WO2008115210A1 - Shock absorber dirt shield - Google Patents
Shock absorber dirt shield Download PDFInfo
- Publication number
- WO2008115210A1 WO2008115210A1 PCT/US2007/022934 US2007022934W WO2008115210A1 WO 2008115210 A1 WO2008115210 A1 WO 2008115210A1 US 2007022934 W US2007022934 W US 2007022934W WO 2008115210 A1 WO2008115210 A1 WO 2008115210A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shock absorber
- piston rod
- cap
- dynamic vibration
- absorber according
- Prior art date
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 111
- 230000035939 shock Effects 0.000 title claims abstract description 72
- 238000013016 damping Methods 0.000 claims abstract description 23
- 239000000356 contaminant Substances 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 22
- 239000000725 suspension Substances 0.000 description 18
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 4
- 230000036316 preload Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G13/00—Resilient suspensions characterised by arrangement, location or type of vibration dampers
- B60G13/02—Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
- B60G13/06—Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/50—Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
- F16F7/10—Vibration-dampers; Shock-absorbers using inertia effect
- F16F7/104—Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
- F16F7/108—Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/38—Covers for protection or appearance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2202/00—Indexing codes relating to the type of spring, damper or actuator
- B60G2202/20—Type of damper
- B60G2202/25—Dynamic damper
Definitions
- the present disclosure relates to dampers or shock absorbers for use with a vehicle's suspension system. More particularly, the present disclosure relates to a damper or shock absorber which includes a dynamic vibration absorber to reduce the vibrations and/or noise transmitted to the passenger compartment.
- shock absorbers are used in conjunction with automobile suspension systems and other vehicle suspension systems to absorb unwanted vibrations which occur during operation of the vehicle.
- shock absorbers are connected between the sprung mass (the body) and the unsprung mass (the suspension system) of the vehicle.
- a piston is located within a pressure tube of the shock absorber and is connected to the sprung mass of the vehicle.
- the pressure tube is connected to the unsprung mass of the vehicle and is normally filled with hydraulic fluid. Because the piston has the capability to limit the flow of hydraulic fluid within the pressure tube when the shock absorber is compressed or extended, the shock absorber is able to produce a damping force which counteracts the vibrations which would otherwise be transmitted from the suspension (unsprung mass) to the body
- a conventional dual tube shock absorber comprises a pressure tube with a piston disposed therein and a reserve tube surrounding the pressure tube.
- a piston rod is connected to the piston and it extends through the upper end of the pressure and reserve tubes.
- a base valve is located between the pressure tube and the reserve tube. The base valve controls fluid flow between the working chamber defined by the pressure tube and the reserve chamber defined by the reserve tube.
- the damping force is created by the restricted flow of fluid through passages and valving in the piston which regulate passage of fluid between opposite sides of the piston within the working chamber and by the restricted flow of fluid through passages and valving in the base valve which regulate passage of fluid between opposite sides of the base valve between the working chamber and the reserve chamber.
- the rod volume Due to the piston rod being located on only one side of the piston, a different amount of fluid is displaced on the compression stroke as opposed to the rebound stroke. The difference in the amount of fluid is termed the rod volume.
- the rod volume of fluid is pushed out of the pressure tube, through the base valve and into the reserve tube during a compression stroke. During a rebound stroke, the rod volume of fluid flows in the opposite direction from the reserve tube, through the base valve and into the pressure tube.
- the piston rod is supported at its lower end by the piston and is slidingly received at the upper end of the shock absorber by a rod guide.
- the rod guide thus functions as a slide bearing for the rod.
- the rod guide properly positions the piston rod within the pressure tube and also acts as a closure member for both the pressure tube and the reserve tube.
- a slight clearance is formed between the inner periphery of the bearing portion of the rod guide and the outer periphery of the piston rod. This slight clearance allows for the hydraulic fluid to lubricate the interface between the piston rod and the rod guide.
- the suspension system is ! an important contributor to the generated interior structure borne noise in a passenger vehicle.
- the shock absorber produces high frequency forces (50-1000 Hz) that are not or are hardly audible at the shock absorber level. Hydraulic transitions, opening and closing of check valves and the friction between the various components are mostly the root cause of this non-linear behavior.
- These vibrations are transmitted throughout the vehicle's body and locally these vibrations are attenuated at various local structures of the body such as the floor pan, the frame and others. These structures then generate typical low frequency "knocking" noise mostly situated around 150-300 Hz.
- knocking noise due to transitions is generally known as clatter or chuckle noise.
- the top mounting for the shock absorber is the rubber interface between the shock absorber and the vehicle's body and this mount should sufficiently filter out these vibrations. Optimal noise, vibration and harshness
- Figure 7 illustrates the measured and simulated resonance for a specific shock absorber.
- Figure 7 shows that the resonance frequency is located at approximately 320 Hz. In order to improve NVH performance, reduction or elimination of this resonance frequency is desired.
- the present disclosure provides a tuned dynamic vibration absorber for the piston rod of the shock absorber.
- the tuned dynamic vibration absorber is an effective and easy way to suppress vibrations at a specific resonance frequency.
- the tuned dynamic vibration absorber is designed to suppress the resonance of a first order system by adding a simple spring/mass system.
- the spring rate and mass of the added system must be chosen such that this system has a resonance frequency on its own equal to the resonance frequency of the "problem" system.
- the dirt shield for the shock absorber is designed to be the tuned dynamic vibration absorber.
- Figure 1 is a schematic representation of an automobile which includes shock absorbers incorporating the tuned dynamic vibration absorber in accordance with the present disclosure
- Figure 2 is a side elevational view, partially in cross-section, of a shock absorber incorporating the tuned dynamic vibration absorber in accordance with the present disclosure
- Figure 3 is an enlarged cross-sectional view of the tuned dynamic vibration absorber illustrated in Figure 2;
- Figure 4 is the equivalent mechanical system of the shock absorber and the dynamic vibration absorber
- Figure 5 is a graph illustrating the piston rod and dynamic vibration absorber's resonance
- Figure 6 is the equivalent mechanical system of a shock absorber without a dynamic vibration absorber
- Figure 7 is a graph illustrating the piston rod's resonance without a dynamic vibration absorber.
- Vehicle 10 includes a rear suspension system 12, a front suspension system 14 and a body 16.
- Rear suspension system 12 includes a pair of rear suspension arms adapted to operatively support a pair of rear wheels 18. Each rear suspension arm is attached to body 16 by means of a shock absorber 20 and a helical coil spring 22.
- front suspension system 14 includes a pair of suspension arms adapted to operatively support a pair of front wheels 24.
- Each suspension arm is attached to body 16 by means of a shock absorber 26 and a helical coil spring 28.
- Rear shock absorbers 20 and front shock absorbers 26 serve to dampen the relative movement of the unsprung portion of vehicle 10 (i.e., front and rear suspension systems 12, 14) with respect to the sprung portion (i.e., body 16) of vehicle 10.
- shock absorbers 20 and 26 may be used with other types of vehicles having other types of suspensions and springs or in other types of applications including, but not limited to, vehicles incorporating air springs, leaf springs, non-independent front and/or non-independent rear suspension systems.
- shock absorber as used herein is meant to refer to dampers in general and thus will include MacPherson struts, spring seat units as well as other shock absorber designs known in the art. [0022] Referring now to Figure 2, rear shock absorber 20 is shown in greater detail.
- FIG. 2 shows only rear shock absorber 20, it is to be understood that front shock absorber 26 is also designed to include the dynamic vibration absorber in accordance with the present disclosure.
- Front shock absorber 26 only differs from rear shock absorber 20 in the way it is adapted to be connected to the sprung and unsprung portions of vehicle 10.
- Shock absorber 20 comprises a pressure tube 30, a piston assembly 32, a piston rod 34, a reserve tube 36 and a base valve assembly 38.
- Pressure tube 30 defines a working chamber 42.
- Piston assembly 32 is slidably disposed within pressure tube 30 and divides working chamber 42 into an upper working chamber 44; and a lower working chamber 46.
- a seal 48 is disposed between piston assembly 32 and pressure tube 30 to permit sliding movement of piston assembly 32 with respect to pressure tube 30 without generating undue frictional forces as well as sealing upper working chamber 44 from lower working chamber 46.
- Piston rod 34 is attached to piston assembly 32 and extends through upper working chamber 44 and through an upper rod guide 50 which closes the upper end of both pressure tube 30 and reserve tube 36.
- a sealing system 52 seals the interface between rod guide 50, reserve tube 36 and piston rod 34.
- the end of piston rod 34 opposite to piston assembly 32 is adapted to be secured to the sprung portion of vehicle 10.
- Valving within piston assembly 32 controls the movement of fluid between upper working chamber 44 and lower working chamber 46 during movement of piston assembly 32 within pressure tube 30. Because piston rod 34 extends only through upper working chamber 44 and not lower working chamber 46, movement of piston assembly 32 with respect to pressure tube 30 causes a difference in the amount of fluid displaced in upper working chamber 44 when compared with the amount of fluid displaced in lower working chamber 46. This difference in the amount of fluid displaced is the rod volume and it flows through base valve assembly 38.
- Reserve tube 36 surrounds pressure tube 30 to define a reserve chamber 54 located between the tubes.
- the bottom end of reserve tube 36 is closed by an end cap 56 which is adapted to be connected to the unsprung portion of vehicle 10.
- the upper end of reserve tube 36 is attached to rod guide 50 by mechanically deforming the open end of reserve tube 36 to form a retaining flange 58.
- Base valve assembly 38 is disposed between lower working chamber 46 and reserve chamber 54 to control the flow of fluid, the rod volume of fluid, between the two chambers.
- shock absorber 20 When shock absorber 20 shortens in length (compression), an excess of fluid must be removed from lower working chamber 46. Thus, fluid will flow from lower working chamber 46 to reserve chamber 54 through base valve assembly 38.
- the damping characteristics for shock absorber 20 during an extension stroke are controlled by the valving in piston assembly 32 and the damping characteristics for shock absorber 20 during a compression stroke are controlled by valving in base valve assembly 38.
- a dynamic vibration absorber 70 is attached to piston rod 34 to suppress the vibrations of piston rod 34 at its resonant frequency.
- Dynamic vibration absorber 70 also functions as a dirt shield which protects and shields piston rod 34 from water and other contaminants.
- Dynamic vibration absorber 70 comprises a damping mass 72, a cap 74, a retainer 76 and a pair of elastomeric mounts 78.
- Damping mass 72 is a cup-shaped element which forms the dirt shield for shock absorber 20.
- a bottom 80 of cup-shaped damping mass 72 defines a hole 82 through which piston rod 34 and cap 74 extend.
- An annular wall 84 of cup-shaped damping mass 72 extends axially from the bottom to cover piston rod 34 as well as reserve tube 36.
- Cap 74 defines an annular body 86 which extends down the side of piston rod 34, an upper flange 88 which extends radially inward from annular body 86 to engage a shoulder on piston rod 34 and a lower flange 90 which extends radially outward from annular body to a position within cup- shaped damping mass 72 which is below bottom 80 as illustrated in Figures 2 and 3.
- an upper shock absorber mount When assembled into a vehicle, an upper shock absorber mount will engage upper flange 88 to secure dynamic vibration absorber 70 to piston rod 34.
- Retainer 76 defines an annular wall 92 having a female thread and a flange 94 extending radially outward from annular wall 92.
- the female thread on annular wall 92 threadingly engages a male thread on annular body 86 of cap 74. While retainer 76 is disclosed as threadingly engaging cap 74, retainer 76 can be attached to cap 74 by any other means known in the art.
- One elastomeric mount 78 is disposed between flange 94 of retainer 76 and bottom 80 of damping mass 72.
- the other elastomeric mount 78 is disposed between bottom 80 of damping mass 72 and lower flange 90 of cap 74.
- elastomeric mounts 78 are illustrated as O-rings, it is within the scope of the present invention to utilize any shape for either one or both of elastomeric mounts 78 which meet a specific performance requirement.
- Dynamic vibration absorber 70 provides the added mass to suppress the vibrations of piston rod 34. Damping mass 72 is separated from cap 74 using the pair of elastomeric mounts 78.
- Dynamic vibration absorber 70 is an effective and easy way to suppress vibrations at a specific resonance frequency. Dynamic vibration absorber 70 is tuned to suppress the resonance of a first order system by adding a simple spring/mass system.
- Figure 4 shows the mechanical system of the shock absorber illustrated by Figure 6 but with dynamic vibration absorber 70 added.
- the system is simplified by eliminating the lower mount bushing which is assumed to be very stiff.
- the piston rod resonance can be calculated by the following set of equations
- K m X rod + M rod X rod + K d (X ro(l -u) + K DVA (X rod - X DVA ) 0 .
- M DVA ⁇ DVA + ⁇ DVA (X DVA ⁇ ⁇ rod ) ⁇ K m , K d and KDVA are complex dynamic stiffness of respectively the upper mount, shock absorber 20 and dynamic vibration absorber 70.
- M rOd and M D VA are the modal masses of piston rod 34 and dynamic vibration absorber 70.
- Dynamic vibration absorber 70 is designed such that its resonant frequency is equal to the frequency of piston rod 34.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid-Damping Devices (AREA)
- Vibration Prevention Devices (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07839850.0A EP2122193B1 (en) | 2007-03-15 | 2007-10-30 | Shock absorber dirt shield |
BRPI0721434-0A BRPI0721434A2 (en) | 2007-03-15 | 2007-10-30 | SHOCK AGAINST DIRT FOR DAMPER |
KR1020097019457A KR101389284B1 (en) | 2007-03-15 | 2007-10-30 | Shock Absorber Dirt Shield |
CN2007800528843A CN101680505B (en) | 2007-03-15 | 2007-10-30 | Shock absorber |
MX2009009836A MX2009009836A (en) | 2007-03-15 | 2007-10-30 | Shock absorber dirt shield. |
CA002680578A CA2680578A1 (en) | 2007-03-15 | 2007-10-30 | Shock absorber dirt shield |
JP2009553558A JP5587613B2 (en) | 2007-03-15 | 2007-10-30 | Shock absorber dirt shield |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/724,640 | 2007-03-15 | ||
US11/724,640 US7896142B2 (en) | 2007-03-15 | 2007-03-15 | Shock absorber dirt shield |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008115210A1 true WO2008115210A1 (en) | 2008-09-25 |
Family
ID=39761889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/022934 WO2008115210A1 (en) | 2007-03-15 | 2007-10-30 | Shock absorber dirt shield |
Country Status (9)
Country | Link |
---|---|
US (1) | US7896142B2 (en) |
EP (1) | EP2122193B1 (en) |
JP (1) | JP5587613B2 (en) |
KR (1) | KR101389284B1 (en) |
CN (1) | CN101680505B (en) |
BR (1) | BRPI0721434A2 (en) |
CA (1) | CA2680578A1 (en) |
MX (1) | MX2009009836A (en) |
WO (1) | WO2008115210A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012104442A1 (en) * | 2011-01-31 | 2012-08-09 | Azol-Gas, S. L. | Gas spring |
US8398101B2 (en) | 2011-02-09 | 2013-03-19 | Honda Motor Co., Ltd. | Axle tubes including protrusion and vehicle including same |
JP5918627B2 (en) * | 2012-05-22 | 2016-05-18 | Kyb株式会社 | Shock absorber |
CN103791020B (en) * | 2012-10-30 | 2017-03-15 | 四川宁江山川机械有限责任公司 | The foot valve seat that shock absorber bottom valve body can be made to be automatically positioned in foot valve seat and vibroshock |
US9657801B2 (en) * | 2014-01-08 | 2017-05-23 | John E. Hansen | Shock absorber protector |
US9739330B2 (en) | 2015-01-09 | 2017-08-22 | Tenneco Automotive Operating Company Inc. | Double tube damper with structural pressure tube |
JP6936572B2 (en) * | 2016-11-21 | 2021-09-15 | 三菱重工エンジニアリング株式会社 | Track vehicle |
US10414234B2 (en) * | 2017-01-26 | 2019-09-17 | GM Global Technology Operations LLC | Damper with tuned vibration absorber |
WO2020232043A1 (en) * | 2019-05-14 | 2020-11-19 | Tenneco Automotive Operating Company Inc. | Scalable damper |
DE102019131319A1 (en) * | 2019-11-20 | 2021-05-20 | Thyssenkrupp Ag | Vibration damper and motor vehicle with such a vibration damper |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3798744A (en) * | 1972-05-01 | 1974-03-26 | Gen Motors Corp | A procedure for charging an oleo-pneumatic shock absorber |
US3954255A (en) * | 1974-08-30 | 1976-05-04 | Monroe Belgium N. V. | Suspension strut |
US4145036A (en) * | 1976-12-02 | 1979-03-20 | Monroe Auto Equipment Company | Vehicle suspension device |
US7011193B2 (en) * | 2004-02-13 | 2006-03-14 | Tenneco Automotive Operating Company Inc. | Rod guide and seal system for gas filled shock absorbers |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3102722A (en) * | 1961-12-11 | 1963-09-03 | Hugh C Hamontre | Self damping shock and vibration mount |
DE6943380U (en) | 1969-10-30 | 1970-03-05 | Continental Gummi Werke Ag | SHOCK ABSORBER WITH STOP BUMPER AND PROTECTIVE TUBE |
US3597521A (en) * | 1969-11-26 | 1971-08-03 | Westinghouse Electric Corp | Terminal-cap and terminal connector construction for high voltage terminal bushings |
US4828232A (en) * | 1983-11-14 | 1989-05-09 | General Motors Corporation | Vehicle air suspension strut with compliant cover plate assembly |
JPH0516005Y2 (en) * | 1985-03-28 | 1993-04-27 | ||
JPS62141939U (en) * | 1986-03-03 | 1987-09-08 | ||
US4712776A (en) * | 1986-07-14 | 1987-12-15 | The Firestone Tire & Rubber Company | Air spring suspension system |
US4823922A (en) * | 1987-07-02 | 1989-04-25 | Maremont Corporation | Heavy duty vehicular shock absorber |
JPS6453539U (en) * | 1987-09-28 | 1989-04-03 | ||
JPH03234938A (en) * | 1989-08-25 | 1991-10-18 | Bridgestone Corp | Vibration damping equipment |
JP2715699B2 (en) * | 1991-05-31 | 1998-02-18 | 日産自動車株式会社 | Upper mounting structure for strut suspension |
DE4127616C1 (en) | 1991-08-21 | 1992-11-26 | Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De | |
DE4327915C2 (en) | 1993-08-20 | 2000-12-07 | Mannesmann Sachs Ag | Hydraulic telescopic vibration damper |
US5431426A (en) * | 1993-09-16 | 1995-07-11 | Ijams; Dav | Anti-dive apparatus for bicycles |
DE19642827B4 (en) | 1996-03-29 | 2005-06-23 | Zf Sachs Ag | Actuator for vibration damping |
US5775720A (en) * | 1996-10-03 | 1998-07-07 | Ford Global Technologies, Inc. | Shock absorbing apparatus |
JP2000120769A (en) * | 1998-10-07 | 2000-04-25 | Fuji Heavy Ind Ltd | Suspension device |
CN2363124Y (en) * | 1998-11-23 | 2000-02-09 | 潘臣 | Assembling shock-buffer capable of replacing inner core |
US6361027B1 (en) * | 2000-08-08 | 2002-03-26 | Delphi Technologies, Inc. | Shock absorber with flexible connection between an airlift component and top mount |
JP2003166579A (en) * | 2001-11-29 | 2003-06-13 | Hitachi Unisia Automotive Ltd | Hydraulic buffer for vehicle |
KR100448777B1 (en) * | 2001-12-14 | 2004-09-16 | 현대자동차주식회사 | a vibration damping device for shock absorber of vehicles |
KR100624821B1 (en) * | 2004-11-10 | 2006-09-18 | 엘지전자 주식회사 | Linear compressor |
CN2775391Y (en) * | 2005-03-01 | 2006-04-26 | 付德海 | Double piston double oil seal multiple gear automatic control inflating type automobile shock reducer |
JP2006336713A (en) * | 2005-05-31 | 2006-12-14 | Nissan Motor Co Ltd | Shock absorber |
-
2007
- 2007-03-15 US US11/724,640 patent/US7896142B2/en not_active Expired - Fee Related
- 2007-10-30 EP EP07839850.0A patent/EP2122193B1/en not_active Not-in-force
- 2007-10-30 CA CA002680578A patent/CA2680578A1/en not_active Abandoned
- 2007-10-30 JP JP2009553558A patent/JP5587613B2/en not_active Expired - Fee Related
- 2007-10-30 WO PCT/US2007/022934 patent/WO2008115210A1/en active Application Filing
- 2007-10-30 KR KR1020097019457A patent/KR101389284B1/en not_active IP Right Cessation
- 2007-10-30 CN CN2007800528843A patent/CN101680505B/en not_active Expired - Fee Related
- 2007-10-30 BR BRPI0721434-0A patent/BRPI0721434A2/en not_active IP Right Cessation
- 2007-10-30 MX MX2009009836A patent/MX2009009836A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3798744A (en) * | 1972-05-01 | 1974-03-26 | Gen Motors Corp | A procedure for charging an oleo-pneumatic shock absorber |
US3954255A (en) * | 1974-08-30 | 1976-05-04 | Monroe Belgium N. V. | Suspension strut |
US4145036A (en) * | 1976-12-02 | 1979-03-20 | Monroe Auto Equipment Company | Vehicle suspension device |
US7011193B2 (en) * | 2004-02-13 | 2006-03-14 | Tenneco Automotive Operating Company Inc. | Rod guide and seal system for gas filled shock absorbers |
Also Published As
Publication number | Publication date |
---|---|
EP2122193A1 (en) | 2009-11-25 |
US7896142B2 (en) | 2011-03-01 |
CA2680578A1 (en) | 2008-09-25 |
CN101680505A (en) | 2010-03-24 |
JP5587613B2 (en) | 2014-09-10 |
EP2122193A4 (en) | 2010-03-24 |
KR20090120495A (en) | 2009-11-24 |
JP2010521628A (en) | 2010-06-24 |
MX2009009836A (en) | 2009-10-19 |
CN101680505B (en) | 2013-05-22 |
US20080224437A1 (en) | 2008-09-18 |
KR101389284B1 (en) | 2014-04-25 |
EP2122193B1 (en) | 2016-01-13 |
BRPI0721434A2 (en) | 2014-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2122193B1 (en) | Shock absorber dirt shield | |
US6918473B2 (en) | Stroke dependent bypass | |
US6220409B1 (en) | Stroke dependent bypass | |
US20090032346A1 (en) | Semi third tube design | |
WO2007021753A2 (en) | Asymmetrical intake damper valve | |
WO2005083293A1 (en) | Rod guide and seal system for gas filled shock absorbers | |
WO2007027693A2 (en) | Rod guide seal | |
US7070028B2 (en) | Frequency dependent damper | |
US6325187B1 (en) | Dirt wiper system for suspension damper | |
US7073643B2 (en) | Compensated rod for a frequency dependent damper shock absorber | |
WO2011152960A2 (en) | Two stage valve and hydraulic damped valve | |
US6644445B2 (en) | Floating port blocker | |
US8701846B2 (en) | Inverted strut comprising an air damper combined with a hydraulic stop | |
JP2014031854A (en) | Shock absorber | |
US6148969A (en) | Frequency dependant damper | |
US6364075B1 (en) | Frequency dependent damper | |
US6382373B1 (en) | Frequency dependant damper | |
JP5698561B2 (en) | Shock absorber | |
RU2575910C2 (en) | Control valve of clutch for hydraulic oscillation damper | |
CA2438467A1 (en) | Hydraulic suspension device and system for controlling wheel hop |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780052884.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07839850 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2680578 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5386/CHENP/2009 Country of ref document: IN Ref document number: 2007839850 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009553558 Country of ref document: JP Ref document number: MX/A/2009/009836 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097019457 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: PI0721434 Country of ref document: BR Kind code of ref document: A2 Effective date: 20090915 |