WO2008119489A1 - Method for separating product mixtures of transesterification reactions - Google Patents
Method for separating product mixtures of transesterification reactions Download PDFInfo
- Publication number
- WO2008119489A1 WO2008119489A1 PCT/EP2008/002361 EP2008002361W WO2008119489A1 WO 2008119489 A1 WO2008119489 A1 WO 2008119489A1 EP 2008002361 W EP2008002361 W EP 2008002361W WO 2008119489 A1 WO2008119489 A1 WO 2008119489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic phase
- polar
- phase
- separation
- membrane
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000005809 transesterification reaction Methods 0.000 title claims abstract description 32
- 239000000203 mixture Substances 0.000 title claims abstract description 22
- 239000012074 organic phase Substances 0.000 claims abstract description 26
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 23
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 21
- 239000003792 electrolyte Substances 0.000 claims abstract description 17
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 39
- 239000012528 membrane Substances 0.000 claims description 31
- 238000000926 separation method Methods 0.000 claims description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 9
- 239000000194 fatty acid Substances 0.000 claims description 9
- 229930195729 fatty acid Natural products 0.000 claims description 9
- -1 fatty acid esters Chemical class 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000003921 oil Substances 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 7
- 235000019387 fatty acid methyl ester Nutrition 0.000 claims description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- 239000003925 fat Substances 0.000 claims description 4
- 238000010924 continuous production Methods 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 239000002551 biofuel Substances 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 239000003495 polar organic solvent Substances 0.000 claims description 2
- 235000013311 vegetables Nutrition 0.000 claims description 2
- 239000012071 phase Substances 0.000 description 28
- 239000000047 product Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000005191 phase separation Methods 0.000 description 14
- 150000002148 esters Chemical class 0.000 description 13
- 239000004743 Polypropylene Substances 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000000919 ceramic Substances 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- 239000003225 biodiesel Substances 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000012466 permeate Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 235000021588 free fatty acids Nutrition 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 235000019484 Rapeseed oil Nutrition 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 229920001600 hydrophobic polymer Polymers 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 229920005597 polymer membrane Polymers 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- 239000008158 vegetable oil Substances 0.000 description 3
- 238000010626 work up procedure Methods 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 238000006136 alcoholysis reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- CASUWPDYGGAUQV-UHFFFAOYSA-M potassium;methanol;hydroxide Chemical compound [OH-].[K+].OC CASUWPDYGGAUQV-UHFFFAOYSA-M 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000006053 organic reaction Methods 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D17/00—Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
- B01D17/08—Thickening liquid suspensions by filtration
- B01D17/085—Thickening liquid suspensions by filtration with membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/147—Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/08—Refining
- C11C1/10—Refining by distillation
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/003—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/04—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
- C11C3/10—Ester interchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/38—Hydrophobic membranes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1011—Biomass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a process for the separation of dispersions of polar, electrolyte-containing and non-polar organic phases with the aid of a hydrophobic, porous release agent.
- Another approach to separating organic phases is to use supercritical fluids to extract the product phase.
- the supercritical fluid is used as a gaseous entraining agent, which is fed to the separation stage as a superheated vapor phase - based on the operating conditions of the separation stage - and loaded again with portions of the organic material.
- entrainer water or mixtures of water and a short-chain alcohol are often used.
- the disadvantage of this method of separating mixtures of different polarity is precisely the handling of the supercritical vapor and the quantities of entraining agent itself.
- the disposal of large amounts of entraining agent in industrial processes is an important aspect.
- special release agents have been developed for the above separation steps, showing improved separation at high throughput and greater flow.
- the modern release agents are membranes with hydrophobized surfaces. Examples of such membranes are known from various publications such as DE 33 12 573 Al and DE 37 12 391 Al.
- DE 33 12 573 A1 describes a process for dewaxing vegetable oils, in which a special membrane having a critical surface tension of less than 33 mN / ra and a mean pore diameter of 0.05-5 ⁇ m is used.
- This membrane in conjunction with the choice of a reduced filtration temperature of about -10 ° C-20 ° C, ensures a good separation performance due to the fact that the waxes to be separated are present as solids at this temperature. In this way, unwanted components such as waxes, phospholipids, free fatty acids and water can be separated from a crude vegetable oil.
- phase separations can therefore be realized by standing or lying gravity separators, possibly equipped with internals, or by centrifuges.
- the methods used can accordingly perform the phase separation with respect to the electrolytes contained insufficient, so that a complex workup of the fatty acid methyl ester must be done.
- the electrolyte is reacted with an acid to a salt, which is then washed out in a further process step by a water wash.
- phase separation itself is of central importance especially in the economically relevant field of biodiesel production. Phase separation is adversely affected by soaps and mucilage. In order to enable the phase separation, a high expenditure on equipment is driven in the biodiesel process known today, so that free fatty acids, which react in processes of base-catalyzed transesterification of triglycerides to soaps, extracted in upstream process steps or separated in other ways.
- separators or centrifuges are used to separate the reaction products.
- this phase separation is as already mentioned above, that they require a complicated separation and neutralization of the basic catalyst and at least one subsequent step in the separation of the salt load from the biodiesel required.
- the salt load is washed out with an addition of fresh water from the non-polar, organic phase, the biodiesel. This results in high costs due to the necessary disposal or - -
- the object of the present invention is therefore to provide a simplified process for obtaining the non-polar products from the mixture of a transesterification reaction in the highest possible quality.
- This object is achieved by a method for the separation of the product mixture of a transesterification reaction with a polar, electrolyte-containing organic phase and a non-polar organic phase in which by means of a porous hydrophobic release agent, the non-polar organic phase of the remaining polar, electrolyte-containing organic phase is separated.
- Transesterification reactions are an industrially important class of organic reactions in which an ester is converted by exchange of the acid groups or by exchange of the alcoholic groups for another ester. If the transesterification takes place by exchanging the alcoholic groups, this is also called alcoholysis. In alcoholysis, the alcohol to be replaced is generally added in excess to obtain a high yield of the desired ester. Because the transesterification reaction is an equilibrium reaction, which is usually triggered by mixing the reactants. However, the reaction proceeds so slowly that a catalyst for acceleration is required for commercial purposes.
- An example of an economically important transesterification reaction is the preparation of fatty acid esters of short-chain alcohols, in which by transesterification of natural fats or oils such as rapeseed oil or soybean oil a product mixture usable as a fuel is obtained from various fatty acid esters.
- Fats and oils of biological origin consist predominantly of glycerides (mono-, di- and triglyceride).
- the Bradshaw process is often used to transesterify
- the term polar, electrolyte-containing organic phase means the proportion of the product mixture from the transesterification reaction which, in addition to the compounds having free hydroxyl groups, also contains those compounds which have one or more free acid groups.
- electrolytes all salt-like organic or inorganic compounds are referred to here and below. These include, for example, the catalysts preferably used in the transesterification reaction, such as sodium or potassium hydroxide, ammonium compounds or sulfuric acid compounds. However, even those salts which enter the reaction mixture as part of the educts used are to be grouped together under the term electrolytes according to the present invention.
- the polar, electrolyte-containing organic phase contains methanol, ethanol, isopropanol, water and / or glycerol.
- non-polar organic phase means the proportion of the product mixture from the transesterification reaction which essentially contains compounds with non-polar groups such as alkyl groups, alkenyl groups, ester groups and / or functionalities with similarly low polarity.
- the nonpolar organic phase contains fatty acid esters.
- the non-polar organic phase may contain methyl, ethyl and / or isopropyl esters of natural fatty acids.
- the robustness of the method according to the invention can continue to manifest itself in that mixtures with a higher proportion of soap can now also be separated.
- the increased proportion of soap results from an increased proportion of free fatty acids in the educt and is converted by the basic catalysts used to soaps.
- the soaps act in the product mixture in such a way that they stabilize the resulting product mixture as a dispersion or emulsion such that it can not be separated in a conventional manner due to the differences in density and surface tension. This disadvantage is thus overcome by the method according to the invention.
- the process according to the invention is preferably carried out such that initially a reaction mixture for the transesterification from educt ester, catalyst and alcohol is stirred for a certain time in a reaction vessel.
- the reaction temperature, pressure and reaction time are not critical and are chosen so that as complete a conversion as possible is achieved with the lowest possible residence time.
- the resulting product mixture is fed to a separation stage which is provided with a hydrophobic release agent.
- the hydrophobic release agent allows the non-polar product ester phase to permeate, with the polar organic phase being retained with the alcohol and catalyst components.
- non-polar phase with the product esters can then be further processed directly, for example, washed again.
- the remaining polar phase can be worked up in further steps until the desired products, such as, for example, glycerol, are obtained in a purity which allows their use as a raw material for a very wide range of applications.
- the polar, electrolyte-containing phase can be recycled to the transesterification reaction or act as a starting material in a further transesterification reaction. In this way, the conversion of the reactants can be increased again overall.
- the hydrophobic release agent may consist of a hydrophobic membrane of ceramic or a polymer.
- the hydrophobic membrane may have a pore size of from 0.05 ⁇ m to 10 ⁇ m, more preferably from 0.1 ⁇ m to 5 ⁇ m.
- the hydrophobic release agent by its nature, exhibits a high rate of separation between the polar, electrolyte-containing phase and the nonpolar phase, which can permeate through the membrane.
- the release agent should be chosen so that preferably against the background of a large-scale design, a high Permeationsfius and a good resistance of the release agent are given.
- the release agent consists of a hydrophobic membrane of ceramic, polymer, or composite materials of polymer and ceramic, which have a coating with hydrophobic material, such as perfluorinated polymers (PTFE, PVDF) or hydrophobic polymers (polypropylene), or whose surface has been rendered hydrophobic by the use of isocyanates or silanes.
- hydrophobic membrane of ceramic, polymer, or corresponding composite materials of polymer and ceramic which has sufficient hydrophobicity without further modification.
- the hydrophobic membrane is a ceramic hydrophobized membrane.
- ceramic membranes in particular membranes based on Al 2 O 3 , ZrO 2 , TiO 2 , SiC and combinations of these compounds are used.
- the membrane is a hydrophobic polymer membrane.
- Membranes based on PP, PVDF, PTFE, silicones and combinations of these compounds are used in particular as polymer membranes.
- the hydrophobic polymer membrane may have pores having a pore size of from 0.05 ⁇ m to 10 ⁇ m, more preferably from 0.1 ⁇ m to 5 ⁇ m.
- the process according to the invention can be conducted either as a batch process or as a continuous process. It is particularly preferably conducted as a continuous process.
- a process according to the present invention can be used particularly preferably for obtaining fatty acid methyl esters from the transesterification reaction of biological, that is to say vegetable and / or animal, fats or oils. Particularly preferred is a method according to the present invention for the production of biofuels used. - -
- the release agent used is a hydrophobic PP polymer membrane.
- the PP membrane used is tubular with an inner diameter of 5.5 mm and an outer diameter of 8.5 mm, a length of 250 mm and an active inner filtration area of 0.004 m 2 .
- the pore diameter of the membrane is 0.2 ⁇ m.
- the reaction solution (feed) used resulted from a basic transesterification of rapeseed oil with KOH.
- 6950 g of rapeseed oil were mixed with 695 g of methanol in a stirred tank and reacted with 463.3 g of a 25% KOH-methanol catalyst mixture at 35 ° C to implement.
- the reaction solution (feed) was passed over the inside of the membrane used by continuously circulating 400 kg / h. In this case, a clear single-phase fatty acid methyl ester phase (permeate) could be deducted.
- the resulting from the reaction glycerol phase was retained by the PP membrane.
- the separated permeate phase is single-phase, in the sense that only the physically dissolved glycerol ( ⁇ 0.1% by weight) and / or water ( ⁇ 0.1% by weight) is included.
- Table 1 shows the phase separation by means of a hydrophobic PP membrane.
- the release agent used is a hydrophobic PP polymer membrane.
- the PP membrane used is tubular with an inner diameter of 5.5 mm and an outer diameter of 8.5 mm, a length of 750 mm and an active inner filtration area of 0.012 m 2 .
- the pore diameter of the membrane is 0.2 ⁇ m.
- the separated permeate phase is single-phase, in the sense that only the physically dissolved glycerol ( ⁇ 0.1% by weight) and / or water ( ⁇ 0.1% by weight) is included.
- the free fatty acids (oleic acid) or soaps are also almost completely retained by the membrane.
- the reaction solution (feed) described above contains the glycerol phase, which forms a cloudy ester / glycerol phase as a stable dispersion.
- the complete separation of the glycerol phase from the ester phase by settling of the heavy phase is possible only after a very long period of time (> 24 hours) or in the centrifugal field.
- Table 2 shows the phase separation of a hydrophobic PP membrane.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Microbiology (AREA)
- Fats And Perfumes (AREA)
Abstract
The invention relates to a method for separating product mixtures which are produced by a transesterification reaction and which contain a polar electrolyte-containing organic phase and a nonpolar organic phase. By means of a porous, hydrophobic separating agent, the nonpolar organic phase is separated from the polar electrolyte-containing organic phase, which remains behind.
Description
Verfahren zur Trennung von Produktgemischen aus Umesterungsreaktionen Process for the separation of product mixtures from transesterification reactions
Die vorliegende Erfindung betrifft ein Verfahren zur Trennung von Dispersionen aus polaren, Elektrolyt-haltigen und unpolaren organischen Phasen mit Hilfe eines hydrophoben, porösen Trennmittels.The present invention relates to a process for the separation of dispersions of polar, electrolyte-containing and non-polar organic phases with the aid of a hydrophobic, porous release agent.
Eine Vielzahl von Verfahren zur Trennung von Dispersionen, insbesondere von Dispersionen aus organischen und wässrigen Phasen, ist seit langem bekannt. Diese Verfahren basieren meist auf dem Unterschied in der spezifischen Oberflächenspannung und der Dichte. Im Allgemeinen wird bei nicht mischbaren Flüssigkeiten eine auf der Schwerkraft beruhende Phasentrennung zur Abtrennung der schwereren Phase ausgenutzt. Diese Vorgehensweise lässt sich auch in industriellem Maßstab anwenden, vorausgesetzt, dass eine ausreichende Phasentrennung eintritt.A variety of methods for the separation of dispersions, in particular dispersions of organic and aqueous phases, has long been known. These methods are mostly based on the difference in specific surface tension and density. Generally, immiscible liquids utilize gravity-based phase separation to separate the heavier phase. This procedure can also be applied on an industrial scale, provided that sufficient phase separation occurs.
Ein weiterer Ansatz zur Abtrennung von organischen Phasen besteht in der Anwendung von überkritischen Flüssigkeiten zur Extraktion der Produktphase. In einem solchen Verfahren wird die überkritische Flüssigkeit als gasförmiges Schleppmittel eingesetzt, das der Trennstufe als überhitzte Dampfphase - bezogen auf die Arbeitsbedingungen der Trennstufe — zugeführt und mit Anteilen des organischen Materials beladen wieder abgeschieden wird. Als Schleppmittel werden häufig Wasser oder Gemische aus Wasser und einem kurzkettigen Alkohol eingesetzt.Another approach to separating organic phases is to use supercritical fluids to extract the product phase. In such a method, the supercritical fluid is used as a gaseous entraining agent, which is fed to the separation stage as a superheated vapor phase - based on the operating conditions of the separation stage - and loaded again with portions of the organic material. As entrainer water or mixtures of water and a short-chain alcohol are often used.
Ein Beispiel des vorgenannten Prinzips bezogen auf die Reinigung von Fettsäure-Methylestern mittels überhitztem Methanol aus der Glycerid-Umesterung ist in der DE 43 40 093 Al beschrieben. Diese Anwendung hat vor allem für die Biodiesel-Herstellung Bedeutung, da sich hier stets eine Trennaufgabe für die Reaktionsprodukte des Umesterungsschritts ergibt, die von dem ebenfalls entstehenden Glycerin abgetrennt werden müssen.An example of the aforementioned principle based on the purification of fatty acid methyl esters by means of superheated methanol from the glyceride transesterification is described in DE 43 40 093 A1. This application is especially important for the production of biodiesel, as it always results in a separation task for the reaction products of the transesterification step, which must be separated from the glycerol also formed.
Nachteilig an dieser Methode zur Trennung von Gemischen verschiedener Polarität ist jedoch gerade die Handhabung des überkritischen Dampfs und der Schleppmittelmengen selbst. Gerade im Hinblick auf die immer strenger werdenden Umweltauflagen ist auch die Entsorgung der großen Schleppmittelmengen bei industriellen Prozessen ein wichtiger Aspekt.
In jüngerer Zeit sind für die genannten Trennungsschritte spezielle Trennmittel entwickelt worden, die eine verbesserte Abtrennung bei hohem Durchsatz und größerem Durchfluss zeigen. Unter anderem handelt es sich bei den modernen Trennmitteln um Membranen mit hydrophobisierten Oberflächen. Beispiele für solche Membranen sind aus verschiedenen Druckschriften wie DE 33 12 573 Al und DE 37 12 391 Al bekannt.However, the disadvantage of this method of separating mixtures of different polarity is precisely the handling of the supercritical vapor and the quantities of entraining agent itself. Especially in view of the ever stricter environmental regulations, the disposal of large amounts of entraining agent in industrial processes is an important aspect. More recently, special release agents have been developed for the above separation steps, showing improved separation at high throughput and greater flow. Among other things, the modern release agents are membranes with hydrophobized surfaces. Examples of such membranes are known from various publications such as DE 33 12 573 Al and DE 37 12 391 Al.
Die DE 33 12 573 Al beschreibt ein Verfahren zum Entwachsen von pflanzlichen Ölen, bei dem eine spezielle Membran mit einer kritischen Oberflächenspannung von weniger als 33 mN/ra und einen mittleren Porendurchmesser von 0,05 - 5 μm eingesetzt wird. Diese Membran gewährleistet in Verbindung mit der Wahl einer verminderten Filtrationstemperatur von etwa - 10°C - 20°C eine gute Trennleistung aufgrund der Tatsache, dass die abzutrennenden Wachse bei dieser Temperatur als Feststoffe vorliegen. Auf diese Weise können unerwünschte Komponenten wie Wachse, Phospholipide, freie Fettsäuren und Wasser aus einem rohen pflanzlichen Öl abgetrennt werden.DE 33 12 573 A1 describes a process for dewaxing vegetable oils, in which a special membrane having a critical surface tension of less than 33 mN / ra and a mean pore diameter of 0.05-5 μm is used. This membrane, in conjunction with the choice of a reduced filtration temperature of about -10 ° C-20 ° C, ensures a good separation performance due to the fact that the waxes to be separated are present as solids at this temperature. In this way, unwanted components such as waxes, phospholipids, free fatty acids and water can be separated from a crude vegetable oil.
Ein ähnliches Verfahren zur Abtrennung von Phospholipiden ist auch aus den Druckschriften EP 1 416 037 Al und DE 32 44 007 C2 bekannt. Auch hier wird zur Qualitätsverbesserung von Pflanzenölen eine Filtration mittels einer hydrophoben Membran vorgenommen.A similar process for the separation of phospholipids is also known from the documents EP 1 416 037 A1 and DE 32 44 007 C2. Here, too, a filtration is carried out by means of a hydrophobic membrane to improve the quality of vegetable oils.
Neben der vorstehend beschriebenen Raffination von natürlichen oder recycelten Ölen gewinnt jedoch in jüngster Zeit die Herstellung von Biodiesel in industriellem Maßstab zunehmend wirtschaftliche Bedeutung. Bei dieser Herstellung werden aus gereinigten beziehungsweise aufbereiteten Ölen im Wege einer Umesterungsreaktion vorzugsweise Methylester der in den Ölen enthaltenen Fettsäuren erhalten, die als Kraftstoff Verwendung finden. Daneben wird Glycerin gewonnen, das ebenfalls als Rohstoff beispielsweise in der Kosmetikindustrie eingesetzt wird. Die Umesterungsreaktion kann entweder sauer oder basisch katalysiert werden. Darüber hinaus sind auch enzymatische Methoden zur Katalyse der Umesterungsreaktion bekannt. Einen Überblick über die bisher verwendeten Verfahren zur großtechnischen Umesterung von Ölen zur Gewinnung von als Kraftstoff verwendbaren Fettsäureestern geben beispielsweise die Druckschriften DE 199 25 871 Al, DE 602 09 028 T2 sowie DE 10 2004 044 660 Al zusammen mit den darin genannten Verweisen.
Allen bisher bekannten Verfahren liegt das Problem zugrunde, die Trennung des Produktgemisches aus polarer, Glycerin-haltiger Phase und unpolarer Esterphase nur unvollständig auszuführen, so dass insbesondere die Esterphase nur mit zurückgebliebenen Spuren von Wasser, Elektrolyten und Nebenprodukten gewonnen werden kann. Die bekannten Verfahren basieren insbesondere im großtechnischen Maßstab auf der Abtrennung der schwereren polaren Phase durch Phasentrennung mittels Schwerkraft.However, in addition to the above-described refining of natural or recycled oils, the production of biodiesel on an industrial scale has recently gained increasing economic importance. In this preparation, from purified or treated oils by way of a transesterification reaction, preferably methyl esters of the fatty acids contained in the oils are obtained, which are used as fuel. In addition, glycerol is obtained, which is also used as a raw material, for example in the cosmetics industry. The transesterification reaction can be catalyzed either acidic or basic. In addition, enzymatic methods for catalyzing the transesterification reaction are also known. An overview of the processes used hitherto for the large-scale transesterification of oils for obtaining fatty acid esters which can be used as fuel is given, for example, by the publications DE 199 25 871 A1, DE 602 09 028 T2 and DE 10 2004 044 660 A1 together with the references cited therein. All previously known methods are based on the problem that only partially perform the separation of the product mixture of polar, glycerol-containing phase and nonpolar ester phase, so that in particular the ester phase can be obtained only with remaining traces of water, electrolytes and by-products. The known processes are based in particular on an industrial scale on the separation of the heavier polar phase by phase separation by means of gravity.
In den gebräuchlichen Verfahren zur Herstellung von Fettsäureestern basierend auf einer basischen Umesterung, wie in AT 386222, AT 397966, AT 387399, DE 3727981, DE 3020612, DE 3107318, WO 92/00268 oder DE 19925871A1 beschrieben, wird eine Abtrennung von Zwischenprodukten und Produkten durch eine Phasentrennung beschrieben. Diese Phasentrennungen können demnach durch stehende oder liegende Schwerkraftabscheider, eventuell mit Einbauten ausgestattet, oder durch Zentrifugen realisiert werden. Die eingesetzten Verfahren können entsprechend die Phasentrennung in Bezug auf die enthaltenen Elektrolyte nur unzureichend durchführen, so dass eine aufwendige Aufarbeitung der Fettsäuremethylester erfolgen muss. Hierbei wird der Elektrolyt mit einer Säure zu einem Salz umgesetzt, welches in einem weiteren Verfahrensschritt dann durch eine Wasserwäsche ausgewaschen wird.In the conventional processes for the preparation of fatty acid esters based on a basic transesterification, as described in AT 386222, AT 397966, AT 387399, DE 3727981, DE 3020612, DE 3107318, WO 92/00268 or DE 19925871A1, a separation of intermediates and products described by a phase separation. These phase separations can therefore be realized by standing or lying gravity separators, possibly equipped with internals, or by centrifuges. The methods used can accordingly perform the phase separation with respect to the electrolytes contained insufficient, so that a complex workup of the fatty acid methyl ester must be done. Here, the electrolyte is reacted with an acid to a salt, which is then washed out in a further process step by a water wash.
Die Phasentrennung selbst ist gerade im wirtschaftlich relevanten Bereich der Biodieselproduktion von zentraler Bedeutung. Die Phasentrennung wird durch Seifen und Schleimstoffe negativ beeinflusst. Um die Phasentrennung zu ermöglichen, wird in den heute bekannten Biodieselverfahren ein hoher apparativer Aufwand getrieben, so dass freie Fettsäuren, welche in Verfahren der basisch katalysierten Umesterung von Triglyceriden zu Seifen reagieren, in vorgelagerten Prozessschritten extrahiert oder auf andere Arten abgetrennt werden.The phase separation itself is of central importance especially in the economically relevant field of biodiesel production. Phase separation is adversely affected by soaps and mucilage. In order to enable the phase separation, a high expenditure on equipment is driven in the biodiesel process known today, so that free fatty acids, which react in processes of base-catalyzed transesterification of triglycerides to soaps, extracted in upstream process steps or separated in other ways.
Anschließend werden in den gebräuchlichen Verfahren Abscheider oder Zentrifugen zur Trennung der Reaktionsprodukte eingesetzt. Nachteil dieser Phasentrennung ist wie oben bereits angesprochen, dass sie eine aufwendige Abtrennung und Neutralisation des basischen Katalysators und mindestens einen anschließenden Verfahrensschritt zur Abtrennung der Salzfracht aus dem Biodiesel erforderlich machen. Die Salzfracht wird mit einer Zugabe von frischem Wasser aus der unpolaren, organischen Phase, dem Biodiesel, ausgewaschen. Hierdurch ergeben sich hohe Kosten durch die notwendige Entsorgung oder
- -Subsequently, in the conventional process, separators or centrifuges are used to separate the reaction products. Disadvantage of this phase separation is as already mentioned above, that they require a complicated separation and neutralization of the basic catalyst and at least one subsequent step in the separation of the salt load from the biodiesel required. The salt load is washed out with an addition of fresh water from the non-polar, organic phase, the biodiesel. This results in high costs due to the necessary disposal or - -
Aufarbeitung des salzhaltigen Abwassers. Gleichzeitig steht durch die chemische Umwandlung des Katalysators dieser für eine Wiederverwendung nicht mehr zur Verfügung und muss aus dem Verfahren ausgeschleust werden. Dies bedeutet einen weiteren Nachteil im Hinblick auf einen großtechnischen Einsatz der bekannten Verfahren, die bevorzugt in kontinuierlicher Verfahrensweise konzipiert werden.Workup of saline wastewater. At the same time, due to the chemical conversion of the catalyst, it is no longer available for reuse and must be discharged from the process. This represents a further disadvantage with regard to a large-scale use of the known processes, which are preferably designed in a continuous procedure.
Zudem wird zur Förderung der Phasentrennung oftmals eine Zugabe von weiteren polaren Lösungsmitteln und insbesondere Wasser notwendig, so dass sich einerseits die Volumina stark erhöhen und andererseits die Notwendigkeit der Entsorgung der eingesetzten Lösungsmittel ergibt. Beides ist gerade im großtechnischen Umfeld von großem wirtschaftlichem Nachteil.In addition, the addition of further polar solvents and in particular water is often necessary to promote the phase separation, so that on the one hand greatly increase the volumes and on the other hand, the necessity of disposing of the solvents used. Both are in the industrial environment of great economic disadvantage.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung eines vereinfachten Verfahrens zur Gewinnung der unpolaren Produkte aus dem Gemisch einer Umesterungsreaktion in möglichst hoher Qualität.The object of the present invention is therefore to provide a simplified process for obtaining the non-polar products from the mixture of a transesterification reaction in the highest possible quality.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Trennung des Produktgemisches einer Umesterungsreaktion mit einer polaren, Elektrolyt-haltigen organischen Phase und einer unpolaren organischen Phase, in dem mittels eines porösen hydrophoben Trennmittels die unpolare organische Phase von der zurückbleibenden polaren, Elektrolyt-haltigen organischen Phase abgetrennt wird.This object is achieved by a method for the separation of the product mixture of a transesterification reaction with a polar, electrolyte-containing organic phase and a non-polar organic phase in which by means of a porous hydrophobic release agent, the non-polar organic phase of the remaining polar, electrolyte-containing organic phase is separated.
Umesterungsreaktionen sind, wie vorstehend bereits dargestellt, eine industriell bedeutsame Klasse organischer Reaktionen, in denen ein Ester durch Austausch der Säuregruppen oder durch Austausch der alkoholischen Gruppen in einen anderen Ester überführt wird. Erfolgt die Umesterung durch Austausch der alkoholischen Gruppen, so spricht man auch von einer Alkoholyse. Bei der Alkoholyse wird der auszutauschende Alkohol im Allgemeinen im Überschuss zugesetzt, um eine hohe Ausbeute an gewünschtem Ester zu erhalten. Denn die Umesterungsreaktion ist eine Gleich- gewichtsreaktion, die in der Regel bereits durch Mischen der Reaktanden ausgelöst wird. Die Reaktion verläuft jedoch so langsam, dass für kommerzielle Zwecke ein Katalysator zur Beschleunigung erforderlich ist. Ein Beispiel für eine wirtschaftlich bedeutende Umesterungsreaktion ist die Herstellung von Fettsäureestern kurzkettiger Alkohole, bei der durch Umesterung von natürlichen Fetten oder Ölen wie beispielsweise Rapsöl oder Sojaöl
ein als Kraftstoff verwendbares Produktgemisch aus verschiedenen Fettsäureestern erhalten wird.Transesterification reactions, as already indicated above, are an industrially important class of organic reactions in which an ester is converted by exchange of the acid groups or by exchange of the alcoholic groups for another ester. If the transesterification takes place by exchanging the alcoholic groups, this is also called alcoholysis. In alcoholysis, the alcohol to be replaced is generally added in excess to obtain a high yield of the desired ester. Because the transesterification reaction is an equilibrium reaction, which is usually triggered by mixing the reactants. However, the reaction proceeds so slowly that a catalyst for acceleration is required for commercial purposes. An example of an economically important transesterification reaction is the preparation of fatty acid esters of short-chain alcohols, in which by transesterification of natural fats or oils such as rapeseed oil or soybean oil a product mixture usable as a fuel is obtained from various fatty acid esters.
Fette und Öle biologischen Ursprungs bestehen überwiegend aus Glyceriden (Mono-, Di- und Triglycerid). In der Praxis wird häufig das Bradshaw- Verfahren zur Umesterung vonFats and oils of biological origin consist predominantly of glycerides (mono-, di- and triglyceride). In practice, the Bradshaw process is often used to transesterify
Fetten und Ölen mit Methanol, wie beispielsweise in den US-Patenten 2,271,619 undGreasing and oiling with methanol, such as in US Patents 2,271,619 and
2,360,844 beschrieben, angewandt. Aber auch verschiedenste Abwandlungen des2,360,844. But also various modifications of the
Verfahrens sind gängig. Vor allem im Bereich der eingesetzten Katalysatoren gibt es eine breite Variation. Neben den basenkatalysierten Verfahren (vgl. z.B. J.Am. OiI Chem. Soc. 61 (1984), 343 oder Ullmann, Enzyklopädie der Technischen Chemie, 4. Auflage, Band 11 ,Procedure are common. Especially in the field of catalysts used, there is a wide variation. In addition to the base catalyzed processes (see, for example, J. Am. Chem. Soc., 61, 343, or Ullmann, Enzyklopadie der Technischen Chemie, 4th Edition, Vol.
Seite 432) sind auch säurekatalysierte Verfahren sowie enzymatische Methoden denkbar.Page 432), acid-catalyzed processes and enzymatic methods are also conceivable.
Unter dem Begriff polare, Elektrolyt-haltige organische Phase wird erfindungsgemäß der Anteil des Produktgemisches aus der Umesterungsreaktion verstanden, der neben den Verbindungen mit freien Hydroxylgruppen auch solche Verbindungen enthält, die eine oder mehrere freie Säuregruppen aufweisen. Als Elektrolyte werden hier und im Folgenden alle salzartigen organischen oder anorganischen Verbindungen bezeichnet. Darunter sind beispielsweise die bevorzugt eingesetzten Katalysatoren der Umesterungsreaktion wie Natrium- oder Kaliumhydroxid, Ammoniumverbindungen oder Schwefelsäureverbin- düngen zu nennen. Aber auch solche Salze, die als Bestandteil der eingesetzten Edukte in das Reaktionsgemisch gelangen, sollen unter dem Begriff Elektrolyte gemäß der vorliegenden Erfindung zusammengefasst werden.According to the invention, the term polar, electrolyte-containing organic phase means the proportion of the product mixture from the transesterification reaction which, in addition to the compounds having free hydroxyl groups, also contains those compounds which have one or more free acid groups. As electrolytes, all salt-like organic or inorganic compounds are referred to here and below. These include, for example, the catalysts preferably used in the transesterification reaction, such as sodium or potassium hydroxide, ammonium compounds or sulfuric acid compounds. However, even those salts which enter the reaction mixture as part of the educts used are to be grouped together under the term electrolytes according to the present invention.
Gemäß einer bevorzugten Ausführungsform der Erfindung enthält die polare, Elektrolyt- haltige organische Phase Methanol, Ethanol, Isopropanol, Wasser und/oder Glycerin.According to a preferred embodiment of the invention, the polar, electrolyte-containing organic phase contains methanol, ethanol, isopropanol, water and / or glycerol.
Demgegenüber wird unter dem Begriff unpolare organische Phase erfindungsgemäß der Anteil des Produktgemisches aus der Umesterungsreaktion verstanden, der im Wesentlichen Verbindungen mit unpolaren Gruppen wie Alkylgruppen, Alkenylgruppen, Estergruppen und/oder Funktionalitäten mit ähnlich geringer Polarität enthält.In contrast, the term non-polar organic phase according to the invention means the proportion of the product mixture from the transesterification reaction which essentially contains compounds with non-polar groups such as alkyl groups, alkenyl groups, ester groups and / or functionalities with similarly low polarity.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die unpolare organische Phase Fettsäureester. Besonders bevorzugt kann die unpolare organische Phase Methyl-, Ethyl- und/oder Isopropylester von natürlichen Fettsäuren enthalten.
- -In a preferred embodiment of the present invention, the nonpolar organic phase contains fatty acid esters. Particularly preferably, the non-polar organic phase may contain methyl, ethyl and / or isopropyl esters of natural fatty acids. - -
Mit dem erfindungsgemäßen Verfahren ist es erstmals möglich, einen auch großtechnisch einsetzbaren Prozess zur Trennung von Produktgemischen aus Umesterungsreaktionen zur Verfügung zu stellen, der neben einer erheblich vereinfachten Reaktionsführung für die Gewinnung der Produktester aus dem Gemisch auch eine größere Verunreinigung der eingesetzten Edukte zulässt. Diese Vorteile können insbesondere aufgrund der guten Trennwirkung der erfindungsgemäß eingesetzten hydrophoben Trennmittel basierend auf den Polaritätsunterschieden der einzelnen Bestandteile erzielt werden.With the method according to the invention, it is now possible to provide an industrially usable process for the separation of product mixtures from transesterification reactions which, in addition to a considerably simplified reaction procedure for obtaining the product esters from the mixture, also permits greater contamination of the educts used. These advantages can be achieved in particular due to the good separation effect of the hydrophobic release agent used according to the invention based on the polarity differences of the individual constituents.
Als Verunreinigungen der Ausgangsstoffe können bei dem erfindungs gemäßen Verfahren beispielsweise ein hoher Wassergehalt der eingesetzten Substanzen oder ein höherer Anteil an freien Säuren toleriert werden. Bisher dürfen die Anteile der angesprochenen Verunreinigungen dagegen bestimmte Grenzen, wie auch in der oben zitierten Literatur dargelegt, nicht überschreiten.As impurities of the starting materials in the process according to the Invention, for example, a high water content of the substances used or a higher proportion of free acids can be tolerated. So far, however, the proportions of the impurities mentioned must not exceed certain limits, as set out in the literature cited above.
Mit dem erfindungsgemäßen Abtrennen der unpolaren Esterphase von der zurückbleibenden polaren organischen Phase mittels eines hydrophoben Trennmittels wird vorteilhafterweise erreicht, dass auch die Verunreinigungen in der zurückbleibenden polaren Phase verbleiben und damit keine Beeinträchtigung der Esterprodukte eintritt.With the separation according to the invention of the non-polar ester phase from the remaining polar organic phase by means of a hydrophobic release agent is advantageously achieved that the impurities remain in the remaining polar phase and thus does not interfere with the ester products.
Im Gegensatz zu den bisher bekannten Verfahren zur Trennung der Produktgemische aus Umesterungsreaktionen kann sich die dargestellte Robustheit des erfindungsgemäßen Verfahrens gegenüber einer eher schlechteren Qualität der Edukte weiterhin darin manifestieren, dass nun auch Gemische mit höherem Seifenanteil trennbar sind. Der erhöhte Seifenanteil resultiert aus einem erhöhten Anteil freier Fettsäuren im Edukt und wird durch die eingesetzten basischen Katalysatoren zu Seifen umgewandelt. Die Seifen agieren im Produktgemisch in einer Weise, dass sie das entstehende Produktgemisch als Dispersion beziehungsweise Emulsion derart stabilisieren, dass es in herkömmlicher Weise aufgrund der Unterschiede in Dichte und Oberflächenspannung nicht mehr zu trennen ist. Dieser Nachteil wird mit dem erfindungsgemäßen Verfahren somit überwunden. Es besteht daher der weitere prozesstechnische Vorteil, dass ein Teil der aufwendigen Aufreinigung der Edukte entfallen kann.
Bevorzugt wird das erfindungsgemäße Verfahren so ausgeführt, dass zunächst eine Reaktionsmischung zur Umesterung aus Edukt-Ester, Katalysator und Alkohol über eine bestimmte Zeit in einem Reaktionskessel gerührt wird. Die Reaktionstemperatur, Druck und Reaktionszeit sind nicht kritisch und werden so gewählt, dass ein möglichst vollständiger Umsatz bei möglichst geringer Verweilzeit erzielt wird. Das so entstandene Produktgemisch wird einer Trennstufe zugeführt, die mit einem hydrophoben Trennmittel versehen ist. Durch das hydrophobe Trennmittel kann die unpolare Produktester-Phase permeieren, wobei umgekehrt die polare organische Phase mit den Alkohol- und Katalysatorkomponenten zurückgehalten wird. Die so gewonnene unpolare Phase mit den Produktestern kann anschließend direkt weiterverarbeitet, beispielsweise nochmals gewaschen, werden. Die zurückgebliebene polare Phase kann in weiteren Schritten aufgearbeitet werden, bis man die gewünschten Produkte wie beispielsweise Glycerin in einer Reinheit erhält, die einen Einsatz als Rohstoff für verschiedenste Anwendungsgebiete erlauben. Alternativ kann die polare, Elektrolyt-haltige Phase in die Umesterungsreaktion zurückgeführt werden oder in einer weiteren Umesterungsreaktion als Edukt fungieren. Auf diese Weise kann der Umsatz der Edukte insgesamt nochmals erhöht werden.In contrast to the hitherto known methods for the separation of the product mixtures from transesterification reactions, the robustness of the method according to the invention, as compared to a rather poor quality of the reactants, can continue to manifest itself in that mixtures with a higher proportion of soap can now also be separated. The increased proportion of soap results from an increased proportion of free fatty acids in the educt and is converted by the basic catalysts used to soaps. The soaps act in the product mixture in such a way that they stabilize the resulting product mixture as a dispersion or emulsion such that it can not be separated in a conventional manner due to the differences in density and surface tension. This disadvantage is thus overcome by the method according to the invention. Therefore, there is the further process technical advantage that part of the complex purification of the educts can be omitted. The process according to the invention is preferably carried out such that initially a reaction mixture for the transesterification from educt ester, catalyst and alcohol is stirred for a certain time in a reaction vessel. The reaction temperature, pressure and reaction time are not critical and are chosen so that as complete a conversion as possible is achieved with the lowest possible residence time. The resulting product mixture is fed to a separation stage which is provided with a hydrophobic release agent. The hydrophobic release agent allows the non-polar product ester phase to permeate, with the polar organic phase being retained with the alcohol and catalyst components. The thus obtained non-polar phase with the product esters can then be further processed directly, for example, washed again. The remaining polar phase can be worked up in further steps until the desired products, such as, for example, glycerol, are obtained in a purity which allows their use as a raw material for a very wide range of applications. Alternatively, the polar, electrolyte-containing phase can be recycled to the transesterification reaction or act as a starting material in a further transesterification reaction. In this way, the conversion of the reactants can be increased again overall.
Das hydrophobe Trennmittel kann aus einer hydrophoben Membran aus Keramik oder einem Polymer bestehen. Die hydrophobe Membran kann insbesondere eine Porenweite von 0,05 μm bis 10 μm, besonders bevorzugt von 0,1 μm bis 5 μm aufweisen.The hydrophobic release agent may consist of a hydrophobic membrane of ceramic or a polymer. In particular, the hydrophobic membrane may have a pore size of from 0.05 μm to 10 μm, more preferably from 0.1 μm to 5 μm.
Das hydrophobe Trennmittel zeigt aufgrund seiner Beschaffenheit eine hohe Abtrennrate zwischen der polaren, Elektrolyt-haltigen Phase und der unpolaren Phase, die durch die Membran permeieren kann. Außerdem sollte das Trennmittel so gewählt werden, dass bevorzugt vor dem Hintergrund einer großtechnischen Auslegung ein hoher Permeationsfiuss und eine gute Beständigkeit des Trennmittels gegeben sind.The hydrophobic release agent, by its nature, exhibits a high rate of separation between the polar, electrolyte-containing phase and the nonpolar phase, which can permeate through the membrane. In addition, the release agent should be chosen so that preferably against the background of a large-scale design, a high Permeationsfius and a good resistance of the release agent are given.
In einer bevorzugten Ausführungsform der Erfindung besteht das Trennmittel aus einer hydrophoben Membran aus Keramik, Polymer, oder Verbundmaterialen aus Polymer und Keramik, welche eine Beschichtung mit hydrophobem Material, wie z.B. perfluorierten Polymeren (PTFE, PVDF) oder hydrophoben Polymeren (Polypropylen), aufweisen oder dessen Oberfläche durch den Einsatz von Isocyanaten oder Silanen hydrophobiert wurde. Besonders bevorzugt besteht die hydrophobe Membran aus Keramik, Polymer, oder entsprechenden Verbundmaterialen aus Polymer und Keramik, die ohne weitere Modifikation eine ausreichende Hydrophobie aufweist.
- -In a preferred embodiment of the invention, the release agent consists of a hydrophobic membrane of ceramic, polymer, or composite materials of polymer and ceramic, which have a coating with hydrophobic material, such as perfluorinated polymers (PTFE, PVDF) or hydrophobic polymers (polypropylene), or whose surface has been rendered hydrophobic by the use of isocyanates or silanes. Particularly preferably, the hydrophobic membrane of ceramic, polymer, or corresponding composite materials of polymer and ceramic, which has sufficient hydrophobicity without further modification. - -
In einer besonderen Ausführangsform des Verfahrens ist die hydrophobe Membran eine keramische hydrophobisierte Membran. Als keramische Membranen werden insbesondere Membranen auf Basis von Al2O3, ZrO2, TiO2, SiC und Kombinationen dieser Verbindungen eingesetzt.In a particular embodiment of the process, the hydrophobic membrane is a ceramic hydrophobized membrane. As ceramic membranes in particular membranes based on Al 2 O 3 , ZrO 2 , TiO 2 , SiC and combinations of these compounds are used.
In einer besonderen Ausführungsform des Verfahrens ist die Membran eine hydrophobe Polymermembran. Als Polymermembranen werden insbesondere Membranen auf Basis von PP, PVDF, PTFE, Silikonen und Kombinationen dieser Verbindungen eingesetzt.In a particular embodiment of the method, the membrane is a hydrophobic polymer membrane. Membranes based on PP, PVDF, PTFE, silicones and combinations of these compounds are used in particular as polymer membranes.
Die hydrophobe Polymermembran kann Poren einer Porenweite von 0,05 μm bis 10 μm, besonders bevorzugt von 0,1 μm bis 5 μm aufweisen.The hydrophobic polymer membrane may have pores having a pore size of from 0.05 μm to 10 μm, more preferably from 0.1 μm to 5 μm.
Besonders bevorzugt werden dem Produktgemisch der Umesterungsreaktion keine weiteren polaren organischen Lösungsmittel und/oder Wasser zugesetzt.With particular preference, no further polar organic solvents and / or water are added to the product mixture of the transesterification reaction.
Im Gegensatz zu bekannten Verfahren, in denen zur Verbesserung der Phasentrennung Wasser und/oder Alkohole zugesetzt werden, kann bei dem erfindungsgemäßen Verfahren vorteilhafterweise sowohl ein zusätzlich zu bewegender und abzutrennender Teil des üblichen Trennvolumens als auch die anschließende Entsorgung und Aufbereitung der Zusätze entfallen. Die Reaktionsführung, der apparative Aufwand und die Aufarbeitung können mithin weiterhin erheblich vereinfacht werden.In contrast to known processes in which water and / or alcohols are added in order to improve the phase separation, in the process according to the invention advantageously both an additional part of the customary separation volume to be moved and separated and the subsequent disposal and preparation of the additives can be dispensed with. The reaction, the equipment required and the workup can therefore continue to be considerably simplified.
Das erfindungsgemäße Verfahren kann entweder als Batch- Verfahren oder als kontinuierliches Verfahren geführt werden. Besonders bevorzugt wird es als kontinuierliches Verfahren geführt.The process according to the invention can be conducted either as a batch process or as a continuous process. It is particularly preferably conducted as a continuous process.
Ein Verfahren gemäß der vorliegenden Erfindung kann insbesondere bevorzugt zur Gewinnung von Fettsäuremethylestern aus der Umesterungsreaktion von biologischen, das heißt pflanzlichen und/oder tierischen, Fetten oder Ölen eingesetzt werden. Besonders bevorzugt wird ein Verfahren gemäß der vorliegenden Erfindung zur Herstellung von Bio- Kraftstoffen eingesetzt.
- -A process according to the present invention can be used particularly preferably for obtaining fatty acid methyl esters from the transesterification reaction of biological, that is to say vegetable and / or animal, fats or oils. Particularly preferred is a method according to the present invention for the production of biofuels used. - -
Beispiele:Examples:
Beispiel 1example 1
Als Trennmittel wird eine hydrophobe PP -Polymermembran eingesetzt. Die verwendete PP -Membran ist rohrförmig mit einem Innendurchmesser von 5,5 mm und einem Außendurchmesser von 8,5 mm, einer Länge von 250 mm und einer aktiven inneren Filtrationsfläche von 0,004 m2. Der Porendurchmesser der Membran beträgt 0,2 μm.The release agent used is a hydrophobic PP polymer membrane. The PP membrane used is tubular with an inner diameter of 5.5 mm and an outer diameter of 8.5 mm, a length of 250 mm and an active inner filtration area of 0.004 m 2 . The pore diameter of the membrane is 0.2 μm.
Die eingesetzte Reaktionslösung (Feed) resultierte aus einer basischen Umesterung von Rapsöl mit KOH. Dabei wurden 6950 g Rapsöl mit 695 g Methanol in einem Rührkessel gemischt und mit 463,3 g einer 25 %igen KOH-Methanol-Katalysatormischung bei 35°C zur Umsetzung gebracht. Nach 1 Stunde Reaktionszeit wurde die Reaktionslösung (Feed) durch kontinuierliches Umpumpen von 400 kg/h über die Innenseite der eingesetzten Membran geleitet. Dabei konnte eine klare einphasige Fettsäuremethylester Phase (Permeat) abgezogen werden. Die aus der Reaktion entstandene Glycerinphase wurde mittels der PP-Membran zurückgehalten. Die abgetrennte Permeat-Phase ist einphasig, in dem Sinn dass nur das physikalisch gelöste Glycerin (< 0,1 Gew-%) und/oder Wasser (< 0,1 Gew-%) enthalten ist. Die Tabelle 1 zeigt die Phasentrennung mittels einer hydrophoben PP-Membran.The reaction solution (feed) used resulted from a basic transesterification of rapeseed oil with KOH. In this case, 6950 g of rapeseed oil were mixed with 695 g of methanol in a stirred tank and reacted with 463.3 g of a 25% KOH-methanol catalyst mixture at 35 ° C to implement. After a reaction time of 1 hour, the reaction solution (feed) was passed over the inside of the membrane used by continuously circulating 400 kg / h. In this case, a clear single-phase fatty acid methyl ester phase (permeate) could be deducted. The resulting from the reaction glycerol phase was retained by the PP membrane. The separated permeate phase is single-phase, in the sense that only the physically dissolved glycerol (<0.1% by weight) and / or water (<0.1% by weight) is included. Table 1 shows the phase separation by means of a hydrophobic PP membrane.
Tabelle 1:Table 1:
Als Trennmittel wird eine hydrophobe PP-Polymermembran eingesetzt. Die verwendete PP-Membran ist rohrförmig mit einem Innendurchmesser von 5,5 mm und einem Außendurchmesser von 8,5 mm, einer Länge von 750 mm und einer aktiven inneren Filtrationsfläche von 0,012 m2. Der Porendurchmesser der Membran beträgt 0,2 μm.The release agent used is a hydrophobic PP polymer membrane. The PP membrane used is tubular with an inner diameter of 5.5 mm and an outer diameter of 8.5 mm, a length of 750 mm and an active inner filtration area of 0.012 m 2 . The pore diameter of the membrane is 0.2 μm.
Es wurden 6950 g Rapsöl und 215 g Ölsäure mit 555 g Methanol in einem Rührkessel gemischt und mit 649,9 g einer 25 %igen KOH-Methanol-Katalysatormischung bei 350C zur Umsetzung gebracht. Nach 1 Stunde Reaktionszeit wurde die Reaktionslösung (Feed) durch kontinuierliches Umpumpen über die Innenseite der eingesetzten Membran geleitet. Dabei konnte eine klare Fettsäuremethylester Phase (Permeat) abgezogen werden. Die aus der Reaktion entstandene Glycerinphase und mittels der KOH verseiften freien Fettsäuren (Ölsäure) wurde mittels der PP-Membran zurückgehalten. Die abgetrennte Permeat-Phase ist einphasig, in dem Sinn, dass nur das physikalisch gelöste Glycerin (< 0,1 Gew-%) und/oder Wasser (< 0,1 Gew-%) enthalten ist. Die freien Fettsäuren (Ölsäure) bzw. Seifen werden durch die Membran ebenfalls nahezu vollständig zurück gehalten.6950 g of rapeseed oil and 215 g of oleic acid were mixed with 555 g of methanol in a stirred tank and reacted with 649.9 g of a 25% strength KOH-methanol catalyst mixture at 35 ° C. After 1 hour reaction time, the reaction solution (feed) was passed through continuous pumping over the inside of the membrane used. A clear fatty acid methyl ester phase (permeate) could be withdrawn. The resulting from the reaction glycerol phase and saponified by the KOH free fatty acids (oleic acid) was retained by the PP membrane. The separated permeate phase is single-phase, in the sense that only the physically dissolved glycerol (<0.1% by weight) and / or water (<0.1% by weight) is included. The free fatty acids (oleic acid) or soaps are also almost completely retained by the membrane.
Die oben beschriebene Reaktionslösung (Feed) enthält die Glycerin-Phase, welche als stabile Dispersion eine trübe Ester/Glycerin-Phase ausbildet. Die vollständige Trennung der Glycerin-Phase von der Ester-Phase durch Absetzen der schweren Phase ist nur nach einem sehr langem Zeitraum (> 24 Stunden) oder im Zentrifugalfeld möglich.
The reaction solution (feed) described above contains the glycerol phase, which forms a cloudy ester / glycerol phase as a stable dispersion. The complete separation of the glycerol phase from the ester phase by settling of the heavy phase is possible only after a very long period of time (> 24 hours) or in the centrifugal field.
- -- -
Die Tabelle 2 zeigt die Phasentrennung einer hydrophoben PP-Membran.Table 2 shows the phase separation of a hydrophobic PP membrane.
Tabelle 2:Table 2:
Aus diesem Ergebnis ist klar ersichtlich, dass selbst ein erhöhter Anteil an freier Säure in dem Reaktionsgemisch der Umesterungsreaktion mit dem erfindungsgemäßen Verfahren zur Trennung dieser stabilen Dispersion und zur Gewinnung eines qualitativ hochwertigen unpolaren Produkts fuhrt. Damit kann gezeigt werden, dass das erfindungsgemäße Verfahren eine entsprechende Aufbereitung der Edukte, wie sie bisher notwendig war, überflüssig machen kann.
From this result it is clear that even an increased amount of free acid in the reaction mixture of the transesterification reaction with the process according to the invention leads to the separation of this stable dispersion and to the production of a high quality non-polar product. It can thus be shown that the process according to the invention makes it possible to dispense with a corresponding preparation of the educts, which was previously necessary.
Claims
1.) Verfahren zur Trennung des Produktgemisches einer Umesterungsreaktion mit einer polaren, Elektrolyt-haltigen organischen Phase und einer unpolaren organischen Phase dadurch gekennzeichnet, dass mittels eines porösen hydrophoben Trennmittels die unpolare organische Phase von der zurückbleibenden polaren, Elektrolyt-haltigen organischen Phase abgetrennt wird.1.) A process for the separation of the product mixture of a transesterification reaction with a polar, electrolyte-containing organic phase and a non-polar organic phase characterized in that by means of a porous hydrophobic release agent, the non-polar organic phase is separated from the remaining polar, electrolyte-containing organic phase.
2.) Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die unpolare organische Phase Fettsäureester enthält.2.) Process according to claim 1, characterized in that the non-polar organic phase contains fatty acid esters.
3.) Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass die unpolare organische Phase Methyl-, Ethyl- und/oder Isopropylester von natürlichen Fettsäuren enthält.3.) Process according to claim 2, characterized in that the non-polar organic phase contains methyl, ethyl and / or isopropyl esters of natural fatty acids.
4.) Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass die polare, Elektrolyt-haltige organische Phase Methanol, Ethanol, Isopropanol, Wasser und/oder Glycerin enthält.4.) Method according to one of the preceding claims, characterized in that the polar, electrolyte-containing organic phase contains methanol, ethanol, isopropanol, water and / or glycerol.
5.) Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das Trennmittel aus einer hydrophoben Membran besteht.5.) Method according to one of the preceding claims, characterized in that the release agent consists of a hydrophobic membrane.
6.) Verfahren nach Anspruch 5 dadurch gekennzeichnet, dass die Membran eine Porenweite von 0,05 μm bis 10 μm aufweist.6.) Process according to claim 5, characterized in that the membrane has a pore size of 0.05 .mu.m to 10 .mu.m.
7.) Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass keine weiteren polaren organischen Lösungsmittel und/oder Wasser zugesetzt werden.7.) Method according to one of the preceding claims, characterized in that no further polar organic solvents and / or water are added.
8.) Verfahren nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass es als kontinuierliches Verfahren geführt wird.8.) Method according to one of the preceding claims, characterized in that it is performed as a continuous process.
9.) Verfahren nach einem der vorhergehenden Ansprüche zur Gewinnung von Fettsäuremethylestern aus der Umesterungsreaktion von pflanzlichen und/oder tierischen Fetten oder Ölen. 9.) Process according to one of the preceding claims for the production of fatty acid methyl esters from the transesterification reaction of vegetable and / or animal fats or oils.
10.) Verfahren nach einem der vorhergehenden Ansprüche zur Gewinnung von Bio- Kraftstoffen. 10.) Method according to one of the preceding claims for the production of biofuels.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007016157.5 | 2007-04-02 | ||
DE102007016157A DE102007016157A1 (en) | 2007-04-02 | 2007-04-02 | Process for the separation of product mixtures from transesterification reactions |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008119489A1 true WO2008119489A1 (en) | 2008-10-09 |
Family
ID=39477950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2008/002361 WO2008119489A1 (en) | 2007-04-02 | 2008-03-26 | Method for separating product mixtures of transesterification reactions |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102007016157A1 (en) |
WO (1) | WO2008119489A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2940280B1 (en) * | 2008-12-23 | 2011-02-25 | Inst Francais Du Petrole | PROCESS FOR PRODUCING ESTERS FROM PLANT OIL OR ANIMAL OIL AND ALIPHATIC MONOALCOOL USING MEMBRANE SEPARATION |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4545940A (en) * | 1982-04-09 | 1985-10-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Method of dewaxing a vegetable oil |
DE3712391A1 (en) * | 1986-04-11 | 1987-11-19 | Applied Membrane Tech | Separating an emulsified liquid phase by a surface-modified porous membrane |
WO2003002237A2 (en) * | 2001-06-26 | 2003-01-09 | Exxonmobil Research And Engineering Company | Use of membranes to separate organic liquids having different polarities |
WO2006089429A1 (en) * | 2005-02-28 | 2006-08-31 | University Of Ottawa | Apparatus and method for bio-fuel production |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2271619A (en) | 1939-04-19 | 1942-02-03 | Du Pont | Process of making pure soaps |
US2360844A (en) | 1941-11-26 | 1944-10-24 | Du Pont | Preparation of detergents |
JPS5665097A (en) | 1979-05-30 | 1981-06-02 | Lion Corp | Manufacture of fatty acid lower alcohol ester |
JPS56120799A (en) | 1980-02-28 | 1981-09-22 | Lion Corp | Manufacture of high quality fatty ester |
JPS5950718B2 (en) | 1981-11-30 | 1984-12-10 | 旭化成株式会社 | Purification method using vegetable oil film |
AT386222B (en) | 1986-09-02 | 1988-07-25 | Hans Dr Junek | METHOD AND DEVICE FOR PRODUCING AN AS A FORCE OR FUEL SUITABLE FATTY ACID ESTER MIXTURE |
AT387399B (en) | 1987-04-03 | 1989-01-10 | Gaskoks Vertrieb Ges Mit Besch | Process and apparatus for the preparation of fatty acid esters and the use thereof |
AT394374B (en) | 1990-06-29 | 1992-03-25 | Wimmer Theodor | METHOD FOR PRODUCING FATTY ACID ESTERS OF LOW ALCOHOLS |
AT397966B (en) | 1993-01-25 | 1994-08-25 | Wimmer Theodor | Process for the preparation of fatty acid esters of lower monohydric alcohols |
DE4340093A1 (en) | 1993-11-24 | 1995-06-01 | Cognis Bio Umwelt | Process for the simplified separation of multi-component mixtures of at least a proportion of organic origin |
DE19925871A1 (en) | 1999-06-07 | 2000-12-21 | At Agrar Technik Gmbh | Process for the preparation of fatty acid esters of monohydric alkyl alcohols and their use |
HU0104786D0 (en) | 2001-11-08 | 2002-01-28 | Kovacs Andras Dr | Method for producing of vegetable oil-methyl-esther |
EP1416037B1 (en) | 2002-10-31 | 2007-02-21 | Carapelli Firenze S.p.A | Olive oil physical treatment procedure |
DE102004044660A1 (en) | 2004-09-15 | 2006-03-30 | Siegfried Prof. Dr. Peter | Process for the transesterification of fats and oils of biological origin by alcoholysis using special carbonic acid salts |
-
2007
- 2007-04-02 DE DE102007016157A patent/DE102007016157A1/en not_active Withdrawn
-
2008
- 2008-03-26 WO PCT/EP2008/002361 patent/WO2008119489A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4545940A (en) * | 1982-04-09 | 1985-10-08 | Asahi Kasei Kogyo Kabushiki Kaisha | Method of dewaxing a vegetable oil |
DE3712391A1 (en) * | 1986-04-11 | 1987-11-19 | Applied Membrane Tech | Separating an emulsified liquid phase by a surface-modified porous membrane |
WO2003002237A2 (en) * | 2001-06-26 | 2003-01-09 | Exxonmobil Research And Engineering Company | Use of membranes to separate organic liquids having different polarities |
WO2006089429A1 (en) * | 2005-02-28 | 2006-08-31 | University Of Ottawa | Apparatus and method for bio-fuel production |
Also Published As
Publication number | Publication date |
---|---|
DE102007016157A1 (en) | 2008-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1183225B1 (en) | Method for producing fatty acid esters of monovalent alkyl alcohols | |
EP2097367B1 (en) | Process for preparing alkyl esters of fatty acids and acrolein from triglycerides | |
EP0127104B1 (en) | Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils | |
EP1339816B1 (en) | Method for pretreating crude oils and raw fats for the production of fatty acid esters | |
EP0184740A2 (en) | Process for the preparation of methyl esters of fatty acids | |
EP2358851B1 (en) | Use of methanesulfonic acid for producing fatty acid esters | |
EP2205709A1 (en) | Method for the heterogenically catalyzed esterification of fatty acids | |
DE19600025C2 (en) | Process for the production of fatty substances | |
WO1994017027A1 (en) | Process for preparing lower alcohol fatty acid esters | |
EP2635592B1 (en) | Method for obtaining phytosterols and/or tocopherols from residue of a distillation of the esters of vegetable oils, preferably from distillation residue from a transesterification of vegetable oils | |
WO2004018405A1 (en) | Transesterification and esterification of fatty acids and triglycerides by dispersion and dispersion method for the production of fatty acid methylesters | |
EP3266857B1 (en) | Method for the production of fatty acids by hydrolytic ester cleavage with high temperature water | |
AT505519A1 (en) | METHOD FOR THE PRODUCTION OF CYCLIC GLYCERINACETALES OR CYCLIC GLYCERIN KETALES OR MIXTURES THEREOF | |
WO2008119489A1 (en) | Method for separating product mixtures of transesterification reactions | |
EP2142286A1 (en) | Method for purifying product mixtures from transesterification reactions | |
WO2009056231A1 (en) | Continuous method for the heterogenically catalyzed esterification of fatty acids | |
DE19626458C2 (en) | Process for the preparation of esters of the low volatility alcohols trismethylolpropane, trismethylolethane and pentaerythritol with native fatty acids | |
AT519685B1 (en) | Process for the preparation of a fatty acid alkyl ester | |
DE102007052064A1 (en) | Reducing content of free fatty acids, useful for biodiesel production, comprises reacting fatty acids with an alcohol under use of ion-exchange-resin catalyst, separating water and alcohol and further reacting fatty acids with alcohol | |
EP3309241B1 (en) | Method and the use of an oxidizing agent for the oxidation of elemental sulphur and/or sulphur compounds in the presence of fatty acid derivatives | |
AT394860B (en) | Process and apparatus for the continuous preparation of fatty acid esters | |
EP3760698A1 (en) | Method for extracting lipids from biomass | |
WO2008049260A2 (en) | Process for preparing fatty acid esters | |
AT502149A1 (en) | PROCESS FOR THE PREPARATION OF FATTY ACID METHYLENE AND APPARATUS FOR IMPLEMENTING THE PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08734762 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08734762 Country of ref document: EP Kind code of ref document: A1 |