WO2008118150A2 - Nitric oxide synthase as a marker for treatment with bioreducible prodrugs - Google Patents

Nitric oxide synthase as a marker for treatment with bioreducible prodrugs Download PDF

Info

Publication number
WO2008118150A2
WO2008118150A2 PCT/US2007/023698 US2007023698W WO2008118150A2 WO 2008118150 A2 WO2008118150 A2 WO 2008118150A2 US 2007023698 W US2007023698 W US 2007023698W WO 2008118150 A2 WO2008118150 A2 WO 2008118150A2
Authority
WO
WIPO (PCT)
Prior art keywords
nos
bioreducible
prodrug
animal
cancer
Prior art date
Application number
PCT/US2007/023698
Other languages
French (fr)
Other versions
WO2008118150A3 (en
Inventor
John G. Curd
Alshad S. Lalani
Original Assignee
Novacea, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novacea, Inc. filed Critical Novacea, Inc.
Publication of WO2008118150A2 publication Critical patent/WO2008118150A2/en
Publication of WO2008118150A3 publication Critical patent/WO2008118150A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase

Definitions

  • the present invention provides a method for preventing, treating or ameliorating hyperproliferative disorders and other conditions characterized by elevated levels of nitric oxide synthase, comprising administering a bioreducible prodrug.
  • Nitric oxide is synthesized in the body by three different isoforms of nitric oxide synthase (NOS); endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS).
  • NOS nitric oxide synthase
  • eNOS endothelial NOS
  • nNOS neuronal NOS
  • iNOS inducible NOS
  • the object of the present invention is to utilize the ability of NOS to catalyze the reduction of bioreducible prodrugs at the site of a hyperproliferative disorder or other conditions including non-malignant inflammatory disorders.
  • a further object is to identify individuals characterized by elevated levels of NOS in a target location, tissue, or organ who may derive an increased benefit from the administration of bioreducible prodrugs.
  • the present invention relates to methods for preventing, treating or ameliorating a hyperproliferative disorder or other condition in an animal, comprising first determining the level of nitric oxide synthase (NOS) in the animal and then administering a bioreducible prodrug to the animal if the animal has an elevated level of NOS, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
  • NOS nitric oxide synthase
  • the invention also relates to methods for treating an animal having a hyperproliferative disorder or other condition characterized by an elevated level of NOS, comprising administering to the animal a bioreducible prodrug, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
  • the invention further relates to methods for selecting an animal to be treated with a bioreducible prodrug, comprising determining the level of NOS in the animal, and selecting an animal having an elevated level of NOS for treatment with a bioreducible prodrug.
  • the bioreducible prodrug is administered with another therapeutic agent or treatment.
  • the invention also relates to methods of screening for a compound that will undergo bioreduction in vivo, comprising contacting the compound with NOS and determining if NOS reduces the compound.
  • the present invention relates to methods for preventing, treating or ameliorating a hyperproliferative disorder or other condition in an animal, comprising first determining the level of nitric oxide synthase (NOS) in the animal and then administering a bioreducible prodrug to the animal if the animal has an elevated level of NOS, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
  • NOS nitric oxide synthase
  • the invention also relates to methods for treating an animal having a hyperproliferative disorder or other condition characterized by an elevated level of NOS, comprising administering to the animal a bioreducible prodrug, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
  • the invention further relates to methods for selecting an animal to be treated with a bioreducible prodrug, comprising determining the level of NOS in the animal, and selecting an animal having an elevated level of NOS for treatment with a bioreducible prodrug.
  • the NOS is iNOS, eNOS, or nNOS.
  • the nucleotide and amino acid sequences of the NOS isoforms are well known in the art and can be found in a database such as GenBank (accession numbers NM000603 (eNOS), NM000620 (nNOS), 000625 and 153292 (iNOS).
  • NOS-specific antibodies are also well known in the art and are available, for example, from GeneTex (San Antonio, Texas) and Novus Biologicals (Littleton, Colorado).
  • the determination of NOS can be carried out by any method known in the art, and includes measuring NOS activity as well as the level of NOS.
  • the determination is carried out in vivo.
  • imaging techniques e.g., magnetic resonance imaging, computed axial tomography, single photon emission computed tomography, positron emission tomography, X-ray, ultrasound
  • detectable labels include, but are not limited to, radioactive, fluorescent, paramagnetic, and superparamagnetic labels.
  • Any suitable in vivo imaging techniques known in the art may be used in the present invention. Examples of imaging techniques are disclosed in U.S. Patent Nos. 6,737,247, 6,676,926, 6,083,486, 5,989,520, 5,958,371, 5,780,010, 5,690,907, 5,620,675, 5,525,338, 5,482,698, and 5,223,242.
  • the detection is carried out in vitro, e.g., using a biological sample.
  • a biological sample may be any tissue or fluid from a subject that is suitable for detecting the level or activity of NOS.
  • useful samples include, but are not limited to, biopsied tissues (e.g., solid tumor, lymph gland, inflamed tissue, tissue involved in a condition), blood - A -
  • NOS activity can be measured using techniques known in the art, e.g., detection of labeled NOS substrate or product. Additionally, one can measure proteins that have been modified by the products of NOS activity, e.g., cittrullinated proteins, in order to detect NOS activity. (Biozzaro et al, CHn. Chem. 47:1089 (2001)).
  • the levels of NOS may be measured at the protein or RNA ⁇ e.g., mRNA) levels.
  • any method known in the art for quantitating specific proteins in a biological sample may be used in the present methods. Examples include, but are not limited to, immunoassays, Western blotting, immunoprecipitation, immunohistochemistry, gel electrophoresis, capillary electrophoresis, column chromatography, ligand binding assays, and enzymatic assays. See, e.g., Harlow et al, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1988); Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, New York 3rd Edition, (1995).
  • proteins are quantitated using immunoassays.
  • immunoassays include homogenous or heterogenous binding assays. These assays may be in the form of non-competitive binding assays or assays in which analytes compete with ligands. Any method known to one of ordinary skill in the art that detects binding between an analyte ⁇ e.g., a protein of interest) and a reagent may be used in the present invention.
  • Assays for use in the present invention are preferably simple and inexpensive methods, and may also involve high throughput methods, capable of screening large numbers of individual samples in a rapid fashion. This includes, for example, methods that use microbeads or plates having multiple wells.
  • any homogeneous assay well known in the art can be used in the present invention to determine the level of specific proteins.
  • radioassays fluorescence polarization assays, time-resolved fluorescence assays, biotin-avidin assays, enzyme-linked assays, and electrochemiluminescent assays may all be used.
  • the assay may be a non-competitive binding assay in which the ability of analytes (protein of interest) to bind the reagent is determined.
  • the assay may be a competitive binding assay where the ability of a protein to displace reagent-bound analyte is determined.
  • a homogeneous binding assay used in the present invention may employ fluorescently labeled analyte or fiuorescently labeled reagent. Any method known to one of ordinary skill in the art can be used to link the fluorophore to a polypeptide or reagent of interest. See, e.g., Richard P. Haugland, Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals 1992-1994 (5th ed., 1994, Molecular Probes, Inc.).
  • One embodiment of the invention relates to a non-competitive fluorescent assay.
  • Such an assay employs reagent covalently attached to a fluorophore.
  • Free reagent has a higher fluorescence intensity than reagent bound to an analyte (Hwang et al, Biochemistry 31:11536 (1992)).
  • analyte/reagent complex Once the analyte/reagent complex is formed, it rotates and tumbles more slowly and has less fluorescence intensity ("Introduction to Fluorescence Polarization," Pan Vera Corp., Madison, WI, June 17, 1996; Perrin, J. Phys. Rad. 7:390 (1926)).
  • the fluorescence intensity of the labeled reagent decreases proportional to binding.
  • Alternative homogeneous assays for use in the invention include those described in U.S. Patent No. 6,492,128; U.S. Patent No. 6,406,913; U.S. Patent No. 6,326,459; U.S. Patent No. 5,928,862; U.S. Patent No. 5,876,946; U.S. Patent No. 5,612,221; and U.S. Patent No. 5,556,758.
  • radiolabels can also be used in homogenous competitive binding assays.
  • reagent ⁇ e.g., antibody
  • a sample is introduced into the solution and allowed to equilibrate.
  • Antibody bound either to radiolabeled antigen or to the sample
  • Detection and/or quantitation of a protein of interest through binding to a reagent may also be accomplished using heterogeneous assays.
  • Heterogeneous assays for use in the present invention may be based on radioassays, fluorescence polarization assays, time-resolved fluorescence assays, biotin-avidin assays, enzyme-linked assays, and electrochemiluminescent assays.
  • a first component is attached to a solid phase such as a bead or other solid substrate and one or more additional components are in solution.
  • antigen may be bound to a bead or other solid substrate and labeled antibody is introduced as a solution.
  • the label may be a radiolabel, chemiluminescent label, fluorescent label, chromogenic label, or other label well known in the art.
  • a solution of sample is introduced and allowed to equilibrate to form antigen/antibody complexes.
  • the beads or solid components are separated from the solutions. This can be done, for example, using magnetic fields where the beads are magnetic.
  • separation can occur simply by rinsing the solid substrate with water or a buffer to remove any solution containing unbound labeled antibody or unbound sample. The extent to which antigen remains associated with the detectably labeled antibody is measured. Such measurements can be performed while antigen remains bound to the bead or solid substrate. Alternatively, such measurements can be made after antigen has been removed from the bead or solid substrate.
  • the antibody may also be the component bound to the beads or solid substrate.
  • labeled antigen is introduced as a solution and allowed to equilibrate forming the antigen/antibody complexes.
  • the label may be a radiolabel, chemiluminescent label, fluorescent label, chromogenic label, or other label well known in the art.
  • a sample is added as a solution. If a sample displaces antibody, then the antigen will fall back into solution and not be bound to the bead or solid substrate through antibody.
  • the beads or solid substrate are removed from the solution but the solution is retained to measure the extent of the detectable label.
  • increases in signal associated with the detectable label are proportional to the ability of a sample to bind antigen.
  • Solid phase supports for use in the present invention include any insoluble support known in the art that is capable of binding antigen or antibody.
  • This includes, for example, glass and natural and synthetic polymers such as agaroses, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite.
  • the support material may have virtually any possible structural configuration so long as the support-bound molecule is capable of binding to an antibody or antigen.
  • the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod, or hemispherical, such as the well of a microtitre plate.
  • the surface may be flat such as a sheet, test strip, etc.
  • Radioassay An example of a heterogeneous assay for use in the present invention is the radioassay.
  • a good description of a radioassay may be found in Laboratory Techniques and Biochemistry in Molecular Biology, by Work, T. S., et al., North Holland Publishing Company, NY (1978), with particular reference to the chapter entitled "An Introduction to Radioimmune Assay and Related Techniques" by Chard, T. Examples of other competitive radioassays are given in U.S. Patent Nos. 3,937,799; 4,102,455; 4,333,918 and 6,071,705. Inherent in such assays is the need to separate the bead or substrate bound component from the solution component.
  • separation can include filtering, centrifuging, washing, or draining the solid substrate to insure efficient separation of the substrate bound and solution phases.
  • the radioactive isotope or radiolabel can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.
  • Isotopes which are particularly useful for the purpose of the present invention a ⁇ , «re_•: 3 U H, 123 T 1, 125 T 1, 13 1 T 1, 35 C S, 3 1 PD, 1 V C 1 , 1 1 1 T In, 97 ⁇ Ru, 6 V C 1 u, 6 V GOa, 68 / G-a, 72 AA os, 89 ZVr a propositionnd A
  • Alternative labels for use in the heterogeneous assays of the present invention include chemiluminescent labels, such as those described in U.S. Patent No. 4,380,580; and enzyme substrate labels, such as those assays described in U.S. Patent No. 4,492,751.
  • chemiluminescent labels such as those described in U.S. Patent No. 4,380,580
  • enzyme substrate labels such as those assays described in U.S. Patent No. 4,492,751.
  • a fluorescent label may be used.
  • An alternative heterogeneous assay for use in the present invention is a biotin/avidin based assay.
  • this assay can be performed in the present invention, see, e.g., Blake et al. Anal. Biochem. 272:123 (1999); Cho et al. Anal. Sci. 75:343 (1999); Choi et al. Bull. Korean Chem. Soc. 22:417 (2001); U.S. Patent Nos. 6,096,508; 4,863,876;. 4,228,237.
  • avidin may be labeled with any label.
  • avidin is fluorescently labeled or conjugated to an enzyme. Any detectably labeled enzyme can be used in the present invention. Specific examples include, but are not limited to, horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, and glucose oxidase.
  • any assay known in the art for the detection of nucleic acids may be used in the invention.
  • examples include, but are not limited to, reverse transcription and amplification assays, hybridization assays, Northern blotting, dot blotting, in situ hybridization, gel electrophoresis, capillary electrophoresis, and column chromatography.
  • the assay can detect the RNA itself or a cDNA produced by reverse transcription of the RNA. Assays can be performed directly on biological samples or on nucleic acids isolated from the samples.
  • Nucleic acid detection assays can be predicated on any characteristic of the nucleic acid molecule, such as its size, sequence and, if DNA, susceptibility to digestion by restriction endonucleases.
  • the sensitivity of such assays may be increased by altering the manner in which detection is reported or signaled to the observer.
  • assay sensitivity can be increased through the use of detectably labeled reagents.
  • detectably labeled reagents A wide variety of such labels have been used for this purpose.
  • Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.
  • U.S. Patent No. 4,581,333 describes the use of enzyme labels to increase sensitivity in a detection assay.
  • Radioisotopic labels are disclosed in U.S. Patent Nos. 4,358,535 and 4,446,237. Fluorescent labels (EP 144,914), chemical labels (U.S. Patent Nos. 4,582,789 and 4,563,417), and modified bases (EP 119,448) have also been used in an effort to improve the efficiency with which detection can be observed.
  • nucleic acid target molecule is used as a template for extension of an oligonucleotide primer in a reaction catalyzed by polymerase.
  • oligonucleotide primer in a reaction catalyzed by polymerase.
  • nucleic acid amplification procedures include transcription based amplification systems (Kwoh et al, Proc. Natl. Acad. ScL USA 55:1173 (1989); WO 88/10315). Schemes based on ligation ("Ligation Chain Reaction") of two or more oligonucleotides in the presence of a target nucleic acid having a sequence complementary to the sequence of the product of the ligation reaction have also been used (Wu et al, Genomics 4:560 (1989)). Other suitable methods for amplifying nucleic acid based on ligation of two oligonucleotides after annealing to complementary nucleic acids are known in the art.
  • WO 89/06700 discloses a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single- stranded DNA ("ssDNA”) followed by transcription of many RNA copies of the sequence. This scheme is not cyclic, i.e., new templates are not produced from the resultant RNA transcripts.
  • EP 329,822 discloses an alternative amplification procedure termed
  • NASBA Nucleic Acid Sequence-Based Amplification
  • ssRNA single-stranded RNA
  • dsDNA double-stranded DNA
  • the ssRNA is a first template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA dependent DNA polymerase).
  • RNase H ribonuclease H
  • the resultant ssDNA is a second template for a second primer.
  • the second primer includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) located 5' to the primer sequence which hybridizes to the ssDNA template.
  • This primer is then extended by a DNA polymerase (exemplified by the large "Klenow" fragment of E. coli DNA polymerase I), resulting in the production of a dsDNA molecule, having a sequence identical to that of the portion of the original RNA located between the primers and having, additionally, at one end, a promoter sequence.
  • This promoter sequence can be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies can then re-enter the cycle leading to very swift amplification. With the proper choice of enzymes, this amplification can be done isothermally without the addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence can be chosen to be in the form of either DNA or RNA.
  • SDA Strand Displacement Amplification
  • One of the strands making up the recognition sequence is derived from the primer and the other is a result of the extension reaction. Since the extension reaction is performed using a modified nucleotide, one strand of the recognition site is modified and resistant to endonuclease digestion. The resultant duplex molecule is then contacted with an endonuclease which cleaves the unmodified strand causing a nick. The nicked strand is extended by a polymerase enzyme lacking 5'-3' exonuclease activity resulting in the displacement of the nicked strand and the production of a new duplex molecule. The new duplex molecule can then go through multiple rounds of nicking and extending to produce multiple copies of the target sequence.
  • PCR polymerase chain reaction
  • the sequences of the primers are selected so that they will hybridize in positions flanking the portion of the double-stranded nucleic acid sequence to be amplified.
  • the oligonucleotides are extended in a reaction with a polymerase enzyme, nucleotide triphosphates and the appropriate cofactors resulting in the formation of two double-stranded molecules each containing the target sequence.
  • Each subsequent round of denaturation, annealing and extension reactions results in a doubling of the number of copies of the target sequence as extension products from earlier rounds serve as templates for subsequent replication steps.
  • PCR provides a method for selectively increasing the concentration of a nucleic acid molecule having a particular sequence even when that molecule has not been previously purified and is present only in a single copy in a particular sample.
  • the method can be used to amplify either single- or double-stranded nucleic acids.
  • the essence of the method involves the use of two oligonucleotides to serve as primers for the template dependent, polymerase-mediated replication of the desired nucleic acid molecule.
  • Methods for detecting nucleic acid amplification products commonly use gel electrophoresis, which separates the amplification product from the primers on the basis of a size differential.
  • amplification products can be detected by immobilization of the product, which allows one to wash away free primer (for example, in dot-blot analysis), and hybridization of specific probes by traditional solid phase hybridization methods.
  • Several methods for monitoring the amplification process without prior separation of primer or probes have been described. All of these methods are based on FRET.
  • Anal. Chem. 67:1191 (1995) uses an energy transfer system in which energy transfer occurs between two fiuorophores on the probe. In this method, detection of the amplified molecule takes place in the amplification reaction vessel, without the need for a separation step.
  • the Wang et al. method uses an "energy-sink” oligonucleotide complementary to the reverse primer.
  • the "energy-sink” and reverse primer oligonucleotides have donor and acceptor labels, respectively.
  • the labeled oligonucleotides form a primer duplex in which energy transfer occurs freely. Then, asymmetric PCR is carried out to its late-log phase before one of the target strands is significantly overproduced.
  • a second method for detection of an amplification product without prior separation of primer and product is the 5' nuclease PCR assay (also referred to as the TAQMAN ® assay) (Holland et al, Proc. Natl. Acad. ScL USA 88:7276 (1991); Lee et al, Nucleic Acids Res. 27:3761 (1993)).
  • This assay detects the accumulation of a specific PCR product by hybridization and cleavage of a doubly labeled fiuorogenic probe (the TAQMAN ® probe) during the amplification reaction.
  • the fiuorogenic probe consists of an oligonucleotide labeled with both a fluorescent reporter dye and a quencher dye.
  • this probe is cleaved by the 5'-exonuclease activity of DNA polymerase if it hybridizes to the segment being amplified. Cleavage of the probe generates an increase in the fluorescence intensity of the reporter dye.
  • the donor and quencher are preferably located on the 3'- and 5'-ends of the probe, because the requirement that 5'-3' hydrolysis be performed between the fluorophore and quencher may be met only when these two moieties are not too close to each other (Lyamichev et al., Science 250:778 (1993)).
  • MOLECULAR BEACONS relies on the use of energy transfer using a "beacon probe” described by Tyagi and Kramer (Nature Biotech. 14:303 (1996)).
  • This method employs oligonucleotide hybridization probes that can form hairpin structures.
  • On one end of the hybridization probe (either the 5'- or 3 '-end), there is a donor fluorophore, and on the other end, an acceptor moiety.
  • the acceptor moiety is a quencher, that is, the acceptor absorbs energy released by the donor, but then does not itself fluoresce.
  • the beacon probe which hybridizes to one of the strands of the PCR product, is in "open conformation," and fluorescence is detected, while those that remain unhybridized will not fluoresce.
  • the amount of fluorescence will increase as the amount of PCR product increases, and thus may be used as a measure of the progress of the PCR.
  • SUNRISE PRIMERS are based on FRET and other mechanisms of non- fluorescent quenching.
  • SUNRISE PRIMERS consist of a single-stranded primer with a hairpin structure at its 5'-end. The hairpin stem is labeled with a donor/quencher pair. The signal is generated upon the unfolding and replication of the hairpin sequence by polymerase.
  • Another method of detecting amplification products is real time quantitative PCR (Xu et al, J. Biol. Chem. 278:26929 (2003); Yeon et al, Hepatology 38:703 (2003)).
  • a fluorescent reporter e.g., an intercalating dye such as SYBR Green (Molecular Probes)
  • SYBR Green Molecular Probes
  • the bioreducible prodrug can be any bioreducible prodrug that is known to be effective for the treatment, prevention, or amelioration of a hyperproliferative disease or other condition.
  • the bioreducible prodrug can also be a compound that have not previously been shown to be effective but may be effective in the presence of elevated NOS. hi one embodiment of the invention, the bioreducible prodrug is reduced under hypoxic conditions. In another embodiment, the bioreducible prodrug is an N-oxide prodrug.
  • N-oxide prodrugs include, without limitation, AQ4N, misonidazole, tirapazamine, chloroambucil N-oside, mechlorethamine N- oxide, 1 -nitro-9-[N,N-(dimethylamino)propyl-amino]acridine, doxorubicin, menadione, methotrexate N-oxide, camptothecin N-oxide, N-oxides of estrogen receptor modulators (e.g., tamoxifen), N-oxides of Vinca alkaloids (e.g., vincristine, vinblastine, vinorelbine), and Mannich base N-oxides of agents having an acidic NH group (e.g., cytarabine, carmustine, cyclophosphamide, dacarbazine, fluorouracil, floxuridine, lomustine, melphalan, mercaptopurine, methotrexate
  • the level of NOS is at least about 20, 30, 430, 50, 60, 70, 80, 90, or 100% higher than the normal level.
  • the "normal" level of NOS can be either the level of NOS in the adjacent tissue around the tissue involved in the disorder (e.g., the hyperproliferative tissue) or the standard level or activity of NOS in healthy subjects.
  • the standard level or activity of NOS in healthy subjects may represent the average of a suitable number of members of the general population, typically at least 10, more preferably 50, and still more preferably more than 100-500 members of the general population.
  • the standard level in healthy subjects is determined in an age-matched fashion, e.g., the subject on whom the methods of the invention are being practiced is compared to healthy subjects of the same age.
  • the hyperproliferative disorder is cancer.
  • the cancer may be, but is not limited to, brain cancer, breast cancer, gastrointestinal cancers comprising colon, colorectal, esophageal, gastric, hepatocellular, pancreatic and rectal cancers, genitourinary cancers comprising bladder, prostate, renal cell and testicular cancers, gynecologic cancers comprising cervical, endometrial, ovarian and uterine cancers, head and neck cancer, leukemias comprising acute lymphoblastic, acute myelogenous, acute promyelocyte, chronic lymphocytic, chronic myelogenous and hairy cell leukemias, non-small-cell and small-cell lung cancers, Hodgkin's and non- Hodgkin's lymphomas, melanoma, multiple myeloma and sarcoma.
  • the cancer e.g., the solid tumor
  • the cancer is characterized by hypoxia as well as an elevated level of NOS.
  • hyperproliferative disease refers to any condition in which a localized population of proliferating cells in an animal is not governed by the usual limitations of normal growth.
  • hyperproliferative disorders include tumors, neoplasms, lymphomas and the like, as well as non-cancerous hyperproliferative conditions such as psoriasis.
  • a neoplasm is said to be benign if it does not undergo invasion or metastasis and malignant if it does either of these.
  • a "metastatic" cell means that the cell can invade and destroy neighboring body structures.
  • the invention provides a method of treating cancer comprising administering a bioreducible prodrug to an animal in need thereof and co-administering a further therapeutic agent or treatment.
  • the methods further comprise administering a chemotherapeutic agent or radiation treatment.
  • Chemotherapeutic agents useful in the invention include actinomycin
  • D irinotecan, vincristine, vinblastine, methotrexate, azathioprine, fluorouracil, doxorubicin, mitomycin, taxanes such as docetaxel, paclitaxel, and abraxane, cyclophosphamide, capecitabine, epirubicin, cisplatin, gemcitabine, mitoxantrone, leucovorin, vinorelbine, trastuzumab, etoposide, carboplatin, estramustine, prednisone, interferon alpha-2a, interleukin-2, bleomycin, ifosfamide, mesna, altretamine, topotecan, cytarabine, methylprednisolone, dexamethasone, daunorubicin, intrathecal methotrexate, mercaptopurine, thioguanine, fludarabine, gemtuzumab, i
  • Antibodies useful as therapeutic agents include, but are not limited to, monoclonal antibodies, synthetic antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, single-chain Fvs (scFv) (including bi-specific scFvs), single chain antibodies, Fab fragments, F(ab') fragments, disulfide-linked Fvs (sdFv), and epitope-binding fragments of any of the above.
  • antibodies include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds to an antigen.
  • the immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG 1 , IgG 2 , IgG 3 , IgG 4 , IgAi and IgA 2 ) or subclass of immunoglobulin molecule.
  • the antibodies comprise four polypeptide chains—two light chains and two heavy chains, hi other embodiments, the antibodies of the invention comprise a V H chain and/or a V L chain. In yet another embodiments, the antibodies are epitope-binding fragments.
  • the antibodies may be from any animal origin including birds and mammals (e.g., human, murine, donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken).
  • the antibodies are human or humanized monoclonal antibodies.
  • "human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from mice or other animal that express antibodies from human genes.
  • the antibodies may be monospecific, bispecific, trispecific or of greater multispecificity.
  • Multispecific antibodies may immunospecifically bind to different epitopes of a polypeptide or may immunospecifically bind to both a polypeptide as well a heterologous epitope, such as a heterologous polypeptide or solid support material.
  • WO 93/17715, WO 92/08802, WO 91/00360, and WO 92/05793 Tutt, et al, 1991, J. Immunol. 147:60-69; U.S. Pat. Nos. 4,474,893, 4,714,681, 4,925,648, 5,573,920, and 5,601,819; and Kostelny et al, 1992, J. Immunol. 148:1547- 1553.
  • the antibodies include derivatives of the antibodies known to those of skill in the art. Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding an antibody to be used with the methods of the invention, including, for example, site- directed mutagenesis and PCR-mediated mutagenesis which result in amino acid substitutions.
  • the derivatives include less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the original molecule.
  • the derivatives have conservative amino acid substitutions made at one or more predicted non-essential amino acid residues.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
  • the antibodies include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody.
  • the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, synthesis in the presence of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.
  • one or more framework regions, preferably, all of the framework regions, of an antibody to be used in the methods of the invention or fragment thereof are human.
  • the fragment region of an antibody of the invention is humanized.
  • the antibody to be used with the methods of the invention is a synthetic antibody, a monoclonal antibody, an intrabody, a chimeric antibody, a human antibody, a humanized chimeric antibody, a humanized antibody, a glycosylated antibody, a multispecific antibody, a human antibody, a single-chain antibody, or a bispecific antibody.
  • the antibodies have half-lives in a mammal, preferably a human, of greater than 12 hours, greater than 1 day, greater than 3 days, greater than 6 days, greater than 10 days, greater than 15 days, greater than 20 days, greater than 25 days, greater than 30 days, greater than 35 days, greater than 40 days, greater than 45 days, greater than 2 months, greater than 3 months, greater than 4 months, or greater than 5 months.
  • Antibodies or antigen-binding fragments thereof having increased in vivo half-lives can be generated by techniques known to those of skill in the art.
  • antibodies or antigen-binding fragments thereof with increased in vivo half- lives can be generated by modifying (e.g., substituting, deleting or adding) amino acid residues identified as involved in the interaction between the Fc domain and the FcRn receptor (see, e.g., PCT Publication No. WO 97/34631, U.S. patent application Ser. No. 10/020,354, entitled “Molecules with Extended Half-Lives, Compositions and Uses Thereof, filed Dec. 12, 2001, by Johnson et al, and U.S. patent application Ser. No. 11/263,230, filed Oct.
  • antibodies with increased in vivo half-lives can be generated by attaching to said antibodies or antibody fragments polymer molecules such as high molecular weight polyethyleneglycol (PEG).
  • PEG polymer molecules
  • PEG can be attached to said antibodies with or without a multifunctional linker either through site- specific conjugation of the PEG to the N- or C-terminus of said antibodies or via epsilon-amino groups present on lysine residues. Linear or branched polymer derivatization that results in minimal loss of biological activity will be used. The degree of conjugation will be closely monitored by SDS-PAGE and mass spectrometry to ensure proper conjugation of PEG molecules to the antibodies.
  • Unreacted PEG can be separated from antibody-PEG conjugates by, e.g., size exclusion or ion-exchange chromatography.
  • PEG-derivatized antibodies or antigen-binding fragments thereof can be tested for binding activity to antigens as well as for in vivo efficacy using methods known to those skilled in the art, for example, by immunoassays described herein.
  • the antibodies can be single-chain antibodies.
  • the design and construction of a single-chain antibody is described in Marasco et al., 1993, Proc Natl Acad Sci 90:7889-7893, which is incorporated herein by reference in its entirety.
  • the antibodies bind to an intracellular epitope, i.e., are intrabodies.
  • An intrabody comprises at least a portion of an antibody that is capable of immunospecifically binding an antigen and preferably does not contain sequences coding for its secretion. Such antibodies will bind its antigen intracellularly.
  • the intrabody comprises a single- chain Fv ("sFv").
  • the intrabody does not encode an operable secretory sequence and thus remains within the cell (see generally Marasco, W A, 1998, “Intrabodies: Basic Research and Clinical Gene Therapy Applications” Springer: New York).
  • sFv are antibody fragments comprising the V H and V L domains of antibody, wherein these domains are present in a single polypeptide chain.
  • the Fv polypeptide further comprises a polypeptide linker between the V H and V L domains which enables the sFv to form the desired structure for antigen binding.
  • the antibodies may be conjugated or fused to one or more moieties, including but not limited to, peptides, polypeptides, proteins, fusion proteins, nucleic acid molecules, small molecules, mimetic agents, synthetic drugs, inorganic molecules, and organic molecules.
  • moieties including but not limited to, peptides, polypeptides, proteins, fusion proteins, nucleic acid molecules, small molecules, mimetic agents, synthetic drugs, inorganic molecules, and organic molecules.
  • the antibodies may also be recombinantly fused or chemically conjugated (including both covalent and non-covalent conjugations) to a heterologous protein or polypeptide (or fragment thereof, preferably to a polypeptide of at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90 or at least 100 amino acids) to generate fusion proteins.
  • the fusion does not necessarily need to be direct, but may occur through linker sequences.
  • antibodies may be used to target heterologous polypeptides to particular cell types, either in vitro or in vivo, by fusing or conjugating the antibodies to antibodies specific for particular cell surface receptors.
  • Antibodies fused or conjugated to heterologous polypeptides may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., International publication No. WO 93/21232; European Patent No. EP 439,095; Naramura et al, 1994, Immunol. Lett. 39:91-99; U.S. Pat. No. 5,474,981; Gillies et al, 1992, Proc. Natl. Acad. Sci. USA 89:1428-1432; and Fell et al, 1991, J. Immunol. 146:2446-2452, which are incorporated by reference in their entireties.
  • antibody fragments may be fused or conjugated to heterologous proteins, peptides or polypeptides.
  • the heterologous polypeptides may be fused or conjugated to a Fab fragment, Fd fragment, Fv fragment, F(ab) 2 fragment, a Fc domain, a VH domain, a VL domain, a VH CDR, a VL CDR, or fragment thereof.
  • Methods for fusing or conjugating polypeptides to antibody portions are well-known in the art. See, e.g., U.S. Pat. Nos. 5,336,603, 5,622,929, 5,359,046, 5,349,053, 5,447,851, and 5,112,946; European Patent Nos.
  • a fusion protein that comprises an Fc domain of an antibody or a fragment thereof may be used, wherein the Fc domain or the Fc domain fragment comprises at least one thioether cross-link.
  • a fusion protein can be any fusion protein comprising an Fc domain or an Fc domain fragment known in the art, such as human tumor necrosis factor receptor Fc fusion protein, as described in Moreland et al, 2000, New Eng. J. Med. 343:15869-93; or B7.1 Fc fusion protein, as described in Liu et al, 2005, Cancer Research l l(23):8492-8502, the contents of which are incorporated by reference in their entireties.
  • the Fc domain may further comprise one or more amino acid substitutions (Fc variants).
  • Fc variants exhibit altered binding affinity for at least one or more Fc ligands ⁇ e.g., Fc ⁇ Rs, clq). Exemplary Fc variants and methods of making such are described for example, in U.S. Patent Publication Nos. 2006/0039904 and 2006/0040325, both published on Feb. 23, 2006, the contents of which are incorporated by reference in their entireties.
  • the fusion protein comprises a C H I , C H 2, C H 3 and/or C L domain of an antibody, wherein the C H I, C H 2, C H 3 or C L domain comprises at least one thioether cross-link.
  • DNA shuffling may be employed to alter the activities of antibodies or fragments thereof (e.g., antibodies or fragments thereof with higher affinities and lower dissociation rates). See, generally, U.S. Pat. Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., 1997, Curr. Opinion Biotechnol. 8:724-33; Harayama, 1998, Trends Biotechnol.
  • Antibodies or fragments thereof, or the encoded antibodies or fragments thereof may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination.
  • One or more portions of a polynucleotide encoding an antibody or antibody fragment may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
  • the antibodies can be conjugated to a diagnostic or detectable agent.
  • Such antibodies can be useful for monitoring or prognosing the development or progression of a disorder as part of a clinical testing procedure, such as determining the efficacy of a particular therapy.
  • Such diagnosis and detection can be accomplished by coupling the antibody to detectable substances including, but not limited to various enzymes, such as but not limited to horseradish peroxidase, alkaline phosphatase, beta- galactosidase, or acetylcholinesterase; prosthetic groups, such as but not limited to streptavidin/biotin and avidin/biotin; fluorescent materials, such as but not limited to, umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as but not limited to iodine ( 131 I, 125 I, 123 I, 121 I), carbon ( 14 C), sulfur ( 35
  • the present invention further encompasses antibodies that are conjugated to a therapeutic moiety.
  • An antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha- emitters.
  • a cytotoxin or cytotoxic agent includes any agent that is detrimental to cells.
  • Therapeutic moieties include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5- fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cisdichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), Auristatin molecules (e.g
  • hormones e.g., glucocorticoids, progestins, androgens, and estrogens
  • DNA- repair enzyme inhibitors e.g., etoposide or topotecan
  • kinase inhibitors e.g., compound ST1571, imatinib mesylate (Kantaijian et ai, Clin Cancer Res.
  • cytotoxic agents e.g., paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof) and those compounds disclosed in U.S. Pat. Nos.
  • antisense oligonucleotides e.g., those disclosed in the U.S. Pat. Nos. 6,277,832, 5,998,596, 5,885,834, 5,734,033, and 5,618,709
  • immunomodulators e.g., antibodies and cytokines
  • antibodies e.g., antibodies and cytokines
  • adenosine deaminase inhibitors e.g., Fludarabine phosphate and 2-Chlorodeoxyadenosine.
  • an antibody or fragment thereof may be conjugated to a therapeutic moiety or drug moiety that modifies a given biological response.
  • Therapeutic moieties or drug moieties are not to be construed as limited to classical chemical therapeutic agents.
  • the drug moiety may be a protein or polypeptide possessing a desired biological activity.
  • Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin; a protein such as tumor necrosis factor, ⁇ -interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF ⁇ ., TNF ⁇ , AIM I (see, International publication No. WO 97/33899), AIM II (see, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al, 1994, J.
  • a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin
  • a protein such as tumor necrosis factor, ⁇ -interferon, ⁇ -interferon, nerve growth factor, platelet derived growth factor, tissue
  • a thrombotic agent or an anti-angiogenic agent e.g., angiostatin, endostatin or a component of the coagulation pathway (e.g., tissue factor); or, a biological response modifier such as, for example, a lymphokine (e.g., interleukin-1 ("IL-I”), interleukin-2 ("IL-2"), interleukin-6 (“IL-6”), granulocyte macrophage colony stimulating factor (“GM-CSF”), and granulocyte colony stimulating factor (“G-CSF”)), a growth factor (e.g., growth hormone (“GH”)), or a coagulation agent (e.g., calcium, vitamin K, tissue factors, such as but not limited to, Hageman factor (factor XII), high- molecular-weight kininogen (HMWK), prekallikrein (PK), coagulation proteins-factors
  • an antibody can be conjugated to therapeutic moieties such as a radioactive metal ion, such as alpha-emitters such as 213 Bi or macrocyclic chelators useful for conjugating radiometal ions, including but not limited to, 1 31 In, 131 LU, 131 Y, 131 Ho, 131 Sm, to polypeptides.
  • the macrocyclic chelator is 1, 4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraa- cetic acid (DOTA) which can be attached to the antibody via a linker molecule.
  • linker molecules are commonly known in the art and described in Denardo et al, 1998, Clin Cancer Res.
  • an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980, which is incorporated herein by reference in its entirety.
  • the therapeutic moiety or drug conjugated to an antibody or fragment thereof should be chosen to achieve the desired prophylactic or therapeutic effect(s) for a particular disorder in a subject.
  • a clinician or other medical personnel should consider the following when deciding on which therapeutic moiety or drug to conjugate to an antibody or fragment thereof: the nature of the disease, the severity of the disease, and the condition of the subject.
  • the antibodies comprise at least one thioether cross-link, and wherein said antibodies specifically bind to one or more particular antigens.
  • the antibody of the present invention specifically binds to integrin ⁇ v ⁇ 3 .
  • the antibody comprises the amino acid sequence of the V H and V L chains of MEDI-522 (VitaxinTM).
  • the antibody comprises the amino acid sequence of the CDRs of the V H and V L chains of MEDI-522 (VitaxinTM).
  • the antibody of the present invention specifically binds to CD2.
  • the antibody comprises the amino acid sequence of the V H and V L chains of siplizumab.
  • the antibody comprises the amino acid sequence of the complementarity determining regions (CDRs) of V H and V L chains of siplizumab.
  • the antibody specifically binds to CD 19.
  • the antibody comprises the amino acid sequence of the V H and V L chains of MT 103.
  • the antibody comprises the amino acid sequence of the CDRs of the V H and V L chains of MT 103.
  • the antibody specifically binds to an Eph receptor, hi certain embodiments, the antibody of the present invention specifically binds to EphA2.
  • the antibody comprises the amino acid sequence of the V H and V L chains of EA2 or EA5.
  • the antibody comprises the amino acid sequence of the CDRs of the V H and V L chains of EA2 or EA5.
  • the antibody of the present invention specifically binds to EphA4.
  • the antibody of the present invention specifically binds to EphB4.
  • the antibody specifically binds to IL-9.
  • the antibody comprises the amino acid sequence of the V H and V L chains of MEDI-528.
  • the antibody comprises the amino acid sequence of the CDRs of the V H and V L chains of MEDI-528.
  • the antibody is RituxanTM (useful for treating non-Hodgkin's lymphoma), HerceptinTM (useful for treating metastatic breast cancer), CampathTM (useful for treating chronic lymphocytic leukemia), ErbituxTM (useful for treating various cancers), MDX-OlO (useful for treating malignant melanoma, prostate cancer), MDX-214 (useful for treatment of cancer), AlloMuneTM (useful for treating non-Hodgkin's lymphoma, Hodgkin's disease), IMC-255 (antibody to epidermal growth factor), A7-neocarzinostatin (useful for the treatment of liver metastasis), 791T/36 (useful for the treatment of colorectal cancer), Fas/ APO-I (useful for treatment of malignant glioma cells), doxorubicin-CLNIgG (useful for the treatment of malignant glioma cells), siplizumab (
  • co-administration refers to the simultaneous administration of two agents, either as a single composition or separate compositions.
  • the term also includes the administration of a first agent prior to or after the administration of a second agent, e.g., 1, 2, 3, 4, 5, 6, 12, or 18 hours, 1, 2, 3, 4, 5, or 6 days, or 1, 2, 3, or 4 weeks before or after the second agent.
  • hypoxia refers to a deprivation of adequate oxygen supply.
  • Normoxia in human tissues other than the lung is about 6% (40 torr).
  • hypoxia is defined as a level of oxygen significantly less than 6%, e.g., 10, 20, 30, 40, 50, 60, 70, or 80% lower than 6%.
  • Hypoxia within a tumor is defined as a level of oxygen within a portion or all of the tumor that is at least 10% less than the level of oxygen in other tissues of the same individual, e.g., 20, 30, 40, 50, 60, 70, or 80% less.
  • the level of oxygen in a tissue may be determined by any method known in the art, such as oxygen electrodes (e.g., Eppendorf p ⁇ 2 Histograph), compounds that selectively bind to hypoxic regions (e.g., nitroimidazoles such as pimonidazole, and EF5), non-invasive techniques such as radiolabeled hypoxia markers that can be measured by positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging, and techniques for measuring oxygen-dependent signals produced by the body's own chemistry, such as f-MRI BOLD (functional MRI blood oxygen level dependent), which detects magnetic properties of deoxyhemoglobin, recording variations in blood oxygen flow and tissue oxygen consumption, and NIRS (near-infrared spectroscopy), which measures the attenuation of light passing through tissue using an optical method to record oxygen-dependent signals from hemoglobin, deoxyhemoglobin, and cytochrome-c oxidase.
  • oxygen electrodes e.g., Epp
  • therapeutically effective amount refers to that amount of the therapeutic agent sufficient to achieve its intended result.
  • therapeutically effective amounts include those amounts which will improve the therapeutic response of another agent by at least 10%, preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.
  • prevention refers to a decrease in the occurrence of pathological cells (e.g., hyperproliferative or neoplastic cells) in an animal.
  • the prevention may be complete, e.g., the total absence of pathological cells in a subject.
  • the prevention may also be partial, such that the occurrence of pathological cells in a subject is less than that which would have occurred without the present invention.
  • cancer is intended to refer to any known cancer, and may include, but is not limited to the following: leukemias such as acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias such as myeloblasts, promyelocytic, myelomonocytic, monocytic, and erythroleukemia leukemias, and myelodysplastic syndrome; chronic leukemias such as chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, and hairy cell leukemia; polycythemia vera; lymphomas such as Hodgkin's disease and non-Hodgkin's disease; multiple myelomas such as smoldering multiple myeloma, non-secretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary
  • myxosarcoma osteogenic sarcoma
  • endotheliosarcoma endotheliosarcoma
  • lymphangioendotheliosarcoma mesothelioma
  • synovioma hemangioblastoma
  • epithelial carcinoma cystadenocarcinoma
  • cystadenocarcinoma bronchogenic carcinoma
  • sweat gland carcinoma sebaceous gland carcinoma
  • Therapeutic agents useful as adjunctive therapy according to the invention include, but are not limited to, small molecules, synthetic drugs, peptides, polypeptides, proteins, nucleic acids (e.g., DNA and RNA polynucleotides including, but not limited to, antisense nucleotide sequences, triple helices, and nucleotide sequences encoding biologically active proteins, polypeptides, or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. Any agent which is known to be useful, or which has been used or is currently being used for the prevention, treatment, or amelioration of disorders can be used in combination with a bioreducible prodrug, in accordance with the invention described herein.
  • nucleic acids e.g., DNA and RNA polynucleotides including, but not limited to, antisense nucleotide sequences, triple helices, and nucleotide sequences encoding biologically active proteins, polypeptides, or
  • radiotherapeutic agent is intended to refer to any radiotherapeutic agent known to one of skill in the art to be effective to treat or ameliorate cancer, without limitation.
  • the radiotherapeutic agent can be an agent such as those administered in brachytherapy or radionuclide therapy.
  • Such methods can optionally further comprise the administration of one or more additional cancer therapies, such as, but not limited to, chemotherapies, surgery, and/or another radiotherapy.
  • a therapeutically effective dose of brachytherapy may be administered.
  • the brachytherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation.
  • brachytherapy comprises insertion of radioactive sources into the body of a subject to be treated for cancer, preferably inside the tumor itself, such that the tumor is maximally exposed to the radioactive source, while preferably minimizing the exposure of healthy tissue.
  • the brachytherapy can be intracavitary brachytherapy.
  • the brachytherapy can be interstitial brachytherapy.
  • the brachytherapy can be administered at a high dose rate, a continuous low dose rate, or a pulsed dose rate.
  • a high dose rate brachytherapy regimen can be a dose of 60 Gy administered in ten fractions over six days
  • a continuous low dose rate brachytherapy regimen can be a total dose of about 65 Gy, administered continuously at about 40 to 50 cGy per hour.
  • Other examples of high, continuous low, and pulsed dose rate brachytherapy are well known in the art. See, e.g., Mazeron et al, Sem. Rad. One. 12:95-108 (2002).
  • Radioisotopes that can be administered in any of the above-described brachytherapies include, but are not limited to, phosphorus 32, cobalt 60, palladium 103, ruthenium 106, iodine 125, cesium 137, iridium 192, xenon 133, radium 226, californium 252, or gold 198.
  • Other radioisotopes may be selected for administration in brachytherapy according to the desirable physical properties of such a radioisotope.
  • Radioisotope's suitability for use in brachytherapy including, but not limited to, the radioisotope's half-life, the degree to which emitted radiation penetrates surrounding tissue, the energy of emitted radiation, the ease or difficulty of adequately shielding the radioisotope, the availability of the radioisotope, and the ease or difficulty of altering the shape of the radioisotope prior to administration.
  • the bioreducible prodrug may be administered in combination with a treatment comprising a therapeutically effective dose of a radionuclide.
  • the radionuclide therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation, hi general, radionuclide therapy comprises systemic administration of a radioisotope that preferentially accumulates in or binds to the surface of cancerous cells.
  • the preferential accumulation of the radionuclide can be mediated by a number of mechanisms, including, but not limited to, incorporation of the radionuclide into rapidly proliferating cells, specific accumulation of the radionuclide by the cancerous tissue without special targeting (e.g., iodine 131 accumulation in thyroid cancer), or conjugation of the radionuclide to a biomolecule specific for a neoplasm.
  • mechanisms including, but not limited to, incorporation of the radionuclide into rapidly proliferating cells, specific accumulation of the radionuclide by the cancerous tissue without special targeting (e.g., iodine 131 accumulation in thyroid cancer), or conjugation of the radionuclide to a biomolecule specific for a neoplasm.
  • a specific biomolecule for use in targeting a particular neoplasm for radionuclide therapy based upon the cell-surface molecules present on that neoplasm.
  • hepatomas may be specifically targeted by an antibody specific for ferritin, which is frequently over-expressed in such tumors.
  • antibody-targeted radioisotopes for the treatment of cancer include ZEVALIN (ibritumomab tiuxetan) and BEXXAR (tositumomab), both of which comprise an antibody specific for the B cell antigen CD20 and are used for the treatment of non-Hodgkin lymphoma.
  • radiotherapeutic treatment is intended to refer to any radiotherapeutic treatment known to one of skill in the art to be effective to treat or ameliorate cancer, without limitation.
  • the radiotherapeutic treatment can be external-beam radiation therapy, thermotherapy, radiosurgery, charged-particle radiotherapy, neutron radiotherapy, or photodynamic therapy.
  • Such methods can optionally further comprise the administration of one or more additional cancer therapies, such as, but not limited to, chemotherapies, surgery, and/or another radiotherapy.
  • the present invention provides a method comprising the administration of a bioreducible prodrug in combination with a treatment comprising a therapeutically effective dose of external-beam radiation therapy.
  • the external-beam radiation therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation, hi general, external- beam radiation therapy comprises irradiating a defined volume within a subject with a high energy beam, thereby causing cell death within that volume.
  • the irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
  • the external-beam radiation therapy can be three-dimensional conformal radiotherapy.
  • the external-beam radiation therapy can be continuous hyperfractionated radiotherapy.
  • the external-beam radiation therapy can be intensity-modulated radiotherapy.
  • the external-beam radiation therapy can be helical tomotherapy.
  • the external-beam radiation therapy can be three dimensional conformal radiotherapy with dose escalation.
  • the external-beam radiation therapy can be stereotactic radiotherapy, including, but not limited to, single fraction stereotactic radiotherapy, fractionated stereotactic radiotherapy, and fractionated stereotactically guided conformal radiotherapy.
  • the external-beam radiation therapy can be generated or manipulated by any means known to one of skill in the art.
  • the photon beam used in external-beam radiation therapy can be shaped by a multileaf collimator.
  • suitable devices for generating a photon beam for use in external-beam radiation therapy include a gamma knife and a linac- based stereotactic apparatus, hi certain embodiments, administration of the external-beam radiation therapy is controlled by a computer according to a three-dimensional model of the patient in the treatment position.
  • a model can be generated, for example, by computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computer tomography (SPECT), and positron emission tomography (PET).
  • CT computed tomography
  • MRI magnetic resonance imaging
  • SPECT single photon emission computer tomography
  • PET positron emission tomography
  • healthy tissues can optionally be protected from the effects of the external-beam radiation therapy by placing blocking devices such as, e.g., lead shields, in locations where such protection is needed.
  • blocking devices such as, e.g., lead shields
  • metal reflecting shields can optionally be located to reflect the photon beam in order to concentrate the radiation on the cancerous tissue to be treated and protect healthy tissue. Placement of either shield is well within the knowledge of one of skill in the art.
  • the present invention provides the administration of a bioreducible prodrug in combination with a treatment comprising a therapeutically effective dose of thermotherapy.
  • the thermotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation.
  • the thermotherapy can be cryoablation therapy.
  • the thermotherapy can be hyperthermic therapy.
  • the thermotherapy can be a therapy that elevates the temperature of the tumor higher than in hyperthermic therapy.
  • Cryoablation therapy involves freezing of a neoplastic mass, leading to deposition of intra- and extra-cellular ice crystals; disruption of cellular membranes, proteins, and organelles; and induction of a hyperosmotic environment, thereby causing cell death.
  • Cryoablation can be performed in one, two, or more freeze-thaw cycles, and further the periods of freezing and thawing can be adjusted for maximum tumor cell death by one of skill in the art.
  • One exemplary device that can be used in cryoablation is a cryoprobe incorporating vacuum-insulated liquid nitrogen. See, e.g., Murphy et al, Sem. Urol. Oncol. 19: 133-140 (2001).
  • any device that can achieve a local temperature of about -18O 0 C to about -195 0 C can be used in cryoablation therapy.
  • Methods for and apparatuses useful in cryoablation therapy are described in U.S. Patent Nos. 6,383,181, 6,383,180, 5,993,444, 5,654,279, 5,437,673, and 5,147,355, each of which is incorporated herein by reference in its entirety.
  • Hyperthermic therapy typically involves elevating the temperature of a neoplastic mass to a range from about 42 0 C to about 44 0 C.
  • the temperature of the cancer may be further elevated above this range; however, such temperatures can increase injury to surrounding healthy tissue while not causing increased cell death within the tumor to be treated.
  • the tumor may be heated in hyperthermic therapy by any means known to one of skill in the art without limitation.
  • the tumor may be heated by microwaves, high intensity focused ultrasound, ferromagnetic thermoseeds, localized current fields, infrared radiation, wet or dry radiofrequency ablation, laser photocoagulation, laser interstitial thermic therapy, and electrocautery.
  • Microwaves and radiowaves can be generated by waveguide applicators, horn, spiral, current sheet, and compact applicators.
  • a bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of radiosurgery.
  • the radiosurgery can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation.
  • radiosurgery comprises exposing a defined volume within a subject to a manually directed radioactive source, thereby causing cell death within that volume.
  • the irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
  • the tissue to be treated is first exposed using conventional surgical techniques, then the radioactive source is manually directed to that area by a surgeon.
  • the radioactive source can be placed near the tissue to be irradiated using, for example, a laparoscope.
  • Methods and apparatuses useful for radiosurgery are further described in Valentini et al, Eur. J. Surg. Oncol. 28:180-185 (2002) and in U.S. Patent Nos. 6,421,416, 6,248,056, and 5,547,454, each of which is incorporated herein by reference in its entirety.
  • the bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of charged-particle radiotherapy.
  • the charged-particle radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation, hi certain embodiments, the charged-particle radiotherapy can be proton beam radiotherapy. In other embodiments, the charged-particle radiotherapy can be helium ion radiotherapy.
  • charged-particle radiotherapy comprises irradiating a defined volume within a subject with a charged-particle beam, thereby causing cellular death within that volume.
  • the irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
  • a method for administering charged-particle radiotherapy is described in U.S. Patent No. 5,668,371, which is incorporated herein by reference in its entirety.
  • the bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of neutron radiotherapy.
  • the neutron radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation.
  • the neutron radiotherapy can be a neutron capture therapy.
  • a compound that emits radiation when bombarded with neutrons and preferentially accumulates in a neoplastic mass is administered to a subject.
  • the tumor is irradiated with a low energy neutron beam, activating the compound and causing it to emit decay products that kill the cancerous cells.
  • Such compounds are typically boron containing compounds, but any compound that has a significantly larger neutron capture cross-section than common body constituents can be used.
  • the neutrons administered in such therapies are typically relatively low energy neutrons having energies at or below about 0.5 eV.
  • the compound to be activated can be caused to preferentially accumulate in the target tissue according to any of the methods useful for targeting of radionuclides, as described below, or in the methods described in Laramore, Semin. Oncol. 24:612-685 (1997) and in U.S. Patents Nos. 6,400,796, 5,877,165, 5,872,107, and 5,653,957, each of which is incorporated herein by reference in its entirety.
  • the neutron radiotherapy can be a fast neutron radiotherapy.
  • fast neutron radiotherapy comprises irradiating a defined volume within a subject with a neutron beam, thereby causing cellular death within that volume.
  • the irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
  • high energy neutrons are administered in such therapies, with energies in the range of about 10 to about 100 million eV.
  • fast neutron radiotherapy can be combined with charged-particle radiotherapy in the administration of mixed proton-neutron radiotherapy.
  • the bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of photodynamic therapy.
  • the photodynamic therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation.
  • photodynamic therapy comprises administering a photosensitizing agent that preferentially accumulates in a neoplastic mass and sensitizes the neoplasm to light, then exposing the tumor to light of an appropriate wavelength. Upon such exposure, the photosensitizing agent catalyzes the production of a cytotoxic agent, such as, e.g., singlet oxygen, which kills the cancerous cells.
  • a cytotoxic agent such as, e.g., singlet oxygen
  • Representative photosensitizing agents that may be used in photodynamic therapy include, but are not limited to, porphyrins such as porfimer sodium, 5-aminolaevulanic acid and verteporfin; chlorins such as temoporf ⁇ n; texaphyrins such as lutetium texephyrin; purpurins such as tin etiopurpurin; phthalocyanines; and titanium dioxide.
  • the wavelength of light used to activate the photosensitizing agent can be selected according to several factors, including the depth of the tumor beneath the skin and the absorption spectrum of the photosensitizing agent administered. The period of light exposure may also vary according to the efficiency of the absorption of light by the photosensitizing agent and the efficiency of the transfer of energy to the cytotoxic agent. Such determinations are well within the ordinary skill of one in the art.
  • Radiotherapy can be administered to destroy tumor cells before or after surgery, before or after chemotherapy, and sometimes during chemotherapy. Radiotherapy may also be administered for palliative reasons to relieve symptoms of cancer, for example, to lessen pain.
  • Total body radiotherapy can be administered to patients who are undergoing a bone marrow transplant, which is a procedure often performed with subjects having leukemia, hi the case of a bone marrow transplant, a large single dose, or six to eight smaller doses of radiation, is administered to the whole body to destroy bone marrow cells in preparation for the transplant.
  • a bone marrow transplant which is a procedure often performed with subjects having leukemia, hi the case of a bone marrow transplant, a large single dose, or six to eight smaller doses of radiation, is administered to the whole body to destroy bone marrow cells in preparation for the transplant.
  • types of tumors that can be treated using radiotherapy are localized tumors that cannot be excised completely and metastases and tumors whose complete excision would cause unacceptable functional or cosmetic defects or be associated with unacceptable surgical risks
  • both the particular radiation dose to be utilized in treating cancer and the method of administration will depend on a variety of factors.
  • the dosages of radiation that can be used according to the methods of the present invention are determined by the particular requirements of each situation.
  • the dosage will depend on such factors as the size of the tumor, the location of the tumor, the age and sex of the patient, the frequency of the dosage, the presence of other tumors, possible metastases and the like.
  • Those skilled in the art of radiotherapy can readily ascertain the dosage and the method of administration for any particular tumor by reference to Hall, E. J., Radiobiology for the Radiobiologist, 5th edition, Lippincott Williams & Wilkins Publishers, Philadelphia, PA, 2000; Gunderson, L. L. and Tepper J.
  • vasodilators e.g., nitrates, calcium channel blockers
  • anticoagulants e.g., heparin
  • anti-platelet agents e.g., aspirin, blockers of Ilb/IIIa receptors, clopidogrel
  • anti-thrombins e.g., hirudin, iloprost
  • immunosuppressants e.g., sirolimus, tranilast, dexamethasone, tacrolimus, everolimus, A24
  • collagen synthetase inhibitors e.g., halofuginone, propyl hydroxylase, C-proteinase inhibitor, metalloproteinase inhibitor
  • antiinflammatories e.g., corticosteroids such as alclometasone, amcinonide, betamethasone, beclomethasone, budesonide, cortisone, clobetasol
  • Anti-inflammatory drugs suitable for ameliorating tumor inflammation include salicylates (such as aspirin, choline magnesium trisalicylate, methyl salicylate, salsalte and diflunisal), acetic acids (such as indomethacin, sulindac, tolmetin, aceclofenac and diclofenac), 2-arylpropionic acids or profens (such as ibuprofen, ketoprofen, naproxen, fenoprofen, flurbiprofen and oxaprozin), N-arylanthranilic acids or fenamic acids (such as mefenamic acid, flufenamic acid, and meclofenamate), enolic acids or oxicams (such as piroxicam and meloxicam), cox inhibitors (such as celecoxib, rofecoxib (withdrawn from market), valdecoxib, parecoxib and etoricoxib), sulphonan
  • an immunomodulatory agent refers to an agent that modulates a host's immune system.
  • an immunomodulatory agent is an agent that alters the ability of a subject's immune system to respond to one or more foreign antigens.
  • an immunomodulatory agent is an agent that shifts one aspect of a subject's immune response, e.g., the agent shifts the immune response from a ThI to a Th2 response.
  • an immunomodulatory agent is an agent that inhibits or reduces a subject's immune system (i.e., an immunosuppressant agent).
  • an immunomodulatory agent is an agent that activates or increases a subject's immune system (i.e., an irnmunostimulatory agent).
  • Immunomodulatory agents useful for the present invention include, but are not limited to, small molecules, peptides, polypeptides, proteins, nucleic acids (e.g., DNA and RNA nucleotides including, but not limited to, antisense nucleotide sequences, triple helices and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules.
  • a particularly useful immunomodulatory agent useful for the present invention is thalidomide.
  • Immunosuppressant agents are useful to counteract autoimmune diseases, such as rheumatoid arthritis or Crohn's disease, and to prevent the immune system from attacking healthy parts of the body.
  • immunosuppressive agents useful for the present invention include glucocorticoid receptor agonists (e.g., cortisone, dexamethasone, hydrocortisone, betamethasone), calcineurin inhibitors (e.g., macrolides such as tacrolimus and pimecrolimus), immunophilins (e.g., cyclosporin A) and mTOR inhibitors (e.g., sirolimus, marketed as RAPAMUNE ® by Wyeth).
  • glucocorticoid receptor agonists e.g., cortisone, dexamethasone, hydrocortisone, betamethasone
  • calcineurin inhibitors e.g., macrolides such as tacrolimus and pimecrolimus
  • immunomodulatory agents useful for the present invention further include antiproliferative agents (e.g., methotrexate, leflunomide, cisplatin, ifosfamide, paclitaxel, taxanes, topoisomerase I inhibitors (e.g., CPT-I l, topotecan, 9-AC, and GG-211), gemcitabine, vinorelbine, oxaliplatin, 5-fluorouracil (5-FU), leucovorin, vinorelbine, temodal, taxol, cytochalasin B, gramicidin D, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, melphalan, glucocor
  • Immunostimulant agents are useful to increase the efficiency of the immune system and treat immunodeficiency disorders.
  • Immunostimulant agents useful for the present invention include interferon and Zidovudine (AZT).
  • the unit oral dose of a bioreducible prodrug may comprise from about
  • the unit dose may be administered one or more times daily as one or more tablets or capsules each containing from about 0.1 to about 10, conveniently about 0.25 to 50 mg of the agents.
  • the amount of a therapeutically effective dose of a pharmaceutical agent or treatment in the acute or chronic management of a disease or disorder may differ depending on factors including, but not limited to, the disease or disorder treated, the specific pharmaceutical agents or treatments and the route of administration.
  • these Standard doses are for an average sized adult of approximately 70 kg and can be adjusted for the factors routinely considered as stated above.
  • the agents of the invention may be administered as part of a pharmaceutical preparation containing suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the compounds into preparations which can be used pharmaceutically.
  • suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the compounds into preparations which can be used pharmaceutically.
  • the preparations particularly those preparations which can be administered orally or topically and which can be used for the preferred type of administration, such as tablets, dragees, slow release lozenges and capsules, mouth rinses and mouth washes, gels, liquid suspensions, hair rinses, hair gels, shampoos and also preparations which can be administered rectally, such as suppositories, as well as suitable solutions for administration by injection, topically or orally, contain from about 0.01 to 99 percent, preferably from about 0.25 to 75 percent of active compound(s), together with the excipient.
  • compositions of the invention may be administered to any subject which may experience the beneficial effects of the compounds of the invention.
  • mammals e.g., humans, although the invention is not intended to be so limited.
  • Other animals include veterinary animals (cows, sheep, pigs, horses, dogs, cats and the like).
  • the compounds and pharmaceutical compositions thereof may be administered by any means that achieve their intended purpose.
  • administration may be by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, buccal, intrathecal, intracranial, intranasal, or topical routes.
  • administration may be by the oral route.
  • the dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.
  • compositions of the present invention are manufactured in a manner which is itself known, for example, by means of conventional mixing, granulating, dragee-making, dissolving, or lyophilizing processes.
  • pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipients, optionally grinding the resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores.
  • Suitable excipients are, in particular, fillers such as saccharides, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone.
  • fillers such as saccharides, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, tragacanth, methyl cellulose,
  • disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, cross- linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate.
  • Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol.
  • Dragee cores are provided with suitable coatings which, if desired, are resistant to gastric juices.
  • concentrated saccharide solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures, hi order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used.
  • Dye stuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses.
  • Other pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol.
  • the push-fit capsules can contain the active compounds in the form of granules which may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers, hi soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as fatty oils, or liquid paraffin. In addition, stabilizers may be added.
  • Possible pharmaceutical preparations which can be used rectally include, for example, suppositories, which consist of a combination of one or more of the active compounds with a suppository base.
  • Suitable suppository bases are, for example, natural or synthetic triglycerides, or paraffin hydrocarbons.
  • gelatin rectal capsules which consist of a combination of the active compounds with a base.
  • Possible base materials include, for example, liquid triglycerides, polyethylene glycols, or paraffin hydrocarbons.
  • Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water- soluble salts and alkaline solutions.
  • suspensions of the active compounds as appropriate oily injection suspensions may be administered.
  • Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides or polyethylene glycol-400.
  • Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran.
  • the suspension may also contain stabilizers.
  • the bioreducible prodrug may be administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier, wherein the bioreducible prodrug is present in an amount which is effective to achieve its intended purpose, i.e., to have the desired effect of preventing, treating or ameliorating a disorder in the animal receiving chemotherapy or radiotherapy.
  • the pharmaceutical composition may further comprise one or more excipients, diluents or any other components known to persons of skill in the art and germane to the methods of formulation of the present invention.
  • the pharmaceutical composition may additionally comprise other compounds typically used as adjuncts during chemotherapy.
  • composition as used herein is to be understood as defining compositions of which the individual components or ingredients are themselves pharmaceutically acceptable, e.g., where oral administration is foreseen, acceptable for oral use and, where topical administration is foreseen, topically acceptable.
  • the pharmaceutical composition can be prepared in single unit dosage forms.
  • the dosage forms are suitable for oral, mucosal (nasal, sublingual, vaginal, buccal, rectal), parenteral (intravenous, intramuscular, intraarterial), or topical administration.
  • Preferred dosage forms of the present invention include oral dosage forms and intravenous dosage forms.
  • Intravenous forms include, but are not limited to, bolus and drip injections.
  • the intravenous dosage forms are sterile or capable of being sterilized prior to administration to a subject since they typically bypass the subject's natural defenses against contaminants.
  • intravenous dosage forms include, but are not limited to, Water for Injection USP; aqueous vehicles including, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles including, but not limited to, ethyl alcohol, polyethylene glycol and polypropylene glycol; and non-aqueous vehicles including, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate and benzyl benzoate.
  • aqueous vehicles including, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection
  • water-miscible vehicles including, but not limited to, ethyl alcohol, polyethylene glycol and polyprop
  • compositions comprising the bioreducible prodrug of the present invention may further comprise one or more additives.
  • Additives that are well known in the art include, e.g., detackifiers, anti- foaming agents, buffering agents, antioxidants (e.g., ascorbyl palmitate, butyl hydroxy anisole (BHA), butyl hydroxy toluene (BHT) and tocopherols, e.g. , a- tocopherol (vitamin E)), preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof.
  • antioxidants e.g., ascorbyl palmitate, butyl hydroxy anisole (BHA), butyl hydroxy toluene (BHT) and tocopherols, e.g. , a- tocopherol (vitamin
  • antioxidants such as BHA and BHT may each be present in an amount of from about 0.01% to about 0.50% by weight based upon the total weight of the composition, e.g., about 0.05 to about 0.35% by weight, e.g., about 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50% by weight.
  • the additive may also comprise a thickening agent.
  • suitable thickening agents may be those known and employed in the art, including, e.g., pharmaceutically acceptable polymeric materials and inorganic thickening agents.
  • Exemplary thickening agents for use in the present pharmaceutical compositions include polyacrylate and polyacrylate copolymer resins, for example poly-acrylic acid and poly-acrylic acid/methacrylic acid resins; celluloses and cellulose derivatives including: alkyl celluloses, e.g., methyl-, ethyl- and propyl-celluloses; hydroxyalkyl- celluloses, e.g., hydroxypropyl-celluloses and hydroxypropylalkyl-celluloses such as hydroxypropyl-methyl-celluloses; acylated celluloses, e.g., cellulose- acetates, cellulose-acetatephthallates, cellulose-acetatesuccinates and hydroxypropylmethyl-cellulose phthallates; and salts thereof such
  • Such thickening agents as described above may be included, e.g., to provide a sustained release effect.
  • the use of thickening agents as aforesaid will generally not be required and is generally less preferred.
  • Use of thickening agents is, on the other hand, indicated, e.g., where topical application is foreseen.
  • compositions in accordance with the present invention may be employed for administration in any appropriate manner, e.g., orally, e.g., in unit dosage form, for example in a solution, in hard or soft encapsulated form including gelatin encapsulated form, parenterally or topically, e.g., for application to the skin, for example in the form of a cream, paste, lotion, gel, ointment, poultice, cataplasm, plaster, dermal patch or the like, as a coating for a medical device, e.g., a stent, or for ophthalmic application, for example in the form of an eye-drop, -lotion or -gel formulation.
  • Readily flowable forms, for example solutions and emulsions may also be employed e.g., for intralesional injection, or may be administered rectally, e.g., as an enema.
  • Animals which may be treated according to the present invention include all animals which may benefit from administration of the compounds of the present invention. Such animals include humans, pets such as dogs and cats, and veterinary animals such as cows, pigs, sheep, goats and the like.
  • One aspect of the invention relates to methods of screening for an agent that will undergo bioreduction in vivo, comprising contacting the agent with NOS and determining if NOS reduces the agent.
  • Any agent that is capable of being reduced by NOS is one that may undergo bioreduction in vivo.
  • Any screening method known in the art may be used in the present invention.
  • the contacting may occur intracellularly (e.g., in cultured cells which naturally ore recombinantly express one or more NOS isoforms or in a test animal) or extracellularly (e.g., using isolated natural or recombinant NOS protein).
  • Agents that may be screened include proteins, polypeptides, peptides, antibodies, nucleic acids, organic molecules, natural products, chemical libraries, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Disclosed is a method for preventing, treating or ameliorating hyperproliferative disorders and other conditions characterized by elevated levels of nitric oxide synthase, comprising administering a bioreducible prodrug.

Description

NITRIC OXIDE SYNTHASE AS A MARKER FOR TREATMENT WITH BIOREDUCIBLE PRODRUGS
BACKGROUND OF THE INVENTION
Field of the Invention
[0001] The present invention provides a method for preventing, treating or ameliorating hyperproliferative disorders and other conditions characterized by elevated levels of nitric oxide synthase, comprising administering a bioreducible prodrug.
Related Art
[0002] Nitric oxide is synthesized in the body by three different isoforms of nitric oxide synthase (NOS); endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). One or more of the NOS isoforms is present in many different cancers. (Fukumura et al, Nature Rev. 6:521 (2006)). The ability of NOS to catalyze the reduction of foreign compounds, such as therapeutic agents, has been shown previously. (Garner et al, Cancer Res. 59:1929 (1999)).
SUMMARY OF THE INVENTION
[0003] The object of the present invention is to utilize the ability of NOS to catalyze the reduction of bioreducible prodrugs at the site of a hyperproliferative disorder or other conditions including non-malignant inflammatory disorders. A further object is to identify individuals characterized by elevated levels of NOS in a target location, tissue, or organ who may derive an increased benefit from the administration of bioreducible prodrugs.
[0004] The present invention relates to methods for preventing, treating or ameliorating a hyperproliferative disorder or other condition in an animal, comprising first determining the level of nitric oxide synthase (NOS) in the animal and then administering a bioreducible prodrug to the animal if the animal has an elevated level of NOS, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
[0005] The invention also relates to methods for treating an animal having a hyperproliferative disorder or other condition characterized by an elevated level of NOS, comprising administering to the animal a bioreducible prodrug, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
[0006] The invention further relates to methods for selecting an animal to be treated with a bioreducible prodrug, comprising determining the level of NOS in the animal, and selecting an animal having an elevated level of NOS for treatment with a bioreducible prodrug.
[0007] In one embodiment of the invention, the bioreducible prodrug is administered with another therapeutic agent or treatment.
[0008] The invention also relates to methods of screening for a compound that will undergo bioreduction in vivo, comprising contacting the compound with NOS and determining if NOS reduces the compound.
DETAILED DESCRIPTION OF THE INVENTION
[0009] The present invention relates to methods for preventing, treating or ameliorating a hyperproliferative disorder or other condition in an animal, comprising first determining the level of nitric oxide synthase (NOS) in the animal and then administering a bioreducible prodrug to the animal if the animal has an elevated level of NOS, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
[0010] The invention also relates to methods for treating an animal having a hyperproliferative disorder or other condition characterized by an elevated level of NOS, comprising administering to the animal a bioreducible prodrug, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
[0011] The invention further relates to methods for selecting an animal to be treated with a bioreducible prodrug, comprising determining the level of NOS in the animal, and selecting an animal having an elevated level of NOS for treatment with a bioreducible prodrug.
[0012] In one embodiment of the invention, the NOS is iNOS, eNOS, or nNOS. The nucleotide and amino acid sequences of the NOS isoforms are well known in the art and can be found in a database such as GenBank (accession numbers NM000603 (eNOS), NM000620 (nNOS), 000625 and 153292 (iNOS). NOS-specific antibodies are also well known in the art and are available, for example, from GeneTex (San Antonio, Texas) and Novus Biologicals (Littleton, Colorado).
[0013] The determination of NOS can be carried out by any method known in the art, and includes measuring NOS activity as well as the level of NOS.
[0014] In one embodiment, the determination is carried out in vivo. For example, imaging techniques (e.g., magnetic resonance imaging, computed axial tomography, single photon emission computed tomography, positron emission tomography, X-ray, ultrasound) may be used in combination with detectably labeled antibodies, ligands, enzymes substrates, etc., to determine the level or activity of NOS. Examples of detectable labels include, but are not limited to, radioactive, fluorescent, paramagnetic, and superparamagnetic labels. Any suitable in vivo imaging techniques known in the art may be used in the present invention. Examples of imaging techniques are disclosed in U.S. Patent Nos. 6,737,247, 6,676,926, 6,083,486, 5,989,520, 5,958,371, 5,780,010, 5,690,907, 5,620,675, 5,525,338, 5,482,698, and 5,223,242.
[0015] In another embodiment, the detection is carried out in vitro, e.g., using a biological sample. A biological sample may be any tissue or fluid from a subject that is suitable for detecting the level or activity of NOS. Examples of useful samples include, but are not limited to, biopsied tissues (e.g., solid tumor, lymph gland, inflamed tissue, tissue involved in a condition), blood - A -
{e.g., cerebral blood), plasma, serous fluid, cerebrospinal fluid, saliva, urine, and lymph.
[0016] NOS activity can be measured using techniques known in the art, e.g., detection of labeled NOS substrate or product. Additionally, one can measure proteins that have been modified by the products of NOS activity, e.g., cittrullinated proteins, in order to detect NOS activity. (Biozzaro et al, CHn. Chem. 47:1089 (2001)).
[0017] The levels of NOS may be measured at the protein or RNA {e.g., mRNA) levels.
[0018] Any method known in the art for quantitating specific proteins in a biological sample may be used in the present methods. Examples include, but are not limited to, immunoassays, Western blotting, immunoprecipitation, immunohistochemistry, gel electrophoresis, capillary electrophoresis, column chromatography, ligand binding assays, and enzymatic assays. See, e.g., Harlow et al, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, (1988); Ausubel et al, Current Protocols in Molecular Biology, John Wiley & Sons, New York 3rd Edition, (1995).
[0019] In a preferred embodiment, proteins are quantitated using immunoassays. Such assays include homogenous or heterogenous binding assays. These assays may be in the form of non-competitive binding assays or assays in which analytes compete with ligands. Any method known to one of ordinary skill in the art that detects binding between an analyte {e.g., a protein of interest) and a reagent may be used in the present invention. Assays for use in the present invention are preferably simple and inexpensive methods, and may also involve high throughput methods, capable of screening large numbers of individual samples in a rapid fashion. This includes, for example, methods that use microbeads or plates having multiple wells.
[0020] Any homogeneous assay well known in the art can be used in the present invention to determine the level of specific proteins. For example, radioassays, fluorescence polarization assays, time-resolved fluorescence assays, biotin-avidin assays, enzyme-linked assays, and electrochemiluminescent assays may all be used. Where the reagent is labeled, the assay may be a non-competitive binding assay in which the ability of analytes (protein of interest) to bind the reagent is determined. Where analytes are labeled, the assay may be a competitive binding assay where the ability of a protein to displace reagent-bound analyte is determined.
[0021] A homogeneous binding assay used in the present invention, and which uses fluorescence to detect the analyte/protein binding, may employ fluorescently labeled analyte or fiuorescently labeled reagent. Any method known to one of ordinary skill in the art can be used to link the fluorophore to a polypeptide or reagent of interest. See, e.g., Richard P. Haugland, Molecular Probes: Handbook of Fluorescent Probes and Research Chemicals 1992-1994 (5th ed., 1994, Molecular Probes, Inc.).
[0022] One embodiment of the invention relates to a non-competitive fluorescent assay. Such an assay employs reagent covalently attached to a fluorophore. Free reagent has a higher fluorescence intensity than reagent bound to an analyte (Hwang et al, Biochemistry 31:11536 (1992)). Once the analyte/reagent complex is formed, it rotates and tumbles more slowly and has less fluorescence intensity ("Introduction to Fluorescence Polarization," Pan Vera Corp., Madison, WI, June 17, 1996; Perrin, J. Phys. Rad. 7:390 (1926)). Hence, when the analyte and reagent bind, the fluorescence intensity of the labeled reagent decreases proportional to binding.
[0023] Competitive homogenous fluorescence assays can also be used in the present invention. Competitive assays are well known in the art and any method can be used in the present invention. For example, U.S. Patent No. 6,511,815 describes an assay for quantitating competitive binding of test compounds to proteins utilizing fluorescence polarization.
[0024] Alternative homogeneous assays for use in the invention include those described in U.S. Patent No. 6,492,128; U.S. Patent No. 6,406,913; U.S. Patent No. 6,326,459; U.S. Patent No. 5,928,862; U.S. Patent No. 5,876,946; U.S. Patent No. 5,612,221; and U.S. Patent No. 5,556,758.
[0025] The skilled artisan will recognize that radiolabels can also be used in homogenous competitive binding assays. In such assays, reagent {e.g., antibody) is radiolabeled and allowed to equilibrate with protein in solution. Then, a sample is introduced into the solution and allowed to equilibrate. Antibody (bound either to radiolabeled antigen or to the sample) is then separated from unbound antigen and unbound sample. This can be detected by a scintillation counter, photoradiography, or other techniques well known in the art. Detection and/or quantitation of a protein of interest through binding to a reagent may also be accomplished using heterogeneous assays. Heterogeneous assays for use in the present invention may be based on radioassays, fluorescence polarization assays, time-resolved fluorescence assays, biotin-avidin assays, enzyme-linked assays, and electrochemiluminescent assays. In heterogenous assays, a first component is attached to a solid phase such as a bead or other solid substrate and one or more additional components are in solution. For example, antigen may be bound to a bead or other solid substrate and labeled antibody is introduced as a solution. The label may be a radiolabel, chemiluminescent label, fluorescent label, chromogenic label, or other label well known in the art. After the mixture equilibrates and the antigen/antibody complexes form, a solution of sample is introduced and allowed to equilibrate to form antigen/antibody complexes. The beads or solid components are separated from the solutions. This can be done, for example, using magnetic fields where the beads are magnetic. Alternatively, where antigen is bound to a solid substrate, separation can occur simply by rinsing the solid substrate with water or a buffer to remove any solution containing unbound labeled antibody or unbound sample. The extent to which antigen remains associated with the detectably labeled antibody is measured. Such measurements can be performed while antigen remains bound to the bead or solid substrate. Alternatively, such measurements can be made after antigen has been removed from the bead or solid substrate. In such competitive binding assays, decreases in signal associated with the detectable label are proportionally related to increases in the ability of antibody in samples to bind antigen by displacing antibody. [0027] The skilled artisan recognizes that the antibody may also be the component bound to the beads or solid substrate. In such assays, labeled antigen is introduced as a solution and allowed to equilibrate forming the antigen/antibody complexes. The label may be a radiolabel, chemiluminescent label, fluorescent label, chromogenic label, or other label well known in the art. Then, a sample is added as a solution. If a sample displaces antibody, then the antigen will fall back into solution and not be bound to the bead or solid substrate through antibody. As described above, the beads or solid substrate are removed from the solution but the solution is retained to measure the extent of the detectable label. Here, increases in signal associated with the detectable label are proportional to the ability of a sample to bind antigen.
[0028] Solid phase supports for use in the present invention include any insoluble support known in the art that is capable of binding antigen or antibody. This includes, for example, glass and natural and synthetic polymers such as agaroses, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, and magnetite. The support material may have virtually any possible structural configuration so long as the support-bound molecule is capable of binding to an antibody or antigen. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod, or hemispherical, such as the well of a microtitre plate. Alternatively, the surface may be flat such as a sheet, test strip, etc. Those skilled in the art will note many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.
[0029] An example of a heterogeneous assay for use in the present invention is the radioassay. A good description of a radioassay may be found in Laboratory Techniques and Biochemistry in Molecular Biology, by Work, T. S., et al., North Holland Publishing Company, NY (1978), with particular reference to the chapter entitled "An Introduction to Radioimmune Assay and Related Techniques" by Chard, T. Examples of other competitive radioassays are given in U.S. Patent Nos. 3,937,799; 4,102,455; 4,333,918 and 6,071,705. Inherent in such assays is the need to separate the bead or substrate bound component from the solution component. Various ways of accomplishing the required separation have been developed, including those exemplified in U.S. Pat. Nos. 3,505,019; 3,555,143; 3,646,346; 3,720,760; and 3,793,445. The skilled artisan will recognize that separation can include filtering, centrifuging, washing, or draining the solid substrate to insure efficient separation of the substrate bound and solution phases.
[0030] The radioactive isotope or radiolabel can be detected by such means as the use of a gamma counter or a scintillation counter or by autoradiography.
Isotopes which are particularly useful for the purpose of the present invention a <,«re_•: 3U H, 123T 1, 125T 1, 13 1T 1, 35C S, 3 1 PD, 1V C1, 1 1 1T In, 97ϋ Ru, 6V C1u, 6V GOa, 68/ G-a, 72 AA os, 89 ZVr a „nd A
201Tl. Those of ordinary skill in the art will know of other suitable labels, which may be employed in accordance with the present invention. The binding of these labels to antigen or antibody can be accomplished using standard techniques commonly known to those of ordinary skill in the art. Typical techniques are described by Kennedy, et al. {Clin. Chim. Acta 70:1 (1976)), and Schurs et al. (Clin. Chim. Acta 57:1 (1977)). In a particular embodiment, one or more hydrogen and/or carbon atoms of an antigen or antibody are replaced by 3H and 14C, by methods well known in the art.
[0031] Alternative labels for use in the heterogeneous assays of the present invention include chemiluminescent labels, such as those described in U.S. Patent No. 4,380,580; and enzyme substrate labels, such as those assays described in U.S. Patent No. 4,492,751. For example, a fluorescent label may be used.
[0032] An alternative heterogeneous assay for use in the present invention is a biotin/avidin based assay. For examples of the various ways in which this assay can be performed in the present invention, see, e.g., Blake et al. Anal. Biochem. 272:123 (1999); Cho et al. Anal. Sci. 75:343 (1999); Choi et al. Bull. Korean Chem. Soc. 22:417 (2001); U.S. Patent Nos. 6,096,508; 4,863,876;. 4,228,237. In the present invention, avidin may be labeled with any label. Preferably, avidin is fluorescently labeled or conjugated to an enzyme. Any detectably labeled enzyme can be used in the present invention. Specific examples include, but are not limited to, horseradish peroxidase, alkaline phosphatase, β-galactosidase, and glucose oxidase.
[0033] To measure the level of a specific RNA, any assay known in the art for the detection of nucleic acids may be used in the invention. Examples include, but are not limited to, reverse transcription and amplification assays, hybridization assays, Northern blotting, dot blotting, in situ hybridization, gel electrophoresis, capillary electrophoresis, and column chromatography. See, e.g., Ausubel et ah, Current Protocols in Molecular Biology, John Wiley & Sons, New York 3rd Edition, (1995); Sambrook et al, Molecular Cloning—A Laboratory Manual, 2nd ed., Vol. 1-3 (1989). The assay can detect the RNA itself or a cDNA produced by reverse transcription of the RNA. Assays can be performed directly on biological samples or on nucleic acids isolated from the samples.
[0034] Nucleic acid detection assays can be predicated on any characteristic of the nucleic acid molecule, such as its size, sequence and, if DNA, susceptibility to digestion by restriction endonucleases. The sensitivity of such assays may be increased by altering the manner in which detection is reported or signaled to the observer. Thus, for example, assay sensitivity can be increased through the use of detectably labeled reagents. A wide variety of such labels have been used for this purpose. Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels. U.S. Patent No. 4,581,333 describes the use of enzyme labels to increase sensitivity in a detection assay. Radioisotopic labels are disclosed in U.S. Patent Nos. 4,358,535 and 4,446,237. Fluorescent labels (EP 144,914), chemical labels (U.S. Patent Nos. 4,582,789 and 4,563,417), and modified bases (EP 119,448) have also been used in an effort to improve the efficiency with which detection can be observed.
[0035] Many current methods of identification and quantification of nucleic acids rely on amplification and/or hybridization techniques. While many of these involve a separation step, several that allow detection of nucleic acids without separating the labeled primer or probe from the reaction have been developed. These methods have numerous advantages compared to gel-based methods, such as gel electrophoresis and dot-blot analysis, for example, and require less time, permit high throughput, prevent carryover contamination and permit quantification through real time detection. Most of these current methods are solution-based fluorescence methods that utilize two chromophores. These methods utilize the phenomena of fluorescence resonance energy transfer (FRET) in which the energy from an excited fluorescent moiety is transferred to an acceptor molecule when the two molecules are in close proximity to each other. This transfer prevents the excited fluorescent moiety from releasing the energy in the form of a photon of light thus quenching the fluorescence of the fluorescent moiety. When the acceptor molecule is not sufficiently close, the transfer does not occur and the excited fluorescent moiety may then fluoresce. The major disadvantages of systems based on FRET are the cost of requiring the presence of two modified nucleotides in a detection oligonucleotide and the possibility that the efficiency of the quenching may not be sufficient to provide a usable difference in signal under a given set of assay conditions. Other known methods which permit detection without separation are: luminescence resonance energy transfer (LRET) where energy transfer occurs between sensitized lanthanide metals and acceptor dyes (Selvin et al., Proc. Natl. Acad. Sd. USA 91: 10024 (1994)); and color change from excimer-forming dyes where two adjacent pyrenes can form an excimer (fluorescent dimer) in the presence of the complementary target, resulting in a detectably shifted fluorescence peak (Paris et al, Nucleic Acids Re. 25:3789 (1998)). Various methods are known to those skilled in the art for the amplification of nucleic acid molecules. In general, a nucleic acid target molecule is used as a template for extension of an oligonucleotide primer in a reaction catalyzed by polymerase. For example, Panet et al. (J. Biol. Chem. 249:5213 (1974)) demonstrate the replication of deoxyribopolynucleotide templates bound to cellulose. Kleppe et al. (J. MoI. Biol. 56:341 (1971)) disclose the use of double- and single-stranded DNA molecules as templates for the synthesis of complementary DNA.
[0037] Other known nucleic acid amplification procedures include transcription based amplification systems (Kwoh et al, Proc. Natl. Acad. ScL USA 55:1173 (1989); WO 88/10315). Schemes based on ligation ("Ligation Chain Reaction") of two or more oligonucleotides in the presence of a target nucleic acid having a sequence complementary to the sequence of the product of the ligation reaction have also been used (Wu et al, Genomics 4:560 (1989)). Other suitable methods for amplifying nucleic acid based on ligation of two oligonucleotides after annealing to complementary nucleic acids are known in the art.
[0038] WO 89/06700 discloses a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single- stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence. This scheme is not cyclic, i.e., new templates are not produced from the resultant RNA transcripts.
[0039] EP 329,822 discloses an alternative amplification procedure termed
Nucleic Acid Sequence-Based Amplification (NASBA). NASBA is a nucleic acid amplification process comprising cyclically synthesizing single-stranded RNA ("ssRNA"), ssDNA, and double-stranded DNA (dsDNA). The ssRNA is a first template for a first primer oligonucleotide, which is elongated by reverse transcriptase (RNA dependent DNA polymerase). The RNA is then removed from the resulting DNA:RNA duplex by the action of ribonuclease H (RNase H, an RNase specific for RNA in a duplex with either DNA or RNA). The resultant ssDNA is a second template for a second primer. The second primer includes the sequences of an RNA polymerase promoter (exemplified by T7 RNA polymerase) located 5' to the primer sequence which hybridizes to the ssDNA template. This primer is then extended by a DNA polymerase (exemplified by the large "Klenow" fragment of E. coli DNA polymerase I), resulting in the production of a dsDNA molecule, having a sequence identical to that of the portion of the original RNA located between the primers and having, additionally, at one end, a promoter sequence. This promoter sequence can be used by the appropriate RNA polymerase to make many RNA copies of the DNA. These copies can then re-enter the cycle leading to very swift amplification. With the proper choice of enzymes, this amplification can be done isothermally without the addition of enzymes at each cycle. Because of the cyclical nature of this process, the starting sequence can be chosen to be in the form of either DNA or RNA.
[0040] U.S. Patent No. 5,455,166 and EP 684 315 disclose a method called
Strand Displacement Amplification (SDA). This method is performed at a single temperature and uses a combination of a polymerase, an endonuclease and a modified nucleoside triphosphate to amplify single-stranded fragments of the target DNA sequence. A target sequence is fragmented, made single- stranded and hybridized to a primer that contains a recognition site for an endonuclease. The primer:target complex is then extended with a polymerase enzyme using a mixture of nucleoside triphosphates, one of which is modified. The result is a duplex molecule containing the original target sequence and an endonuclease recognition sequence. One of the strands making up the recognition sequence is derived from the primer and the other is a result of the extension reaction. Since the extension reaction is performed using a modified nucleotide, one strand of the recognition site is modified and resistant to endonuclease digestion. The resultant duplex molecule is then contacted with an endonuclease which cleaves the unmodified strand causing a nick. The nicked strand is extended by a polymerase enzyme lacking 5'-3' exonuclease activity resulting in the displacement of the nicked strand and the production of a new duplex molecule. The new duplex molecule can then go through multiple rounds of nicking and extending to produce multiple copies of the target sequence.
[0041] The most widely used method of nucleic acid amplification is the polymerase chain reaction (PCR). A detailed description of PCR is provided in the following references: Mullis et al, Cold Spring Harbor Symp. Quant. Biol. 57:263 (1986); EP 50,424; EP 84,796; EP 258,017; EP 237,362; EP 201,184; U.S. Patent Nos. 4,683,202; 4,582,788; 4,683,194. In its simplest form, PCR involves the amplification of a target double-stranded nucleic acid sequence. The double-stranded sequence is denatured and an oligonucleotide primer is annealed to each of the resultant single strands. The sequences of the primers are selected so that they will hybridize in positions flanking the portion of the double-stranded nucleic acid sequence to be amplified. The oligonucleotides are extended in a reaction with a polymerase enzyme, nucleotide triphosphates and the appropriate cofactors resulting in the formation of two double-stranded molecules each containing the target sequence. Each subsequent round of denaturation, annealing and extension reactions results in a doubling of the number of copies of the target sequence as extension products from earlier rounds serve as templates for subsequent replication steps. Thus, PCR provides a method for selectively increasing the concentration of a nucleic acid molecule having a particular sequence even when that molecule has not been previously purified and is present only in a single copy in a particular sample. The method can be used to amplify either single- or double-stranded nucleic acids. The essence of the method involves the use of two oligonucleotides to serve as primers for the template dependent, polymerase-mediated replication of the desired nucleic acid molecule.
[0042] Methods for detecting nucleic acid amplification products commonly use gel electrophoresis, which separates the amplification product from the primers on the basis of a size differential. Alternatively, amplification products can be detected by immobilization of the product, which allows one to wash away free primer (for example, in dot-blot analysis), and hybridization of specific probes by traditional solid phase hybridization methods. Several methods for monitoring the amplification process without prior separation of primer or probes have been described. All of these methods are based on FRET.
[0043] One method, described in U.S. Patent No. 5,348,853 and Wang et al,
Anal. Chem. 67:1191 (1995), uses an energy transfer system in which energy transfer occurs between two fiuorophores on the probe. In this method, detection of the amplified molecule takes place in the amplification reaction vessel, without the need for a separation step. The Wang et al. method uses an "energy-sink" oligonucleotide complementary to the reverse primer. The "energy-sink" and reverse primer oligonucleotides have donor and acceptor labels, respectively. Prior to amplification, the labeled oligonucleotides form a primer duplex in which energy transfer occurs freely. Then, asymmetric PCR is carried out to its late-log phase before one of the target strands is significantly overproduced.
[0044] A second method for detection of an amplification product without prior separation of primer and product is the 5' nuclease PCR assay (also referred to as the TAQMAN® assay) (Holland et al, Proc. Natl. Acad. ScL USA 88:7276 (1991); Lee et al, Nucleic Acids Res. 27:3761 (1993)). This assay detects the accumulation of a specific PCR product by hybridization and cleavage of a doubly labeled fiuorogenic probe (the TAQMAN® probe) during the amplification reaction. The fiuorogenic probe consists of an oligonucleotide labeled with both a fluorescent reporter dye and a quencher dye. During PCR, this probe is cleaved by the 5'-exonuclease activity of DNA polymerase if it hybridizes to the segment being amplified. Cleavage of the probe generates an increase in the fluorescence intensity of the reporter dye. hi the TAQMAN® assay, the donor and quencher are preferably located on the 3'- and 5'-ends of the probe, because the requirement that 5'-3' hydrolysis be performed between the fluorophore and quencher may be met only when these two moieties are not too close to each other (Lyamichev et al., Science 250:778 (1993)).
[0045] Another method of detecting amplification products (namely
MOLECULAR BEACONS) relies on the use of energy transfer using a "beacon probe" described by Tyagi and Kramer (Nature Biotech. 14:303 (1996)). This method employs oligonucleotide hybridization probes that can form hairpin structures. On one end of the hybridization probe (either the 5'- or 3 '-end), there is a donor fluorophore, and on the other end, an acceptor moiety. In the case of the Tyagi and Kramer method, the acceptor moiety is a quencher, that is, the acceptor absorbs energy released by the donor, but then does not itself fluoresce. Thus, when the beacon is in the open conformation, the fluorescence of the donor fluorophore is detectable, whereas when the beacon is in hairpin (closed) conformation, the fluorescence of the donor fluorophore is quenched. When employed in PCR, the beacon probe, which hybridizes to one of the strands of the PCR product, is in "open conformation," and fluorescence is detected, while those that remain unhybridized will not fluoresce. As a result, the amount of fluorescence will increase as the amount of PCR product increases, and thus may be used as a measure of the progress of the PCR.
[0046] Another method of detecting amplification products which relies on the use of energy transfer is the SUNRISE PRIMER method of Nazarenko et al. {Nucleic Acids Res. 25:2516 (1997); U.S. Patent No. 5,866,336). SUNRISE PRIMERS are based on FRET and other mechanisms of non- fluorescent quenching. SUNRISE PRIMERS consist of a single-stranded primer with a hairpin structure at its 5'-end. The hairpin stem is labeled with a donor/quencher pair. The signal is generated upon the unfolding and replication of the hairpin sequence by polymerase.
[0047] Another method of detecting amplification products is real time quantitative PCR (Xu et al, J. Biol. Chem. 278:26929 (2003); Yeon et al, Hepatology 38:703 (2003)). In this technique a fluorescent reporter (e.g., an intercalating dye such as SYBR Green (Molecular Probes)) is used to monitor the PCR reaction as it occurs. The fluorescence of the reporter molecule increases as products accumulate with each successive round of amplification. The point at which the fluorescence rises appreciably above baseline can be used to determine the starting amount of template in a sample.
[0048] The bioreducible prodrug can be any bioreducible prodrug that is known to be effective for the treatment, prevention, or amelioration of a hyperproliferative disease or other condition. The bioreducible prodrug can also be a compound that have not previously been shown to be effective but may be effective in the presence of elevated NOS. hi one embodiment of the invention, the bioreducible prodrug is reduced under hypoxic conditions. In another embodiment, the bioreducible prodrug is an N-oxide prodrug. Examples of N-oxide prodrugs include, without limitation, AQ4N, misonidazole, tirapazamine, chloroambucil N-oside, mechlorethamine N- oxide, 1 -nitro-9-[N,N-(dimethylamino)propyl-amino]acridine, doxorubicin, menadione, methotrexate N-oxide, camptothecin N-oxide, N-oxides of estrogen receptor modulators (e.g., tamoxifen), N-oxides of Vinca alkaloids (e.g., vincristine, vinblastine, vinorelbine), and Mannich base N-oxides of agents having an acidic NH group (e.g., cytarabine, carmustine, cyclophosphamide, dacarbazine, fluorouracil, floxuridine, lomustine, melphalan, mercaptopurine, methotrexate, and thioguanine). Further examples of N-oxide prodrugs are described in U.S. Patent No. 5,132,327, U.S. Published Application No. 2005/0222190, WO 2006/031719, and WO 2006/096458.
[0049] The term "elevated level of NOS," as used herein, refers to a level of
NOS activity, NOS protein, or NOS RNA that is at least about 10% higher than the normal level of NOS activity, protein, or RNA. hi one embodiment, the level of NOS is at least about 20, 30, 430, 50, 60, 70, 80, 90, or 100% higher than the normal level. The "normal" level of NOS can be either the level of NOS in the adjacent tissue around the tissue involved in the disorder (e.g., the hyperproliferative tissue) or the standard level or activity of NOS in healthy subjects. The standard level or activity of NOS in healthy subjects may represent the average of a suitable number of members of the general population, typically at least 10, more preferably 50, and still more preferably more than 100-500 members of the general population. In one embodiment, the standard level in healthy subjects is determined in an age-matched fashion, e.g., the subject on whom the methods of the invention are being practiced is compared to healthy subjects of the same age.
[0050] In one embodiment of the invention, the hyperproliferative disorder is cancer. The cancer may be, but is not limited to, brain cancer, breast cancer, gastrointestinal cancers comprising colon, colorectal, esophageal, gastric, hepatocellular, pancreatic and rectal cancers, genitourinary cancers comprising bladder, prostate, renal cell and testicular cancers, gynecologic cancers comprising cervical, endometrial, ovarian and uterine cancers, head and neck cancer, leukemias comprising acute lymphoblastic, acute myelogenous, acute promyelocyte, chronic lymphocytic, chronic myelogenous and hairy cell leukemias, non-small-cell and small-cell lung cancers, Hodgkin's and non- Hodgkin's lymphomas, melanoma, multiple myeloma and sarcoma.
[0051] In one embodiment, the cancer, e.g., the solid tumor, is characterized by hypoxia as well as an elevated level of NOS.
[0052] The term "hyperproliferative disease," as used herein, refers to any condition in which a localized population of proliferating cells in an animal is not governed by the usual limitations of normal growth. Examples of hyperproliferative disorders include tumors, neoplasms, lymphomas and the like, as well as non-cancerous hyperproliferative conditions such as psoriasis. A neoplasm is said to be benign if it does not undergo invasion or metastasis and malignant if it does either of these. A "metastatic" cell means that the cell can invade and destroy neighboring body structures.
[0053] It is also expected that the administration of a bioreducible prodrug to animals having an elevated level of NOS will be additive with or synergize with other therapies, hi this embodiment, the invention provides a method of treating cancer comprising administering a bioreducible prodrug to an animal in need thereof and co-administering a further therapeutic agent or treatment. In one embodiment of the invention, the methods further comprise administering a chemotherapeutic agent or radiation treatment.
[0054] Chemotherapeutic agents useful in the invention include actinomycin
D, irinotecan, vincristine, vinblastine, methotrexate, azathioprine, fluorouracil, doxorubicin, mitomycin, taxanes such as docetaxel, paclitaxel, and abraxane, cyclophosphamide, capecitabine, epirubicin, cisplatin, gemcitabine, mitoxantrone, leucovorin, vinorelbine, trastuzumab, etoposide, carboplatin, estramustine, prednisone, interferon alpha-2a, interleukin-2, bleomycin, ifosfamide, mesna, altretamine, topotecan, cytarabine, methylprednisolone, dexamethasone, daunorubicin, intrathecal methotrexate, mercaptopurine, thioguanine, fludarabine, gemtuzumab, idarubicin, mitoxantrone, tretinoin, alemtuzumab, chlorambucil, cladribine, interferon α2b, hydroxyurea, imatinib, epirubicin, dacarbazine, procarbazine, mechlorethamine, rituximab, denileukin diftitox, trimethoprim/sulfamethoxazole, allopurinol, carmustine, tamoxifen, filgrastim, temozolomide, melphalan, vinorelbine, SN-38, azacitidine (5- azacytidine, 5AzaC), thalidomide, mitomycin, picoplatin, oblimersen sodium, bleomycin sulfate, busulfan, romidepsin, clofarabine, and Rexin-G.
[0055] Antibodies useful as therapeutic agents include, but are not limited to, monoclonal antibodies, synthetic antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, single-chain Fvs (scFv) (including bi-specific scFvs), single chain antibodies, Fab fragments, F(ab') fragments, disulfide-linked Fvs (sdFv), and epitope-binding fragments of any of the above. In particular, antibodies include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds to an antigen. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgG1, IgG2, IgG3, IgG4, IgAi and IgA2) or subclass of immunoglobulin molecule.
[0056] In certain embodiments, the antibodies comprise four polypeptide chains—two light chains and two heavy chains, hi other embodiments, the antibodies of the invention comprise a VH chain and/or a VL chain. In yet another embodiments, the antibodies are epitope-binding fragments.
[0057] The antibodies may be from any animal origin including birds and mammals (e.g., human, murine, donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken). In one embodiment, the antibodies are human or humanized monoclonal antibodies. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from mice or other animal that express antibodies from human genes.
[0058] The antibodies may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may immunospecifically bind to different epitopes of a polypeptide or may immunospecifically bind to both a polypeptide as well a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., International Publication Nos. WO 93/17715, WO 92/08802, WO 91/00360, and WO 92/05793; Tutt, et al, 1991, J. Immunol. 147:60-69; U.S. Pat. Nos. 4,474,893, 4,714,681, 4,925,648, 5,573,920, and 5,601,819; and Kostelny et al, 1992, J. Immunol. 148:1547- 1553.
[0059] The antibodies include derivatives of the antibodies known to those of skill in the art. Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding an antibody to be used with the methods of the invention, including, for example, site- directed mutagenesis and PCR-mediated mutagenesis which result in amino acid substitutions. Preferably, the derivatives include less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the original molecule. In a preferred embodiment, the derivatives have conservative amino acid substitutions made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
[0060] The antibodies include derivatives that are modified, i.e., by the covalent attachment of any type of molecule to the antibody. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, synthesis in the presence of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids.
[0061] In certain embodiments, one or more framework regions, preferably, all of the framework regions, of an antibody to be used in the methods of the invention or fragment thereof are human. In certain other embodiments of the invention, the fragment region of an antibody of the invention is humanized. In certain embodiments, the antibody to be used with the methods of the invention is a synthetic antibody, a monoclonal antibody, an intrabody, a chimeric antibody, a human antibody, a humanized chimeric antibody, a humanized antibody, a glycosylated antibody, a multispecific antibody, a human antibody, a single-chain antibody, or a bispecific antibody.
[0062] In certain embodiments, the antibodies have half-lives in a mammal, preferably a human, of greater than 12 hours, greater than 1 day, greater than 3 days, greater than 6 days, greater than 10 days, greater than 15 days, greater than 20 days, greater than 25 days, greater than 30 days, greater than 35 days, greater than 40 days, greater than 45 days, greater than 2 months, greater than 3 months, greater than 4 months, or greater than 5 months. Antibodies or antigen-binding fragments thereof having increased in vivo half-lives can be generated by techniques known to those of skill in the art. For example, antibodies or antigen-binding fragments thereof with increased in vivo half- lives can be generated by modifying (e.g., substituting, deleting or adding) amino acid residues identified as involved in the interaction between the Fc domain and the FcRn receptor (see, e.g., PCT Publication No. WO 97/34631, U.S. patent application Ser. No. 10/020,354, entitled "Molecules with Extended Half-Lives, Compositions and Uses Thereof, filed Dec. 12, 2001, by Johnson et al, and U.S. patent application Ser. No. 11/263,230, filed Oct. 31, 2005, entitled "Methods of Preventing and Treating RSV Infections and Related Conditions," by Losonsky, which are incorporated herein by reference in their entireties). Such antibodies or antigen-binding fragments thereof can be tested for binding activity to antigens as well as for in vivo efficacy using methods known to those skilled in the art.
[0063] Further, antibodies with increased in vivo half-lives can be generated by attaching to said antibodies or antibody fragments polymer molecules such as high molecular weight polyethyleneglycol (PEG). PEG can be attached to said antibodies with or without a multifunctional linker either through site- specific conjugation of the PEG to the N- or C-terminus of said antibodies or via epsilon-amino groups present on lysine residues. Linear or branched polymer derivatization that results in minimal loss of biological activity will be used. The degree of conjugation will be closely monitored by SDS-PAGE and mass spectrometry to ensure proper conjugation of PEG molecules to the antibodies. Unreacted PEG can be separated from antibody-PEG conjugates by, e.g., size exclusion or ion-exchange chromatography. PEG-derivatized antibodies or antigen-binding fragments thereof can be tested for binding activity to antigens as well as for in vivo efficacy using methods known to those skilled in the art, for example, by immunoassays described herein.
[0064] The antibodies can be single-chain antibodies. The design and construction of a single-chain antibody is described in Marasco et al., 1993, Proc Natl Acad Sci 90:7889-7893, which is incorporated herein by reference in its entirety.
[0065] In certain embodiments, the antibodies bind to an intracellular epitope, i.e., are intrabodies. An intrabody comprises at least a portion of an antibody that is capable of immunospecifically binding an antigen and preferably does not contain sequences coding for its secretion. Such antibodies will bind its antigen intracellularly. In one embodiment, the intrabody comprises a single- chain Fv ("sFv").
[0066] In a further embodiment, the intrabody does not encode an operable secretory sequence and thus remains within the cell (see generally Marasco, W A, 1998, "Intrabodies: Basic Research and Clinical Gene Therapy Applications" Springer: New York).
[0067] sFv are antibody fragments comprising the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer- Verlag, New York, pp. 269-315 (1994).
[0068] The antibodies may be conjugated or fused to one or more moieties, including but not limited to, peptides, polypeptides, proteins, fusion proteins, nucleic acid molecules, small molecules, mimetic agents, synthetic drugs, inorganic molecules, and organic molecules.
[0069] The antibodies may also be recombinantly fused or chemically conjugated (including both covalent and non-covalent conjugations) to a heterologous protein or polypeptide (or fragment thereof, preferably to a polypeptide of at least 10, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90 or at least 100 amino acids) to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. For example, antibodies may be used to target heterologous polypeptides to particular cell types, either in vitro or in vivo, by fusing or conjugating the antibodies to antibodies specific for particular cell surface receptors. Antibodies fused or conjugated to heterologous polypeptides may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., International publication No. WO 93/21232; European Patent No. EP 439,095; Naramura et al, 1994, Immunol. Lett. 39:91-99; U.S. Pat. No. 5,474,981; Gillies et al, 1992, Proc. Natl. Acad. Sci. USA 89:1428-1432; and Fell et al, 1991, J. Immunol. 146:2446-2452, which are incorporated by reference in their entireties.
[0070] Further, antibody fragments may be fused or conjugated to heterologous proteins, peptides or polypeptides. For example, the heterologous polypeptides may be fused or conjugated to a Fab fragment, Fd fragment, Fv fragment, F(ab)2 fragment, a Fc domain, a VH domain, a VL domain, a VH CDR, a VL CDR, or fragment thereof. Methods for fusing or conjugating polypeptides to antibody portions are well-known in the art. See, e.g., U.S. Pat. Nos. 5,336,603, 5,622,929, 5,359,046, 5,349,053, 5,447,851, and 5,112,946; European Patent Nos. EP 307,434 and EP 367,166; International publication Nos. WO 96/04388 and WO 91/06570; Ashkenazi et al, 1991, Proc. Natl. Acad. Sci. USA 88: 10535-10539; Zheng et al, 1995, J. Immunol. 154:5590-5600; and ViI et al, 1992, Proc. Natl. Acad. Sci. USA 89:11337-11341, (said references incorporated by reference in their entireties). See also PCT Publication No. WO 97/34631, U.S. patent application Ser. No. 10/020,354, entitled "Molecules with Extended Half-Lives, Compositions and Uses Thereof, filed Dec. 12, 2001, by Johnson et al, and U.S. patent application Ser. No. 11/263,230, filed Oct. 31, 2005, entitled "Methods of Preventing and Treating RSV Infections and Related Conditions," by Losonsky, the contents of which are incorporated by reference in their entireties.
[0071] In certain embodiments, a fusion protein that comprises an Fc domain of an antibody or a fragment thereof may be used, wherein the Fc domain or the Fc domain fragment comprises at least one thioether cross-link. Such a fusion protein can be any fusion protein comprising an Fc domain or an Fc domain fragment known in the art, such as human tumor necrosis factor receptor Fc fusion protein, as described in Moreland et al, 2000, New Eng. J. Med. 343:15869-93; or B7.1 Fc fusion protein, as described in Liu et al, 2005, Cancer Research l l(23):8492-8502, the contents of which are incorporated by reference in their entireties.
[0072] In some embodiments, the Fc domain may further comprise one or more amino acid substitutions (Fc variants). In some embodiments, Fc variants exhibit altered binding affinity for at least one or more Fc ligands {e.g., FcγRs, clq). Exemplary Fc variants and methods of making such are described for example, in U.S. Patent Publication Nos. 2006/0039904 and 2006/0040325, both published on Feb. 23, 2006, the contents of which are incorporated by reference in their entireties.
[0073] In certain embodiments, the fusion protein comprises a CHI , CH2, CH3 and/or CL domain of an antibody, wherein the CHI, CH2, CH3 or CL domain comprises at least one thioether cross-link.
[0074] Additional fusion proteins may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling"). DNA shuffling may be employed to alter the activities of antibodies or fragments thereof (e.g., antibodies or fragments thereof with higher affinities and lower dissociation rates). See, generally, U.S. Pat. Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., 1997, Curr. Opinion Biotechnol. 8:724-33; Harayama, 1998, Trends Biotechnol. 16(2):76-82; Hansson, et al, 1999, J. MoI. Biol. 287:265-76; and Lorenzo and Blasco, 1998, Biotechniques 24(2):308-313 (each of these patents and publications are hereby incorporated by reference in its entirety). Antibodies or fragments thereof, or the encoded antibodies or fragments thereof, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. One or more portions of a polynucleotide encoding an antibody or antibody fragment may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
[0075] In other embodiments, the antibodies can be conjugated to a diagnostic or detectable agent. Such antibodies can be useful for monitoring or prognosing the development or progression of a disorder as part of a clinical testing procedure, such as determining the efficacy of a particular therapy. Such diagnosis and detection can be accomplished by coupling the antibody to detectable substances including, but not limited to various enzymes, such as but not limited to horseradish peroxidase, alkaline phosphatase, beta- galactosidase, or acetylcholinesterase; prosthetic groups, such as but not limited to streptavidin/biotin and avidin/biotin; fluorescent materials, such as but not limited to, umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; luminescent materials, such as but not limited to, luminol; bioluminescent materials, such as but not limited to, luciferase, luciferin, and aequorin; radioactive materials, such as but not limited to iodine (131I, 125I, 123I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (115In, 113In, 112In, 111In,), and technetium (99Tc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru, 68Ge, 57Co, 65Zn, 85Sr, 32P, 153Gd, 169Yb, 51Cr, 54Mn, 75Se, 113Sn, and 117Tin; positron emitting metals using various positron emission tomographies, nonradioactive paramagnetic metal ions, and molecules that are radiolabeled or conjugated to specific radioisotopes. The present invention further encompasses antibodies that are conjugated to a therapeutic moiety. An antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha- emitters. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Therapeutic moieties include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5- fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thiotepa chlorambucil, melphalan, carmustine (BCNU) and lomustine (CCNU), cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cisdichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), Auristatin molecules (e.g., auristatin PHE, bryostatin 1, and solastatin 10; see Woyke et al, Antimicrob. Agents Chemother. 46:3802- 8 (2002), Woyke et al, Antimicrob. Agents Chemother. 45:3580-4 (2001), Mohammad et al, Anticancer Drugs 12:735-40 (2001), Wall et al, Biochem. Biophys. Res. Commun. 266:76-80 (1999), Mohammad et al, Int. J. Oncol. 15:367-72 (1999), all of which are incorporated herein by reference), hormones (e.g., glucocorticoids, progestins, androgens, and estrogens), DNA- repair enzyme inhibitors (e.g., etoposide or topotecan), kinase inhibitors (e.g., compound ST1571, imatinib mesylate (Kantaijian et ai, Clin Cancer Res. 8(7):2167-76 (2002)), cytotoxic agents (e.g., paclitaxel, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof) and those compounds disclosed in U.S. Pat. Nos. 6,245,759, 6,399,633, 6,383,790, 6,335,156, 6,271,242, 6,242,196, 6,218,410, 6,218,372, 6,057,300, 6,034,053, 5,985,877, 5,958,769, 5,925,376, 5,922,844, 5,911,995, 5,872,223, 5,863,904, 5,840,745, 5,728,868, 5,648,239, 5,587,459), farnesyl transferase inhibitors (e.g., Rl 15777, BMS- 214662, and those disclosed by, for example, U.S. Pat. Nos. 6,458,935, 6,451,812, 6,440,974, 6,436,960, 6,432,959, 6,420,387, 6,414,145, 6,410,541, 6,410,539, 6,403,581, 6,399,615, 6,387,905, 6,372,747, 6,369,034, 6,362,188, 6,342,765, 6,342,487, 6,300,501, 6,268,363, 6,265,422, 6,248,756, 6,239,140, 6,232,338, 6,228,865, 6,228,856, 6,225,322, 6,218,406, 6,211,193, 6,187,786, 6,169,096, 6,159,984, 6,143,766, 6,133,303, 6,127,366, 6,124,465, 6,124,295, 6,103,723, 6,093,737, 6,090,948, 6,080,870, 6,077,853, 6,071,935, 6,066,738, 6,063,930, 6,054,466, 6,051,582, 6,051,574, and 6,040,305), topoisomerase inhibitors (e.g., camptothecin; irinotecan; SN-38; topotecan; 9- aminocamptothecin; GG-211 (GI 147211); DX-895 If; IST-622; rubitecan; pyrazoloacridine; XR-5000; saintopin; UCE6; UCE1022; TAN-1518A; TAN- 1518B; KT6006; KT6528; ED-110; NB-506; ED-110; NB-506; and rebeccamycin); bulgarein; DNA minor groove binders such as Hoechst dye 33342 and Hoechst dye 33258; nitidine; fagaronine; epiberberine; coralyne; beta-lapachone; BC-4-1 ; bisphosphonates (e.g., alendronate, cimadronate, clodronate, tiludronate, etidronate, ibandronate, neridronate, olpandronate, risedronate, piridronate, pamidronate, zolendronate) HMG-CoA reductase inhibitors, (e.g., lovastatin, simvastatin, atorvastatin, pravastatin, fluvastatin, statin, cerivastatin, lescol, lupitor, rosuvastatin and atorvastatin) and pharmaceutically acceptable salts, solvates, clathrates, and prodrugs thereof. See, e.g., Rothenberg, M. L., Annals of Oncology 8:837-855(1997); and Moreau, P., et al., J. Med. Chem. 41 :1631-1640(1998)), antisense oligonucleotides (e.g., those disclosed in the U.S. Pat. Nos. 6,277,832, 5,998,596, 5,885,834, 5,734,033, and 5,618,709), immunomodulators (e.g., antibodies and cytokines), antibodies, and adenosine deaminase inhibitors (e.g., Fludarabine phosphate and 2-Chlorodeoxyadenosine).
[0077] Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety or drug moiety that modifies a given biological response. Therapeutic moieties or drug moieties are not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, cholera toxin, or diphtheria toxin; a protein such as tumor necrosis factor, α-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNFα., TNFβ, AIM I (see, International publication No. WO 97/33899), AIM II (see, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al, 1994, J. Immunol., 6:1567-1574), and VEGI (see, International publication No. WO 99/23105), a thrombotic agent or an anti-angiogenic agent, e.g., angiostatin, endostatin or a component of the coagulation pathway (e.g., tissue factor); or, a biological response modifier such as, for example, a lymphokine (e.g., interleukin-1 ("IL-I"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), and granulocyte colony stimulating factor ("G-CSF")), a growth factor (e.g., growth hormone ("GH")), or a coagulation agent (e.g., calcium, vitamin K, tissue factors, such as but not limited to, Hageman factor (factor XII), high- molecular-weight kininogen (HMWK), prekallikrein (PK), coagulation proteins-factors II (prothrombin), factor V, XIIa, VIII, XIIIa, XI, XIa, IX, IXa, X, phospholipid, fϊbrinopeptides A and B from the α and β chains of fibrinogen, fibrin monomer).
[0078] Moreover, an antibody can be conjugated to therapeutic moieties such as a radioactive metal ion, such as alpha-emitters such as 213Bi or macrocyclic chelators useful for conjugating radiometal ions, including but not limited to, 131In, 131LU, 131Y, 131Ho, 131Sm, to polypeptides. In certain embodiments, the macrocyclic chelator is 1, 4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraa- cetic acid (DOTA) which can be attached to the antibody via a linker molecule. Such linker molecules are commonly known in the art and described in Denardo et al, 1998, Clin Cancer Res. 4(10):2483-90; Peterson et al, 1999, Bioconjug. Chem. 10(4):553-7; and Zimmerman et al, 1999, Nucl. Med. Biol. 26(8):943-50, each incorporated by reference in their entireties.
[0079] Techniques for conjugating therapeutic moieties to antibodies are well known, see, e.g., Arnon et al, "Monoclonal Antibodies For Immunotargeting Of Drugs In Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al (eds.), pp. 243-56 (Alan R. Liss, Inc. 1985); Hellstrom et al, "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies 84: Biological And Clinical Applications, Pinchera et al (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody In Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al, 1982, Immunol. Rev. 62:119-58.
[0080] Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980, which is incorporated herein by reference in its entirety.
[0081] The therapeutic moiety or drug conjugated to an antibody or fragment thereof should be chosen to achieve the desired prophylactic or therapeutic effect(s) for a particular disorder in a subject. A clinician or other medical personnel should consider the following when deciding on which therapeutic moiety or drug to conjugate to an antibody or fragment thereof: the nature of the disease, the severity of the disease, and the condition of the subject. [0082] In further embodiments, the antibodies comprise at least one thioether cross-link, and wherein said antibodies specifically bind to one or more particular antigens.
[0083] In certain embodiments, the antibody of the present invention specifically binds to integrin αvβ3. In some embodiments, the antibody comprises the amino acid sequence of the VH and VL chains of MEDI-522 (Vitaxin™). hi other embodiments, the antibody comprises the amino acid sequence of the CDRs of the VH and VL chains of MEDI-522 (Vitaxin™).
[0084] In certain embodiments, the antibody of the present invention specifically binds to CD2. In some embodiments, the antibody comprises the amino acid sequence of the VH and VL chains of siplizumab. In other embodiments, the antibody comprises the amino acid sequence of the complementarity determining regions (CDRs) of VH and VL chains of siplizumab.
[0085] In certain embodiments, the antibody specifically binds to CD 19. hi some embodiments, the antibody comprises the amino acid sequence of the VH and VL chains of MT 103. In other embodiments, the antibody comprises the amino acid sequence of the CDRs of the VH and VL chains of MT 103.
[0086] In certain embodiments, the antibody specifically binds to an Eph receptor, hi certain embodiments, the antibody of the present invention specifically binds to EphA2. In some embodiments, the antibody comprises the amino acid sequence of the VH and VL chains of EA2 or EA5. hi other embodiments, the antibody comprises the amino acid sequence of the CDRs of the VH and VL chains of EA2 or EA5. hi certain embodiments, the antibody of the present invention specifically binds to EphA4. In some embodiments, the antibody of the present invention specifically binds to EphB4.
[0087] In certain embodiments, the antibody specifically binds to IL-9. In some embodiments, the antibody comprises the amino acid sequence of the VH and VL chains of MEDI-528. hi other embodiments, the antibody comprises the amino acid sequence of the CDRs of the VH and VL chains of MEDI-528.
[0088] In particular embodiments, the antibody is Rituxan™ (useful for treating non-Hodgkin's lymphoma), Herceptin™ (useful for treating metastatic breast cancer), Campath™ (useful for treating chronic lymphocytic leukemia), Erbitux™ (useful for treating various cancers), MDX-OlO (useful for treating malignant melanoma, prostate cancer), MDX-214 (useful for treatment of cancer), AlloMune™ (useful for treating non-Hodgkin's lymphoma, Hodgkin's disease), IMC-255 (antibody to epidermal growth factor), A7-neocarzinostatin (useful for the treatment of liver metastasis), 791T/36 (useful for the treatment of colorectal cancer), Fas/ APO-I (useful for treatment of malignant glioma cells), doxorubicin-CLNIgG (useful for the treatment of malignant glioma cells), siplizumab (useful for the treatment of T-cell lymphoma), Vitaxin™ (an antiangiogenic antibody useful for the treatment of cancer), MT- 103 (useful for the treatment of Hodgkin's lymphoma), Orthoclone™ (useful for treating heart, liver and kidney transplant rejection), ReoPro™ (useful for reducing post-cardiovascular-surgery clotting), Remicade™ (useful for treating Crohn's disease, rheumatoid arthritis), ABX-CBL (useful for preventing transplant rejection), AD-439 (useful for treating HIV infection), or SB-240563 (useful for treatment of asthma, allergies).
[0089] The term "co-administration," as used herein, refers to the simultaneous administration of two agents, either as a single composition or separate compositions. The term also includes the administration of a first agent prior to or after the administration of a second agent, e.g., 1, 2, 3, 4, 5, 6, 12, or 18 hours, 1, 2, 3, 4, 5, or 6 days, or 1, 2, 3, or 4 weeks before or after the second agent.
[0090] The term "hypoxia," as used herein, refers to a deprivation of adequate oxygen supply. Normoxia in human tissues other than the lung is about 6% (40 torr). hi one embodiment, hypoxia is defined as a level of oxygen significantly less than 6%, e.g., 10, 20, 30, 40, 50, 60, 70, or 80% lower than 6%. Hypoxia within a tumor is defined as a level of oxygen within a portion or all of the tumor that is at least 10% less than the level of oxygen in other tissues of the same individual, e.g., 20, 30, 40, 50, 60, 70, or 80% less. The level of oxygen in a tissue may be determined by any method known in the art, such as oxygen electrodes (e.g., Eppendorf pθ2 Histograph), compounds that selectively bind to hypoxic regions (e.g., nitroimidazoles such as pimonidazole, and EF5), non-invasive techniques such as radiolabeled hypoxia markers that can be measured by positron emission tomography, single photon emission computed tomography, and magnetic resonance imaging, and techniques for measuring oxygen-dependent signals produced by the body's own chemistry, such as f-MRI BOLD (functional MRI blood oxygen level dependent), which detects magnetic properties of deoxyhemoglobin, recording variations in blood oxygen flow and tissue oxygen consumption, and NIRS (near-infrared spectroscopy), which measures the attenuation of light passing through tissue using an optical method to record oxygen-dependent signals from hemoglobin, deoxyhemoglobin, and cytochrome-c oxidase.
[0091] As used herein, the term "therapeutically effective amount" refers to that amount of the therapeutic agent sufficient to achieve its intended result. With regard to bioreducible prodrugs, therapeutically effective amounts include those amounts which will improve the therapeutic response of another agent by at least 10%, preferably at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 100%.
[0092] The terms "prevent," "preventing," and "prevention," as used herein, refer to a decrease in the occurrence of pathological cells (e.g., hyperproliferative or neoplastic cells) in an animal. The prevention may be complete, e.g., the total absence of pathological cells in a subject. The prevention may also be partial, such that the occurrence of pathological cells in a subject is less than that which would have occurred without the present invention.
[0093] The term "cancer," as used herein, is intended to refer to any known cancer, and may include, but is not limited to the following: leukemias such as acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias such as myeloblasts, promyelocytic, myelomonocytic, monocytic, and erythroleukemia leukemias, and myelodysplastic syndrome; chronic leukemias such as chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, and hairy cell leukemia; polycythemia vera; lymphomas such as Hodgkin's disease and non-Hodgkin's disease; multiple myelomas such as smoldering multiple myeloma, non-secretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary plasmacytoma; Waldenstrom's macroglobulinemia; monoclonal gammopathy of undetermined significance; benign monoclonal gammopathy; heavy chain disease; bone and connective tissue sarcomas such as bone sarcoma, osteosarcoma, chondrosarcoma, Ewing's sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangiosarcoma, neurilemmoma, rhabdomyosarcoma, and synovial sarcoma; brain tumors such as glioma, astrocytoma, brain stem glioma, ependymoma, oligodendroglioma, nonglial tumor, acoustic neurinoma, craniopharyngioma, medulloblastoma, meningioma, pineocytoma, pineoblastoma, and primary brain lymphoma; breast cancers such as adenocarcinoma, lobular (small cell) carcinoma, intraductal carcinoma, medullary breast cancer, mucinous breast cancer, tubular breast cancer, papillary breast cancer, Paget's disease of the breast, and inflammatory breast cancer; adrenal cancers such as pheochromocytoma and adrenocortical carcinoma; thyroid cancers such as papillary or follicular thyroid cancer, medullary thyroid cancer and anaplastic thyroid cancer; pancreatic cancers such as insulinoma, gastrinoma, glucagonoma, vipoma, somatostatin-secreting tumor, and carcinoid or islet cell tumor; pituitary cancers such as prolactin-secreting tumor and acromegaly; eye cancers such as ocular melanoma, iris melanoma, choroidal melanoma, and cilliary body melanoma, and retinoblastoma; vaginal cancers such as squamous cell carcinoma, adenocarcinoma, and melanoma; vulvar cancers such as squamous cell carcinoma, melanoma, adenocarcinoma, basal cell carcinoma, sarcoma, and Paget's disease of the genitals; cervical cancers such as squamous cell carcinoma and adenocarcinoma; uterine cancers such as endometrial carcinoma and uterine sarcoma; ovarian cancers such as ovarian epithelial carcinoma, ovarian epithelial borderline tumor, germ cell tumor, and stromal tumor; esophageal cancers such as squamous cancer, adenocarcinoma, adenoid cyctic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmacytoma, verrucous carcinoma, and oat cell (small cell) carcinoma; stomach cancers such as adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma; colon cancers; rectal cancers; liver cancers such as hepatocellular carcinoma and hepatoblastoma, gallbladder cancers such as adenocarcinoma; cholangiocarcinomas such as papillary, nodular, and diffuse; lung cancers such as non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and small-cell lung cancer; testicular cancers such as germinal tumor, seminoma, anaplastic, classic (typical), spermatocyte, nonseminoma, embryonal carcinoma, teratoma carcinoma, and choriocarcinoma (yolk-sac tumor), prostate cancers such as adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; penile cancers; oral cancers such as squamous cell carcinoma; basal cancers; salivary gland cancers such as adenocarcinoma, mucoepidermoid carcinoma, and adenoidcystic carcinoma; pharynx cancers such as squamous cell cancer and verrucous; skin cancers such as basal cell carcinoma, squamous cell carcinoma and melanoma, superficial spreading melanoma, nodular melanoma, lentigo malignant melanoma, acral lentiginous melanoma; head and neck cancers; kidney cancers such as renal cell cancer, adenocarcinoma, hypernephroma, fibrosarcoma, transitional cell cancer (renal pelvis and/or ureter); Wilms' tumor; and bladder cancers such as transitional cell carcinoma, squamous cell cancer, adenocarcinoma, and carcinosarcoma. In addition, cancers that can be treated by the methods and compositions of the present invention include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinoma. See Fishman et al, 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia, PA and Murphy et al, 1997, Informed Decisions: The Complete Book of Cancer Diagnosis, Treatment, and Recovery, Viking Penguin, New York, NY, for a review of such disorders.
[0094] Therapeutic agents useful as adjunctive therapy according to the invention include, but are not limited to, small molecules, synthetic drugs, peptides, polypeptides, proteins, nucleic acids (e.g., DNA and RNA polynucleotides including, but not limited to, antisense nucleotide sequences, triple helices, and nucleotide sequences encoding biologically active proteins, polypeptides, or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. Any agent which is known to be useful, or which has been used or is currently being used for the prevention, treatment, or amelioration of disorders can be used in combination with a bioreducible prodrug, in accordance with the invention described herein.
[0095] The term "radiotherapeutic agent," as used herein, is intended to refer to any radiotherapeutic agent known to one of skill in the art to be effective to treat or ameliorate cancer, without limitation. For instance, the radiotherapeutic agent can be an agent such as those administered in brachytherapy or radionuclide therapy. Such methods can optionally further comprise the administration of one or more additional cancer therapies, such as, but not limited to, chemotherapies, surgery, and/or another radiotherapy.
[0096] In certain embodiments, a therapeutically effective dose of brachytherapy may be administered. The brachytherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation. In general, brachytherapy comprises insertion of radioactive sources into the body of a subject to be treated for cancer, preferably inside the tumor itself, such that the tumor is maximally exposed to the radioactive source, while preferably minimizing the exposure of healthy tissue.
[0097] In certain embodiments, the brachytherapy can be intracavitary brachytherapy. In other embodiments, the brachytherapy can be interstitial brachytherapy. Whether the brachytherapy is intracavitary brachytherapy or interstitial brachytherapy, the brachytherapy can be administered at a high dose rate, a continuous low dose rate, or a pulsed dose rate. For example, and not by way of limitation, a high dose rate brachytherapy regimen can be a dose of 60 Gy administered in ten fractions over six days, while a continuous low dose rate brachytherapy regimen can be a total dose of about 65 Gy, administered continuously at about 40 to 50 cGy per hour. Other examples of high, continuous low, and pulsed dose rate brachytherapy are well known in the art. See, e.g., Mazeron et al, Sem. Rad. One. 12:95-108 (2002).
[0098] Representative radioisotopes that can be administered in any of the above-described brachytherapies include, but are not limited to, phosphorus 32, cobalt 60, palladium 103, ruthenium 106, iodine 125, cesium 137, iridium 192, xenon 133, radium 226, californium 252, or gold 198. Other radioisotopes may be selected for administration in brachytherapy according to the desirable physical properties of such a radioisotope. One of skill in the art will readily recognize that many properties will affect a radioisotope's suitability for use in brachytherapy, including, but not limited to, the radioisotope's half-life, the degree to which emitted radiation penetrates surrounding tissue, the energy of emitted radiation, the ease or difficulty of adequately shielding the radioisotope, the availability of the radioisotope, and the ease or difficulty of altering the shape of the radioisotope prior to administration.
[0099] Additional methods of administering and apparatuses and compositions useful for brachytherapy are described in U.S. Patent Nos. 6,319,189, 6,179,766, 6,168,777, 6,149,889, and 5,611,767, each of which is incorporated herein by reference in its entirety.
[00100] In certain embodiments, the bioreducible prodrug may be administered in combination with a treatment comprising a therapeutically effective dose of a radionuclide. The radionuclide therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation, hi general, radionuclide therapy comprises systemic administration of a radioisotope that preferentially accumulates in or binds to the surface of cancerous cells. The preferential accumulation of the radionuclide can be mediated by a number of mechanisms, including, but not limited to, incorporation of the radionuclide into rapidly proliferating cells, specific accumulation of the radionuclide by the cancerous tissue without special targeting (e.g., iodine 131 accumulation in thyroid cancer), or conjugation of the radionuclide to a biomolecule specific for a neoplasm.
[00101] Representative radioisotopes that can be administered in radionuclide therapy include, but are not limited to, phosphorus 32, yttrium 90, dysprosium 165, indium 111, strontium 89, samarium 153, rhenium 186, iodine 131, iodine 125, lutetium 177, and bismuth 213. While all of these radioisotopes may be linked to a biomolecule providing specificity of targeting, iodine 131, indium 111, phosphorus 32, samarium 153, and rhenium 186 may be administered systemically without such conjugation. One of skill in the art may select a specific biomolecule for use in targeting a particular neoplasm for radionuclide therapy based upon the cell-surface molecules present on that neoplasm. For example, hepatomas may be specifically targeted by an antibody specific for ferritin, which is frequently over-expressed in such tumors. Examples of antibody-targeted radioisotopes for the treatment of cancer include ZEVALIN (ibritumomab tiuxetan) and BEXXAR (tositumomab), both of which comprise an antibody specific for the B cell antigen CD20 and are used for the treatment of non-Hodgkin lymphoma.
[00102] Other examples of biomolecules providing specificity for particular cell are reviewed in an article by Thomas, Cancer Biother. Radiopharm. 77:71-82 (2002), which is incorporated herein by reference in its entirety. Furthermore, methods of administering and compositions useful for radionuclide therapy may be found in U.S. Patent Nos. 6,426,400, 6,358,194, 5,766,571, and 5,563,250, each of which is incorporated herein by reference in its entirety.
[00103] The term "radiotherapeutic treatment," as used herein, is intended to refer to any radiotherapeutic treatment known to one of skill in the art to be effective to treat or ameliorate cancer, without limitation. For instance, the radiotherapeutic treatment can be external-beam radiation therapy, thermotherapy, radiosurgery, charged-particle radiotherapy, neutron radiotherapy, or photodynamic therapy. Such methods can optionally further comprise the administration of one or more additional cancer therapies, such as, but not limited to, chemotherapies, surgery, and/or another radiotherapy.
[00104] In certain embodiments involving radiotherapeutic agents or treatments, the present invention provides a method comprising the administration of a bioreducible prodrug in combination with a treatment comprising a therapeutically effective dose of external-beam radiation therapy. The external-beam radiation therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation, hi general, external- beam radiation therapy comprises irradiating a defined volume within a subject with a high energy beam, thereby causing cell death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible.
[00105] In certain embodiments, the external-beam radiation therapy can be three-dimensional conformal radiotherapy. In other embodiments, the external-beam radiation therapy can be continuous hyperfractionated radiotherapy. In still other embodiments, the external-beam radiation therapy can be intensity-modulated radiotherapy. In yet other embodiments, the external-beam radiation therapy can be helical tomotherapy. In still other embodiments, the external-beam radiation therapy can be three dimensional conformal radiotherapy with dose escalation. In yet other embodiments, the external-beam radiation therapy can be stereotactic radiotherapy, including, but not limited to, single fraction stereotactic radiotherapy, fractionated stereotactic radiotherapy, and fractionated stereotactically guided conformal radiotherapy.
[00106] The external-beam radiation therapy can be generated or manipulated by any means known to one of skill in the art. For example, the photon beam used in external-beam radiation therapy can be shaped by a multileaf collimator. Other examples of suitable devices for generating a photon beam for use in external-beam radiation therapy include a gamma knife and a linac- based stereotactic apparatus, hi certain embodiments, administration of the external-beam radiation therapy is controlled by a computer according to a three-dimensional model of the patient in the treatment position. Such a model can be generated, for example, by computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computer tomography (SPECT), and positron emission tomography (PET). Use of such visualization methods can advantageously minimize the volume of healthy tissue treated, thereby allowing higher total doses of radiation to be administered to the patient.
[00107] In addition, healthy tissues can optionally be protected from the effects of the external-beam radiation therapy by placing blocking devices such as, e.g., lead shields, in locations where such protection is needed. Alternatively or additionally, metal reflecting shields can optionally be located to reflect the photon beam in order to concentrate the radiation on the cancerous tissue to be treated and protect healthy tissue. Placement of either shield is well within the knowledge of one of skill in the art.
[00108] Methods of administering and apparatuses and compositions useful for external -beam radiation therapy can be found in U.S. Patent Nos. 6,449,336, 6,398,710, 6,393,096, 6,335,961, 6,307,914, 6,256,591, 6,245,005, 6,038,283, 6,001,054, 5,802,136, 5,596,619, and 5,528,652, each of which is incorporated herein by reference in its entirety.
[00109] In certain embodiments involving radiotherapeutic agents or treatments, the present invention provides the administration of a bioreducible prodrug in combination with a treatment comprising a therapeutically effective dose of thermotherapy. The thermotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation. In certain embodiments, the thermotherapy can be cryoablation therapy. In other embodiments, the thermotherapy can be hyperthermic therapy. In still other embodiments, the thermotherapy can be a therapy that elevates the temperature of the tumor higher than in hyperthermic therapy.
[00110] Cryoablation therapy involves freezing of a neoplastic mass, leading to deposition of intra- and extra-cellular ice crystals; disruption of cellular membranes, proteins, and organelles; and induction of a hyperosmotic environment, thereby causing cell death. Cryoablation can be performed in one, two, or more freeze-thaw cycles, and further the periods of freezing and thawing can be adjusted for maximum tumor cell death by one of skill in the art. One exemplary device that can be used in cryoablation is a cryoprobe incorporating vacuum-insulated liquid nitrogen. See, e.g., Murphy et al, Sem. Urol. Oncol. 19: 133-140 (2001). However, any device that can achieve a local temperature of about -18O0C to about -1950C can be used in cryoablation therapy. Methods for and apparatuses useful in cryoablation therapy are described in U.S. Patent Nos. 6,383,181, 6,383,180, 5,993,444, 5,654,279, 5,437,673, and 5,147,355, each of which is incorporated herein by reference in its entirety.
[00111] Hyperthermic therapy typically involves elevating the temperature of a neoplastic mass to a range from about 420C to about 440C. The temperature of the cancer may be further elevated above this range; however, such temperatures can increase injury to surrounding healthy tissue while not causing increased cell death within the tumor to be treated. The tumor may be heated in hyperthermic therapy by any means known to one of skill in the art without limitation. For example, and not by way of limitation, the tumor may be heated by microwaves, high intensity focused ultrasound, ferromagnetic thermoseeds, localized current fields, infrared radiation, wet or dry radiofrequency ablation, laser photocoagulation, laser interstitial thermic therapy, and electrocautery. Microwaves and radiowaves can be generated by waveguide applicators, horn, spiral, current sheet, and compact applicators.
[0100] Other methods of and apparatuses and compositions for raising the temperature of a tumor are reviewed in an article by Wust et al, Lancet Oncol. 3:487-97 (2002), and described in U.S. Patent Nos. 6,470,217, 6,379,347, 6,165,440, 6,163,726, 6,099,554, 6,009,351, 5,776,175, 5,707,401, 5,658,234, 5,620,479, 5,549,639, and 5,523,058, each of which is incorporated herein by reference in its entirety.
[0101] In certain embodiments a bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of radiosurgery. The radiosurgery can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation. hi general, radiosurgery comprises exposing a defined volume within a subject to a manually directed radioactive source, thereby causing cell death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible. Typically, the tissue to be treated is first exposed using conventional surgical techniques, then the radioactive source is manually directed to that area by a surgeon. Alternatively, the radioactive source can be placed near the tissue to be irradiated using, for example, a laparoscope. Methods and apparatuses useful for radiosurgery are further described in Valentini et al, Eur. J. Surg. Oncol. 28:180-185 (2002) and in U.S. Patent Nos. 6,421,416, 6,248,056, and 5,547,454, each of which is incorporated herein by reference in its entirety.
[0102] In certain embodiments the bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of charged-particle radiotherapy. The charged-particle radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation, hi certain embodiments, the charged-particle radiotherapy can be proton beam radiotherapy. In other embodiments, the charged-particle radiotherapy can be helium ion radiotherapy. In general, charged-particle radiotherapy comprises irradiating a defined volume within a subject with a charged-particle beam, thereby causing cellular death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible. A method for administering charged-particle radiotherapy is described in U.S. Patent No. 5,668,371, which is incorporated herein by reference in its entirety.
[0103] In certain embodiments the bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of neutron radiotherapy. The neutron radiotherapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation.
[0104] In certain embodiments, the neutron radiotherapy can be a neutron capture therapy. In such embodiments, a compound that emits radiation when bombarded with neutrons and preferentially accumulates in a neoplastic mass is administered to a subject. Subsequently, the tumor is irradiated with a low energy neutron beam, activating the compound and causing it to emit decay products that kill the cancerous cells. Such compounds are typically boron containing compounds, but any compound that has a significantly larger neutron capture cross-section than common body constituents can be used. The neutrons administered in such therapies are typically relatively low energy neutrons having energies at or below about 0.5 eV. The compound to be activated can be caused to preferentially accumulate in the target tissue according to any of the methods useful for targeting of radionuclides, as described below, or in the methods described in Laramore, Semin. Oncol. 24:612-685 (1997) and in U.S. Patents Nos. 6,400,796, 5,877,165, 5,872,107, and 5,653,957, each of which is incorporated herein by reference in its entirety.
[0105] In other embodiments, the neutron radiotherapy can be a fast neutron radiotherapy. In general, fast neutron radiotherapy comprises irradiating a defined volume within a subject with a neutron beam, thereby causing cellular death within that volume. The irradiated volume preferably contains the entire cancer to be treated, and preferably contains as little healthy tissue as possible. Generally, high energy neutrons are administered in such therapies, with energies in the range of about 10 to about 100 million eV. Optionally, fast neutron radiotherapy can be combined with charged-particle radiotherapy in the administration of mixed proton-neutron radiotherapy.
[0106] In certain embodiments the bioreducible prodrug is administered in combination with a treatment comprising a therapeutically effective dose of photodynamic therapy. The photodynamic therapy can be administered according to any schedule, dose, or method known to one of skill in the art to be effective in the treatment or amelioration of cancer, without limitation. In general, photodynamic therapy comprises administering a photosensitizing agent that preferentially accumulates in a neoplastic mass and sensitizes the neoplasm to light, then exposing the tumor to light of an appropriate wavelength. Upon such exposure, the photosensitizing agent catalyzes the production of a cytotoxic agent, such as, e.g., singlet oxygen, which kills the cancerous cells.
[0107] Representative photosensitizing agents that may be used in photodynamic therapy include, but are not limited to, porphyrins such as porfimer sodium, 5-aminolaevulanic acid and verteporfin; chlorins such as temoporfϊn; texaphyrins such as lutetium texephyrin; purpurins such as tin etiopurpurin; phthalocyanines; and titanium dioxide. The wavelength of light used to activate the photosensitizing agent can be selected according to several factors, including the depth of the tumor beneath the skin and the absorption spectrum of the photosensitizing agent administered. The period of light exposure may also vary according to the efficiency of the absorption of light by the photosensitizing agent and the efficiency of the transfer of energy to the cytotoxic agent. Such determinations are well within the ordinary skill of one in the art.
[0108] Methods of administering and apparatuses and compositions useful for photodynamic therapy are disclosed in Hopper, Lancet Oncol. 7:212-219 (2000) and U.S. Patent Nos. 6,283,957, 6,071,908, 6,011,563, 5,855,595, 5,716,595, and 5,707,401, each of which is incorporated herein by reference in its entirety.
[0109] Radiotherapy can be administered to destroy tumor cells before or after surgery, before or after chemotherapy, and sometimes during chemotherapy. Radiotherapy may also be administered for palliative reasons to relieve symptoms of cancer, for example, to lessen pain. Total body radiotherapy can be administered to patients who are undergoing a bone marrow transplant, which is a procedure often performed with subjects having leukemia, hi the case of a bone marrow transplant, a large single dose, or six to eight smaller doses of radiation, is administered to the whole body to destroy bone marrow cells in preparation for the transplant. Among the types of tumors that can be treated using radiotherapy are localized tumors that cannot be excised completely and metastases and tumors whose complete excision would cause unacceptable functional or cosmetic defects or be associated with unacceptable surgical risks.
[0110] It will be appreciated that both the particular radiation dose to be utilized in treating cancer and the method of administration will depend on a variety of factors. Thus, the dosages of radiation that can be used according to the methods of the present invention are determined by the particular requirements of each situation. The dosage will depend on such factors as the size of the tumor, the location of the tumor, the age and sex of the patient, the frequency of the dosage, the presence of other tumors, possible metastases and the like. Those skilled in the art of radiotherapy can readily ascertain the dosage and the method of administration for any particular tumor by reference to Hall, E. J., Radiobiology for the Radiobiologist, 5th edition, Lippincott Williams & Wilkins Publishers, Philadelphia, PA, 2000; Gunderson, L. L. and Tepper J. E., eds., Clinical Radiation Oncology, Churchill Livingstone, London, England, 2000; and Grosch, D. S., Biological Effects of Radiation, 2nd edition, Academic Press, San Francisco, CA, 1980, each of which is incorporated herein by reference.
[0111] Other therapeutic agents useful in the methods and compositions of the invention include vasodilators (e.g., nitrates, calcium channel blockers), anticoagulants (e.g., heparin), anti-platelet agents (e.g., aspirin, blockers of Ilb/IIIa receptors, clopidogrel), anti-thrombins (e.g., hirudin, iloprost), immunosuppressants (e.g., sirolimus, tranilast, dexamethasone, tacrolimus, everolimus, A24), collagen synthetase inhibitors (e.g., halofuginone, propyl hydroxylase, C-proteinase inhibitor, metalloproteinase inhibitor), antiinflammatories (e.g., corticosteroids such as alclometasone, amcinonide, betamethasone, beclomethasone, budesonide, cortisone, clobetasol, clocoitolone, desonide, dexamethasone, desoximetasone, diflorasone, flunisolide, fluticasone, fluocinonide, flurandrenolide, halcinonide, hydrocortisone, methylprednisolone, mometasone, prednicarbate, prednisone, prednisolone and triamcinolone; non-steroidal anti-inflammatory drugs), 17β-estradiol, angiotensin converting enzyme inhibitors, colchicine, fibroblast growth factor antagonists, histamine antagonists, lovastatin, nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, thioprotease inhibitors, platelet-derived growth factor antagonists, nitric oxide, and angiopeptin. In one embodiment, the therapeutic agent is a taxane, e.g., paclitaxel, docetaxel or abraxane.
[0112] Anti-inflammatory drugs suitable for ameliorating tumor inflammation include salicylates (such as aspirin, choline magnesium trisalicylate, methyl salicylate, salsalte and diflunisal), acetic acids (such as indomethacin, sulindac, tolmetin, aceclofenac and diclofenac), 2-arylpropionic acids or profens (such as ibuprofen, ketoprofen, naproxen, fenoprofen, flurbiprofen and oxaprozin), N-arylanthranilic acids or fenamic acids (such as mefenamic acid, flufenamic acid, and meclofenamate), enolic acids or oxicams (such as piroxicam and meloxicam), cox inhibitors (such as celecoxib, rofecoxib (withdrawn from market), valdecoxib, parecoxib and etoricoxib), sulphonanilides such as nimesulide; naphthylalkanones (such as nabumetone), pyranocarboxylic acids (such as etodolac) and pyrroles (such as ketorolac).
[0113] As used herein, the term "immunomodulatory agent" and variations thereof including, but not limited to, immunomodulatory agents, immunomodulants, immunomodulators or immunomodulatory drugs, refer to an agent that modulates a host's immune system. In particular, an immunomodulatory agent is an agent that alters the ability of a subject's immune system to respond to one or more foreign antigens. In a specific embodiment, an immunomodulatory agent is an agent that shifts one aspect of a subject's immune response, e.g., the agent shifts the immune response from a ThI to a Th2 response. In certain embodiments, an immunomodulatory agent is an agent that inhibits or reduces a subject's immune system (i.e., an immunosuppressant agent). In certain other embodiments, an immunomodulatory agent is an agent that activates or increases a subject's immune system (i.e., an irnmunostimulatory agent).
[0114] Immunomodulatory agents useful for the present invention include, but are not limited to, small molecules, peptides, polypeptides, proteins, nucleic acids (e.g., DNA and RNA nucleotides including, but not limited to, antisense nucleotide sequences, triple helices and nucleotide sequences encoding biologically active proteins, polypeptides or peptides), antibodies, synthetic or natural inorganic molecules, mimetic agents, and synthetic or natural organic molecules. A particularly useful immunomodulatory agent useful for the present invention is thalidomide.
[0115] Immunosuppressant agents are useful to counteract autoimmune diseases, such as rheumatoid arthritis or Crohn's disease, and to prevent the immune system from attacking healthy parts of the body. In some embodiments, immunosuppressive agents useful for the present invention include glucocorticoid receptor agonists (e.g., cortisone, dexamethasone, hydrocortisone, betamethasone), calcineurin inhibitors (e.g., macrolides such as tacrolimus and pimecrolimus), immunophilins (e.g., cyclosporin A) and mTOR inhibitors (e.g., sirolimus, marketed as RAPAMUNE® by Wyeth). In other embodiments, immunomodulatory agents useful for the present invention further include antiproliferative agents (e.g., methotrexate, leflunomide, cisplatin, ifosfamide, paclitaxel, taxanes, topoisomerase I inhibitors (e.g., CPT-I l, topotecan, 9-AC, and GG-211), gemcitabine, vinorelbine, oxaliplatin, 5-fluorouracil (5-FU), leucovorin, vinorelbine, temodal, taxol, cytochalasin B, gramicidin D, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1- dehydrotestosterone, melphalan, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin homologs, and Cytoxan.
[0116] Immunostimulant agents are useful to increase the efficiency of the immune system and treat immunodeficiency disorders. Immunostimulant agents useful for the present invention include interferon and Zidovudine (AZT).
[0117] The unit oral dose of a bioreducible prodrug may comprise from about
0.01 to about 50 mg, preferably about 0.1 to about 10 mg of each agent. The unit dose may be administered one or more times daily as one or more tablets or capsules each containing from about 0.1 to about 10, conveniently about 0.25 to 50 mg of the agents. The amount of a therapeutically effective dose of a pharmaceutical agent or treatment in the acute or chronic management of a disease or disorder may differ depending on factors including, but not limited to, the disease or disorder treated, the specific pharmaceutical agents or treatments and the route of administration. One of skill in the art will recognize that these Standard doses are for an average sized adult of approximately 70 kg and can be adjusted for the factors routinely considered as stated above.
[00112] In addition to administering agents as raw chemicals, the agents of the invention may be administered as part of a pharmaceutical preparation containing suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the compounds into preparations which can be used pharmaceutically. Preferably, the preparations, particularly those preparations which can be administered orally or topically and which can be used for the preferred type of administration, such as tablets, dragees, slow release lozenges and capsules, mouth rinses and mouth washes, gels, liquid suspensions, hair rinses, hair gels, shampoos and also preparations which can be administered rectally, such as suppositories, as well as suitable solutions for administration by injection, topically or orally, contain from about 0.01 to 99 percent, preferably from about 0.25 to 75 percent of active compound(s), together with the excipient.
[00113] The pharmaceutical compositions of the invention may be administered to any subject which may experience the beneficial effects of the compounds of the invention. Foremost among such subjects are mammals, e.g., humans, although the invention is not intended to be so limited. Other animals include veterinary animals (cows, sheep, pigs, horses, dogs, cats and the like).
[00114] The compounds and pharmaceutical compositions thereof may be administered by any means that achieve their intended purpose. For example, administration may be by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, buccal, intrathecal, intracranial, intranasal, or topical routes. Alternatively, or concurrently, administration may be by the oral route. The dosage administered will be dependent upon the age, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect desired.
[00115] The pharmaceutical preparations of the present invention are manufactured in a manner which is itself known, for example, by means of conventional mixing, granulating, dragee-making, dissolving, or lyophilizing processes. Thus, pharmaceutical preparations for oral use can be obtained by combining the active compounds with solid excipients, optionally grinding the resulting mixture and processing the mixture of granules, after adding suitable auxiliaries, if desired or necessary, to obtain tablets or dragee cores.
[00116] Suitable excipients are, in particular, fillers such as saccharides, for example lactose or sucrose, mannitol or sorbitol, cellulose preparations and/or calcium phosphates, for example tricalcium phosphate or calcium hydrogen phosphate, as well as binders such as starch paste, using, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, tragacanth, methyl cellulose, hydroxypropylmethylcellulose, sodium carboxymethylcellulose, and/or polyvinyl pyrrolidone. If desired, disintegrating agents may be added such as the above-mentioned starches and also carboxymethyl-starch, cross- linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof, such as sodium alginate. Auxiliaries are, above all, flow-regulating agents and lubricants, for example, silica, talc, stearic acid or salts thereof, such as magnesium stearate or calcium stearate, and/or polyethylene glycol. Dragee cores are provided with suitable coatings which, if desired, are resistant to gastric juices. For this purpose, concentrated saccharide solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, polyethylene glycol and/or titanium dioxide, lacquer solutions and suitable organic solvents or solvent mixtures, hi order to produce coatings resistant to gastric juices, solutions of suitable cellulose preparations such as acetylcellulose phthalate or hydroxypropylmethyl-cellulose phthalate, are used. Dye stuffs or pigments may be added to the tablets or dragee coatings, for example, for identification or in order to characterize combinations of active compound doses. [00117] Other pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer such as glycerol or sorbitol. The push-fit capsules can contain the active compounds in the form of granules which may be mixed with fillers such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers, hi soft capsules, the active compounds are preferably dissolved or suspended in suitable liquids, such as fatty oils, or liquid paraffin. In addition, stabilizers may be added.
[00118] Possible pharmaceutical preparations which can be used rectally include, for example, suppositories, which consist of a combination of one or more of the active compounds with a suppository base. Suitable suppository bases are, for example, natural or synthetic triglycerides, or paraffin hydrocarbons. In addition, it is also possible to use gelatin rectal capsules which consist of a combination of the active compounds with a base. Possible base materials include, for example, liquid triglycerides, polyethylene glycols, or paraffin hydrocarbons.
[00119] Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water- soluble salts and alkaline solutions. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides or polyethylene glycol-400. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, and/or dextran. Optionally, the suspension may also contain stabilizers.
[0118] The bioreducible prodrug may be administered as part of a pharmaceutical composition comprising a pharmaceutically acceptable carrier, wherein the bioreducible prodrug is present in an amount which is effective to achieve its intended purpose, i.e., to have the desired effect of preventing, treating or ameliorating a disorder in the animal receiving chemotherapy or radiotherapy. The pharmaceutical composition may further comprise one or more excipients, diluents or any other components known to persons of skill in the art and germane to the methods of formulation of the present invention. The pharmaceutical composition may additionally comprise other compounds typically used as adjuncts during chemotherapy.
[0119] The term "pharmaceutical composition" as used herein is to be understood as defining compositions of which the individual components or ingredients are themselves pharmaceutically acceptable, e.g., where oral administration is foreseen, acceptable for oral use and, where topical administration is foreseen, topically acceptable.
[0120] The pharmaceutical composition can be prepared in single unit dosage forms. The dosage forms are suitable for oral, mucosal (nasal, sublingual, vaginal, buccal, rectal), parenteral (intravenous, intramuscular, intraarterial), or topical administration. Preferred dosage forms of the present invention include oral dosage forms and intravenous dosage forms.
[0121] Intravenous forms include, but are not limited to, bolus and drip injections. In preferred embodiments, the intravenous dosage forms are sterile or capable of being sterilized prior to administration to a subject since they typically bypass the subject's natural defenses against contaminants. Examples of intravenous dosage forms include, but are not limited to, Water for Injection USP; aqueous vehicles including, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles including, but not limited to, ethyl alcohol, polyethylene glycol and polypropylene glycol; and non-aqueous vehicles including, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate and benzyl benzoate.
[0122] The pharmaceutical compositions comprising the bioreducible prodrug of the present invention may further comprise one or more additives. Additives that are well known in the art include, e.g., detackifiers, anti- foaming agents, buffering agents, antioxidants (e.g., ascorbyl palmitate, butyl hydroxy anisole (BHA), butyl hydroxy toluene (BHT) and tocopherols, e.g. , a- tocopherol (vitamin E)), preservatives, chelating agents, viscomodulators, tonicifiers, flavorants, colorants odorants, opacifiers, suspending agents, binders, fillers, plasticizers, lubricants, and mixtures thereof. The amounts of such additives can be readily determined by one skilled in the art, according to the particular properties desired. For example, antioxidants such as BHA and BHT may each be present in an amount of from about 0.01% to about 0.50% by weight based upon the total weight of the composition, e.g., about 0.05 to about 0.35% by weight, e.g., about 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, or 0.50% by weight.
[0123] The additive may also comprise a thickening agent. Suitable thickening agents may be those known and employed in the art, including, e.g., pharmaceutically acceptable polymeric materials and inorganic thickening agents. Exemplary thickening agents for use in the present pharmaceutical compositions include polyacrylate and polyacrylate copolymer resins, for example poly-acrylic acid and poly-acrylic acid/methacrylic acid resins; celluloses and cellulose derivatives including: alkyl celluloses, e.g., methyl-, ethyl- and propyl-celluloses; hydroxyalkyl- celluloses, e.g., hydroxypropyl-celluloses and hydroxypropylalkyl-celluloses such as hydroxypropyl-methyl-celluloses; acylated celluloses, e.g., cellulose- acetates, cellulose-acetatephthallates, cellulose-acetatesuccinates and hydroxypropylmethyl-cellulose phthallates; and salts thereof such as sodium- carboxymethyl-celluloses; polyvinylpyrrolidones, including for example poly- N-vinylpyrrolidones and vinylpyrrolidone co-polymers such as vinylpyrrolidone-vinylacetate co-polymers; polyvinyl resins, e.g., including polyvinylacetates and alcohols, as well as other polymeric materials including gum traganth, gum arabicum, alginates, e.g., alginic acid, and salts thereof, e.g., sodium alginates; and inorganic thickening agents such as atapulgite, bentonite and silicates including hydrophilic silicon dioxide products, e.g., alkylated (for example methylated) silica gels, in particular colloidal silicon dioxide products.
[0124] Such thickening agents as described above may be included, e.g., to provide a sustained release effect. However, where oral administration is intended, the use of thickening agents as aforesaid will generally not be required and is generally less preferred. Use of thickening agents is, on the other hand, indicated, e.g., where topical application is foreseen.
[0125] Compositions in accordance with the present invention may be employed for administration in any appropriate manner, e.g., orally, e.g., in unit dosage form, for example in a solution, in hard or soft encapsulated form including gelatin encapsulated form, parenterally or topically, e.g., for application to the skin, for example in the form of a cream, paste, lotion, gel, ointment, poultice, cataplasm, plaster, dermal patch or the like, as a coating for a medical device, e.g., a stent, or for ophthalmic application, for example in the form of an eye-drop, -lotion or -gel formulation. Readily flowable forms, for example solutions and emulsions, may also be employed e.g., for intralesional injection, or may be administered rectally, e.g., as an enema.
[0126] Animals which may be treated according to the present invention include all animals which may benefit from administration of the compounds of the present invention. Such animals include humans, pets such as dogs and cats, and veterinary animals such as cows, pigs, sheep, goats and the like.
[0127] One aspect of the invention relates to methods of screening for an agent that will undergo bioreduction in vivo, comprising contacting the agent with NOS and determining if NOS reduces the agent. Any agent that is capable of being reduced by NOS is one that may undergo bioreduction in vivo. Any screening method known in the art may be used in the present invention. The contacting may occur intracellularly (e.g., in cultured cells which naturally ore recombinantly express one or more NOS isoforms or in a test animal) or extracellularly (e.g., using isolated natural or recombinant NOS protein). Agents that may be screened include proteins, polypeptides, peptides, antibodies, nucleic acids, organic molecules, natural products, chemical libraries, and the like.
[0128] Having now fully described the invention, it will be understood by those of ordinary skill in the art that the same can be performed within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any embodiment thereof. All patents, patent applications and publications cited herein are fully incorporated by reference herein in their entirety.

Claims

WHAT IS CLAIMED IS:
1. A method for preventing, treating or ameliorating a hyperproliferative disorder or other condition in an animal, comprising first determining the level of nitric oxide synthase (NOS) in the animal and then administering a bioreducible prodrug to the animal if the animal has an elevated level of NOS, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
2. A method for treating an animal having a hyperproliferative disorder or other condition characterized by an elevated level of NOS, comprising administering to the animal a bioreducible prodrug, wherein said bioreducible prodrug gives a drug effective for preventing, treating or ameliorating said disorder or condition upon bioreduction.
3. A method of selecting an animal to be treated with a bioreducible prodrug, comprising determining the level of NOS in the animal, and selecting an animal having an elevated level of NOS for treatment with a bioreducible prodrug.
4. The method of any one of claims 1-3, wherein said NOS is inducible NOS (iNOS).
5. The method of any one of claims 1-3, wherein said determining comprises measuring the activity or level of NOS.
6. The method of claim 5, wherein said determining is carried out on a tissue sample.
7. The method of claim 5, wherein said determining is carried out on a fluid sample.
8. The method of claim 5, wherein said determining comprises measuring the amount of NOS protein.
9. The method of claim 5, wherein said determining comprises measuring the amount of NOS RNA.
10. The method of any one of claims 1-3, wherein the level of NOS is at least 10% higher than surrounding tissue or the normal level in the population.
11. The method of claim 10, wherein the level of NOS is at least 50% higher.
12. The method of any one of claims 1-3, wherein said bioreducible prodrug is an N-oxide prodrug.
13. The method of claim 12, wherein said N-oxide prodrug is AQ4N.
14. The method of claim 1 or 2, wherein said hyperproliferative disease is cancer.
15. The method of claim 14, wherein said cancer is selected from the group consisting of brain cancer, breast cancer, gastrointestinal cancers comprising colon, colorectal, esophageal, gastric, hepatocellular, pancreatic and rectal cancers, genitourinary cancers comprising bladder, prostate, renal cell and testicular cancers, gynecologic cancers comprising cervical, endometrial, ovarian and uterine cancers, head and neck cancer, leukemias comprising acute lymphoblastic, acute myelogenous, acute promyelocyte, chronic lymphocytic, chronic myelogenous and hairy cell leukemias, non- small-cell and small-cell lung cancers, Hodgkin's and non-Hodgkin's lymphomas, melanoma, multiple myeloma and sarcoma.
16. The method of claim 1 or 2, wherein said condition is inflammation.
17. The method of claim 1 or 2, further comprising administering an additional therapeutic agent or treatment.
18. A method of screening for a compound that will undergo bioreduction in vivo, comprising contacting the compound with NOS and determining if NOS reduces the compound.
19. The method of claim 18, wherein said NOS is iNOS.
20. The method of claim 18, wherein said contacting occurs intracellularly.
21. The method of claim 18, wherein said contacting occurs extracellularly.
PCT/US2007/023698 2006-11-10 2007-11-13 Nitric oxide synthase as a marker for treatment with bioreducible prodrugs WO2008118150A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86533306P 2006-11-10 2006-11-10
US60/865,333 2006-11-10

Publications (2)

Publication Number Publication Date
WO2008118150A2 true WO2008118150A2 (en) 2008-10-02
WO2008118150A3 WO2008118150A3 (en) 2008-11-20

Family

ID=39789146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/023698 WO2008118150A2 (en) 2006-11-10 2007-11-13 Nitric oxide synthase as a marker for treatment with bioreducible prodrugs

Country Status (1)

Country Link
WO (1) WO2008118150A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101775A1 (en) * 1999-09-08 2005-05-12 Erion Mark D. Prodrugs for liver specific drug delivery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101775A1 (en) * 1999-09-08 2005-05-12 Erion Mark D. Prodrugs for liver specific drug delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RIDDICK ET AL.: 'Cancer Chemotherapy And Drug Metabolism' DRUG METABOLISM AND DISPOSITION vol. 33, no. 8, August 2005, pages 1083 - 1096 *
THOMSEN ET AL.: 'Role of nitric oxide in tumour progression: Lessons from human tumours' CANCER AND METASTASIS REVIEWS vol. 17, February 1998, pages 107 - 118 *

Also Published As

Publication number Publication date
WO2008118150A3 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
RU2403574C2 (en) Method of measuring resistance and sensitivity to docetaxel
JP6860476B2 (en) Methods and Compositions for Prostate Cancer Treatment
JP6612280B2 (en) Methods and compositions for predicting response to eribulin
US20160299146A1 (en) Kynurenine Pathway Biomarkers Predictive of Anti-Immune Checkpoint Inhibitor Response
KR20160048196A (en) Diagnostic methods and compositions for treatment of glioblastoma
CN105699638B (en) The determination method of sensitivity to anti-cancer agent
JP5980685B2 (en) Sensitivity determination marker for anti-cancer drugs in combination with 3 drugs
KR102595395B1 (en) Method for treating cancer by combined use
JP2017523776A (en) Glioblastoma diagnosis method and therapeutic composition thereof
CA3034643A1 (en) Compositions and methods for identification, assessment, prevention, and treatment of aml using usp10 biomarkers and modulators
US20140030257A1 (en) Agtr1 as a marker for bevacizumab combination therapies
WO2017167989A1 (en) Cytidine deaminase expression level in cancer as a new therapeutic target
JP2020510608A (en) Method for improving anti-CD37 immunoconjugate therapy
JP2015529808A (en) A novel method for detecting resistance to chemotherapy in patients with lung cancer
CN111278427A (en) Treatment regimens
WO2008118150A2 (en) Nitric oxide synthase as a marker for treatment with bioreducible prodrugs
AU2007306932B2 (en) A method of diagnosis and agents useful for same
JP7203391B2 (en) Susceptibility marker for anticancer drug therapy including irinotecan
KR20210122813A (en) Antibodies and functional fragments thereof
WO2020067228A1 (en) Marker for assessing sensitivity to combination anticancer drug
EP2751281A1 (en) Responsiveness to angiogenesis inhibitors
KR101128640B1 (en) Use of RPS 14 as a hepatocellular carcinomar diagnostic marker
Zvirych et al. Immunohistochemical and genetic prognostic factors of neoadjuvant chemoradiotherapy efficacy in personalized treatment of local advanced rectal cancer
Gómez Vecino Resumen de tesis. New Strategies to Identify Susceptibility to Cardiotoxicity by Anthracyclines and Proteasome Inhibitors
Fukuda et al. P1. 12-17 Association Between the Pharmacokinetics and Clinical Outcome of Amrubicin Treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07873473

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07873473

Country of ref document: EP

Kind code of ref document: A2