WO2008106813A1 - Sensor made of organic materials for the measurement of mechanical variables and the subsequent evaluation thereof - Google Patents

Sensor made of organic materials for the measurement of mechanical variables and the subsequent evaluation thereof Download PDF

Info

Publication number
WO2008106813A1
WO2008106813A1 PCT/CH2008/000082 CH2008000082W WO2008106813A1 WO 2008106813 A1 WO2008106813 A1 WO 2008106813A1 CH 2008000082 W CH2008000082 W CH 2008000082W WO 2008106813 A1 WO2008106813 A1 WO 2008106813A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
intrinsically conductive
printing
sensor
strain gauge
Prior art date
Application number
PCT/CH2008/000082
Other languages
German (de)
French (fr)
Inventor
Udo Lang
Jürg Dual
Original Assignee
Eth Zurich
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eth Zurich filed Critical Eth Zurich
Publication of WO2008106813A1 publication Critical patent/WO2008106813A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • G01L1/2293Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges of the semi-conductor type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B1/00Measuring instruments characterised by the selection of material therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Definitions

  • the present invention relates to a sensor for measuring dynamic and static mechanical magnitudes according to the preamble of claim 1, to a method for its production and to a use according to claim 5.
  • the present invention is concerned with the measurement of dynamic and static mechanical magnitudes.
  • the signal supplied by the sensor can be transmitted by means of a measuring bridge (Wheatstone bridge) and an amplifier to a transmitting device for wireless reading by external reading devices, to a display or only to tapping contacts.
  • All modules of the system shown in FIG. 1 are said to consist of organic materials due to the general advances in the field of organic electronics.
  • FIG. 2 shows how accelerations can be measured with the aid of a bending beam 1 with seismic mass 2 at the end. Due to the inertia of the seismic mass, the beam 1 is deflected, which leads to strains in the edge, which can be measured by an intrinsically conductive polymer 3, which is structured meandering into a strain gauge (DMS).
  • the further modules 4 shown in FIG. 1, which comprise a measuring bridge, an amplifier and a transmitting device, an optical display or electrodes, can be integrated on the substrate 5.
  • a frame 6 can be provided which simplifies the handling of the overall system and can protect the bending beam against mechanical influences in the substrate plane.
  • FIG. 3 shows a possibility for measuring pressures.
  • a membrane 7 is deformed by pressure differences, which leads to strains on the membrane surface, which in turn can be measured with a DMS.
  • the sensor effect is based in both cases on the piezoresistive effect in electrical conductors.
  • the elongation changes the length and cross-sectional area and thus also the resistance.
  • the piezoresistive effect is to be exploited in intrinsically conductive organic conductors.
  • the document US Pat. No. 5,505,093 discloses a process with which, on the one hand, solvent-based intrinsically conductive polymers, such as polyaniline, can be structured into DMS.
  • non-intrinsically conductive solvent-based polymers such as polystyrene are partially rendered conductive by ion implantation.
  • the production of lateral structures in the micron range takes place by means of photoresist layers as masking layers and subsequent dry etching by means of reactive ion etching.
  • the primary objective of this research is to produce these RFID tags for wholesalers to identify individual goods.
  • RFID tags are achieved. However, no sensor elements are integrated yet.
  • the present invention therefore has for its object to provide sensors for measuring mechanical magnitudes, which can be combined with elements for evaluation to form a new overall system.
  • sensors In order to achieve a low-cost production, such materials and methods are to be used, which are compatible with the aforementioned radio tags.
  • sensors having the features designated in claim 1.
  • By embedding mechanical sensors for measuring dynamic or static mechanical magnitudes it is possible to check, for example, during shipment of packages with sensitive contents, whether inadmissible stresses such as falls or impacts have occurred on the transport path when the system is to measure accelerations according to claim 10.
  • the system can also be used according to claim 10.
  • FIG. 1 shows a block diagram of the basic mode of operation when the sensor is in a
  • FIG. 4 process flow of production:
  • FIG. 6 structuring of the substrate by laser or water cutting
  • FIG. 8 Structuring of the Substrate by Punching
  • FIG. 9 Membrane Production
  • FIG. 10 Microstructuring of intrinsically conductive polymers by so-called lift-off
  • FIG. 11 Microstructuring of intrinsically conductive polymers by inkjet printing
  • FIG. 12 Microstructuring of Intrinsically Conductive Polymers by Imprinting
  • FIG. 13 Microstructuring of Intrinsically Conductive Polymers by Printing Methods
  • FIG. 14 Microstructuring of Intrinsically Conductive Polymers by Vapor Deposition
  • the manufacture of the sensor is shown schematically in FIGS. 4 and 5.
  • a first possibility consists in firstly structuring the substrate 5 and then first applying the organic functional layers 3 and 4; the second possibility is the reverse process order.
  • the substrate 5 may consist of thermoplastic polyesters such as polyethylene terephthalate (PET) or polyimide (PI), for example, but is not limited thereto. However, when selecting the substrate material, it must be ensured that it has sufficient flexibility to be used for roll-to-roll production.
  • FIG. 6 shows a first variant for structuring the substrate 5
  • FIG. 7 shows a possible structuring of the substrate 5 when the substrate 5 consists of photolithographically structurable polymers such as the polyimide PI 2723 from HD Microsystems GmbH (Bad Homburg, Germany).
  • the polymer is first applied to another auxiliary substrate 9. Methods for this purpose are distributing by means of a doctor blade or pipetting up and then allowing to run.
  • the auxiliary substrate must be flexible so that it can also be used in printing presses in a roll-to-roll process.
  • a mask 10 is required which covers the areas not to be exposed during the irradiation with UV light 11. Subsequently, it is developed with a developer solution, whereby the later form stops and other areas are removed.
  • the auxiliary substrate 9 should be chosen so that it also dissolves in the developer and thus only the main substrate 5 stops.
  • FIG. 8 shows the possibility that the mold 1, 2 is defined by punching out of the substrate 5 with the aid of a correspondingly shaped tool 12. In order to allow roll-to-roll production, material which later does not belong to the substrate 5 is punched out.
  • Figure 9 shows a roll-to-roll fabrication compatible method of making a membrane.
  • a heated stamp 13 is pressed into the flexible thermoplastic substrate 5 so far that the softened polymer is partially displaced until only a thin layer remains and thus creates a membrane.
  • the previous steps involved the structuring of the substrate 5.
  • the structuring of the sensitive material 3 will be described in the following steps.
  • the intrinsically conductive and in aqueous dispersion present poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT / PSS) or other intrinsically conductive polymers can be used.
  • FIG. 10 shows a structuring option if the intrinsically conductive polymer 3 and the substrate 5 can not be dissolved in organic solvents. This is the case, for example, with PEDOT / PSS.
  • the method used is in the field of In the process, a photoresist layer 14 is first photolithographically patterned on the substrate and subsequently the intrinsically conductive polymer 3 is deposited by spin-coating, spray coating or pattering, after drying the layer either in air or by heat As with a hot plate or a hair dryer, the layer composite is immersed in organic solvent, whereby the photoresist areas 14 and other layers located thereon are dissolved in.
  • the said method was presented in [3].
  • Figure 11 shows another possibility.
  • the intrinsically conductive polymer 3 can also be deposited as defined by an ink jet printer 15. It is a cost effective method because complicated photolithography steps can be dispensed with.
  • FIG. 12 shows another cost-effective way of depositing.
  • a structured stamp 16 for example of polydimethylsiloxane (PDMS)
  • PDMS polydimethylsiloxane
  • Figure 13 shows a process which is very suitable for roll-to-roll production.
  • the structures are printed on the substrate 5 by, for example, a cylinder 17 using standard printing methods such as flexographic printing, offset printing, gravure printing or screen printing.
  • Wireless tags without sensor function produced by this method will be launched in the near future by PoIyIC (Fürth, Germany).
  • FIG. 14 shows a structuring possibility for organic substances whose molecules consist only of short chains and can thus be vaporized.
  • a shadow mask 18 areas of the substrate 5 to which no material is to be vapor-deposited are covered.
  • Another possible structuring of the intrinsically conductive polymer 3 results when the substrate material 5 is transparent to Nd-YAG laser.
  • [5] it is described how structures made of PEDOT / PSS can be produced by Nd. ⁇ AG laser cutting.
  • the previous embodiments have shown the variant of the process sequence shown in FIG.
  • the other variant in FIG. 5 is based on first applying one of the possibilities shown in FIGS. 10-14 for structuring the intrinsically conductive polymer 3 and then, in a second step, one of the possibilities for structuring the substrate shown in FIGS 5th

Abstract

The invention relates to a sensor, which is made of organic materials and can be used for the measurement of static and dynamic mechanical variables. Accelerations are measured by means of a strain gauge beam 1 having a seismic mass 2 at the end, wherein both are made of a flexible polymer. Due to the inertia of the seismic mass, the beam is deflected, resulting in expansion in the edge of the strain gauge beam 1, wherein the expansion can be measured by means of an intrinsically conductive polymer 3 that is structured into a strain gauge. The further modules 4, which comprise a measurement bridge, an amplifier circuit, a transmitter, and an optical display, or electrodes, are integrated on the substrate 5. A frame 6 may also be provided, which simplifies the handling of the overall system and may protect the strain gauge beam from lateral influences. The substrate 5 and the frame 6 are made of the same flexible polymer as the strain gauge beam 1 and the seismic mass 2.

Description

Sensor bestehend aus organischen Materialien zur Messung mechanischer Grossen und deren nachfolgende Auswertung Sensor consisting of organic materials for measuring mechanical quantities and their subsequent evaluation
Die vorliegende Erfindung betrifft einen Sensor zur Messung dynamischer und statischer mechanischer Grossen nach dem Oberbegriff des Anspruchs 1 , Verfahren zu dessen Herstellung sowie einer Verwendung nach Anspruch 5.The present invention relates to a sensor for measuring dynamic and static mechanical magnitudes according to the preamble of claim 1, to a method for its production and to a use according to claim 5.
Die vorliegende Erfindung befasst sich mit der Messung dynamischer und statischer mechanischer Grossen. Wie in Figur 1 prinzipiell gezeigt kann das vom Sensor gelieferte Signal mit Hilfe einer Messbrücke (Wheatstone Brücke) und eines Verstärkers an eine Sendeeinrichtung zur drahtlosen Auslesung durch externe Leseeinrichtungen, an eine Anzeige oder nur an Kontakte zum Abgreifen übertragen werden. Alle Module des in Figur 1 gezeigten Systems sollen dabei aufgrund der allgemeinen Forschungsfortschritte im Bereich der organischen Elektronik aus organischen Materialien bestehen.The present invention is concerned with the measurement of dynamic and static mechanical magnitudes. As shown in principle in FIG. 1, the signal supplied by the sensor can be transmitted by means of a measuring bridge (Wheatstone bridge) and an amplifier to a transmitting device for wireless reading by external reading devices, to a display or only to tapping contacts. All modules of the system shown in FIG. 1 are said to consist of organic materials due to the general advances in the field of organic electronics.
In Figur 2 wird gezeigt, wie Beschleunigungen mit Hilfe eines Biegebalkens 1 mit seismischer Masse 2 am Ende gemessen werden können. Durch die Trägheit der seismischen Masse wird der Balken 1 ausgelenkt, was zu Dehnungen im Rand führt, die durch ein intrinsisch leitfähiges Polymer 3, das mäanderförmig zu einem Dehnmessstreifen (DMS) strukturiert ist, gemessen werden können. Die in Figur 1 gezeigten weiteren Module 4, die eine Messbrücke, einen Verstärker sowie eine Sendeeinrichtung, eine optische Anzeige oder Elektroden umfassen, können auf dem Substrat 5 integriert werden. Es kann zusätzlich ein Rahmen 6 vorgesehen werden, der die Handhabung des Gesamtsystems vereinfacht und den Biegebalken vor mechanischen Einwirkungen in der Substratebene schützen kann. Figur 3 zeigt eine Möglichkeit zur Messung von Drücken. Dabei wird eine Membran 7 durch Druckunterschiede deformiert, was zu Dehnungen auf der Membranoberfläche führt, die wiederum mit einem DMS gemessen werden können. Der Sensoreffekt beruht dabei in beiden Fällen auf dem piezoresistiven Effekt in elektrischen Leitern. Dabei ändert sich durch die Dehnung Länge und Querschnittsfläche und somit auch der Widerstand. In der vorliegenden Erfindung soll der piezoresistive Effekt in intrinsisch leitfähigen organischen Leitern ausgenutzt werden. Hierzu ist in der Schrift US 5,505,093 ein Verfahren offenbart, mit dem zum einen lösungsmittelbasierte intrinsisch leitfähige Polymere wie Polyanilin zu DMS strukturiert werden können. Zum anderen werden nicht intrinsisch leitfähige lösungsmittelbasierte Polymere wie Polystyrol durch lonenimplantierung bereichsweise leitfähig gemacht. Die Herstellung von lateralen Strukturen im Mikronbereich erfolgt durch Fotolackschichten als Maskierschichten und anschliessendem Trockenätzen mittels reaktivem lonenätzen.FIG. 2 shows how accelerations can be measured with the aid of a bending beam 1 with seismic mass 2 at the end. Due to the inertia of the seismic mass, the beam 1 is deflected, which leads to strains in the edge, which can be measured by an intrinsically conductive polymer 3, which is structured meandering into a strain gauge (DMS). The further modules 4 shown in FIG. 1, which comprise a measuring bridge, an amplifier and a transmitting device, an optical display or electrodes, can be integrated on the substrate 5. In addition, a frame 6 can be provided which simplifies the handling of the overall system and can protect the bending beam against mechanical influences in the substrate plane. FIG. 3 shows a possibility for measuring pressures. In this case, a membrane 7 is deformed by pressure differences, which leads to strains on the membrane surface, which in turn can be measured with a DMS. The sensor effect is based in both cases on the piezoresistive effect in electrical conductors. In this case, the elongation changes the length and cross-sectional area and thus also the resistance. In the present invention, the piezoresistive effect is to be exploited in intrinsically conductive organic conductors. For this purpose, the document US Pat. No. 5,505,093 discloses a process with which, on the one hand, solvent-based intrinsically conductive polymers, such as polyaniline, can be structured into DMS. On the other hand, non-intrinsically conductive solvent-based polymers such as polystyrene are partially rendered conductive by ion implantation. The production of lateral structures in the micron range takes place by means of photoresist layers as masking layers and subsequent dry etching by means of reactive ion etching.
In den letzten Jahren ist es durch die Fortschritte im Bereich intrinsisch leitfähiger Polymere sowie organischer Halbleiter möglich geworden, funktionsfähige elektronischeIn recent years, progress has been made in the field of intrinsically conductive polymers as well as organic semiconductors to become functional electronic ones
Schaltungen für Funketiketten komplett aus diesen Materialien herzustellen [1 , 2].To manufacture circuits for radio tags completely from these materials [1, 2].
Vorrangiges Ziel dieser Forschungen ist es, diese Funketiketten für den Grosshandel zur Identifizierung einzelner Waren herzustellen. Durch den Einsatz von organischenThe primary objective of this research is to produce these RFID tags for wholesalers to identify individual goods. Through the use of organic
Materialien und Verfahren zur Massenfertigung wie Druckmaschinen, die eine Fertigung von Rolle-zu-Rolle erlauben, können äusserst günstige Preise der einzelnenMaterials and processes for mass production, such as printing presses, which allow roll-to-roll production, can offer extremely low prices to the individual
Funketiketten erzielt werden. Dabei sind aber noch keine Sensorelemente integriert.RFID tags are achieved. However, no sensor elements are integrated yet.
Die vorliegende Erfindung hat daher zur Aufgabe, Sensoren zur Messung mechanischer Grossen bereitzustellen, die mit Elementen zur Auswertung zu einem neuen Gesamtsystem kombiniert werden können. Um eine preisgünstige Fertigung zu erreichen, sollen solche Materialien und Verfahren zur Anwendung kommen, die kompatibel mit den vorgenannten Funketiketten sind. Dies wird durch Sensoren mit den in Anspruch 1 bezeichneten Merkmalen erreicht. Durch die Einbettung mechanischer Sensoren zur Messung dynamischer oder statischer mechanischer Grossen kann beispielsweise beim Versand von Paketen mit empfindlichem Inhalt überprüft werden, ob es auf dem Transportweg zu unzulässigen Beanspruchungen wie Stürzen oder Stössen gekommen ist, wenn das System Beschleunigungen nach Anspruch 10 messen soll. Bei auf Druck empfindlichen Waren kann das System ebenfalls nach Anspruch 10 eingesetzt werden. Eine weitere Anwendungsmöglichkeit der Sensoren liegt im Einsatz im Bereich „Wearable Computing", d.h. der Integration von Sensorik und Elektronik in Kleidungsstücken. Hierbei könnten die Sensoren in grossflächigen Folien integriert sein und dann als Tastfolie zur Erkennung von Gegenständen eingesetzt werden. Die Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. Dabei zeigt: Figur 1 Blockdiagramm zur prinzipiellen Funktionsweise, wenn der Sensor in einThe present invention therefore has for its object to provide sensors for measuring mechanical magnitudes, which can be combined with elements for evaluation to form a new overall system. In order to achieve a low-cost production, such materials and methods are to be used, which are compatible with the aforementioned radio tags. This is achieved by sensors having the features designated in claim 1. By embedding mechanical sensors for measuring dynamic or static mechanical magnitudes, it is possible to check, for example, during shipment of packages with sensitive contents, whether inadmissible stresses such as falls or impacts have occurred on the transport path when the system is to measure accelerations according to claim 10. For pressure-sensitive goods, the system can also be used according to claim 10. Another application of the sensors is in the field of "wearable computing", ie the integration of sensors and electronics in garments, where the sensors could be integrated in large-area films and then used as a tactile film for detecting objects. The invention will be explained in more detail with reference to the drawing. 1 shows a block diagram of the basic mode of operation when the sensor is in a
Gesamtsystem eingebettet istEntire system is embedded
Figur 2 Biegebalken-Sensor mit möglicher Integration in Gesamtsystem Figur 3 Membran-Sensor mit möglicher Integration in GesamtsystemFigure 2 Bending beam sensor with possible integration in the overall system Figure 3 membrane sensor with possible integration in the overall system
Figur 4 Prozessfluss der Herstellung:FIG. 4 process flow of production:
1. Substratstrukturierung1. Substrate structuring
2. Schichtstrukturierung Figur 5 Prozessfluss der Herstellung: 1. Schichtstrukturierung2. Layer structuring Figure 5 Process flow of production: 1. Layer structuring
2. Substratstrukturierung2. Substrate structuring
Figur 6 Strukturierung des Substrates durch Laser- oder WasserschneidenFIG. 6 structuring of the substrate by laser or water cutting
Figur 7 Strukturierung des Substrates durch FotolithographieFigure 7 structuring of the substrate by photolithography
Figur 8 Strukturierung des Substrates durch Stanzen Figur 9 MembranherstellungFIG. 8 Structuring of the Substrate by Punching FIG. 9 Membrane Production
Figur 10 Mikrostrukturierung intrinsisch leitfähiger Polymere durch sog. Lift-offFIG. 10 Microstructuring of intrinsically conductive polymers by so-called lift-off
Figur 11 Mikrostrukturierung intrinsisch leitfähiger Polymere durch TintenstrahldruckenFIG. 11 Microstructuring of intrinsically conductive polymers by inkjet printing
Figur 12 Mikrostrukturierung intrinsisch leitfähiger Polymere durch Aufprägen Figur 13 Mikrostrukturierung intrinsisch leitfähiger Polymere durch DruckverfahrenFIG. 12 Microstructuring of Intrinsically Conductive Polymers by Imprinting FIG. 13 Microstructuring of Intrinsically Conductive Polymers by Printing Methods
Figur 14 Mikrostrukturierung intrinsisch leitfähiger Polymere durch AufdampfenFIG. 14 Microstructuring of Intrinsically Conductive Polymers by Vapor Deposition
Die Fertigung des Sensors ist in den Figuren 4 und 5 schematisch dargestellt. Eine erste Möglichkeit besteht darin, dass zunächst das Substrat 5 strukturiert und dann erst die organischen Funktionsschichten 3 und 4 aufgebracht werden; die zweite Möglichkeit besteht in der umgekehrten Prozessreihenfolge. Das Substrat 5 kann dabei beispielsweise aus thermoplastischen Polyestern wie Polyethylenterephthalat (PET) oder aus Polyimid (PI) bestehen, ist aber nicht darauf beschränkt. Es ist aber bei der Auswahl des Substratmaterials darauf zu achten, dass es genügend Flexibilität aufweist, um für eine Fertigung von Rolle-zu-Rolle eingesetzt werden zu können.The manufacture of the sensor is shown schematically in FIGS. 4 and 5. A first possibility consists in firstly structuring the substrate 5 and then first applying the organic functional layers 3 and 4; the second possibility is the reverse process order. The substrate 5 may consist of thermoplastic polyesters such as polyethylene terephthalate (PET) or polyimide (PI), for example, but is not limited thereto. However, when selecting the substrate material, it must be ensured that it has sufficient flexibility to be used for roll-to-roll production.
Figur 6 zeigt eine erste Variante zur Strukturierung des Substrats 5. Hierbei wird durchFIG. 6 shows a first variant for structuring the substrate 5
Wasserstrahl- oder Laserschneiden 8 auf entsprechenden CNC-gesteuerten Maschinen aus einer entsprechenden Folie ein Biegebalken 1 mit seismischer Masse 2 am Ende sowie ein grossere Substratfläche 5 zur späteren Aufbringung der Elektronik 4 ausgeschnitten.Waterjet or laser cutting 8 on corresponding CNC-controlled machines from a corresponding film a bending beam 1 with seismic mass 2 at the end and a larger substrate surface 5 for later application of the electronics. 4 cut out.
Figur 7 zeigt eine mögliche Strukturierung des Substrates 5, wenn das Substrat 5 aus fotolithographisch strukturierbaren Polymeren wie dem Polyimid PI 2723 von HD Microsystems GmbH (Bad Homburg, Deutschland) besteht. Das Polymer wird zunächst auf einem anderen Hilfssubstrat 9 aufgebracht. Verfahren hierzu sind Verteilen mittels Rakel oder Aufpipettieren und anschliessendes Verlaufenlassen. Das Hilfssubstrat muss dabei flexibel sein, damit es auch in Druckmaschinen in einem Rolle-zu-Rolle- Verfahren verwendet werden kann. Zur Definition der Formen ist eine Maske 10 erforderlich, die die nicht zu belichtenden Bereiche während der Bestrahlung mit UV- Licht 11 abdeckt. Anschliessend wird mit einer Entwicklerlösung entwickelt, wobei die spätere Form stehen bleibt und andere Bereiche entfernt werden. Das Hilfssubstrat 9 soll dabei so gewählt werden, dass es sich ebenfalls im Entwickler löst und somit nur noch das Hauptsubstrat 5 stehen bleibt.FIG. 7 shows a possible structuring of the substrate 5 when the substrate 5 consists of photolithographically structurable polymers such as the polyimide PI 2723 from HD Microsystems GmbH (Bad Homburg, Germany). The polymer is first applied to another auxiliary substrate 9. Methods for this purpose are distributing by means of a doctor blade or pipetting up and then allowing to run. The auxiliary substrate must be flexible so that it can also be used in printing presses in a roll-to-roll process. In order to define the shapes, a mask 10 is required which covers the areas not to be exposed during the irradiation with UV light 11. Subsequently, it is developed with a developer solution, whereby the later form stops and other areas are removed. The auxiliary substrate 9 should be chosen so that it also dissolves in the developer and thus only the main substrate 5 stops.
Figur 8 zeigt die Möglichkeit, dass die Form 1 , 2 durch Ausstanzen aus dem Substrat 5 mit Hilfe eines entsprechend geformten Werkzeuges 12 definiert wird. Um eine Fertigung von Rolle-zu-Rolle zu erlauben, wird dabei Material, das später nicht zum Substrat 5 gehört, ausgestanzt.FIG. 8 shows the possibility that the mold 1, 2 is defined by punching out of the substrate 5 with the aid of a correspondingly shaped tool 12. In order to allow roll-to-roll production, material which later does not belong to the substrate 5 is punched out.
Figur 9 zeigt eine mit der Rolle-zu-Rolle-Fabrikation kompatible Möglichkeit zur Herstellung einer Membran. Hierzu wird ein erwärmter Stempel 13 in das flexible thermoplastische Substrat 5 soweit gepresst, dass das erweichte Polymer teilweise verdrängt wird bis nur noch eine dünne Schicht stehen bleibt und somit eine Membran entsteht.Figure 9 shows a roll-to-roll fabrication compatible method of making a membrane. For this purpose, a heated stamp 13 is pressed into the flexible thermoplastic substrate 5 so far that the softened polymer is partially displaced until only a thin layer remains and thus creates a membrane.
Die bisherigen Schritte umfassten die Strukturierung des Substrats 5. In den folgenden Schritten wird die Strukturierung des sensitiven Materials 3 beschrieben. Als sensitives Material kann das intrinsisch leitfähige und in wässriger Dispersion vorliegende Poly(3,4-ethylendioxythiophen)/Polystyrolsulfonat (PEDOT/PSS) oder auch andere intrinsisch leitfähige Polymere verwendet werden.The previous steps involved the structuring of the substrate 5. The structuring of the sensitive material 3 will be described in the following steps. As a sensitive material, the intrinsically conductive and in aqueous dispersion present poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate (PEDOT / PSS) or other intrinsically conductive polymers can be used.
Figur 10 zeigt eine Strukturierungsmöglichkeit, wenn das intrinsisch leitfähige Polymer 3 sowie das Substrat 5 nicht in organischen Lösungsmitteln gelöst werden können. Dies ist beispielsweise bei PEDOT/PSS der Fall. Die angewandte Methode ist im Bereich der Mikrostrukturierung als „Lift-off" bekannt. Dabei wird zunächst eine Fotolackschicht 14 auf dem Substrat fotolithographisch strukturiert und im Anschluss das intrinsisch leitfähige Polymer 3 abgeschieden. Dies kann durch Aufschleudern, Sprühbelackung oder Aufträufeln erfolgen. Nach Trocknung der Schicht entweder an Luft oder durch Wärmeunterstützung wie mit einer Heizplatte oder einem Fön wird der Schichtverbund in organisches Lösungsmittel getaucht, wodurch die Fotolackbereiche 14 und sich darauf befindliche andere Schichten in Lösung gehen. Das genannte Verfahren wurde in [3] präsentiert.FIG. 10 shows a structuring option if the intrinsically conductive polymer 3 and the substrate 5 can not be dissolved in organic solvents. This is the case, for example, with PEDOT / PSS. The method used is in the field of In the process, a photoresist layer 14 is first photolithographically patterned on the substrate and subsequently the intrinsically conductive polymer 3 is deposited by spin-coating, spray coating or pattering, after drying the layer either in air or by heat As with a hot plate or a hair dryer, the layer composite is immersed in organic solvent, whereby the photoresist areas 14 and other layers located thereon are dissolved in. The said method was presented in [3].
Figur 11 zeigt eine andere Möglichkeit. Wie in [4] demonstriert kann das intrinsisch leitfähige Polymer 3 auch durch einen Tintenstrahldrucker 15 definiert abgeschieden werden. Es ist ein kostengünstiges Verfahren, da auf komplizierte Fotolithographieschritte verzichtet werden kann.Figure 11 shows another possibility. As demonstrated in [4], the intrinsically conductive polymer 3 can also be deposited as defined by an ink jet printer 15. It is a cost effective method because complicated photolithography steps can be dispensed with.
Figur 12 zeigt eine weitere kostengünstige Möglichkeit zur Abscheidung. Dabei wird ein strukturierter Stempel 16, beispielsweise aus Polydimethylsiloxan (PDMS), in ein Bad mit dem intrinsisch leitfähigen Polymer 3 getaucht und anschliessend auf das Substrat 5 gepresst. Dadurch werden die Strukturen dem Substrat aufgeprägt.FIG. 12 shows another cost-effective way of depositing. In this case, a structured stamp 16, for example of polydimethylsiloxane (PDMS), immersed in a bath with the intrinsically conductive polymer 3 and then pressed onto the substrate 5. As a result, the structures are impressed on the substrate.
Figur 13 zeigt ein Verfahren, das für eine Rolle-zu-Rolle-Produktion sehr geeignet ist. Dabei wird mit Standarddruckverfahren wie Flexodruck, Offsetdruck, Tiefdruck oder Siebdruck die Strukturen durch beispielsweise einen Zylinder 17 auf das Substrat 5 gedruckt. Mit diesem Verfahren hergestellte Funketiketten ohne Sensorfunktion werden in naher Zukunft durch die Fa. PoIyIC (Fürth, Deutschland) auf den Markt gebracht.Figure 13 shows a process which is very suitable for roll-to-roll production. In this case, the structures are printed on the substrate 5 by, for example, a cylinder 17 using standard printing methods such as flexographic printing, offset printing, gravure printing or screen printing. Wireless tags without sensor function produced by this method will be launched in the near future by PoIyIC (Fürth, Germany).
Durch die in den Figuren 10-13 gezeigten Strukturierungsmöglichkeiten eines intrinsisch leitfähigen Polymers und durch die in Anspruch 1 erwähnte Ausnutzung eines piezoresistiven Effekts in diesem intrinsisch leitfähigen Polymer hebt sich diese Erfindung von der zuvor erwähnten Schrift US 5,505,093, in der mittels Trockenätzen und lonenimplantierung strukturierte DMS beschrieben werden, ab.The structuring possibilities of an intrinsically conductive polymer shown in FIGS. 10-13 and the utilization of a piezoresistive effect in this intrinsically conductive polymer mentioned in claim 1 distinguish this invention from the previously mentioned document US Pat. No. 5,505,093 in which DMS is prepared by dry etching and ion implantation be described from.
Figur 14 zeigt eine Strukturierungsmöglichkeit für organische Stoffe, deren Moleküle nur aus kurzen Ketten bestehen und somit verdampft werden können. Durch die Anwendung einer Schattenmaske 18 werden Bereiche des Substrats 5, auf die kein Material aufgedampft werden soll, abgedeckt. Eine weitere Strukturierungsmöglichkeit des intrinsisch leitfähigen Polymers 3 ergibt sich, wenn das Substratmaterial 5 transparent für Nd-YAG-Laser ist. In [5] wird beschrieben, wie Strukturen aus PEDOT/PSS mittels Nd.ΥAG Laserschneiden hergestellt werden können.FIG. 14 shows a structuring possibility for organic substances whose molecules consist only of short chains and can thus be vaporized. By using a shadow mask 18, areas of the substrate 5 to which no material is to be vapor-deposited are covered. Another possible structuring of the intrinsically conductive polymer 3 results when the substrate material 5 is transparent to Nd-YAG laser. In [5] it is described how structures made of PEDOT / PSS can be produced by Nd.ΥAG laser cutting.
Die bisherigen Ausführungen zeigten die Variante der in Figur 4 gezeigten Prozessfolge. Die andere Variante in Figur 5 beruht darauf, dass zuerst eine der in den Figuren 10-14 gezeigten Möglichkeiten zur Strukturierung des intrinsisch leitfähigen Polymers 3 angewandt wird und dann in einem zweiten Schritt eine der in den Figuren 6-9 gezeigten Möglichkeiten zur Strukturierung des Substrats 5. The previous embodiments have shown the variant of the process sequence shown in FIG. The other variant in FIG. 5 is based on first applying one of the possibilities shown in FIGS. 10-14 for structuring the intrinsically conductive polymer 3 and then, in a second step, one of the possibilities for structuring the substrate shown in FIGS 5th
Liste der verwendeten Bezugszeichen und AbkürzungenList of reference numbers and abbreviations used
1 Biegebalken1 bending beam
2 seismische Masse2 seismic mass
3 intrinsisch leitfähiges Polymer3 intrinsically conductive polymer
4 Module: Messbrücke; Verstärker; Sendeeinrichtung, Anzeige oder Kontakte4 modules: measuring bridge; Amplifier; Transmitter, display or contacts
5 flexibles Substrat5 flexible substrate
6 Rahmen6 frames
7 Membran7 membrane
8 Wasser- oder Laserstrahl8 water or laser beam
9 Hilfssubstrat9 auxiliary substrate
10 Maske10 mask
11 UV-Licht11 UV light
12 Stanzwerkzeug12 punching tool
13 Stempel13 stamps
14 Fotolackschicht14 photoresist layer
15 Tintenstrahldrucker15 inkjet printer
16 Stempel16 stamps
17 Druckzylinder17 impression cylinder
18 Schattenmaske18 shadow mask
Liste der verwendeten AbkürzungenList of abbreviations used
DMS DehnmessstreifenStrain gauge strain gages
PET PolyethylenterephthalatPET polyethylene terephthalate
PI PolyimidPI polyimide
PEDOT/PSS Poly(3,4-ethylendioxythiophen)/PolystyrolsulfonatPEDOT / PSS poly (3,4-ethylenedioxythiophene) / polystyrenesulfonate
PDMS Polydimethylsiloxan LiteraturlistePDMS polydimethylsiloxane Bibliography
[1] Cantatore, E. et al.: A 13.56 MHz RF ID System based on Organic Transponders, ISSCC 2006, San Francisco, USA.[1] Cantatore, E. et al .: A 13.56 MHz RF ID System based on Organic Transponder, ISSCC 2006, San Francisco, USA.
[2] Rost, H.: From Polymer Transistor to Printed Electronics, KUNSTSTOFFE-PLAST EUROPE 95 (10): 209-214 2005.[2] Rost, H .: From Polymer Transistor to Printed Electronics, PLASTICS-PLAST EUROPE 95 (10): 209-214 2005.
[3] Lang, U. et al.: Fabrication of a tensile test for polymer micromechanics, Microelectronic Engineering 83 (2006) 1182-1184.[3] Lang, U. et al .: Fabrication of a tensile test for polymer micromechanics, Microelectronic Engineering 83 (2006) 1182-1184.
[4] Sirringhaus, H. et al.: High-Resolution InkJet Printing of All-Polymer Transistor Circuits, Science 290 (2000) 2123-2126.[4] Sirringhaus, H. et al .: High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, Science 290 (2000) 2123-2126.
[5] Lang, U., Dual, J.: Mechanical properties of BAYTRON P, 4th IEEE International Conference on Polymers and Adhesives in Microelectronics and Photonics POLYTRONIC 2004, Portland (USA), 12.-15. Sept. 2004, pp. 230 - 236, ISBN: 0-7803- 8744-9. [5] Lang, U., Dual, J .: Mechanical properties of BAYTRON P, 4 th IEEE International Conference on Polymers and Adhesives in Microelectronics and Photonics POLYTRONIC 2004, Portland (USA), 12-15. Sept. 2004, pp. 230-236, ISBN: 0-7803-8744-9.

Claims

Patentansprüche claims
1. Sensor, der ein mechanisch deformierbares Element aufweist, dadurch gekennzeichnet, dass das deformierbare Element ein Schichtverbund aus organischen Materialien ist, wovon mindestens eines einen piezoresistiven Effekt aufweist, in der Form, dass sich der elektrische Widerstand dieses organischen Materials bei der Deformation des Schichtverbundes ändert.1. sensor having a mechanically deformable element, characterized in that the deformable element is a composite layer of organic materials, of which at least one has a piezoresistive effect, in the form that the electrical resistance of this organic material in the deformation of the layer composite changes.
2. Sensor gemäss Anspruch 1 gekennzeichnet dadurch, das das organische Material ein intrinsisch leitfähiges Polymer ist.2. Sensor according to claim 1, characterized in that the organic material is an intrinsically conductive polymer.
3. Sensor gemäss Anspruch 2, wobei das intrinsisch leitende Polymer Poly(3,4- ethylendioxythiophen)/Polystyrolsulfonat ist.3. Sensor according to claim 2, wherein the intrinsically conductive polymer is poly (3,4-ethylenedioxythiophene) / polystyrene sulfonate.
4. Sensor gemäss einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das piezoresistive organische Material durch ein Standarddruckverfahren, wie beispielsweise Flexodruck, Offsetdruck , Tiefdruck, Tintenstrahldruck oder Siebdruck strukturiert ist.4. Sensor according to one of the preceding claims, characterized in that the piezoresistive organic material is structured by a standard printing method, such as flexographic printing, offset printing, gravure printing, inkjet printing or screen printing.
5. Verfahren zur Messung mechanischer, statischer und/oder dynamischer Grossen, welches einen Sensor, eine Messbrücke und/oder eine Verstärkerschaltung und ein Modul zur Auswertung nutzt, dadurch gekennzeichnet, dass es einen Sensor gemäss einem der vorhergehenden Ansprüche enthält. 5. A method for measuring mechanical, static and / or dynamic variables, which uses a sensor, a measuring bridge and / or an amplifier circuit and a module for evaluation, characterized in that it contains a sensor according to one of the preceding claims.
PCT/CH2008/000082 2007-03-02 2008-02-29 Sensor made of organic materials for the measurement of mechanical variables and the subsequent evaluation thereof WO2008106813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3372007 2007-03-02
CH337/07 2007-03-02

Publications (1)

Publication Number Publication Date
WO2008106813A1 true WO2008106813A1 (en) 2008-09-12

Family

ID=39522208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2008/000082 WO2008106813A1 (en) 2007-03-02 2008-02-29 Sensor made of organic materials for the measurement of mechanical variables and the subsequent evaluation thereof

Country Status (1)

Country Link
WO (1) WO2008106813A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155367A2 (en) * 2008-06-17 2009-12-23 Lumimove, Inc., D/B/A Crosslink Compliant and wireless health monitoring sensors for composite structures
AT511330A4 (en) * 2011-06-03 2012-11-15 Piezocryst Advanced Sensorics SENSOR FOR MEASUREMENT OF PRESSURE AND / OR FORCE
CN109238438A (en) * 2018-09-13 2019-01-18 太原理工大学 A kind of fexible film acoustic vector sensors based on nano material
CN111551269A (en) * 2020-05-11 2020-08-18 浙江大学 Structural health monitoring system based on shape memory polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071286A1 (en) * 2004-08-17 2006-04-06 California Institute Of Technology Polymeric piezoresistive sensors
ES2264900A1 (en) * 2005-07-13 2007-01-16 Fundacion Cidetec Distributed pressure sensor comprises flexible substrate(s) which is fully or partially covered with layer of specific polythiophene and isolating spacer(s)
EP1912051A2 (en) * 2005-07-13 2008-04-16 Fundacion Cidetec Polythiophen-based distributed pressure sensors having a large surface area

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060071286A1 (en) * 2004-08-17 2006-04-06 California Institute Of Technology Polymeric piezoresistive sensors
ES2264900A1 (en) * 2005-07-13 2007-01-16 Fundacion Cidetec Distributed pressure sensor comprises flexible substrate(s) which is fully or partially covered with layer of specific polythiophene and isolating spacer(s)
EP1912051A2 (en) * 2005-07-13 2008-04-16 Fundacion Cidetec Polythiophen-based distributed pressure sensors having a large surface area

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A SAWHNEY ET AL: "Piezoresistive Sensors on Textiles by Inkjet Printing and Electroless Plating", MRS SYMPOSIUM PROCEEDINGS, vol. 920, 2006, XP002485382 *
MATEIU ET AL: "Reliability of poly 3,4-ethylenedioxythiophene strain gauge", MICROELECTRONIC ENGINEERING, ELSEVIER PUBLISHERS BV., AMSTERDAM, NL, vol. 84, no. 5-8, 8 February 2007 (2007-02-08), pages 1270 - 1273, XP022061995, ISSN: 0167-9317 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155367A2 (en) * 2008-06-17 2009-12-23 Lumimove, Inc., D/B/A Crosslink Compliant and wireless health monitoring sensors for composite structures
WO2009155367A3 (en) * 2008-06-17 2010-02-25 Lumimove, Inc., D/B/A Crosslink Compliant and wireless health monitoring sensors for composite structures
AT511330A4 (en) * 2011-06-03 2012-11-15 Piezocryst Advanced Sensorics SENSOR FOR MEASUREMENT OF PRESSURE AND / OR FORCE
AT511330B1 (en) * 2011-06-03 2012-11-15 Piezocryst Advanced Sensorics SENSOR FOR MEASUREMENT OF PRESSURE AND / OR FORCE
CN109238438A (en) * 2018-09-13 2019-01-18 太原理工大学 A kind of fexible film acoustic vector sensors based on nano material
CN111551269A (en) * 2020-05-11 2020-08-18 浙江大学 Structural health monitoring system based on shape memory polymer
CN111551269B (en) * 2020-05-11 2021-09-10 浙江大学 Structural health monitoring system based on shape memory polymer

Similar Documents

Publication Publication Date Title
US7700402B2 (en) Method for production of a film
Mäkelä et al. Continuous roll to roll nanoimprinting of inherently conducting polyaniline
DE60029445T2 (en) METHOD FOR STRUCTURING POLYMER LAYERS, AND USE OF THE METHODS
EP2092468B1 (en) Method for applying markings to substrate surfaces by means of a transfer method
WO2008106813A1 (en) Sensor made of organic materials for the measurement of mechanical variables and the subsequent evaluation thereof
Lang et al. Towards fully polymeric MEMS: Fabrication and testing of PEDOT/PSS strain gauges
CN1977280A (en) Method for producing RFID labels
EP1457099B1 (en) System for the manufacture of electric and integrated circuits
WO2005101930A1 (en) Method for printing electrical and/or electronic structures and film for use in such a method
WO2007031303A1 (en) Electronic circuit and method for the manufacture of the same
US9766732B2 (en) Printing of multiple inks to achieve precision registration during subsequent processing
DE202010014408U1 (en) Assembly with at least one UHF dipole antenna
EP1567359B1 (en) Film for packaging purposes, having a partially applied security feature
EP2071496A1 (en) Method for manufacturing flexible packaging with RFID transponder
WO2016091964A1 (en) Arrangement for a humidity sensor and method for producing the arrangement for a humidity sensor
JP4124455B2 (en) Wiring transfer sheet, wiring board, and transistor manufacturing method
DE102004041497B4 (en) "Organic electronic component and method of making such a"
EP1699637B1 (en) Method for further printing with electrical conductivity
DE102015106447A1 (en) Tamper-evident label
EP2187335B1 (en) Code system on an information storage card
WO2006056280A1 (en) Method and arrangement for the production of rfid tags
DE112007002911T5 (en) Printed electronic device and method for determining its electrical size
Krzyżkowski et al. Investigation on lineworks printed with different types of flexographic printing forms for purposes of printed electronics
WO2007020214A2 (en) Method and device for producing an organic component
DE102006013606A1 (en) Electronic circuit programming method for forming e.g. identification or product labels, involves partially covering data storage unit with barcode, and electrically programming electronic circuit depending on form and array of barcode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706382

Country of ref document: EP

Kind code of ref document: A1