WO2008107559A2 - Installation de conduite montante flexible de transport d'hydrocarbures - Google Patents

Installation de conduite montante flexible de transport d'hydrocarbures Download PDF

Info

Publication number
WO2008107559A2
WO2008107559A2 PCT/FR2008/000079 FR2008000079W WO2008107559A2 WO 2008107559 A2 WO2008107559 A2 WO 2008107559A2 FR 2008000079 W FR2008000079 W FR 2008000079W WO 2008107559 A2 WO2008107559 A2 WO 2008107559A2
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
buoy
installation according
foot
flexible pipe
Prior art date
Application number
PCT/FR2008/000079
Other languages
English (en)
Other versions
WO2008107559A3 (fr
Inventor
Philippe Espinasse
Alain Coutarel
Isabel Teresa Waclawek
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Priority to DE602008003103T priority Critical patent/DE602008003103D1/de
Priority to BRPI0808000-3A priority patent/BRPI0808000B1/pt
Priority to MX2009007739A priority patent/MX2009007739A/es
Priority to AU2008223711A priority patent/AU2008223711B2/en
Priority to CA2676001A priority patent/CA2676001C/fr
Priority to DK08761795.7T priority patent/DK2122114T3/da
Priority to EP08761795A priority patent/EP2122114B1/fr
Priority to US12/524,045 priority patent/US8733446B2/en
Priority to AT08761795T priority patent/ATE485438T1/de
Publication of WO2008107559A2 publication Critical patent/WO2008107559A2/fr
Publication of WO2008107559A3 publication Critical patent/WO2008107559A3/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/015Non-vertical risers, e.g. articulated or catenary-type
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/013Connecting a production flow line to an underwater well head

Definitions

  • the present invention relates to a flexible riser plant for transporting hydrocarbons or other fluids under high pressure, and to a method of producing such an installation.
  • the flexible hydrocarbon transport pipes which oppose the rigid pipes, are already well known, and they generally comprise, from the inside towards the outside of the pipe, a metal carcass, to take up the radial forces of crushing, covered with a polymer internal sealing sheath, a pressure vault to withstand the internal pressure of the hydrocarbon, tensile armor plies to take up axial tension forces and an outer sheath made of polymer to protect the all of the pipe and especially to prevent seawater from penetrating its thickness.
  • the metal casing and the pressure vault consist of longitudinal elements wound at short pitch, and they give the pipe its resistance to radial forces while the plies of tensile armor "Tensile armor layers”) consist of generally metallic son wound in long steps so as to resume the axial forces.
  • short-pitch winding designates any helical winding at a helix angle close to 90 °, typically between 75 ° and 90 °.
  • long-pitch winding covers helical angles less than 55 °, typically between 25 ° and 55 ° for traction armor plies.
  • the document WO 03/083343 describes such a solution which consists of wrapping reinforced tapes, for example of aramid fibers, around the tensile armor plies. In this way we limit and the swelling of the traction armor plies is controlled.
  • this solution solves the problems associated with the radial buckling of the son constituting the traction armor plies, it only makes it possible to limit the risk of lateral buckling of said threads that persists.
  • the document WO 2006/042939 describes a solution which consists in using yarns having a high ratio of width to thickness and in reducing the total number of yarns constituting each layer of tensile armor.
  • Application FR 06 07421 in the name of the Applicant discloses a solution of adding inside the structure of the flexible pipe a tubular axial blocking layer. This layer is designed to take the axial compression efforts and limit the shortening of the pipe, which avoids damage to the plies of armor traction.
  • the rising flexible pipe is supported at an intermediate depth between the bottom and the surface by one or several positive buoyancy members, arch type or underwater buoy.
  • These configurations are generally reserved for dynamic applications at a depth of less than 500 m.
  • the rising flexible pipe is arranged in catenary between the seabed and the surface installation.
  • This configuration has the advantage of simplicity, but the disadvantage of being poorly adapted to dynamic applications at shallow depth, because of the excessive curvature variations that can be generated near the seabed.
  • this configuration is commonly used for deep applications, that is to say more than 1000 m, or even 1500 m. Indeed, under these conditions, the relative amplitude of the movements of the floating support, and particularly the vertical movements related to the swell, remains much less than the length of the catenary, which limits the amplitude of the curvature variations in the vicinity of the seabed and makes it possible to control the risks of fatigue of the pipe and lateral buckling of the plies of traction armor.
  • the structure of the pipe must be dimensioned according to the known techniques mentioned above, which leads to solutions complex and expensive.
  • Hybrid risers using both rigid pipes and flexible pipes are also known.
  • the documents FR 2 507 672, FR 2 809 136, FR 2 876 142, GB 2 346 188, WO 00/49267, WO 02/053869, WO 02/063128, WO 02/066786 and WO 02/103153 disclose a hybrid tower type riser known to those skilled in the art under the name "Hybrid Riser Tower".
  • One or more rigid pipes go up along a substantially vertical tower from the seabed to a depth close to the surface, depth from which one or more flexible pipes provide the connection between the top of the tower and the floating support.
  • the tower is provided with buoyancy means to remain upright.
  • These hybrid towers are mainly used for deep-sea applications. They have the disadvantage of being difficult to install. In particular, the installation at sea of the rigid section generally requires very powerful lifting means.
  • the object of the invention is to propose such a flexible riser installation that is effectively resistant to the inverse background effect despite the great depth but does not require penalizing structural modifications.
  • the invention also aims to propose a method of installation at sea of this pipe.
  • the invention achieves its goal through a riser installation made with a flexible pipe of unbound type, said pipe comprising from inside to outside at least one internal sealing sheath and at least two layers of traction armor wound with a long pitch, the pipe being disposed vertically between firstly a mechanical connection head with a submerged buoy and secondly a mechanical connection at the foot with the seabed, fluid connections being provided at the head and at the foot to connect the riser on the one hand with surface equipment and on the other hand with downhole equipment, characterized in that the foot of the column is at least 1000 m deep where it undergoes an effect of maximum calculable maximum reverse background F and in that the buoy is sized to cause at the bottom of the riser a reaction voltage T greater than at least 50% of the inverse bottom effect m a calcul
  • Internal sealing sheath means the first layer, starting from the inside of the pipe, the function of which is to seal against the fluid flowing in the pipe.
  • the internal sealing sheath is an extruded polymer tube.
  • the present invention also applies to the case where said inner sealing sheath is made of a flexible and waterproof metal tube, of the type disclosed in WO 98/25063.
  • Pext is the hydrostatic pressure prevailing outside the pipe, in the zone located near the pipe. seabed.
  • Pint is the minimum pressure inside the pipe in the area near the seabed. This is the lowest internal pressure seen by the pipe, throughout its service life, in the area near the seabed. This minimum pressure is generally evaluated at the design phase of the pipe, as it determines the design of the pipe.
  • Sint is the internal cross section the internal sealing sheath to which the internal pressure is directly applied.
  • Sext is the external cross-section of the sealing sheath to which the external pressure is directly applied.
  • the flexible pipe comprises at least two sealed sheaths, namely on the one hand an internal sealing sheath on the inner face of which the internal pressure directly applies, and on the other hand another sealed sheath surrounding said sheath. internal sealing and on the outer face of which the external pressure is directly applied.
  • this other sealed sheath directly subjected to hydrostatic pressure is the outermost layer of the flexible pipe, and is then referred to as the external sealing sheath.
  • Sext is equal to the external cross section of this outer sealing sheath.
  • -Blow layers described in particular in WO 03/083343, and whose function is to limit the swelling of the tensile armor plies when the latter are subjected to a compressive force.
  • These anti-swelling layers generally consist of reinforced Kevlar® strips wrapped around the tensile armor plies. Due to the high cost of Kevlar®, the reduction or removal of these bands allows a significant saving.
  • Another advantage of the invention is to reduce the risk of lateral buckling of the tensile armor, and therefore to increase the depth at which the flexible pipes can be used as risers. This also avoids the use of armor threads traction having a high ratio width to thickness, which facilitates the manufacture of pipes.
  • the present invention is advantageously applicable to any flexible pipe of unbound type, as long as it comprises at least one internal sealing sheath and a pair of tensile armor wires.
  • the buoy is sized to exert on the riser a tension T greater than at least 75% of the maximum inverse bottom effect F developed at the bottom of the column, and even more advantageously the buoy is sized to exert on the column Raising a voltage T greater than at least 100% of the maximum reverse effect F developed at the bottom of the column.
  • traction armor plies offer the advantage of lightness but poor resistance to compression. The invention makes it possible to use them for a riser, by means of these precautions of high tension imposed by the buoy at the head of the column.
  • the head fluidic connection generally includes a flexible overhead line connecting the top of the riser to the surface equipment via appropriate fittings and accessories.
  • the internal sealing sheath of the vertical flexible pipe is polymeric.
  • the vertical flexible pipe comprises an outer polymeric sheath sealing around the layers of tensile armor wires.
  • the hydrostatic pressure is applied directly on the outer face of the internal sealing sheath.
  • the vertical flexible pipe comprises, between the inner sealing sheath and the layers of tensile armor wires, an internal pressure vault made by a helical winding with a short pitch of wire, designed to withstand the internal pressure of the fluid transported.
  • the layers of tensile armor yarns of the vertical flexible pipe comprise sheets of yarns based on carbon fibers.
  • the mechanical foot connection comprises at least one anchor cable connecting the bottom of the vertical flexible pipe to an anchor point fixed on the seabed.
  • This anchoring cable can be replaced by any equivalent connecting means, having both a high mechanical strength in tension and a good flexibility in bending, such as a chain or an articulated mechanical device.
  • the fluidic connection foot has a flexible pipe foot connection connecting the bottom of the riser to a production line, through the appropriate end caps and accessories.
  • the fluidic connection in the foot is via a lower connecting end fixed at the bottom of the vertical flexible pipe, and the at least one anchoring cable mentioned above is secured at its upper end to said lower connecting end.
  • the buoy has a central bore passage of the vertical flexible pipe of diameter greater than that of an upper connecting piece of said vertical flexible pipe.
  • the mechanical connection at the head comprises a collar in several parts serving as a stop between the upper part of the buoy and the upper connecting end of the vertical flexible pipe.
  • a curvature limiting device is provided at the bottom of the bore of the buoy.
  • the mechanical connection at the head comprises a pull line connecting the bottom of the buoy to an integral member of the top of the vertical flexible pipe.
  • the element attached to the top of the vertical flexible pipe is a gooseneck for the fluidic connection head.
  • the invention also relates to a method of setting up the installation according to the invention.
  • a first vessel from which the flexible pipe is unwound and a second buoy support vessel capable of supporting the ballasted buoy between an upper position close to the surface and a position are advantageously used for laying the installation. lower near the seabed; attaching a first end of the flexible pipe unwound to the buoy in the upper position; the flexible pipe is unwound so that it hangs between the first vessel and the second vessel; extending a second end of the flexible pipe unwound by a connecting hose provided with a fluid connection; a hooking line is used to hook said coupling to the first laying and unrolling this line of attachment to lower said connection substantially at said second end; said coupling and said second end are lowered to the vicinity of the bottom; the mechanical connection of said second end and the fluidic connection of said coupling is carried out, and the buoy is unballasted.
  • the flexible pipe is filled with water during laying.
  • FIG. 1 is a partial schematic perspective view of a flexible pipe used according to the invention.
  • FIG. 2 is a schematic elevational view of a rising pipe installation according to the invention
  • FIG. 3 is a partial diagrammatic view of a first connecting mode at the bottom of the riser pipe
  • Figure 4 is a side view of Figure 3;
  • FIG. 5 is a partial schematic view of a second connecting mode at the bottom of rising pipe
  • FIG. 6 is a partial schematic view of a third mode of connection at the bottom of a riser pipe, also represented in FIG. 2;
  • FIG. 7 is a partial schematic view of a first connection mode at the top of the riser pipe
  • FIG. 8 is a partial schematic view of a second connection mode at the top of the riser pipe
  • FIG. 9 is a partial schematic view of a third mode of connection at the top of the riser.
  • FIG. 1 illustrates an unbonded flexible pipe 10 of the non-smooth passage type (in English "rough-bore") and which presents here, from the inside of the pipe towards the outside, an internal metal carcass 16, a pipe of internal seal 18 made of plastic material, a stapled pressure vault 20, two crossed plies of tensile armor 22, 24, an anti-swelling layer 25 made by winding woven strips of Kevlar® fibers, and an outer sheath 25
  • the flexible pipe 10 thus extends longitudinally along the axis 17.
  • the metal inner casing 16, the stapled pressure vault 20 and the anti-swelling layer 25 are produced by means of longitudinal elements wound helically with a short pitch. while the crossed armor plies 22, 24 are formed of helical windings with a long pitch of armor wires.
  • FIG. 2 diagrammatically represents the riser 1 of the invention intended to bring up a fluid, in principle a liquid or gaseous hydrocarbon or two-phase hydrocarbon, between a production facility 2 situated on the seabed 5 and an operating installation 3
  • the production plant 2 shown in Figure 2 is a pipe, generally rigid, resting on the seabed and known to those skilled in the art under the name of "flowline".
  • This pipe provides the connection between the foot of the riser 1 on the one hand and on the other hand an underwater installation of the type for example manifold ("manifold" in English) or wellhead.
  • the riser consists essentially of a portion of vertical flexible pipe 10 stretched between a mechanical connection 6 ', 6 “, 6'” hooking to the seabed 5 at the bottom of the column and a mechanical connection 7 ', 7 “d hooking to a submerged buoy 8 at the head of the column
  • the mechanical fastening means 6 ', 6 “, 6'” have the function of anchoring the base of the flexible pipe 10 to seabed 5.
  • Head connection means 40, 12 extend the vertical flexible pipe 10 from its upper end and allow the circulation of the fluid transported to the operating installation 3.
  • Foot connection means 33, 34 , 30 ensure the continuity of the flow of the fluid transported between the undersea production facility 2 and the lower part of the vertical flexible pipe 10.
  • the depth P of the sea is greater than 1000 m and can reach for example 3000 m.
  • the buoy 8 is immersed at a height P1 below sea level which is typically between 100 m and 300 m to escape the surface ocean currents.
  • the buoy At the head of the column, the buoy has a tension T1 directed upwards. This tension T1 is defined by the buoyancy of the buoy 8.
  • the reaction force T exerted at the bottom of the column at the fastening 6 has the intensity as the difference between the T1 tension at the head and the relative apparent weight of the column.
  • the buoyancy of the buoy is defined such that the resulting tension T applied to the lower part of the rising flexible pipe is sufficiently large to compensate for at least 50%, advantageously 75% and preferably 100% of the axial compression force generated by the inverse background effect.
  • the difference between the buoyancy strictly necessary to maintain the assembly and that suitable for implementing the present invention. can exceed 70 000 daN, even 100 000 daN or even 200 000 daN, which is a very important value, much higher than the margins of safety, of the order of 10,000 daN to 20,000 daN which previously seemed sufficient to the skilled person.
  • This large oversizing of the buoy results in a significant additional cost of the buoy, so that it had been avoided in the past.
  • the present invention goes against this prejudice. By increasing the size and the cost of the buoy, one obtains, against all expectations, a greater gain on the structure of the vertical flexible pipe 10, this advantage largely offsetting the disadvantage related to the extra cost of the buoy 8.
  • the pressure inside the pipe may drop to 1 bar, in the area near the seabed, this internal pressure being also the minimum pressure expected during the lifetime and operation of the pipe.
  • the hydrostatic pressure at the bottom of the pipe is substantially equal to 200 bar. Therefore, in this example:
  • the steel wires constituting the tensile armor plies would have moreover presented a high ratio width on thickness, typically 20 mm by 4 mm, to avoid lateral buckling traction armor plies.
  • the weight in the water of such a pipe when it is full of gas, would then have been of the order of 100 daN per linear meter, which would have led to a total weight of 180 000 daN.
  • the buoy supports not only the apparent weight in the water of the pipe 10, but also that of a portion of the foot connection means 30, as well as substantially half of that of the head connection means 40, 12, the other half being supported by the operating installation 3. In this example, these weight supplements to be supported are of the order of 20,000 daN.
  • the tension T at the bottom of the column is equal to 50% of F, that is to say 88 000 daN.
  • the flexible pipe 10 must in this case be sized to withstand an axial compressive force of the order of 90 000 daN instead of 180 000 daN above according to the prior art. This sharp reduction in axial compression makes it possible in this example to choose a structure comprising two tensile armor plies 22, 24 of steel 3 mm thick each, and made of conventional yarns that do not have a high ratio of width to thickness. .
  • the thickness of the anti-swelling layer 25 Kevlar® is in this case almost twice as low as that according to the aforementioned prior art.
  • the weight in the water of such a pipe, when it is full of gas, is of the order of 90 daN per linear meter, that is to say substantially less than that of a pipe according to the invention. aforementioned prior art.
  • the total weight in the water of the pipe 10 is therefore about 162,000 daN. Therefore, according to this embodiment of the invention, the buoy must be sized to have a flexibility to generate a voltage at the head of the column:
  • the buoyancy of the buoy 8 has therefore in this example been increased by 37,000 daN in absolute value or 17% in relative value compared to the previous practice. This disadvantage is compensated by the gain on the structure of the pipe.
  • the voltage T at the bottom of the column is equal to F, that is to say 176,000 daN.
  • the use of carbon fiber tensile armor instead of steel armor not only helps to reduce the amount of driving, which makes it easier to handle and install at sea, but also to improve its durability. corrosion and to avoid hydrogen embrittlement phenomena encountered with steels with high mechanical properties.
  • the absence of axial compression also eliminates the anti-swelling 25 Kevlar® layer, which allows significant savings.
  • the weight in the water of such a pipe, when it is full of gas, is in this example of the order of 60 daN per linear meter, which represents a weight gain of 40% compared to aforementioned prior art.
  • the total weight in the water of the pipe 10 is around 108 000 daN. Therefore, according to this embodiment of the invention, the buoy must be dimensioned to have a buoyancy allowing to generate at the head of column a tension:
  • the buoyancy of the buoy has therefore been increased by 89 000 daN in absolute value or 41% in relative value compared to previous practice .
  • This disadvantage is largely offset by the gain in the structure of the pipe and its ease of installation at sea, because of the weight of the pipe.
  • FIGS 2 to 6 show different connection means in foot.
  • These means comprise a connecting pipe 30 foot, generally short length, in practice less than 100m.
  • This foot connection pipe must be sized to withstand the entire reverse bottom effect.
  • This foot connection pipe may comprise one or more rigid or flexible pipe sections possibly combined with each other. It can also comprise a mechanical device of the flexible seal type, device whose function is to ensure the continuity of the flow while allowing degrees of freedom in flexion similar to those of a flexible pipe.
  • the foot connection pipe 30 is a reinforced flexible pipe according to the above-mentioned techniques of the prior art, in order to resist the opposite bottom effect and to eliminate the risk of lateral buckling of the traction armor plies.
  • the structure of this flexible pipe 30 of foot connection is generally very different from that of the vertical flexible pipe 10.
  • the flexible pipe 30 is connected at its lower end by a tip 32 to the endpiece 35 of a rigid sleeve 34 allowing a connection from above with a vertical connector 33 placed at the end of the production line (“flowline”) 2 and cooperating with a suitable end piece 36 of the sleeve 34.
  • the end upper of the hose 30 comprises a nozzle 31 connected to the lower nozzle 6 'of the flexible pipe 10, which is attached to an anchorage point 6 '"by a 6" cable.
  • the anchor point 6 '" is integral with the seabed 5. It is dimensioned to withstand a tearing tension greater than the tension T exerted by the foot of the column .
  • the anchoring point 6'' is advantageously a suction anchor ("suction pile" in English) or a gravity anchor stack.
  • FIG. 3 shows a variant of horizontal connection of the pipe 30 directly in a horizontal connector 33 terminating the production pipe 2.
  • FIG. 4 shows that the lower nozzle 6 'is in fact held by two cables 6 "fixed at their end upper on two of its sides, and at their lower end on an articulated fastener 28 of the anchoring point 6 '".
  • FIG. 5 shows a variant using a flexible hose 30 of foot connection, according to which the hose 30 is distributed buoyancy, thanks to buoys 34 surrounding the hose; this has the advantage of allowing to withstand large angular displacements of the pipe 10 on either side of the vertical position.
  • FIGS. 7 to 9 show different variants of the connection means at the head.
  • FIG. 7 shows that the flexible pipe 10 has an upper end piece T on which is connected the lower end piece 39 of a rigid gooseneck pipe 40 whose upper end piece 41 is connected to the lower end piece 13 of the pipe 12 flexible head link connected to the surface installation.
  • the flexible pipe 12 of connection in the head is generally called “jumper” by the skilled person.
  • a collar 7 "in two parts abutment prevents the tip T to go down through the bore 37 of the buoy 8.
  • the bore 37 has at its lower part a flared shape 38 acting curvature limiter in case of deflection
  • the buoy is advantageously a mechanically welded and compartmentalized structure, sealed chambers filled with air can be ballasted and deballasted with water, so as to vary the buoyancy of the buoy. .
  • the gooseneck is removed and replaced by distributed buoyancy means 44 (buoys surrounding the flexible "jumper” 12) having the effect of giving the flexible "jumper" 12 the shape of an "S".
  • the tip 13 of the "jumper” 12 is therefore directly attached to the tip T of the pipe 10.
  • the lower flare 38 of the bore of the buoy 8 has also been replaced by a curvature limiter 42 ("bend stiffener "in English) added at the bottom of the buoy.
  • the buoy 8 is hooked above the riser, by means of a chain 45 (or equivalent) fixed in a ring 47 to the buoy and in a ring 46 to the gooseneck 40 .
  • This method uses two boats, a flexible pipe laying boat 50 and a support boat 60.
  • the boat 50 comprises a spool 52 or a basket storing the flexible pipe to be laid in rolled form (or more exactly a part of the pipe to be wound up), making it possible to unwind the hose 10 by passing it over a return pulley 54 and then by drive means 56, preferably vertical quadri caterpillar type, located above the central shaft 51 of the boat.
  • a winch 53 provided with an auxiliary cable 66 will be described later (see Figures 14 to 16) for the end of the installation.
  • the boat 60 comprises a main crane 62 having the capacity to lift the buoy 8 by means of a cable 63, and an auxiliary traction means 64, of the crane or winch type.
  • a cable 57 intended to pull the pipe 10 to the inside of the buoy 8 is previously fixed to the upper end piece T of the pipe 10 and pulled through the buoy 8 to winch or crane 64.
  • the line 10 is pulled using the winch 64 to the inside of the buoy 8; simultaneously, the laying boat unwinds the necessary length of hose 10.
  • the winch 64 used as an auxiliary means of traction was fixed not on the boat 60, but rather on the upper part of the buoy 8.
  • the winch 64 would advantageously be separated from the buoy 8 to be recovered and loaded onto the boat 60.
  • the hose 10 of the laying boat 50 is then completely reeled off, then the flexible pipe 30 which is attached by the end piece 6 ', 31, then the rigid gooseneck 34 attached by the end pieces 32, 35.
  • a cable 66 is attached to the gooseneck 34, which makes it possible to end the descent by unwinding the cable 66 which unwinds from the winch 53 while passing over a return pulley, for example the pulley 54 already used for returning the hose.
  • the buoy 8 is lowered with the crane 62, the buoy being ballasted.
  • the descent of the cable 66 is continued and the vertical connection of the gooseneck 34 with the end piece 33 of the production line 2 is effected by means of an automatic connector and with the assistance of of an underwater robot.
  • the buoy 8 is unballasted so as to obtain the tension T1 at the column head. This can be done from the support boat 60 with means of the type flexible hose, pump and robot underwater. The installation is then complete and ships 50 and 60 can leave the area.
  • the fluid connections at the head of the column can be made in a second step, according to methods known to those skilled in the art, once the surface installation 3 has been routed on site.
  • the laying boat 50 only supports half of the hanging weight of the pipe 10, the rest being supported by the support boat 60, it is possible to use boats of lesser capacity.
  • the installation voltages are lower compared to the laying of unrolled rigid pipe, because the flexible pipes can support curvatures much lower than the rigid pipes.
  • This solution would be particularly suitable for laying flexible pipes for gas transport, because the presence of water or moisture inside these pipes is likely to cause the formation of hydrate plugs later.
  • the installation of a rising flexible pipe according to the present invention is much faster than that of a rigid hybrid tower, and the flexibility of the method allows the installation in sea conditions worse than those for the laying of rigid hybrid towers .

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Earth Drilling (AREA)
  • Chain Conveyers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Loading And Unloading Of Fuel Tanks Or Ships (AREA)
  • Pipe Accessories (AREA)
  • Tents Or Canopies (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

Dans cette installation de colonne montante réalisée avec une conduite flexible (10) de type non lié, la conduite (10) est disposée verticalement entre d'une part une connexion mécanique (7', 7'', 44) en tête avec une bouée immergée (8) et d'autre part une connexion mécanique (6', 6'', 6''') en pied avec le fond marin (5), des connexions fluidiques (12, 30) étant prévues en tête et en pied pour relier la colonne montante d'une part avec des équipements de surface (3) et d'autre part avec des équipements de fond (2); le pied de la colonne est à au moins 1000 m de profondeur où il subit un effet de fond inverse maximum calculable F et la bouée (8) est surdimensionnée pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 50%, voire 100% de l'effet de fond inverse maximum calculable F développé en pied de colonne.

Description

Installation de conduite montante flexible de transport d'hydrocarbures
La présente invention se rapporte à une installation de conduite montante flexible de transport d'hydrocarbures ou d'autres fluides sous haute pression, et à un procédé de réalisation d'une telle installation.
Les conduites flexibles de transport des hydrocarbures, qui s'opposent aux conduites rigides, sont déjà bien connues, et elles comportent généralement de l'intérieur vers l'extérieur de la conduite, une carcasse métallique, pour reprendre les efforts radiaux d'écrasement, recouverte d'une gaine d'étanchéité interne en polymère, une voûte de pression pour résister à la pression interne de l'hydrocarbure, des nappes d'armure de traction pour reprendre les efforts de tension axiale et une gaine externe en polymère pour protéger l'ensemble de la conduite et notamment pour empêcher l'eau de mer de pénétrer dans son épaisseur. La carcasse métallique et la voûte de pression (en anglais « pressure vault ») sont constituées d'éléments longitudinaux enroulés à pas court, et elles confèrent à la conduite sa résistance aux efforts radiaux tandis que les nappes d'armure de traction (en anglais « tensile armour layers ») sont constituées de fils généralement métalliques enroulés selon des pas longs de façon à reprendre les efforts axiaux. Il est à noter que dans la présente demande, la notion d'enroulement à pas court désigne tout enroulement hélicoïdal selon un angle d'hélice proche de 90°, typiquement compris entre 75° et 90°. La notion d'enroulement à pas long recouvre quant à elle les angles d'hélice inférieurs à 55°, typiquement compris entre 25° et 55° pour les nappes d'armure de traction.
Ces conduites sont destinées au transport des hydrocarbures notamment dans les fonds marins et ce, à de grandes profondeurs. Plus précisément elles sont dites de type non lié (en anglais «unbonded ») et elles sont ainsi décrites dans les documents normatifs publiés par l'American Petroleum lnstitute (API)1 API 17J et API RP 17B.
Lorsqu'une conduite, quelle que soit sa structure, est soumise à une pression externe qui est plus élevée que la pression interne, il se produit dans la paroi de la conduite des efforts de compression orientés parallèlement à l'axe de la conduite et qui tendent à raccourcir la longueur de la conduite. Ce phénomène porte le nom d'effet de fond inverse (« reverse end cap effect » en anglais). L'intensité des efforts de compression axiale est sensiblement proportionnelle à la différence entre la pression externe et la pression interne. Cette intensité peut atteindre un niveau très élevé dans le cas d'une conduite flexible immergée à grande profondeur, du fait que la pression interne peut, dans certaines conditions, être très inférieure à la pression hydrostatique.
Dans le cas d'une conduite flexible de structure classique, par exemple conforme aux documents normatifs de I1API1 l'effet de fond inverse a tendance à induire un effort longitudinal de compression dans les fils constituant les nappes d'armure de traction, et à raccourcir la longueur de la conduite flexible. De plus, la conduite flexible est également soumise à des sollicitations dynamiques de flexion notamment lors de l'installation ou en service dans le cas d'une conduite montante (« riser » en langue anglaise), c'est-à-dire d'une conduite faisant le lien entre une installation de surface au niveau de la mer ou à son voisinage, et une installation au fond de la mer. L'ensemble de ces contraintes peut faire flamber les fils des nappes d'armure de traction et désorganiser de façon irréversible les nappes d'armure de traction, provoquant ainsi la ruine de la conduite flexible.
On a donc cherché des améliorations structurelles des conduites flexibles pour augmenter la résistance des nappes d'armure à la compression axiale. Ainsi, le document WO 03/083343 décrit une telle solution qui consiste à enrouler autour des nappes d'armure de traction des rubans renforcés par exemple de fibres aramides. De cette manière on limite et on contrôle le gonflement des nappes d'armure de traction. Toutefois, si cette solution permet de résoudre les problèmes liés au flambement radial des fils constituant les nappes d'armure de traction, elle permet seulement de limiter le risque de flambement latéral desdits fils qui perdure. Le document WO 2006/042939 décrit une solution qui consiste à utiliser des fils présentant un fort ratio largeur sur épaisseur et à réduire le nombre total de fils constituant chaque nappe d'armure de traction. Cependant, si cette solution réduit le risque de flambement latéral des nappes d'armure de traction, elle ne le supprime pas totalement. La demande FR 06 07421 au nom de la Demanderesse fait connaître une solution consistant à ajouter à l'intérieur de la structure de la conduite flexible une couche tubulaire de blocage axial. Cette couche est conçue pour reprendre les efforts de compression axiale et limiter le raccourcissement de la conduite, ce qui permet d'éviter d'endommager les nappes d'armure de traction.
Ces solutions sont efficaces mais présentent un certain nombre de contraintes, notamment financières, qui conduisent à souhaiter des solutions alternatives, du moins dans des cas spécifiques, et notamment dans le cas particulier des conduites montantes. On connaît différentes configurations de conduites flexibles montantes. Les configurations les plus courantes sont représentées à la figure 4 du document normatif « API RP 17B ; Recommended Practice for Flexible Pipes ; Third Edition ; March 2002 ». Elles sont connues de l'homme du métier sous les noms « Free Hanging », « Steep S », « Lazy S », « Steep Wave » et « Lazy Wave ». Une autre configuration, connue sous le nom de « Pliant Wave ®» est décrite dans le brevet US 4 906 137.
Dans les configurations « Steep S », « Lazy S », « Steep Wave », « Lazy Wave » et « Pliant Wave ®», la conduite flexible montante est supportée, à une profondeur intermédiaire entre le fond et la surface, par un ou plusieurs organes à flottabilité positive, de type arche ou bouée sous-marine. Ceci confère à la conduite flexible montante une géométrie en forme de S ou de vague, ce qui lui permet de supporter les mouvements verticaux de l'installation de surface sans générer des courbures excessives de ladite conduite, particulièrement dans la zone située à proximité du fond marin, lesdites courbures excessives étant par ailleurs susceptibles d'endommager ladite conduite. Ces configurations sont généralement réservées aux applications dynamiques à une profondeur inférieure à 500 m.
Dans la configuration « Free Hanging », la conduite flexible montante est disposée en caténaire entre le fond marin et l'installation de surface. Cette configuration présente l'avantage de la simplicité, mais l'inconvénient d'être mal adaptée aux applications dynamiques à faible profondeur, en raison des variations de courbure excessives pouvant être générées à proximité du fond marin. Cependant, cette configuration est couramment utilisée pour les applications à grande profondeur, c'est-à- dire à plus de 1000 m, voire de 1500 m. En effet, dans ces conditions, l'amplitude relative des mouvements du support flottant, et tout particulièrement des mouvements verticaux liés à la houle, reste très inférieure à la longueur de la caténaire, ce qui limite l'amplitude des variations de courbure à proximité du fond marin et permet de maîtriser les risques de fatigue de la conduite et de flambement latéral des nappes d'armure de traction. Cependant, pour garantir la résistance de la conduite flexible à l'effet de fond inverse, qui peut à ces grandes profondeurs atteindre un niveau très élevé, la structure de la conduite doit être dimensionnée selon les techniques connues précitées, ce qui conduit à des solutions complexes et coûteuses.
On connaît aussi des colonnes montantes hybrides utilisant à la fois des conduites rigides et des conduites flexibles. Ainsi, les documents FR 2 507 672, FR 2 809 136, FR 2 876 142, GB 2 346 188, WO 00/49267, WO 02/053869, WO 02/063128, WO 02/066786 et WO 02/103153 divulguent une colonne montante de type tour hybride connue de l'homme du métier sous le nom de « Hybrid Riser Tower ». Une ou plusieurs conduites rigides remontent le long d'une tour sensiblement verticale depuis le fond marin jusqu'à une profondeur proche de la surface, profondeur à partir de laquelle une ou plusieurs conduites flexibles assurent la liaison entre le sommet de la tour et le support flottant. La tour est munie de moyens de flottabilité pour rester en position verticale. Ces tours hybrides sont principalement utilisées pour des applications à grande profondeur. Elles présentent l'inconvénient d'être difficiles à installer. En particulier, l'installation en mer du tronçon rigide nécessite généralement des moyens de levage très puissants.
Mais jusque-là, on ne connaît pas d'installation de conduite montante réalisée en conduite flexible disposée verticalement qui puisse résister efficacement à l'effet de fond inverse dans les utilisations en mer profonde (c'est-à-dire typiquement à plus de 1000 m, voire 1500 ou 2000 m), sans avoir recours à des modifications structurelles onéreuses de la conduite. A ces grandes profondeurs, l'effet de fond se manifeste avec une amplitude très grande en raison de l'importance de la pression hydrostatique. Lorsque dans une installation de transport d'hydrocarbures, notamment sous forme gazeuse, la production est arrêtée, par exemple en fermant une vanne, la pression intérieure dans la conduite peut chuter et la différence entre la pression hydrostatique extérieure élevée et la pression interne faible ou nulle peut devenir considérable. Ce sont les conditions qui engendrent l'effet de fond inverse. Si l'on veut utiliser une conduite flexible dans une installation de colonne montante classique, on est donc obligé d'adapter la structure de la conduite pour pouvoir résister en pied de colonne à l'effet de fond inverse, ce qui oblige à dimensionner les couches de renfort de la conduite en conséquence, le pied de colonne étant la partie dimensionnante, ce qui conduit à un surdimensionnement du reste de la conduite et donc à un surcoût.
L'invention a pour but de proposer une telle installation de conduite montante flexible résistant efficacement à l'effet de fond inverse malgré la grande profondeur mais n'exigeant pas des modifications structurelles pénalisantes. L'invention a aussi pour but de proposer un procédé d'installation en mer de cette conduite. L'invention atteint son but grâce à une installation de colonne montante réalisée avec une conduite flexible de type non lié, ladite conduite comprenant de l'intérieur vers l'extérieur au moins une gaine d'étanchéité interne et au moins deux nappes de fils d'armure de traction enroulées à pas long, la conduite étant disposée verticalement entre d'une part une connexion mécanique en tête avec une bouée immergée et d'autre part une connexion mécanique en pied avec le fond marin, des connexions fluidiques étant prévues en tête et en pied pour relier la colonne montante d'une part avec des équipements de surface et d'autre part avec des équipements de fond, caractérisée en ce que le pied de la colonne est à au moins 1000 m de profondeur où il subit un effet de fond inverse maximum calculable F et en ce que la bouée est dimensionnée pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 50% de l'effet de fond inverse maximum calculable F développé en pied de colonne.
On entend par gaine d'étanchéité interne la première couche, en partant de l'intérieur de la conduite, dont la fonction est d'assurer l'étanchéité vis-à-vis du fluide circulant dans la conduite. Généralement, la gaine d'étanchéité interne est un tube en polymère extrudé. Cependant, la présente invention s'applique aussi au cas où ladite gaine d'étanchéité interne est constituée d'un tube métallique flexible et étanche, du type de celui divulgué dans le document WO 98/25063.
Dans la présente demande, l'effet de fond inverse est donné par la formule F = (Pext x Sext) - (Pint x Sint) Pext est la pression hydrostatique régnant à l'extérieur de la conduite, dans la zone située à proximité du fond marin. Pint est la pression minimale régnant à l'intérieur de la conduite, dans la zone située à proximité du fond marin. C'est la pression interne la plus faible vue par la conduite, pendant toute sa durée de service, dans la zone située à proximité du fond marin. Cette pression minimale est généralement évaluée dès la phase de conception de la conduite, car elle conditionne le dimensionnement de la conduite. Sint est la section transversale interne de la gaine d'étanchéité interne sur laquelle s'applique directement la pression interne. Sext est la section transversale externe de la gaine d'étanchéité sur laquelle s'applique directement la pression externe.
Dans le cas d'une conduite flexible ne comportant qu'une seule gaine étanche, à savoir la gaine d'étanchéité interne, Sext est égal à la section transversale externe de cette gaine. En effet, la pression hydrostatique s'applique dans ce cas directement sur la face externe de la gaine d'étanchéité interne. Des conduites flexibles conformes à cette caractéristique sont notamment décrites dans les documents WO02/31394 et WO2005/04030. De telles conduites peuvent comporter une gaine polymérique externe non étanche qui, du fait de son absence d'étanchéité, n'intervient pas dans le calcul de F.
Généralement, la conduite flexible comporte au moins deux gaines étanches, à savoir d'une part une gaine d'étanchéité interne sur la face interne de laquelle s'applique directement la pression interne, et d'autre part une autre gaine étanche entourant ladite gaine d'étanchéité interne et sur la face externe de laquelle s'applique directement la pression externe.
Fréquemment, cette autre gaine étanche directement soumise à la pression hydrostatique est la couche la plus externe de la conduite flexible, et elle est alors désignée sous le nom de gaine d'étanchéité externe. Dans ce cas, Sext est égal à la section transversale externe de cette gaine d'étanchéité externe.
Cependant, il existe aussi des conduites flexibles, notamment celles à passage lisse (« smooth bore » en anglais), dans lesquelles cette autre gaine étanche directement soumise à la pression hydrostatique est une gaine intermédiaire d'étanchéité généralement située entre la voûte de pression et la nappe interne de fils d'armures de traction. Dans ce cas, Sext est égal à la section transversale externe de cette gaine intermédiaire d'étanchéité directement soumise à la pression hydrostatique. A titre d'exemple, si on considère une conduite flexible à passage non lisse (« rough bore » en anglais) composée, en partant de l'intérieur vers l'extérieur, d'une carcasse métallique, d'une gaine polymérique d'étanchéité interne de diamètre intérieur Dint, d'une voûte de pression, d'une paire de nappes d'armure de traction et d'une gaine polymérique d'étanchéité externe de diamètre extérieur Dext, l'effet de fond inverse maximum calculable F est donné par la formule : F = (Pext x π D2ext / 4) - (Pint x π D2int / 4)
Grâce à une tension T en pied de colonne largement supérieure à ce que le simple support de la colonne montante flexible justifierait, on compense au moins en partie l'effet de fond inverse et on évite de trop faire travailler les nappes d'armure de traction en compression, ce qui permet de simplifier la structure de la conduite et donc de réduire son coût. De plus, il est ainsi possible d'augmenter les profondeurs d'eau accessibles sans avoir besoin de recourir à des modifications majeures des techniques connues de conception et de fabrication des conduites flexibles. L'invention permet ainsi de s'affranchir de l'emploi d'une couche tubulaire de blocage axial du type de celle décrite dans la demande FR 06 07421. Elle permet aussi de supprimer ou de réduire l'épaisseur de la ou des couches anti-gonflement, couches décrites en particulier dans le document WO 03/083343, et dont la fonction est de limiter le gonflement des nappes d'armure de traction lorsque ces dernières sont soumises à un effort de compression. Ces couches anti-gonflement sont généralement constituées de bandes renforcées en Kevlar® enroulées autour des nappes d'armure de traction. Du fait du coût élevé du Kevlar®, la réduction ou la suppression de ces bandes permet une économie importante. Un autre avantage de l'invention est de réduire le risque de flambement latéral des armures de traction, et donc d'augmenter la profondeur à laquelle les conduites flexibles peuvent être utilisées en tant que colonne montante. Ceci permet aussi d'éviter l'emploi de fils d'armure de traction présentant un fort ratio largeur sur épaisseur, ce qui facilite la fabrication des conduites.
La présente invention s'applique avantageusement à toute conduite flexible de type non lié, dès lors que celle-ci comprend au moins une gaine d'étanchéité interne et une paire de fils d'armure de traction.
Avantageusement la bouée est dimensionnée pour exercer sur la colonne montante une tension T supérieure à au moins 75% de l'effet de fond inverse maximum F développé en pied de colonne, et de manière encore plus avantageuse la bouée est dimensionnée pour exercer sur la colonne montante une tension T supérieure à au moins 100% de l'effet de fond inverse maximum F développé en pied de colonne. Dans ce dernier cas, on est assuré que les armures de traction ne seront jamais mises en compression par l'effet de fond inverse et il est alors particulièrement avantageux de choisir de réaliser la conduite flexible avec des fils d'armure de traction à base de fibres en carbone. De telles nappes d'armure de traction offrent l'avantage de la légèreté mais résistent mal à la compression. L'invention permet de les utiliser pour une colonne montante, moyennant ces précautions de tension élevée imposée par la bouée en tête de colonne. De telles bouées à flottabilité élevée ne posent pas de problème particulier de faisabilité dans la mesure où elles sont déjà utilisées dans le domaine précité des tours hybrides. Les documents précités relatifs à ces tours hybrides décrivent en particulier des bouées qui peuvent être utilisées pour la présente invention. La connexion fluidique en tête comporte généralement une conduite flexible de liaison en tête reliant le haut de la colonne montante aux équipements de surface, par l'intermédiaire d'embouts et d'accessoires appropriés.
Une installation conforme à l'invention présente en outre avantageusement une ou plusieurs des caractéristiques suivantes :
- La gaine d'étanchéité interne de la conduite flexible verticale est polymérique. - La conduite flexible verticale comprend une gaine polymérique externe d'étanchéité entourant les nappes de fils d'armure de traction.
- La pression hydrostatique s'applique directement sur la face externe de la gaine d'étanchéité interne. - La conduite flexible verticale comprend, entre la gaine d'étanchéité interne et les nappes de fils d'armure de traction, une voûte de pression interne réalisée par un enroulement hélicoïdal à pas court de fil, destinée à résister à la pression interne du fluide transporté.
- Les nappes de fils d'armure de traction de la conduite flexible verticale comprennent des nappes de fils à base de fibres de carbone.
- La connexion mécanique en pied comporte au moins un câble d'ancrage reliant le bas de la conduite flexible verticale à un point d'ancrage fixé sur le fond marin. Ce câble d'ancrage peut être remplacé par tout moyen de liaison équivalent, présentant à la fois une grande résistance mécanique en tension et une bonne souplesse en flexion, comme par exemple une chaîne ou un dispositif mécanique articulé.
- La connexion fluidique en pied comporte une conduite flexible de liaison en pied reliant le bas de la colonne montante à une conduite de production, par l'intermédiaire d'embouts et d'accessoires appropriés. - La connexion fluidique en pied se fait par un embout inférieur de liaison fixé en bas de la conduite flexible verticale, et le au moins un câble d'ancrage mentionné ci-dessus est solidarisé à son extrémité supérieure audit embout inférieur de liaison.
- Ladite conduite flexible de liaison en pied est à flottabilité répartie. - La bouée comporte un alésage central de passage de la conduite flexible verticale de diamètre supérieur à celui d'un embout supérieur de liaison de ladite conduite flexible verticale.
- La connexion mécanique en tête comporte un collier en plusieurs parties servant de butée entre la partie supérieure de la bouée et l'embout supérieur de liaison de la conduite flexible verticale.
- Un dispositif limiteur de courbure est prévu au bas de l'alésage de la bouée. - La connexion mécanique en tête comporte une ligne de traction reliant le bas de la bouée à un élément solidaire du haut de la conduite flexible verticale.
- L'élément solidaire du haut de la conduite flexible verticale est un col de cygne servant à la connexion fluidique en tête.
L'invention concerne également un procédé de mise en place de l'installation conforme à l'invention.
Il s'agit donc d'un procédé de mise en place d'une installation de colonne montante réalisée avec une conduite flexible de type non lié, ladite conduite comprenant de l'intérieur vers l'extérieur au moins une gaine d'étanchéité interne et au moins deux nappes de fils d'armure de traction enroulées à pas long, la conduite devant être disposée verticalement entre d'une part une connexion mécanique en tête avec une bouée immergée et d'autre part une connexion mécanique en pied avec le fond marin, des connexions fluidiques devant être prévues en tête et en pied pour relier la colonne montante d'une part avec des équipements de surface et d'autre part avec des équipements de fond, le procédé étant caractérisé en ce qu'on dispose le pied de la colonne à au moins 1000 m de profondeur où il subit un effet de fond inverse maximum calculable F et en ce qu'on dimensionne la bouée pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 50% de l'effet de fond inverse maximum calculable F développé en pied de colonne.
De manière avantageuse, on utilise pour la pose de l'installation un premier navire à partir duquel est déroulée la conduite flexible et un second navire de support de la bouée susceptible de supporter la bouée ballastée entre une position supérieure près de la surface et une position inférieure près du fond marin ; on attache une première extrémité de la conduite flexible déroulée à la bouée en position supérieure ; on déroule la conduite flexible de manière qu'elle pende entre le premier navire et le second navire ; on prolonge une seconde extrémité de la conduite flexible déroulée par un flexible de liaison muni d'un raccord fluidique ; on utilise une ligne d'accrochage pour accrocher ledit raccord au premier navire de pose et on déroule cette ligne d'accrochage pour faire descendre ledit raccord sensiblement au niveau de ladite seconde extrémité ; on fait descendre ledit raccord et ladite seconde extrémité jusqu'au voisinage du fond ; on procède à la connexion mécanique de ladite seconde extrémité et à la connexion fluidique dudit raccord, et on déballaste la bouée.
Avantageusement, on remplit la conduite flexible d'eau pendant la pose.
D'autres particularités et avantages de l'invention ressortiront à la lecture de la description faite ci-après, donnée à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la figure 1 est une vue schématique partielle en perspective d'une conduite flexible utilisable selon l'invention ;
- la figure 2 est une vue schématique en élévation d'une installation de conduite montante conforme à l'invention ; - la figure 3 est une vue schématique partielle d'un premier mode de raccordement en pied de conduite montante ;
- la figure 4 est une vue de côté de la figure 3 ;
- la figure 5 est une vue schématique partielle d'un deuxième mode de raccordement en pied de conduite montante ; - la figure 6 est une vue schématique partielle d'un troisième mode de raccordement en pied de conduite montante, également représenté en figure 2 ;
- la figure 7 est une vue schématique partielle d'un premier mode de raccordement en tête de conduite montante ; - la figure 8 est une vue schématique partielle d'un deuxième mode de raccordement en tête de conduite montante ;
- la figure 9 est une vue schématique partielle d'un troisième mode de raccordement en tête de conduite montante ;
- les figures 10 à 17 sont des vues schématiques en élévation de différentes étapes d'un procédé d'installation en mer de la conduite montante. La Figure 1 illustre une conduite flexible non liée 10 du type à passage non lisse (en anglais « rough-bore ») et qui présente ici, de l'intérieur de la conduite vers l'extérieur une carcasse métallique interne 16, une gaine d'étanchéité interne 18 en matière plastique, une voûte de pression agrafée 20, deux nappes croisées d'armure de traction 22, 24, une couche anti-gonflement 25 réalisée par enroulement de bandes tissées en fibres de Kevlar®, et une gaine externe d'étanchéité 26. La conduite flexible 10 s'étend ainsi longitudinalement selon l'axe 17. La carcasse interne métallique 16, la voûte de pression agrafée 20 et la couche anti-gonflement 25 sont réalisées grâce à des éléments longitudinaux enroulés hélicoïdalement à pas court, tandis que les nappes croisées d'armure 22, 24 sont formées d'enroulements hélicoïdaux à pas long de fils d'armure.
Dans un autre type de conduite, à passage lisse (dite « smooth- bore » en anglais), la carcasse métallique 16 est supprimée et une gaine intermédiaire d'étanchéité est généralement ajoutée entre d'une part la voûte de pression 20 et d'autre part la nappe interne d'armure 22.
La figure 2 représente schématiquement la colonne montante 1 de l'invention destinée à faire remonter un fluide, en principe un hydrocarbure liquide ou gazeux, ou biphasique, entre une installation de production 2 située sur le fond marin 5 et une installation d'exploitation 3 flottant à la surface 4 de la mer. L'installation de production 2 représentée sur la figure 2 est une conduite, généralement rigide, reposant sur le fond marin et connue de l'homme du métier sous le nom de « flowline ». Cette conduite assure la liaison entre d'une part le pied de la colonne montante 1 , et d'autre part une installation sous-marine du type par exemple collecteur (« manifold » en anglais) ou tête de puits.
La colonne montante se compose essentiellement d'une portion de conduite flexible verticale 10 tendue entre une connexion mécanique 6', 6", 6'" d'accrochage au fond marin 5 en pied de colonne et une connexion mécanique 7', 7" d'accrochage à une bouée immergée 8 en tête de colonne. Les moyens d'accrochage 7', 7" ont pour fonction de transmettre à la partie supérieure de la conduite flexible l'effort de flottabilité positive généré par la bouée 8. Les moyens d'accrochage mécanique 6', 6", 6'" ont pour fonction d'ancrer la base de la conduite flexible 10 au fond marin 5. Des moyens de raccordement en tête 40, 12 prolongent la conduite flexible verticale 10 à partir de son extrémité supérieure et permettent la circulation du fluide transporté vers l'installation d'exploitation 3. Des moyens de raccordement en pied 33, 34, 30 assurent la continuité de l'écoulement du fluide transporté entre d'une part l'installation sous- marine de production 2 et d'autre part la partie inférieure de la conduite flexible verticale 10.
Dans une installation typique envisagée par la Demanderesse, la profondeur P de la mer est supérieure à 1000 m et peut atteindre par exemple 3000 m. La bouée 8 est immergée à une hauteur P1 sous le niveau de la mer qui est typiquement comprise entre 100 m et 300 m pour échapper aux courants marins de surface. La bouée exerce en tête de colonne sur celle-ci une tension T1 dirigée vers le haut. Cette tension T1 est définie par la flottabilité de la bouée 8. Compte tenu du poids apparent de la conduite sous l'eau, la force de réaction T s'exerçant en pied de colonne au niveau de la fixation 6' a comme intensité la différence entre la tension T1 en tête et le poids apparent relatif de la colonne.
Selon la présente invention, la flottabilité de la bouée est définie de telle façon que la tension T résultante appliquée à la partie inférieure de la conduite flexible montante soit suffisamment importante pour compenser au moins 50%, avantageusement 75% et préférentiellement 100% de l'effort de compression axiale généré par l'effet de fond inverse.
Une des caractéristiques importantes de l'invention réside dans la flottabilité très élevée imposée à la bouée 8. Selon le mode de réalisation choisi, l'écart entre la flottabilité strictement nécessaire pour maintenir l'ensemble et celle convenant pour mettre en oeuvre la présente invention peut dépasser 70 000 daN, voire 100 000 daN ou même 200 000 daN, ce qui est une valeur très importante, nettement supérieure aux marges de sécurité, de l'ordre de 10 000 daN à 20 000 daN qui auraient auparavant semblées suffisantes à l'homme du métier. Ce surdimensionnement important de la bouée a pour conséquence un surcoût important de la bouée, si bien qu'il avait par le passé été évité. La présente invention va à rencontre de ce préjugé. En augmentant la taille et le coût de la bouée, on obtient, contre toute attente, un gain plus important sur la structure de la conduite flexible verticale 10, cet avantage venant largement compenser l'inconvénient lié au surcoût de la bouée 8.
L'exemple suivant illustre ce point. Considérons une conduite flexible verticale 10 de transport de gaz, de diamètre intérieur 225 mm et de diamètre extérieur 335 mm, et s'étendant entre le fond marin situé à une profondeur P = 2000 m et la bouée 8 située à une profondeur P1 = 200 m.
Supposons par ailleurs qu'en cas d'arrêt de production, la pression à l'intérieur de la conduite puisse chuter à 1 bar, dans la zone située à proximité du fond marin, cette pression interne étant par ailleurs la pression minimale prévue pendant la durée de vie et de fonctionnement de la conduite. La pression hydrostatique en pied de conduite est sensiblement égale à 200 bar. Par conséquent, dans cet exemple :
Pext = 200 bar = 2 daN/mm2 Pint = 1 bar = 0, 01 daN/mm2
Dext = 335 mm
Dint = 225 mm
Si bien que l'effet de fond inverse maximum est :
F = (2 x π x 3352/4) - (0,01 x π x 2252/4) ≈ 176 000 daN Selon la pratique antérieure, la tension T induite en pied de colonne est faible, de l'ordre de 15 000 daN, si bien que la conduite aurait alors été dimensionnée pour résister à un effet de fond inverse de l'ordre de
180 000 daN. En pratique, dans cet exemple, ceci aurait conduit à choisir une structure comportant deux nappes d'armure de traction 22, 24 en acier de 4 mm d'épaisseur chacune, ainsi qu'une couche anti-gonflement
25 en Kevlar® de forte épaisseur. Les fils en acier constituant les nappes d'armure de traction auraient de plus présenté un fort ratio largeur sur épaisseur, typiquement 20 mm par 4 mm, pour éviter le flambement latéral des nappes d'armure de traction. Le poids dans l'eau d'une telle conduite, lorsqu'elle est pleine de gaz, aurait alors été de l'ordre de 100 daN par mètre linéaire, ce qui aurait conduit à un poids total de 180 000 daN. La bouée supporte non seulement le poids apparent dans l'eau de la conduite 10, mais aussi celui d'une partie des moyens de raccordement en pied 30, ainsi que sensiblement la moitié de celui des moyens de raccordement en tête 40, 12, l'autre moitié étant supportée par l'installation d'exploitation 3. Dans cet exemple, ces suppléments de poids à supporter sont de l'ordre de 20 000 daN. Par conséquent, selon la pratique antérieure, la bouée aurait été dimensionnée pour avoir une flottabilité permettant de générer en tête de colonne une tension : T1 = 180 000 + 20 000 + 15 000 = 215 000 daN Selon un premier mode de réalisation de l'invention, la tension T en pied de colonne est égale à 50% de F, c'est-à-dire à 88 000 daN. La conduite flexible 10 doit dans ce cas être dimensionnée pour résister à un effort de compression axiale de l'ordre de 90 000 daN au lieu des 180 000 daN précités selon l'art antérieur. Cette forte diminution de la compression axiale permet dans cet exemple de choisir une structure comportant deux nappes d'armure de traction 22, 24 en acier de 3 mm d'épaisseur chacune, et constituées de fils classiques ne présentant pas un fort ratio largeur sur épaisseur. L'épaisseur de la couche anti-gonflement 25 en Kevlar® est dans ce cas quasiment deux fois plus faible que celle selon l'art antérieur précité. Le poids dans l'eau d'une telle conduite, lorsqu'elle est pleine de gaz, est de l'ordre de 90 daN par mètre linéaire, c'est-à-dire sensiblement inférieur à celui d'une conduite selon l'art antérieur précité. Le poids total dans l'eau de la conduite 10 avoisine donc 162 000 daN. Par conséquent, selon ce mode de réalisation de l'invention, la bouée doit être dimensionnée pour avoir une flexibilité permettant de générer en tête de colonne une tension :
T1 = 162 000 + 20 000 + T = 162 000 + 20 000 + 88 000 = 252 000 daN Selon ce mode de réalisation de l'invention, la flottabilité de la bouée 8 a donc dans cet exemple été augmentée de 37 000 daN en valeur absolue ou 17% en valeur relative par rapport à la pratique antérieure. Cet inconvénient est compensé par le gain sur la structure de la conduite. Selon un deuxième mode de réalisation particulièrement avantageux de l'invention, la tension T en pied de colonne est égale à F, c'est-à-dire à 176 000 daN.
Dans ce cas, dans la mesure où l'effet de fond inverse F est totalement compensé et où on évite de mettre les nappes d'armure de traction 22, 24 en compression, il est possible et avantageux de choisir pour celles-ci des fils en matériau composite, préférentiellement à base de fibres de carbone. On pourra se référer par exemple au document US 6 620 471 au nom de Demanderesse, faisant connaître des rubans composites comportant des fibres composites noyées dans une matrice thermoplastique. De telles armures apportent une grande résistance à la traction et conduisent à une conduite flexible plus légère que des armures métalliques. En revanche, comme elles résistent mal à la compression, on ne peut les employer que dans des conditions où le risque de mise en compression est conjuré, ce qui est le cas avec l'invention qui permet de toujours maintenir les armures en traction.
L'emploi d'armures de traction en fibres de carbone en lieu et place d'armures en acier permet non seulement d'alléger la conduite, ce qui facilite sa manutention et son installation en mer, mais aussi d'améliorer sa résistance à la corrosion et d'éviter les phénomènes de fragilisation par l'hydrogène rencontrés avec les aciers à hautes caractéristiques mécaniques. L'absence de compression axiale permet aussi de supprimer la couche anti-gonflement 25 en Kevlar®, ce qui permet une économie importante. Le poids dans l'eau d'une telle conduite, lors qu'elle est pleine de gaz, est dans cet exemple de l'ordre de 60 daN par mètre linéaire, ce qui représente un gain de poids de 40 % par rapport à l'art antérieur précité. Le poids total dans l'eau de la conduite 10 avoisine donc 108 000 daN. Par conséquent, selon ce mode de réalisation de l'invention, la bouée doit être dimensionnée pour avoir une flottabilité permettant de générer en tête de colonne une tension :
T1 = 108 000 + 20 000 + T = 108 000 + 20 000 + 176 000 = 304 000 daN La flottabilité de la bouée a donc été augmentée de 89 000 daN en valeur absolue ou 41 % en valeur relative par rapport à la pratique antérieure. Cet inconvénient est largement compensé par le gain sur la structure de la conduite et sur sa facilité d'installation en mer, du fait du moindre poids de la conduite.
On décrira maintenant plus en détail la réalisation de certains des équipements de l'installation conforme à l'invention.
Les figures 2 à 6 représentent différents moyens de raccordement en pied. Ces moyens comportent une conduite 30 de liaison en pied, généralement de courte longueur, en pratique moins de 100m. Cette conduite de liaison en pied doit être dimensionnée pour résister à la totalité l'effet de fond inverse. Cette conduite de liaison en pied peut comporter un ou plusieurs tronçons de conduite rigide ou flexible éventuellement combinés entre eux. Elle peut aussi comporter un dispositif mécanique de type joint flexible, dispositif dont la fonction est d'assurer la continuité de l'écoulement tout en autorisant des degrés de liberté en flexion similaires à ceux d'une conduite flexible.
Avantageusement la conduite 30 de liaison en pied est une conduite flexible renforcée selon les techniques précitées de l'art antérieur, afin de résister à l'effet de fond inverse et de supprimer le risque de flambement latéral des nappes d'armure de traction. La structure de cette conduite flexible 30 de liaison en pied est généralement très différente de celle de la conduite flexible verticale 10. Sur la figure 2 et la figure 6, la conduite flexible 30 est raccordée à son extrémité inférieure par un embout 32 à l'embout 35 d'une manchette rigide 34 permettant un raccordement par le haut avec un connecteur vertical 33 placé à l'extrémité de la conduite de production (« flowline ») 2 et coopérant avec un embout adapté 36 de la manchette 34. L'extrémité supérieure du flexible 30 comporte un embout 31 raccordé à l'embout inférieur 6' de la conduite flexible 10, lequel est fixé à un point d'ancrage 6'" par un câble 6". Le point d'ancrage 6'" est solidaire du fond marin 5. Il est dimensionné pour résister à une tension d'arrachement supérieure à la tension T exercée par le pied de la colonne. Le point d'ancrage 6'" est avantageusement une ancre à succion (« succion pile » en anglais) ou une pile d'ancrage par gravité.
La figure 3 montre une variante de raccordement horizontal de la conduite 30 directement dans un connecteur horizontal 33 terminant la conduite de production 2. La figure 4 montre que l'embout inférieur 6' est en fait maintenu par deux câbles 6" fixés à leur extrémité supérieure sur deux de ses côtés, et à leur extrémité inférieure sur une attache articulée 28 du point d'ancrage 6'".
La figure 5 montre une variante utilisant une conduite flexible 30 de liaison en pied, selon laquelle le flexible 30 est à flottabilité répartie, grâce à des bouées 34 entourant le flexible ; ceci a l'avantage de permettre de supporter de larges débattements angulaires de la conduite 10 de part et d'autre de la position verticale.
On a représenté sur les figures 7 à 9 différentes variantes des moyens de raccordement en tête. La figure 7 montre que la conduite flexible 10 présente un embout supérieur T sur lequel se raccorde l'embout inférieur 39 d'une conduite rigide 40 en col de cygne dont l'embout supérieur 41 est raccordé à l'embout inférieur 13 de la conduite flexible 12 de liaison en tête connectée à l'installation de surface. La conduite flexible 12 de liaison en tête est généralement appelée « jumper » par l'homme du métier. Un collier 7" en deux parties faisant butée empêche l'embout T de descendre à travers l'alésage 37 de la bouée 8. L'alésage 37 possède à sa partie inférieure une forme évasée 38 faisant office de limiteur de courbure en cas de débattement angulaire de la conduite 10 par rapport à la bouée. La bouée est avantageusement une structure mécano soudée et compartimentée ; des chambres étanches remplies d'air peuvent être ballastées et déballastées avec de l'eau, de façon à faire varier la flottabilité de la bouée. Dans la variante représentée en figure 8, le col de cygne est supprimé et remplacé par des moyens répartis de flottabilité 44 (bouées entourant le « jumper » flexible 12) ayant pour effet de donner au « jumper » flexible 12 la forme d'un S. L'embout 13 du « jumper » 12 est donc directement fixé à l'embout T de la conduite 10. On a aussi remplacé l'évasement inférieur 38 de l'alésage de la bouée 8 par un limiteur de courbure 42 (« bend stiffener » en anglais) ajouté en partie inférieure de bouée.
Dans la variante représentée en figure 9, la bouée 8 est accrochée au-dessus de la colonne montante, au moyen d'une chaîne 45 (ou équivalent) fixée dans un anneau 47 à la bouée et dans un anneau 46 au col de cygne 40.
On décrira maintenant, en se référant aux figures 10 à 17, une méthode d'installation de l'installation conforme à l'invention. Cette méthode utilise deux bateaux, un bateau 50 de pose de conduites flexibles et un bateau 60 de support.
Le bateau 50 comporte une bobine 52 ou un panier stockant la conduite flexible à poser sous forme enroulée (ou plus exactement une partie de la conduite à enrouler), permettant de dérouler du flexible 10 en le faisant passer sur une poulie de renvoi 54 puis par des moyens d'entraînement 56, avantageusement de type quadri chenille verticale, situés au-dessus du puits central 51 du bateau. Un treuil 53 muni d'un câble annexe 66 sera décrit plus loin (cf. figures 14 à 16) pour la fin de la pose. Le bateau 60 comporte une grue principale 62 ayant la capacité de lever la bouée 8 grâce à un câble 63, et un moyen annexe de traction 64, de type grue ou treuil.
Dans la première étape représentée en figure 10, un câble 57, destiné à tirer la conduite 10 jusqu'à l'intérieur de la bouée 8, est préalablement fixé à l'embout supérieur T de la conduite 10 et tiré à travers la bouée 8 jusqu'au treuil ou grue 64. Dans la deuxième étape représentée en figure 11 , on tire à l'aide du treuil 64 la conduite 10 jusqu'à l'intérieur de la bouée 8 ; simultanément, le bateau de pose dévide la longueur nécessaire de flexible 10.
Dans la troisième étape représentée en figure 12, on solidarise l'embout 7' (qui est passé à travers l'alésage 37 de la bouée 8) avec la bouée à l'aide du collier en deux parties 7".
Dans la quatrième étape représentée en figure 13, on déconnecte le treuil 64 et son câble 57 de l'embout T .
On ne sortirait pas du cadre de la présente invention si, au cours de ces quatre étapes, le treuil 64 utilisé comme moyen annexe de traction était fixé non pas sur le bateau 60, mais plutôt sur la partie supérieure de la bouée 8. Dans ce cas, à la fin de la quatrième étape, le treuil 64 serait avantageusement désolidarisé de la bouée 8 pour être récupéré et chargé sur le bateau 60. On dévide alors complètement le flexible 10 du bateau de pose 50, puis la conduite flexible 30 qui lui est attachée par les embout 6', 31 , puis le col de cygne rigide 34 attaché par les embouts 32, 35.
Dans la cinquième étape représentée en figure 14, on accroche un câble 66 au col de cygne 34, ce qui permet de terminer la descente en dévidant le câble 66 qui se déroule du treuil 53 en passant sur une poulie de renvoi, par exemple, la poulie 54 déjà utilisée pour le renvoi du flexible.
Dans la sixième étape représentée en figure 15, on descend la bouée 8 avec la grue 62, la bouée étant ballastée. On opère la connexion assistée par robot sous-marin (de type connu sous le nom de « ROV ») du câble d'ancrage 6" au point d'ancrage 6'", qui a été pré installé.
Dans la septième étape représentée en figure 16, on poursuit la descente du câble 66 et on opère la connexion verticale du col de cygne 34 avec l'embout 33 de la conduite de production 2 au moyen d'un connecteur automatique et avec l'assistance d'un robot sous-marin. Dans la huitième et dernière étape représentée en figure 17, on déballaste la bouée 8 de manière à obtenir la tension T1 en tête de colonne. Ceci peut se réaliser à partir du bateau de support 60 avec des moyens du type tuyau flexible, pompe et robot sous-marin. L'installation est alors terminée et les navires 50 et 60 peuvent quitter la zone.
Les connexions fluidiques en tête de colonne peuvent être faites dans un deuxième temps, selon des méthodes connues de l'homme du métier, une fois que l'installation de surface 3 a été acheminée sur place.
La méthode d'installation qui vient d'être expliquée présente plusieurs avantages.
Du fait que le bateau de pose 50 ne supporte que la moitié du poids pendu de la conduite 10, le reste étant supporté par le bateau de support 60, il est possible d'utiliser des bateaux de capacité moindre.
Les tensions de pose sont plus faibles par rapport à la pose de conduite rigide déroulée, car les conduites flexibles peut supporter des courbures beaucoup plus faibles que les conduites rigides.
Il est possible de poser la conduite flexible pleine d'eau, soit totalement, soit partiellement, de façon à limiter l'effet de fond inverse pendant l'opération de pose, tant que la tension T n'a pas été appliquée. En effet, la colonne d'eau à l'intérieur de la conduite flexible génère une pression interne qui s'oppose à la pression hydrostatique externe, et réduit l'effet de fond inverse. Il est ainsi possible, en ajustant le niveau d'eau à l'intérieur de la conduite flexible, de réduire et de contrôler en permanence les contraintes axiales de compression supportées par la conduite flexible pendant l'opération de pose, de façon à éviter d'endommager ladite conduite. Une fois la tension T appliquée, la colonne montante peut être vidée par pompage de l'eau ayant servi lors des phases préalables d'installation, sans risque d'endommager la conduite flexible verticale. On ne sortirait pas du cadre de la présente invention en remplaçant l'eau par un autre fluide, tel par exemple qu'un hydrocarbure du type gazole. Cette solution serait particulièrement adaptée à la pose de conduites flexibles de transport de gaz, car la présence d'eau ou d'humidité à l'intérieur de ces conduites est susceptible de provoquer ultérieurement la formation de bouchons d'hydrates. La pose d'une conduite flexible montante selon la présente invention est beaucoup plus rapide que celle d'une tour hybride rigide, et la souplesse de la méthode permet la pose dans des conditions de mer plus mauvaises que celles pour la pose de tours hybrides rigides.

Claims

REVENDICATIONS
1) Installation de colonne montante réalisée avec une conduite flexible (10) de type non lié, ladite conduite comprenant de l'intérieur vers l'extérieur au moins une gaine d'étanchéité interne (18) et deux nappes (22, 24) de fils d'armure de traction enroulées à pas long, la conduite (10) étant disposée verticalement entre d'une part une connexion mécanique (7', 7", 44) en tête avec une bouée immergée (8) et d'autre part une connexion mécanique (6', 6", 6'") en pied avec le fond marin (5), des connexions fluidiques (12, 30) étant prévues en tête et en pied pour relier la colonne montante d'une part avec des équipements de surface (3) et d'autre part avec des équipements de fond (2), caractérisée en ce que le pied de la colonne est à au moins 1000 m de profondeur où il subit un effet de fond inverse maximum calculable F et en ce que la bouée (8) est dimensionnée pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 50% de l'effet de fond inverse maximum calculable F développé en pied de colonne.
2) Installation selon la revendication 1 , caractérisée en ce que la bouée (8) est dimensionnée pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 75% de l'effet de fond inverse maximum calculable F développé en pied de colonne.
3) Installation selon la revendication 1 , caractérisée en ce que la bouée (8) est dimensionnée pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 100% de l'effet de fond inverse maximum calculable F développé en pied de colonne.
4) Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la gaine d'étanchéité interne (18) est polymérique. 5) Installation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la conduite (10) comprend une gaine polymérique externe d'étanchéité (26) entourant les nappes de fils d'armure de traction (22, 24).
6) Installation selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la pression hydrostatique s'applique directement sur la face externe de la gaine d'étanchéité interne (18).
7) Installation selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la conduite (10) comprend, entre la gaine d'étanchéité interne (18) et les nappes de fils d'armure de traction (22, 24), une voûte de pression interne (20) réalisée par un enroulement hélicoïdal à pas court de fil, destinée à résister à la pression interne du fluide transporté.
8) Installation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que les nappes de fils d'armure de traction (22, 24) comprennent des nappes de fils à base de fibres de carbone.
9) Installation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que la connexion mécanique en pied comporte au moins un câble d'ancrage (6") reliant le bas de la conduite à un point d'ancrage (6'") fixé sur le fond marin (5).
10) Installation selon l'une quelconque des revendications 1 à 9, caractérisée en ce que la connexion fluidique en pied comporte une conduite flexible de liaison en pied (30) reliant le bas de la colonne à une conduite de production (2).
11) Installation selon l'une quelconque des revendications 9 ou 10, caractérisée en ce que la connexion fluidique en pied se fait par un embout inférieur (6') de liaison fixé en bas de la conduite (10), et en ce que le au moins un câble d'ancrage (6") est solidarisé à son extrémité supérieure audit embout inférieur (6') de liaison.
12) Installation selon la revendication 10, caractérisée en ce que ladite conduite flexible de. liaison en pied (30) est à flottabilité répartie.
13) Installation selon l'une quelconque des revendications 1 à 12, caractérisée en ce que la bouée (8) comporte un alésage central (37) de passage de la conduite (10) de diamètre supérieur à celui d'un embout supérieur (7') de liaison de la conduite (10).
14) Installation selon la revendication 13, caractérisée en ce que la connexion mécanique en tête comporte un collier (7") en plusieurs parties servant de butée entre la partie supérieure de la bouée (8) et l'embout supérieur (7') de liaison de la conduite (10).
15) Installation selon l'une quelconque des revendications 13 ou 14, caractérisée en ce qu'un dispositif limiteur de courbure (38, 42) est prévu au bas de l'alésage (37) de la bouée (8).
16) Installation selon l'une quelconque des revendications 1 à 12, caractérisée en ce que la connexion mécanique en tête (71, 44) comporte une ligne de traction (44) reliant le bas de la bouée (8) à un élément (40) solidaire du haut de la conduite (10).
17) Installation selon la revendication 16, caractérisée en ce que l'élément (40) solidaire du haut de la conduite est un col de cygne servant à la connexion fluidique en tête.
18) Procédé de mise en place d'une installation de colonne montante réalisée avec une conduite flexible (10) de type non lié, ladite conduite comprenant de l'intérieur vers l'extérieur au moins une gaine d'étanchéité interne (18) et deux nappes (22, 24) de fils d'armure de traction enroulées à pas long, la conduite (10) devant être disposée verticalement entre d'une part une connexion mécanique (7', 7", 44) en tête avec une bouée immergée (8) et d'autre part une connexion mécanique (6', 6", 6'") en pied avec le fond marin, des connexions fluidiques (12, 30) devant être prévues en tête et en pied pour relier la colonne montante d'une part avec des équipements de surface (3) et d'autre part avec des équipements de fond (2), caractérisé en ce qu'on dispose le pied de la colonne à au moins 1000 m de profondeur où il subit un effet de fond inverse maximum calculable F et en ce qu'on dimensionne la bouée (8) pour entraîner en pied de la colonne montante une tension de réaction T supérieure à au moins 50% de l'effet de fond inverse maximum calculable F développé en pied de colonne.
19) Procédé selon la revendication 18, caractérisé en ce qu'on utilise pour la pose de l'installation un premier navire (50) à partir duquel est déroulée la conduite flexible (10) et un second navire (60) de support de la bouée (8) susceptible de supporter la bouée ballastée (8) entre une position supérieure près de la surface et une position inférieure, en ce qu'on attache une première extrémité (7') de la conduite flexible (10) déroulée à la bouée (8) en position supérieure, en ce qu'on déroule la conduite flexible de manière qu'elle pende entre le premier navire (50) et le second navire (60), en ce qu'on prolonge une seconde extrémité (6') de la conduite flexible (10) déroulée par un flexible de liaison (30) muni d'un raccord fluidique (34), en ce qu'on utilise une ligne d'accrochage (66) pour accrocher ledit raccord (34) au premier navire de pose (50) et en ce qu'on déroule cette ligne d'accrochage (66) pour faire descendre ledit raccord (34) sensiblement au niveau de ladite seconde extrémité (6'), en ce qu'on fait descendre ledit raccord (34) et ladite seconde extrémité (6') jusqu'au voisinage du fond (5), en ce qu'on procède à la connexion mécanique de ladite seconde extrémité (6') et à la connexion fluidique dudit raccord (34), et en ce qu'on déballaste la bouée (8).
20) Procédé selon la revendication 19, caractérisé en ce qu'on remplit la conduite flexible (10) d'eau pendant la pose.
PCT/FR2008/000079 2007-01-26 2008-01-23 Installation de conduite montante flexible de transport d'hydrocarbures WO2008107559A2 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE602008003103T DE602008003103D1 (de) 2007-01-26 2008-01-23 Rohrinstallation mit flexiblem steiger zur förderung von kohlenwasserstoffen
BRPI0808000-3A BRPI0808000B1 (pt) 2007-01-26 2008-01-23 Installation of ascendant column constructed with a flexible type of non-connected conduct and placement procedure in the place of a up column installation.
MX2009007739A MX2009007739A (es) 2007-01-26 2008-01-23 Instalacion de tuberia ascendente flexible para transportar hidrocarburos.
AU2008223711A AU2008223711B2 (en) 2007-01-26 2008-01-23 Flexible riser pipe installation for conveying hydrocarbons
CA2676001A CA2676001C (fr) 2007-01-26 2008-01-23 Installation de conduite montante flexible de transport d'hydrocarbures
DK08761795.7T DK2122114T3 (da) 2007-01-26 2008-01-23 Fleksibel stigrørsinstallation til transport af hydrocarboner
EP08761795A EP2122114B1 (fr) 2007-01-26 2008-01-23 Installation de conduite montante flexible de transport d'hydrocarbures
US12/524,045 US8733446B2 (en) 2007-01-26 2008-01-23 Flexible riser pipe installation for conveying hydrocarbons
AT08761795T ATE485438T1 (de) 2007-01-26 2008-01-23 Rohrinstallation mit flexiblem steiger zur förderung von kohlenwasserstoffen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0700549A FR2911907B1 (fr) 2007-01-26 2007-01-26 Installation de conduite montante flexible de transport d'hydrocarbures.
FR0700549 2007-01-26

Publications (2)

Publication Number Publication Date
WO2008107559A2 true WO2008107559A2 (fr) 2008-09-12
WO2008107559A3 WO2008107559A3 (fr) 2009-03-12

Family

ID=38325350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000079 WO2008107559A2 (fr) 2007-01-26 2008-01-23 Installation de conduite montante flexible de transport d'hydrocarbures

Country Status (12)

Country Link
US (1) US8733446B2 (fr)
EP (1) EP2122114B1 (fr)
AT (1) ATE485438T1 (fr)
AU (1) AU2008223711B2 (fr)
BR (1) BRPI0808000B1 (fr)
CA (1) CA2676001C (fr)
DE (1) DE602008003103D1 (fr)
DK (1) DK2122114T3 (fr)
FR (1) FR2911907B1 (fr)
MX (1) MX2009007739A (fr)
MY (1) MY147110A (fr)
WO (1) WO2008107559A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2473018A (en) * 2009-08-26 2011-03-02 2H Offshore Engineering Ltd Hydrocarbon production system
GB2475788A (en) * 2009-11-25 2011-06-01 Subsea 7 Ltd Connection of a rigid riser to a flexible riser carrying buoyancy devices
US9909368B2 (en) 2008-10-09 2018-03-06 Ge Oil & Gas Uk Limited Flexible pipe and a method for providing buoyancy to a jumper or riser assembly

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023222A2 (fr) * 2007-08-13 2009-02-19 Paul Boudreau Systèmes de tension flottants pour tubes prolongateurs offshore et leurs procédés d'utilisation
FR2921994B1 (fr) * 2007-10-03 2010-03-12 Technip France Methode d'installation d'une conduite tubulaire sous-marine
FR2926347B1 (fr) * 2008-01-11 2009-12-18 Technip France Conduite flexible pour le transport des hydrocarbures en eau profonde
FR2930587A1 (fr) * 2008-04-24 2009-10-30 Saipem S A Sa Installation de liaison fond-surface d'une conduite rigide avec une conduite flexible a flottabilite positive et une piece de transition d'inertie
FR2932839B1 (fr) * 2008-06-23 2010-08-20 Technip France Installation de transport sous-marin d'hydrocarbures.
FR2938001B1 (fr) * 2008-11-05 2010-12-31 Technip France Procede de montage d'une tour d'exploitation d'un fluide dans une etendue d'eau et tour d'exploitation associee.
AP3176A (en) 2008-11-05 2015-03-31 Technip France Method for assembling an operating rig for a fluidin a body of water and associated operating rig
GB0900101D0 (en) * 2009-01-07 2009-02-11 Acergy Us Inc Methods and associated apparatus of constructing and installing rigid riser structures
BRPI0805633A2 (pt) * 2008-12-29 2010-09-14 Petroleo Brasileiro Sa sistema de riser hìbrido auto-sustentado aperfeiçoado e método de instalação
FR2952671B1 (fr) * 2009-11-17 2011-12-09 Saipem Sa Installation de liaisons fond-surface disposees en eventail
US8657531B2 (en) * 2010-03-16 2014-02-25 Technip France Installation method of flexible pipe with subsea connector, utilizing a pull down system
SG185461A1 (en) * 2010-07-01 2012-12-28 Emd Millipore Corp Rigid disposable flow path
US8960302B2 (en) * 2010-10-12 2015-02-24 Bp Corporation North America, Inc. Marine subsea free-standing riser systems and methods
FR2967451B1 (fr) 2010-11-17 2012-12-28 Technip France Tour d'exploitation de fluide dans une etendue d'eau et procede d'installation associe.
BRPI1100228B1 (pt) * 2011-02-18 2021-01-19 Petroleo Brasileiro S.A. - Petrobras escotilha para monitoramento e inspeção de riser flexível
FR2971762B1 (fr) * 2011-02-22 2015-05-01 Technip France Systeme de transfert d'un fluide, notamment du gaz de petrole liquefie entre une premiere installation de surface et une deuxieme installation de surface
GB2490113A (en) * 2011-04-18 2012-10-24 Magma Global Ltd Composite riser deployment configurations
US9334695B2 (en) * 2011-04-18 2016-05-10 Magma Global Limited Hybrid riser system
EP2704945B1 (fr) * 2011-05-06 2017-10-25 National Oilwell Varco Denmark I/S Système d'extraction de pétrole en mer
EP2718531B2 (fr) * 2011-06-10 2023-03-01 Magma Global Limited Système de tube goulotte
GB201120534D0 (en) * 2011-11-29 2012-01-11 Wellstream Int Ltd Buoyancy element and method
CN102418480B (zh) * 2011-12-24 2013-08-21 大连理工大学 一种超深海水下立管支撑装置
FR2988424B1 (fr) * 2012-03-21 2014-04-25 Saipem Sa Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles a flottabilite positive
US20140374117A1 (en) * 2012-05-17 2014-12-25 Geir Aune Methods and Means for Installing, Maintaining and Controlling a Self-Standing Riser System
US9303463B2 (en) * 2012-06-06 2016-04-05 National Oilwell Varco Denmark I/S Riser and an offshore system
GB201216344D0 (en) * 2012-09-13 2012-10-24 Magma Global Ltd Connection apparatus
US9470350B2 (en) * 2013-07-23 2016-10-18 Spencer Composites Corporation Metal-to-composite interfaces
AU2013405843B2 (en) * 2013-11-20 2018-01-18 Equinor Energy As Offshore flexible line installation and removal
FR3027092B1 (fr) * 2014-10-10 2016-10-21 Technip France Dispositif de raccordement deformable de conduites sous-marines
WO2016137718A1 (fr) * 2015-02-26 2016-09-01 Exxonmobil Upstream Research Company Colonne montante de forage à flottabilité répartie
FR3062211B1 (fr) * 2017-01-24 2021-12-24 Technip France Procede de controle non destructif d'une ligne flexible et dispositif de controle non destructif associe
US11421486B2 (en) * 2017-07-03 2022-08-23 Subsea 7 Norway As Offloading hydrocarbons from subsea fields
US20190003290A1 (en) * 2017-07-03 2019-01-03 Exmar Offshore Company Techniques for improved oil recovery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR607421A (fr) 1925-12-03 1926-07-02 Perfectionnements aux véhicules à chenilles
GB2145135A (en) 1983-08-15 1985-03-20 Conoco Inc Method and apparatus for production of subsea hydrocarbons using a floating vessel
WO1998025063A1 (fr) 1996-12-04 1998-06-11 Coflexip Conduite flexible a tube interne metallique ondule etanche aux gaz
WO2002031394A1 (fr) 2000-10-10 2002-04-18 Nkt Flexibles I/S Tuyau arme et souple
WO2003083343A1 (fr) 2002-03-28 2003-10-09 Technip France Dispositif pour limiter le flambage lateral des nappes d'armures d'une conduite flexible
WO2005004030A2 (fr) 2003-06-25 2005-01-13 Yamaha Corporation Methode d'enseignement de la musique

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507672A1 (fr) 1981-06-12 1982-12-17 Inst Francais Du Petrole Colonne montante pour les grandes profondeurs d'eau
FR2768457B1 (fr) * 1997-09-12 2000-05-05 Stolt Comex Seaway Dispositif de transport sous-marin de produits petroliers a colonne montante
FR2775051B1 (fr) * 1998-02-18 2000-03-24 Coflexip Conduite flexible pour grande profondeur
GB2346188A (en) * 1999-01-29 2000-08-02 2H Offshore Engineering Limite Concentric offset riser
FR2790054B1 (fr) 1999-02-19 2001-05-25 Bouygues Offshore Procede et dispositif de liaison fond-surface par conduite sous marine installee a grande profondeur
NO994094D0 (no) * 1999-08-24 1999-08-24 Aker Riser Systems As Stigerörsanordning
FR2809136B1 (fr) 2000-05-19 2002-11-08 Saibos Construcoes Maritimas L Installation de liaison fond-surface pour conduite sous- marine, dispositif de liaison entre un flotteur et un riser, et procede d'intervention dans ledit riser
OA12417A (en) 2001-01-08 2006-04-18 Stolt Offshore Sa Marine riser tower.
WO2002063128A1 (fr) 2001-01-08 2002-08-15 Stolt Offshore Sa Tour de remontee marine
FR2821143B1 (fr) 2001-02-19 2003-05-02 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur du type tour-hybride
FR2826051B1 (fr) 2001-06-15 2003-09-19 Bouygues Offshore Installation de liaison fond-surface d'une conduite sous-marine reliee a un riser par au moins un element de conduite flexible maintenu par une embase
FR2876142B1 (fr) 2004-10-05 2006-11-24 Technip France Sa Dispositif de liaison superieure entre deux conduites sous marines de transport de fluide
FR2877069B1 (fr) 2004-10-21 2008-03-14 Technip France Sa Conduite flexible stabilisee pour le transport des hydrocarbures

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR607421A (fr) 1925-12-03 1926-07-02 Perfectionnements aux véhicules à chenilles
GB2145135A (en) 1983-08-15 1985-03-20 Conoco Inc Method and apparatus for production of subsea hydrocarbons using a floating vessel
WO1998025063A1 (fr) 1996-12-04 1998-06-11 Coflexip Conduite flexible a tube interne metallique ondule etanche aux gaz
WO2002031394A1 (fr) 2000-10-10 2002-04-18 Nkt Flexibles I/S Tuyau arme et souple
WO2003083343A1 (fr) 2002-03-28 2003-10-09 Technip France Dispositif pour limiter le flambage lateral des nappes d'armures d'une conduite flexible
WO2005004030A2 (fr) 2003-06-25 2005-01-13 Yamaha Corporation Methode d'enseignement de la musique

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909368B2 (en) 2008-10-09 2018-03-06 Ge Oil & Gas Uk Limited Flexible pipe and a method for providing buoyancy to a jumper or riser assembly
GB2473018A (en) * 2009-08-26 2011-03-02 2H Offshore Engineering Ltd Hydrocarbon production system
GB2475788A (en) * 2009-11-25 2011-06-01 Subsea 7 Ltd Connection of a rigid riser to a flexible riser carrying buoyancy devices
WO2011064591A2 (fr) 2009-11-25 2011-06-03 Subsea 7 Limited Configuration de colonne montante
WO2011064591A3 (fr) * 2009-11-25 2011-12-29 Subsea 7 Limited Configuration de colonne montante
US8905143B2 (en) 2009-11-25 2014-12-09 Subsea 7 Limited Riser configuration

Also Published As

Publication number Publication date
MX2009007739A (es) 2009-07-27
MY147110A (en) 2012-10-31
AU2008223711B2 (en) 2013-03-28
ATE485438T1 (de) 2010-11-15
FR2911907A1 (fr) 2008-08-01
BRPI0808000B1 (pt) 2017-11-14
EP2122114A2 (fr) 2009-11-25
DE602008003103D1 (de) 2010-12-02
DK2122114T3 (da) 2011-02-14
WO2008107559A3 (fr) 2009-03-12
FR2911907B1 (fr) 2009-03-06
EP2122114B1 (fr) 2010-10-20
BRPI0808000A2 (pt) 2014-06-17
AU2008223711A1 (en) 2008-09-12
CA2676001C (fr) 2014-11-18
US20100018717A1 (en) 2010-01-28
US8733446B2 (en) 2014-05-27
CA2676001A1 (fr) 2008-09-12

Similar Documents

Publication Publication Date Title
EP2122114B1 (fr) Installation de conduite montante flexible de transport d'hydrocarbures
EP2329175B1 (fr) Installation de conduite montante flexible de transport d'hydrocarbures pour grande profondeur
EP3601862B1 (fr) Conduite flexible avec nappes d'armures metalliques et nappes d'armures composites
EP1073823B1 (fr) Procede et dispositif de liaison fond-surface par conduite sous-marine installee a grande profondeur
EP1913229B1 (fr) Installation sous-marine équipée d'une conduite flexible à courbure contrôlée
EP2342488B1 (fr) Procédé de montage d'une tour d'exploitation d'un fluide dans une étendue d'eau et tour d'exploitation associée
EP1078144B1 (fr) Conduite hybride pour grande profondeur
OA12630A (fr) Installation de liaison d'une conduite sous-marinereliée à un riser.
EP2785952B1 (fr) Installation de liaisons fond-surface flexibles multiples sur au moins deux niveaux
EP2148974B1 (fr) Installation de liaison fond-surface comprenant un lien souple entre un support flottant et l'extremite superieure d'une conduite rigide en subsurface
FR2809136A1 (fr) Installation de liaison fond-surface pour conduite sous- marine, dispositif de liaison entre un flotteur et un riser, et procede d'intervention dans ledit riser
EP2344796A2 (fr) Procédé de mise en place d'une tour d'exploitation d'un fluide dans une étendue d'eau avec un engin de traction
EP3022477A1 (fr) Embout de connexion d'une conduite flexible, et conduite flexible associée
EP2640923B1 (fr) Tour d'exploitation de fluide dans une étendue d'eau et procédé d'installation associé.
OA16429A (fr) Tour d'exploitation de fluide dans une étendue d'eau et procédé d'installation associé.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08761795

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008761795

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008223711

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2676001

Country of ref document: CA

Ref document number: MX/A/2009/007739

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12009501439

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 4418/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008223711

Country of ref document: AU

Date of ref document: 20080123

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12524045

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0808000

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090724