WO2008117887A1 - Plant of genus nicotiana with reduced content of carbonyls in combustion smoke and method for producing the same - Google Patents

Plant of genus nicotiana with reduced content of carbonyls in combustion smoke and method for producing the same Download PDF

Info

Publication number
WO2008117887A1
WO2008117887A1 PCT/JP2008/056523 JP2008056523W WO2008117887A1 WO 2008117887 A1 WO2008117887 A1 WO 2008117887A1 JP 2008056523 W JP2008056523 W JP 2008056523W WO 2008117887 A1 WO2008117887 A1 WO 2008117887A1
Authority
WO
WIPO (PCT)
Prior art keywords
tobacco
plant
gene
seq
base sequence
Prior art date
Application number
PCT/JP2008/056523
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Matsuoka
Yasuhito Saito
Soichiro Noguchi
Shoichi Suzuki
Naoto Yamaguchi
Daiki Matsuura
Takahiro Fujisaki
Toru Hiyoshi
Original Assignee
Japan Tobacco Inc.
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc., Riken filed Critical Japan Tobacco Inc.
Publication of WO2008117887A1 publication Critical patent/WO2008117887A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis

Definitions

  • the present invention relates to a tobacco genus plant having a reduced carbonyl content in combustion smoke and a method for producing the same.
  • Patent Documents 1 to 7 disclose filters to which amine substances are added for the purpose of adsorption of formaldehyde and the like. However, they can reduce carbonyls in the smoke component, but also remove tar and nicotine at the same time.
  • Patent Document 7 discloses a cigarette wrapping paper to which an ammonia-containing compound is added as a combustion improving agent for the purpose of reducing carbonyls in combustion smoke.
  • Patent document 8 also discloses the use of certain amino acids such as glycine to remove aldehydes in tobacco smoke. Glycine can reduce the level of formaldehyde in tobacco smoke, but it is not stable in the cigarette filter manufacturing process It has been known. In addition, it releases ammonia odor during storage, making it unsuitable for use in tobacco products.
  • reference 9 discloses a filter to which a high-mouth talcite compound that can selectively remove formaldehyde is added.
  • the Ciacoal filter achieves a reduction in formaldehyde by indiscriminately reducing the total organic vapor (VOC), whereas the hydrotalcite compound addition filter does not significantly reduce the total organic vapor. It has been shown that formaldehyde reduction equivalent to that of Cyacoal filters is achieved.
  • Patent Document 10 it is considered that selectivity is enhanced by using crystalline zeolite having unique adsorption characteristics.
  • a filter that incorporates it reduces nine components, such as reducing acrolein by 50% or more, but the effect on other components has not been clarified.
  • Patent Document 11 discloses that, unlike activated carbon and chitosan, a filter to which a basic polypeptide is added reduces formaldehyde by about 15% compared to a commercial product without removing nicotine and tar. .
  • Patent Document 1 JP 5 9 _ 0 8 8 0 78
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-9-1 5 1 8 8 2
  • Patent Document 3 Japanese Patent Laid-Open No. Sho 6 0-0 0 5 4 6 6 9
  • Patent Document 4 Japanese Patent Application Laid-Open No. 09-166 Patent Document 5 Special Table 2 0 0 2— 5 2 8 1 0 5
  • Patent Document 6 Special Table 2 0 0 2— 5 2 8 1 0 6
  • Patent Literature 7 Special Table 2 0 0 3— 5 0 5 6 1 8
  • Patent Document 8 US Patent No. 2 9 6 8 3 0 6 Specification
  • Patent Document 9 International Publication No. 2 0 0 3/0 5 6 9 4 7 Pamphlet
  • Patent Document 1 0 US Patent Application Publication No. 2 0 0 5 0 1 3 3 04 7
  • Patent Document 1 1 Japanese Patent Application Laid-Open No. 2 0 0 6-3 4 1 2 7
  • the object of the present invention is to find a gene capable of controlling the content of carbonyls in the combustion smoke of tobacco genus plants, and to suppress the expression of the gene to thereby reduce the carbonyl content in the smoke. It is to create and provide plants.
  • the present inventors focused on the fact that the degree of maturity of tobacco leaves greatly affects the quality of raw leaf tobacco, and the leaves of matured tobacco grown in soil cultivation Alternatively, we searched for genes whose expression level changes greatly in hydroponic tobacco leaves in which maturation was artificially induced by reducing the amount of nitrogen fertilization. As a result, we succeeded in identifying a gene that can control the maturity level of tobacco plants, and by suppressing the expression of this gene, we can promote the maturation of tapaco leaves and impart ease of drying. It has been found that the quality of raw leaf tobacco can be improved, and surprisingly, it has been found that by suppressing the expression of the gene, the content of carbonyls in the combustion smoke of dry leaf tobacco can be reduced. completed.
  • a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbohydrates in plant combustion smoke
  • a protein comprising an amino acid sequence having an identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the carbonyl content in the combustion smoke of plants.
  • (g) It encodes a protein capable of hybridizing with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence shown in SEQ ID NO: 5 under stringent conditions and capable of controlling the carbonyl content in plant combustion smoke.
  • the carbonyl compound is selected from the group consisting of formaldehyde, acetoaldehyde, acetone, acrolein, propion aldehyde, croton aldehyde, methyl ketylketone and ptyl aldehyde, (1) or (2) The tobacco genus plant of description.
  • tissue or cell according to (5) wherein the tissue is a leaf.
  • a gene expression suppression vector comprising a base sequence selected from the group consisting of:
  • An antisense method comprising a nucleotide sequence consisting of 20 or more consecutive nucleotide sequences
  • Tobacco cells or tissues are selected from RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method of controlling transcription factor Including regenerating a plant by suppressing the expression of any gene of (a) to (g) defined in (1) and (2) using any one of the methods (1) to (1) (4) A method for producing the tobacco genus plant according to any one of the above.
  • the smoke of dry leaf tobacco of the tobacco genus plant comprising suppressing the expression of any of the genes defined in (a) to (g) defined in (1) or (2) To reduce the content of carbonyls therein.
  • Suppression of gene expression is selected from the group consisting of RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method of controlling transcription factor
  • a vector according to any one of (7) to (12) is introduced into a plant cell or tissue. The method described in (1 8) or (1 9).
  • a protein capable of controlling the carbonyl content in combustion smoke of plants refers to the combustion smoke generated when burning tissues of tobacco plant such as dried leaves. It is a protein involved in biosynthesis or degradation of plant components that becomes a precursor of contained carbonyls or inhibits the formation of carbonyls by combustion reaction.
  • FIG. 1 shows the PCR amplification region of the # 1 049 1 gene.
  • FIG. 2 shows the structure of the vector p S P 148. It was constructed by introducing 35 S promoter: spacer and NOS terminator between two D ⁇ of pDNR_l (CLONTEC H). 35 S promoter and NOS terminator were introduced from pB I 1 2 1 (C LONTECH). The spacer used was the M 1 u I fragment (1 525-20 73) of p S B 11 (A CCE S S I ON No. AB 027256).
  • FIG. 3 shows the structure of the vector p S P 148— # 1 049 1 FR.
  • FIG. 4 shows the structure of the vector p S P 107.
  • the p ro K— l o x P fragment (C r e a t o r A c c e p t o r c t o r c o n s t r u c t i o n K i t, C 1 o n te c h) was introduced into p B I 1 2 1 (CLONTEC H) H i n d l I I—S se 838 7 I site.
  • FIG. 5 shows the structure of the vector p S P 1 07— # 1 049 1.
  • Figure 6 shows the results of measuring the expression of the # 1 04 1 9 gene in transgenic tobacco using real-time PCR.
  • Panels A-D in FIG. 7 show the morphology of transgenic tobacco (T 1 generation, T 0 generation inbred progeny) and / or control tobacco (emergence stage).
  • Panel A in Figure 8 shows the dried leaves of Transgenic tobacco.
  • Panel B in Figure 8 shows the dry leaves of the control tobacco.
  • Panel A in Figure 9 shows the formaldehyde content in the smoke from the dry leaves of transgenic tobacco.
  • Panel B in Fig. 9 shows the acrolein content in the smoke from the dry leaves of Transgenic tobacco.
  • FIG. 10 shows the structure of the vector p S P 204.
  • FIG. 11 shows the structure of the vector p S P 20 1.
  • Figure 12 shows the map of the trigger sequence used in the expression suppression experiment.
  • Figure 1 3 shows the vectors p S P 204—M_t r i g e r and p S P 204—3 ′
  • FIG. 14 shows the result of measuring the expression of the # 1 04 19 gene in transgenic tobacco by real-time PCR.
  • Tobacco plants with reduced carbonyl content in the combustion smoke of the present invention are:
  • a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in plant combustion smoke;
  • a protein comprising an amino acid sequence having an identity of 85% or more with respect to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the carbonyl content in plant combustion smoke
  • the gene capable of controlling the carbonyl content in the combustion smoke of tobacco genus plants is SEQ ID NO:
  • This gene has the base sequence shown in FIG. 5 (full-length cDNA sequence) and encodes the amino acid sequence shown in SEQ ID NO: 6 (hereinafter sometimes referred to as # 1 049 1 gene).
  • # 1 049 1 gene focuses on the fact that the degree of maturity of tobacco leaves greatly affects the quality of the raw tobacco, and using the DNA microarray of tobacco, we investigated the genes whose expression level changed significantly during the maturation process of tobacco leaves As a result, it was selected.
  • the DNA of # 1 049 1 gene can be isolated by those skilled in the art by generally known methods.
  • hybridization technology (S outhern, EM., J Mo 1 B iol, 1 97 5, 98, 503.) is a polymerase chain reaction (PCR) technology (S aiki, RK. Eta 1. , Science, 1 98 5, 230, 1 350., Saiki, RK. Eta 1., Science 1 988, 239, 487.).
  • PCR polymerase chain reaction
  • DNA consisting of the base sequence described in SEQ ID NO: 1 (probe sequence immobilized on tobacco DNA microarray) or a part thereof is used as a probe, and also described in SEQ ID NO: 1.
  • Hybridization conditions are not particularly limited as long as they can be highly pre-hybridized.For example, 0 ⁇ 25M Na 2 HPO 4 , pH 7.2, 7% SDS, 1 mM E
  • the conditions are preferably such that washing is carried out twice for 15 minutes at 65 ° C, more preferably 68 ° C.
  • the method for obtaining the full-length cDNA clone of the # 1 049 1 gene is not particularly limited, and it may be excised from a cDNA library of an organism having the gene with an appropriate restriction enzyme and purified.
  • Genomic DNA is extracted from plant cells or tissues, for example, and a genomic library (plasmid, phage, cosmid, BAC, PAC, etc. can be used as vectors) is created from this library. It can be obtained by performing colony hybridization or plaque hybridization using a probe prepared based on the base sequence shown in SEQ ID NO: 5.
  • the base sequence of the gene of the present invention has been determined, thereafter, by chemical synthesis, or by PCR using the cDNA or genomic DNA of this gene as a cage, or the base sequence. It can be obtained by hybridizing with a DNA fragment having a DNA as a probe.
  • genes other than tobacco are disclosed in US Pat. No. 707 1 3 76. It was found that the CYP 98A3 gene encoding p-couma rate 3-hydroxylase (C 3 H) of Arabidopsis thaliana is approximately 70% identical in nucleotide sequence and 74% identical in amino acid sequence.
  • C 3 H p-couma rate 3-hydroxylase
  • the protein encoded by the # 1 049 1 gene is a protein having the amino acid sequence shown in SEQ ID NO: 6, but is not limited to the protein in the present invention, and the content of carbonyls in the combustion smoke of tobacco plants As long as it is a protein that can control the amino acid sequence shown in SEQ ID NO: 6, the amino acid sequence shown in SEQ ID NO: 6 has one or several amino acid deletions, substitutions or additions, or 85 It may be a protein containing an amino acid sequence having at least% identity.
  • amino acid sequence in which one or several amino acids are deleted, substituted or added is specifically 1 to 10 amino acids, preferably 1 to 5 amino acids of the amino acid sequence shown in SEQ ID NO: 6.
  • the mutation may be an artificially introduced mutation or a naturally occurring mutation.
  • amino acid sequence having 85% or more identity to the amino acid sequence shown in SEQ ID NO: 6 is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more, 99%.
  • sequence identity can be determined by F ASTA search or B LAST search.
  • the gene encoding the protein is a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 5, but is not limited thereto, and is a polynucleotide capable of controlling the content of carbohydrates in the combustion smoke of tobacco genus plants. As long as the polynucleotide has 85% or more identity to the base sequence shown in SEQ ID NO: 5, or a base in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 5.
  • the polynucleotide may be a polynucleotide that hybridizes under stringent conditions with a polynucleotide that comprises a sequence or a polynucleotide that comprises a base sequence that is complementary to the polynucleotide that comprises the base sequence shown in SEQ ID NO: 5.
  • the base sequence in which one or several bases are deleted, substituted or added is specifically 1 to 10 base sequences shown in SEQ ID NO: 5, preferably:! To 5 base sequences.
  • the mutation may be an artificially introduced mutation or a naturally occurring mutation.
  • the base sequence having 85% or more identity to the base sequence shown in SEQ ID NO: 5 is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more and 99% or more. Is desirable. Sequence identity can be determined by sequence comparison analysis tools such as FASTA and B LAST. In the present specification, the identity of a base sequence is calculated by performing BLAST analysis with default parameters.
  • the stringent conditions can be, for example, the hybridization conditions described above, in which so-called specific hybrids are formed and non-specific hybrids are not substantially formed.
  • Suppression of expression of the gene encoding the protein includes suppression of transcription of the gene and suppression of translation into the protein, and includes not only complete termination of gene expression but also decrease of expression.
  • the tobacco genus plant of the present invention is characterized in that the content of carbonyls contained in combustion smoke generated when burning a plant, particularly dried leaves, is reduced.
  • carbonyls contained in the smoke of dry leaf tobacco include formaldehyde, acetoaldehyde, acetone, acrolein, propionaldehyde, croton aldehyde, methyl ethyl ketone, and butyl aldehyde.
  • the components of cigarette combustion smoke are measured by collecting smoke that has been smoked and dried automatically with cigarettes wrapped under wrapping paper under ISO-compliant smoking conditions.
  • a method using thermal decomposition has been reported as a method for collecting and measuring components in combustion smoke from a smaller amount of sample more easily (T rikai K. eta 1., 2 004, F 42: 1409-1 7.) (T rikai K. eta 1., 2005, Food Chem Toxicol .; 43: 559-68.).
  • carbons in combustion smoke are measured by this pyrolysis method, but the present invention is not limited to this.
  • tissues or cells of the tobacco genus plant of the present invention for example, root, stem, leaf, flower, seed, embryo, ovule, ovary, shoot apex, cocoon, pollen, callus, protoplast, suspension
  • Cultured cells and the like for example, root, stem, leaf, flower, seed, embryo, ovule, ovary, shoot apex, cocoon, pollen, callus, protoplast, suspension
  • the gene expression suppression vector of the invention is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-asethyl
  • a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in the burning smoke of plants, Or
  • a protein comprising an amino acid sequence having an identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in plant combustion smoke;
  • a nucleic acid molecule for suppressing the expression of is inserted into an appropriate vector.
  • the vector of the present invention includes, for example, the base sequence shown in SEQ ID NO: 5, the base sequence shown in SEQ ID NO: 7, a base sequence having 90% or more identity to these sequences, and 20 of these base sequences It includes a base sequence selected from the group consisting of partial sequences of bases or more.
  • Such vectors include antisense vectors or RNA interference induction vectors.
  • An antisense vector refers to a vector containing a nucleic acid molecule that suppresses the expression of the # 1 0 4 9 1 gene, its variant or homologue by an antisense method.
  • a homologue is a gene corresponding to the # 1 0 4 9 1 gene, which has a different nucleotide sequence between tobacco varieties or in plants other than tobacco.
  • the antisense method expresses an antisense RNA complementary to the mRNA transcribed from the target gene, binds the antisense RNA complementarily to the target gene, and prevents transcription of the target gene.
  • a method for suppressing the expression of the gene Specifically, when the # 1 0 4 9 1 gene, its mutant or homologue, or a fragment thereof is inserted in the antisense direction downstream of a promoter that functions in plants, and introduced into a plant cell or tissue, the above Antisense RNA complementary to mRNA can be produced.
  • Nucleic acid molecules that suppress the expression of the # 1 0 4 9 1 gene, its mutants or homologues that are introduced into the antisense vector are, for example, the base sequence of the # 1 0 4 9 1 gene (sequence The full length antisense nucleic acid molecule of No. 5) may be 90% or more, more preferably 95% or more, more preferably 98% or more, 99% or more with respect to the base sequence shown in SEQ ID NO: 5.
  • Antisense nucleic acid molecules having the same sequence may be used, and the base sequences of these nucleic acid molecules are 20 bases or more to less than full length, preferably 100 bases or more to less than full length, more preferably 500 bases or more to full length.
  • the length of the antisense DNA usually used is shorter than 5 kb, preferably shorter than 2.5 kb (reference documents: JP-A-60-232092, JP-A-2000-23685).
  • the RNA interference-inducing vector is a vector containing a DNA that is a truncated form of dsRNA (double-stranded RNA, double-strandRNA) that triggers RNA interference.
  • dsRNA double-stranded RNA, double-strandRNA
  • the ds RNA formed in the cell using this vector is cleaved into siRNA (sma 1 1 interfering RNA) of about 21-25 bases by double-stranded RNA-specific RNase (D icer). After that, a complex is formed as part of RISC (RNA-induced silencing complex), and the target mRNA is recognized and degraded by homology.
  • RNA interference For plant RNA interference, a vector expressed as a hairpin dsRNA is preferably used. This is done by placing a sequence that triggers RNA interference at both ends of the linker sequence (spacer) of tens to tens of bases or several ⁇ to several hundred bases so that it becomes IR (inverted repeat). This is a system that transcribes hairpin dsRNA using a promoter highly expressed in plants and produces siRNA in the cell.
  • siRNA expression systems include tandem types. In the tandem type, sense RNA and antisense RNA are transcribed from two promoters and hybridize in the cell to produce siRNA.
  • the DNA sequence that serves as a trapezoid for RNA interference is, for example, the nucleotide sequence of SEQ ID NO: 7 or 90% or more, more preferably
  • RNA interference induction vector used in the present invention, a sense strand of the base sequence shown in SEQ ID NO: 7 and an antisense strand complementary to the sense strand are sandwiched between a spacer (sequence forming a loop). It is preferable to include them in the same vector so as to be IR (inverted repeat).
  • pBI, pPZP, and pSMA vectors that can introduce a target gene into a plant via agrobacterium are preferably used.
  • binary vector systems pBI 1 2 1, pBI 1 0 1, pBI 22 1, pBI 2 1 1 3, pBI 1 0 1.2, etc.
  • intermediate vector systems p LGV23Neo, pNCAT) Etc.
  • a binary vector contains a right border (RB) and a left border (LB) of the T1 DNA region, and can contain elements such as a promoter and a plant selection marker along with the target gene between both borders. scherichiacoli) and a vector vector that can replicate in agrobacterium.
  • agrobacterium carrying a binary vector When agrobacterium carrying a binary vector is infected with a plant, it is surrounded by a border sequence consisting of the LB and RB sequences on the vector. Partial DNA can be incorporated into plant nuclear DNA (EMBO Journal, 1 0 (3), 6 9 7-704 (1 99 1)).
  • a pUC vector can directly introduce a gene into a plant, and examples thereof include pUC18, pUC19, and pUC9.
  • plant virus vectors such as force reflower mosaic virus (CaMV), kidney bean mosaic virus (BGMV) and tobacco mosaic virus (TMV) can be used.
  • the target gene When using a binary vector-based plasmid, the target gene is inserted between the above-mentioned binary vector boundary sequences (LB, RB), and this recombinant vector is amplified in Escherichia coli.
  • the amplified recombinant vector is introduced into Agrobacterium tumefaciens C 58, LBA4404, EHA 1001, EHA 105, etc. using a method such as freeze-thaw method, electoral position method, etc.
  • the agrobacterium is used for plant transformation.
  • an agropacterium for plant infection containing the target gene is prepared by the three-part joining method (Nucleic Acids Research, 1 2: 8 7 1 1 (1 984)). be able to.
  • E. coli containing a plasmid containing the target gene, E. coli containing a helper plasmid (eg, pRK20 1 3 etc.), and agrobacterium are mixed and cultured on a medium containing rifampicillin and kanamycin. By culturing with, it is possible to obtain an agrobacterium for plant infection.
  • the purified DNA is cleaved with an appropriate restriction enzyme, inserted into an appropriate vector DNA restriction enzyme site or multiple cloning site, and ligated to the vector.
  • an appropriate restriction enzyme inserted into an appropriate vector DNA restriction enzyme site or multiple cloning site, and ligated to the vector.
  • a promoter In addition to the target gene, for example, a promoter, a terminator, a poly A addition signal, a selection marker gene, and the like can be placed in the vector.
  • the promoter does not have to be derived from a plant as long as it is a DNA that functions in a plant or a plant cell and can induce expression in a specific tissue of a plant or a specific developmental stage.
  • Specific examples include cauliflower mosaic virus (CaMV) 35 S promoter, promoter of nopaline synthase gene (P nos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, etc. .
  • the terminator may be any sequence that functions in plants or plant cells and can terminate the transcription of the gene transcribed by the promoter.
  • the terminator of nopaline synthase (NOS) gene, octopine synthesis Examples include an enzyme (OC S) gene terminator and a CaMV 35 S terminator.
  • selectable marker genes include drug resistance genes (tetracycline resistance gene, ampicillin resistance gene, kanamycin resistance gene, hygromycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, neomycin resistance gene, etc.) Fluorescent or luminescent reporter genes (such as luciferase, / 3-galactosidase, ⁇ _dulcronitase (GUS), green fluorescent protein (GFP)), neomycin phosphotransferase Enzyme genes such as ze II (NPT I 1) and dihydrofolate reductase.
  • drug resistance genes tetracycline resistance gene, ampicillin resistance gene, kanamycin resistance gene, hygromycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, neomycin resistance gene, etc.
  • Fluorescent or luminescent reporter genes such as luciferase, / 3-galactosidase, ⁇ _dulcronitas
  • the selection marker gene may be ligated to the same plasmid together with the target gene as described above, or a recombinant vector may be prepared.
  • a recombination obtained by ligating the selection marker gene to the plasmid may be prepared separately. If prepared separately, co-transform each vector into the host.
  • Example 2 An example of construction of a binary vector that can be used in the present invention is shown in Example 2 described later. That is, plasmid p SP 148 with 35 S promoter, spacer, NO S terminator inserted between 1 o XP of plasmid p DNR-1 (C LONTEC H) containing 2 1 o XP.
  • Figure 2 to produce, in the NOS terminator one and scan Bae between p o first and spacer first and 3 5 s 2 or object DN a fragment opposite directions of the triggers of RNA i between the promoter Insert a trigger to place it ( Figure 3, plasmid p SP 148_ # 1 049 1 FR), and insert this hairpin-type ds RNA expression cassette into Cre-1 ox recombination (US Pat. No. 6, 4 1 0, 3 1 7) can be recombined with the plasmid p SP 1 07 (Fig. 4) to produce the binary vector p SP 1 0 7_ # 1 049 1 (Fig. 5).
  • the two triggers may be facing each other or facing each other back.
  • the spacer sequence may be any sequence as long as it forms a hairpin loop.
  • a ras gene sequence or an intron sequence can be exemplified, and its size is, for example, about several to several hundred bases. It is.
  • the method for producing a tobacco genus plant of the present invention comprises controlling the ribonucleic acid method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and transcription factor for tobacco cells or tissues. Expression of any one of the gene encoding the protein (a) to (c) and the gene containing the polynucleotide (d) to (g) using any one method selected from And regenerating plant bodies. -
  • Nicotiana 'Tmentififolmis (N icoti anat ome ntosiformis), Nicotiana Ninocotiana 5 7.1 6 5 1: 15: Nicotiana * Noresti Force (N icotianarustica), Nicotiana 'Tanokaku (N icotianatabac um), Nicotiana Plumbagi Examples include Nifolia (N icotianap 1 u mb aginifolia, N icotianaxsanderae), but are not particularly limited, but Nicotiana Tabacam is preferred. Varieties of varieties used as cigarette products, cigars used as cigarette ingredients, oriental varieties grown in the Orient region, and tobacco seeds have been introduced to various parts of the world. Including native species adapted to the climate and differentiated.
  • Plant materials for producing the tobacco genus plant of the present invention include plant bodies and plant tissues (eg, roots, stems, leaves, seeds, embryos, ovules, ovary, shoot tips, cocoons, pollen, etc.) and their Plant culture cells such as slices, cells, callus, proplasts that have been treated with enzymes to remove cell walls, and suspension culture cells.
  • plant tissues eg, roots, stems, leaves, seeds, embryos, ovules, ovary, shoot tips, cocoons, pollen, etc.
  • Plant culture cells such as slices, cells, callus, proplasts that have been treated with enzymes to remove cell walls, and suspension culture cells.
  • RNA interference method antisense method
  • gene disruption method gene disruption method
  • artificial mutation method ribozyme method
  • Co-suppression methods or methods of controlling transcription factors.
  • RNA interference method is performed by the RNA interference induction vector, or double-stranded RNA homologous to, for example, the polynucleotide shown in SEQ ID NO: 5 or 7, or a polynucleotide having 90% or more identity to SEQ ID NO: 5 or 7.
  • a continuous example preferably a double-stranded RNA of about 15 to 35 bases is introduced into a plant cell or tissue.
  • the antisense method can be performed, for example, by introducing the antisense vector into a plant cell or tissue.
  • tissue pieces (leaf pieces, callus, etc.) may be used.
  • telomere length is a region of DNA sequence that has been incorporated into a plant.
  • DNA is prepared from transformed plants, DNA-specific primers are designed, and PCR is performed. After PCR, the amplified product is electrophoresed, stained with bromide zyme, SYBR Green solution, etc., and the amplified product is detected as a single band to confirm that it has been transformed. be able to. It is also possible to detect the amplification product by performing PCR using a primer previously labeled with a fluorescent dye or the like.
  • the amplified product can be bound to a solid phase such as a microplate, and the amplified product can be confirmed by fluorescence or enzymatic reaction, or DNA can be quantified based on the amplification rate using the comparative Ct method in real-time PCR.
  • a vector in which the above-mentioned various reporter genes are linked to the downstream region of the target gene is prepared, and a plant is transformed in the same manner as described above using agropacterime into which the vector is introduced, and the expression of the reporter gene You can confirm this by measuring.
  • the gene disruption method can be performed using various transposons and T-DNA.
  • Gene disruption using a transposon is a method that uses the gene insertion mechanism of the transposon into the genome.
  • the method using an endogenous transposon is superior in that a large number of gene disruption lines can be produced at a time as a non-recombinant.
  • Such endogenous insertion factors include transpozo in tobacco plants.
  • a retrotransposon T to 1 is known (WO 00/0 7 1 699).
  • Gene disruption using T-DNA is performed by inserting a foreign gene such as a drug resistance gene into the target gene and inserting it between the right border (RB) and the left border (LB). This is a method for producing and transforming tobacco plants using the agrobacterium method.
  • Artificial mutagenesis is, for example, by irradiating plants with various types of radiation (electromagnetic waves, ultraviolet rays, X rays, ⁇ rays, particle rays, neutron rays, ⁇ rays, i3 rays, electrons, ion beams, etc.) This can be done by treating with various mutagenic chemicals (alkylating agents, nucleobase analogs, sodium azide, etc.). '
  • Co-suppression is a phenomenon in which when a gene having the same or similar sequence as a target endogenous gene is introduced into a plant by transformation, the expression of the introduced foreign gene and target endogenous gene are both suppressed.
  • Point to (Smy th DR: Cu rr B iol 7: R 793, 1 9 9 7, Ma rtienssen R: C urr B io 1 6: 8 1 0, 1 996).
  • the details of the mechanism of co-suppression are not clear, but at least part of the mechanism is thought to overlap with that of RNAI.
  • sequence identity can be determined by the method described above.
  • the ribozyme used in the ribozyme method is a general term for RNA molecules having catalytic activity. In particular, in this specification, it refers to RNA molecules designed to cleave RNA in a site-specific manner. Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and Ml RNA contained in RNase P. However, the hammerhead type has an active domain of about 40 nucleotides called hairpin type. Some things (Makoto Koizumi and Eiko Otsuka: Protein Nucleic Acid Enzymes, 35: 2 1 9 1,
  • Ribozymes designed to cleave targets are translocated in plant cells. As shown, it is linked to a transcription motor and transcription termination sequence such as the 35 S promoter of cauliflower mosaic virus. At this time, if an extra sequence is added to the 5 'end or 3' end of the transcribed RNA, the ribozyme activity may be lost. In such cases, the RNA containing the transcribed ribozyme may be lost. It is also possible to place another trimming ribozyme that works in cis on the 5 'side or 3' side of the ribozyme part (T aira K, eta 1: Protein En g).
  • the method of controlling a transcription factor is a method of indirectly increasing or decreasing the expression of a target gene by increasing or decreasing the expression of a transcription factor that regulates the expression of the target gene.
  • a transcription factor controls the expression of a gene by binding to a specific sequence (cis element) in the promoter region of the target gene. For example, by expressing a transcription factor, it is possible to suppress the gene expression of a metabolic gene (P 1 ant Molec lar Al Biol og 2006 6 2: 809-82 3).
  • an organ or an individual may be regenerated by using a known tissue culture method from the obtained plant tissue or cells.
  • a known tissue culture method from the obtained plant tissue or cells.
  • Such an operation can be easily performed by those skilled in the art by a method generally known as a method for regenerating plant cells from plant cells.
  • Regeneration from plant cells to plants can be performed, for example, as follows.
  • plant tissues or protoplasts are used as plant materials for transformation. When used, they are cultured in a sterilized callus-forming medium with the addition of inorganic elements, vitamins, carbon sources, sugars as energy sources, plant growth regulators (plant hormones such as auxin and cytokinin), etc. It forms dedifferentiated callus that grows in a regular shape (hereinafter referred to as “callus induction”). The callus formed in this way is transferred to a new medium containing a plant growth regulator such as oxine and further grown (subcultured).
  • a plant growth regulator such as oxine
  • redifferentiation induction organ redifferentiation
  • redifferentiation induction organ redifferentiation induction
  • induction of regeneration can be performed by appropriately setting the kind and amount of various components such as plant growth regulators such as auxin and cytokinin, carbon sources, light, temperature, etc. in the medium.
  • the tobacco genus plant produced by the method of the present invention is obtained from the seed of the plant using the 0th generation plant as a parent, in addition to the “TO generation” which is a regenerated generation that has undergone transformation treatment.
  • Various tobacco products such as cigarettes, cigars and pipe tobacco can be produced using these tobacco plants or their leaves as a raw material for tobacco products.
  • the quality of dry leaf tobacco depends greatly on the maturity of the tobacco leaves being cultivated. It is believed that the fertilizer will wither in the tens of days from the centering to the harvest, and that tapaco leaves will gradually mature with increasing dry weight. During this period, the content of tobacco leaves changes greatly, including increased alkaloid content and chlorophyll degradation. In other words, components related to the taste of dried tobacco are generated and accumulated with dramatic metabolic changes during the mature period. Therefore, the quality of dry leaf tobacco can be controlled by genes expressed in relation to tobacco leaf maturity. High-quality dry tobacco is used to properly dry tobacco leaves that are reasonably mature. It is possible to produce only with.
  • the dry leaves of good quality yellow tapaco are finished in a bright yellow color, fragrant, and characterized by a mild and sweet taste.
  • Color tone is an important factor in determining the quality of dried leaves.
  • vibrant colors such as lemon and orange have good quality, and those with mottled and green colors have poor quality.
  • the quality of dried leaf tobacco is also greatly affected by the drying process.
  • Leaf Tobacco This drying process is not just for the purpose of drying leaves, but is an extremely important step in leaf tobacco production by changing the components in the leaves and expressing the unique color and flavor of the tobacco.
  • problems with management in drying processing such as temperature and humidity and leaf suspension density
  • dry tobacco leaves become abnormal dry leaves such as quick-drying leaves, mulled leaves, and belted green leaves. It will be greatly damaged.
  • the appearance of abnormal leaves and the ease of drying in such a drying process depend not only on the maturity level but also on the variety and soil environment. For example, “easiness of drying” as a genetic trait is also used for breeding of varieties.
  • the transgenic tobacco (# 1 049 1 tobacco) that suppressed the expression of the # 1 049 1 gene of the present invention had almost the browning observed in the control tobacco introduced with the vector control when the leaves were dried. It has a bright yellow color and can be a good quality raw material.
  • the # 1 049 1 cigarette of the present invention was also recognized as having an early maturity compared to the control tapaco.
  • the present inventors have determined that the maturity level of tobacco leaves is the raw material for the purpose of identifying genes that affect the quality of the raw leaf tobacco. Focusing on the fact that the quality of leaf tobacco is greatly influenced, in the leaf of tobacco grown in soil cultivation, or in the leaf of hydroponically cultivated tobacco in which maturation was induced artificially by reducing the amount of nitrogen fertilization, We searched for genes whose expression level changes greatly. As a result, we identified the # 1 0 4 9 1 gene as one of the genes whose expression specifically increases during tobacco leaf maturation.
  • the soil-cultivated tobacco (Tsukuba No. 1) was transplanted to No. 4 clay pot (terracotta; diameter 1 24 mm, height 1 1 Omm) 6 weeks after sowing, and meteorological meteorological equipment (Cottron: Koito Industries) (Made by Co., Ltd.) Fertilizer for pots is soil: compost: red ball (large), red ball
  • Hydroponic tobacco (Tsukuba No. 1) was transplanted to a polypot (round, 1 2. O cm, 9.8 cm, 1 bottom hole) filled with Hydroball (small grain) on the 8th day of germination. and, water culture medium containing 1 5 mM KN0 3 (2. 5 mM K pi: p H 5. 5, 2 m
  • T o tal RN A was purified from about 4 g of sample using C o n c rt P l ant RNA r a ge nt (Inv ito r o ge ne).
  • poly (A) RNA was purified using Total RNA 1, OOO ⁇ g force and oligo d T-cellulose affinity column method (Gen E 1 ute mRN A miniprepkit, Sigma). (The operation method described in the first place is carried out).
  • the po 1 y (A) RNA obtained as described above was analyzed using a BY-2 ES T microarray equipped with approximately 170,000 kinds of ES T derived from tobacco culture cells of RIKEN.
  • RIKEN B Y_ 2-E For more information on S T microarray Ma t s u o k a et al (2 0 04, A c o m p r e h e n s i v e g e n e x p r e s s i o n a n a 1 y s i s t o w a r d t h e u n d e r s t a n d i n g o f g r o w t h a n d d f f e r e n t i a t i i
  • G a 1 is et al. (2 0 0 6, A nove 1 R 2 R 3 MYB transcri Ption factor N t MYB JS 1 isamethy 1 jasmonate— dependentregu 1 atorofpheny 1 P ro P anoid— conjgatebiosynthesisi ntobacco. P 1 an t J., 46: 5 73-92.) and NCB I (National C enterfor Biotechno 1 ogy Information) GEO (Gene E xpression Omn ibus) homepage .
  • the probe solution was prepared by mixing A80, Cy3 labeled vector and Express Hyb TM Hybridization Solution (Clontech).
  • the probe high-pridization and scanning follow the method of Matsuoka et al. Analysis was performed using 7 f, .Gene Spring (Silicon Genetics).
  • an expression tag EST is one of the genes whose expression is specifically increased during tobacco leaf maturation.
  • Sequence analysis was performed using B iGDy e (registered trademark) Terminatorv 3.1 Cycle Sequencing K i "Ap plied B iosyst ems) and 3 700 DNA A na 1 yzer (Ap plied B iosyst em s) 1 049 1 f
  • the sequence obtained as described above was obtained using a nucleotide sequence analysis software (ATGC Ver. 4, GENETYX; Genetics).
  • the full-length cDNA sequence (SEQ ID NO: 5, # 1 049 1—c) of 1 720 bp by combining the sequence (SEQ ID NO: 1) and the c DN A terminal sequence of the above three clones.
  • RNA i The DNA sequence that triggers RNA i (SEQ ID NO: 7 # 1 049 1—triger) is the sequence of clone No. PCR was amplified from the same region shown in FIG. 1 using the 0 and 11 ply combinations. PCR amplification was performed using PfU Ultra TM High-fidelity DNA Polymerase (Stratagene) and Gene Amp (registered trademark) PCR System 9 700 (Applied Biosyst ems). After 95 minutes at 95 ° C, the reaction was performed at 95 ° C for 30 seconds, 60 C for 30 seconds, 72 ° C for 60 seconds for 30 cycles, and 72 ° C for another 10 minutes.
  • the two amplified DNA fragments are N 0 1 1 nose added by the primer at the 5 '/ 3' ends, respectively. It has 3 1 1 or 8 & mH I / S p I recognition sequences ( Figure 1).
  • the obtained amplified DNA was double-digested with the restriction enzyme added to the 5 ′ / 3 ′ end, respectively, and purified with MinE 1 utekit (Q I AG EN). .
  • pSP1 48 As a vector for constructing the inverted repeat sequence (that is, the repeat of the forward sequence and the reverse sequence), pSP1 48 (FIG. 2) modified from pDNR-1 (Clontech) was used. Between the two 1 o XP sites of p SP 148 ( Figure 2), there are a 35 S promoter, a retic cloning site 1 (MC S 1), a spacer self-alignment, a reticulated cloning site 2 (MC It exists in the order of S 2) and NO S terminator.
  • the amplified DNA fragment double-digested with the aforementioned restriction enzymes was introduced into the Pst I / Not I sequence introduction site of MC S-1 of this vector and the BamH I / Sph I sequence introduction site of MCS 2.
  • p SP 1 48— # 1 049 1 FR containing a hairpin ds RNA expression cassette was prepared (Fig. 3).
  • the hairpin ds RNA expression cassette constructed on p SP 148— # 1 049 1 FR uses Cre _ 1 ox recombination (US Pat. No. 6 4 1 0, 3 1 7). And replaced with the binary vector p SP 107 (Fig. 4).
  • Binary vector PSP 1 07 (Fig. 4) is a modification of p BI 1 2 1 (Clontech) using Creator Acceptor Vector Configuration Kit (C 1 ontech).
  • p SP 1 0 7 control, agrobacteri um t ume faciens approximately 10 8 cells transfected with vector J that expresses only GFP gene and npt II gene and L ins ma ierand S koog (1 965) 48 hours of co-cultivation in a liquid medium consisting of 30 g / L sucrose and 30 mg / L sucrose After washing the leaf pieces three times with sterile water containing cefotaxime 25 OmgZL and carpenicillin 250 mg / L After washing off the bacteria, Mu rashigeand S koog inorganic salts, sucrose 30 g / L, indoleacetic acid 0.
  • a callus-like cell cluster showing kanamycin resistance in a secondary selection medium was cultured for about 3 weeks, and then a 5 mm x 5 mm leaf fragment collected from a redifferentiated individual was used as a GU S assay (Hieieta 1., 1 994) I tried it. Individuals selected by G U sa s s a y were placed again in the secondary selection medium (plant box). Further, after culturing for about 3 weeks, the rooted individuals were transplanted into No. 4 clay pot (terracotta; diameter: 124 mm, height: 110 mm).
  • transgenic tobacco hereinafter referred to as # 1 049 1 tobacco
  • # 1 049 1 tobacco transformed with the binary vector p S P 1 0 7— # 1 049 1
  • transgenic tobacco Twenty individuals, six transgenic tobacco (hereinafter referred to as control tobacco) transformed with pS P 107 were produced.
  • Transgenic tobacco was cultivated in a closed greenhouse in which the temperature was adjusted to about 23 ° C day and night using a cooling device and a boiler device under natural light.
  • # 1 049 1 Inhibition of # 1 049 1 gene expression in tobacco was reduced by real-time PCR (Wo nge t a l. (2005) B i o t e c h n i q u e s
  • RNA is extracted using RNe a s y P l a n t M i n i K i t (Q I AG EN), and Omn i s c r i p t RT
  • Reverse transcription reaction was performed using Kit (QI AGEN). A part of this reverse transcription reaction solution was subjected to real-time PCR. # 1049 1 and i3—actin TaqMan (registered trademark) (Roche Molecul for real-time PCR) ar System ems) Probe and primer were designed using PrimerExpress (Applied Biosyst ems) (SEQ ID NO: 1 2 — 1 7).
  • kit QI AGEN
  • Leaves were harvested from tobacco about 2 months after the above potting and dried in yellow to produce dry leaves.
  • the yellow drying was performed using a thermo-hygrostat manufactured by ESPEC according to a program consisting of 13 steps. Each step is as follows.
  • Step 1 After the start of drying, heat up and humidify for 3 hours. After reaching a temperature of 38 ° C / relative humidity 1 • 0 0%, treat under these conditions for 8 hours.
  • Step 2 Next, raise the temperature over a period of 1 hour, dehumidify, reach 40 ° C / 87% relative humidity, and then treat for 15 hours under these conditions.
  • Step 3 Next, heat up and dehumidify over 1 hour. After reaching a temperature of 43% relative humidity of 63%, treat under this condition for 15 hours.
  • Step 4 Next, the temperature is raised and dehumidified over 1 hour. After reaching a temperature of 45 ° CZ and a relative humidity of 52%, it is treated under this condition for 15 hours.
  • Step 5 Next, heat up and dehumidify for 1 hour. After reaching a temperature of 48 ° C / relative humidity of 43%, treat under this condition for 15 hours.
  • Step 6 Next, heat / humidify over 1 hour, temperature 50 ° C / relative humidity 37% After reaching, processing for 10 hours under this condition.
  • Step 7 Next, heat it up over 1 hour, dehumidify, and reach a temperature of 53 ° CZ relative humidity 3 1%, then treat under this condition for 8 hours.
  • Step 8 Next, heat up Z for 1 hour, dehumidify, reach 56 ° C at a relative humidity of 26%, and then process for 6 hours under this condition.
  • Step 9 Next, heat up Z over 1 hour, dehumidify, and after reaching 60 ° C / 20% relative humidity, treat for 6 hours under these conditions.
  • Step 10 Next, heat up and dehumidify over 1 hour, and after 6% of relative humidity reaches 16%, treat under this condition for 6 hours.
  • Step 11 Next, the temperature is increased over 2 hours, and after reaching a temperature of 65 ° CZ relative humidity of 16%, it is treated for 2 hours under these conditions.
  • Step 1 2 Next, the temperature is raised in 1 hour, and after reaching a temperature of 68 ° C and relative humidity of 16%, it is treated for 8 hours under this condition.
  • Step 1 3 Over 5 hours, temperature is lowered to 30 ° C / relative humidity 60%.
  • the dried leaves of Transgenic tobacco produced as above are 40 ° C, 95%
  • the content of formaldehyde and acrolein in the smoke was measured in a pyrolysis test using R i k o I n c.).
  • the carrier gas was 100% nitrogen gas, and the flow rate was adjusted to 1 000 m 1 Zm i n using SEC—B 40 ma s s f l o c o n t r o l l e r (Ho r i b a St e c I n c.).
  • a sample of 150 mg of tobacco was used as a sample, and packed in a width of 12.5 mm in the center of the quartz tube.
  • the T r i ⁇ m a b a s e solution is 0.4 g L of T r i zma b a s e, dissolved in 4 OmL of ultrapure water, and added with acetonitrile.
  • # 1 049 1 The results of infrared image furnace analysis of tobacco and control tobacco are shown in Figure 9. In the analysis, we measured # 1 049 1 cigarettes and 3 control cigarettes, and calculated relative values (%) when the amount of formaldehyde and acrolein produced in the control cigarettes was 100%. Calculated. As a result, # 1 049
  • # 1 049 1 tobacco which suppressed the expression of 1 gene, the formaldehyde and acrolein contents in the smoke were significantly reduced, averaging 45% and 68%, respectively, in the control.
  • # 1 049 1 Content of carbonyls in combustion smoke in tobacco This reduction is thought to be due to the reduced production of some components in the leaves, which are precursors of carbonyls in the combustion smoke. Therefore, the control of the carbonyl group in the smoke of dry leaf tobacco can be realized by using tobacco leaves with controlled expression of the # 1 049 1 gene.
  • a new binary vector p S P 204 (FIG. 10) was used to construct an inverted repeat.
  • the binary vector p SP 204 is a modified version of PSP 20 1 (Fig. 11) derived from p BI 1 2 1 and is based on the use of Gate wa y (registered trademark) Technology (Invitrogen). Directly repeated sequences can be constructed directly on a binary vector.
  • Transgenic tobacco was produced according to the method shown in Example 3 above, and finally transformed with the binary vector p SP 204_M_triger (hereinafter referred to as # 1 049 1—M and U) 1 2 individuals and a ba Inary vector p SP 204— 3 '— Transgenic tobacco transformed with triger (hereinafter referred to as # 1 049 1— 3') 1 1 individual, binary vector p SP 20 1 Two transgenic tobaccos (hereinafter referred to as Control 2) were prepared.
  • the binary vector p SP 204_M_triger hereinafter referred to as # 1 049 1—M and U
  • a ba Inary vector p SP 204— 3 ' Transgenic tobacco transformed with triger (hereinafter referred to as # 1 049 1— 3') 1 1 individual, binary vector p SP 20 1
  • Control 2 Two transgenic tobaccos
  • the tobacco plant and dry leaf tobacco characterized by the content of carbonyls in combustion smoke being reduced can be provided.
  • transformed tobacco plants usually have morphological effects such as leaf dwarfing and fewer leaves, resulting in a decrease in yield.
  • tobacco plants that suppress the expression of the generated gene have no morphological effect, and mature more rapidly than non-transformed tobacco plants, and are easy to dry.

Abstract

It is intended to provide a plant of the genus Nicotiana with a reduced content of carbonyls in plant combustion smoke. A plant of the genus Nicotiana in which the expression of a gene encoding any one of the proteins shown in the following (a) to (c) has been suppressed is provided: (a) a protein having an amino acid sequence represented by SEQ ID NO: 6; (b) a protein having an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 6 and capable of controlling the content of carbonyls in plant combustion smoke; and (c) a protein having an amino acid sequence with a homology of 85% or more to the amino acid sequence represented by SEQ ID NO: 6 and capable of controlling the content of carbonyls in plant combustion smoke.

Description

燃焼煙中のカルボニル類含量が低減されたタバコ属植物及びその作製法  Tobacco plant with reduced carbonyl content in combustion smoke and method for producing the same
技術分野 Technical field
本発明は、 燃焼煙中のカルボニル類含量が低減されたタバコ属植物及びその作 製法に関する。 明  The present invention relates to a tobacco genus plant having a reduced carbonyl content in combustion smoke and a method for producing the same. Light
背景技術 Background art
たばこ製品に対しては、 その燃焼煙に含まれるカルボ二ル類を低減することが 書  For tobacco products, it is written to reduce carbonyls in the combustion smoke.
望まれている。 たばこ製品の燃焼煙中に含まれるカルボ二ル類を低減する方法と して、 従来、 吸着剤として活性炭を添加したフィルターを用いるのが一般的であ り、 このほかにも、 種々の吸着剤の使用が試みられている。 It is desired. In order to reduce the amount of carbonyls contained in the smoke of tobacco products, it has been common to use a filter with activated carbon added as an adsorbent. The use of is being tried.
一方で、 タールやニコチンに代表される主流煙中の成分のある部分は、 喫煙の 満足感や香喫味に直接関わる部分であり、 これら成分の量を相対的に高いレベル に保ったまま、 煙成分中のカルボニル類のみ選択的に除去することが望ましい。 しかし、 従来使用されている吸着剤は、 カルボニル類だけでなく他の成分も吸 着するため、 たばこ製品の香喫味へ悪影響を及ぼす可能性があった。 例えば、 特 許文献 1〜7は、 ホルムアルデヒ ドの吸着等を目的としてアミン系物質を添加し たフィルターを開示する。 しかし、 これらは、 煙成分中のカルボ二ル類を低減す ることができるが、 タールやニコチンも同時に除去してしまう。 また、 添加した アミン系物質の分解のために特有のアミン臭を呈するなど、 臭い、 安全性、 効果 などに問題があり、 実際にたばこ製品に利用するには実用的なものがなかった。 更に特許文献 7は、 燃焼煙中のカルボ二ル類を低減する目的で燃焼改善剤として アンモ-ゥム含有化合物を添着したシガレツ ト巻紙についても開示するが、 上述 したようにタールやニコチンを除去してしまうので、 実用的でない。 また、 特許 文献 8は、 タバコ煙中のアルデヒ ドを除去するためにグリシンの如き一定のアミ ノ酸の使用を開示する。 グリシンはタバコ煙中のホルムアルデヒ ドのレベルを減 らすことができるが、 紙巻きタバコフィルター製造工程では安定していないこと が知られている。 さらに、 それは貯蔵中にアンモニア臭を放出するため、 たばこ 製品に用いるには不適当であった。 On the other hand, some parts of mainstream smoke, such as tar and nicotine, are directly related to smoking satisfaction and savory taste, and the amount of these ingredients remains relatively high. It is desirable to selectively remove only carbonyls in the component. However, the adsorbents used in the past adsorb not only carbonyls but also other components, which may adversely affect the taste of tobacco products. For example, Patent Documents 1 to 7 disclose filters to which amine substances are added for the purpose of adsorption of formaldehyde and the like. However, they can reduce carbonyls in the smoke component, but also remove tar and nicotine at the same time. In addition, there was a problem in odor, safety, and effects such as the appearance of a unique amine odor due to the decomposition of the added amine-based substance, and there was nothing practical for practical use in tobacco products. Further, Patent Document 7 discloses a cigarette wrapping paper to which an ammonia-containing compound is added as a combustion improving agent for the purpose of reducing carbonyls in combustion smoke. However, as described above, tar and nicotine are removed. So it's not practical. Patent document 8 also discloses the use of certain amino acids such as glycine to remove aldehydes in tobacco smoke. Glycine can reduce the level of formaldehyde in tobacco smoke, but it is not stable in the cigarette filter manufacturing process It has been known. In addition, it releases ammonia odor during storage, making it unsuitable for use in tobacco products.
煙成分中のカルボニル類のみを選択的に除去する方法もいくつか提案されてい る。 例えば、 引用文献 9はホルムアルデヒ ドを選択除去できるハイ ド口タルサイ ト類化合物を添加したフィルターを開示する。 明細書において、 チヤコールフィ ルターが全有機蒸気 (V O C ) を無差別に低減することによりホルムアルデヒ ド の低減を実現するのに対し、 ハイ ドロタルサイ ト類化合物添加フィルタ一は全有 機蒸気の大きな低減無しにチヤコールフィルターと同等のホルムアルデヒ ド低減 を実現することが示されている。  Several methods for selectively removing only carbonyls in the smoke component have been proposed. For example, reference 9 discloses a filter to which a high-mouth talcite compound that can selectively remove formaldehyde is added. In the description, the Ciacoal filter achieves a reduction in formaldehyde by indiscriminately reducing the total organic vapor (VOC), whereas the hydrotalcite compound addition filter does not significantly reduce the total organic vapor. It has been shown that formaldehyde reduction equivalent to that of Cyacoal filters is achieved.
特許文献 1 0は、 特異な吸着特性をもつ結晶性ゼォライ トを利用することによ り選択性を高めていると考えられる。 しかし、 これを組み込んだフィルダーはァ クロレインを 5 0 %以上低減するなど、 9種の成分を低減することが示されてい るが、 その他成分への影響については明らかにされていない。 特許文献 1 1は、 塩基性ポリペプチドを添加したフィルターが、 活性炭やキトサンと異なり、 ニコ チンやタールを除去することなくホルムアルデヒ ドを市販品と比べて約 1 5 %低 減することを開示する。  In Patent Document 10, it is considered that selectivity is enhanced by using crystalline zeolite having unique adsorption characteristics. However, it has been shown that a filter that incorporates it reduces nine components, such as reducing acrolein by 50% or more, but the effect on other components has not been clarified. Patent Document 11 discloses that, unlike activated carbon and chitosan, a filter to which a basic polypeptide is added reduces formaldehyde by about 15% compared to a commercial product without removing nicotine and tar. .
以上のように、 たばこ製品の燃焼煙中に含まれる低級アルデヒ ドを特異的に低 減する方法として、 幾種かの、 特異的吸着剤を添加したフィルターの利用が有効 であると考えられる。 しかし、 このようなフィルターの高機能化は、 通気抵抗の 増大を招き、正常な燃焼煙を得ることが難しくなるなど、実用には限界があった。 そこで、 フィルターとは別種の方法により、 たばこ製品の燃焼煙中のカルボ- ル類を低減する方法が求められていた。 燃焼煙中の力ルポニル類含量の少ないタ バコ植物の開発はその方法の一つとして考えられる。 また、 このようなタバコ植 物をシガレツト等の原料として用いれば、 高機能フィルターの開発および製造に かかる負担を軽減できるため、 製造コス トの低減に繋がることが期待できる。  As described above, it is considered that the use of several kinds of filters with specific adsorbents is effective as a method of specifically reducing the lower aldehydes contained in the smoke of tobacco products. However, such high functionality of the filter has limited practical use, such as increasing the ventilation resistance and making it difficult to obtain normal combustion smoke. Therefore, there has been a demand for a method for reducing the amount of carbon in the smoke of tobacco products by a method different from that for filters. One of the methods is the development of Tabacco plants with a low content of strong ruponils in combustion smoke. In addition, if such tobacco plant is used as a raw material for cigarettes and the like, the burden on development and production of a high-performance filter can be reduced, which can be expected to lead to a reduction in production cost.
特許文献 1 特開昭 5 9 _ 0 8 8 0 7 8号公報  Patent Document 1 JP 5 9 _ 0 8 8 0 78
特許文献 2 特開昭 5 9— 1 5 1 8 8 2号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 5-9-1 5 1 8 8 2
特許文献 3 特開昭 6 0— 0 5 4 6 6 9号公報  Patent Document 3 Japanese Patent Laid-Open No. Sho 6 0-0 0 5 4 6 6 9
特許文献 4 特開平 0 9— 1 6 8 7 3 6号公報 特許文献 5 特表 2 0 0 2— 5 2 8 1 0 5号公報 Patent Document 4 Japanese Patent Application Laid-Open No. 09-166 Patent Document 5 Special Table 2 0 0 2— 5 2 8 1 0 5
特許文献 6 特表 2 0 0 2— 5 2 8 1 0 6号公報  Patent Document 6 Special Table 2 0 0 2— 5 2 8 1 0 6
特許文献 7 特表 2 0 0 3— 5 0 5 6 1 8号公報  Patent Literature 7 Special Table 2 0 0 3— 5 0 5 6 1 8
特許文献 8 米国特許第 2 9 6 8 3 0 6号明細書  Patent Document 8 US Patent No. 2 9 6 8 3 0 6 Specification
特許文献 9 国際公開第 2 0 0 3/0 5 6 9 4 7号パンフレツト  Patent Document 9 International Publication No. 2 0 0 3/0 5 6 9 4 7 Pamphlet
特許文献 1 0 米国特許出願公開第 2 0 0 5 0 1 3 3 04 7号明細書 特許文献 1 1 特開 2 0 0 6— 3 4 1 2 7号  Patent Document 1 0 US Patent Application Publication No. 2 0 0 5 0 1 3 3 04 7 Patent Document 1 1 Japanese Patent Application Laid-Open No. 2 0 0 6-3 4 1 2 7
発明の開示 Disclosure of the invention
本発明の目的は、 タバコ属植物の燃焼煙中のカルボ二ル類含量を制御可能な遺 伝子を見出し、 その遺伝子の発現を抑制することにより煙中のカルボニル類含量 が低減されたタバコ属植物を作製し、 提供することである。  The object of the present invention is to find a gene capable of controlling the content of carbonyls in the combustion smoke of tobacco genus plants, and to suppress the expression of the gene to thereby reduce the carbonyl content in the smoke. It is to create and provide plants.
本発明者らは、原料葉たばこの品質に影響を及ぼす遺伝子の同定を目的として、 タバコ葉の成熟度合いが原料葉たばこの品質を大きく左右する点に着目し、 土耕 栽培した成熟期のタバコの葉において、 あるいは、 窒素施肥量を減じることによ つて擬似的に成熟を誘導した水耕栽培タバコの葉において、 発現量が大きく変化 する遺伝子を探索した。 その結果、 タバコ属植物の葉の成熟度合いを制御可能な 遺伝子を同定することに成功し、 この遺伝子の発現を抑制することにより、 タパ コ葉の成熟を促し、 乾燥容易性を付与できるなど、 原料葉たばこの品質を向上で きることを見出し、 また、 驚くべきことに、 該遺伝子の発現を抑制することによ り、 乾燥葉たばこの燃焼煙中のカルボニル類含量を低減できることを見出し、 本 発明を完成した。  For the purpose of identifying genes that affect the quality of raw leaf tobacco, the present inventors focused on the fact that the degree of maturity of tobacco leaves greatly affects the quality of raw leaf tobacco, and the leaves of matured tobacco grown in soil cultivation Alternatively, we searched for genes whose expression level changes greatly in hydroponic tobacco leaves in which maturation was artificially induced by reducing the amount of nitrogen fertilization. As a result, we succeeded in identifying a gene that can control the maturity level of tobacco plants, and by suppressing the expression of this gene, we can promote the maturation of tapaco leaves and impart ease of drying. It has been found that the quality of raw leaf tobacco can be improved, and surprisingly, it has been found that by suppressing the expression of the gene, the content of carbonyls in the combustion smoke of dry leaf tobacco can be reduced. completed.
本発明の特徴は、 要約すると以下の通りである。  The features of the present invention are summarized as follows.
( 1 ) 以下の (a) 〜 (c ) に示すいずれかのタンパク質をコードする遺伝子の 発現が抑制された、 タバコ属植物。  (1) A tobacco genus plant in which expression of a gene encoding any one of the proteins shown in the following (a) to (c) is suppressed.
(a) 配列番号 6に示すアミノ酸配列からなるタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 6
(b)配列番号 6に示すアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸配列からなり、 かつ植物の燃焼煙中のカルボ- ル類含量を制御可能なタンパク質 (c) 配列番号 6に示すアミノ酸配列に対して 8 5%以上の同一性を有するアミ ノ酸配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を制御可能なタンパ ク質 (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbohydrates in plant combustion smoke (c) A protein comprising an amino acid sequence having an identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the carbonyl content in the combustion smoke of plants.
(2) 前記遺伝子が、  (2) the gene is
( d ) 配列番号 5に示す塩基配列からなるポリヌクレオチド、  (d) a polynucleotide comprising the base sequence represented by SEQ ID NO: 5,
(e ) 配列番号 5に示す塩基配列に対して 8 5%以上の同一性を有し、 かつ植物 の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌクレ ォチド、  (e) a polynucleotide encoding a protein having 85% or more identity to the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke;
( f ) 配列番号 5に示す塩基配列において 1もしくは数個の塩基が欠失、 置換も しくは付加された塩基配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を 制御可能なタンパク質をコードするポリヌクレオチド、 または  (f) Coding a protein consisting of a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke Polynucleotide to
( g ) 配列番号 5に示す塩基配列からなるポリヌクレオチドと相補的な塩基配列 からなるポリヌクレオチドとストリンジヱントな条件でハイブリダィズし、 かつ 植物の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌ クレオチド  (g) It encodes a protein capable of hybridizing with a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising the nucleotide sequence shown in SEQ ID NO: 5 under stringent conditions and capable of controlling the carbonyl content in plant combustion smoke. Polynucleotide
を含む、 (1 ) に記載のタバコ属植物。 The tobacco genus plant according to (1).
(3) 前記カルボニル類が、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 アセ トン、 ァクロレイン、 プロピオンアルデヒ ド、 クロ トンアルデヒ ド、 メチルェチルケト ンおよびプチルアルデヒ ドからなる群から選択される、 (1 ) または (2) に記載 のタバコ属植物。  (3) The carbonyl compound is selected from the group consisting of formaldehyde, acetoaldehyde, acetone, acrolein, propion aldehyde, croton aldehyde, methyl ketylketone and ptyl aldehyde, (1) or (2) The tobacco genus plant of description.
(4) 前記カルボ-ル類が、 ホルムアルデヒ ドまたはァクロレインである、 (3) に記載のタバコ属植物。  (4) The tobacco genus plant according to (3), wherein the carbole is formaldehyde or acrolein.
(5) ( 1 ) 〜 (4) のいずれかに記載のタバコ属植物の組織または細胞。  (5) The tissue or cell of the tobacco genus plant according to any one of (1) to (4).
(6) 前記組織が葉である、 (5) に記載の組織または細胞。  (6) The tissue or cell according to (5), wherein the tissue is a leaf.
(7) 配列番号 5に示す塩基配列、 配列番号 7に示す塩基配列、 それらの配列に 対して 9 0%以上の同一性を有する塩基配列、 およびそれらの塩基配列の 20塩 基以上の部分配列がらなる群から選択される塩基配列を含む、 遺伝子発現抑制用 ベクター。  (7) the nucleotide sequence shown in SEQ ID NO: 5, the nucleotide sequence shown in SEQ ID NO: 7, a nucleotide sequence having 90% or more identity to these sequences, and a partial sequence of 20 nucleotides or more of those nucleotide sequences A gene expression suppression vector comprising a base sequence selected from the group consisting of:
(8) 前記塩基配列の連続した 2 0塩基以上からなる塩基配列をアンチセンス方 向に含む、 (7) に記載のベクター。 (8) An antisense method comprising a nucleotide sequence consisting of 20 or more consecutive nucleotide sequences The vector according to (7), comprising
(9) 前記塩基配列のセンス鎖および該センス鎖に対合するアンチセンス鎖を含 む、 (7) に記載のベクター。  (9) The vector according to (7), comprising a sense strand of the base sequence and an antisense strand that pairs with the sense strand.
(1 0) 前記センス鎖およびアンチセンス鎖が、 前記塩基配列の連続した 20塩 基以上からなる、 (9) に記載のベクター。  (10) The vector according to (9), wherein the sense strand and the antisense strand are composed of 20 or more consecutive base groups of the base sequence.
(1 1) 前記センス鎖とアンチセンス鎖の間にスぺーサーを有する、 (9) または (1 0) に記載のベクター。  (1 1) The vector according to (9) or (1 0), which has a spacer between the sense strand and the antisense strand.
(1 2) 植物細胞内で作動可能なプロモーターを有する、 (7) 〜 (1 1) のいず れかに記載のベクター。  (1 2) The vector according to any one of (7) to (11), which has a promoter operable in plant cells.
(1 3) タバコ属植物の細胞または組織を、 RNA干渉法、 アンチセンス法、 遺 伝子破壊法、 人為的突然変異法、 リボザィム法、 共抑制法および転写因子を制御 する方法から選択されるいずれかの方法を用いて、 (1) および (2) に定義され た (a) 〜 (g) のいずれかの遺伝子の発現を抑制し、 植物体を再生することを 含む、 (1) 〜 (4) のいずれかに記載のタバコ属植物を作製する方法。  (1 3) Tobacco cells or tissues are selected from RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method of controlling transcription factor Including regenerating a plant by suppressing the expression of any gene of (a) to (g) defined in (1) and (2) using any one of the methods (1) to (1) (4) A method for producing the tobacco genus plant according to any one of the above.
(14) (7) 〜 (1 2) のいずれかに記載のベクターを、 植物細胞または組織に 導入し、 植物体を再生する、 (1 3) に記載の方法。  (14) The method according to (13), wherein the vector according to any one of (7) to (12) is introduced into a plant cell or tissue to regenerate a plant body.
(1 5) 前記植物体を母本として後代を作出する、 (14) に記載の方法。  (15) The method according to (14), wherein a progeny is created using the plant body as a mother.
(1 6) (1) 〜ズ 4) のいずれかに記載のタバコ属植物の後代であって、 (1) または (2) に定義された (a) 〜 (g) のいずれかの遺伝子の発現が抑制され たことを特徴とする、 後代。  (1 6) A progeny of the tobacco genus plant according to any one of (1) to (4), wherein the gene of any one of (a) to (g) defined in (1) or (2) Progeny characterized by suppressed expression.
(1 7) (1) 〜 (4) のいずれかに記載のタバコ属植物または (1 6) に記載の 後代の葉から作製されたたばこ製品。  (1 7) A tobacco product produced from the tobacco genus plant according to any one of (1) to (4) or the progeny leaf according to (16).
(1 8) タバコ属植物において、 (1) または (2) に定義された (a) 〜 (g) のいずれかの遺伝子の発現を抑制することを含む、 タバコ属植物の乾燥葉たばこ の燃焼煙中のカルボニル類含量を低減する方法。  (1 8) In the tobacco genus plant, the smoke of dry leaf tobacco of the tobacco genus plant, comprising suppressing the expression of any of the genes defined in (a) to (g) defined in (1) or (2) To reduce the content of carbonyls therein.
(1 9) 前記遺伝子の発現の抑制を、 RNA干渉法、 アンチセンス法、 遺伝子破 壊法、 人為的突然変異法、 リボザィム法、 共抑制法および転写因子を制御する方 法からなる群から選択される方法によって行うことを含む、(1 8)に記載の方法。  (1 9) Suppression of gene expression is selected from the group consisting of RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method of controlling transcription factor The method according to (18), comprising the step of:
(20) (7) 〜 (1 2) のいずれかに記載のベクターを植物細胞または組織に導 入する、 (1 8) または (1 9) に記載の方法。 (20) A vector according to any one of (7) to (12) is introduced into a plant cell or tissue. The method described in (1 8) or (1 9).
なお、 本明細書において 「植物の燃焼煙中のカルボニル類含量を制御可能なタ ンパク質」 とは、 タバコ属植物の組織、 例えば乾燥された葉などを燃やした際に 発生する燃焼煙中に含まれるカルボニル類の前駆物質となる、 または、 燃焼反応 によるカルボニル類の生成を阻害する、 植物の内容成分の生合成または分解に関 与するタンパク質をいう。  In the present specification, “a protein capable of controlling the carbonyl content in combustion smoke of plants” refers to the combustion smoke generated when burning tissues of tobacco plant such as dried leaves. It is a protein involved in biosynthesis or degradation of plant components that becomes a precursor of contained carbonyls or inhibits the formation of carbonyls by combustion reaction.
本明細書は本願の優先権の基礎である日本国特許出願 2007-083394号の明細書 および または図面に記載される内容を包含する。  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2007-083394, which is the basis of the priority of the present application.
、図面の簡単な説明 Brief description of the drawings
図 1は、 # 1 049 1遺伝子の P C R増幅領域を示す。  FIG. 1 shows the PCR amplification region of the # 1 049 1 gene.
図 2は、 ベクター p S P 148の構造を示す。 pDNR_ l (CLONTEC H社) の 2個の Ι ο χ Ρ間に、 35 Sプロモーター: スぺーサ一、 NOSターミ ネーターを導入して構築した。 35 Sプロモーター、 NOSターミネータ一は p B I 1 2 1 (C LONTECH社) から導入した。 スぺーサ一は p S B 1 1 (A CCE S S I ON No. AB 027256) の M 1 u I断片 (1 525— 20 73) を利用した。  FIG. 2 shows the structure of the vector p S P 148. It was constructed by introducing 35 S promoter: spacer and NOS terminator between two DοχΙ of pDNR_l (CLONTEC H). 35 S promoter and NOS terminator were introduced from pB I 1 2 1 (C LONTECH). The spacer used was the M 1 u I fragment (1 525-20 73) of p S B 11 (A CCE S S I ON No. AB 027256).
図 3は、 ベクター p S P 148— # 1 049 1 F Rの構造を示す。  FIG. 3 shows the structure of the vector p S P 148— # 1 049 1 FR.
図 4は、 ベクター p S P 1 07の構造を示す。 p B I 1 2 1 (CLONTEC H社)の H i n d l I I— S s e 838 7 Iサイ トに p r oK— l o x P断片(C r e a t o r A c c e p t o r e c t o r c o n s t r u c t i o n K i t , C 1 o n t e c h社) を導入して作製した。  FIG. 4 shows the structure of the vector p S P 107. The p ro K— l o x P fragment (C r e a t o r A c c e p t o r c t o r c o n s t r u c t i o n K i t, C 1 o n te c h) was introduced into p B I 1 2 1 (CLONTEC H) H i n d l I I—S se 838 7 I site.
図 5は、 ベクター p S P 1 07— # 1 049 1の構造を示す。  FIG. 5 shows the structure of the vector p S P 1 07— # 1 049 1.
図 6は、 トランスジエニックタバコにおける # 1 04 1 9遺伝子の発現をリア ルタイム P CRで測定した結果を示す。  Figure 6 shows the results of measuring the expression of the # 1 04 1 9 gene in transgenic tobacco using real-time PCR.
図 7のパネル A〜Dは、 トランスジエニックタバコ (T 1世代、 T 0世代の自 殖後代) および/または対照タバコの形態 (発蕾期) を示す。  Panels A-D in FIG. 7 show the morphology of transgenic tobacco (T 1 generation, T 0 generation inbred progeny) and / or control tobacco (emergence stage).
図 8のパネル Aは、 トランスジエニックタバコの乾燥葉を示す。 図 8のパネル Bは、 対照タバコの乾燥葉を示す。 図 9のパネル Aは、 トランスジェニックタバコの乾燥葉の燃焼煙中のホルムァ ルデヒ ド含量を示す。 図 9のパネル Bは、 トランスジエニックタバコの乾燥葉の 燃焼煙中のァクロレイン含量を示す。 Panel A in Figure 8 shows the dried leaves of Transgenic tobacco. Panel B in Figure 8 shows the dry leaves of the control tobacco. Panel A in Figure 9 shows the formaldehyde content in the smoke from the dry leaves of transgenic tobacco. Panel B in Fig. 9 shows the acrolein content in the smoke from the dry leaves of Transgenic tobacco.
図 1 0は、 ベクター p S P 204の構造を示す。  FIG. 10 shows the structure of the vector p S P 204.
図 1 1は、 ベクター p S P 20 1の構造を示す。  FIG. 11 shows the structure of the vector p S P 20 1.
図 1 2は、 発現抑制実験に用いたトリガー配列のマップを示す。  Figure 12 shows the map of the trigger sequence used in the expression suppression experiment.
図 1 3は、ベクター p S P 204— M_ t r i g e rおよび p S P 204— 3' Figure 1 3 shows the vectors p S P 204—M_t r i g e r and p S P 204—3 ′
_t r i g e rの構造を示す。 The structure of _t r i g e r is shown.
図 14は、 トランスジエニックタバコにおける # 1 04 1 9遺伝子の発現をリ アルタイム P C Rで測定した結果を示す。 発明を実施するための最良の形態  FIG. 14 shows the result of measuring the expression of the # 1 04 19 gene in transgenic tobacco by real-time PCR. BEST MODE FOR CARRYING OUT THE INVENTION
1. 本発明のタバコ属植物  1. Tobacco plant of the present invention
本発明の燃焼煙中のカルボニル類含量が低減されたタバコ属植物は、  Tobacco plants with reduced carbonyl content in the combustion smoke of the present invention are:
(a) 配列番号 6に示すアミノ酸配列からなるタンパク質、  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 6,
(b)配列番号 6に示すアミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたァミノ酸配列からなり、 かつ植物の燃焼煙中のカルボ二 ル類含量を制御可能なタンパク質、 または  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in plant combustion smoke; Or
(c) 配列番号 6に示すアミノ酸配列に対して 85%以上の同一性を有するアミ ノ酸配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を制御可能なタンパ ク質  (c) A protein comprising an amino acid sequence having an identity of 85% or more with respect to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the carbonyl content in plant combustion smoke
をコードする遺伝子の発現が抑制されるか、 または The expression of the gene encoding is suppressed, or
(d) 配列番号 5に示す塩基配列からなるポリヌクレオチド、  (d) a polynucleotide comprising the base sequence represented by SEQ ID NO: 5,
(e) 配列番号 5に示す塩基配列に対して 85%以上の同一性を有し、 かつ植物 の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌクレ ォチド、  (e) a polynucleotide encoding a protein having 85% or more identity to the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke;
( f ) 配列番号 5に示す塩基配列において 1もしくは数個の塩基が欠失、 置換も しくは付加された塩基配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を 制御可能なタンパク質をコードするポリヌクレオチド、 または ( g ) 配列番号 5に示す塩基配列からなるポリヌクレオチドと相補的な塩基配列 からなるポリヌクレオチドとストリンジェントな条件でハイブリダイズし、 かつ 植物の燃焼煙中のカルボ二ル類含量を制御可能なタンパク質をコードするポリヌ クレオチド . (f) Coding a protein consisting of a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke Polynucleotide to (g) It can hybridize under stringent conditions with a polynucleotide consisting of a base sequence complementary to the polynucleotide consisting of the base sequence shown in SEQ ID NO: 5 and can control the content of carbonyls in the combustion smoke of plants. Polynucleotides encoding proteins.
を含む遺伝子の発現が抑制されることを特徴とする。 It is characterized in that the expression of a gene containing is suppressed.
タバコ属植物の燃焼煙中のカルボニル類含量を制御可能な遺伝子は、 配列番号 The gene capable of controlling the carbonyl content in the combustion smoke of tobacco genus plants is SEQ ID NO:
5に示す塩基配列(全長 c DN A配列)を有し、 配列番号 6に示すアミノ酸配列を コードする遺伝子である (以下、 # 1 049 1遺伝子ということがある)。 This gene has the base sequence shown in FIG. 5 (full-length cDNA sequence) and encodes the amino acid sequence shown in SEQ ID NO: 6 (hereinafter sometimes referred to as # 1 049 1 gene).
# 1 049 1遺伝子は、 タバコ葉の成熟度合いが原料葉タバコの品質を大きく 左右する点に着目し、 タバコの DNAマイクロアレイを用いて、 タバコ葉の成熟 過程において発現量が大きく変化した遺伝子を調べた結果、 選抜されたものであ る。  # 1 049 1 gene focuses on the fact that the degree of maturity of tobacco leaves greatly affects the quality of the raw tobacco, and using the DNA microarray of tobacco, we investigated the genes whose expression level changed significantly during the maturation process of tobacco leaves As a result, it was selected.
# 1 049 1遺伝子の DNAは、 当業者においては、 一般的に公知の方法によ り単離することが可能である。 例えば、 ハイブリダィゼーシヨン技術 (S o u t h e r n, EM. , J Mo 1 B i o l , 1 9 7 5, 98, 503.) ゃポリメ ラーゼ連鎖反応 (P CR) 技術 (S a i k i , RK. e t a 1. , S c i e n c e, 1 98 5, 230, 1 350.、 S a i k i , RK. e t a 1. , S c i e n c e 1 988, 239, 487.) を利用する方法が挙げられる。 具体的 には、 配列番号 1 (タバコの DNAマイクロアレイ上に固定化されているプロ一 ブの配列)に記載の塩基配列からなる DN Aもしくはその一部をプローブとして、 また配列番号 1に記載の塩基配列からなる D N Aに特異的にハイブリダィズする オリゴヌクレオチドをプライマーとして、 タバコ属植物の異なる品種、 またはタ バコ属植物以外の植物から配列番号 1に記載の塩基配列からなる DNAと高い同 一性(85%以上)を有する DN Aを単離する。 このように、 ハイブリダィゼーシ ョン技術や PCR技術によって単離し得る、 配列番号 1に記載の塩基配列からな る DN Aとハイブリダィズする DN Aもまた、 本発明に適用される。  The DNA of # 1 049 1 gene can be isolated by those skilled in the art by generally known methods. For example, hybridization technology (S outhern, EM., J Mo 1 B iol, 1 97 5, 98, 503.) is a polymerase chain reaction (PCR) technology (S aiki, RK. Eta 1. , Science, 1 98 5, 230, 1 350., Saiki, RK. Eta 1., Science 1 988, 239, 487.). Specifically, DNA consisting of the base sequence described in SEQ ID NO: 1 (probe sequence immobilized on tobacco DNA microarray) or a part thereof is used as a probe, and also described in SEQ ID NO: 1. Highly identical to the DNA comprising the nucleotide sequence of SEQ ID NO: 1 from different varieties of tobacco genus plants or plants other than Tabacco plants, using oligonucleotides that specifically hybridize to DNA comprising the nucleotide sequence as primers ( Isolate DNA with 85% or greater). In this way, a DNA that hybridizes with a DNA consisting of the nucleotide sequence set forth in SEQ ID NO: 1 and that can be isolated by a hybridization technique or a PCR technique is also applied to the present invention.
ハイブリダィゼーション条件は、 ハイプリダイズ可能であれば特に限定されな いが、 例えば、 0· 25M Na 2HPO4、 p H 7. 2、 7%SDS、 1 mM EHybridization conditions are not particularly limited as long as they can be highly pre-hybridized.For example, 0 · 25M Na 2 HPO 4 , pH 7.2, 7% SDS, 1 mM E
DTA、 1 Xデンハルト溶液からなる緩衝液中で 60°C、 好ましくは 65°C、 さ らに好ましくは 68°Cの条件下で 1 6〜24時間ハイブリダイズさせ、 さらに 2 OmM Na 2HP04、 p H 7. 2、 1%SDS、 1 m EDTAからなる緩 衝液中で 60°C、 好ましくは 65°C、 さらに好ましくは 68 °Cの条件下で 1 5分 間の洗浄を 2回実施する条件が好ましい。 60 ° C, preferably 65 ° C, in a buffer consisting of DTA, 1 X Denhardt's solution Luo preferably is 1 6-24 hours hybridizing under conditions of 68 ° C, further 2 OmM Na 2 HP0 4, p H 7. 2, 1% SDS, 1 m EDTA consists in buffer solution in 60 ° C The conditions are preferably such that washing is carried out twice for 15 minutes at 65 ° C, more preferably 68 ° C.
また、 # 1 049 1遺伝子の完全長 c DNAクローンを取得する方法は、 特に 限定されず、 当該遺伝子を有する生物の c DNAライブラリ一などから適切な制 限酵素で切り出し、 精製すればよい。 ゲノム DNAは、 例えば、 植物細胞または 組織からゲノム DNAを抽出し、 ゲノミックライブラリー (ベクターとしては、 プラスミ ド、 ファージ、 コスミ ド、 BAC、 P ACなどが利用できる) を作製し、 このライブラリーから、 配列番号 5に示す塩基配列を基に調製したプローブを用 いてコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーション を行ゲことにより取得することができる。  In addition, the method for obtaining the full-length cDNA clone of the # 1 049 1 gene is not particularly limited, and it may be excised from a cDNA library of an organism having the gene with an appropriate restriction enzyme and purified. Genomic DNA is extracted from plant cells or tissues, for example, and a genomic library (plasmid, phage, cosmid, BAC, PAC, etc. can be used as vectors) is created from this library. It can be obtained by performing colony hybridization or plaque hybridization using a probe prepared based on the base sequence shown in SEQ ID NO: 5.
また、 一旦本発明の遺伝子の塩基配列が確定されると、 その後は化学合成によ つて、 または本遺伝子の c D N Aないしゲノム DN Aを铸型とした P CRによつ て、 あるいは該塩基配列を有する DN A断片をプローブとしてハイプリダイズさ せることにより得ることができる。  In addition, once the base sequence of the gene of the present invention has been determined, thereafter, by chemical synthesis, or by PCR using the cDNA or genomic DNA of this gene as a cage, or the base sequence. It can be obtained by hybridizing with a DNA fragment having a DNA as a probe.
なお、 配列番号 5の塩基配列について B LAS Tによる配列比較解析 (P r o c . a t l . Ac a d. S e i . USA, 1 990, 8 7, 2264 In addition, about the base sequence of SEQ ID NO: 5, sequence comparison analysis by B LAST (P ro c. At l. Ac a d. Sei. USA, 1 990, 87, 2264
— 2268, Ka r l i n, S . & A l t s c h u l , S F., P r o c . N a t 1. Ac a d. S e i . USA, 1 993, 90, 58 73 - 58 7 7) を行 つたところ、 エチレン処理により誘導されるチトクローム P 450遺伝子の一つ と同一であることが分かった。 これらチトクローム P 450遺伝子の中には、 二 コチンをノルニコチンへ変換するニコチン脱メチル化酵素をコードする遺伝子が 含まれていたが、 配列番号 5の塩基配列についてその機能を推定させる実施例は 示されておらず、 また、 その利用法についても開示されていない (参照文献: 国 際公開第 2005/0380 1 8号、 国際公開第 2005/038033号、 国 際公開第 2005/1 1 1 2 1 7号、 米国特許出願公開第 2006/003 70— 2268, Karlin, S. & A ltschul, S F., Proc. Nat 1. Ac ad. Sei. USA, 1 993, 90, 58 73-58 7 7) It was found to be identical to one of the cytochrome P450 genes induced by treatment. Among these cytochrome P450 genes, a gene encoding nicotine demethylase that converts nicotine to nornicotine was included, but an example of estimating the function of the nucleotide sequence of SEQ ID NO: 5 is shown. Neither is it disclosed, nor is its usage disclosed (Reference: International Publication No. 2005/0380 18, International Publication No. 2005/038033, International Publication No. 2005/1 1 1 2 1 7 No., US Patent Application Publication No. 2006/003 70
96号、 米国特許出願公開第 2006 004 1 949号)。 96, US Patent Application Publication No. 2006 004 1 949).
また、 タバコ以外の遺伝子では、 米国特許第 707 1 3 76号明細書に開示さ れるシロイヌナズナの p— c o uma r a t e 3— h y d r o x y l a s e (C 3 H) をコードする CYP 98A3遺伝子と塩基配列で約 70%、 アミノ酸 配列で 74%の同一性があることがわかった。 し力 し、 前記明細書はリグニンに ついて述べており、 リグニンと燃焼煙中のカルボ-ル類の関連性については何ら 述べておらず、 また当業者においてもリグニンと燃焼煙中のカルボニル類の関連 性は知られていない。 In addition, genes other than tobacco are disclosed in US Pat. No. 707 1 3 76. It was found that the CYP 98A3 gene encoding p-couma rate 3-hydroxylase (C 3 H) of Arabidopsis thaliana is approximately 70% identical in nucleotide sequence and 74% identical in amino acid sequence. However, the above description describes lignin, does not describe the relationship between lignin and carbohydrates in combustion smoke, and those skilled in the art also have no knowledge of lignin and carbonyls in combustion smoke. The relevance is unknown.
従って、 # 1 049 1遺伝子が、 燃焼煙中のカルボニル類含量を制御可能であ ることは新規の知見である。  Therefore, it is a novel finding that the # 1 049 1 gene can control the carbonyl content in combustion smoke.
# 1 049 1遺伝子によりコードされるタンパク質は、 配列番号 6に示すアミ ノ酸配列を有するタンパク質であるが、 本発明においては該タンパク質に限定さ れず、 タバコ属植物の燃焼煙中のカルボニル類含量を制御可能なタンパク質であ る限り、 配列番号 6に示すアミノ酸配列において 1もしぐは数個のアミノ酸が欠 失、 置換もしくは付加されたアミノ酸配列、 あるいは配列番号 6に示すアミノ酸 配列に対して 85 %以上の同一性を有するアミノ酸配列を含むタンパク質でもよ レ、。  The protein encoded by the # 1 049 1 gene is a protein having the amino acid sequence shown in SEQ ID NO: 6, but is not limited to the protein in the present invention, and the content of carbonyls in the combustion smoke of tobacco plants As long as it is a protein that can control the amino acid sequence shown in SEQ ID NO: 6, the amino acid sequence shown in SEQ ID NO: 6 has one or several amino acid deletions, substitutions or additions, or 85 It may be a protein containing an amino acid sequence having at least% identity.
ここで、 1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸 配列とは、 具体的には、 配列番号 6に示すアミノ酸配列の 1〜 1 0個、 好ましく は 1〜5個のアミノ酸が変異により欠失、 または他のアミノ酸に置換、 あるいは 付加された配列をいう。 変異は、 人為的に導入された変異または天然に存在する 変異でもよい。  Here, the amino acid sequence in which one or several amino acids are deleted, substituted or added is specifically 1 to 10 amino acids, preferably 1 to 5 amino acids of the amino acid sequence shown in SEQ ID NO: 6. Is a sequence that has been deleted by mutation or substituted or added to another amino acid. The mutation may be an artificially introduced mutation or a naturally occurring mutation.
また、 配列番号 6に示すアミノ酸配列に対して 85%以上の同一性を有するァ ミノ酸配列は、 好ましくは 90 %以上、 より好ましくは 95 %以上、 更に好まし くは 98%以上、 99%以上の同一性であることが望ましい。 配列の同一性は、 F ASTA検索や B LAS T検索により決定することができる。  The amino acid sequence having 85% or more identity to the amino acid sequence shown in SEQ ID NO: 6 is preferably 90% or more, more preferably 95% or more, and even more preferably 98% or more, 99%. The above identity is desirable. Sequence identity can be determined by F ASTA search or B LAST search.
上記タンパク質をコードする遺伝子は、 配列番号 5に示す塩基配列からなるポ リヌクレオチドであるがこれに限定されず、 タバコ属植物の燃焼煙中のカルボ- ル類含量を制御可能なポリヌクレオチドである限り、 配列番号 5に示す塩基配列 に対して 85%以上の同一性を有するポリヌクレオチド、 または配列番号 5に示 す塩基配列において 1もしくは数個の塩基が欠失、 置換もしくは付加された塩基 配列からなるポリヌクレオチド、 あるいは配列番号 5に示す塩基配列からなるポ リヌクレオチドと相補的な塩基配列からなるポリヌクレオチドとストリンジ ン トな条件でハイブリダイズするポリヌクレオチドでもよい。 The gene encoding the protein is a polynucleotide having the nucleotide sequence shown in SEQ ID NO: 5, but is not limited thereto, and is a polynucleotide capable of controlling the content of carbohydrates in the combustion smoke of tobacco genus plants. As long as the polynucleotide has 85% or more identity to the base sequence shown in SEQ ID NO: 5, or a base in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 5. The polynucleotide may be a polynucleotide that hybridizes under stringent conditions with a polynucleotide that comprises a sequence or a polynucleotide that comprises a base sequence that is complementary to the polynucleotide that comprises the base sequence shown in SEQ ID NO: 5.
ここで、 1もしくは数個の塩基が欠失、置換もしくは付加された塩基配列とは、 具体的には、 配列番号 5に示す塩基配列の 1〜 1 0個、 好ましくは:!〜 5個の塩 基が変異により欠失、 または他の塩基に置換、 あるいは付加された配列をいう。 変異は、 人為的に導入された変異または天然に存在する変異でもよい。  Here, the base sequence in which one or several bases are deleted, substituted or added is specifically 1 to 10 base sequences shown in SEQ ID NO: 5, preferably:! To 5 base sequences. This refers to a sequence in which a base group has been deleted by mutation or substituted or added to another base. The mutation may be an artificially introduced mutation or a naturally occurring mutation.
また、 配列番号 5に示す塩基配列に対して 85%以上の同一性を有する塩基配 列は、好ましくは 90 %以上、より好ましくは 95 %以上、更に好ましくは 98 % 以上、 99%以上の同一性であることが望ましい。 配列の同一性は、 FASTA や B LAS Tなどの配列比較分析ツールにより決定することができる。 なお、 本 明細書では、 塩基配列の同一性の算出はデフオルトパラメータで B LAST解析 を行うことにより算出される。  Further, the base sequence having 85% or more identity to the base sequence shown in SEQ ID NO: 5 is preferably 90% or more, more preferably 95% or more, still more preferably 98% or more and 99% or more. Is desirable. Sequence identity can be determined by sequence comparison analysis tools such as FASTA and B LAST. In the present specification, the identity of a base sequence is calculated by performing BLAST analysis with default parameters.
また、 ストリンジェントな条件は、 例えば上記ハイブリダィゼーシヨン条件を 使用することができ、 いわゆる特異的なハイブリッドが形成され、 非特異的なハ イブリッドが実質的に形成されない条件である。  Moreover, the stringent conditions can be, for example, the hybridization conditions described above, in which so-called specific hybrids are formed and non-specific hybrids are not substantially formed.
上記タンパク質をコードする遺伝子の発現の抑制には、 該遺伝子の転写の抑制 およびタンパク質への翻訳の抑制が含まれ、 遺伝子の発現の完全な停止のみなら ず発現の減少も含ま.れる。 遺伝子が人為的または天然に変異、 破壊されたり、 あ るいは各種遺伝子工学的手法、 例えば RNA干渉法、 アンチセンス法、 リボザィ ム法、 共抑制法、 転写因子を制御する方法などを用いることにより、 発現不能ま たは抑制される。  Suppression of expression of the gene encoding the protein includes suppression of transcription of the gene and suppression of translation into the protein, and includes not only complete termination of gene expression but also decrease of expression. By artificially or naturally mutating or destroying genes, or by using various genetic engineering methods such as RNA interference methods, antisense methods, ribozyme methods, co-suppression methods, methods of controlling transcription factors, etc. Cannot be expressed or suppressed.
本発明のタバコ属植物は、 植物、 特に乾燥された葉を燃やした際に発生する燃 焼煙の中に含まれるカルボニル類の含量が低減することを特徴とする。  The tobacco genus plant of the present invention is characterized in that the content of carbonyls contained in combustion smoke generated when burning a plant, particularly dried leaves, is reduced.
乾燥葉たばこの燃焼煙中には多種多様な成分が存在することが知られている It is known that a variety of components exist in the smoke of dry leaf tobacco.
(G r e e n CR. e t a l ., 1 996, R e c e n t Ad v. T o b a c c o S c i、. 22 : 1 3 1— 304)。 よって、 これら燃焼煙中の成分は複 雑に関係しあい、 喫煙の満足感や香喫味に繋がると考えられる。 つまり、 燃焼煙 中の成分のバランスを大きく変化させると喫煙の満足感や香喫味を損なう可能性 がある。 したがって、 燃焼煙.中に含まれる特定の成分の低減は選択性の高い方法 で実施することが望ましい。 本発明では、 たった 1遺伝子 (# 1 049 1遺伝子) の発現を抑制することにより乾燥葉たばこの燃焼煙中に含まれるカルボ二ル類を 低減できた。 乾燥葉たばこの燃焼煙中に含まれるカルボニル類は、 具体的には、 ホルムアルデヒ ド、 ァセトアルデヒ ド、 アセトン、 ァクロレイン、 プロピオンァ ルデヒ ド、 クロ トンアルデヒ ド、 メチルェチルケトン、 ブチルアルデヒ ドなどで ある。 (Green CR. Etal., 1 996, Recent Ad v. Tobacco Sci., 22: 1 3 1—304). Therefore, it is considered that these components in the combustion smoke are related to each other and lead to smoking satisfaction and flavor. In other words, if the balance of the components in the combustion smoke is greatly changed, the satisfaction and flavor of smoking may be impaired. There is. Therefore, it is desirable to reduce specific components contained in combustion smoke by a highly selective method. In the present invention, by suppressing the expression of only 1 gene (# 1 049 1 gene), carbonyls contained in the smoke of dry leaf tobacco could be reduced. Specific examples of carbonyls contained in the smoke of dry leaf tobacco include formaldehyde, acetoaldehyde, acetone, acrolein, propionaldehyde, croton aldehyde, methyl ethyl ketone, and butyl aldehyde.
一般に、 たばこの燃焼煙中の成分の測定は、 刻んだ乾燥葉たばこを巻紙で巻い たものを I SO準拠の喫煙条件で自動喫煙させた煙を捕集して行う。 一方、 より 簡便に、 より少量のサンプルから、 燃焼煙中の成分を捕集および測定する方法と して、 熱分解による方法が報告されている (T r i k a i K. e t a 1., 2 004, F o o d C h e m T o x i c o l . ; 42 : 1409 - 1 7.) (T r i k a i K. e t a 1., 2005, F o o d C h e m T o i c o l . ; 43 : 559— 68.)。 本発明では、 この熱分解法により燃焼煙中のカルボ-ル 類を測定したがこれに限るものでない。  In general, the components of cigarette combustion smoke are measured by collecting smoke that has been smoked and dried automatically with cigarettes wrapped under wrapping paper under ISO-compliant smoking conditions. On the other hand, a method using thermal decomposition has been reported as a method for collecting and measuring components in combustion smoke from a smaller amount of sample more easily (T rikai K. eta 1., 2 004, F 42: 1409-1 7.) (T rikai K. eta 1., 2005, Food Chem Toxicol .; 43: 559-68.). In the present invention, carbons in combustion smoke are measured by this pyrolysis method, but the present invention is not limited to this.
なお、 本発明には、 本発明のタバコ属植物の組織または細胞 (例えば根、 茎、 葉、 花、 種子、 胚、 胚珠、 子房、 茎頂、 葯、 花粉、 カルス、 プロ トプラスト、 懸 濁培養細胞など) も包含される。  In the present invention, tissues or cells of the tobacco genus plant of the present invention (for example, root, stem, leaf, flower, seed, embryo, ovule, ovary, shoot apex, cocoon, pollen, callus, protoplast, suspension) Cultured cells and the like).
2. 遺伝子発現抑制用ベクター 2. Gene expression suppression vector
発明の遺伝子発現抑制用ベクターは、  The gene expression suppression vector of the invention is
(a) 配列番号 6に示すアミノ酸配列からなるタンパク質、  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 6,
(b)配列番号 6に示すアミノ酸配列において 1もしくは数個のァミノ酸が欠失、 置換もしくは付加されたアミノ酸配列からなり、 かつ植物の燃焼煙中のカルボ二 ル類含量を制御可能なタンパク質、 または  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in the burning smoke of plants, Or
(c) 配列番号 6に示すアミノ酸配列に対して 85%以上の同一性を有するアミ ノ酸配列からなり、 かつ植物の燃焼煙中のカルボ二ル類含量を制御可能なタンパ ク質、  (c) a protein comprising an amino acid sequence having an identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in plant combustion smoke;
をコードする遺伝子、 あるいは A gene encoding, or
( d ) 配列番号 5に示す塩基配列からなるポリヌクレオチド、 ( e ) 配列番号 5に示す塩基配列に対して 8 5 %以上の同一性を有し、 かつ植物 の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌクレ ォチド、 (d) a polynucleotide comprising the base sequence represented by SEQ ID NO: 5, (e) a polynucleotide encoding a protein having 85% or more identity to the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke;
( f ) 配列番号 5に示す塩基配列において 1もしくは数個の塩基が欠失、 置換も しくは付加された塩基配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を 制御可能なタンパク質をコードするポリヌクレオチド、 または  (f) Coding a protein consisting of a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke Polynucleotide to
( g ) 配列番号 5に示す塩基配列からなるポリヌクレオチドと相補的な塩基配列 からなるポリヌクレオチドとストリンジヱントな条件でハイブリダイズし、 かつ 植物の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌ クレオチド  (g) A protein that hybridizes with a polynucleotide consisting of a base sequence complementary to the polynucleotide consisting of the base sequence shown in SEQ ID NO: 5 under stringent conditions and that can control the content of carbonyls in the combustion smoke of plants. Polynucleotide
の発現を抑制するための核酸分子を適当なベクターに挿入したものである。 A nucleic acid molecule for suppressing the expression of is inserted into an appropriate vector.
本発明のベクターは、 例えば、 配列番号 5に示す塩基配列、 配列番号 7に示す 塩基配列、 それらの配列に対して 9 0 %以上の同一性を有する塩基配列、 および それらの塩基配列の 2 0塩基以上の部分配列からなる群から選択される塩基配列 を含む。 このようなベクターとして、 アンチセンスベクターまたは R N A干渉誘 導ベクターなどがある。  The vector of the present invention includes, for example, the base sequence shown in SEQ ID NO: 5, the base sequence shown in SEQ ID NO: 7, a base sequence having 90% or more identity to these sequences, and 20 of these base sequences It includes a base sequence selected from the group consisting of partial sequences of bases or more. Such vectors include antisense vectors or RNA interference induction vectors.
アンチセンスベクターとは、 アンチセンス法にて # 1 0 4 9 1遺伝子、 その変 異体または相同体の発現を抑制する核酸分子を含むベクターをいう。相同体とは、 # 1 0 4 9 1遺伝子に対応する遺伝子であって、 タバコ属植物品種間で、 または タバコ属植物以外の植物で、 異なる塩基配列を有する遺伝子をいう。  An antisense vector refers to a vector containing a nucleic acid molecule that suppresses the expression of the # 1 0 4 9 1 gene, its variant or homologue by an antisense method. A homologue is a gene corresponding to the # 1 0 4 9 1 gene, which has a different nucleotide sequence between tobacco varieties or in plants other than tobacco.
アンチセンス法とは、 目的遺伝子から転写された m R N Aと相補的なアンチセ ンス R N Aを発現させて、 該アンチセンス R N Aを目的遺伝子と相補的に結合さ せ、 目的遺伝子の転写を妨げ、 その結果として該遺伝子の発現を抑制する方法を いう。具体的には、植物で機能するプロモーターの下流に、 # 1 0 4 9 1遺伝子、 その変異体または相同体、 あるいはそれらの断片をアンチセンス方向に.つないで 植物細胞または組織に導入すると、 上記 m R N Aと相補的なアンチセンス R N A を産生することができる。  The antisense method expresses an antisense RNA complementary to the mRNA transcribed from the target gene, binds the antisense RNA complementarily to the target gene, and prevents transcription of the target gene. As a method for suppressing the expression of the gene. Specifically, when the # 1 0 4 9 1 gene, its mutant or homologue, or a fragment thereof is inserted in the antisense direction downstream of a promoter that functions in plants, and introduced into a plant cell or tissue, the above Antisense RNA complementary to mRNA can be produced.
アンチセンスベクターに導入する # 1 0 4 9 1遺伝子、 その変異体または相同 体の発現を抑制する核酸分子は、 例えば、 # 1 0 4 9 1遺伝子の塩基配列 (配列 番号 5) の全長のアンチセンス核酸分子であってもよいが、 配列番号 5に示す塩 基配列に対して 90%以上、 より好ましくは 95%以上、 更に好ましくは 98% 以上、 99%以上の同一性を有する配列のアンチセンス核酸分子でもよく、 これ らの核酸分子の塩基配列中の連続した 20塩基以上から全長未満、 好ましくは 1 00塩基以上から全長未満、 より好ましくは 500塩基以上から全長未満からな る塩基配列を有するアンチセンス核酸分子でもよい。 通常用いられるアンチセン ス DNAの長さは 5 k bよりも短く、 好ましくは 2. 5 k bよりも短い (参考文 献:特開昭 60— 232092、 特開 2000— 23685)。 Nucleic acid molecules that suppress the expression of the # 1 0 4 9 1 gene, its mutants or homologues that are introduced into the antisense vector are, for example, the base sequence of the # 1 0 4 9 1 gene (sequence The full length antisense nucleic acid molecule of No. 5) may be 90% or more, more preferably 95% or more, more preferably 98% or more, 99% or more with respect to the base sequence shown in SEQ ID NO: 5. Antisense nucleic acid molecules having the same sequence may be used, and the base sequences of these nucleic acid molecules are 20 bases or more to less than full length, preferably 100 bases or more to less than full length, more preferably 500 bases or more to full length. It may be an antisense nucleic acid molecule having a base sequence consisting of less than. The length of the antisense DNA usually used is shorter than 5 kb, preferably shorter than 2.5 kb (reference documents: JP-A-60-232092, JP-A-2000-23685).
RN A干渉誘導ベクターは、 RN A干渉のトリガーとなる d s RNA ( 2本鎖 RNA、 d o u b l e - s t r a n d RNA) の铸型となる D N Aを含むべク ターである。 該ベクターを用いて細胞内で形成された d s RNAは、 2本鎖 RN A特異的な RN a s e (D i c e r) により約 2 1〜 25塩基の s i RNA ( s ma 1 1 i n t e r f e r i n g RNA) に切断され、その後、 R I S C (R N A— i n d u c e d s i l e n c i n g c omp l e x) の一部として複 合体を形成し、 標的 mRNAを相同性により認識 ·分解する。  The RNA interference-inducing vector is a vector containing a DNA that is a truncated form of dsRNA (double-stranded RNA, double-strandRNA) that triggers RNA interference. The ds RNA formed in the cell using this vector is cleaved into siRNA (sma 1 1 interfering RNA) of about 21-25 bases by double-stranded RNA-specific RNase (D icer). After that, a complex is formed as part of RISC (RNA-induced silencing complex), and the target mRNA is recognized and degraded by homology.
植物の RNA干渉では、 ヘアピン型 d s RNAとして発現するベクターが好適 に利用される。 これは十数〜数十塩基または数 ^〜数百塩基のリンカ一 (スぺ一 サー) 配列の両端に I R ( i n v e r t e d r e p e a t :逆位反復) となる ように RNA干渉のトリガーとなる配列を配置し、 植物体内で高発現するプロモ 一ターによりヘアピン型 d s RNAを転写し、 細胞内で s i RNAを産生するシ ステムである。 また、 s i RNA発現システムには上記のようなヘアピンタイプ のほか、 タンデムタイプもある。 タンデムタイプでは、 2つのプロモーターから センス RN Aとアンチセンス RN Aが転写され、 細胞内でハイブリダイズして s i RNAが産生される。 RNA干渉のトリガーの铸型となる DN Aの配列は、 例 えば、 配列番号 7の塩基配列または該配列に対して 90 %以上、 より好ましくは For plant RNA interference, a vector expressed as a hairpin dsRNA is preferably used. This is done by placing a sequence that triggers RNA interference at both ends of the linker sequence (spacer) of tens to tens of bases or several ^ to several hundred bases so that it becomes IR (inverted repeat). This is a system that transcribes hairpin dsRNA using a promoter highly expressed in plants and produces siRNA in the cell. In addition to the hairpin type described above, siRNA expression systems include tandem types. In the tandem type, sense RNA and antisense RNA are transcribed from two promoters and hybridize in the cell to produce siRNA. For example, the DNA sequence that serves as a trapezoid for RNA interference is, for example, the nucleotide sequence of SEQ ID NO: 7 or 90% or more, more preferably
95%以上、 更に好ましくは 98%以上、 99%以上の同一性を有する配列の連 続した 20塩基以上、 好ましくは 1 00塩基以上、 さらに好ましくは 200塩基 以上を含む塩基配列およびその相補配列が用いられる (参考文献: WO/1 9 995% or more, more preferably 98% or more, 99% or more of a sequence having 20 or more bases, preferably 100 bases or more, more preferably 200 bases or more, and a complementary sequence thereof. Used (Reference: WO / 1 9 9
9/053050、WO 1 999/326 1 9 A、WO 200 1/75 1 64 A、 Ch u a n g C F & Me y e r ow i t z EM : P r o c Na t l A c a d S c i USA 97 : 4985, 2000)。 9/053050, WO 1 999/326 1 9 A, WO 200 1/75 1 64 A, Ch uang CF & Me yer ow itz EM: Proc Na tl A cad S ci USA 97: 4985, 2000).
本発明において用いる RNA干渉誘導ベクターとしては、 配列番号 7に示す塩 基配列のセンス鎖とそのセンス鎖に相補的なアンチセンス鎖を、 スぺーサー (ル ープを形成する配列) をはさんで I R ( i n v e r t e d r e p e a t :逆位 反復) となるように同一のベクターに含むものが好ましい。  As an RNA interference induction vector used in the present invention, a sense strand of the base sequence shown in SEQ ID NO: 7 and an antisense strand complementary to the sense strand are sandwiched between a spacer (sequence forming a loop). It is preferable to include them in the same vector so as to be IR (inverted repeat).
ここで、 ベクターとしては、 ァグロパクテリゥムを介して植物に目的遺伝子を 導入することができる、 p B I系、 p PZ P系、 p SMA系のベクターなどが好 適に用いられる。 特に、 バイナリーベクター系 (p B I 1 2 1、 p B I 1 0 1、 p B I 22 1、 p B I 2 1 1 3、 p B I 1 0 1. 2等)、または中間ベクター系(p LGV23Ne o、 pNCAT等) のプラスミ ドが好ましい。 バイナリーベクタ 一は T一 DNA領域の右側ボーダー (RB) と左側ボーダー (LB) を含み、 両 ボーダー間に目的遺伝子とともにプロモーターや植物選抜マーカーなどのエレメ ントを含むことができ、 通常、 大腸菌 (E s c h e r i c h i a c o l i ) お よびァグロバタテリゥムにおいて複製可能なシャ トルベクターで、 バイナリーべ クタ一を保持するァグロバクテリムを植物に感染させると、 ベクター上にある L B配列と R B配列より成るボーダー配列で囲まれた部分の D N Aを植物核 D N A に組み込むことが可能である (EMBO J o u r n a l , 1 0 (3), 6 9 7 - 704 ( 1 99 1))。 一方、 p UC系のベクターは、 植物に遺伝子を直接導入す ることができ、 例えば、 pUC 1 8、 pUC 1 9、 p UC 9等が挙げられる。 ま た、 力リフラワーモザィクウィルス (C aMV)、 インゲンマメモザィクウィルス (BGMV)、 タバコモザイクウィルス (TMV) 等の植物ウィルスベクターも用 いることができる。  Here, as the vector, pBI, pPZP, and pSMA vectors that can introduce a target gene into a plant via agrobacterium are preferably used. In particular, binary vector systems (pBI 1 2 1, pBI 1 0 1, pBI 22 1, pBI 2 1 1 3, pBI 1 0 1.2, etc.) or intermediate vector systems (p LGV23Neo, pNCAT) Etc.) is preferred. A binary vector contains a right border (RB) and a left border (LB) of the T1 DNA region, and can contain elements such as a promoter and a plant selection marker along with the target gene between both borders. scherichiacoli) and a vector vector that can replicate in agrobacterium. When agrobacterium carrying a binary vector is infected with a plant, it is surrounded by a border sequence consisting of the LB and RB sequences on the vector. Partial DNA can be incorporated into plant nuclear DNA (EMBO Journal, 1 0 (3), 6 9 7-704 (1 99 1)). On the other hand, a pUC vector can directly introduce a gene into a plant, and examples thereof include pUC18, pUC19, and pUC9. Also, plant virus vectors such as force reflower mosaic virus (CaMV), kidney bean mosaic virus (BGMV) and tobacco mosaic virus (TMV) can be used.
バイナリーベクター系プラスミ ドを用いる場合、 上記のバイナリーベクターの 境界配列 (LB、 RB) 間に、 目的遺伝子を挿入し、 この組換えベクターを大腸 菌中で増幅する。 次いで、 増幅した組換えベクターをァグロバクテリウム · ッメ ファシエンス C 58、 LBA4404、 EHA 1 0 1、 EHA 1 05等に、 凍結 融解法、 エレク ト口ポレーシヨン法等の方法を用いて導入し、 該ァグロパクテリ ゥムを植物の形質転換に用いる。 また、 上記の方法以外にも、 三者接合法 (Nu c l e i c Ac i d s R e s e a r c h, 1 2 : 8 7 1 1 (1 984)) によって、 目的遺伝子を含む植物 感染用ァグロパクテリゥムを調製することができる。 すなわち、 目的遺伝子を含 むプラスミ ドを保有する大腸菌、 ヘルパープラスミ ド (例えば、 p RK20 1 3 等) を保有する大腸菌、 およびァグロパクテリゥムを混合培養し、 リファンピシ リンおよびカナマイシンを含む培地上で培養することにより植物感染用の接合体 ァグロパクテリゥムを得ることができる。 When using a binary vector-based plasmid, the target gene is inserted between the above-mentioned binary vector boundary sequences (LB, RB), and this recombinant vector is amplified in Escherichia coli. Next, the amplified recombinant vector is introduced into Agrobacterium tumefaciens C 58, LBA4404, EHA 1001, EHA 105, etc. using a method such as freeze-thaw method, electoral position method, etc. The agrobacterium is used for plant transformation. In addition to the above method, an agropacterium for plant infection containing the target gene is prepared by the three-part joining method (Nucleic Acids Research, 1 2: 8 7 1 1 (1 984)). be able to. That is, E. coli containing a plasmid containing the target gene, E. coli containing a helper plasmid (eg, pRK20 1 3 etc.), and agrobacterium are mixed and cultured on a medium containing rifampicillin and kanamycin. By culturing with, it is possible to obtain an agrobacterium for plant infection.
ベクターに目的遺伝子を挿入するには、 まず、 精製された DNAを適当な制限 酵素で切断し、 適当なベクター DN Aの制限酵素部位またはマルチクローニング サイ トに挿入してベクターに連結する方法などが採用される。 ·  In order to insert the target gene into the vector, first, the purified DNA is cleaved with an appropriate restriction enzyme, inserted into an appropriate vector DNA restriction enzyme site or multiple cloning site, and ligated to the vector. Adopted. ·
また、 ベクターには、 目的遺伝子のほかに、 例えばプロモーター、 ターミネ一 ター、 ポリ A付加シグナル、 選抜マーカー遺伝子などを配置することができる。 プロモーターとしては、 植物体内または植物細胞において機能し、 植物の特定 の組織内あるいは特定の発育段階において発現を導くことのできる DNAであれ ば、 植物由来のものでなくてもよい。 具体例としては、 カリフラワーモザイクゥ ィルス (C aMV) 35 Sプロモーター、 ノパリン合成酵素遺伝子のプロモータ 一 (P n o s)、 トウモロコシ由来ュビキチンプロモーター、 イネ由来のァクチン プロモーター、 タバコ由来 PRタンパク質プロモーター等が挙げられる。  In addition to the target gene, for example, a promoter, a terminator, a poly A addition signal, a selection marker gene, and the like can be placed in the vector. The promoter does not have to be derived from a plant as long as it is a DNA that functions in a plant or a plant cell and can induce expression in a specific tissue of a plant or a specific developmental stage. Specific examples include cauliflower mosaic virus (CaMV) 35 S promoter, promoter of nopaline synthase gene (P nos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, etc. .
ターミネータ一としては、 植物体内または植物細胞において機能し、 プロモー ターにより転写された遺伝子の転写を終結できる配列であればよく、 例えば、 ノ パリン合成酵素 (NOS) 遺伝子のターミネータ一、 ォク トピン合成酵素 (OC S) 遺伝子のターミネータ一、 C aMV 35 S ターミネータ一等が挙げられ る。  The terminator may be any sequence that functions in plants or plant cells and can terminate the transcription of the gene transcribed by the promoter. For example, the terminator of nopaline synthase (NOS) gene, octopine synthesis Examples include an enzyme (OC S) gene terminator and a CaMV 35 S terminator.
選抜マーカー遺伝子としては、 例えば、 薬剤耐性遺伝子 (テトラサイクリン耐 性遺伝子、 ァンピシリン耐性遺伝子、 カナマイシン耐性遺伝子、 ハイグロマイシ ン耐性遺伝子、 スぺクチノマイシン耐性遺伝子、 クロラムフヱニコール耐性遺伝 子、 ネオマイシン耐性遺伝子など)、 蛍光または発光レポーター遺伝子 (ルシフエ ラーゼ、 /3—ガラク トシダーゼ、 β _ダルクロニターゼ (GUS)、 グリーンフル ォレツセンスプロティン (G F P) など)、 ネオマイシンホスホ トランスフェラー ゼ I I (NPT I 1 )、 ジヒ ドロ葉酸レダクターゼなどの酵素遺伝子が挙げられ る。 Examples of selectable marker genes include drug resistance genes (tetracycline resistance gene, ampicillin resistance gene, kanamycin resistance gene, hygromycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, neomycin resistance gene, etc.) Fluorescent or luminescent reporter genes (such as luciferase, / 3-galactosidase, β_dulcronitase (GUS), green fluorescent protein (GFP)), neomycin phosphotransferase Enzyme genes such as ze II (NPT I 1) and dihydrofolate reductase.
また、 選抜マーカー遺伝子は、 上記のように目的遺伝子とともに同一のプラス ミ ドに連結させて組換えベクターを調製してもよいが、 あるいは、 選抜マーカー 遺伝子をプラスミ ドに連結して得られる組換えベクターと、 目的遺伝子をプラス ミ ドに連結して得られる組換えベクターとを別々に調製してもよい。 別々に調製 した場合は、 各ベクターを宿主にコトランスフエク ト (共導入) する。  Alternatively, the selection marker gene may be ligated to the same plasmid together with the target gene as described above, or a recombinant vector may be prepared. Alternatively, a recombination obtained by ligating the selection marker gene to the plasmid. A vector and a recombinant vector obtained by ligating a target gene to a plasmid may be prepared separately. If prepared separately, co-transform each vector into the host.
本発明で使用可能なバイナリーベクターの構築例は、 後述の実施例 2に示され ている。 即ち、 2個の 1 o X Pを含むプラスミ ド p DNR— 1 (C LONTEC H社) の 1 o X P間に 35 Sプロモーター、 スぺーサ一、 NO Sターミネータ一 を揷入したプラスミ ド p S P 148 (図 2) を作製し、 NOSターミネータ一と スぺーサ一の間およびスぺーサ一と 3 5 sプロモーターの間に RNA iのトリガ 一となる 2種の目的 DN A断片を互いに逆向きに配置するようにトリガーを挿入 し (図 3、 プラスミ ド p S P 148_# 1 049 1 F R)、 このヘアピン型 d s R N A発現カセットを、 C r e— 1 o x組換え (米国特許第 6, 4 1 0, 3 1 7号) によって、 プラスミ ド p S P 1 07 (図 4) に組み換えて、 バイナリーベクター p S P 1 0 7_# 1 049 1 (図 5) を作製することができる。 An example of construction of a binary vector that can be used in the present invention is shown in Example 2 described later. That is, plasmid p SP 148 with 35 S promoter, spacer, NO S terminator inserted between 1 o XP of plasmid p DNR-1 (C LONTEC H) containing 2 1 o XP. (Figure 2) to produce, in the NOS terminator one and scan Bae between p o first and spacer first and 3 5 s 2 or object DN a fragment opposite directions of the triggers of RNA i between the promoter Insert a trigger to place it (Figure 3, plasmid p SP 148_ # 1 049 1 FR), and insert this hairpin-type ds RNA expression cassette into Cre-1 ox recombination (US Pat. No. 6, 4 1 0, 3 1 7) can be recombined with the plasmid p SP 1 07 (Fig. 4) to produce the binary vector p SP 1 0 7_ # 1 049 1 (Fig. 5).
2個のトリガーは、 互いに向き合う方向でもよいし、 あるいは互いに背を向け 合う方向でもよい。 またスぺーサ一の配列は、 ヘアピンループを形成する配列で あればいかなるものでもよいが、 例えば r a s遺伝子配列、 イントロン配列を例 示することができ、 そのサイズは例えば数 ^〜数百ベース程度である。  The two triggers may be facing each other or facing each other back. The spacer sequence may be any sequence as long as it forms a hairpin loop. For example, a ras gene sequence or an intron sequence can be exemplified, and its size is, for example, about several to several hundred bases. It is.
3. 本発明のタバコ属植物の作製方法 3. Method for producing tobacco genus plant of the present invention
本発明のタバコ属植物の作製方法は、 タバコ属植物の細胞または組織を、 RN A干渉法、 アンチセンス法、 遺伝子破壊法、 人為的突然変異法、 リボザィム法、 共抑制法および転写因子を制御する方法から選択されるいずれかの方法を用いて、 上記 (a) 〜 (c) のタンパク質をコードする遺伝子および (d) 〜 (g) のポ リヌクレオチドを含む遺伝子のいずれかの遺伝子の発現を抑制し、 植物体を再生 することを含む。 ―  The method for producing a tobacco genus plant of the present invention comprises controlling the ribonucleic acid method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and transcription factor for tobacco cells or tissues. Expression of any one of the gene encoding the protein (a) to (c) and the gene containing the polynucleotide (d) to (g) using any one method selected from And regenerating plant bodies. -
タバコ属植物は、 例えば、 ニコチアナ ' トメントシフオルミス (N i c o t i a n a t ome n t o s i f o r m i s)、 二コチアナ ·シノレべストリス (N i c o t i a n a 5 7.1 6 5 1: ]: 1 5リ、 ニコチァナ*ノレスティ力 (N i c o t i a n a r u s t i c a)、 ニコチアナ 'タノくカム (N i c o t i a n a t a b a c um)、 ニコチアナ ·プルムバギニフォリア (N i c o t i a n a p 1 u mb a g i n i f o l i aノ、 ノヽナタノ コ (N i c o t i a n a x s a n d e r a e) などが挙げられ、 特に限定されないが、 ニコチアナ · タバカムが好まし い。 また品種については、 紙巻製品の主原料となる黄色種、 紙卷製品の緩和料と なるバーレ一種、 葉巻たばこの原料に用いられる葉巻種、 オリエント地域で栽培 され独自の香気を持つオリエント種、 たばこ種子が世界各地に伝来して以来、 各 地の気候風土に適応し分化した在来種を含む。 Tobacco plants, for example, Nicotiana 'Tmentififolmis (N icoti anat ome ntosiformis), Nicotiana Ninocotiana 5 7.1 6 5 1: 15: Nicotiana * Noresti Force (N icotianarustica), Nicotiana 'Tanokaku (N icotianatabac um), Nicotiana Plumbagi Examples include Nifolia (N icotianap 1 u mb aginifolia, N icotianaxsanderae), but are not particularly limited, but Nicotiana Tabacam is preferred. Varieties of varieties used as cigarette products, cigars used as cigarette ingredients, oriental varieties grown in the Orient region, and tobacco seeds have been introduced to various parts of the world. Including native species adapted to the climate and differentiated.
また本発明のタバコ属植物を作製するための植物材料としては、 植物体および 植物組織 (例えば根、 茎、 葉、 種子、 胚、 胚珠、 子房、 茎頂、 葯、 花粉等) やそ の切片、 細胞、 カルス、 それを酵素処置して細胞壁を除いたプロプラスト、 懸濁 培養細胞等の植物培養細胞が挙げられる。  Plant materials for producing the tobacco genus plant of the present invention include plant bodies and plant tissues (eg, roots, stems, leaves, seeds, embryos, ovules, ovary, shoot tips, cocoons, pollen, etc.) and their Plant culture cells such as slices, cells, callus, proplasts that have been treated with enzymes to remove cell walls, and suspension culture cells.
上記遺伝子の発現を抑制するには、 種々の遺伝子工学的手法を用いることがで き、 特に限定されないが、 たとえば RN A干渉法、 アンチセンス法、 遺伝子破壊 法、 人為的突然変異法、 リボザィム法、 共抑制法または転写因子を制御する方法 を挙げることができる。  Various gene engineering techniques can be used to suppress the expression of the above genes, and are not particularly limited. For example, RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method , Co-suppression methods or methods of controlling transcription factors.
RNA干渉法は、 上記 RNA干渉誘導ベクター、 または、 例えば配列番号 5若 しくは 7に示されるポリヌクレオチドあるいは配列番号 5または 7と 90%以上 同一性を有するポリヌクレオチドに相同な 2本鎖 RNA (その中の連続した例え ば約 1 5〜35塩基の 2本鎖 RNAが好ましい) を植物細胞または組織に導入し て行うことができる。  RNA interference method is performed by the RNA interference induction vector, or double-stranded RNA homologous to, for example, the polynucleotide shown in SEQ ID NO: 5 or 7, or a polynucleotide having 90% or more identity to SEQ ID NO: 5 or 7. Among them, a continuous example, preferably a double-stranded RNA of about 15 to 35 bases) is introduced into a plant cell or tissue.
また、 アンチセンス法は、 例えば上記アンチセンスベクターを植物細胞または 組織に導入することにより、 行うことができる。  In addition, the antisense method can be performed, for example, by introducing the antisense vector into a plant cell or tissue.
これらのベクターを導入するには、 例えばァグロパクテリゥム法、 エレク ト口 ポレーシヨン法、 パーティクルガン法、 P EG—リン酸カルシウム法、 リ.ポソ一 ム法、 マイクロインジェクション法が挙げられ、 特に限定されないが、 ァグロバ クテリゥム法が好ましい。 ァグロバタテリゥム法を用いる場合は、 プロ トプラス トを用いる場合、 培養細胞を用いる場合、 組織片 (葉片、 カルスなど) を用いる 場合がある。 Examples of the introduction of these vectors include the agglomeration method, the electroporation method, the particle gun method, the PEG-calcium phosphate method, the re-posome method, and the microinjection method. Although not preferred, the agrobacterium method is preferred. When using the agro-battery method, In some cases, tissue pieces (leaf pieces, callus, etc.) may be used.
プロ トプラストを用いる場合は、 T iプラスミ ドをもつァグロパクテリゥムと 共存培養する方法、 スフヱ口プラスト化したァグロパクテリゥムと融合する方法 When using protoplasts, co-cultivation with agrobacterium with T i plasmid, fusion with agroplast plasmosome
(スフヱ口プラスト法)、培養細胞を用いる場合は、 T iプラスミ ドをもつァグロ パクテリゥムと共存培養する方法、 組織片を用いる場合は、 対象植物の無菌培養 葉片 (リーフディスク) に感染させる方法やカルスに感染させる等により行うこ とができる。 (Sufuguchi plast method), in the case of using cultured cells, the method of co-culturing with agro-pacterium having T i plasmid, the method of infecting the sterilized cultured leaf pieces (leaf disc) of the target plant in the case of using tissue pieces, This can be done by infecting callus.
遺伝子が植物体に組み込まれたか否かの確認は、 PCR法、 サザンハイブリダ ィゼーション法、 ノーザンハイプリダイゼーション法、 ウェスタンブロッティン グ法等により行うことができる。 例えば、 形質転換植物体から DNAを調製し、 DNA特異的プライマーを設計して P CRを行う。 PCRを行った後は、 増幅産 物について電気泳動を行い、 臭化工チジゥム、 SYBR G r e e n液等により 染色し、 そして増幅産物を 1本のバンドとして検出し、 形質転換されたことを確 認することができる。 また、 予め蛍光色素等により標識したプライマーを用いて PCRを行い、 増幅産物を検出する'こともできる。 さらに、 マイクロプレート等 の固相に増幅産物を結合させ、 蛍光または酵素反応等により増幅産物を確認した り、 リアルタイム PCRで比較 C t法を用いて増幅率に基づいた DNAの定量を 行ってもよレヽ。  Whether or not a gene has been incorporated into a plant can be confirmed by PCR, Southern hybridization, Northern hybridization, Western blotting, or the like. For example, DNA is prepared from transformed plants, DNA-specific primers are designed, and PCR is performed. After PCR, the amplified product is electrophoresed, stained with bromide zyme, SYBR Green solution, etc., and the amplified product is detected as a single band to confirm that it has been transformed. be able to. It is also possible to detect the amplification product by performing PCR using a primer previously labeled with a fluorescent dye or the like. In addition, the amplified product can be bound to a solid phase such as a microplate, and the amplified product can be confirmed by fluorescence or enzymatic reaction, or DNA can be quantified based on the amplification rate using the comparative Ct method in real-time PCR. Yo!
あるいは、 上述の種々のレポーター遺伝子を目的遺伝子の下流域に連結したベ クタ一を作製し、 該ベクターを導入したァグロパクテリムを用いて上記と同様に して植物を形質転換させ、 該レポーター遺伝子の発現を測定することにより確認 してもよレ、。  Alternatively, a vector in which the above-mentioned various reporter genes are linked to the downstream region of the target gene is prepared, and a plant is transformed in the same manner as described above using agropacterime into which the vector is introduced, and the expression of the reporter gene You can confirm this by measuring.
遺伝子破壊法は、 各種トランスポゾン、 T一 DNAなどを用いて行うことがで ぎる。  The gene disruption method can be performed using various transposons and T-DNA.
トランスポゾンを利用した遺伝子破壊はトランスポゾンのゲノムへの遺伝子挿 入機構を利用した方法である。 特に、 内在性のトランスポゾンを用いる方法は、 非組換え体として、 一度に多数の遺伝子破壊系統を作出することができる点で優 れている。 このような内在性の挿入因子として、 タバコ属植物ではトランスポゾ ンの一種であるレトロ トランスポゾン T t o 1が知られている(WO 00/0 7 1 699)。 Gene disruption using a transposon is a method that uses the gene insertion mechanism of the transposon into the genome. In particular, the method using an endogenous transposon is superior in that a large number of gene disruption lines can be produced at a time as a non-recombinant. Such endogenous insertion factors include transpozo in tobacco plants. A retrotransposon T to 1 is known (WO 00/0 7 1 699).
T一 DN Aを利用した遺伝子破壊は、 標的遺伝子の中に薬剤耐性遺伝子などの 外来遺伝子を組込み、 これを右ボーダー (RB) と左ボーダー (LB) の間に挿 入した T— DNAベクターを作製し、 ァグロパクテリゥム法にてタバコ属植物を 形質転換する方法である。  Gene disruption using T-DNA is performed by inserting a foreign gene such as a drug resistance gene into the target gene and inserting it between the right border (RB) and the left border (LB). This is a method for producing and transforming tobacco plants using the agrobacterium method.
人為的突然変異法は、 例えば、 各種放射線 (電磁波、 紫外線、 X線、 γ線、 粒 子線、 中性子線、 α線、 i3線、 電子、 イオンビームなど) を植物に照射すること により、 また各種変異原性化学物質 (アルキル化剤、 核酸塩基アナログ、 アジ化 ナトリウムなど) で処理することにより、 行うことができる。 '  Artificial mutagenesis is, for example, by irradiating plants with various types of radiation (electromagnetic waves, ultraviolet rays, X rays, γ rays, particle rays, neutron rays, α rays, i3 rays, electrons, ion beams, etc.) This can be done by treating with various mutagenic chemicals (alkylating agents, nucleobase analogs, sodium azide, etc.). '
共抑制法とは、 植物に標的内在性遺伝子と同一もしくは類似した配列を有する 遺伝子を形質転換により導入すると、 導入した外来遺伝子および標的内在性遺伝 子の発現がいずれも抑制される現象めことを指す (Smy t h DR : Cu r r B i o l 7 : R 793, 1 9 9 7, Ma r t i e n s s e n R : C u r r B i o 1 6 : 8 1 0, 1 996)。 共抑制の機構の詳細は明らかではないが、 少な く ともその機構の一部は RN A iの機構と重複していると考えられている。 例え ば、 # 1 049 1遺伝子が共抑制された植物体を得るためには、 # 1 049 1遺 伝子、 または、 これらと類似した配列を有する DNAを発現できるように作製し たベクターを使用して目的の植物を形質転換すればよい。 共抑制に用いる遺伝子 は、 標的遺伝子と完全に同一である必要はないが、 少なく とも 70%以上、 好ま しくは 80%以上、 さらに好ましくは 90%以上、 最も好ましくは 95%以上の 配列の同一性を有する。 また、 配列の同一性は上述した手法により決定できる。  Co-suppression is a phenomenon in which when a gene having the same or similar sequence as a target endogenous gene is introduced into a plant by transformation, the expression of the introduced foreign gene and target endogenous gene are both suppressed. Point to (Smy th DR: Cu rr B iol 7: R 793, 1 9 9 7, Ma rtienssen R: C urr B io 1 6: 8 1 0, 1 996). The details of the mechanism of co-suppression are not clear, but at least part of the mechanism is thought to overlap with that of RNAI. For example, in order to obtain plants in which the # 1 049 1 gene is co-suppressed, use the # 1 049 1 gene or a vector prepared so that it can express DNA having a similar sequence. Then, the target plant may be transformed. The gene used for co-suppression need not be exactly the same as the target gene, but at least 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more of the sequence identity Have sex. In addition, sequence identity can be determined by the method described above.
リボザィム法で用いるリボザィムとは触媒活性を有する RN A分子の総称であ るが、 特に本明細書では RNAを部位特異的に切断するよう設計された RNA分 子のことを指す。 リボザィムには、 グループ Iイントロン型や RN a s e Pに 含まれる Ml RNAのように 400ヌクレオチド以上の大きさのものもあるが、 ハンマーへッド型ゃヘアピン型と呼ばれる 40ヌクレオチド程度の活性ドメイン を有するものもある (小泉誠および大塚栄子:蛋白質核酸酵素、 35 : 2 1 9 1 , The ribozyme used in the ribozyme method is a general term for RNA molecules having catalytic activity. In particular, in this specification, it refers to RNA molecules designed to cleave RNA in a site-specific manner. Some ribozymes have a size of 400 nucleotides or more, such as group I intron type and Ml RNA contained in RNase P. However, the hammerhead type has an active domain of about 40 nucleotides called hairpin type. Some things (Makoto Koizumi and Eiko Otsuka: Protein Nucleic Acid Enzymes, 35: 2 1 9 1,
1 990)。 標的を切断できるように設計されたリボザィム は、 植物細胞中で転 写されるように、 カリフラワーモザイクウィルスの 35 Sプロモーターなどのプ 口モーターおよび転写終結配列に連結される。 このとき、転写された RNAの 5 ' 端や 3 ' 端に余分な配列が付加されていると、 リボザィムの活性が失われること があるが、 こういった場合は、 転写されたリボザィムを含む RNAからリボザィ ム部分だけを正確に切り出すために、 リボザィム部分の 5 ' 側や 3 ' 側にシスに 働く別のトリ ミングリボザィムを配置させることも可能である (T a i r a K, e t a 1 : P r o t e i n En g 3 : 733, 1 990, D z i a n o t t AM &B u j a r s k i J J : P r o c Na t l Ac a d S c i US A 86 : 4823, 1 989、 G r o s s h a ri s CA & C e c hTR: N u c l Ac i d s R e s 1 9 : 38 75, 1 99 1、 T a i r a K, e t a 1 : N u c 1 Ac i d s R e s 1 9 : 5 1 25, 1 99 1)。 また、 このよ うな構成単位をタンデムに並べ、 標的遺伝子内の複数の部位を切断できるように することで、 より効果を高めることもできる (Yu y a ma N, e t a 1 : B i o c h em B i o p h y s R e s C o mm u n 1 86 : 1 27 1, 1 9 92)。 このように、 リボザィム を用いて本発明における標的遺伝子の転写産物 を特異的に切断することで、 該遺伝子の発現を抑制することができる。 1 990). Ribozymes designed to cleave targets are translocated in plant cells. As shown, it is linked to a transcription motor and transcription termination sequence such as the 35 S promoter of cauliflower mosaic virus. At this time, if an extra sequence is added to the 5 'end or 3' end of the transcribed RNA, the ribozyme activity may be lost. In such cases, the RNA containing the transcribed ribozyme may be lost. It is also possible to place another trimming ribozyme that works in cis on the 5 'side or 3' side of the ribozyme part (T aira K, eta 1: Protein En g). 3: 733, 1 990, D zianott AM & B ujarski JJ: Proc Na tl Ac ad S ci US A 86: 4823, 1 989, Grossha ris CA & Cec hTR: Nucl Ac ids R es 1 9: 38 75, 1 99 1, T aira K, eta 1: Nuc 1 Ac ids Res 1 9: 5 1 25, 1 99 1). It is also possible to increase the effect by arranging such structural units in tandem so that multiple sites within the target gene can be cleaved (Yu ya ma N, eta 1: B ioch em B iophys R es C o mm un 1 86: 1 27 1, 1 9 92). Thus, by specifically cleaving the transcript of the target gene of the present invention using a ribozyme, the expression of the gene can be suppressed.
転写因子を制御する方法は、 標的遺伝子の発現を調節する転写因子の発現を増 減させることにより、 間接的に標的遺伝子の発現を増減させる方法である。 転写 因子は標的遺伝子のプロモーター領域の特定配列 (シスエレメント) に結合する ことにより、 当該遺伝子の発現をコントロールする。 例えば、 転写因子を発現さ せることによって、 代謝遺伝子の遺伝子発現を抑制することが可能である (P 1 a n t Mo l e c u l a r B i o l o g y 2006 6 2 : 809-82 3)。  The method of controlling a transcription factor is a method of indirectly increasing or decreasing the expression of a target gene by increasing or decreasing the expression of a transcription factor that regulates the expression of the target gene. A transcription factor controls the expression of a gene by binding to a specific sequence (cis element) in the promoter region of the target gene. For example, by expressing a transcription factor, it is possible to suppress the gene expression of a metabolic gene (P 1 ant Molec lar Al Biol og 2006 6 2: 809-82 3).
上記遺伝子工学的手法において植物組織または細胞を材料とした場合は、 得ら れた榼物組織または細胞から既知の組織培養法により器官または個体を再生させ ればよい。 このような操作は、 植物細胞から植物体への再生方法として一般的に 知られている方法により、 当業者であれば容易に行うことができる。 植物細胞か ら植物体への再生については、 例えば、 以下のように行うことができる。  When plant tissue or cells are used as a material in the above genetic engineering technique, an organ or an individual may be regenerated by using a known tissue culture method from the obtained plant tissue or cells. Such an operation can be easily performed by those skilled in the art by a method generally known as a method for regenerating plant cells from plant cells. Regeneration from plant cells to plants can be performed, for example, as follows.
まず、 形質転換の対象とする植物材料として植物組織またはプロ トプラストを 用いた場合、 これらを無機要素、 ビタミン、炭素源、エネルギー源としての糖類、 植物生長調節物質 (オーキシン、 サイ トカイニン等の植物ホルモン) 等を加えて 滅菌したカルス形成用培地中で培養し、 不定形に増殖する脱分化したカルスを形 成させる (以下 「カルス誘導」.という)。 このように形成されたカルスをォーキシ ン等の植物生長調節物質を含む新しい培地に移しかえて更に増殖 (継代培養) さ せる。 First, plant tissues or protoplasts are used as plant materials for transformation. When used, they are cultured in a sterilized callus-forming medium with the addition of inorganic elements, vitamins, carbon sources, sugars as energy sources, plant growth regulators (plant hormones such as auxin and cytokinin), etc. It forms dedifferentiated callus that grows in a regular shape (hereinafter referred to as “callus induction”). The callus formed in this way is transferred to a new medium containing a plant growth regulator such as oxine and further grown (subcultured).
カルス誘導は寒天等の固型培地で行い、 継代培養は例えば液体培養で行うと、 それぞれの培養を効率良くかつ大量に行うことができる。 次に、 上記の継代培養 により増殖したカルスを適当な条件下で培養することにより器官の再分化を誘導 し (以下、 「再分化誘導」 という)、 最終的に完全な植物体を再生させる。 再分化 誘導は、 培地におけるオーキシンやサイ トカイニン等の植物生長調節物質、 炭素 源等の各種成分の種類や量、 光、 温度等を適切に設定することにより行うことが できる。 かかる再分化誘導により、 不定胚、 不定根、 不定芽、 不定茎葉等が形成 され、 更に完全な植物体へと育成させる。  When callus induction is performed in a solid medium such as agar and subculture is performed in, for example, liquid culture, each culture can be performed efficiently and in large quantities. Next, callus grown by the above subculture is cultured under appropriate conditions to induce organ redifferentiation (hereinafter referred to as “redifferentiation induction”), and finally regenerates a complete plant body. . Induction of regeneration can be performed by appropriately setting the kind and amount of various components such as plant growth regulators such as auxin and cytokinin, carbon sources, light, temperature, etc. in the medium. By such redifferentiation induction, somatic embryos, adventitious roots, adventitious buds, adventitious foliage, etc. are formed and further grown into complete plants.
なお、 本発明の方法により作製されたタバコ属植物は、 形質転換処理を施した 再分化当代である 「T O世代」 のほか、 Τ 0世代の植物を母本として、 その植物 の種子から得られた後代である 「Τ 1世代」、薬剤選抜あるいはサザン法等による 解析により トランスジエニックであることが判明した 「Τ 1世代」 植物の花を自 家受粉して得られる次世代 (Τ 2世代) などの後代植物をも含むものとする。 これらのタバコ属植物、またはその葉をたばこ製品の原料として、シガレツ ト、 葉巻、 パイプたばこなどの各種たばこ製品を製造することができる。  The tobacco genus plant produced by the method of the present invention is obtained from the seed of the plant using the 0th generation plant as a parent, in addition to the “TO generation” which is a regenerated generation that has undergone transformation treatment. The next generation (Τ1 generation), the next generation (Τ2 generation) that is obtained by self-pollination of plant flowers. ) And other progeny plants. Various tobacco products such as cigarettes, cigars and pipe tobacco can be produced using these tobacco plants or their leaves as a raw material for tobacco products.
たばこ製品の原料となる乾燥葉たばこの品質は、 栽培中のタバコ葉の成熟度に 大きく左右される。 芯止めから収穫までの数十日間において肥料は枯渴し、 タパ コ葉は、 乾物重の増大とともに、 次第に成熟すると考えられている。 この期間に タバコ葉の内容成分は、 アルカロイ ド含量の増大、 クロロフィルの分解など、 大 きく変化する。 つまり、 乾燥葉たばこの香喫味に関連する成分は成熟期の劇的な 代謝の変動に伴い生成蓄積される。 したがって、 乾燥葉たばこの品質はタバコ葉 の成熟に関連して発現する遺伝子によりコントロールできると考えられる。 品質の高い乾燥葉たばこは、 適度に成熟したタバコ葉を適切に乾燥処理するこ とによってのみ、 生産することが可能である。 例えば、 品質の良好な黄色種タパ コの乾燥葉は鮮黄色に仕上がり、 芳香があり、 緩和で甘みのある香喫味を特徴と する。 色調は乾燥葉の品質を判断する上での重要な要素であり、 黄色種タバコで は、 レモン、 オレンジなどの鮮やかな色調のものが品質良好で、 まだらや緑がか つたものは品質が悪いとされている (O f f i c i a l S t a n d a r d G r a d e s f o r t l u e— Cu r e d 1 o b a c c o U. S. y p e s 1 1, 1 2, 1 3, 14, & F o r e i g n Ty p e 92, U n i t e d S t a t e s D e p a r t me n t o f Ag r i c u l t u r e)。 また、 乾燥葉たばこの品質は乾燥処理によっても大きく左右される。 葉たば この乾燥処理は、 単に葉の乾燥を目的としているわけでなく、 葉中の成分を変化 させ、 葉たばこ特有の色と香喫味を発現させる、 葉たばこ生産上の極めて重要な 工程である。 また、 特に温湿度や葉の吊り込み密度など乾燥処理における管理に 問題があると、 乾燥葉たばこは、 例えば急乾葉、 ムレ葉、 帯青葉などの乾燥異常 葉となり、 原料葉たばことしての商品価値を大きく損なうことになる。 こうした 乾燥処理における異常葉の出現や乾燥処理の容易さは、 上記成熟度合いの他に、 品種や土壌環境にも左右される。 例えば、 遺伝形質としての "乾燥容易性" は品 種の育成にも利用されている。 The quality of dry leaf tobacco, the raw material for tobacco products, depends greatly on the maturity of the tobacco leaves being cultivated. It is believed that the fertilizer will wither in the tens of days from the centering to the harvest, and that tapaco leaves will gradually mature with increasing dry weight. During this period, the content of tobacco leaves changes greatly, including increased alkaloid content and chlorophyll degradation. In other words, components related to the taste of dried tobacco are generated and accumulated with dramatic metabolic changes during the mature period. Therefore, the quality of dry leaf tobacco can be controlled by genes expressed in relation to tobacco leaf maturity. High-quality dry tobacco is used to properly dry tobacco leaves that are reasonably mature. It is possible to produce only with. For example, the dry leaves of good quality yellow tapaco are finished in a bright yellow color, fragrant, and characterized by a mild and sweet taste. Color tone is an important factor in determining the quality of dried leaves. For yellow tobacco, vibrant colors such as lemon and orange have good quality, and those with mottled and green colors have poor quality. (O fficial Standard Gradesfortlue — Cu red 1 obacco US ypes 1 1, 1 2, 1 3, 14, & Foreign Ty pe 92, United States D epart me ntof Ag riculture). The quality of dried leaf tobacco is also greatly affected by the drying process. Leaf Tobacco This drying process is not just for the purpose of drying leaves, but is an extremely important step in leaf tobacco production by changing the components in the leaves and expressing the unique color and flavor of the tobacco. In addition, when there are problems with management in drying processing, such as temperature and humidity and leaf suspension density, dry tobacco leaves become abnormal dry leaves such as quick-drying leaves, mulled leaves, and belted green leaves. It will be greatly damaged. The appearance of abnormal leaves and the ease of drying in such a drying process depend not only on the maturity level but also on the variety and soil environment. For example, “easiness of drying” as a genetic trait is also used for breeding of varieties.
本発明の # 1 049 1遺伝子の発現を抑制したトランスジヱニックタバコ (# 1 049 1タバコ) は、 その葉を乾燥させたところ、 ベクターコントロールを導 入した対照タバコで認められた褐変がほとんどなく、黄色の鮮やかな色調を有し、 良好な品質の原料となり うる。 また、 本発明の # 1 049 1タバコは、 対照タパ コと比較して成熟が早いという特長も認められた。  The transgenic tobacco (# 1 049 1 tobacco) that suppressed the expression of the # 1 049 1 gene of the present invention had almost the browning observed in the control tobacco introduced with the vector control when the leaves were dried. It has a bright yellow color and can be a good quality raw material. In addition, the # 1 049 1 cigarette of the present invention was also recognized as having an early maturity compared to the control tapaco.
なお、 上記葉たばこ生産に関することがらは、 当業者にとって周知のことであ り、 D a v i s D L . e t a l ., T o b a c c o : P r o d u c t i o n, It should be noted that the above-mentioned leaf tobacco production is well known to those skilled in the art, and D a v i s D L .e t a l., T o b a c c o: P r o d u c t i o n,
Ch em i s t r y a n d T e c h n o 1 o g y (1 999) (B l a c kw e l l P u b l i s h i n g)、 C o l l i n s WK. e t a 1. , P r i n c i p l e s o f F l u e— Cu r e d T o b a c c o P r o d u c t i o n ( 1 s t E d i t i o n, 1 9 93) (No r t h C a r o l i n aCh em istryand T echno 1 ogy (1 999) (B lac kw ell P ublishing), Collins WK. Eta 1., P rinciplesof F lue— Cu red T obacco Pro roduction (1 st E dition, 1 9 93) ( No rth C arolina
S t a t e Un i v e r s i t y), 河田, 葉たばこの耕作法 (1 99 1) (日 本たばこ産業) などの成書にも記されている。 State Un iversity), Kawada, leaf tobacco cultivation method (1 99 1) (day It is also written in books such as this tobacco industry.
以下、 実施例により本発明を具体的に説明するが、 これらの実施例は本発明を 限定するものではない。  EXAMPLES Hereinafter, the present invention will be specifically described by way of examples. However, these examples do not limit the present invention.
実施例 Example
実施例 1 Example 1
[成熟期において発現量が大きく変化する遺伝子 (# 1 04 9 1遺伝子) の同定] 本発明者らは、原料葉たばこの品質に影響を及ぼす遺伝子の同定を目的として、 タバコ葉の成熟度合いが原料葉たばこの品質を大きく左右する点に着目し、 土耕 栽培した成熟期のタバコの葉において、 あるいは、 窒素施肥量を減じることによ つて擬似的に成熟を誘導した水耕栽培タバコの葉において、 発現量が大きく変化 する遺伝子を探索した。 その結果、 タバコ葉の成熟時に特異的に発現が上昇する 遺伝子の一つとして # 1 0 4 9 1遺伝子を同定した。  [Identification of a gene whose expression level changes greatly during maturity (# 1 04 9 1 gene)] The present inventors have determined that the maturity level of tobacco leaves is the raw material for the purpose of identifying genes that affect the quality of the raw leaf tobacco. Focusing on the fact that the quality of leaf tobacco is greatly influenced, in the leaf of tobacco grown in soil cultivation, or in the leaf of hydroponically cultivated tobacco in which maturation was induced artificially by reducing the amount of nitrogen fertilization, We searched for genes whose expression level changes greatly. As a result, we identified the # 1 0 4 9 1 gene as one of the genes whose expression specifically increases during tobacco leaf maturation.
( 1 ) タバコの栽培および葉からの RN Aサンプル抽出  (1) Cultivation of tobacco and extraction of RNA samples from leaves
土耕栽培タバコ (つくば 1号) は、 播種後 6週目に 4号素焼き鉢(テラコッタ ; 径 1 24 mm, 高さ 1 1 Omm) に移植して、 人工気象器 (コィ ト トロン:小糸 工業株式会社製) に入れて育成した。 鉢用肥土は土:堆肥:赤玉土 (大)、 赤玉土 The soil-cultivated tobacco (Tsukuba No. 1) was transplanted to No. 4 clay pot (terracotta; diameter 1 24 mm, height 1 1 Omm) 6 weeks after sowing, and meteorological meteorological equipment (Cottron: Koito Industries) (Made by Co., Ltd.) Fertilizer for pots is soil: compost: red ball (large), red ball
(小) :バーミキユラィ ト = 3 ·: 4 : 1 : 1 : 1の組成の肥土 1 0 0リツトル当た りバーレ一 S 6 2 5 (肥料) 1 k gを混合したものを使用した。 人工気象器は、 明期: 6 : 3 0— 1 8 : 3 0、 温度 2 6 °C、 湿度 6 0 % (R H)、 喑期: 1 8 : 3(Small): Vermiculite = 3 ·: 4: 1: 1: 1 fertilizer with a composition of 1: 1 Barrel per 6 liters S 6 2 5 (fertilizer) 1 kg mixed was used. The meteorological device is in the light period: 6: 3 0—1 8:30, temperature 26 ° C, humidity 60% (R H), long period: 1 8: 3
0 - 6 : 3 0、 温度 1 8°C、 湿度 8 0% (RH) に設定した。 土が乾かないよう に 1 日 1回程度港水し、 水量は生育にあわせて適宜調整した。 移植に合わせて苗 の地上部を全て採取し、移植 0日目の試料とした(N= 8)。さらに、移植後 1 4、0-6: 30, temperature 18 ° C, humidity 80% (RH). Port water was used once a day so that the soil would not dry, and the amount of water was adjusted appropriately according to the growth. All the above-ground parts of the seedlings were collected at the time of transplantation, and used as a sample on the 0th day of transplantation (N = 8). Furthermore, after transplantation 1,
2 8、 4 5、 5 2日目の午前 9 : 0 0に、 下から 1 1枚目の葉を採集した。 (1 4 日目 N= 3 6、 2 8— 5 2日目 N= 6、 4 5日目 N= 9)。 On the 2nd, 4th, 5th and 5th day, at 9:00:00 am, the first leaf from the bottom was collected. (1 Day 4 N = 3 6, 2 8-5 Day 2 N = 6, 4 Day 5 N = 9).
また、水耕栽培タバコ (つくば 1号) は、発芽 2 8日目にハイ ドロボール(小粒) を充填したポリポット (丸型、 1 2. O c m, 9. 8 c m、 底穴 1箇所) へ移植 し、 1 5 mM KN03を含む水耕液 (2. 5 mM K p i : p H 5. 5、 2 mHydroponic tobacco (Tsukuba No. 1) was transplanted to a polypot (round, 1 2. O cm, 9.8 cm, 1 bottom hole) filled with Hydroball (small grain) on the 8th day of germination. and, water culture medium containing 1 5 mM KN0 3 (2. 5 mM K pi: p H 5. 5, 2 m
M Mg S O4、 2 mM C a C l 2、 5 0 μΜ F e—EDTA、 7 0 M H 3BO3、 1 4 μΜ Mn C l 2、 0. 5 μΜ C u S O 4、 1 M Z n S 04、 0. 2 μΜ N aMo O4、 1 0 /zM N a C l、 0. 0 1 / M C o C 1 2) を 底面灌水して、 土耕栽培タバコと同様に人工気象器の中で育成した。 減少した水 耕液は適宜補充して量を維持した。 水耕開始 7日目 (発芽 3 5日目) に一部の植 物は 0. 3mM ΚΝΟ3を含む水耕液へ移して成熟を誘導した。 一方、 そのま ま 1 5mM KN03を含む水耕液で栽培した植物は対照とした。 これら植物か ら、 水耕開始 7日目以降の数日間にわたって、 午前 9時に下から 7枚目の葉を採 取した。 M Mg SO 4 , 2 mM CaCl 2 , 50 μ 5 Fe-EDTA, 70 MH 3 BO 3 , 14 μΜ Mn C l 2 , 0.5 μΜ Cu SO 4 , 1 MZ n S 0 4 , 0.2 μΜ NaMo O 4 , 1 0 / zM N a C l, 0.0 1 / MC o C 1 2 ) was irrigated from the bottom and grown in an artificial meteor like the soil-cultivated tobacco. The reduced hydroponics was replenished as appropriate to maintain the volume. On the 7th day after hydroponics (germination 35), some plants were transferred to a hydroponic solution containing 0.3 mM 3 to induce maturation. Meanwhile, plants grown in hydroponic solution containing the or or 1 5mM KN0 3 were the control. From these plants, the seventh leaf from the bottom was collected at 9 am for several days after the seventh day of hydroponics.
採集した葉は、 液体窒素で凍らせた後に磨砕して RNA抽出用のサンプルとし た。 なお、 移植時の苗は地上部全体をサンプルとして用いた。 T o t a l RN Aは C o n c e r t P l a n t RNA r e a g e n t ( I n v i t r o g e n e社) を用いて (メーカー記載の操作方法を実施)、 約 4 gの試料から精製し た。 さらに、 p o l y (A) RNAは T o t a l RNA 1 , O O O ^ g力 ら オリ ゴ d T—セルロースァフィ二ティーカラム法(G e n E 1 u t e mRN A m i n i p r e p k i t, S i gma社) を用いて精製した (メ一力一記載の 操作方法を実施)。  The collected leaves were frozen with liquid nitrogen and then ground to prepare samples for RNA extraction. The seedlings at the time of transplantation used the entire above-ground part as a sample. T o tal RN A was purified from about 4 g of sample using C o n c rt P l ant RNA r a ge nt (Inv ito r o ge ne). In addition, poly (A) RNA was purified using Total RNA 1, OOO ^ g force and oligo d T-cellulose affinity column method (Gen E 1 ute mRN A miniprepkit, Sigma). (The operation method described in the first place is carried out).
(2) c DNAマイクロアレイ解析  (2) c DNA microarray analysis
上記のようにして得た p o 1 y (A) RNAは理化学研究所のタバコ培養細 胞由来の約 1 7 0 0 0種の E S Tを搭載した BY— 2 E S Tマイクロアレイを 用いて解析した。 理化学研究所の B Y_ 2— E S Tマイクロアレイに関する詳細 は Ma t s u o k aら (2 0 04, A c o m p r e h e n s i v e g e n e e x p r e s s i o n a n a 1 y s i s t o w a r d t h e u n d e r s t a n d i n g o f g r o w t h a n d d i f f e r e n t i a t i o n o f t o b a c c o BY— 2 e e l 1 s • P 1 a n t C e 1 1 The po 1 y (A) RNA obtained as described above was analyzed using a BY-2 ES T microarray equipped with approximately 170,000 kinds of ES T derived from tobacco culture cells of RIKEN. RIKEN B Y_ 2-E For more information on S T microarray Ma t s u o k a et al (2 0 04, A c o m p r e h e n s i v e g e n e e x p r e s s i o n a n a 1 y s i s t o w a r d t h e u n d e r s t a n d i n g o f g r o w t h a n d d i f f e r e n t i a t i o n o f t o b a c c o BY- 2 e e l 1 s • P 1 a n t C e 1 1
P h y s i o 1 4 5 : 1 2 8 0 - 9) および G a 1 i s ら (2 0 0 6, A n o v e 1 R 2 R 3 MYB t r a n s c r i P t i o n f a c t o r N t MYB J S 1 i s a m e t h y 1 j a s m o n a t e— d e p e n d e n t r e g u 1 a t o r o f p h e n y 1 P r o P a n o i d— c o n j g a t e b i o s y n t h e s i s i n t o b a c c o . P 1 a n t J., 46 : 5 73 - 92.) の報告および NCB I (Na t i o n a l C e n t e r f o r B i o t e c h n o 1 o g y I n f o r m a t i o n ) の GEO (G e n e E x p r e s s i o n Omn i b u s) のホ ムぺージ にて公開されている。 Physio 1 4 5: 1 2 8 0-9) and G a 1 is et al. (2 0 0 6, A nove 1 R 2 R 3 MYB transcri Ption factor N t MYB JS 1 isamethy 1 jasmonate— dependentregu 1 atorofpheny 1 P ro P anoid— conjgatebiosynthesisi ntobacco. P 1 an t J., 46: 5 73-92.) and NCB I (National C enterfor Biotechno 1 ogy Information) GEO (Gene E xpression Omn ibus) homepage .
(h t t p : www . n c b i . n 1 m • n i h . g o v/ g e o Z q u e r y / a c c . c g i ? a c c = G Pし 4 7 0 6)  (h t t p: www. n c b i. n 1 m • n i h. g o v / g e o Z q u e r y / a c c. c g i? a c c = G P 4 7 0 6)
(h t t p : www . n c b i . n 1 m • n i h . g o v/ g e o / q. u e r y/a c c. c g i ? a c c = G P L 4 7 0 7)  (h t t p: www. n c b i. n 1 m • n i h. g o v / g e o / q. u e r y / a c c. c g i? a c c = GP L 4 7 0 7)
(h t t p : //www. n c b i . n 1 m - n i h. g o v/ g e o / q. n e r y / a c c . c g i ? a c c = G P L 4 7 0 8)  (h t t p: //www.n c b i .n 1 m-n i h. g o v / g e o / q.n e r y / a c c .c g i? a c c = G P L 4 7 0 8)
(h t t p : //www. n c b i . n 1 m - n i h. g o v/ g e o Z q u e r y / a c c . c g i ? a c c = G P L 4 7 0 9)  (h t t p: //www.n c b i .n 1 m-n i h.g o v / g e o Z q u e r y / a c c .c g i? a c c = GP L 4 7 0 9)
各試料から精製した p o 1 y (A) RN Aとマイクロアレイ解析の処理手順 や直線性や感度、 精度を確認するためのィンターナルコントロールとして添加し たカナマイシン耐性遺伝子の c RN Aを铸型にして、 An c h o r e d d T 2 The po 1 y (A) RN A purified from each sample and the c RN A of the kanamycin resistance gene added as an internal control to confirm the processing procedure, linearity, sensitivity, and accuracy of the microarray analysis are made into a vertical type. An choredd T 2
5プライマー (GE He a l t h e a r e社)、 Ra n d om 9 m e r sプラ イマ一 (GE He a l t h c a r e社) の混合プライマーと S u p e r S c r i p t I I I逆転写酵素 ( I n v i t r o g e n社) を用いて一本鎖 c DNA プローブを合成し、 同時に蛍光色素 C y 5 (GE He a l t h c a r e社) で 標識した核酸を c DN Aプローブ中に取り込ませた。 c DN AプローブとオリゴSingle-stranded cDNA probe using 5 primers (GE Healtheare), Random 9 mers primer (GE Healthcare) and Superscript III reverse transcriptase (Invitrogen) At the same time, a nucleic acid labeled with the fluorescent dye Cy5 (GE Healthcare) was incorporated into the cDNA probe. c DN A probe and oligo
A 80、 C y 3標識ベクター、 E x p r e s s Hy bTM Hy b r i d i z a t i o n S o l u t i o n (C l o n t e c h社) を混合してプローブ溶液とし た。 プローブのハイプリダイゼーションとスキャンニングは前述の松岡らの方法 に従つ 7こ。 7 タ f 、 .G e n e S p r i n g (S i l i c o n G e n e t i c s社) によって解析した。 マイクロアレイ解析の結果、 タバコ葉の成熟時に特 異的に発現が上昇する遺伝子の一つとして、 発現タグ (E ST) である 1 049The probe solution was prepared by mixing A80, Cy3 labeled vector and Express Hyb Hybridization Solution (Clontech). The probe high-pridization and scanning follow the method of Matsuoka et al. Analysis was performed using 7 f, .Gene Spring (Silicon Genetics). As a result of microarray analysis, an expression tag (EST) is one of the genes whose expression is specifically increased during tobacco leaf maturation.
1 f 1配列 (配列番号 1) (G e n B a n k G I : 5282952 7) と相同で ある遺伝子を見いだした。 A gene that is homologous to the 1 f 1 sequence (SEQ ID NO: 1) (G e n B a n k G I: 5282952 7) was found.
(3) # 1 049 1遺伝子の全長 c DNA配列の単離 上記のようにして明らかにした 1 049 1 f 配列 (配列番号 1) に相当する完 全長 c DNAは、 出願人保有の c DNAライブラリーから相同性検索により得る ことができた。出願人保有の c DNAライブラリーとは、タバコ(品種つくば 1号) の完全長 c D N Aクローンを個別に単離し、 末端配列情報とともに整理したもの である。 この様にして得た 3種のクローン (N o. 00 1 5_2_E 03、 N o .(3) Full length of # 1 049 1 gene Isolation of cDNA sequence The full-length cDNA corresponding to the 1049 1 f sequence (SEQ ID NO: 1) clarified as described above could be obtained from the cDNA library owned by the applicant by homology search. The applicant's cDNA library is a full-length cDNA clone of tobacco (Cultivar Tsukuba No. 1) isolated individually and arranged with terminal sequence information. Three clones (N o. 00 1 5_2_E 03, N o.
0052_2_F 08、 No. 00 77— 1— F 0 7 ) を L B (50mgZLァ ンピシリンを含む) 液体培地中で終夜培養し、 シークェンス解析の铸型とするた めに、 各クローンに含まれるプラスミ ド DNAを Q I A p r e p S p i n M0052_2_F 08, No. 00 77— 1— F 0 7) is cultured overnight in LB (containing 50 mg ZL ampicillin) liquid medium, and the plasmid DNA contained in each clone is used as a template for sequence analysis. QIA prep S pin M
1 n i p r e p K i t (Q I AG EN社) を用いて精製した。 # 1 049 1遺 伝子の未解読領域のシークェンス解析は、 P r i me r E x p r e s sソフ トゥ エア (Ap p l i e d B i o s y s t em s社) を用いて上記 3種のクローン の c DNA末端配列情報に基づき設計した配列番号 2〜4、 および Ml 3 P r i me r M4 (タカラバィォ社)、 M 1 3 P r i me r RV (タカラバイオ 社) などのプライマーを用いて行った。 シークェンス解析は、 B i gDy e (登 録商標) T e r m i n a t o r v 3. 1 C y c l e S e q u e n c i n g K i "Ap p l i e d B i o s y s t em s社)および 3 700 DNA A n a 1 y z e r (Ap p l i e d B i o s y s t em s社) を用レヽて、 キッ卜 および装置の指示書に従って行った。 上記のようにして得た配列を塩基配列解析 ソフ ト (ATGC V e r . 4, G E N E T Y X ;ゼネティックス社) を用いて、 1 049 1 f 配列 (配列番号 1) および上記 3種のクローンの c DN A末端配列 と結合処理することにより、 1 720 b pの # 1 049 1遺伝子の全長 c DNA 配列 (配列番号 5、 # 1 049 1— c DNA) を明ら力 にし、 また、 # 1 049 1遺伝子がコードするァミノ酸配列 (配列番号 6、 # 1 049 1— p r o t e i n) を推定した。 # 1 049 1遺伝子の全長 c DNA配列 (配列番号 5 ) は、 B L AS Tによる配列比較解析を行ったところ、 チトクローム P 450の一種と推 定された。 実施例 2 Purification was carried out using 1 n i p r e p K i t (Q I AG EN). # 1 049 1Sequence analysis of the undecoded region of the gene was performed based on the cDNA sequence information of the above three clones using Primer e xpress software (Applied Biosyst ems). It was performed using the designed SEQ ID NOs: 2 to 4, and primers such as Ml 3 Pri mer M4 (Takara Bio) and M 13 Pri mer RV (Takara Bio). Sequence analysis was performed using B iGDy e (registered trademark) Terminatorv 3.1 Cycle Sequencing K i "Ap plied B iosyst ems) and 3 700 DNA A na 1 yzer (Ap plied B iosyst em s) 1 049 1 f The sequence obtained as described above was obtained using a nucleotide sequence analysis software (ATGC Ver. 4, GENETYX; Genetics). The full-length cDNA sequence (SEQ ID NO: 5, # 1 049 1—c) of 1 720 bp by combining the sequence (SEQ ID NO: 1) and the c DN A terminal sequence of the above three clones. In addition, the amino acid sequence encoded by the # 1 049 1 gene (SEQ ID NO: 6, # 1 049 1—protein) was deduced. # 1 049 1 gene full-length cDNA sequence (SEQ ID NO: 5), a sequence comparison analysis by BLAST was performed. And it was estimated. Example 2
[# 1 049 1遺伝子の発現を抑制するためのヘアピン型 d s RN A発現カセッ トを含むバイナリーベクターの構築] [# 1 049 hairpin ds RNA expression cassette to suppress the expression of 1 gene Construction of binary vector including
R N A iのトリガーとなる D N A配列 (配列番号 7 # 1 049 1— t r i g e r ) はクローン N o . 00 1 5— 2— E 03のプラスミ ドを铸型として、 配列 番号 8および 9、 あるいは配列番号 1 0および 1 1のプライ 組み合わせを用 いて図 1に示す同一の領域から P CR増幅した。 PCR増幅は、 P f uU l t r a™ H i g h— F i d e l i t y DNA P o l yme r a s e ( s t r a t a g e n e社) および G e n e Am p (登録商標) PCR S y s t em 9 700 (Ap p l i e d B i o s y s t em s社) を用い、 95°C 2分の後、 95°C30秒、 60 C30秒、 72 °C 60秒で 30サイクル、 72°Cでさらに 1 0分反応させて行った。 増幅した 2種の DN A断片は、 それぞれ 5 ' /3 ' 末端 に、 プライマーにより付与された N 0 1 1ノ? 3 1 1または8 & mH I /S p h I認識配列を持つ (図 1)。 得られた増幅 DN Aは、 それぞれ 5 ' /3' 末端に付 与された制限酵素で二重消化し、 M i n E 1 u t e k i t (Q I AG EN社) で精製した。 .  The DNA sequence that triggers RNA i (SEQ ID NO: 7 # 1 049 1—triger) is the sequence of clone No. PCR was amplified from the same region shown in FIG. 1 using the 0 and 11 ply combinations. PCR amplification was performed using PfU Ultra ™ High-fidelity DNA Polymerase (Stratagene) and Gene Amp (registered trademark) PCR System 9 700 (Applied Biosyst ems). After 95 minutes at 95 ° C, the reaction was performed at 95 ° C for 30 seconds, 60 C for 30 seconds, 72 ° C for 60 seconds for 30 cycles, and 72 ° C for another 10 minutes. The two amplified DNA fragments are N 0 1 1 nose added by the primer at the 5 '/ 3' ends, respectively. It has 3 1 1 or 8 & mH I / S p I recognition sequences (Figure 1). The obtained amplified DNA was double-digested with the restriction enzyme added to the 5 ′ / 3 ′ end, respectively, and purified with MinE 1 utekit (Q I AG EN). .
逆向反復配列 (即ち、 正方向配列と逆方向配列の反復) を構築するためのべク ターは、 pDNR— 1 (C l o n t e c h社) を改変した p S P 1 48 (図 2) を利用した。 p S P 148 (図 2) の 2個の 1 o X P部位の間には、 35 Sプロ モーター、 レチクローニングサイ ト 1 (MC S 1 )、 スぺーサー酉己列、 レチク ローニングサイ ト 2 (MC S 2)、 NO Sターミネータ一の順で存在する。 このべ クタ一の MC S-1の P s t I /N o t I配列導入部位および MC S 2の B a mH I /S p h I配列導入部位に前述の制限酵素で二重消化した増幅 DNA断片をそ れぞれ連結することにより、 ヘアピン型 d s RNA発現カセッ トを含む p S P 1 48— # 1 049 1 FRを作製しだ (図 3)。  As a vector for constructing the inverted repeat sequence (that is, the repeat of the forward sequence and the reverse sequence), pSP1 48 (FIG. 2) modified from pDNR-1 (Clontech) was used. Between the two 1 o XP sites of p SP 148 (Figure 2), there are a 35 S promoter, a retic cloning site 1 (MC S 1), a spacer self-alignment, a reticulated cloning site 2 (MC It exists in the order of S 2) and NO S terminator. The amplified DNA fragment double-digested with the aforementioned restriction enzymes was introduced into the Pst I / Not I sequence introduction site of MC S-1 of this vector and the BamH I / Sph I sequence introduction site of MCS 2. By ligating each, p SP 1 48— # 1 049 1 FR containing a hairpin ds RNA expression cassette was prepared (Fig. 3).
次に、 p S P 148— # 1 049 1 F R上で構築したヘアピン型 d s RNA発 現カセットは、 C r e _ 1 o x組換え (米国特許第 6 4 1 0, 3 1 7号) を利 用して、 バイナリーベクター p S P 1 07 (図 4) に載せ替えた。 バイナリーべ クタ一 P S P 1 07 (図 4) とは p B I 1 2 1 (C l o n t e c h社) を C r e a t o r Ac c e p t o r V e c t o r C o n s t r u c t i o n K i t (C 1 o n t e c h社) を用いて改変したものである。 即ち、 C r e R e c omb i n a s e k i t (C l o n t e c h社) を用いて指示書に従い C r e - 1 o x P組換えを行うことにより、 p S P 148— # 1 049 1 F R上のヘア ピン型 d s RN A発現カセットを含む 2個の 1 o X P間の断片を p S P 1 0 7上 の 1 o X P部位に載せ替えた、 バイナリーベクタ一 p S P 1 07— # 1 049 1 を作製した (図 5)。 実施例 3 Next, the hairpin ds RNA expression cassette constructed on p SP 148— # 1 049 1 FR uses Cre _ 1 ox recombination (US Pat. No. 6 4 1 0, 3 1 7). And replaced with the binary vector p SP 107 (Fig. 4). Binary vector PSP 1 07 (Fig. 4) is a modification of p BI 1 2 1 (Clontech) using Creator Acceptor Vector Configuration Kit (C 1 ontech). C re R ec Using omb inasekit (Clontech) and performing Cre-1ox P recombination according to the instructions, p SP 148— # 1 049 1 2 containing the hairpin ds RN A expression cassette on FR A binary vector, p SP 1 07— # 1 049 1, was prepared by replacing the 1 o XP fragment with the 1 o XP site on p SP 1 0 7 (FIG. 5). Example 3
[# 1 049 1遺伝子の発現を抑制したトランスジエニックタバコの作出] 構築したバイナリーベクター p S P 1 07_# 1 049 1および p S P 1 0 7 [Production of transgenic tobacco with suppressed expression of # 1 049 1 gene] Constructed binary vector p S P 1 07_ # 1 049 1 and p S P 1 0 7
(対照; ベクターコン ト 口一ノレ) を、 Ag r o b a c t e r i um t ume f a c i e n sの菌種 L B A 4404 (Ho e k ema e t a 1. ( 1 983)(Control; vector control) and the bacterial strain L B A 4404 (Ho e kema e t a 1. (1 983)) of Ag ro b a c t e r i um t ume f a c i e n s
Na t u r e 303 : 1 79— 1 80) に凍結融解法により導入し、 カナマイ シン耐性で選抜することにより、 目的とする p S P 1 07— # 1 049 1および p S P 1 07 照) 力 Ag r o b a c t e r i um t ume f a c i e n s の菌種 L B A4404に導入されたコロニーを得た。 Na ture 303: 1 79— 1 80) by freezing and thawing and selecting for resistance to kanamycin, the target p SP 1 07— # 1 049 1 and p SP 1 07)) Ag robacteri um A colony introduced into the strain LB A4404 of t ume faciens was obtained.
温室内で約 1. 5力月栽培したタバコ品種つくば 1号の最上位展開葉より採取 したタバコの葉を、 有効塩素 1 %の次亜塩素酸ナトリウム溶液 (Twe e n 2 Tobacco leaf harvested from the most developed leaf of the tobacco variety Tsukuba No. 1 cultivated in a greenhouse for about 1.5 months, was converted to a sodium hypochlorite solution containing 2% effective chlorine (Twe e 2
0を数滴 ZL加える) で約 5分間表面殺菌を行い、 滅菌水で 3回洗浄した後、 メ スを用いて約 5 mm角の葉片を調製した。 この葉片と p S P 1 07— # 1 049The surface was sterilized for about 5 minutes with 3 drops of ZL), washed 3 times with sterilized water, and about 5 mm square leaf pieces were prepared using a mess. This leaf piece and p S P 1 07— # 1 049
1あるいは p S P 1 0 7 (対照、 G F P遺伝子と n p t I I遺伝子のみ発現させ るべクタ一 J を導入した A g r o b a c t e r i um t ume f a c i e n s 約 1 08細胞とを L i n s ma i e r a n d S k o o g ( 1 965) の無機 塩類と 30 g/Lのシュクロースより成る液体培地中で 48時間共存培養を行つ た。 その後、 葉片をセフオタキシム 25 OmgZL及びカルペニシリン 250m g/Lを含む滅菌水で 3回洗浄して細菌を洗い落とした後、 Mu r a s h i g e a n d S k o o gの無機塩類、シユークロース 30 g/L、ィンドール酢酸 0.1 or p SP 1 0 7 (control, agrobacteri um t ume faciens approximately 10 8 cells transfected with vector J that expresses only GFP gene and npt II gene and L ins ma ierand S koog (1 965) 48 hours of co-cultivation in a liquid medium consisting of 30 g / L sucrose and 30 mg / L sucrose After washing the leaf pieces three times with sterile water containing cefotaxime 25 OmgZL and carpenicillin 250 mg / L After washing off the bacteria, Mu rashigeand S koog inorganic salts, sucrose 30 g / L, indoleacetic acid 0.
3mgz L、 6— ( γ , γ— d i me t y l a l l y l— am i n o) p u r i n e 1 0m g/L, カナマイシン 1 00 m g L、 セフオタキシム 250mg3mgz L, 6— (γ, γ—d i me t y l a l l y l— am i n o) p u r i n e 10 mg / L, kanamycin 100 mg L, cefotaxime 250 mg
/L、 カルペニシリン 250mgZL、 及びゲランガム 0. 3%を含む一次選抜 培地 (pH5. 8) に置床した。 培養約 2週間後、 カナマイシン耐性を示すカル ス様の細胞塊を Mu r a s h i g e a n d S k o o gの 1ノ 2無機塩類、 シ ユークロース 1 5 gZL、 カナマイシン 1 0 Omg/L セフオタキシム 250 mgZL及びゲランガム 0. 3%を含む二次選抜培地 (pH 5. 8) に置床し た。 / L, Calpenicillin 250mgZL, and Gellan gum 0.3% primary selection It was placed on a medium (pH 5.8). After about 2 weeks of culture, callus-like cell mass showing kanamycin resistance was transformed into Mu rashigeand Skoog 1 2-inorganic salts, sucrose 15 gZL, kanamycin 10 Omg / L cefotaxime 250 mgZL and gellan gum 0.3% And placed on a secondary selection medium (pH 5.8).
二次選抜培地にてカナマイシン耐性を示すカルス様の細胞塊を約 3週間培養し た後、 再分化した個体から採取した 5 mmX 5 mmの葉片を GU S a s s a y (H i e i e t a 1. , 1 994 ) に供試した。 G U S a s s a yにより 選抜された個体を再び二次選抜培地 (プラントボックス) に置床した。 さらに、 約 3週間培養した後に、 発根した個体を 4号素焼き鉢 (テラコッタ ;径 1 24m m、 高さ 1 1 0mm) に移植した。  A callus-like cell cluster showing kanamycin resistance in a secondary selection medium was cultured for about 3 weeks, and then a 5 mm x 5 mm leaf fragment collected from a redifferentiated individual was used as a GU S assay (Hieieta 1., 1 994) I tried it. Individuals selected by G U sa s s a y were placed again in the secondary selection medium (plant box). Further, after culturing for about 3 weeks, the rooted individuals were transplanted into No. 4 clay pot (terracotta; diameter: 124 mm, height: 110 mm).
このようにして、 最終的に、 バイナリーベクター p S P 1 0 7— # 1 049 1 を用いて形質転換したトランスジエニックタバコ(以下、 # 1 049 1タバコ)を In this way, finally, transgenic tobacco (hereinafter referred to as # 1 049 1 tobacco) transformed with the binary vector p S P 1 0 7— # 1 049 1
20個体、 p S P 1 07を用いて形質転換したトランスジエニックタバコ(以下、 対照タバコ)を 6個体作製した。 トランスジヱニックタバコは、 自然光のもと冷房 装置およびボイラー装置を用いて昼夜温度が約 23 °Cに調節された閉鎖系温室内 で栽培した。 鉢用肥土は土:堆肥:赤玉土 (犬)、 赤玉土 (小) :バーミキユラィ ト = 3 : 4 : 1 : 1 : 1の組成の肥土 1 00リツトル当たりバーレ一 S 625 (肥 料) 1 k gを混合したものを使用した。 Twenty individuals, six transgenic tobacco (hereinafter referred to as control tobacco) transformed with pS P 107 were produced. Transgenic tobacco was cultivated in a closed greenhouse in which the temperature was adjusted to about 23 ° C day and night using a cooling device and a boiler device under natural light. Fertilizer for pots is soil: compost: red bean clay (dog), red bean clay (small): vermiculite = 3: 4: 1: 1: 1 fertilizer with composition of 1 barre per 100 liters S 625 (fertilizer) A mixture of 1 kg was used.
さらに、 # 1 049 1タバコにおける # 1 049 1遺伝子の発現抑制をリアル タイム PCR (Wo n g e t a l . (2005) B i o t e c h n i q u e s In addition, # 1 049 1 Inhibition of # 1 049 1 gene expression in tobacco was reduced by real-time PCR (Wo nge t a l. (2005) B i o t e c h n i q u e s
39 : 75 - 85) により確認するために、 上記のようにして得た鉢上げ後約 2 ヶ月のトランスジェニックタバコから、 直径約 1 0 mmのリーフディスクをポン チで打ち抜き、 RNA l a t e r (Amb i o n社) 中で保存したものをリアル タイム P C Rの材料とした。 RNAは RNe a s y P l a n t M i n i K i t (Q I AG EN社) を用いて抽出し、 さらに、 Omn i s c r i p t RT39: 75-85) To confirm the above, punch out a leaf disk with a diameter of about 10 mm from the transgenic tobacco obtained as described above, about 2 months after potting, and RNA later (Amb ion The material stored in was used as the material for real-time PCR. RNA is extracted using RNe a s y P l a n t M i n i K i t (Q I AG EN), and Omn i s c r i p t RT
K i t (Q I AGEN社) を用いて逆転写反応を行った。 この逆転写反応液の一 部をリアルタイム P CRに供試した。 リアルタイム PCRに用いる # 1049 1 および i3— a c t i nの T a qMa n (登録商標) (R o c h e Mo l e c u l a r S y s t em s) P r o b eと p r i me rは P r i me r E x p r e s s (Ap p l i e d B i o s y s t em s) を用いて設計した (配列番号 1 2 — 1 7)。 リアルタイム PCRは、 Qu a n t i T e c t Mu l t i p l e x PCR K i t (<31 0£1^社) を用ぃて行ぃ、 キット添付の 「丁 & 9]^ & 11 プローブを用いた D u p 1 e Xリアルタイム定量 P C R」 プロ トコールに従い、 7500リアルタイム P C Rシステム (Ap p l i e d B i o s y s t em s 社) 上で、 95 °C 1 5分の後、 94°C1分、 60 °C 1分で 45サイクル反応させ ることによって行った。 比較 C t法 (U s e r B'u l l e t i n # 2, AB I PR I SM 7 700 S e q u e n c e D e t e c t i o n S y s t em A p p 1 i e d B i o s y s t em s) により解析した、 リアルタイム PCR の結果を図 6に示す。 調査した 20種の # 1 049 1タバコの全てにおいて、 # 1 049 1遺伝子の発現が対照の平均 1 5%に抑制されていることを確認した。 実施例 4 Reverse transcription reaction was performed using Kit (QI AGEN). A part of this reverse transcription reaction solution was subjected to real-time PCR. # 1049 1 and i3—actin TaqMan (registered trademark) (Roche Molecul for real-time PCR) ar System ems) Probe and primer were designed using PrimerExpress (Applied Biosyst ems) (SEQ ID NO: 1 2 — 1 7). For real-time PCR, use Qu anti Tect Multiplex PCR Kit (<31 0 £ 1 ^) and D up 1 e X real-time using the “Ding & 9] ^ & 11 probe attached to the kit. According to the “Quantitative PCR” protocol, the reaction was carried out on a 7500 real-time PCR system (Applied Biosyst ems) for 45 cycles at 95 ° C for 15 minutes, then 94 ° C for 1 minute and 60 ° C for 1 minute. went. Figure 6 shows the results of real-time PCR, analyzed by the comparative Ct method (U ser B'u lletin # 2, AB IPR I SM 7 700 Sequence Detection System A pp 1 ied B iosyst em s). . It was confirmed that the expression of the # 1 049 1 gene was suppressed to an average of 15% of the control in all 20 types of # 1 049 1 tobacco investigated. Example 4
[トランスジエニックタバコの解析]  [Analysis of Transgenic Tobacco]
(1) トランスジエニックタバコの形態、 葉色  (1) Transgenic cigarette form, leaf color
上記のようにして得た、 鉢上げ後約二ヶ月のトランスジエニックタバコの上位 葉、 中位葉、 下位葉について、 タバコ葉の成熟の指標とするために、 コニカミノ ルタ製葉緑素計 (S PAD— 502) を用いて S PAD値 (植物の葉に含まれる クロロフィル量を表す数値) を測定したところ、 表 1に示すように # 1 049 1 タバコ(n = 1 5)の S PAD値は対照タバコ(n = 6)と比べて有意に低い値を示 し、 # 1 049 1タバコではクロロフィルが減少し、 成熟が進んでいることが示 唆された。 表 1 The Konica Minolta chlorophyll meter (S PAD) was used as an indicator of tobacco leaf maturity for the upper, middle, and lower leaves of Transgenic tobacco obtained as described above for about two months after planting. — 502) was used to measure the S PAD value (a numerical value indicating the amount of chlorophyll contained in the leaves of the plant). As shown in Table 1, the S PAD value of # 1 049 1 tobacco (n = 1 5) was the control. The value was significantly lower than that of tobacco (n = 6), suggesting that chlorophyll decreased and maturation progressed in # 1 049 1 tobacco. table 1
鉢上げ後日数 SPAD値  Number of days after potting SPAD value
#10491タバコ 対照タバコ  # 10491 Tobacco Control tobacco
平均値 (n=15) 標準偏差 平均値 (n=6) 標準偏差 上位 3葉 上 71 30.6 6.7 38.4 0.9  Average value (n = 15) Standard deviation Average value (n = 6) Standard deviation Top 3 leaves Top 71 30.6 6.7 38.4 0.9
中 71 29.4 6.5 36.5 2.3 下 71 21.0 6.5 32.7 3.2 中位 3葉 上 63 25.4 5.0 38.4 1.7  Middle 71 29.4 6.5 36.5 2.3 Bottom 71 21.0 6.5 32.7 3.2 Middle 3 Leaf Top 63 25.4 5.0 38.4 1.7
中 63 18.6 5.7 32.7 2.6 下 63 13.3 4.9 24.9 4.2 下位 3葉 上 55 21.7 4.8 32.8 1.9  Medium 63 18.6 5.7 32.7 2.6 Lower 63 13.3 4.9 24.9 4.2 Lower 3 leaves Upper 55 21.7 4.8 32.8 1.9
中 55 18.2 4.4 25.1 3.1 下 55 10.2 4.5 18.4 4.9 また、 図 7に示すように、 # 1 0 4 9 1タバコは、 対照タバコと比べて、 形態 に大きな差は認められなかった。  Medium 55 18.2 4.4 25.1 3.1 Bottom 55 10.2 4.5 18.4 4.9 Also, as shown in Figure 7, # 1 0 4 9 1 tobacco showed no significant difference in morphology compared to control tobacco.
( 2 ) トランスジヱニックタバコの乾燥葉たばこの性状  (2) Characteristics of dry tobacco tobacco from Transgenic tobacco
上記の鉢上げ後約 2ヶ月のタバコから葉を収穫して黄色乾燥を行い、 乾燥葉を 作製した。 黄色乾燥は 1 3のステップから構成されるプログラムにより E S P E C社の恒温恒湿器を用レ.、て行った。 各ステップは以下の通りである。  Leaves were harvested from tobacco about 2 months after the above potting and dried in yellow to produce dry leaves. The yellow drying was performed using a thermo-hygrostat manufactured by ESPEC according to a program consisting of 13 steps. Each step is as follows.
ステップ 1 :乾燥開始後 3時間かけて昇温ノ加湿し、 温度 3 8 °C/相対湿度 1 •0 0 %に到達後、 本条件で 8時間処理。 ステップ 2 :次に 1時間かけて昇温 Z排 湿し、 温度 4 0 °C/相対湿度 8 7 %に到達後、 本条件で 1 5時間処理。 ステップ 3 :次に 1時間かけて昇温 排湿し、 温度 4 3 °CZ相対湿度 6 3 %に到達後、 本 条件で 1 5時間処理。 ステップ 4 :次に 1時間かけて昇温 排湿し、 温度 4 5 °C Z相対湿度 5 2 %に到達後、 本条件で 1 5時間処理。 ステップ 5 :次に 1時間か けて昇温ノ排湿し、 温度 4 8 °C/相対湿度 4 3 %に到達後、 本条件で 1 5時間処 理。 ステップ 6 :次に 1時間かけて昇温/排湿し、 温度 5 0 °C/相対湿度 3 7 % に到達後、本条件で 1 0時間処理。ステップ 7:次に 1時間かけて昇温 排湿し、 温度 53°CZ相対湿度 3 1%に到達後、 本条件で 8時間処理。 ステップ 8 :次に 1時間かけて昇温 Z排湿し、 温度 56 °CZ相対湿度 26%に到達後、 本条件で 6 時間処理。 ステップ 9 :次に 1時間かけて昇温 Z排湿し、 温度 60 °C/相対湿度 20%に到達後、 本条件で 6時間処理。 ステップ 1 0 :次に 1時間かけて昇温ノ 排湿し、 温度 6 3 °Cノ相対湿度 1 6%に到達後、 本条件で 6時間処理。 ステップ 1 1 :次に 2時間かけて昇温し、 温度 6 5°CZ相対湿度 1 6%に到達後、 本条件 で 2時間処理。ステップ 1 2:次に 1時間で昇温し、温度 68 °Cノ相対湿度 1 6 % に到達後、 本条件で 8時間処理。 ステップ 1 3 : 5時間かけて、 温度 30°C/相 対湿度 60%まで降温 Z加湿し乾燥を終了。 Step 1: After the start of drying, heat up and humidify for 3 hours. After reaching a temperature of 38 ° C / relative humidity 1 • 0 0%, treat under these conditions for 8 hours. Step 2: Next, raise the temperature over a period of 1 hour, dehumidify, reach 40 ° C / 87% relative humidity, and then treat for 15 hours under these conditions. Step 3: Next, heat up and dehumidify over 1 hour. After reaching a temperature of 43% relative humidity of 63%, treat under this condition for 15 hours. Step 4: Next, the temperature is raised and dehumidified over 1 hour. After reaching a temperature of 45 ° CZ and a relative humidity of 52%, it is treated under this condition for 15 hours. Step 5: Next, heat up and dehumidify for 1 hour. After reaching a temperature of 48 ° C / relative humidity of 43%, treat under this condition for 15 hours. Step 6: Next, heat / humidify over 1 hour, temperature 50 ° C / relative humidity 37% After reaching, processing for 10 hours under this condition. Step 7: Next, heat it up over 1 hour, dehumidify, and reach a temperature of 53 ° CZ relative humidity 3 1%, then treat under this condition for 8 hours. Step 8: Next, heat up Z for 1 hour, dehumidify, reach 56 ° C at a relative humidity of 26%, and then process for 6 hours under this condition. Step 9: Next, heat up Z over 1 hour, dehumidify, and after reaching 60 ° C / 20% relative humidity, treat for 6 hours under these conditions. Step 10: Next, heat up and dehumidify over 1 hour, and after 6% of relative humidity reaches 16%, treat under this condition for 6 hours. Step 11: Next, the temperature is increased over 2 hours, and after reaching a temperature of 65 ° CZ relative humidity of 16%, it is treated for 2 hours under these conditions. Step 1 2: Next, the temperature is raised in 1 hour, and after reaching a temperature of 68 ° C and relative humidity of 16%, it is treated for 8 hours under this condition. Step 1 3: Over 5 hours, temperature is lowered to 30 ° C / relative humidity 60%.
原料葉たばこの品質の指標となる乾燥葉の仕上がりを 2種のトランスジヱニッ クタバコ間で比較すると、 図 8に示すように、 対照タバコの乾燥葉は褐変が認め られるのに対し、 # 1 049 1タバコの乾燥葉の仕上がりは非常にきれいにであ つた。 この結果は、 成熟の進んだタバコ葉から品質の高い原料葉たばこが生産さ れるという、 葉たばこ生産におけるセオリーと極めてよく合致した。 これらの結 果から、 # 1 049 1遺伝子の発現抑制はタバコ葉の成熟を促し、 乾燥葉たばこ の仕上がりを向上させるなど、 タバコ葉に乾燥容易性を付与したと結論できた。 Comparing the dry leaf finish, which is an indicator of the quality of the raw tobacco, between the two types of transgenic tobacco, as shown in Figure 8, the dry leaf of the control tobacco is browned, but # 1 049 1 The dry leaf finish was very clean. This result was in good agreement with the theory of leaf tobacco production, where high-quality raw tobacco was produced from mature tobacco leaves. From these results, it can be concluded that the suppression of the # 1 049 1 gene expression promoted tobacco leaf maturation and improved the finish of dry leaf tobacco, giving dryness to tobacco leaves.
(3) トランスジヱニックタバコの乾燥葉の燃焼煙中に含まれるカルボニル類の 含量 (3) Content of carbonyls in the combustion smoke of dry leaves of Transgenic tobacco
上記のように作製したトランスジエニックタバコの乾燥葉は、 40°C、 95% The dried leaves of Transgenic tobacco produced as above are 40 ° C, 95%
RHで 2時間調湿して細刻してタバコ刻とした後、 25°C、 60%RHで 1週間 以上調湿してから、 石英管をリアクターとする赤外線イメージ炉 (U 1 V a c _Humidified at RH for 2 hours, chopped into tobacco, then conditioned at 25 ° C, 60% RH for over 1 week, and then an infrared image furnace with a quartz tube as the reactor (U 1 V a c _
R i k o I n c.) による熱分解試験に供試し、煙中ホルムアルデヒ ドおよぴァ クロレインの含量を測定した。 キヤリヤーガスに 1 00%の窒素ガスを用いて、 流量は S EC— B 40 ma s s f l o c o n t r o l l e r (Ho r i b a S t e c I n c . ) を用いて 1 000 m 1 Zm i nに調整した。サンプル としてタバコ刻 1 50 m gを用いて、石英管の中央に 1 2.5 mmの幅に詰めた。The content of formaldehyde and acrolein in the smoke was measured in a pyrolysis test using R i k o I n c.). The carrier gas was 100% nitrogen gas, and the flow rate was adjusted to 1 000 m 1 Zm i n using SEC—B 40 ma s s f l o c o n t r o l l e r (Ho r i b a St e c I n c.). A sample of 150 mg of tobacco was used as a sample, and packed in a width of 12.5 mm in the center of the quartz tube.
1分間キャリアーガスで石英管内の空気を置換した後、 室温から 1 6. 7°C/s の割合で温度を 800°Cまで上昇させ、 800°Cで 5秒間温度を固定した。 この 温度制御に関しては、 TPC— 1 000 p r o g r am t emp e r a r u r e c o n t r o l l e r (U l v a c -R i k o I n c.) を用いた。 熱分 解により生成した煙は、 1 00m lの 2, 4- d i n i t r o p h e n y l h y d r a z i n e溶液を含むィンピンジャーと 44— nmフィルター(He i n r .After replacing the air in the quartz tube with carrier gas for 1 minute, the temperature was raised from room temperature to 800 ° C at a rate of 16.7 ° C / s, and the temperature was fixed at 800 ° C for 5 seconds. this For temperature control, TPC — 1 000 progr am emp erarurecontroller (U lvac -R iko I n c.) Was used. Smoke generated by thermal decomposition consists of an impinger containing 100 ml of 2,4-dinitrophenylhydrazine solution and a 44-nm filter (He inr.
B o r g w a 1 d t T e c h n i k) に捕集した。 上記の手法は T o r i k a i e t a 1. (2004) の方法に従つた。 なお 2, 4- d i n i t r o p h e n y l h y d r a z i n e溶液は、 2 , 4— d i n i t r o p h e n y l h y d r a z i n e (水分 50 %含有品) 9. 5 1 0 7 gを枰量し、 ァセトニトリルB o r g w a 1 d t T e c h n i k). The above method followed the method of Tori k ai e ta 1. (2004). The 2, 4-d i n i t r o p h e n y l h y d r a z i n e solution was weighed 2, 4—d i n i t r o p h e n y l h y d r a z i ne (containing 50% water) 9.5 1 0 7 g
50 OmLに溶解させ、 60%過塩素酸 2. 8 m Lを加えて混合した後、 超純水 を加えて 1 Lの水溶液とした。 煙を捕集した 44_nmフィルターに 3 OmLのAfter dissolving in 50 OmL and adding 2.8 mL of 60% perchloric acid, ultrapure water was added to make a 1 L aqueous solution. 44 mL of smoke collected, 3 OmL
2, 4- d i n i t r o p h e n y l h y d r a z i n e溶液をカ卩えて 30分間 振とうさせた後、 煙を捕集して 70分間静置した 2, 4- d i n i t r o p h e n y l h y d r a z i n e溶液 (インピンジャー) と混合した。 2, 4 - d i n i t r o p h e n y l h y d r a z i n e混合溶液と T r i zma b a s e溶 液を 2 : 3 の割合で混合し、 0. 45 _/ m p o l y t e t r a f l u o r o e t h y l e n eメンブレンフィルターでろ過した後、 高速液体クロマトグラ フィ一による分析を行った。 上記の手法は前述の T o r i k a i e t a 1.2, 4-d i n i t r o p h e n y l h y d r a z i n e solution was shaken for 30 minutes, smoke was collected and mixed with 2, 4-d i n t r o p h e n y l h y d r a z i ne e solution (impinger). 2,4-dinitrophenylhydrazine mixed solution and Trizma base solution were mixed at a ratio of 2: 3, filtered through 0.45_ / mpolytetrafluoroethylene membrane filter, and then analyzed by high performance liquid chromatography. . The above method is based on the above-mentioned T o r i k a i e t a 1.
(2004) の方法に従った。 また高速液体クロマトグラフィーによる分析方法 は、 He a l t h C a n a d a (1 999) Me t h o d o f No. T -(2004). The analysis method using high performance liquid chromatography is He a l t h C a n a d a (1 999) Me t h o d o f No. T-
1 04に準拠した。 なお T r i ζ m a b a s e溶液は、 T r i zma b a s eを 0. 4 g枰量し、 超純水 4 OmLに溶解させ、 ァセトニトリルを加えて 20Compliant with 1 04. The T r i ζ m a b a s e solution is 0.4 g L of T r i zma b a s e, dissolved in 4 OmL of ultrapure water, and added with acetonitrile.
0 m Lの水溶液とした。 A 0 mL aqueous solution was used.
# 1 049 1タバコおよび対照タバコの赤外線イメージ炉分析の結果を図 9に 示す。 なお解析にあたっては、 # 1 049 1タバコを 3個体、 対照タバコを 3個 体について測定し、 対照タバコにおける煙中ホルムアルデヒ ドおよびァクロレイ ン生成量を 1 00%とした時の相対値 (%) を算出した。 その結果、 # 1 049 # 1 049 1 The results of infrared image furnace analysis of tobacco and control tobacco are shown in Figure 9. In the analysis, we measured # 1 049 1 cigarettes and 3 control cigarettes, and calculated relative values (%) when the amount of formaldehyde and acrolein produced in the control cigarettes was 100%. Calculated. As a result, # 1 049
1遺伝子の発現を抑制した # 1 049 1タバコでは、 煙中のホルムアルデヒ ドぉ よびァクロレイン含量が、 対照のそれぞれ平均 45%および 68%と、 大きく低 減していた。 上記の # 1 049 1タバコにおける燃焼煙中のカルボニル類の含量 の低減は、 燃焼煙中のカルボニル類の前駆物質である、 葉中の何らかの成分の生 成が低減されたことに起因すると考えられる。 したがって、 乾燥葉タバコの燃焼 煙中のカルボニル類め制御は # 1 049 1遺伝子の発現を制御したタバコ葉を利 用することにより実現できる。 実施例 5 In # 1 049 1 tobacco, which suppressed the expression of 1 gene, the formaldehyde and acrolein contents in the smoke were significantly reduced, averaging 45% and 68%, respectively, in the control. # 1 049 1 Content of carbonyls in combustion smoke in tobacco This reduction is thought to be due to the reduced production of some components in the leaves, which are precursors of carbonyls in the combustion smoke. Therefore, the control of the carbonyl group in the smoke of dry leaf tobacco can be realized by using tobacco leaves with controlled expression of the # 1 049 1 gene. Example 5
[# 1 049 1遺伝子を発現抑制したトランスジヱニックタバコを作製するため の配列に関する検討]  [# 1 049 Study on sequences for producing transgenic tobacco with suppressed expression of 1 gene]
逆向反復配列を構築するために、新たに、バイナリーベクター p S P 204 (図 1 0) を使用した。 バイナリーベクター p S P 204は、 p B I 1 2 1に由来す る P S P 20 1 (図 1 1) を改変したもので、 G a t e wa y (登録商標) T e c h n o l o g y ( I n v i t r o g e n社) を採用したことにより、 直接、 バイナリ一ベクター上に逆向反復配列を構築できるものである。  A new binary vector p S P 204 (FIG. 10) was used to construct an inverted repeat. The binary vector p SP 204 is a modified version of PSP 20 1 (Fig. 11) derived from p BI 1 2 1 and is based on the use of Gate wa y (registered trademark) Technology (Invitrogen). Directly repeated sequences can be constructed directly on a binary vector.
トリガ一となる配列として、 # 1 049 1遺伝子の中央部の 1 3の DNA配 列 (配列番号 1 8、 M_ t r i g e r という) および 3' 下流側の約 1 Z 3の D NA配列 (配列番号 1 9、 3 ' _t r i g e rとレ、う) を PC R増幅した (図 1 2)。 P CR増幅は、 クローン No. 00 1 5_2— E 03のプラスミ ドを铸型と して、 配列番号 20および 2 1、 あるいは配列番号 22および 23のプライマー 組み合わせを用いて、 上記実施例 2に示す条件で行った。 増幅した DN A断片を p ENTR/D— TOP Oクローニングキット ( I n v i t r o g e n社) を用 いてクローニングして、 G a t e wa yエントリ一ベクターを作製した。 次に、 エントリーベクター上のインサート DNAを、 Ga t e wa y (登録商標) L R クロナーゼ 1 1を用ぃた3 1: 1:し X a t t Rの組換え反応によりバイ ナリーベクター p S P 204上に逆向反復配列の型で挿入し、 バイナリーベクタ 一 p S P 204— M— t r i g e rおよびバイナリ一ベクター p S P 204— 3' _t r i g e rを作製した (図 1 3)。  # 1 049 1 3 DNA sequence in the middle of the gene (SEQ ID NO: 1 8, called M_triger) and 3 'downstream DNA sequence (SEQ ID NO: 1) 9, 3 '_triger and R) were amplified by PCR (Fig. 12). PCR amplification is shown in Example 2 above using clones of clone No. 00 1 5_2—E 03 as a saddle and using the primer combinations of SEQ ID NOs: 20 and 21 or SEQ ID NOs: 22 and 23. Performed under conditions. The amplified DNA fragment was cloned using the p ENTR / D—TOPO cloning kit (Invitrogen) to produce a Gatway entry single vector. Next, the insert DNA on the entry vector was reversely transferred onto the binary vector p SP 204 by X att R recombination using Ga te wa y (registered trademark) LR clonase 11 1 A binary vector pSP204—M—triger and a binary vector pSP204—3'_triger were constructed by insertion in the form of repetitive sequences (Figure 13).
遺伝子組換えタバコは上記実施例 3に示す方法に従って作製し、 最終的に、 バ イナリーベクター p S P 204_M_t r i g e rを用いて形質転換したトラン スジエニックタバコ (以下、 # 1 049 1— Mとレ、う) を 1 2個体、 および、 バ イナリーベクター p S P 204— 3 ' — t r i g e rを用いて形質転換したトラ ンスジエニックタバコ (以下、 # 1 049 1— 3 ' とレ、う) を 1 1個体、 バイナ リーベクター p S P 20 1を用いて形質転換したトランスジエニックタバコ (以 下、 対照 2という) を 2個体作製した。 また、 新規トランスジエニックタバコの 作製と並行して、 上記実施例 3で作製した # 1 049 1タバコを自殖して得た T 2世代のトランスジエニックタバコ (以下、 # 1 049 1— 5, という)、 および 野生型としてタバコ品種つくば 1号を育成した。 Transgenic tobacco was produced according to the method shown in Example 3 above, and finally transformed with the binary vector p SP 204_M_triger (hereinafter referred to as # 1 049 1—M and U) 1 2 individuals and a ba Inary vector p SP 204— 3 '— Transgenic tobacco transformed with triger (hereinafter referred to as # 1 049 1— 3') 1 1 individual, binary vector p SP 20 1 Two transgenic tobaccos (hereinafter referred to as Control 2) were prepared. In parallel with the production of the new transgenic tobacco, the T 2 generation of transgenic tobacco obtained from self-breeding of the # 1 049 1 tobacco produced in Example 3 above (hereinafter referred to as # 1 049 1-5) ), And the wild-type tobacco variety Tsukuba No. 1 was nurtured.
トランスジヱニックタバコにおける # 1 049 1遺伝子の発現量を上記実施例 3に記載されたリアルタイム P CRによる方法を用いて調査した。 比較 C t法に より解析したリアルタイム P CRの結果を図 14に示す。 # 1 049 1_Mおよ び # 1 049 1— 3 'における # 1 049 1遺伝子の発現量は # 1 049 1— 5 ' と.ほぼ同等であり、 対照 2と比べて強く抑制されていた。 産業上の利用可能性  The expression level of # 1 049 1 gene in transgenic tobacco was investigated using the method by real-time PCR described in Example 3 above. Figure 14 shows the results of real-time PCR analyzed by the comparative Ct method. In # 1 049 1_M and # 1 049 1— 3 ′, the expression level of # 1 049 1 gene was almost the same as # 1 049 1—5 ′, which was strongly suppressed compared to control 2. Industrial applicability
本発明によれば、 燃焼煙中のカルボ二ル類含量が低減されたことを特徴とする タバコ植物および乾燥葉たばこを提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, the tobacco plant and dry leaf tobacco characterized by the content of carbonyls in combustion smoke being reduced can be provided.
また、 通常、 形質転換を行ったタバコ属植物は、 形態的な影響、 たとえば葉が 矮小化する、 葉の枚数が少なくなるなどの影響が見られ、 収量が減少するが、 本 発明において見出された遺伝子の発現を抑制したタバコ属植物は、 意外なことに 形態的な影響が見られず、 しかも形質転換していないタバコ属植物よりも早く成 熟が進み、 かつ乾燥が容易である。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。  In addition, transformed tobacco plants usually have morphological effects such as leaf dwarfing and fewer leaves, resulting in a decrease in yield. Surprisingly, tobacco plants that suppress the expression of the generated gene have no morphological effect, and mature more rapidly than non-transformed tobacco plants, and are easy to dry. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲. The scope of the claims.
1. 以下の (a) 〜 (c) に示すいずれかのタンパク質をコードする遺伝子 の発現が抑制された、 タバコ属植物。 1. A tobacco genus plant in which expression of a gene encoding any one of the following proteins (a) to (c) is suppressed.
( a ) 配列番号 6に示すアミノ酸配列からなるタンパク質  (a) a protein comprising the amino acid sequence shown in SEQ ID NO: 6
(b)配列番号 6に示すァミノ酸配列において 1もしくは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸配列からなり、 かつ植物の燃焼煙中のカルボ二 ル類含量を制御可能なタンパク質  (b) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the content of carbonyls in plant combustion smoke
(c) 配列番号 6に示すアミノ酸配列に対して 8 5%以上の同一性を有するアミ ノ酸配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を制御可能なタンパ ク質  (c) A protein comprising an amino acid sequence having an identity of 85% or more to the amino acid sequence shown in SEQ ID NO: 6, and capable of controlling the carbonyl content in the combustion smoke of plants.
2. 前記遺伝子が、  2. The gene is
(d) 配列番号 5に示す塩基配列からなるポリヌクレオチド、  (d) a polynucleotide comprising the base sequence represented by SEQ ID NO: 5,
(e) 配列番号 5に示す塩基配列に対して 8 5%以上の同一性を有し、 かつ植物 の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌクレ ォチド、  (e) a polynucleotide encoding a protein having 85% or more identity to the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke;
( f ) 配列番号 5に示す塩基配列において 1もしくは数個の塩基が欠失、 置換も しくは付加された塩基配列からなり、 かつ植物の燃焼煙中のカルボニル類含量を 制御可能なタンパク質をコードするポリヌクレオチド、 または  (f) Coding a protein consisting of a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 5 and capable of controlling the carbonyl content in plant combustion smoke Polynucleotide to
(g) 配列番号 5に示す塩基配列からなるポリヌクレオチドと相補的な塩基配列 からなるポリヌクレオチドとストリンジヱントな条件でハイブリダイズし、 かつ 植物の燃焼煙中のカルボニル類含量を制御可能なタンパク質をコードするポリヌ クレオチド  (g) A protein that hybridizes under stringent conditions with a polynucleotide consisting of a base sequence complementary to the polynucleotide consisting of the base sequence shown in SEQ ID NO: 5 and that can control the carbonyl content in the combustion smoke of plants. Polynucleotide
を含む、 請求項 1に記載のタバコ属植物。 The tobacco genus plant according to claim 1, comprising:
3. 前記カルボニル類が、 ホルムアルデヒ ド、 ァセ トアルデヒ ド、 ァセ トン、 ァクロレイン、 プロピオンアルデヒ ド、 クロ トンアルデヒ ド、 メチルェチルケト ンおよびブチルアルデヒ ドからなる群から選択される、 請求項 1または 2に記載 のタバコ属植物。  3. The carbonyl compound is selected from the group consisting of formaldehyde, acetoaldehyde, acetone, acrolein, propion aldehyde, croton aldehyde, methyl ketylketone and butyl aldehyde. Tobacco genus plant.
4. 前記カルボニル類が、 ホルムアルデヒ ドまたはァクロレインである、 請 求項 3に記載のタバコ属植物。 4. The carbonyl compound is formaldehyde or acrolein. The tobacco genus plant according to claim 3.
5. 請求項 1〜4のいずれか 1項に記載のタバコ属植物の組織または細胞。 5. The tissue or cell of the tobacco plant according to any one of claims 1 to 4.
6. 前記組織が葉である、 請求項 5に記載の組織または細胞。 6. The tissue or cell according to claim 5, wherein the tissue is a leaf.
7. 配列番号 5に示す塩基配列、 配列番号 7に示す塩基配列、 それらの配列 に対して 90%以上の同一性を有する塩基配列、 およびそれらの塩基配列の 20 塩基以上の部分配列からなる群から選択される塩基配列を含む、 遺伝子発現抑制 用ベクター。  7. A group consisting of the base sequence shown in SEQ ID NO: 5, the base sequence shown in SEQ ID NO: 7, a base sequence having 90% or more identity to these sequences, and a partial sequence of 20 bases or more of those base sequences A gene expression suppression vector comprising a base sequence selected from
8. 前記塩基配列の連続した 20塩基以上からなる塩基配列をアンチセンス 方向に含む、 請求項 7に記載のベクター。  8. The vector according to claim 7, comprising a base sequence consisting of 20 or more consecutive base sequences in the antisense direction.
9. 前記塩基配列のセンス鎖および該センス鎖に対合するアンチセンス鎖を 含む、 請求項 7に記載のベクター。  9. The vector according to claim 7, comprising a sense strand of the base sequence and an antisense strand paired with the sense strand.
1 0. 前記センス鎖およびアンチセンス鎖が、 前記塩基配列の連続した 20 塩基以上からなる、 請求項 9に記載のベクター。  10. The vector according to claim 9, wherein the sense strand and the antisense strand are composed of 20 bases or more in which the base sequence is continuous.
1 1. 前記センス鎖とアンチセンス鎖の間にスぺーサーを有する、 請求項 9 または 1 0に記載のベクター。  1 1. The vector according to claim 9 or 10, which has a spacer between the sense strand and the antisense strand.
1 2. 植物細胞内で作動可能なプロモーターを有する、 請求項 7〜1 1のい ずれか 1項に記載のベクター。  1 2. The vector according to any one of claims 7 to 11, which has a promoter operable in plant cells.
1 3. タバコ属植物の細胞または組織を、 RNA干渉法、 アンチセンス法、 遺伝子破壊法、 人為的突然変異法、 リボザィム法、 共抑制法および転写因子を制 御する方法から選択されるいずれかの方法を用いて、 請求項 1および 2に定義さ れた (a) 〜 (g) のいずれかの遺伝子の発現を抑制し、 植物体を再生すること を含む、 請求項 1〜4のいずれか 1項に記載のタバコ属植物を作製する方法。  1 3. Any of the cells or tissues of the genus Tobacco selected from RNA interference method, antisense method, gene disruption method, artificial mutation method, ribozyme method, co-suppression method and method of controlling transcription factor The method according to any one of claims 1 to 4, comprising suppressing the expression of any of the genes (a) to (g) defined in claims 1 and 2 and regenerating a plant. A method for producing the tobacco genus plant according to claim 1.
14. 請求項 7〜 1 2のいずれか 1項に記載のベクターを、 植物細胞または 組織に導入し、.植物体を再生する、 請求項 1 3に記載の方法。  14. The method according to claim 13, wherein the vector according to any one of claims 7 to 12 is introduced into a plant cell or tissue to regenerate the plant body.
1 5. 前記植物体を母本として後代を作出する、 請求項 14に記載の方法。 1 5. The method according to claim 14, wherein a progeny is created using the plant body as a master.
1 6. 請求項 1〜4のいずれか 1項に記載のタバコ属植物の後代であって、 請求項 1または 2に定義された (a) 〜 (g) のいずれかの遺伝子の発現が抑制 されたことを特徴とする、 後代。 1 6. A progeny of the tobacco plant according to any one of claims 1 to 4, wherein the expression of any of the genes (a) to (g) defined in claim 1 or 2 is suppressed. A progeny characterized by
1 7. 請求項 1〜4のいずれか 1項に記載のタバコ属植物または請求項 1 6 に記載の後代の葉から作製されたたばこ製品。 1 7. Tobacco plant according to any one of claims 1 to 4 or claim 1 6 Tobacco products made from the progeny leaves described in 1.
1 8. タバコ属植物において、 請求項 1または 2に定義された (a) 〜 (g) のいずれかの遺伝子の発現を抑制することを含む、 タバコ属植物の燃焼煙中の力 ルポニル類含量を低減する方法。  1 8. In a tobacco genus plant, including the suppression of the expression of any one of the genes (a) to (g) defined in claim 1 or 2, How to reduce.
1 9. 前記遺伝子の発現の抑制を、 RNA干渉法、 アンチセンス法、 遺伝子 破壊法、 人為的突然変異法、 リボザィム法、 共抑制法および転写因子を制御する 方法からなる群から選択される方法によって行うことを含む、 請求項 1 8に記載 の方法。  1 9. A method selected from the group consisting of an RNA interference method, an antisense method, a gene disruption method, an artificial mutation method, a ribozyme method, a co-suppression method, and a method of controlling a transcription factor for suppressing the expression of the gene. The method of claim 18, comprising:
20. 請求項 7〜1 2のいずれか 1項に記載のベクターを植物細胞または組 織に導入する、 請求項 1 8または 1 9に記載の方法。  20. The method according to claim 18 or 19, wherein the vector according to any one of claims 7 to 12 is introduced into a plant cell or tissue.
PCT/JP2008/056523 2007-03-28 2008-03-26 Plant of genus nicotiana with reduced content of carbonyls in combustion smoke and method for producing the same WO2008117887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007083394A JP2010136624A (en) 2007-03-28 2007-03-28 Plant of genus nicotiana with reduced content of carbonyls in combustion smoke and method for producing the same
JP2007-083394 2007-03-28

Publications (1)

Publication Number Publication Date
WO2008117887A1 true WO2008117887A1 (en) 2008-10-02

Family

ID=39788615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056523 WO2008117887A1 (en) 2007-03-28 2008-03-26 Plant of genus nicotiana with reduced content of carbonyls in combustion smoke and method for producing the same

Country Status (2)

Country Link
JP (1) JP2010136624A (en)
WO (1) WO2008117887A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013764A1 (en) * 2009-07-29 2011-02-03 日本たばこ産業株式会社 Method for gene transfer into triticum plant using agrobacterium bacterium, and method for production of transgenic plant of triticum plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2655633B1 (en) * 2010-12-20 2017-11-15 Schmülling, Thomas Disruption of ahp6 gene leads to plants with improved seed yield

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519590A (en) * 2002-10-16 2006-08-31 ユーエス スモークレス タバコ カンパニー Cloning of cytochrome p450 gene from the genus Tobacco

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006519590A (en) * 2002-10-16 2006-08-31 ユーエス スモークレス タバコ カンパニー Cloning of cytochrome p450 gene from the genus Tobacco

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLEJAN LA ET AL.: "Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde.", ARCH. BIOCHEM. BIOPHYS., vol. 285, no. 1, 1991, pages 83 - 89, XP024762053 *
DAHL AR ET AL.: "Formaldehyde production promoted by rat nasal cytochrome P-450- dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates.", TOXICOL. APPL. PHARMACOL., vol. 67, 1983, pages 200 - 205, XP024884882 *
RASHBA-STEP J ET AL.: "Oxidation of glycerol to formaldehyde by microsomes: Are glycerol radicals produced in the reaction pathway?", BIOCHEMISTRY, vol. 33, 1994, pages 9504 - 9510, XP055354635 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013764A1 (en) * 2009-07-29 2011-02-03 日本たばこ産業株式会社 Method for gene transfer into triticum plant using agrobacterium bacterium, and method for production of transgenic plant of triticum plant
US8884101B2 (en) 2009-07-29 2014-11-11 Japan Tobacco Inc. Method of gene introduction into Triticum plant using Agrobacterium, and a method of producing transformed Triticum plant
JP5766605B2 (en) * 2009-07-29 2015-08-19 日本たばこ産業株式会社 A method for introducing a gene into a wheat genus plant using Agrobacterium, a method for producing a transformed plant of a wheat genus plant

Also Published As

Publication number Publication date
JP2010136624A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
CN106459923B (en) Reduction of nicotine conversion to nornicotine in plants
JP6921740B2 (en) Reduction of tobacco-specific nitrosamines due to changes in nitrate assimilation pathway
US10813318B2 (en) Tobacco plants having altered amounts of one or more alkaloids in leaf and methods of using such plants
JP7000265B2 (en) Isopropylmalate synthase from Nicotiana tabacam and its methods and uses
JP6225108B2 (en) Threonine synthase from Nicotiana tabacum and methods and uses thereof
JP6693747B2 (en) Reduction of tobacco-specific nitrosamines in plants
KR101965019B1 (en) Modulating beta-damascenone in plants
JP6810134B2 (en) Plants with reduced asparagine content
CN111212562B (en) Methods and compositions related to improved nitrogen utilization efficiency in tobacco
US9260720B2 (en) Transgenic plants comprising constructs encoding phosphoenolpyruvate carboxykinase and/or pyruvate orthophosphate dikinase
JP7463284B2 (en) Regulation of amino acid content in plants
JP2010136623A (en) Nicotiana plant in which carbonyl content is reduced in combustion smoke and method for producing the same
WO2008117887A1 (en) Plant of genus nicotiana with reduced content of carbonyls in combustion smoke and method for producing the same
JP2023521055A (en) How Nicotine Levels are Regulated in Nicotiana Tabacum
KR102279680B1 (en) Way
CN114040976A (en) Compositions and methods for producing tobacco plants and products with reduced or eliminated smoke branches
JP2008212065A (en) Gene having function of regulating alkaloid content, and transformed nicotiana plant utilizing the gene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP