WO2008116390A1 - Procédé d'envoi d'informations de signalisation et dispositif de signalisation - Google Patents

Procédé d'envoi d'informations de signalisation et dispositif de signalisation Download PDF

Info

Publication number
WO2008116390A1
WO2008116390A1 PCT/CN2008/000599 CN2008000599W WO2008116390A1 WO 2008116390 A1 WO2008116390 A1 WO 2008116390A1 CN 2008000599 W CN2008000599 W CN 2008000599W WO 2008116390 A1 WO2008116390 A1 WO 2008116390A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
message
link
routing
module
Prior art date
Application number
PCT/CN2008/000599
Other languages
English (en)
French (fr)
Inventor
Hui Li
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2008116390A1 publication Critical patent/WO2008116390A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/163In-band adaptation of TCP data exchange; In-band control procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]

Definitions

  • the present invention relates to network communication technologies, and in particular, to a method and a signaling device for transmitting signaling messages. Background technique
  • Signaling is control information transmitted between a user equipment and a network node, or between a network node and a network node.
  • the traditional telephone network generally adopts a common channel signaling method, and the signaling transmission channel is completely separated from the voice channel, and the signaling of several voice channels is collected and transmitted on a common high-speed data link.
  • the SIGNALING TRANSPORT (SIGTRAN) protocol stack is a protocol stack that supports transmission of traditional circuit-switched network signaling over an Internet Protocol (IP) network, including: No.7, V5, etc.
  • IP Internet Protocol
  • the protocol stack supports the inter-layer standard primitive interface in the signaling protocol layered model definition, transforming the traditional transport underlay into an SCTP/IP-based transport protocol.
  • the SIGTRAN protocol stack is responsible for communication between the signaling gateway and the media gateway controller. It has two main functions: adaptation and transmission.
  • the SIGTRAN protocol stack contains two layers of protocols, transport protocols and adaptation protocols. SIGTRAN is a way of evolving traditional signaling to IP.
  • Another evolutionary approach is session control signaling directly based on IP networks, such as session initiation.
  • SIP Session Initial Protocol
  • the SIP protocol can be based on a connectionless transport protocol, such as User Datagram Protocol (UDP) transport, or based on a connected transport protocol, such as Transmission Control Protocol (TCP), Flow Control Transport Protocol (Stream Control Transmission Protocol: SCTP).
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • SCTP Flow Control Transport Protocol
  • IMS IP Multimedia Subsystem
  • connection-based transport protocols such as TCP and SCTP:
  • Method 1 The network element establishes a signaling link based on the session. That is, a SIP network element first establishes a signaling link between its own network element and the destination network element before issuing a session request, and then uses the signaling link to send an application message. When the session ends, the signaling link is released.
  • This method of establishing a signaling link based on a session causes the signaling processing delay to be too long.
  • the network element needs to establish a connection for each session, and cannot implement connection multiplexing.
  • Each network element needs to manage a large number of connections, resulting in a network.
  • the meta-processing capability is degraded, and if a firewall is deployed between the NEs, the address and port number of the signaling connection cannot be determined in advance and cannot pass through the firewall.
  • Method 2 The signaling link is established based on the network element. If the source and destination addresses of the sent message are the same, the same signaling link can be multiplexed.
  • the method for establishing a signaling link based on a network element needs to establish a complete mesh connection network, each network element needs to maintain a large number of signaling links, and the signaling link can only implement single-multiplexing.
  • IMS Internet Protocol Multimedia Subsystem
  • IBCF Inter-Border Control Function
  • Method 3 A signaling network is formed by forwarding network elements dedicated to forwarding signaling messages, and each application processing network element first establishes a signaling link with the forwarding network element, and then forwards the signaling through the signaling network.
  • the forwarding network element needs to understand each forwarding application layer protocol and parse the application layer protocol, so that the forwarding efficiency is lowered, and each forwarding request cannot be processed quickly.
  • the current IP network transmits signaling messages with low forwarding efficiency, and cannot process each forwarding request quickly.
  • Each network element needs to manage a large number of connections, resulting in a decrease in network element processing capability and failure to provide a signaling link.
  • Mechanisms such as redundant backup and congestion flow control cannot meet the requirements of the carrier-class signaling network for the convergence and multiplexing of signaling equipment connections, and cannot traverse the firewall.
  • the embodiments of the present invention provide a signaling device and a method for transmitting a signaling message, which are used to solve the problem of low forwarding efficiency of signaling messages in the prior art.
  • the general signaling transmission protocol receives a signaling message sent by an application layer to a lower layer or a transport layer to an upper layer.
  • the selective information is selected. And causing the link to send the signaling message to the network according to the selected signaling link.
  • a signaling device includes:
  • a message identifying module configured to receive a signaling message sent by an application layer or a transport layer, and after receiving the signaling message, identify an address of the signaling message
  • a message routing module configured to: when the destination address in the signaling message received by the message identification module is an offsite address, select a signaling link, and the signaling is performed according to the selected signaling link The message is sent to the network.
  • the embodiment of the present invention sets a general signaling transmission protocol in a transmission control protocol/internet protocol, and the universal signaling transmission protocol receives a signaling message sent by an application layer to a lower layer or a transport layer to an upper layer, and receives the signaling message. And determining, when the destination address in the signaling message is an off-site address, selecting a signaling link, and sending the signaling message to the network according to the selected signaling link; the universal signaling transmission protocol Receiving the signaling message from the application layer or the transport layer, and determining that the destination address is a local address, sending the signaling message to the application layer, thereby transmitting signaling on an IP network.
  • the forwarding efficiency of the signaling message is improved, the speed of processing each forwarding request is increased, the processing capability of the network element is improved, and redundant backup and congestion flow control mechanisms of the signaling link are provided to satisfy the telecommunications. Convergence and multiplexing of the connection of the level signaling equipment. If a firewall is deployed between the network elements, the address and port number of the signaling link are specified when the signaling network is already set up. Can traverse the firewall.
  • FIG. 1 is a schematic diagram of establishing a signaling link based on a network element in the prior art
  • FIG. 2 is a schematic structural diagram of a signaling device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a protocol architecture after setting a General Signaling Transmission Protocol (GSTP) according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for transmitting a signaling message according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a signaling networking according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for transmitting a signaling message in a signaling network according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of a method for managing occlusion in a signaling network according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of a method for controlling traffic in a signaling network according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a combination of a signaling network and an IMS according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a method for combining signaling network and IMS according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention sets a general signaling transmission protocol GSTP in the transmission control protocol/internet protocol, and the general signaling transmission protocol receives the application layer to the lower layer or the transport layer to the upper layer. Transmitting the signaling message, when receiving the signaling message, and determining that the destination address in the signaling message is an off-site address, selecting a signaling link, and the signaling according to the selected signaling link Sending a message to the network; when the general signaling transmission protocol receives the signaling message from the application layer or the transport layer, and determines that the destination address is a local address, the signaling message is sent.
  • the general signaling transmission protocol receives the signaling message from the application layer or the transport layer, and determines that the destination address is a local address, the signaling message is sent.
  • the address in the GSTP packet header includes an Internet Protocol address of the Transmission Control Protocol/Internet Protocol, or an application identifier (for example, a host identifier, a user identifier, a service identifier, etc.); and the port includes a transmission control protocol/Internet.
  • GSTP is set in the transmission control protocol/internet protocol, and the general signaling is transmitted.
  • the protocol receives signaling messages from the application layer or transport layer.
  • the signaling message is an application message; if the signaling message is from the transmission house, the signaling message is a transmission message.
  • a signaling link is a connected or unconnected transport protocol channel between two devices.
  • the signaling device in the embodiment of the present invention includes: a message identification module 10 and a message routing module 20.
  • the message identification module 10 is configured to receive a signaling message sent by an application layer to a lower layer or a transport layer to an upper layer, and identify an address of the UI in the signaling message.
  • the message routing module 20 is configured to: when the destination address in the signaling message received by the message identification module 10 is an offsite address, select a signaling link, and send the signaling message to the network according to the selected signaling link.
  • the signaling device in the embodiment of the present invention may further include: a message distribution module 30.
  • the message distribution module 30 is configured to send the signaling message to the application layer when the destination address in the signaling message received by the message identification module 10 is a local address.
  • the message distribution module 30 may further include: an application module 300 and a forwarding module 310.
  • the application module 300 is configured to determine a corresponding application layer according to the destination application layer protocol port number and the corresponding relationship between the set application layer protocol port number and the application layer.
  • the correspondence between the application layer protocol port number and the application layer is set according to the application layer protocol interface.
  • the forwarding module 310 is configured to send the signaling message to the application layer determined by the application module 300.
  • the signaling device of the embodiment of the present invention may further include: a routing module 40, a link group selection module 50, and a link selection module 60.
  • the routing module 40 is configured to select a corresponding message route according to the destination application layer protocol port number and the routing information in the signaling message after the message identification module 10 receives the signaling message.
  • the routing module 40 cannot select the corresponding message route, the corresponding message route is selected by the routing information saved in the signaling redirection point.
  • the link group selection module 50 is configured to select a corresponding link group according to the destination address in the signaling message and the message route selected by the routing module 40.
  • the link selection module 60 is configured to select a corresponding signaling link according to the link group selected by the link group selection module 50.
  • the link selection module 60 can allocate signaling messages to the selected signaling links according to the load sharing method.
  • the routing module 40, the link group selection module 50, and the link selection module 60 may also be placed in the message routing module 20, and the message routing module 20 selects according to the link selection module 60.
  • the link sends a signaling message.
  • the signaling device includes the routing module 40, the link group selection module 50 and the link selection module 60, and the routing module 40, the link group selection module 50, and the link selection module 60 are independent of the message routing module 20, Then, the message routing module 20 can send a signaling message according to the link selected by the link or link selection module 60 selected by itself.
  • the message routing module 20 may further include: a sending module 200.
  • the sending module 200 is configured to send a signaling message to the network according to the signaling link selected by the link selection module 60.
  • the signaling device of the embodiment of the present invention may further include: a transmission interface module 70.
  • the transmission interface module 70 is configured to provide a network interface of the transport layer, and provides necessary transmission protocol adaptation for different transport layer protocol capabilities.
  • the transport interface module 70 can provide reliability guarantee, congestion control, and the like for the UDP protocol.
  • the signaling device of the embodiment of the present invention may further include: a link management module 80.
  • the link management module 80 is configured to perform link management on the signaling link. When the signaling link status selected by the message routing module 20 is abnormal, at least one replacement link may be selected, and the signaling message is allocated to the replacement chain. On the road.
  • Link management includes: signaling link switching, rewinding, reselection routing, signaling link management blocking, signaling traffic control, status query, signaling routing query, signaling link enable, recovery, and / Or quit.
  • the administrator can also manage the link through the link management module 80 when the link needs to be managed. Reason.
  • the signaling device may further include: a route management module 90.
  • the routing management module 90 is configured to perform routing management on the message routing. When the routing of the message selected by the routing module 40 is abnormal, an alternative route may be selected to allocate the signaling message to the replacement route.
  • Routing management includes: blocking or unblocking, disallowing or allowing delivery of message routing, controlled delivery, routing testing, and/or congestion testing.
  • Managers can also manage message routing through Route Management Module 90 when they need to manage routes.
  • the signaling device may further include: a packaging module 91 and a parsing module 92.
  • the encapsulation module 91 is configured to construct a destination address including a signaling message, a destination application layer protocol port number, and routing information in the signaling message when the destination address in the signaling message received by the message identification module 10 is an offsite address. GSTP header.
  • the parsing module 92 is configured to parse the GSTP packet header in the signaling message when the signaling message received by the message identification module 10 is from the transport layer.
  • the encapsulation module 91 can also place the message name, source address, source application layer protocol port number, and/or priority in the GSTP header.
  • the parsing module 92 can also parse the message name, source address, source application layer protocol port number, destination address, destination application layer protocol port number, priority, and routing information in the GSTP header.
  • the message identification module 10 can determine the type of message received based on the message name.
  • the application module 300 can also determine the corresponding application layer according to the source address, the source application layer protocol port number, the destination address, the destination application layer protocol port number, and the routing information.
  • the routing module 40 can also select a corresponding message route according to the source address, the source application layer protocol port number, the destination address, the destination application layer protocol port number, and the routing information.
  • the link selection module 60 can also select a corresponding signaling link based on message priority, link selection information, link status, and link selection algorithm information.
  • the application layer includes at least: a SIP protocol, an H.248 protocol, a COPS (Common Open Policy Service) protocol, a Diameter protocol, BICC (Bearer Independent Call Control) protocol, DNS (Domain Name System) protocol, HTTP (Hyper-Text Transport Protocol) protocol, RTSP (Real-Time Steaming Protocol) real-time streaming protocol;
  • the transport layer includes at least: UDP, TCP, security Transport Layer Security (TLS), Datagram Transport Layer Security (DTLS), SCTP, Datagram Congestion Control Protocol (DCCP).
  • a GSTP layer is set between the application layer and the transport layer, and the received localized signaling message is sent to the corresponding application layer, and the signaling message belonging to the remote location is transmitted through the transport layer according to the selected message routing and signaling link. Forwarded to the network to provide carrier-grade message routing and network management.
  • the method for transmitting a signaling message in the embodiment of the present invention includes the following steps: Step 400: The GSTP receives a signaling message sent by an application layer to a lower layer or a transport layer to an upper layer. Step 401: After receiving the signaling message, the GSTP determines whether the destination address in the signaling message is a local address. If yes, step 402 is performed; otherwise, step 403 is performed.
  • Step 402 The GSTP sends the signaling message to the application layer.
  • Step 403 The GSTP selects a signaling link, and sends a signaling message to the network according to the selected signaling link.
  • the GSTP may further parse the message name, source address, source application layer protocol port number, and destination address from the GSTP packet header of the signaling message after receiving the message from the transport layer.
  • the destination application layer protocol port number, priority, and routing information and determines the message type as a signaling message according to the message name.
  • the GSTP may also construct a GSTP packet header including a destination address, a destination application layer protocol port number, and routing information in the signaling message when determining that the destination address in the signaling message is an alien address.
  • the source address, source application layer protocol port number, and priority can be placed in the GSTP header.
  • the GSTP may also be based on the source address, the source application layer protocol port number, and the destination address.
  • the destination layer protocol port number and the routing information are used to determine the corresponding application layer, and the signaling message is sent to the determined application layer.
  • the GSTP may further select a corresponding signaling link according to the message priority, the link selection information, the link state, and the link selection algorithm information, and send the signaling message to the network according to the selected signaling link.
  • the signaling message is allocated to the selected signaling link according to the load sharing method.
  • the GSTP checks the status of the selected signaling link and message routing, and selects at least one replacement link and/or an alternate route when the signaling link and/or the message routing condition is abnormal, and assigns the signaling message to the replacement chain. Road and / or replace the route.
  • the GSTP performs link management on the signaling link when an abnormality occurs in the selected signaling link.
  • Link management includes: signaling link switching, rewinding, reselection routing, signaling link management blocking, signaling traffic flow control, signaling routing query, signaling link enablement, recovery, and/or exit.
  • Managers can also manage links through GSTP when they need to manage links.
  • GSTP performs route management on message routing when an abnormality occurs in the selected message route.
  • Routing management includes: blocking or unblocking, disallowing or allowing delivery of message routing, controlled delivery, routing testing, and/or congestion testing.
  • the signaling endpoint 2, the signaling endpoint 3, the signaling endpoint 4, the signaling endpoint 5, and the signaling redirection point establish a TCP signal according to the network routing plan.
  • the signaling endpoint 2 and the signaling endpoint 3 adopt centralized routing management, and the routing data is stored in the signaling redirection point; the signaling endpoint 1 and the signaling endpoint 6 are connected to the signaling network through the TCP signaling link.
  • the foregoing signaling network may establish a connection by using TCP in a unified manner. If there are other special requirements when networking, for example, if you need to be between signaling endpoint 2 and signaling endpoint 4
  • the firewall can establish a signaling link between the two according to the deployment requirements of the firewall (using a special port, etc.); if signaling encryption between signaling endpoint 2 and signaling endpoint 4 is required, it can be in two Establish a signaling link between IPSec, TLS, etc.; if signaling transmission reliability between signaling endpoint 2 and signaling endpoint 4 is required, a signaling link can be established between the two using SCTP or the like;
  • two adjacent signaling networks use different IP address domains (for example, an IPv4 private network and an IPv4 public network, or an IPv4 public network and an IPv6 public network, etc.), they can be deployed between two signaling networks.
  • the signaling forwarding point can be addressed by applying the identifier to effectively solve the signaling IP address traversal problem.
  • the method for transmitting signaling messages in the signaling network formed according to FIG. 5 in the embodiment of the present invention includes the following steps:
  • Step 600 The signaling endpoint 1 receives the message from the application layer, determines the message type as the signaling message according to the message name, and determines that the destination address is an off-site address, according to the local address, the source application layer protocol port number, the destination address, and the destination.
  • the application layer protocol port number and the message priority are selected to be the signaling link TCP1, and the signaling message includes a message name, a local address, a source application layer protocol port number, a destination address, a destination application layer protocol port number, and a message priority. GSTP header.
  • Step 601 The signaling endpoint 1 sends a signaling message to the transport layer, and the transport layer sends the signaling message to the signaling endpoint 2 through the selected signaling link TCP1.
  • Step 602 The signaling endpoint 2 receives the message from the transport layer, determines the message type as the signaling message according to the message name in the GSTP packet header, and determines that the destination address is an off-site address, and cannot select the corresponding message route.
  • the source address, the source application layer protocol port number, the destination address, the destination application layer protocol port number, the message priority, and the routing information in the GSTP packet header of the message are used to query the corresponding message route through the signaling redirection point.
  • Step 603 The signaling redirection point sends the information of the selected message route to the signaling endpoint 2.
  • Step 604 The signaling endpoint 2 selects a corresponding destination according to the selected routing and signaling message.
  • the signaling link TCP5 sends a signaling message to the transport layer, and the transport layer sends the signaling message to the signaling endpoint 4 via the selected signaling link TCP5.
  • Step 605 The signaling endpoint 4 receives the message from the transport layer, determines the message type as the signaling message according to the message name in the GSTP packet header, and determines that the destination address is an alien address, according to the GSTP packet in the signaling message.
  • the source address in the header, the source application layer protocol port number, the destination address, the destination application layer protocol port number, the message priority, the routing information, the link state, and the link selection algorithm information select the route to the signaling endpoint 6 and
  • the TCP10 link sends a signaling message to the transport layer, and the transport layer sends the signaling message to the signaling endpoint 6 through the selected signaling link TCP10.
  • Step 606 After receiving the message from the transport layer, the signaling endpoint 6 determines that the message type is a signaling message according to the message name in the GSTP packet header, and determines that the destination address is an alien address, according to the GSTP report in the signaling message.
  • the source address, the source application layer protocol port number, the destination address, the destination application layer protocol port number, and the routing information in the header determine the corresponding application layer protocol, and the received signaling message is sent to the determined application layer.
  • the method for managing occlusion in the signaling network formed according to FIG. 5 includes the following steps:
  • Step 700 The signaling endpoint 6 sends an occlusion management message including TCP 10 to the signaling endpoint 4 according to the link management indication.
  • Step 701 After receiving the occlusion management message, the signaling endpoint 4 sets the state of the signaling link TCP 10 to the occlusion state, and sends an occlusion management response message to the signaling endpoint 6.
  • Step 702 The signaling endpoint 1 receives the message from the application layer, determines the message type as the signaling message according to the message name in the GSTP packet header, and determines that the destination address is an alien address, according to the signaling message in the GSTP packet header.
  • Step 703 The signaling endpoint 1 sends a signaling message to the transport layer, and the transport layer sends the signaling message to the signaling endpoint 2 through the selected signaling link TCP1.
  • Step 704 The signaling endpoint 2 receives the message from the transport layer, determines the message type as the signaling message according to the message name in the GSTP packet header, and determines that the destination address is an off-site address, according to the GSTP packet in the signaling message.
  • the source address, the destination address, the destination application layer protocol port number, the message priority, the routing information selection corresponding message routing and the signaling link TCP5 in the header the signaling message is sent to the transport layer, and the transport layer passes the selected letter. Let link TCP5 send a signaling message to signaling endpoint 4.
  • Step 705 The signaling endpoint 4 receives the message from the transport layer, determines the message type as a signaling message according to the message name in the GSTP packet header, and determines that the destination address is an off-site address, according to the GSTP packet in the signaling message.
  • the source address in the header, the source application layer protocol port number, the destination address, the destination application layer protocol port number, the message priority, the routing information selection corresponding message routing and the signaling link TCP9, and the signaling message is sent to the transport layer.
  • the transport layer sends a signaling message to the signaling endpoint 5 via the selected signaling link TCP9.
  • Step 706 The signaling endpoint 5 receives the message from the transport layer, determines the message type as the signaling message according to the message name in the GSTP packet header, and determines that the destination address is an alien address, according to the GSTP packet in the signaling message.
  • the source address in the header, the source application layer protocol port number, the destination address, the application layer protocol port number, the message priority, the routing information, the link state, and the link selection algorithm information select the route to the signaling endpoint 6 and
  • the TCP11 link sends a signaling message to the transport layer, and the transport layer sends the signaling message to the signaling endpoint 6 through the selected signaling link TCP11.
  • Step 707 After receiving the message from the transport layer, the signaling endpoint 6 determines that the message type is a signaling message according to the message name in the GSTP packet header, and determines that the destination address is an off-site address, according to the GSTP report in the signaling message.
  • the source address, the destination address, the destination application layer protocol port number, and the routing information in the header determine the corresponding application layer protocol, and the received signaling message is sent to the determined application layer.
  • the method for controlling traffic in a signaling network formed according to FIG. 5 includes the following steps:
  • Step 800 The signaling endpoint 4 sends the flow control management information including the congestion level to the signaling endpoint 2 according to the congestion state of the signaling link.
  • Step 801 After receiving the flow control management information, the signaling endpoint 2 transmits the signaling chain according to the congestion level.
  • the TCP5 performs flow control to reduce the number of signaling messages sent by the signaling link TCP5.
  • Step 802 The signaling endpoint 2 sends the flow control management response information to the signaling endpoint 4.
  • the signaling network is deployed between the IMS domains, and the signaling endpoint 1 and the signaling endpoint 6 can use the IMS.
  • the network entity in the domain is replaced by, for example, the current local proxy node (the home domain service node (S-CSCF) registered by the P-CSCF, the information node (I-CSCF), and the like.
  • S-CSCF home domain service node registered by the P-CSCF
  • I-CSCF information node
  • the method for combining signaling network and IMS formed according to FIG. 9 according to the embodiment of the present invention includes the following steps:
  • Step 1000 The user equipment (UE) sends a registration request message to the P-CSCF.
  • Step 1001 The P-CSCF uses the DNS protocol to resolve the home network address in the registration request message, obtains the address of the home network I-CSCF of the UE, and selects an appropriate signaling link by using the method shown in FIG. The way forwards the registration request message to the I-CSCF. ,
  • Step 1002 After receiving the registration request message, the I-CSCF queries the user registration status through the HSS.
  • Step 1004 The I-CSCF sends a registration message to the S-CSCF.
  • Step 1005 The S-CSCF receives the registration message, determines that the UE is initially registered, and uses the HSS to query the authentication information.
  • Step 1006 The HSS sends an authentication message to the S-CSCF.
  • Step 1007 After receiving the authentication message, the S-CSCF selects an authentication vector and sends an authentication challenge message to the I-CSCF.
  • Step 1008 The I-CSCF selects an appropriate signaling link by using the method shown in FIG. 6, and forwards the authentication challenge message to the P-CSCF through the signaling link.
  • Step 1009 The P-CSCF forwards the authentication challenge message to the UE.
  • Step 1010 The UE calculates an authentication response, and sends a registration request message to the P-CSCF.
  • Step 1011 The P-CSCF uses the DNS protocol to resolve the home network address in the registration request message, obtains the address of the home network I-CSCF of the UE, and selects an appropriate signaling link by using the method shown in FIG. The way forwards the registration request message to the I-CSCF.
  • Step 1012 After receiving the registration request message, the I-CSCF queries the user registration status through the HSS.
  • Step 1013 The HSS sends a registration message including address information to the I-CSCF.
  • Step 1014 The I-CSCF sends a registration message to the S-CSCF.
  • Step 1015 The S-CSCF receives the registration message, checks the authentication response provided by the ,, and if yes, saves the related information of the user to the HSS, and updates the registration information of the HSS, and requests to download the subscription data of the user.
  • Step 1016 The HSS sends the subscription data to the S-CSCF.
  • Step 1017 After receiving the subscription data, the S-CSCF sends a registration success confirmation message to the I-CSCF.
  • Step 1019 The P-CSCF forwards the registration success confirmation message to the UE.
  • the embodiment of the present invention sets a general signaling transmission protocol in the transmission control protocol/internet protocol, and the universal signaling transmission protocol receives the signaling message sent by the application layer to the lower layer or the transport layer to the upper layer. After receiving the signaling message, and determining that the destination address in the signaling message is an off-site address, selecting a signaling link, and sending the signaling message to the network according to the selected signaling link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种传送信令消息的方法和信令设备 技术领域
本发明涉及网络通信技术, 特别涉及一种传送信令消息的方法和信令设 备。 背景技术
信令是在用户设备与网络节点之间, 或网络节点与网络节点之间传送的 控制信息。 传统的电话网一般采用公共信道信令方式, 信令传输通道与话路 完全分开, 将若干条话路的信令集中起来, 在一条公共的高速数据链路上传 送。
采用公共信道传送信令可以增加信令系统的灵活性, 加快传送速度, 缩 短呼叫建立的时间, 适应各种新业务的要求。
目前, 全球因特网的迅速发展, 使得 IP网络传送信令消息成为可能。 信令传输( SIGNALING TRANSPORT: SIGTRAN )协议栈是支持通过网 际协议(Internet Protocol: IP )网络传输传统电路交换网信令的协议栈, 包括: No.7、 V5等信令。 该协议栈支持信令协议分层模型定义中的层间标准原语接 口,将传统的传输底层转变成以 SCTP/IP为基础的传输协议。 SIGTRAN协议栈 担负信令网关和媒体网关控制器间的通信, 有两个主要功能: 适配和传输。 与此对应, SIGTRAN协议栈包含两层协议, 传输协议和适配协议。 SIGTRAN 是传统信令向 IP演进的一种方式。
另一种演进方式是直接基于 IP网络的会话控制信令, 例如会话发起
( Session Initial Protocol: SIP )协议。 SIP协议可以基于无连接的传输协议, 如用户数据报协议 ( User Datagram Protocol : UDP )传输, 也可以基于有连 接的传输协议, 如传输控制协议 ( Transmission Control Protocol: TCP ) 、 流 控制传输协议 ( Stream Control Transmission Protocol : SCTP )等传输。 一些 新型的电信网絡如 IP多媒体子系统( IP Multimedia Subsystem : IMS ) , 采用 信令面和用户面分层处理的思想, 并且将 SIP协议作为会话信令控制系统。 从 目前来看, 以 SIP为核心的会话控制协议是未来发展的主要方向。
目前,应用层协议,比如 SIP协议,在基于有连接的传输协议如 TCP、 SCTP 等传输时, 一般采用以下几种方法:
方法一: 网元基于会话建立信令链路的。 即一个 SIP网元在发出会话请求 前, 首先在自身网元和目的网元之间建立一个信令链路, 然后使用该信令链 路发送应用消息。 当会话结束后, 释放该信令链路。
这种基于会话建立信令链路的方法会导致信令处理时延过长, 网元需要 为每个会话建立连接, 不能够实现连接复用, 每个网元需要管理大量的连接, 导致网元处理能力下降, 并且如果网元之间部署了防火墙, 由于信令连接的 地址和端口号不能事先确定, 无法穿越防火墙。
方法二: 基于网元建立信令链路, 如果发送消息的源和目的地址相同, 则可以复用相同的信令链路。
这种基于网元建立信令链路的方法需要建立完整的网孔连接网络, 每个 网元需要维护大量的信令链路, 而信令链路只能实现筒单复用。
如图 1所示, 四个网际协议多媒体子系统(IMS ) 网絡通过每个网络关口 的互连边界控制功能 (Inter-Border Control Function: IBCF)建立网絡之间的信 令链路,如果需要支持全球 IMS互通,则所有的 IMS之间都需要建立信令链路, 网络关口同样需要支持大量的信令链路, 不能实现收敛。
方法三: 通过专门用于转发信令消息的转发网元组成一个信令网, 各个 应用处理网元首先和转发网元建立信令链路, 然后通过信令网转发信令。
但是这种转发网元需要理解每个转发的应用层协议, 并且解析应用层协 议, 使得转发效率降低, 不能够快速处理每个转发请求。
综上所述, 目前的 IP网络传送信令消息, 转发效率低, 不能够快速处理每 个转发请求, 每个网元需要管理大量的连接, 导致网元处理能力下降, 不能 提供信令链路的冗余备份、 拥塞流控等机制, 对于信令设备连接的收敛和复 用无法满足电信级的信令组网的需求, 无法穿越防火墙。 发明内容
本发明实施例提供一种信令设备及其传送信令消息的方法, 用以解决现 有技术中信令消息转发效率低的问题。
一种传送信令消息的方法, 在传输控制协议 /网际协议中设置通用信令 传输协议, 该方法包括:
所述通用信令传输协议接收应用层向下层或传输层向上层发送的信令消 息, 在收到所述信令消息, 并且确定所述信令消息中的目的地址为异地地址 时, 选择信令链路, 根据选择的所述信令链路将所述信令消息发送到网络中。
一种信令设备包括:
消息识别模块, 用于接收应用层或传输层发送的信令消息, 在收到所述 信令消息, 识别所述信令消息中的^ I的地址;
消息路由模块, 用于在所述消息识别模块接收的所述信令消息中的所述 目的地址为异地地址时, 选择信令链路, 根据选择的所述信令链路将所述信 令消息发送到网络中。
本发明实施例在传输控制协议 /网际协议中设置通用信令传输协议, 所 述通用信令传输协议接收应用层向下层或传输层向上层发送的信令消息, 在 收到所述信令消息, 并且确定所述信令消息中的目的地址为异地地址时, 选 择信令链路, 根据选择的所述信令链路将所述信令消息发送到网络中; 所述 通用信令传输协议收到来自所述应用层或所述传输层的所述信令消息, 并且 确定所述目的地址为本地地址时, 将所述信令消息发送给所述应用层, 从而 在 IP网络传送信令消息中, 提高了信令消息的转发效率, 增加了处理每个转 发请求的速度, 提高了网元处理的能力, 并且提供了信令链路的冗余备份、 拥塞流控等机制, 满足电信级信令设备连接的收敛和复用, 如果网元之间部 署了防火墙, 由于已经在信令网组网时, 指定了信令链路的地址和端口号, 可以穿越防火墙。 附图说明
图 1为现有技术基于网元建立信令链路的示意图;
图 2为本发明实施例信令设备的组成示意图;
图 3为本发明实施例设置通用信令传输协议 ( GSTP )后的协议构架示意 图;
图 4为本发明实施例传送信令消息的方法流程示意图;
图 5为本发明实施例信令组网示意图;
图 6为本发明实施例信令组网中传送信令消息的方法流程示意图; 图 7为本发明实施例信令组网中管理闭塞的方法流程示意图;
图 8为本发明实施例信令组网中流量控制的方法流程示意图;
图 9为本发明实施例信令组网和 IMS结合的示意图;
图 10为本发明实施例信令组网和 IMS结合的方法流程示意图。 具体实施方式
针对目前 IP网络信令消息转发效率低的问题, 本发明实施例在传输控制 协议 /网际协议中设置通用信令传输协议 GSTP,所述通用信令传输协议接收 应用层向下层或传输层向上层发送的信令消息, 在收到所述信令消息, 并且 确定所述信令消息中的目的地址为异地地址时, 选择信令链路, 根据选择的 所述信令链路将所述信令消息发送到网络中; 所述通用信令传输协议收到来 自所述应用层或所述传输层的所述信令消息, 并且确定所述目的地址为本地 地址时, 将所述信令消息发送给所述应用层, 从而解决了上述问题。
本发明实施例中, GSTP报文头中的地址包括传输控制协议 /网际协议的 网际协议地址, 或者应用标识(例如: 主机标识、 用户标识、 业务标识等) 等; 端口包括传输控制协议 /网际协议的传输层协议端口、 应用的分发参数 等。
本发明实施例中在传输控制协议 /网际协议中设置 GSTP,通用信令传输 协议接收来自应用层或传输层的信令消息。
如果信令消息来自应用层, 则信令消息为应用消息; 如果信令消息来自 传输屋, 则信令消息为传输消息。
信令链路为两个设备之间的有连接或者无连接的传输协议通道。
如图 2所示, 本发明实施例中信令设备包括: 消息识别模块 10、 消息路 由模块 20。
消息识别模块 10, 用于接收应用层向下层或传输层向上层发送的信令消 息, 识别信令消息中的 ϋ的地址。
消息路由模块 20,用于在消息识别模块 10接收的信令消息中的目的地址 为异地地址时, 选择信令链路, 根据选择的信令链路将信令消息发送到网络 中。
本发明实施例中信令设备还可以进一步包括: 消息分配模块 30。
消息分配模块 30,用于在消息识别模块 10接收的信令消息中的目的地址 为本地地址时, 将信令消息发送给应用层。
消息分配模块 30还可以进一步包括: 应用模块 300和转发模块 310。 应用模块 300,用于根据目的应用层协议端口号和设置的应用层协议端口 号与应用层的对应关系, 确定对应的应用层。
应用层协议端口号与应用层的对应关系是根据应用层协议接口设置的。 转发模块 310, 用于将信令消息发送给应用模块 300确定的应用层。
本发明实施例信令设备还可以进一步包括: 路由选择模块 40, 链路组选 择模块 50和链路选择模块 60。
路由选择模块 40, 用于在消息识别模块 10收到信令消息后,根据信令消 息中的目的应用层协议端口号和路由选择信息选择对应的消息路由。
如果路由选择模块 40不能选择对应的消息路由, 则通过信令重定向点中 保存的路由信息选择对应的消息路由。
链路组选择模块 50, 用于根据信令消息中的目的地址和路由选择模块 40 选择的消息路由, 选择对应的链路組。 链路选择模块 60,用于根据链路组选择模块 50选择的链路组,选择对应 的信令链路。
链路选择模块 60在选择了两条以上的信令链路时, 可以根据负荷分担的 方法将信令消息分配到选择的信令链路上。
需要说明的是, 在具体实施过程中, 路由选择模块 40, 链路组选择模块 50和链路选择模块 60还可以置于消息路由模块 20, 则消息路由模块 20根据 链路选择模块 60选择的链路发送信令消息。
如果信令设备中包括路由选择模块 40,链路组选择模块 50和链路选择模 块 60, 并且路由选择模块 40, 链路组选择模块 50和链路选择模块 60与消息 路由模块 20相互独立, 则消息路由模块 20可以根据自身选择的链路或链路 选择模块 60选择的链路发送信令消息。
其中, 消息路由模块 20还可以进一步包括: 发送模块 200。
发送模块 200, 用于根据链路选择模块 60选择的信令链路将信令消息发 送到网络中。
本发明实施例信令设备还可以进一步包括: 传输接口模块 70。
传输接口模块 70, 用于提供传输层的网络接口, 针对不同传输层协议的 能力, 提供必要的传输协议的适配。
例如, 传输接口模块 70可以为 UDP协议提供可靠性保证、 拥塞控制等 功能。
本发明实施例信令设备还可以进一步包括: 链路管理模块 80。
链路管理模块 80,用于对信令链路进行链路管理,在消息路由模块 20选 择的信令链路状况发生异常时, 可以选择至少一条替换链路, 将信令消息分 配到替换链路上。
链路管理包括: 信令链路的倒换、 倒回、 重选路由, 信令链路管理阻断, 信令业务流量控制、 状态查询, 信令路由查询, 信令链路启用、 恢复和 /或 退出。
管理人员还可以在需要管理链路时, 通过链路管理模块 80对链路进行管 理。
发明实施例信令设备还可以进一步包括: 路由管理模块 90。
路由管理模块 90, 用于对消息路由进行路由管理, 在路由选择模块 40选 择的消息路由发生异常时, 可以选择一个替换路由, 将信令消息分配到替换 路由上。
路由管理包括: 消息路由的阻断或解除阻断、 禁止或允许传递、 受控传 递、 路由测试和 /或拥塞测试。
管理人员还可以在需要管理路由时, 通过路由管理模块 90对消息路由进 行管理。
发明实施例信令设备还可以进一步包括: 封装模块 91和解析模块 92。 封装模块 91,用于在消息识别模块 10收到的信令消息中的目的地址为异 地地址时, 在信令消息中构造包含信令消息的目的地址、 目的应用层协议端 口号和路由选择信息的 GSTP报文头。
解析模块 92, 用于在消息识别模块 10收到的信令消息来自传输层时, 解 析信令消息中的 GSTP报文头。
封装模块 91还可以将消息名, 源地址, 源应用层协议端口号和 /或优先 级置于 GSTP报文头中。
则解析模块 92还可以将 GSTP报文头中的消息名, 源地址, 源应用层协 议端口号, 目的地址, 目的应用层协议端口号, 优先级以及路由选择信息解 析出来。
消息识别模块 10可以才艮据消息名判断收到的消息类型。
应用模块 300还可以根据源地址, 源应用层协议端口号, 目的地址, 目 的应用层协议端口号以及路由选择信息, 确定对应的应用层。
路由选择模块 40还可以根据源地址, 源应用层协议端口号, 目的地址, 目的应用层协议端口号以及路由选择信息, 选择对应的消息路由。
链路选择模块 60还可以根据消息优先级, 链路选择信息, 链路状态和链 路选择算法信息选择对应的信令链路。 如图 3所示, 本发明实施例设置 GSTP后的协议构架示意图中: 应用层中至少包括: SIP协议, H.248协议, COPS ( Common Open Policy Service,公共开放策略服务)协议, Diameter协议、 BICC ( Bearer Independent Call Control )协议, DNS ( Domain Name System )协议, HTTP ( Hyper-Text Transport Protocol )协议, RTSP ( Real-Time Steaming Protocol ) 实时流协议; 传输层中至少包括: UDP, TCP,安全传送层 (Transport Layer Security: TLS) , 安全传送数据层 (Datagram Transport Layer Security: DTLS) , SCTP, 数据包 阻塞控制协议 (Datagram Congestion Control Protocol: DCCP) 。 在应用层和传 输层之间设置了 GSTP层, 将收到的属于本地的信令消息发送给对应的应用 层, 属于异地的信令消息根据选择的消息路由和信令链路, 通过传输层转发 到网络中, 从而提供电信级的消息路由和网络管理。
如图 4所示, 本发明实施例传送信令消息的方法包括下列步驟: 步驟 400、 GSTP接收应用层向下层或传输层向上层发送的信令消息。 步骤 401、 GSTP在收到信令消息后, 判断信令消息中的目的地址是否为 本地地址, 如果是, 则执行步骤 402; 否则, 执行步骤 403。
步骤 402、 GSTP将信令消息发送给应用层。
步驟 403、 GSTP选择信令链路, 根据选择的信令链路将信令消息发送到 网络中。
其中, 步驟 400之后, 步骤 401之前, GSTP还可以在收到来自传输层的 消息后, 从信令消息的 GSTP报文头中解析出消息名, 源地址, 源应用层协 议端口号, 目的地址, 目的应用层协议端口号, 优先级和路由选择信息, 并 才艮据消息名确定消息类型为信令消息。
则步骤 401中, GSTP还可以在确定信令消息中的目的地址为异地地址时, 在信令消息中构造包含目的地址, 目的应用层协议端口号和路由选择信息的 GSTP报文头,并且还可以将源地址,源应用层协议端口号和优先级置于 GSTP 报文头中。
步骤 402中, GSTP还可以根据源地址,源应用层协议端口号, 目的地址, 目的应用层协议端口号以及路由选择信息, 确定对应的应用层, 将该信令消 息发送给确定的应用层。
步骤 403中, GSTP还可以根据消息优先级, 链路选择信息, 链路状态和 链路选择算法信息选择对应的信令链路, 根据选择的信令链路将信令消息发 送到网络中。
GSTP在选择了两条以上的信令链路时,则根据负荷分担的方法将信令消 息分配到选择的信令链路上。
GSTP查看选择的信令链路和消息路由的状况,在信令链路和 /或消息路 由状况发生异常时, 选择至少一条替换链路和 /或一个替换路由, 将信令消 息分配到替换链路和 /或替换路由上。
GSTP在选择的信令链路发生异常时, 对信令链路进行链路管理。
链路管理包括: 信令链路的倒换、 倒回、 重选路由、 信令链路管理阻断、 信令业务流量控制、 信令路由查询、 信令链路启用、 恢复和 /或退出。
管理人员还可以在需要管理链路时, 通过 GSTP对链路进行管理。
GSTP在选择的消息路由发生异常时, 对消息路由进行路由管理。
路由管理包括: 消息路由的阻断或解除阻断、 禁止或允许传递、 受控传 递、 路由测试和 /或拥塞测试。
管理人员还可以在需要管理路由时 , 通过 GSTP对消息路由进行管理。 为了让本领域的技术人员更好的理解本发明, 根据下面设定的一个信令 组网的环境进行具体说明:
如图 5所示,本发明实施例信令组网示意图中,信令端点 2、信令端点 3、 信令端点 4、 信令端点 5和信令重定向点根据网络路由规划, 建立 TCP信令 链路, 构成信令网络。 其中, 信令端点 2和信令端点 3采用集中式路由管理, 路由数据保存在信令重定向点上; 信令端点 1和信令端点 6通过 TCP信令链 路连接到信令网中。
在本发明实施例中, 上述信令网络可以统一使用 TCP建立连接。 如果组 网时, 有其他特殊需求, 例如, 如果需要在信令端点 2和信令端点 4之间部 署防火墙, 则可以在两者之间按照防火墙的部署要求 (使用特殊端口等)建 立信令链路; 如果需要在信令端点 2和信令端点 4之间进行信令加密, 则可 以在两者之间使用 IPSec、 TLS等建立信令链路; 如果需要信令端点 2和信令 端点 4之间增加信令传输可靠性,则可以在两者之间使用 SCTP等建立信令链 路;
由于只需要关注相邻的信令连接, 因此每个信令端点的信令连接数量很 少, 信令链路数据管理筒单, 实现非常容易。
如果相邻的两个信令网络使用不同的 IP地址域(例如, 一个 IPv4私网和 IPv4公网, 或者一个 IPv4公网和 IPv6公网等), 则可以在两个信令网络之间 部署信令转发点, 可以通过应用标识进行寻址, 有效的解决信令 IP地址穿越 问题。
如图 6所示, 本发明实施例中根据图 5组建的信令组网中传送信令消息 的方法包括下列步骤:
步骤 600、信令端点 1收到来自应用层的消息,根据消息名确定消息类型 为信令消息, 并且确定目的地址为异地地址后, 根据本地地址、 源应用层协 议端口号、 目的地址、 目的应用层协议端口号和消息优先级选择信令链路 TCP1 , 在信令消息中构造包含消息名、 本地地址、 源应用层协议端口号、 目 的地址、 目的应用层协议端口号和消息优先级的 GSTP报文头。
步驟 601、信令端点 1将信令消息发送给传输层, 传输层通过选择的信令 链路 TCP1将信令消息发送给信令端点 2。
步骤 602、信令端点 2收到来自传输层的消息, 根据 GSTP报文头中的消 息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 不能选择对 应的消息路由, 根据信令消息中的 GSTP报文头中的源地址、 源应用层协议 端口号、 目的地址、 目的应用层协议端口号、 消息优先級、 路由选择信息通 过信令重定向点查询对应的消息路由。
步驟 603、 信令重定向点向信令端点 2发送选择的消息路由的信息。 步驟 604、信令端点 2根据选择的路由和信令消息中的目的地址选择对应 的信令链路 TCP5 , 将信令消息发送给传输层, 传输层通过选择的信令链路 TCP5将信令消息发送给信令端点 4。
步驟 605、信令端点 4收到来自传输层的消息, 根据 GSTP报文头中的消 息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令消 息中的 GSTP报文头中的源地址、 源应用层协议端口号、 目的地址、 目的应 用层协议端口号、 消息优先级、 路由选择信息、 链路状态和链路选择算法信 息, 选择到信令端点 6的路由和 TCP10链路, 将信令消息发送给传输层, 传 输层通过选择的信令链路 TCP10将信令消息发送给信令端点 6。
步骤 606、信令端点 6在收到来自传输层的消息, 根据 GSTP报文头中的 消息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令 消息中的 GSTP报文头中的源地址、 源应用层协议端口号、 目的地址、 目的 应用层协议端口号和路由选择信息确定对应的应用层协议, 并将收到的信令 消息发送给确定的应用层。
如图 7所示, 本发明实施例根据图 5组建的信令组网中管理闭塞的方法 包括下列步骤:
步骤 700、信令端点 6根据链路管理指示, 向信令端点 4发送包含 TCP 10 的闭塞管理消息。
步驟 701、 信令端点 4收到闭塞管理消息后, 将信令链路 TCP 10的状态 设置为闭塞状态, 并向信令端点 6发送闭塞管理响应消息。
步骤 702、信令端点 1收到来自应用层的消息, 根据 GSTP报文头中的消 息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令消 息 GSTP报文头中的本地地址、 源应用层协议端口号、 目的地址、 目的应用 层协议端口号、 消息优先级和目的地址选择信令链路 TCP1 , 在信令消息中构 造包含信令消息中的消息名、 本地地址、 源应用层协议端口号、 目的地址、 目的应用层协议端口号和消息优先级的 GSTP报文头。
步骤 703、信令端点 1将信令消息发送给传输层, 传输层通过选择的信令 链路 TCP1将信令消息发送给信令端点 2。 步驟 704、信令端点 2收到来自传输层的消息, 根据 GSTP报文头中的消 息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令消 息中的 GSTP报文头中的源地址、 目的地址、 目的应用层协议端口号、 消息 优先级、 路由选择信息选择对应的消息路由和信令链路 TCP5, 将信令消息发 送给传输层,传输层通过选择的信令链路 TCP5将信令消息发送给信令端点 4。
步驟 705、信令端点 4收到来自传输层的消息, 根据 GSTP报文头中的消 息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令消 息中的 GSTP报文头中的源地址、 源应用层协议端口号、 目的地址、 目的应 用层协议端口号、 消息优先级、 路由选择信息选择对应的消息路由和信令链 路 TCP9, 将信令消息发送给传输层, 传输层通过选择的信令链路 TCP9将信 令消息发送给信令端点 5。
步骤 706、 信令端点 5收到来自传输层的消息, 根据 GSTP报文头中的消 息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令消 息中的 GSTP报文头中的源地址、 源应用层协议端口号、 目的地址、 的应 用层协议端口号、 消息优先级、 路由选择信息、 链路状态和链路选择算法信 息, 选择到信令端点 6的路由和 TCP11链路, 将信令消息发送给传输层, 传 输层通过选择的信令链路 TCP11将信令消息发送给信令端点 6。
步驟 707、信令端点 6在收到来自传输层的消息, 根据 GSTP报文头中的 消息名确定消息类型为信令消息, 并确定目的地址为异地地址后, 根据信令 消息中的 GSTP报文头中的源地址、 目的地址、 目的应用层协议端口号和路 由选择信息确定对应的应用层协议, 并将收到的信令消息发送给确定的应用 层。
如图 8所示, 本发明实施例根据图 5组建的信令组网中流量控制的方法 包括下列步骤:
步驟 800、信令端点 4根据信令链路的拥堵状态向信令端点 2发送包含拥 塞级别的流量控制管理信息。
步骤 801、信令端点 2收到流量控制管理信息后,根据拥塞级别对信令链 路 TCP5进行流量控制, 减少信令链路 TCP5发送信令消息的数量。
步骤 802、 信令端点 2向信令端点 4发送流量控制管理响应信息。
如图 9所示, 本发明实施例根据图 5组建的信令组网和 IMS结合的示意 图中可以看出,在 IMS域间部署信令网,信令端点 1和信令端点 6可以用 IMS 域内的网絡实体代替, 比如: 当前所在地代理节点(P-CSCF 注册地的归属 域服务节点 (S-CSCF )、 问讯节点 (I-CSCF )等等。
如图 10所示,本发明实施例根据图 9组建的信令组网和 IMS结合的方法 包括下列步骤:
步骤 1000、 用户设备 ( UE )向 P-CSCF发送注册请求消息。
步骤 1001、 P-CSCF对注册请求消息中的归属网络地址使用 DNS协议解 析, 获得 UE的归属网络 I-CSCF的地址, 通过图 6所示的方法选择合适的信 令链路, 通过信令链路向 I-CSCF转发注册请求消息。 ,
步骤 1002、 I-CSCF收到注册请求消息后, 通过 HSS查询用户注册状态。 步骤 1003、 HSS向 I-CSCF发送包含地址信息的注册消息。
步驟 1004、 I-CSCF向 S-CSCF发送注册消息。
步骤 1005、 S-CSCF收到注册消息, 确定 UE是初次注册, 通过 HSS查 询鉴权信息。
步骤 1006、 HSS向 S-CSCF发送鉴权消息。
步骤 1007、 S-CSCF收到鉴权消息后, 选取鉴权矢量, 向 I-CSCF发送鉴 权挑战消息。
步骤 1008、 I-CSCF通过图 6所示的方法选择合适的信令链路, 通过信令 链路向 P-CSCF转发鉴权挑战消息。
步驟 1009、 P-CSCF向 UE转发鉴权挑战消息。
步骤 1010、 UE计算鉴权响应, 重新向 P-CSCF发送注册请求消息。
步骤 1011、 P-CSCF对注册请求消息中的归属网络地址使用 DNS协议解 析, 获得 UE的归属网络 I-CSCF的地址, 通过图 6所示的方法选择合适的信 令链路, 通过信令链路向 I-CSCF转发注册请求消息。 步骤 1012、 I-CSCF收到注册请求消息后, 通过 HSS查询用户注册状态。 步骤 1013、 HSS向 I-CSCF发送包含地址信息的注册消息。
步骤 1014、 I-CSCF向 S-CSCF发送注册消息。
步驟 1015、 S-CSCF收到注册消息,检查 ΌΈ提供的鉴权响应,如果匹配, 则将用户的相关信息保存到 HSS中, 并更新 HSS的注册信息, 请求下载用户 的签约数据。
步骤 1016、 HSS向 S-CSCF发送签约数据。
步骤 1017、 S-CSCF收到签约数据后,向 I-CSCF发送注册成功确认消息。 步骤 1018、 I-CSCF通过图 6所示的方法选择合适的信令链路, 通过信令 链路向 P-CSCF转发注册成功确认消息。
步驟 1019、 P-CSCF向 UE转发注册成功确认消息。
从上述实施例中可以看出: 本发明实施例在传输控制协议 /网际协议中 设置通用信令传输协议, 所述通用信令传输协议接收应用层向下层或传输层 向上层发送的信令消息, 在收到所述信令消息, 并且确定所述信令消息中的 目的地址为异地地址时, 选择信令链路, 根据选择的所述信令链路将所述信 令消息发送到网絡中; 所述通用信令传输协议收到来自所述应用层或所述传 输层的所述信令消息, 并且确定所述目的地址为本地地址时, 将所述信令消 息发送给所述应用层, 从而在 IP网络传送信令消息中, 提高了信令消息的转 发效率, 增加了处理每个转发请求的速度, 提高了网元处理的能力, 并且提 供了信令链路的冗余备份、 拥塞流控等机制, 满足电信级信令设备连接的收 敛和复用, 如果网元之间部署了防火墙, 由于已经在信令网组网时, 指定了 信令链路的地址和端口号, 可以穿越防火墙。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种传送信令消息的方法, 基于传输控制协议 /网际协议中, 其特征 在于, 该方法包括:
通用信令传输协议接收应用层向下层或传输层向上层发送的信令消息, 在收到所述信令消息, 并且确定所述信令消息中的目的地址为异地地址时, 选择信令链路, 根据选择的所述信令链路将所述信令消息发送到网络中。
2、 如权利要求 1所述的方法, 其特征在于, 该方法还包括, 所述通用信 令传输协议确定所述信令消息中的所述目的地址为本地地址时, 所述通用信 令传输协议将所述信令消息发送给所述应用层。
3、 如权利要求 1所述的方法, 其特征在于, 所述通用信令传输协议是按 照下列方法选择所述信令链路的:
所述通用信令传输协议根据所述信令消息中的目的应用层协议端口号和 路由选择信息选择对应的消息路由;
所述通用信令传输协议根据所述目的地址和选择的所述消息路由 , 选择 对应的链路组;
所述通用信令传输协议从选择的所述链路组中 , 选择所述信令链路。
4、 如权利要求 1所述的方法, 其特征在于, 该方法还包括:
所述通用信令传输协议对所述信令链路进行链路管理;
所述链路管理包括信令链路倒换、 倒回、 重选路由、 信令链路管理阻断、 信令业务流量控制、 状态查询、 信令路由查询、 信令链路启用、.恢复和 /或 退出。
5、 如权利要求 3所述的方法, 其特征在于, 该方法还包括:
所述通用信令传输协议对所述消息路由进行路由管理;
所述路由管理包括消息路由的阻断或解除阻断、 禁止或允许传递、 受控 传递、 路由测试和 /或拥塞测试。
6、 如权利要求 2所述的方法, 其特征在于, 根据应用层协议接口设置应 用层协议端口号与所述座用层的对应关系, 则所述通用信令传输协议确定所 述目的地址为本地地址后还包括:
根据所述信令消息中的目的应用层协议端口号, 将所述信令消息发送给 所述目的应用层协议端口号对应的应用层。
7、 如权利要求 1所述的方法, 其特征在于, 所述通用信令传输协议将所 述信令消息通过选择的所述信令链路对应的网絡接口发送到网络中。
8、 如权利要求 3所述的方法, 其特征在于, 确定所述信令消息中的目的 地址为异地地址后, 根据选择的所述信令链路将所述信令消息发送到网络中 前还包括:
在所述信令消息中构造包含目的地址、 所述目的应用层协议端口号和所 述路由选择信息的通用信令传输协议报文头;
如果所述信令消息来自传输层, 则在收到信令消息后还包括:
解析所述信令消息中的所述通用信令传输协议报文头。
9、 一种信令设备, 其特征在于, 该信令设备包括:
消息识别模块, 用于接收应用层向下层或传输层向上层发送的信令消息, 识别所述信令消息中的目的地址;
消息路由模块, 用于在所述消息识别模块接收的所述信令消息中的所述 目的地址为异地地址时, 选择信令链路, 根据选择的所述信令链路将所述信 令消息发送到网络中。
10、 如权利要求 9所述的信令设备, 其特征在于, 所迷信令设备还包括: 消息分配模块, 用于在所述消息识别模块接收的所述信令消息中的所述 目的地址为本地地址时, 将所述信令消息发送给所述应用层。
11、 如权利要求 9所述的信令设备, 其特征在于, 所述信令设备还包括: 路由选择模块, 用于在所述消息识别模块收到所述信令消息后, 根据所 述信令消息中的目的应用层协议端口号和路由选择信息选择对应的消息路 由;
链路组选择模块, 用于根据所迷目的地址和所述路由选择模块选择的所 述消息路由, 选择对应的链路组;
链路选择模块, 用于根据所述链路组选择模块选择的所述链路组, 选择 对应的所述信令链路;
所述消息路由模块还包括:
发送模块, 用于根据所述链路选择模块选择的所述信令链路将所述信令 消息发送到网络中。
12、 如权利要求 9所述的信令设备, 其特征在于, 所述信令设备还包括: 链路管理模块, 用于对所述信令链路进行链路管理;
所述链路管理包括信令链路的倒换、 倒回、 重选路由、 信令链路管理阻 断、 信令业务流量控制、 状态查询、 信令路由查询、 信令链路启用、 恢复和 /或退出。
13、如权利要求 11所述的信令设备,其特征在于, 所述信令设备还包括: 路由管理模块, 用于对所述消息路由进行路由管理;
所述路由管理包括消息路由的阻断或解除阻断、 禁止或允许传递、 受控 传递、 路由测试和 /或拥塞测试。
14、 如权利要求 10所述的信令设备, 其特征在于, 所述消息分配模块还 包括:
应用模块, 用于根据目的应用层协议端口号和设置的应用层协议端口号 与所述应用层的对应关系, 确定对应的应用层;
转发模块, 用于将所述信令消息发送给所述应用模块确定的所述应用层。
15、 如权利要求 9所述的信令设备, 其特征在于, 所述信令设备还包括: 传输接口模块, 用于提供所述消息路由模块与传输层的网络接口。
16、如权利要求 11 所述的信令设备,其特征在于,所述信令设备还包括: 封装模块, 用于在所述消息识别模块收到的所述信令消息中的目的地址 为异地地址时 , 根据选择的所述信令链路将所述信令消息发送到网络中前, 在所述信令消息中构造包含所述目的地址、 所述目的应用层协议端口号和所 述路由选择信息的通用信令传输协议报文头; 解析模块, 用于在所述消息识别模块收到的所述信令消息来自传输层时: 解析所述信令消息中的所述通用信令传输协议 文头。
PCT/CN2008/000599 2007-03-28 2008-03-26 Procédé d'envoi d'informations de signalisation et dispositif de signalisation WO2008116390A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710090951.2 2007-03-28
CN 200710090951 CN101022461A (zh) 2007-03-28 2007-03-28 一种传送信令消息的方法和信令设备

Publications (1)

Publication Number Publication Date
WO2008116390A1 true WO2008116390A1 (fr) 2008-10-02

Family

ID=38710111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000599 WO2008116390A1 (fr) 2007-03-28 2008-03-26 Procédé d'envoi d'informations de signalisation et dispositif de signalisation

Country Status (2)

Country Link
CN (1) CN101022461A (zh)
WO (1) WO2008116390A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104683183A (zh) * 2015-02-15 2015-06-03 大唐联仪科技有限公司 一种测控方法和系统
CN110637502A (zh) * 2019-08-23 2019-12-31 北京小米移动软件有限公司 数据处理方法和装置、电子设备和计算机可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101022461A (zh) * 2007-03-28 2007-08-22 华为技术有限公司 一种传送信令消息的方法和信令设备
CN101588633B (zh) * 2008-05-19 2011-12-21 上海华为技术有限公司 消息传输方法、装置及通信系统
WO2018045521A1 (zh) * 2016-09-08 2018-03-15 华为技术有限公司 无线网络中传输信令的方法和装置
CN110061966B (zh) * 2019-03-14 2021-06-29 浙江糖链科技有限公司 一种在计算机网络实现对等网的通信协议系统及方法
CN114244822A (zh) * 2021-12-17 2022-03-25 八维通科技有限公司 一种基于通信协议的消息传输系统及传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671222A (zh) * 2004-03-19 2005-09-21 华为技术有限公司 一种信令系统的电话用户部分消息在ip网络的传输方法
US20060262716A1 (en) * 2005-05-19 2006-11-23 Anantha Ramaiah High availability transport protocol method and apparatus
CN101022461A (zh) * 2007-03-28 2007-08-22 华为技术有限公司 一种传送信令消息的方法和信令设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671222A (zh) * 2004-03-19 2005-09-21 华为技术有限公司 一种信令系统的电话用户部分消息在ip网络的传输方法
US20060262716A1 (en) * 2005-05-19 2006-11-23 Anantha Ramaiah High availability transport protocol method and apparatus
CN101022461A (zh) * 2007-03-28 2007-08-22 华为技术有限公司 一种传送信令消息的方法和信令设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104683183A (zh) * 2015-02-15 2015-06-03 大唐联仪科技有限公司 一种测控方法和系统
CN104683183B (zh) * 2015-02-15 2018-07-06 大唐联仪科技有限公司 一种测控方法和系统
CN110637502A (zh) * 2019-08-23 2019-12-31 北京小米移动软件有限公司 数据处理方法和装置、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN101022461A (zh) 2007-08-22

Similar Documents

Publication Publication Date Title
EP2805476B1 (en) Ice based nat traversal
US9210197B2 (en) Packet-switched network-to-network interconnection interface
KR100804291B1 (ko) Ip 어드레스 바인딩들에 기초한 멀티미디어 트래픽의필터링 방법 및 시스템
US8607323B2 (en) Method for providing media communication across firewalls
EP1814267B1 (en) Ip packet relay method and gateway device in communication network
US20030118002A1 (en) Methods and apparatus for setting up telephony connections between two address domains having overlapping address ranges
WO2008116390A1 (fr) Procédé d'envoi d'informations de signalisation et dispositif de signalisation
EP3082318B1 (en) Communication method and device for preventing media stream circuity (tromboning)
WO2005062546A1 (fr) Procede de conversion et de traversee d'une adresse reseau et son systeme
WO2007079643A1 (fr) Procédé et système de reproduction utilisant un contrôleur de session en périphérie
WO2011038637A1 (zh) 端到端呼叫的实现方法、端到端呼叫终端及系统
US11388202B2 (en) Network entity selection
EP2075980B1 (en) A method and network communication system for redirecting network communication port
KR101606142B1 (ko) 음성패킷망에서 네트워크 주소 번역 통과를 지원하기 위한 장치 및 방법
EP1843614A1 (en) Method of performing a handover in a mobile communication system
WO2011060694A1 (zh) 一种建立媒体会话的方法和系统
JP4937913B2 (ja) Ipドメイン間の相互接続を構成する方法、システムおよび装置
WO2006131057A1 (fr) Procédé et appareil d’implémentation du proxy de signalisation
WO2006116920A1 (fr) Système et procédé de communication assurant une interconnexion à travers les domaines ip par le biais d’une passerelle de supports marginale
JP5135257B2 (ja) ホームゲートウェイ及びセッション制御サーバによって異なる経路の複数のセッションを確立する方法及びシステム
JP5247534B2 (ja) ホームゲートウェイによって異なる経路の複数のセッションを確立する方法及びシステム
House ND1612: 2006/06 Generic IP Connectivity for PSTN/ISDN Servicesbetween UK Next Generation Networks
JP2010233174A (ja) ルータ、ネットワークシステムおよび通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08715047

Country of ref document: EP

Kind code of ref document: A1