para transferir energía de vuelta a Ia red. Una unidad de control de turbina (TCU, turbine control unit) ordena un par de torsión de generador necesario basado en potencia disponible y velocidad de rotor de los inversores de turbina. El par de torsión se controla regulando Ia corriente continua DC mediante el control del inversor.
Todas las unidades de convertidor electrónico de potencia están interconectadas, y también tiene una conexión común con el generador, presentando solamente un conjunto de bobinados para todas las unidades de
convertidor. Esto implica un problema con respecto a las corrientes de circulación que fluyen entre las unidades de convertidor, y una pérdida subsiguiente de energía entre las unidades de convertidor. Es decir, estas unidades de convertidor están produciendo corrientes de circulación en el camino a tierra y en el sistema convertidor, debido al circuito de enlace DC flotante en el sistema convertidor de fuente de voltaje. Por tanto, el tamaño del sistema convertidor ha de aumentarse para manejar estas corrientes de circulación adicionales.
En el caso de un falta en un convertidor, dicha falta afectará y destruirá quizá el resto del sistema convertidor si las unidades de convertidor están conectadas directamente (por cables) o indirectamente (magnéticamente).
Descripción de Ia invención
La invención se refiere a un sistema de accionamiento eléctrico para una turbina eólica según Ia reivindicación 1. En las reivindicaciones dependientes se definen realizaciones preferidas del sistema de accionamiento eléctrico.
La invención se refiere a un sistema de accionamiento eléctrico para acoplar un generador de una turbina eólica a una red, que comprende un sistema de convertidor que a su vez comprende N1 módulos convertidores conectados en paralelo, en el que N1 >1 ; según un primer aspecto de Ia invención, dichos dos o más módulos convertidores están conectados en cada caso en un conjunto independiente de bobinados o arrollamientos de generador; presentándose N2 conjuntos de bobinados de generador y N1 = N2, de manera que el generador comprende tantos conjuntos de bobinados como módulos convertidores; y cada uno de los dichos N2 conjuntos de bobinados se sitúa en una sección limitada del estator de Ia turbina eólica. De esta manera, cada conjunto de bobinados está desacopla magnéticamente de los otros conjuntos de bobinados.
Así, los dos o más módulos convertidores son totalmente independientes unos de otros, no existiendo prácticamente ningún acoplamiento magnético entre ellos, y por tanto evitando las corrientes de circulación, que es un problema en los sistemas convertidores paralelos en Ia técnica anterior.
Por tanto, con esta configuración modular del sistema convertidor, si uno de los módulos convertidores no funciona, no implica que el acoplamiento del generador a Ia red eléctrica esté caído, y Ia turbina eólica puede continuar funcionado.
Es decir, si el sistema de accionamiento eléctrico tiene por ejemplo tres módulos convertidores, el generador tiene tres conjuntos de bobinados aislados para cada fase, y cada módulo convertidor está conectado a cada conjunto de bobinados en el generador, no existiendo ninguna conexión directa entre los módulos convertidores. Así, en el caso de un generador trifásico, tendrá un total de nueve bobinados aislados. Por tanto, cada módulo convertidor está totalmente aislado de los otros módulos convertidores.
Según una realización preferida, cada conjunto de bobinados de generador se forma mediante dos o más subconjuntos de bobinados, presentando cada uno de dichos N2 conjuntos de bobinados dos pares de polos. De esta manera, existen al menos dos pares de polos por conjunto de bobinados, es decir un total de al menos 2xN2 pares de polos. Por tanto, con esta disposición de bobinado con dobles pares de polos se consigue un equilibrio mecánico de las fuerzas radiales del generador. Es decir, no hay fuerzas de desequilibrio en el generador o cojinetes.
Por tanto, con Ia realización preferida con dobles pares de polos (2xN2) y Ia configuración modular del convertidor, las fuerzas se equilibran, Io que es especialmente importante si solamente están funcionando algunos de los módulos convertidores. De esta manera, los dos o más módulos convertidores son totalmente independientes unos de otros, no existiendo acoplamiento magnético entre ellos, y reduciendo por tanto las corrientes de circulación, que es un problema en los sistemas convertidores paralelos de Ia técnica anterior.
Según una realización preferida de Ia invención, el sistema convertidor también incluye medios de conmutación para conmutar uno o más de los módulos convertidores, siendo posible de esta manera desconectar el módulo convertidor que ha fallado. Por tanto, aumenta Ia disponibilidad global de Ia turbina eólica.
Preferiblemente, cada módulo convertidor comprende un inversor de generador y un inversor de red; de esta manera, es posible incluir algoritmos de control para el convertidor de generador.
Según Ia presente invención, en el caso de fallo en un módulo convertidor, todo el sistema de control distribuye Ia demanda de energía total en los demás módulos convertidores, y limita Ia energía máxima a, por ejemplo, 2/3 de Ia energía total (si un sistema de tres falla): S_tot=((N1 -F)/N1 )*S_max, siendo N1 el
- A -
número de módulos convertidores y F es el número de módulos convertidores que han fallado.
Esta realización preferida consigue mejores características mecánicas en el generador resultante, junto con una mejor calidad en Ia potencia disponible, como ya se ha mencionado anteriormente.
Preferiblemente, el sistema de accionamiento eléctrico comprende además medios de control para habilitar/deshabilitar el funcionamiento de al menos uno de dichos N1 módulos convertidores en respuesta a un parámetro relacionado con Ia cantidad de energía eléctrica suministrada a Ia red.
Breve descripción de los dibujos
Para completar Ia descripción y para proporcionar una mejor comprensión de Ia invención, se proporciona un conjunto de dibujos. Dichos dibujos forman una parte integrante de Ia descripción e ilustran realizaciones preferidas de Ia invención, que no deberían interpretarse como limitativas del alcance de Ia invención, sino sólo como ejemplos de cómo puede ponerse en práctica Ia invención. Los dibujos comprenden las siguientes figuras:
La figura 1 ilustra un parte de un sistema de accionamiento eléctrico de un generador de turbina eólica según una primera realización de Ia invención. La figura 2, ilustra otro posible diseño de un parte de un sistema de accionamiento eléctrico de un sistema generador de turbina eólica, incluyendo una disposición de bobinado preferida.
La figura 3 es una vista ampliada de un generador y su disposición de bobinado según Ia invención. La figura 4 es un diagrama de una realización posible para un módulo convertidor mediante el cual Ia turbina eólica se conecta a Ia red.
Descripción detallada de las realizaciones preferidas
La figura 1 muestra un generador 1 síncrono de imanes permanente PMSG {permanent magnet synchronous generatoή con tres fases, que genera Ia energía eléctrica de salida o Ia entrada del par de torsión, presentando el generador tres conjuntos de bobinados 20, 21 , 22, conectados respectivamente de manera independiente a uno de tres convertidores 10 4Q paralelos que forman un sistema convertidor que está directamente acoplado a Ia red principal.
El generador también puede ser un generador síncrono, un generador síncrono sin escobillas o un generador asincrono.
Cada módulo convertidor 10 está conectado de manera separada a un conjunto de bobinados en el generador 20, 21 , 22, y cada conjunto de bobinados de generador se desacopla magnéticamente de los demás. Para garantizar este desacoplamiento, cada conjunto de bobinados se coloca en sus propias ranuras del generador (por motivos de claridad, no se han representado las ranuras en el dibujo).
En Ia realización preferida mostrada en Ia figura 2, el generador 1 ' se conecta a tres módulos convertidores 10 conectados en paralelo, presentando cada uno dos secciones para igualar las fuerzas, es decir, hay un total de seis secciones. Cada conjunto de bobinados en el generador 1 ' está formado por dos subconjuntos de bobinados 20-20', 21 -21 ' y 22-22', y cada subconjunto de bobinados tiene un par de polos 30 para garantizar que las fuerzas magnéticas se igualan, especialmente en operaciones en los que solamente algunos de los módulos de convertidor están funcionando.
La figura 3 es una vista ampliada de Ia realización preferida del generador 1 ' (mostrado en Ia figura 2) y su disposición de bobinado según Ia invención.
Tal como se muestra individualmente en Ia figura 4, en cualquier caso, cada módulo convertidor 10 comprende un inversor de generador 1 1 y un inversor de red 12.
Los inversores de generador convierten las corrientes (energía) de generador CA del voltaje y frecuencia de generador real a una corriente CC
(energía). Para mantener estable el voltaje de enlace CC, diversos condensadores 13 se conectan en paralelo. Los inversores de generador pueden ser un convertidor activo o pasivo.
La energía del generador se transmite a Ia red mediante el inversor 12 de red, que convierte el voltaje CC a un voltaje y frecuencia fijos; el voltaje y frecuencia de red. Mediante el control del voltaje de enlace CC del sistema convertidor el inversor de red controla el flujo de energía hacia el enlace CC, y también Ia demanda de energía reactiva desde Ia turbina eólica.
Los convertidores de red están conectados a un transformador reductor 14 de red respectivo (Ia inductancia de arranque para el inversor de red).
El sistema convertidor puede conectarse a Ia red mediante un transformador que transforma el nivel de voltaje principal de 10 a 36 KV al sistema de bajo voltaje en Ia turbina eólica, que es normalmente de 690 V.
Un conmutador separa Ia turbina eólica de Ia red, y protege Ia turbina eólica en el caso de un cortocircuito en el transformador.
Algunas de las ventajas de este sistema son que Ia eficiencia del generador siempre es muy alta, y también que el sistema puede continuar proporcionando, por ejemplo, dos/tercios de Ia energía nominal si uno de los tres convertidores 4Q tiene una falta. Una desventaja de este sistema es que toda Ia energía nominal ha de manejarse por los convertidores 4Q, y las pérdidas de convertidor son por tanto relativamente altas. La fiabilidad de un convertidor individual es relativamente baja, por tanto, es una ventaja conectar más módulos convertidores en paralelo.
Tal como se indica anteriormente, Ia presente invención se refiere a un sistema de accionamiento eléctrico para una turbina eólica y a una disposición de bobinado para un generador de Ia misma. Ha de entenderse que Ia descripción anterior es un ejemplo de los principios de Ia invención y no limita Ia invención a las realizaciones ilustradas.
Claims
1. Un sistema de accionamiento eléctrico, que comprende un sistema (1 ) convertidor para acoplar un generador (2) de una turbina eólica a una red (3), sistema convertidor que comprende N1 módulos convertidores (10) conectados en paralelo, en el que N1 >1 , caracterizado porque cada uno de dichos N1 módulos convertidores (10) está conectado a un conjunto separado de bobinados (20) de generador, existiendo N2 conjuntos de bobinados de generador y N1 =N2, de manera que el generador comprende tantos conjuntos de bobinados (20) como módulos convertidores (10), y cada uno de dichos N2 conjuntos de bobinados se coloca en una sección limitada del estator de Ia turbina eólica.
2. Sistema de accionamiento eléctrico según Ia reivindicación 1 , caracterizado porque cada conjunto de bobinados de generador se forma mediante dos o más subconjuntos de bobinados (20, 21 ; 20', 21 '; 20", 21 "), presentando cada uno de dichos N2 conjuntos de bobinados Ia menos dos pares de polos (30).
3. Sistema de accionamiento eléctrico según cualquier reivindicación anterior, caracterizado porque comprende adicionalmente medios de conmutación para conmutar uno o más de los N1 módulos convertidores.
4. Sistema de accionamiento eléctrico según cualquier reivindicación anterior, caracterizado porque cada módulo convertidor (10) comprende un inversor de generador (1 1 ) y un inversor de red (12).
5. Sistema de accionamiento eléctrico según cualquier reivindicación anterior, caracterizado porque comprende adicionalmente medios de control para habilitar/deshabilitar el funcionamiento de al menos uno de dichos N1 módulos convertidores en respuesta a un parámetro relacionado con Ia cantidad de energía eléctrica suministrada a Ia red.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP200700898 | 2007-03-30 | ||
ES200700898A ES2325844B1 (es) | 2007-03-30 | 2007-03-30 | Generador para turbina eolica con bobinados independientes. |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008119864A1 true WO2008119864A1 (es) | 2008-10-09 |
Family
ID=39807839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2008/070059 WO2008119864A1 (es) | 2007-03-30 | 2008-03-25 | Generador para tubina eólica con bobinados independientes |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2325844B1 (es) |
WO (1) | WO2008119864A1 (es) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2228897A1 (en) | 2009-03-11 | 2010-09-15 | C-Power Limited | Generator power conditioning |
WO2010103304A1 (en) * | 2009-03-10 | 2010-09-16 | C-Power Limited | Generator power conditioning |
ES2383430A1 (es) * | 2009-09-21 | 2012-06-21 | Gamesa Innovation & Technology, S.L | Procedimiento y sistema de control para generadores de turbinas de viento |
EP2492501A1 (en) * | 2011-02-25 | 2012-08-29 | Siemens Aktiengesellschaft | Wind turbine |
ES2391207A1 (es) * | 2012-08-30 | 2012-11-22 | Universidad De La Rioja | Procedimiento y dispositivo generador asíncrono para la generación de energía hidroeléctrica |
EP2685616A1 (en) * | 2012-07-10 | 2014-01-15 | Siemens Aktiengesellschaft | Stator arrangement and electrical generator |
US9379552B2 (en) | 2008-09-03 | 2016-06-28 | Exro Technologies Inc. | Power conversion system for a multi-stage generator |
EP3051670A1 (en) * | 2015-01-28 | 2016-08-03 | Siemens Aktiengesellschaft | Winding design for a stator of an electric machine |
US9812981B2 (en) | 2009-09-03 | 2017-11-07 | Exro Technologies Inc. | Variable coil configuration system, apparatus and method |
EP3444926A4 (en) * | 2016-04-15 | 2019-11-27 | Schaeffler Technologies AG & Co. KG | GENERATOR STATOR AND GENERATOR |
CN110784048A (zh) * | 2018-07-27 | 2020-02-11 | 通用电气航空系统有限责任公司 | 定子组件 |
US11081996B2 (en) | 2017-05-23 | 2021-08-03 | Dpm Technologies Inc. | Variable coil configuration system control, apparatus and method |
US11211836B2 (en) * | 2018-07-27 | 2021-12-28 | Ge Aviation Systems Llc | Stator assembly |
US11708005B2 (en) | 2021-05-04 | 2023-07-25 | Exro Technologies Inc. | Systems and methods for individual control of a plurality of battery cells |
US11722026B2 (en) | 2019-04-23 | 2023-08-08 | Dpm Technologies Inc. | Fault tolerant rotating electric machine |
US11967913B2 (en) | 2021-05-13 | 2024-04-23 | Exro Technologies Inc. | Method and apparatus to drive coils of a multiphase electric machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3579371A1 (en) * | 2018-06-08 | 2019-12-11 | Siemens Gamesa Renewable Energy A/S | Dual transformer turbine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550267A (en) * | 1983-02-18 | 1985-10-29 | Sundstrand Corporation | Redundant multiple channel electric motors and generators |
US20060103137A1 (en) * | 2000-08-14 | 2006-05-18 | Aloys Wobben | Wind power installation |
-
2007
- 2007-03-30 ES ES200700898A patent/ES2325844B1/es not_active Expired - Fee Related
-
2008
- 2008-03-25 WO PCT/ES2008/070059 patent/WO2008119864A1/es active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4550267A (en) * | 1983-02-18 | 1985-10-29 | Sundstrand Corporation | Redundant multiple channel electric motors and generators |
US20060103137A1 (en) * | 2000-08-14 | 2006-05-18 | Aloys Wobben | Wind power installation |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9379552B2 (en) | 2008-09-03 | 2016-06-28 | Exro Technologies Inc. | Power conversion system for a multi-stage generator |
WO2010103304A1 (en) * | 2009-03-10 | 2010-09-16 | C-Power Limited | Generator power conditioning |
US20120001435A1 (en) * | 2009-03-10 | 2012-01-05 | Colin Richard Pearce | Generator power conditioning |
EP2228897A1 (en) | 2009-03-11 | 2010-09-15 | C-Power Limited | Generator power conditioning |
US9812981B2 (en) | 2009-09-03 | 2017-11-07 | Exro Technologies Inc. | Variable coil configuration system, apparatus and method |
ES2383430A1 (es) * | 2009-09-21 | 2012-06-21 | Gamesa Innovation & Technology, S.L | Procedimiento y sistema de control para generadores de turbinas de viento |
US8803348B2 (en) | 2011-02-25 | 2014-08-12 | Siemens Aktiengesellschaft | Wind turbine |
KR101884931B1 (ko) * | 2011-02-25 | 2018-08-02 | 지멘스 악티엔게젤샤프트 | 풍력 터빈 |
JP2012177366A (ja) * | 2011-02-25 | 2012-09-13 | Siemens Ag | 風力タービン |
EP2492501A1 (en) * | 2011-02-25 | 2012-08-29 | Siemens Aktiengesellschaft | Wind turbine |
KR20120098437A (ko) * | 2011-02-25 | 2012-09-05 | 지멘스 악티엔게젤샤프트 | 풍력 터빈 |
AU2012200262B2 (en) * | 2011-02-25 | 2015-02-05 | Siemens Aktiengesellschaft | Wind turbine |
CN102651556A (zh) * | 2011-02-25 | 2012-08-29 | 西门子公司 | 风力涡轮机 |
EP2685616A1 (en) * | 2012-07-10 | 2014-01-15 | Siemens Aktiengesellschaft | Stator arrangement and electrical generator |
ES2391207A1 (es) * | 2012-08-30 | 2012-11-22 | Universidad De La Rioja | Procedimiento y dispositivo generador asíncrono para la generación de energía hidroeléctrica |
EP3051670A1 (en) * | 2015-01-28 | 2016-08-03 | Siemens Aktiengesellschaft | Winding design for a stator of an electric machine |
EP3444926A4 (en) * | 2016-04-15 | 2019-11-27 | Schaeffler Technologies AG & Co. KG | GENERATOR STATOR AND GENERATOR |
US11081996B2 (en) | 2017-05-23 | 2021-08-03 | Dpm Technologies Inc. | Variable coil configuration system control, apparatus and method |
CN110784048A (zh) * | 2018-07-27 | 2020-02-11 | 通用电气航空系统有限责任公司 | 定子组件 |
US11211836B2 (en) * | 2018-07-27 | 2021-12-28 | Ge Aviation Systems Llc | Stator assembly |
US11722026B2 (en) | 2019-04-23 | 2023-08-08 | Dpm Technologies Inc. | Fault tolerant rotating electric machine |
US11708005B2 (en) | 2021-05-04 | 2023-07-25 | Exro Technologies Inc. | Systems and methods for individual control of a plurality of battery cells |
US11967913B2 (en) | 2021-05-13 | 2024-04-23 | Exro Technologies Inc. | Method and apparatus to drive coils of a multiphase electric machine |
Also Published As
Publication number | Publication date |
---|---|
ES2325844A1 (es) | 2009-09-21 |
ES2325844B1 (es) | 2010-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2325844B1 (es) | Generador para turbina eolica con bobinados independientes. | |
ES2367487T3 (es) | Aparato convertidor de potencia y procedimiento de accionamiento relacionado para generadores con una potencia de salida que varía dinámicamente. | |
ES2447567T3 (es) | Turbina eólica con convertidores paralelos que utilizan una pluralidad de devanados del transformador aislados | |
US7863766B2 (en) | Power converter for use with wind generator | |
CN105684297B (zh) | 具有dc输出的涡轮发电机系统 | |
US9337685B2 (en) | Optimized filter for battery energy storage on alternate energy systems | |
US11563385B2 (en) | DC chopper for MMC cell with integrated chopper resistor | |
US20200158085A1 (en) | Power converter for full conversion wind turbine systems | |
CN107947222A (zh) | 直流风机输电系统 | |
EP3566294B1 (en) | Power converter for doubly fed induction generator wind turbine systems | |
Chivite-Zabalza et al. | Comparison of power conversion topologies for a multi-megawatt off-shore wind turbine, based on commercial power electronic building blocks | |
US11060506B2 (en) | Wind turbine system | |
EP3161954B1 (en) | Power converter and assembly method for assembling a power converter | |
CN106356889A (zh) | 永磁风力发电机组 | |
EP4170888A1 (en) | System and method for operating multi-level power converter using a multi-state deadtime | |
EP3961886A1 (en) | Crowbar module for an active neutral point clamped power conversion assembly | |
EP4057494A1 (en) | Active neutral point clamped switch sequence for parasitic inductance control of a power conversion assembly | |
US11552575B1 (en) | System and method for operating multi-level power converter using multiple deadtimes | |
Ruseler et al. | A novel modular multilevel inverter for medium-voltage open-end split winding machines based on single-phase submodules with input-series connection | |
WO2023208814A1 (en) | Supplying power to auxiliary wind turbine equipment | |
EP4399789A1 (en) | Electric drive | |
NZ757618B2 (en) | A wind turbine system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08736746 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) (EPO FORM 1205A DATED 050210) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08736746 Country of ref document: EP Kind code of ref document: A1 |