WO2008114195A2 - Récepteur radio pour système d'imagerie par résonance magnétique - Google Patents

Récepteur radio pour système d'imagerie par résonance magnétique Download PDF

Info

Publication number
WO2008114195A2
WO2008114195A2 PCT/IB2008/050987 IB2008050987W WO2008114195A2 WO 2008114195 A2 WO2008114195 A2 WO 2008114195A2 IB 2008050987 W IB2008050987 W IB 2008050987W WO 2008114195 A2 WO2008114195 A2 WO 2008114195A2
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
padding device
mri system
padding
shape
Prior art date
Application number
PCT/IB2008/050987
Other languages
English (en)
Other versions
WO2008114195A3 (fr
Inventor
Miha Fuderer
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Publication of WO2008114195A2 publication Critical patent/WO2008114195A2/fr
Publication of WO2008114195A3 publication Critical patent/WO2008114195A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34084Constructional details, e.g. resonators, specially adapted to MR implantable coils or coils being geometrically adaptable to the sample, e.g. flexible coils or coils comprising mutually movable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56536Correction of image distortions, e.g. due to magnetic field inhomogeneities due to magnetic susceptibility variations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56563Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0

Definitions

  • the present invention relates generally to the magnetic resonance imaging (MRI) technique. More particularly, the present invention relates to a radio frequency (RF) receiver for an MRI system. Furthermore the present invention relates to a method of examining an irregular shaped object by means of an MRI system.
  • MRI magnetic resonance imaging
  • RF radio frequency
  • MRI uses the magnetic properties of material and its interaction with both a large static magnetic field (the Bo field), and radio waves (i.e. an oscillating electromagnetic field; the Bi field), to produce MR signals, which subsequently are used to obtain highly detailed images of an object to be examined, e.g. of parts of a human body.
  • the Bo field a large static magnetic field
  • radio waves i.e. an oscillating electromagnetic field; the Bi field
  • an RF receiver is employed to acquire said MR signals, which are induced in a number of receiver elements (antenna elements, coil elements).
  • MRI imaging is vulnerable to artifacts resulting from inhomogeneities in the Bo field.
  • artifacts are the result of variation in magnetic susceptibility, and are most severe in regions where air-tissue transitions exist, in particular at the external boundary of the object to be imaged.
  • Susceptibility artifacts can cause geometrical distortions in the image as well as loss of signal.
  • the presence of inhomogeneity makes it more difficult to make use of the chemical shift; most notably, fat suppression becomes more difficult.
  • the extent of these artifacts increases with the Bo field.
  • a rather difficult area in that regard is the human neck area, which has a relatively complex irregular shape (broad shoulders, short cylindrical neck, round head). Similar problems occur on other regions of the human body, e.g. around the fingers of a hand. It is an object of the present invention to provide a simple and reliable technique for chemical shift selective magnetic resonance imaging of irregular shaped objects.
  • an RF receiver for an MRI system comprising a padding device adapted to be placed on an irregular shaped examination object in a way that a more regular outer object shape is obtained, said padding device comprising material having magnetic properties similar to the magnetic properties of said object, the receiver further comprising a number of receiver elements mounted in or on said padding device.
  • the object of the present invention is also achieved by a method of examining an irregular shaped object by means of an MRI system, the MRI system comprising an RF receiver, said receiver comprising a padding device and a number of receiver elements mounted in or on said padding device, said padding device comprising material having magnetic properties similar to the magnetic properties of said object, the method comprising the step of placing the padding device on said object in a way that a more regular outer object shape is obtained.
  • a core idea of the invention is to correct the inhomogeneities of the Bo field caused by susceptibility variations at the external boundary of the object to be imaged. This correction is achieved according to the present invention by creating a more homogeneous Bo field within the resulting object. The boundary effect of Bo is shifted away from the imaged object. As a result, the whole region (i.e. the "resulting" object), where the susceptibility is more or less constant, is more smoothly bounded.
  • a padding device is employed, said device comprising material having magnetic properties similar to the magnetic properties of the imaged object.
  • the original object to be imaged e.g. the human neck
  • the padding device is modified in a way that a new "resulting" object is created.
  • This resulting object comprises the original object and the padding device.
  • a main aspect of the invention is that with the padding device the resulting object shows a more regular outer geometric shape.
  • the padding device is adapted to obtain a cylindrical or spherical "resulting" object shape, i.e. the resulting object preferably having a circular or ellipsoidal cross section.
  • the padding device is, according to a preferred embodiment of the invention, adapted to be at least partly surrounding the object.
  • the padding device is preferably adapted to be (at least partly) wrapped around a part of a human body, e.g. around a neck, an ankle or a finger of the hand.
  • the padding device exhibits some flexibility to adapt to the object's shape (i.e. the outer circumferences of the imaged object), e.g. to the anatomy of patients.
  • the padding device preferably shows a flexible inner shape.
  • the cavities around the human neck are preferably completely padded (filled up) with the padding device, i.e. the padding fills out the complete space between the shoulder and the lower head.
  • the padding device is preferably an (at least partly deformable) container filled with a granular substance or the like, according to a preferred embodiment of the invention.
  • a granular substance or the like for filling the container, different materials can be used.
  • One of them is water, having a very similar susceptibility as human tissue; however, water also resonates to MRI, which may be a problem for some applications.
  • Another material of desirable magnetic properties is salt (NaCl), which can be used in applications where its weight does not pose a patient-comfort problem.
  • PVC granules are a more patient-friendly alternative, but their susceptibility is slightly lower than that of human tissue.
  • a mixture of Styrofoam and polycrystalline graphite is used.
  • the content of the graphite, which magnetic susceptibility is 20 times that of water, can be tuned to give the mixture the most appropriate magnetic property.
  • polycrystalline graphite is used. Even more preferably the part of polycrystalline graphite is about 5 % (percent per volume).
  • the light weight Styrofoam is preferably used because of its material properties, which provide an excellent patient comfort.
  • the padding device does not contain a suitable material, but consists of such a material, e.g., PVC, or another plastic mixed with graphite.
  • a suitable material e.g., PVC
  • the term "mixing” is not to be understood as co-adding graphite granules to plastic granules, but in the sense of "melding", i.e. the mixing is performed at a microscopic level.
  • the use of such a material leads to an average magnetic susceptibility within the padding device, which preferably is similar to an average magnetic susceptibility of the object's material, e.g. the average magnetic susceptibility of human tissue.
  • the receiver elements are integrated into the padding device.
  • the receiver elements are mounted on the outside of the padding device, either on the inner surface (i.e. between the padding device and the imaged object) or the outer surface (i.e. outside the "resulting" object).
  • Fig.1 shows a first schematic illustration of a patient and an RF receiver (side view), and
  • Fig. 2 shows a second schematic illustration of a patient and an RF receiver (cross sectional view along arrows AA on Fig. 1 with parts of the patient being translucent).
  • a patient 4 wearing an RF receiver 1 according to the present invention is shown for use in a MRI system 2. Illustrated are the patient's neck 6, head 7, and shoulders 8. Other MRI system components are not shown. However, a standard MRI system can be used with said receiver 2.
  • the receiver 1 combines the function of MRI signal reception with the function of padding the patient 4 with material having comparable magnetic properties as human tissue, in order to minimize field- variations within the patient 4. Accordingly, the receiver 1 comprises a padding device 3 optimized for being wrapped around the patient's neck 6, and further comprises a number of receiver coils 5 (and associated electronics, not shown) integrated into the padding device 3.
  • the padding device 3 is used according to the invention to provide a Bo homogeneity correction. As described in more detail below, the padding device 3 is adapted for the correction of susceptibility artifacts stemming e.g. from the cavities around the patient's neck 6.
  • the padding device 3 is adapted to be placed on the neck 6 in a way that a more regular outer geometric shape of the resulting object 9 is obtained.
  • the resulting object 9 exhibits basically a cylindrical shape with an ellipsoidal cross section.
  • the padding device 3 has the shape of a collar, which almost completely surrounds the patient's neck 6.
  • the padding device 3 exhibit a U-shape.
  • the U- base 10 is positioned beneath the neck 6, and the U-legs 11 are positioned on the left and right side of the neck 6.
  • a "resulting" object 9 is created, comprising the neck region of the patient 4 as well as the padding device 3 wrapped around the neck 6.
  • the cavities around the neck 6 are preferably completely padded (filled up) with the padding device 3, i.e. the padding fills out (at least almost) the complete space around the neck 6 between the shoulder 8 and the lower head 7.
  • the padding device 3 furthermore comprises some cushioning elements.
  • the U-base may comprise some flexible elements (not shown) made from foam or the like, which will allow for some patient comfort.
  • the padding device 3 shows a flexible inner shape 12 in order to match the shape of the neck 6.
  • the padding device 3 is a container filled with a granular substance (not shown) having magnetic susceptibility similar to the magnetic properties of human tissue.
  • a mixture of 95 % (percent per volume) Styrofoam granules and 5 % (percent per volume) of polycrystalline graphite is used as filling material.
  • the outer shape 13 of the padding device 3 is basically rigid in order to obtain an regular overall cylindrical shape.
  • the receiver coils 5 are located within the padding device 3 in a way that a number of first receiver coils 5 are positioned basically in the U-base 10 of the padding device 3. Second receiver coils 5 are positioned in the U-legs 11 of the padding device 3, by this means surrounding the neck 56 of the patient 4.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

De façon générale, la présente invention concerne la technique d'imagerie par résonance magnétique. Plus particulièrement, la présente invention concerne un récepteur radio (1) pour système d'imagerie par résonance magnétique (2). En outre, la présente invention concerne un procédé d'examen d'un objet de forme irrégulière (6) au moyen d'un système d'imagerie par résonance magnétique (1). Dans le but de proposer une technique simple et fiable pour obtenir une meilleure qualité d'image dans l'imagerie par résonance magnétique d'objets de forme irrégulière (6), un récepteur radio (1) est suggéré. Ledit récepteur (1) comporte un dispositif de capitonnage (3) pouvant être placé sur ledit objet (6) d'une manière telle qu'une forme d'objet externe plus régulière (13) est obtenue. Ledit dispositif de capitonnage (3) comporte un matériau présentant des propriétés magnétiques analogues à celles dudit objet (6). Le récepteur radio (1) comporte, en outre, un certain nombre d'éléments récepteurs (5) montés dans ou sur ledit dispositif de capitonnage (3).
PCT/IB2008/050987 2007-03-20 2008-03-17 Récepteur radio pour système d'imagerie par résonance magnétique WO2008114195A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07104451.5 2007-03-20
EP07104451 2007-03-20

Publications (2)

Publication Number Publication Date
WO2008114195A2 true WO2008114195A2 (fr) 2008-09-25
WO2008114195A3 WO2008114195A3 (fr) 2008-11-20

Family

ID=39708394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2008/050987 WO2008114195A2 (fr) 2007-03-20 2008-03-17 Récepteur radio pour système d'imagerie par résonance magnétique

Country Status (1)

Country Link
WO (1) WO2008114195A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006569A1 (de) * 2011-03-31 2012-10-04 Siemens Aktiengesellschaft Lokalspule, Verfahren zur Erzeugung von Magnetresonanzaufnahmen eines Untersuchungsobjekts und Verwendung der Lokalspule
CN103323798A (zh) * 2012-03-21 2013-09-25 西门子公司 用于对解剖结构进行最优匹配和磁化率匹配的多层垫子
CN104771168A (zh) * 2014-01-10 2015-07-15 西门子公司 用于产生乳房图像的磁共振断层系统
WO2016143943A1 (fr) * 2015-03-12 2016-09-15 재단법인 아산사회복지재단 Filtre de compensation de différence de susceptibilité de résonance magnétique et procédé de compensation de différence de susceptibilité magnétique l'utilisant
JP2017051441A (ja) * 2015-09-09 2017-03-16 神戸バイオメディクス株式会社 局所磁場不均一補正用パット
WO2017080562A1 (fr) * 2015-11-12 2017-05-18 Rigshospitalet Dispositif pour réduire un artéfact de susceptibilité magnétique
KR101747240B1 (ko) 2015-03-12 2017-06-15 재단법인 아산사회복지재단 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791372A (en) * 1987-08-17 1988-12-13 Resonex, Inc. Conformable head or body coil assembly for magnetic imaging apparatus
WO1993003391A1 (fr) * 1991-08-06 1993-02-18 Medrad, Inc. Bobine de dephasage en quadrature sous forme de sonde de surface anatomiquement conforme, utilise en imagerie par resonance magnetique
WO1994004946A1 (fr) * 1992-08-11 1994-03-03 Alliance Pharmaceutical Corp. Procede d'amelioration de la saturation des graisses lors d'un examen par irm
US5379768A (en) * 1991-11-15 1995-01-10 Picker Nordstar, Inc. Anatomic support for an MRI-apparatus
US5400787A (en) * 1993-11-24 1995-03-28 Magna-Lab, Inc. Inflatable magnetic resonance imaging sensing coil assembly positioning and retaining device and method for using the same
DE19509020A1 (de) * 1995-03-13 1996-09-19 Siemens Ag Lokalantenne für Magnetresonanz-Diagnostik
US5906205A (en) * 1998-07-28 1999-05-25 Hiebert; Eugene Lloyd Surgical positioning device
US20020077539A1 (en) * 2000-12-15 2002-06-20 Schmit Berndt P. Restraining apparatus and method for use in imaging procedures
WO2003062847A1 (fr) * 2002-01-25 2003-07-31 Medical Research Council Optimisation de l'homogeneite d'un champ magnetique passif a l'aide de cales passives
US20040186375A1 (en) * 2003-03-21 2004-09-23 Vavrek Robert M. Rf coil embedded with homogeneity enhancing material
US20050134263A1 (en) * 2003-12-17 2005-06-23 Ge Medical Systems Global Technology Company, Llc Method and apparatus for enhanced fat saturation during mri

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791372A (en) * 1987-08-17 1988-12-13 Resonex, Inc. Conformable head or body coil assembly for magnetic imaging apparatus
WO1993003391A1 (fr) * 1991-08-06 1993-02-18 Medrad, Inc. Bobine de dephasage en quadrature sous forme de sonde de surface anatomiquement conforme, utilise en imagerie par resonance magnetique
US5379768A (en) * 1991-11-15 1995-01-10 Picker Nordstar, Inc. Anatomic support for an MRI-apparatus
WO1994004946A1 (fr) * 1992-08-11 1994-03-03 Alliance Pharmaceutical Corp. Procede d'amelioration de la saturation des graisses lors d'un examen par irm
US5400787A (en) * 1993-11-24 1995-03-28 Magna-Lab, Inc. Inflatable magnetic resonance imaging sensing coil assembly positioning and retaining device and method for using the same
DE19509020A1 (de) * 1995-03-13 1996-09-19 Siemens Ag Lokalantenne für Magnetresonanz-Diagnostik
US5906205A (en) * 1998-07-28 1999-05-25 Hiebert; Eugene Lloyd Surgical positioning device
US20020077539A1 (en) * 2000-12-15 2002-06-20 Schmit Berndt P. Restraining apparatus and method for use in imaging procedures
WO2003062847A1 (fr) * 2002-01-25 2003-07-31 Medical Research Council Optimisation de l'homogeneite d'un champ magnetique passif a l'aide de cales passives
US20040186375A1 (en) * 2003-03-21 2004-09-23 Vavrek Robert M. Rf coil embedded with homogeneity enhancing material
US20050134263A1 (en) * 2003-12-17 2005-06-23 Ge Medical Systems Global Technology Company, Llc Method and apparatus for enhanced fat saturation during mri

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011006569A1 (de) * 2011-03-31 2012-10-04 Siemens Aktiengesellschaft Lokalspule, Verfahren zur Erzeugung von Magnetresonanzaufnahmen eines Untersuchungsobjekts und Verwendung der Lokalspule
US9448295B2 (en) 2012-03-21 2016-09-20 Siemens Aktiengesellschaft Multi-layer cushion for optimum adjustment to anatomy and for susceptibility adjustment
DE102012204527A1 (de) * 2012-03-21 2013-09-26 Siemens Aktiengesellschaft Mehrlagiges Kissen zur optimalen Anpassung an Anatomie und zur Suszeptibilitäts- Anpassung
KR20130107246A (ko) * 2012-03-21 2013-10-01 지멘스 악티엔게젤샤프트 인체에 대한 최적의 조정을 위한 그리고 자화율 조정을 위한 다중­층 쿠션
DE102012204527B4 (de) * 2012-03-21 2015-05-13 Siemens Aktiengesellschaft Mehrlagiges Kissen zur optimalen Anpassung an Anatomie und zur Suszeptibilitäts- Anpassung
KR101630670B1 (ko) 2012-03-21 2016-06-24 지멘스 악티엔게젤샤프트 인체에 대한 최적의 조정을 위한 그리고 자화율 조정을 위한 다중­층 쿠션
CN103323798A (zh) * 2012-03-21 2013-09-25 西门子公司 用于对解剖结构进行最优匹配和磁化率匹配的多层垫子
CN104771168A (zh) * 2014-01-10 2015-07-15 西门子公司 用于产生乳房图像的磁共振断层系统
DE102014200342A1 (de) * 2014-01-10 2015-07-16 Siemens Aktiengesellschaft Magnetresonanz-Tomographie-System zur Erzeugung einer mammographischen Darstellung
US10201313B2 (en) 2014-01-10 2019-02-12 Siemens Aktiengesellschaft Magnetic resonance imaging system for generating a mammographic representation
WO2016143943A1 (fr) * 2015-03-12 2016-09-15 재단법인 아산사회복지재단 Filtre de compensation de différence de susceptibilité de résonance magnétique et procédé de compensation de différence de susceptibilité magnétique l'utilisant
KR101747240B1 (ko) 2015-03-12 2017-06-15 재단법인 아산사회복지재단 자기공명 자화율 차이 보상필터 및 이를 이용한 자화율 차이 보상방법
JP2017051441A (ja) * 2015-09-09 2017-03-16 神戸バイオメディクス株式会社 局所磁場不均一補正用パット
WO2017080562A1 (fr) * 2015-11-12 2017-05-18 Rigshospitalet Dispositif pour réduire un artéfact de susceptibilité magnétique

Also Published As

Publication number Publication date
WO2008114195A3 (fr) 2008-11-20

Similar Documents

Publication Publication Date Title
WO2008114195A2 (fr) Récepteur radio pour système d'imagerie par résonance magnétique
CN108072854B (zh) 包括柔性局部线圈和刚性局部线圈的线圈装置
US20080204021A1 (en) Flexible and Wearable Radio Frequency Coil Garments for Magnetic Resonance Imaging
US8078260B2 (en) Method for improving magnetic resonance imaging of the breast
CN104473643B (zh) 一种用于婴幼儿磁共振头部扫描的固定用垫
EP0919824B1 (fr) Bobines RF endocavitaires pour l'imagerie par résonance magnétique
US5617027A (en) Local antenna for nuclear magnetic resonance diagnostics
US20120249142A1 (en) Local coil
CN103323798B (zh) 用于对解剖结构进行最优匹配和磁化率匹配的多层垫子
US7639011B2 (en) Field distribution correction element and method for generating a magnetic resonance exposure therewith
US7031763B1 (en) MRI shoulder coil
JP2014073294A (ja) Rfコイル装置、及び、磁気共鳴イメージング装置
WO2007022499A2 (fr) Reduction d'artefacts de susceptibilite dans une irm au moyen de materiaux composites
US20160349337A1 (en) Radio frequency surface coil and magnetic resonance imaging system including the same
CN106019187A (zh) 磁共振颈动脉斑块射频成像线圈
Bydder et al. Use of closely coupled receiver coils in MR imaging: practical aspects
US7694365B2 (en) Pillow for fixing of shoulders of patients in magnetic resonance acquisitions
US20120283550A1 (en) Head support cushion with integrating patient positioning system
EP1733245B1 (fr) Systeme d'imagerie par resonance magnetique
US10111605B2 (en) Positioning cushion for a medical imaging examination, and medical imaging apparatus with a positioning cushion
US10215817B2 (en) Insulated RF coil and magnetic resonance imaging apparatus including the same
Ozturk et al. Primary muscle lymphoma in an elderly patient: Ultrasound and magnetic resonance imaging findings
JP2009045217A (ja) 磁気共鳴装置用パッド
Zhang et al. Flexible RF coil array system utilizing electro-textiles for 3T MRI carotid artery imaging
JP2015181891A (ja) 磁気共鳴撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08719722

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08719722

Country of ref document: EP

Kind code of ref document: A2