WO2008101801A1 - Support de stockage d'informations optiques a haute resolution. - Google Patents

Support de stockage d'informations optiques a haute resolution. Download PDF

Info

Publication number
WO2008101801A1
WO2008101801A1 PCT/EP2008/051389 EP2008051389W WO2008101801A1 WO 2008101801 A1 WO2008101801 A1 WO 2008101801A1 EP 2008051389 W EP2008051389 W EP 2008051389W WO 2008101801 A1 WO2008101801 A1 WO 2008101801A1
Authority
WO
WIPO (PCT)
Prior art keywords
structure according
layer
nanometers
zns
sio
Prior art date
Application number
PCT/EP2008/051389
Other languages
English (en)
Inventor
Bérangère HYOT
Ludovic Poupinet
Bernard Andre
Patrick Chaton
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to CNA2008800045077A priority Critical patent/CN101606201A/zh
Priority to AT08708690T priority patent/ATE515023T1/de
Priority to JP2009548682A priority patent/JP2010518541A/ja
Priority to EP08708690A priority patent/EP2115745B1/fr
Priority to KR1020097016481A priority patent/KR20090107528A/ko
Priority to US12/526,036 priority patent/US20100291338A1/en
Publication of WO2008101801A1 publication Critical patent/WO2008101801A1/fr

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers

Definitions

  • the invention relates to the field of optical information recording.
  • the laser is focused very strongly so as to have an extremely small section (of the order of the wavelength) but whose power distribution is Gaussian, very strong at its center, very attenuated at the periphery, and on the other hand, a reading laser power is chosen such that the power density on a small part of the section, at the center of the beam, significantly modifies an optical property of the layer, whereas the power density in outside this small portion of section does not significantly modify this optical property; the optical property is modified in a sense to allow the reading of information that would not be readable without this modification.
  • the optical property that changes is an increase in optical transmission in the case where the reading of a bit constituted by a physical mark formed on the optical disk requires transmission of the laser beam to this physical mark.
  • the non-linear layer is then interposed on the path of the beam towards the physical mark.
  • the center of the laser beam will be able to cross the layer until the mark, because by crossing the layer the intensity of the incident light makes it more transparent, while the periphery of the beam will not cross because it does not modify not sufficiently the optical indices of the layer to make it more transparent. Everything happens as if we had used a beam focused on a diameter much narrower than its wavelength allows.
  • GeSbTe and the assembly is again inserted between layers of zinc sulfide compound and silicon oxide.
  • GeSbTe exhibits phase change properties under the effect of intense laser illumination. Examples can be found in Applied Physics letters vol. 83, No. 9, Sept 2003 Jooho Kim and others, "Super-Resolution by elliptical bubble formation with PtO x and AgInSbTe layers ", as well as in Japanese Journal of Applied Physics Vol 43, No. 7B, 2004, Jooho Kim et al.," Signal Characteristics of Super-Resolution Near-Field Structure Disk in Blue Laser System ", and in the same journal, Duseop Yoon et al.,” Super-Resolution Read-Only Memory Disc Using Super-Resolution Near-Field Structure Technology ".
  • the structures described in these articles are mainly based on the constitution of expansion bubbles of platinum oxide, confined between the layers that surround them. These bubbles are formed during laser writing and can be recognized during reading, even with a wavelength reading laser equal to several times the size of the bubbles.
  • a high resolution optical information storage structure comprising a substrate provided with physical marks whose geometric configuration defines the recorded information, a superposition of three layers above the marks of the substrate, and a transparent protective layer above this superposition, the superposition comprising an indium or gallium antimonide layer inserted between two dielectric layers of a zinc sulphide compound and silicon oxide (ZnS-SiO 2 ).
  • the substrate is polycarbonate, plastic material, polymer.
  • the atomic proportions of antimony in the compound are preferably from about 45% to 55%; the proportion of indium or gallium is then between 45% and the complement to 100% of the proportion of antimony.
  • a stoichiometric compound In 50 Sb 50 or Ga 50 Sb 50 is well suited, but small differences in stoichiometry are acceptable.
  • the thickness of the InSb or GaSb layer is preferably from about 10 to 50 nanometers, and optimally from 20 to 30 nanometers.
  • the dielectric layers of ZnS-SiO 2 preferably each have a thickness between 20 and 100 nanometers, and optimally between 50 and 70 nanometers.
  • the atomic proportion of ZnS and SiO 2 is preferably selected from the range between ZnS 85a t% -SiO 2 - ⁇ 5a t% (ratio 85/15) and ZnS 70at % -SiO 2 3 o at % (proportion 70 / 30).
  • the invention is particularly applicable for reading information from a blue laser, typically with a wavelength of about 400 nanometers, the pre-recorded information on the optical disk can then have a dimension (width and length) 100 nanometers or less, that is four to five times less than the reading wavelength.
  • the invention is also applicable for reading from a red laser (wavelengths of 600 to 800 nanometers), which is very interesting to allow compatibility with standard optical disk drives of standard resolution: a same red laser reader can read discs carrying standard resolution information and discs carrying information in super-resolution.
  • the physical marks recorded on the optical disk substrate may have a dimension (width and length) of 200 nanometers or less.
  • FIG. 2 represents a measured reflectivity and transmission curve for this structure, as a function of the power of the reading laser
  • FIG. 3 represents two reflectivity curves measured as a function of the power of the read laser, for the case of InSb and for the case of GaSb respectively;
  • FIG. 4 represents an atomic force microscope view of a substrate in which marks of 80 nanometers minimum spaced by 80 nanometers minimum have been preformed;
  • FIG. 5 represents curves indicating the signal / noise ratio in structures according to the invention.
  • FIG. 6 represents a comparative signal-to-noise ratio curve plotted for various dielectric substances flanking an indium antimonide layer.
  • Figure 1 there is shown the general structure of the optical information storage medium according to the invention. It comprises a substrate 10, which is preferably an organic material, and in particular polycarbonate conventionally used for optical disks.
  • the substrate will in practice be in the form of a flat disk and the information is conventionally written in the disk on substantially concentric tracks; a reading laser beam, symbolized by the arrow 20, placed in front of the disc, will see the information scroll in front of it during the rotation of the disc.
  • the substrate 10 has physical marks defining the recorded information, and in this example, the physical marks are formed as a relief printed on the upper surface of the substrate.
  • the relief consists of hollows whose width is approximately fixed for all the information listed, but whose length and the spacing, in the direction of scrolling information, define the content of the information entered.
  • the information is read by analyzing the phase of the laser beam reflected by the structure, which phase varies at the beginning and at the end of the passage of each physical mark.
  • the depressions can be prerecorded by pressing the polycarbonate or the plastic substrate for example using a nickel mold which was made from very high resolution electron beam etching tools.
  • the width, the length, the spacing of the physical marks may be lower than the theoretical optical resolution of the optical reading system that will be used to read them.
  • the theoretical theoretical resolution limit is of the order 120 nanometers when taking precautions.
  • the marks can be prerecorded with a resolution, in length or spacing, of less than 80 nanometers as will be seen.
  • the marks are covered with a triple layer constituted in order by a dielectric layer 12 of ZnS-SiO 2 compound, a layer 14 of indium antimonide (InSb) or gallium antimonide (GaSb) , and a dielectric layer 16 of ZnS-SiO 2 compound.
  • the assembly is covered by a transparent protective layer 18.
  • the layer 14 made of InSb or GaSb is a layer with nonlinear optical properties, and it has been found that the reflectivity of the tri-layer structure, GaSb or InSb layer framed by the two ZnS-SiO 2 dielectric layers, could increase very much. significantly when illuminated by a laser beam with a power of 1 to 2 milliwatts (corresponding in practice to a power density of about 7 milliwatts per square micrometer).
  • FIG. 2 represents, as an indication, a curve of variation of reflectivity (top curve R) and transmission (bottom curve T) of the structure substrate + triple layer + layer of protection 18 as a function of the power of an illumination laser at 405 nanometers.
  • the lower layer 12 of ZnS-SiO 2 has a thickness of 70 nanometers, it contains about 80% of ZnS for 20% of SiO 2 (in atomic percentage).
  • the top layer 16 has the same composition and a thickness of 50 nanometers.
  • the intermediate layer is InSb 20 nanometers thick and substantially stoichiometric composition. This measurement example shows that the reflectivity of the superimposed structure varies greatly with the illumination power.
  • FIG. 3 represents another measurement, which is a comparative reflectivity measurement for the structure defined in the preceding paragraph and for an identical structure in which InSb is replaced by GaSb.
  • the results for GaSb are less good in that they require a higher reading power; however, the range of usable powers is larger.
  • FIG. 4 is a reminder of the manner in which pre-recorded information on the substrate can be formed, before depositing the superposition of three layers 12, 14, 16: blind holes of variable length and spacing.
  • the arrow indicates the direction of travel of the substrate under the reading laser.
  • FIG. 5 represents a measurement in decibels of the signal-to-noise ratio (or "Carrier Noise Ratio") CNR as a function of the power of the read laser, in the case of a substrate on which regular marks with dimensions 80 nm have been formed. and spacing 80 nanometers, thus giving rise in theory to a constant frequency of the output signal of the laser reading system.
  • These marks are covered by the triple layer mentioned above, the active layer of 20 nanometers being either InSb or GaSb.
  • the CNR ratio is zero (the marks are not detected at all) if the marks are covered by 25 to 40 nanometers of aluminum (as in a ROM optical disk) rather than by the triple layer according to the invention .
  • FIG. 6 represents another comparative measurement of this CNR ratio, on three samples of substrate with regular prerecorded marks of 80 nm spaced at 80 nm, identical in the three samples. Only the left curve uses dielectric layers of ZnS-SiO 2 compound; the two curves on the right respectively use as dielectric silicon oxide SiO 2 and silicon nitride Si 3 N 4 .
  • the nonlinear optical layer here is indium antimonide InSb. It will be seen that much less reading power is required in the case of the invention, with ZnS-SiO 2 layers, to achieve a high CNR ratio.
  • the multiple reading behavior of the uniform information thus recorded for the three structures was studied experimentally, one being that of the invention, the others using as dielectric layers SiO 2 or Si 3 N 4 .
  • SiO 2 the information could be read with a sufficient signal-to-noise ratio for a power of 2.74 milliwatts and a degradation of the read signal was observed after 34 read cycles.
  • Si 3 N 4 it was possible to read with a power of 2.26 milliwatts and there was a degradation after 240 read cycles.
  • the ZnS-SiO 2 layers proposed according to the invention it was possible to read at a power of 1.66 mW and no significant degradation of the signal was observed up to 8000 reading cycles.
  • the preferred atomic composition for the ZnS-SiO 2 compound is about 80% ZnS for 20% SiO 2 .
  • the deposition of the layers does not pose any particular problem; it can be done conventionally by sputtering from a target comprising the materials considered, both for the active layer and for dielectrics, or by plasma-assisted vapor deposition.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

L'invention concerne le stockage optique d'informations. Selon l'invention, on propose une structure de stockage optique d'informations à haute résolution, comprenant un substrat (10) pourvu de marques physiques dont la configuration géométrique définit l'information enregistrée, une superposition de trois couches au-dessus des marques du substrat, et une couche de protection transparente au-dessus de cette superposition, la superposition comprenant une couche d'antimoniure d'indium ou de gallium (14) insérée entre deux couches diélectriques (12, 16) de ZnS-SiO2. Les informations peuvent être préenregistrées dans le substrat avec une résolution (dimensions et espacement) supérieure à la résolution théorique de lecture permise par la longueur d'onde du laser de lecture. La non-linéarité de comportement de la superposition de trois couches permet de lire les informations si la puissance du laser est bien choisie.

Description

SUPPORT DE STOCKAGE D'INFORMATIONS OPTIQUES A HAUTE RESOLUTION
L'invention concerne le domaine de l'enregistrement optique d'informations.
Lorsqu'on cherche à accroître la densité d'informations enregistrées sur un disque optique, on est en général limité par les performances du dispositif de lecture des informations. Le principe de base est que l'on ne peut que très difficilement lire des informations physiques inscrites dans le disque si leur dimension est inférieure à la limite de résolution du système optique qui servira à lire ces informations. Typiquement, avec une lecture par un laser rouge de longueur d'onde 650nm et une ouverture numérique de 0,6 on ne peut normalement pas espérer lire correctement des informations de dimension inférieure à 0,4 micromètre, à la rigueur 0,3 micromètre.
Cependant, des méthodes dites de super-résolution ont été imaginées pour lire des informations dont la dimension physique est inférieure, voire même très inférieure, à la longueur d'onde. Ces méthodes se fondent sur les propriétés optiques non-linéaires de certains matériaux. Par propriétés non-linéaires, on entend le fait que certaines propriétés optiques du matériau changent en fonction de l'intensité de la lumière qu'ils reçoivent. Le plus souvent, la cause directe de ce changement est réchauffement thermique dû à cet éclairement : c'est le laser de lecture lui- même qui va modifier localement les propriétés optiques du matériau par des effets thermiques, optique, thermo-optiques et/ou optoélectroniques sur des dimensions plus petites que la dimension du spot laser de lecture ; du fait du changement de propriété, une information optique présente dans ce très petit volume devient détectable alors qu'elle n'aurait pas été détectable sans ce changement.
Le phénomène qu'on exploite est fondé principalement sur deux propriétés du laser de lecture qu'on va utiliser :
- d'une part le laser est focalisé très fortement de manière à présenter une section extrêmement petite (de l'ordre de la longueur d'onde) mais dont la distribution de puissance est gaussienne, très forte en son centre, très atténuée à la périphérie, - et d'autre part, on choisit une puissance de laser de lecture telle que la densité de puissance sur une petite partie de la section, au centre du faisceau, modifie significativement une propriété optique de la couche, alors que la densité de puissance en dehors de cette petite portion de section ne modifie pas significativement cette propriété optique ; la propriété optique est modifiée dans un sens tendant à permettre la lecture d'une information qui ne serait pas lisible sans cette modification.
Par exemple, la propriété optique qui change est une augmentation de la transmission optique dans le cas où la lecture d'un bit constitué par une marque physique formée sur le disque optique nécessite une transmission du faisceau laser jusqu'à cette marque physique. La couche non-linéaire est alors interposée sur le trajet du faisceau vers la marque physique. Le centre du faisceau laser va pouvoir traverser la couche jusqu'à la marque, du fait qu'en traversant la couche l'intensité de la lumière incidente la rend plus transparente, alors que la périphérie du faisceau ne va pas traverser car elle ne modifie pas suffisamment les indices optiques de la couche pour la rendre plus transparente. Tout se passe alors comme si on avait utilisé un faisceau focalisé sur un diamètre beaucoup plus étroit que ce que permet sa longueur d'onde.
Diverses propositions théoriques ont été formulées pour mettre en œuvre ces principes, mais aucune n'a donné lieu à un développement industriel. Le brevet US 5 153 873 rappelle la théorie. Le brevet US 5 381 391 donne l'exemple d'un film ayant des propriétés de réflectivité non- linéaires. Le brevet US 5 569 517 propose divers matériaux à changement de phase cristalline.
Parmi les techniques qui offrent actuellement les plus grandes possibilités, il y a l'utilisation d'une couche d'oxyde de platine (PtOx) enserrée entre deux couches de composé de sulfure de zinc et d'oxyde de silicium, l'ensemble étant inséré entre deux couches de composé AgInSbTe ou
GeSbTe et l'ensemble étant à nouveau inséré entre des couches de composé de sulfure de zinc et d'oxyde de silicium. Le matériau AgInSbTe ou
GeSbTe présente des propriétés de changement de phase sous l'effet d'un éclairement laser intense. On trouvera des exemples dans Applied Physics letters vol. 83, N°9, Sept 2003 Jooho Kim et autres, "Super-Resolution by elliptical bubble formation with PtOx and AgInSbTe layers", ainsi que dans le Japanese Journal of Applied Physics vol. 43, N ° 7B, 2004, Jooho Kim et autres "Signal Characteristics of Super-Resolution Near-Field Structure Disk in Blue Laser System", et dans la même revue, Duseop Yoon et autres, "Super-Resolution Read-Only Memory Disc Using Super-Resolution Near- Field Structure Technology".
Les structures décrites dans ces articles reposent principalement sur la constitution de bulles d'expansion de l'oxyde de platine, confinées entre les couches qui les enserrent. Ces bulles sont formées lors de l'écriture laser et elles peuvent être reconnues lors de la lecture, même avec un laser de lecture de longueur d'onde égale à plusieurs fois la dimension des bulles.
Mais ces structures sont difficiles à réaliser et le contrôle du volume des bulles est particulièrement délicat. Le réglage de la puissance laser pour obtenir l'effet de super-résolution en lecture est également particulièrement difficile, une puissance laser trop faible ne donnant aucun résultat et une puissance laser trop forte réduisant considérablement le nombre de cycles de lecture possible.
L'invention propose une structure beaucoup plus simple, plus facile à mettre en œuvre, nécessitant des puissances laser de lecture raisonnables, et pouvant subir de nombreux cycles de lecture sans dégradation sensible du signal de lecture. La structure selon l'invention repose directement sur les propriétés non-linéaires de certains matériaux sans qu'il soit nécessaire de les soumettre à un régime d'expansion en bulles trop difficile à maîtriser. Selon l'invention, on propose une structure de stockage optique d'informations à haute résolution, comprenant un substrat pourvu de marques physiques dont la configuration géométrique définit l'information enregistrée, une superposition de trois couches au-dessus des marques du substrat, et une couche de protection transparente au-dessus de cette superposition, la superposition comprenant une couche d'antimoniure d'indium ou de gallium insérée entre deux couches diélectriques d'un composé de sulfure de zinc et d'oxyde de silicium (ZnS-SiO2).
On a constaté que la présence des couches de ZnS-SiO2 autour de cette couche d'antimoniure permettait de réduire considérablement la puissance laser de lecture nécessaire pour lire les informations en super- résolution avec un rapport signal/bruit satisfaisant. Or la question de la puissance de lecture est critique car, d'un côté, une puissance relativement élevée est nécessaire pour obtenir un effet de super-résolution par changement localisé de propriétés optiques, mais d'un autre côté une puissance élevée tend à détruire progressivement l'information enregistrée, limitant le nombre de cycles de lecture possible alors qu'on souhaite un nombre de cycles de lecture aussi élevé que possible.
De préférence, le substrat est en polycarbonate, en matériau plastique, en polymère. Les proportions atomiques d'antimoine dans le composé sont de préférence d'environ 45% à 55% ; la proportion d'indium ou de gallium est alors comprise entre 45% et le complément à 100% de la proportion d'antimoine. Un composé stoechiométrique In50Sb50 ou Ga50Sb50 convient bien, mais de petits écarts à la stoechiométrie sont acceptables. L'épaisseur de la couche InSb ou GaSb est de préférence d'environ 10 à 50 nanomètres, et, de manière optimale, entre 20 et 30 nanomètres.
Les couches diélectriques de ZnS-SiO2 ont de préférence chacune une épaisseur comprise entre 20 et 100 nanomètres, et, de manière optimale, entre 50 et 70 nanomètres. La proportion atomique de ZnS et de SiO2 est de préférence choisie dans la gamme entre ZnS85at%-SiO25at% (proportion 85/15) et ZnS70at%-SiO2 3oat% (proportion 70/30).
L'invention est particulièrement applicable pour la lecture d'informations à partir d'un laser bleu, typiquement avec une longueur d'onde d'environ 400 nanomètres, les informations préenregistrées sur le disque optique pouvant alors avoir une dimension (largeur et longueur) de 100 nanomètres ou moins, c'est-à-dire quatre à cinq fois moins que la longueur d'onde de lecture. Mais l'invention est applicable aussi pour la lecture à partir d'un laser rouge (longueurs d'onde de 600 à 800 nanomètres), ce qui est très intéressant pour permettre la compatibilité avec les lecteurs de disque optiques classiques de résolution standard : un même lecteur à laser rouge peut lire des disques portant des informations de résolution standard et des disques portant des informations en super-résolution. Dans ce cas, les marques physiques enregistrées sur le substrat du disque optique peuvent avoir une dimension (largeur et longueur) de 200 nanomètres ou moins. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels : - la figure 1 représente la structure de stockage d'informations optiques selon l'invention ;
- la figure 2 représente une courbe de réflectivité et de transmission mesurée pour cette structure, en fonction de la puissance du laser de lecture ; - la figure 3 représente deux courbes de réflectivité mesurées en fonction de la puissance du laser de lecture, pour le cas de InSb et pour le cas de GaSb respectivement ;
- la figure 4 représente une vue au microscope à force atomique d'un substrat dans lequel ont été préformées des marques de 80 nanomètres minimum espacées de 80 nanomètres minimum ;
- la figure 5 représente des courbes indiquant le rapport signal/bruit dans des structures conformes à l'invention ;
- la figure 6 représente une courbe de rapport signal/bruit comparée, tracée pour diverses substances diélectriques encadrant une couche d'antimoniure d'indium.
Sur la figure 1 , on a représenté la structure générale du support de stockage optique d'informations selon l'invention. Il comprend un substrat 10, qui est de préférence un matériau organique, et notamment du polycarbonate classiquement utilisé pour des disques optiques. Le substrat sera en pratique en forme de disque plan et les informations sont classiquement inscrites dans le disque sur des pistes sensiblement concentriques ; un faisceau laser de lecture, symbolisé par la flèche 20, placé devant le disque, verra les informations défiler devant lui lors de la rotation du disque.
Le substrat 10 comporte des marques physiques définissant l'information enregistrée, et dans cet exemple, les marques physiques sont constituées sous forme d'un relief imprimé à la surface supérieure du substrat. Le relief est par exemple constitué de creux dont la largeur est à peu près fixe pour toutes les informations inscrites, mais dont la longueur et l'espacement, dans le sens de défilement des informations, définissent le contenu de l'information inscrite. La lecture des informations se fait par analyse de la phase du faisceau laser réfléchi par la structure, phase qui varie au début et à la fin du passage de chaque marque physique. Les creux peuvent être préenregistrés par pressage du polycarbonate ou du substrat plastique par exemple à l'aide d'un moule en nickel qui a été réalisé à partir d'outils de gravure à faisceaux d'électrons de très haute résolution.
La largeur, la longueur, l'espacement des marques physiques peuvent être inférieures à la résolution optique théorique du système optique de lecture qui servira à les lire. Typiquement, s'il s'agit d'un laser bleu de longueur d'onde 400 nanomètres environ, utilisé avec une optique de focalisation dont l'ouverture numérique est de 0,85, la limite physique théorique de résolution est de l'ordre de 120 nanomètres en prenant des précautions. Ici, les marques peuvent être préenregistrées avec une résolution, en longueur ou en espacement, inférieure à 80 nanomètres comme on le verra.
Dans le cas d'un disque optique classique, on recouvrirait le relief d'une simple couche d'aluminium, mais cette couche d'aluminium ne permettrait pas de détecter avec un laser bleu des marques de dimensions et d'espacement égal à 80 nanomètres.
Selon l'invention, on recouvre les marques d'une triple couche constituée dans l'ordre par une couche diélectrique 12 de composé ZnS- SiO2, une couche 14 d'antimoniure d'indium (InSb) ou antimoniure de gallium (GaSb), et une couche diélectrique 16 de composé ZnS-SiO2. L'ensemble est recouvert par une couche de protection transparente 18.
La couche 14 en InSb ou GaSb est une couche à propriétés optiques non linéaires, et on a constaté que le pouvoir de réflexion de la structure tri-couche, couche GaSb ou InSb encadrée par les deux couches diélectriques ZnS-SiO2, pouvait augmenter très significativement lorsqu'elle est illuminée par un faisceau laser d'une puissance de 1 à 2 milliwatts (correspondant en pratique à une densité de puissance d'environ 7 milliwatts par micromètre carré).
La figure 2 représente à titre indicatif une courbe de variation de réflectivité (courbe du haut R) et de transmission (courbe du bas T) de la structure substrat + triple couche + couche de protection 18 en fonction de la puissance d'un laser d'illumination à 405 nanomètres. La couche inférieure 12 de ZnS-SiO2 a une épaisseur de 70 nanomètres, elle contient environ 80% de ZnS pour 20% de SiO2 (en pourcentage atomique). La couche supéheure16 a la même composition et une épaisseur de 50 nanomètres. La couche intermédiaire est en InSb d'épaisseur 20 nanomètres et de composition sensiblement stoechiométrique. Cet exemple de mesure montre que la réflectivité de la structure superposée varie beaucoup avec la puissance d'illumination. Par conséquent, avec un laser de lecture d'une puissance d'environ 1 ,3 mW, du fait de la distribution gaussienne de l'énergie du faisceau, le pouvoir de réflexion variera considérablement entre le centre et la périphérie de la tache focale, d'où la possibilité d'un effet de superrésolution très marqué.
La figure 3 représente une autre mesure, qui est une mesure de réflectivité comparative pour la structure définie au paragraphe précédent et pour une structure identique dans laquelle InSb est remplacé par GaSb. Les résultats pour GaSb sont moins bons en ce sens qu'ils nécessitent une puissance de lecture supérieure ; cependant, la plage de puissances utilisables est plus grande.
La figure 4 rappelle la manière dont peuvent être constituées les informations préenregistrées sur le substrat, avant dépôt de la superposition de trois couches 12, 14, 16 : trous borgnes de longueur et d'espacement variables. La flèche indique le sens de défilement du substrat sous le laser de lecture.
La figure 5 représente une mesure en décibels du rapport signal/bruit (ou "Carrier Noise Ratio") CNR en fonction de la puissance du laser de lecture, dans le cas d'un substrat sur lequel on a formé des marques régulières de dimensions 80nm et d'espacement 80 nanomètres, donnant donc lieu en théorie à une fréquence constante du signal de sortie du système de lecture laser. Ces marques sont recouvertes par la triple couche mentionnée précédemment, la couche active de 20 nanomètres étant soit InSb soit GaSb. A titre indicatif, le rapport CNR est nul (les marques ne sont pas du tout détectées) si les marques sont recouvertes par 25 à 40 nanomètres d'aluminium (comme dans un disque optique ROM) plutôt que par la triple couche selon l'invention. On voit encore sur cette courbe que l'antimoniure d'indium est plus favorable que l'antimoniure de gallium du point de vue de la puissance puisque le rapport est de près de 35dB pour une puissance de 1 ,3 mW alors qu'il faut plutôt 2 m il Ii watts pour GaSb pour obtenir le même rapport.
La figure 6 représente une autre mesure comparative de ce rapport CNR, sur trois échantillons de substrat avec marques préenregistrées régulières de 80nm espacées de 80 nm, identiques dans les trois échantillons. Seule la courbe de gauche utilise des couches diélectriques de composé ZnS-SiO2 ; les deux courbes de droite utilisent respectivement comme diélectrique de l'oxyde de silicium SiO2 et du nitrure de silicium Si3N4. La couche optique non linéaire est ici de l'antimoniure d'indium InSb. On voit qu'il faut une puissance de lecture beaucoup moins importante dans le cas de l'invention, avec des couches ZnS-SiO2, pour atteindre un rapport CNR élevé.
Enfin, on a étudié expérimentalement le comportement en lecture multiples de l'information uniforme ainsi enregistrée pour les trois structures, l'une étant celle de l'invention, les autres utilisant comme couches diélectriques SiO2 ou Si3N4. Avec SiO2 on a pu lire les informations avec un rapport signal/bruit suffisant pour une puissance de 2,74 milliwatts et on a constaté une dégradation du signal lu après 34 cycles de lecture. Avec Si3N4, on a pu lire avec une puissance de 2,26 milliwatts et on a constaté une dégradation après 240 cycles de lecture. Avec les couches de ZnS-SiO2 proposées selon l'invention, on a pu lire à une puissance de 1 ,66 mW et on n'a pas constaté de dégradation significative du signal jusqu'à 8000 cycles de lecture. On mesure donc l'importance de la structure proposée comparativement à d'autres structures essayées, malgré son caractère inattendu puisqu'elle repose apparemment sur l'augmentation en superrésolution de la réflectivité de la structure et non sur l'augmentation de la transmission qu'on aurait pu penser plus favorable que la réflexion sachant qu'on doit lire des marques physiques situées au-dessous de la structure tricouche.
Les essais effectués ont montré que, aussi bien pour un laser bleu que pour un laser rouge, les épaisseurs optimales des couches de la structure selon l'invention sont les suivantes :
- couche inférieure de ZnS-SiO2 : environ 50 à 70 nanomètres ; - couche GaSb ou InSb : environ 20 à 30 nanomètres ; - couche supérieure de ZnS-SiO2 : environ 50 à 60 nanomètres.
La composition atomique préférée pour le composé ZnS-SiO2 est d'environ 80% de ZnS pour 20% de SiO2.
Le dépôt des couches ne pose pas de problème particulier ; il peut être fait classiquement par pulvérisation cathodique à partir d'une cible comportant les matériaux considérés, aussi bien pour la couche active que pour les diélectriques, ou par dépôt en phase vapeur assisté par plasma.

Claims

REVENDICATIONS
1. Structure de stockage optique d'informations à haute résolution, comprenant un substrat (10) pourvu de marques physiques dont la configuration géométrique définit l'information enregistrée, une superposition de trois couches (12, 14, 16) au-dessus des marques du substrat, et une couche de protection transparente (18) au-dessus de cette superposition, la superposition comprenant une couche d'antimoniure d'indium ou de gallium (14) insérée entre deux couches diélectriques (12, 16) de ZnS-SiO2.
2. Structure selon la revendication 1 , caractérisé en ce que les proportions atomiques d'antimoine dans la couche d'antimoniure (14) sont de 45% à 55%, la proportion d'indium ou de gallium étant comprise entre 45% et le complément à 100% de la proportion d'antimoine
3. Structure selon la revendication 2, caractérisé en ce que la couche d'antimoniure (14) est une couche stoechiométrique InSb ou GaSb.
4. Structure selon l'une des revendications 1 à 3, caractérisé en ce que l'épaisseur de la couche d'antimoniure InSb ou GaSb est de 10 à 50 nanomètres.
5. Structure selon la revendication 4, caractérisé en ce que l'épaisseur de la couche d'antimoniure InSb ou GaSb est de 20 à 30 nanomètres.
6. Structure selon l'une des revendications 1 à 5, caractérisé en ce que les couches diélectriques de ZnS-SiO2 ont chacune une épaisseur comprise entre 20 et 100 nanomètres.
7. Structure selon la revendication 6, caractérisé en ce que la couche inférieure (12) de ZnS-SiO2 recouvrant les marques du substrat a une épaisseur d'environ 50 à 70 nanomètres.
8. Structure selon l'une des revendications 6 et 7, caractérisé en ce que la couche supérieure (16) de ZnS-SiO2 a une épaisseur d'environ 50 à 60 nanomètres.
9. Structure selon l'une des revendications 1 à 8, caractérisé en ce que la proportion atomique de ZnS et de SiO2 est choisie dans la gamme entre ZnS85at%-SiO2 i5at% (proportion 80/20) et ZnS7oat%-SiO2 3oat% (proportion 70/30).
10. Structure selon l'une des revendications 1 à 9, caractérisé en ce que le substrat est en polycarbonate.
11. Structure selon l'une des revendications 1 à 10, caractérisé en ce que les marques physiques enregistrées sur le substrat sont des creux imprimés par matriçage.
12. Application de la structure selon l'une des revendications précédentes à la fabrication d'un disque optique destiné à être lu en superrésolution par un lecteur à laser bleu, certaines des marques physiques ayant une longueur et une largeur inférieures à 100 nanomètres.
13. Application de la structure selon l'une des revendications précédentes à la fabrication d'un disque optique destiné à être lu en superrésolution par un lecteur à laser rouge, les marques physiques ayant une longueur et une largeur inférieures à 200 nanomètres.
PCT/EP2008/051389 2007-02-09 2008-02-05 Support de stockage d'informations optiques a haute resolution. WO2008101801A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNA2008800045077A CN101606201A (zh) 2007-02-09 2008-02-05 高分辨率光学信息存储介质
AT08708690T ATE515023T1 (de) 2007-02-09 2008-02-05 Hochauflösendes optisches informationsspeichermedium
JP2009548682A JP2010518541A (ja) 2007-02-09 2008-02-05 高解像度光学情報記憶媒体
EP08708690A EP2115745B1 (fr) 2007-02-09 2008-02-05 Support de stockage d'informations optiques a haute resolution
KR1020097016481A KR20090107528A (ko) 2007-02-09 2008-02-05 고해상도 광 정보 저장 매체
US12/526,036 US20100291338A1 (en) 2007-02-09 2008-02-05 High-Resolution Optical Information Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0700938 2007-02-09
FR0700938A FR2912539B1 (fr) 2007-02-09 2007-02-09 Support de stockage d'informations optiques a haute resolution

Publications (1)

Publication Number Publication Date
WO2008101801A1 true WO2008101801A1 (fr) 2008-08-28

Family

ID=38337651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/051389 WO2008101801A1 (fr) 2007-02-09 2008-02-05 Support de stockage d'informations optiques a haute resolution.

Country Status (9)

Country Link
US (1) US20100291338A1 (fr)
EP (1) EP2115745B1 (fr)
JP (1) JP2010518541A (fr)
KR (1) KR20090107528A (fr)
CN (1) CN101606201A (fr)
AT (1) ATE515023T1 (fr)
FR (1) FR2912539B1 (fr)
TW (1) TW200849241A (fr)
WO (1) WO2008101801A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928486B1 (fr) * 2008-03-07 2011-08-19 Commissariat Energie Atomique Structure de stockage optique a haute densite
FR2935530B1 (fr) 2008-08-29 2012-05-04 Commissariat Energie Atomique Dispositif de memorisation de donnees a adressage optique.
FR2944132A1 (fr) * 2009-04-01 2010-10-08 Commissariat Energie Atomique Structure de stockage optique d'informations et procede d'optimisation de realisation de cette structure.
FR2950726A1 (fr) * 2009-09-29 2011-04-01 Commissariat Energie Atomique Lecteur de disque optique en super-resolution et procede de lecture optimisee par mesure d'amplitude
FR2950727B1 (fr) * 2009-09-29 2012-02-17 Commissariat Energie Atomique Lecteur de disque optique en super-resolution et procede de lecture optimisee par mesure de reflectivite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292632A (ja) * 1990-04-10 1991-12-24 Sony Corp 光ディスクの信号再生方法
JPH0729206A (ja) * 1993-07-08 1995-01-31 Hitachi Ltd 光記録媒体
US5949751A (en) * 1995-09-07 1999-09-07 Pioneer Electronic Corporation Optical recording medium and a method for reproducing information recorded from same
US20030002428A1 (en) * 2001-06-29 2003-01-02 Korea Institute Of Science And Technology High density optical recording medium
US20050254408A1 (en) * 2004-05-17 2005-11-17 Samsung Electronics Co., Ltd. Information storage medium having super resolution structure and apparatus for recording to and/or reproducing from the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801327A (nl) * 1988-05-24 1989-12-18 Philips Nv Methode voor het optisch aftasten van een informatievlak en optische registratiedragers en aftastinrichtingen geschikt voor toepassing van de methode.
JPH06267113A (ja) * 1993-03-10 1994-09-22 Nikon Corp 再生専用の光ディスク
JP3506491B2 (ja) * 1994-06-23 2004-03-15 Tdk株式会社 光情報媒体
JPH09128803A (ja) * 1995-10-31 1997-05-16 Sony Corp 光ディスク
US6379767B1 (en) * 1998-04-28 2002-04-30 Lg Electronics Inc. Optical recording medium with multiple recording layers and fabricating method thereof
US6367550B1 (en) * 2000-10-25 2002-04-09 Halliburton Energy Service, Inc. Foamed well cement slurries, additives and methods
US6803335B2 (en) * 2001-08-03 2004-10-12 The University Of Southampton Gallium lanthanum sulfide glasses and optical waveguides and devices using such glasses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03292632A (ja) * 1990-04-10 1991-12-24 Sony Corp 光ディスクの信号再生方法
JPH0729206A (ja) * 1993-07-08 1995-01-31 Hitachi Ltd 光記録媒体
US5949751A (en) * 1995-09-07 1999-09-07 Pioneer Electronic Corporation Optical recording medium and a method for reproducing information recorded from same
US20030002428A1 (en) * 2001-06-29 2003-01-02 Korea Institute Of Science And Technology High density optical recording medium
US20050254408A1 (en) * 2004-05-17 2005-11-17 Samsung Electronics Co., Ltd. Information storage medium having super resolution structure and apparatus for recording to and/or reproducing from the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 43, no. 7B, 2004
JOOHO KIM: "Signal Characteristics of Super-Resolution Near-Field Structure Disk in Blue Laser System", DUSEOP YOON ET AUTRES

Also Published As

Publication number Publication date
ATE515023T1 (de) 2011-07-15
CN101606201A (zh) 2009-12-16
FR2912539A1 (fr) 2008-08-15
KR20090107528A (ko) 2009-10-13
JP2010518541A (ja) 2010-05-27
FR2912539B1 (fr) 2009-03-27
EP2115745B1 (fr) 2011-06-29
TW200849241A (en) 2008-12-16
US20100291338A1 (en) 2010-11-18
EP2115745A1 (fr) 2009-11-11

Similar Documents

Publication Publication Date Title
EP1978517B1 (fr) Support d'enregistrement optique en super-resolution
EP2115745B1 (fr) Support de stockage d'informations optiques a haute resolution
EP1285440A1 (fr) Supports d'enregistrement optique irreversible
EP1978512B1 (fr) Procédé de détérioration intentionelle du contenu d'un support d'enregistrement optique
WO2005010876A2 (fr) Support d’enregistrement optique comportant au moins une couche photosensible et une couche deformable
EP2145331B1 (fr) Procede et systeme de lecture d'informations optiques a haute densite
EP2293299B1 (fr) Support de stockage optique comprenant une structure dotée d'impuretés granuleuses d'un matériau diélectrique
EP1864287B1 (fr) Support d enregistrement optique irreversible par formation de bulles ayant une hauteur limitee par la source de gaz les generant
WO2009121912A1 (fr) Disque optique a super-resolution a stabilite de lecture elevee
EP2250644B1 (fr) Structure de stockage optique a haute densite
EP2302628A1 (fr) Lecteur de disque optique en super-résolution et procédé de lecture optimisée par mesure de réflectivité
WO2004051638A1 (fr) Procede de fabrication d'un disque optique enregistrable, disque optique et couche inscriptible obtenu par ledit procede
FR2882851A1 (fr) Support d'enregistrement optique de donnees comportant une couche mince en alliage d'etain et tellure
EP2302625A1 (fr) Lecteur de disque optique en super-résolution et procédé de lecture optimisée par mesure d'amplitude
EP1842187A1 (fr) Support d'enregistrement optique irreversible comportant une piste avec des zones en relief de faible hauteur et procede d'utilisation d'un tel support
FR2944132A1 (fr) Structure de stockage optique d'informations et procede d'optimisation de realisation de cette structure.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880004507.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08708690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4344/DELNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008708690

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009548682

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097016481

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12526036

Country of ref document: US