WO2008099743A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2008099743A1
WO2008099743A1 PCT/JP2008/051988 JP2008051988W WO2008099743A1 WO 2008099743 A1 WO2008099743 A1 WO 2008099743A1 JP 2008051988 W JP2008051988 W JP 2008051988W WO 2008099743 A1 WO2008099743 A1 WO 2008099743A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
voltage
gas
cell stack
power
Prior art date
Application number
PCT/JP2008/051988
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Umayahara
Michio Yoshida
Tadaichi Matsumoto
Motohiko Taniyama
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007333012A external-priority patent/JP5007665B2/en
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to KR1020097016308A priority Critical patent/KR101109715B1/en
Priority to CN2008800013146A priority patent/CN101569044B/en
Priority to DE112008000096.4T priority patent/DE112008000096B4/en
Priority to US12/440,787 priority patent/US9034495B2/en
Publication of WO2008099743A1 publication Critical patent/WO2008099743A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that performs operation control with an output voltage of a fuel cell being set to a high potential avoidance voltage that is lower than an open-circuit voltage.
  • a fuel cell stack is a power generation system that directly converts energy released during an oxidation reaction into electrical energy by oxidizing fuel through an electrochemical process.
  • the fuel cell stack has a membrane-one electrode assembly in which both side surfaces of a polymer electrolyte membrane for selectively transporting hydrogen ions are sandwiched by a pair of electrodes made of a porous material.
  • Each of the pair of electrodes is mainly composed of carbon powder supporting a platinum-based metal catalyst, and is formed on the surface of the catalyst layer in contact with the polymer electrolyte membrane, and has both air permeability and electronic conductivity. Gas diffusion layer.
  • the fuel cell stack In a fuel cell vehicle equipped with a fuel cell system as a power source, in a high output region where the power generation efficiency is good, the fuel cell stack is generated and power is supplied to the traction motor from both the fuel cell stack and the secondary battery or only from the fuel cell stack. On the other hand, in the low output region where the power generation efficiency is low, the fuel cell stack is temporarily stopped to control the operation to supply power to the traction motor only from the secondary battery. In this way, temporarily stopping the operation of the fuel cell stack in a low load region where the power generation efficiency of the fuel cell system is low is called intermittent operation.
  • Japanese Laid-Open Patent Publication No. 2004-172028 refers to a fuel cell system that performs intermittent operation when the required load on the fuel cell stack is below a predetermined value. According to this publication, when the cell voltage of a fuel cell stack that has shifted to a power generation halt state due to intermittent operation falls below a predetermined value, an air conditioner is driven to supply oxygen gas to the fuel cell stack. It also mentions that the oxygen shortage at the cathode of the fuel cell stack can be resolved to restore the cell voltage and improve the response delay to power generation requirements.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-172028 Disclosure of Invention
  • the supply of the reaction gas to the fuel cell stack is stopped, and the command voltage of the DC / DC converter connected in parallel to the output terminal of the fuel cell stack is set to the open-end voltage to
  • the output terminal voltage of the battery stack was controlled to the open circuit voltage (OCV).
  • the platinum catalyst contained in the catalyst layer of the membrane-one electrode assembly may be ionized and eluted, so the performance of the fuel cell stack Suppressing the decline is an issue to be studied.
  • an object of the present invention is to propose a fuel cell system capable of achieving both improvement in power generation efficiency of a fuel cell and maintenance of durability.
  • a fuel cell system includes a fuel cell that generates power upon receiving a reaction gas supply, and a reaction gas supply to the fuel cell when the required power for the fuel cell is less than a predetermined value. Control so that the output voltage of the fuel cell is maintained at a high potential avoidance voltage lower than the open-circuit voltage. And a control device for controlling the output voltage of the fuel cell with the high potential avoidance voltage as an upper limit when the required power for the fuel cell is a predetermined value or more.
  • the upper limit of the output voltage of the fuel cell By setting the upper limit of the output voltage of the fuel cell to a high potential avoidance voltage lower than the open end voltage, it is possible to suppress catalyst deterioration due to the output voltage of the fuel cell rising to the open end voltage.
  • the fuel cell system according to the present invention further includes a D C ZD C converter for controlling the output voltage of the fuel cell.
  • the control device stops driving the D C ZD C converter when the output voltage of the fuel cell is lower than the high potential avoidance voltage by a predetermined voltage.
  • the fuel cell system according to the present invention further includes a power storage device.
  • the control device can output the fuel cell up to the open-circuit voltage. Allow boosting.
  • the fuel cell system according to the present invention further includes a traction motor.
  • the control device allows the output voltage of the fuel cell to be boosted to the open-end voltage while regenerative braking is being performed by the traction motor.
  • the fuel cell system according to the present invention further includes a plurality of shut-off valves arranged in a piping system for supplying a reaction gas to the fuel cell.
  • the control device forms a closed space inside the piping system by closing a plurality of shut-off valves, and detects gas leaks by detecting gas pressure fluctuations inside the closed space. Allows the battery output voltage to be boosted to the open-circuit voltage.
  • gas leak detection by allowing the output voltage of the fuel cell to increase to the open-circuit voltage, the consumption of reactive gas due to power generation by the fuel cell during gas leak detection is suppressed, and gas leak detection is performed. Accuracy can be increased.
  • the fuel cell is a cell stack formed by stacking a plurality of cells.
  • the control device preferably corrects the high potential avoidance voltage so that the highest voltage among the output voltages of the plurality of cells is equal to or lower than a predetermined value. If the cell voltage varies, the highest output voltage of multiple cells may exceed the high potential avoidance voltage per cell. By correcting the high potential avoidance voltage so that the maximum voltage among the output voltages of multiple cells is below a predetermined value (for example, the voltage value obtained by dividing the target voltage of the cell stack by the total number of cells), the cell voltage It is possible to suppress a decrease in durability caused by variations in the thickness.
  • FIG. 1 is a system configuration diagram of a fuel cell system according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the cells constituting the fuel cell stack.
  • FIG. 3 is a timing chart showing operation control of the fuel cell system according to the present embodiment.
  • Figure 4 is a graph showing the stack voltage detection error.
  • Figure 5 is a graph showing cell voltage variation.
  • FIG. 6 is a timing chart showing intermittent stop of the DC / DC converter.
  • FIG. 7 is an explanatory diagram showing conditions for executing the high potential avoidance control.
  • FIG. 8 is a timing chart showing operation control for switching on / off high potential avoidance control in accordance with the presence or absence of regenerative braking.
  • Figure 9 is a graph showing the relationship between the driving mode and the high potential avoidance voltage.
  • FIG. 10 is a timing chart showing operation control for switching high potential avoidance control on and off according to the presence or absence of gas leak detection.
  • FIG. 1 shows a system configuration of a fuel cell system 10 that functions as an in-vehicle power supply system for a fuel cell vehicle.
  • the fuel cell system 10 functions as an in-vehicle power supply system mounted on a fuel cell vehicle.
  • the fuel cell system 10 generates power by receiving a reaction gas (fuel gas, oxidation gas), and an oxidation system.
  • An oxidizing gas supply system 30 for supplying air as gas to the fuel cell stack 20; a fuel gas supply system 40 for supplying hydrogen gas as fuel gas to the fuel cell stack 20; It includes a power system 50 for controlling the charging / discharging of the system and a controller 60 for controlling the entire system.
  • the fuel cell stack 20 is a solid polymer electrolyte cell stack in which a large number of cells are stacked in series.
  • the oxidation reaction of the equation (1) occurs at the anode electrode, and the reduction reaction of the equation (2) occurs at the force sword electrode.
  • the fuel cell stack 20 as a whole undergoes an electromotive reaction of the formula (3).
  • the fuel cell stack 20 has an output voltage (FC voltage) of the fuel cell stack 20
  • FC voltage output voltage
  • a voltage sensor 7 1 for detecting the current and a current sensor 7 2 for detecting the output current (FC current) are attached.
  • the oxidizing gas supply system 30 includes an oxidizing gas passage 3 3 through which oxidizing gas supplied to the cathode electrode of the fuel cell stack 20 flows, and an oxidizing off gas passage 3 4 through which oxidizing off gas discharged from the fuel cell stack 20 flows.
  • the oxidant gas passage 3 3 includes an air conditioner 3 2 that takes in the oxidant gas from the atmosphere via the filter 3 1, and a humidifier 3 5 that humidifies the oxidant gas pressurized by the air compressor 3 2.
  • a shutoff valve A 1 is provided for shutting off the oxidizing gas supply to the fuel cell stack 20.
  • the oxidizing off gas passage 3 4 includes a shutoff valve A 2 for shutting off the oxidizing off gas discharge from the fuel cell stack 20, a back pressure adjusting valve A 3 for adjusting the oxidizing gas supply pressure, and an oxidizing gas.
  • a humidifier 35 for exchanging moisture between the (dry gas) and the oxidizing off gas (wet gas) is provided.
  • the fuel gas supply system 40 includes a fuel gas supply source 41, a fuel gas passage 4 3 through which fuel gas supplied from the fuel gas supply source 41 to the anode of the fuel cell stack 20 flows, and a fuel cell stack 2
  • a circulation passage 4 4 for returning the fuel off-gas discharged from 0 to the fuel gas passage 4 3, a circulation pump 4 5 for pumping the fuel off-gas in the circulation passage 4 4 to the fuel gas passage 4 3, and a circulation passage 4 It has exhaust drainage passages 4 and 6 that are branched and connected to 4.
  • the fuel gas supply source 41 is composed of, for example, a high-pressure hydrogen tank or a hydrogen storage alloy, and stores high-pressure (for example, 35 MPa to 7 OMPa) hydrogen gas.
  • high-pressure hydrogen gas for example, 35 MPa to 7 OMPa
  • the shut-off valve HI When the shut-off valve HI is opened, the fuel gas flows out from the fuel gas supply source 4 1 to the fuel gas passage 4 3.
  • the fuel gas is depressurized to, for example, about 200 kPa by the regulator H 2 and the injector 42 and supplied to the fuel cell stack 20.
  • the fuel gas supply source 41 is a hydrogen-rich reformed gas from hydrocarbon fuel. And a high-pressure gas tank that stores the reformed gas generated in the reformer in a high-pressure state.
  • shutoff valve H 1 for shutting off or allowing the supply of fuel gas from the fuel gas supply source 4 1, a regulator H 2 for adjusting the pressure of the fuel gas, and a fuel cell stack 2 ⁇
  • an indicator 42 for controlling the amount of fuel gas supplied to the fuel cell
  • a shutoff valve H3 for shutting off the fuel gas supply to the fuel cell stack 20, and a pressure sensor 74.
  • the regulator H 2 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure, and is composed of, for example, a mechanical pressure reducing valve that reduces the primary pressure.
  • the mechanical pressure reducing valve has a housing in which a back pressure chamber and a pressure adjusting chamber are formed with a diaphragm therebetween, and the primary pressure is reduced to a predetermined pressure in the pressure adjusting chamber by the back pressure in the back pressure chamber. To have a secondary pressure.
  • the degree of freedom in designing the mechanical structure of the injector 42 can be increased. Further, since the upstream pressure of the injector 42 can be reduced, the valve body of the injector 42 becomes difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 42. This can be suppressed. Accordingly, it is possible to widen the adjustable pressure width of the downstream pressure of the injector 42, and to suppress a decrease in the response of the injector 42.
  • the injector 42 is an electromagnetically driven on / off valve that can adjust the gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat.
  • the injector 42 has a valve seat having an injection hole for injecting gaseous fuel such as fuel gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas And a valve body that is accommodated and held so as to be movable in the flow direction) and opens and closes the injection hole.
  • the valve body of the injector 42 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is switched in two stages by turning on and off the pulsed excitation current fed to the solenoid. be able to.
  • the flow rate and pressure of the fuel gas are controlled with high accuracy.
  • the injector 42 is a valve (valve body and valve seat) that opens and closes directly with an electromagnetic driving force, and has a high responsiveness because its driving cycle can be controlled to a highly responsive region.
  • the injector 42 changes at least one of the opening area (opening) and the opening time of the valve body provided in the gas flow path of the injector 42 in order to supply the required gas flow rate downstream thereof. Adjust the gas flow rate (or hydrogen molar concentration) supplied downstream.
  • the circulation passage 44 is connected to a shutoff valve H 4 for shutting off the fuel off-gas discharge from the fuel cell stack 20 and an exhaust / drain passage 46 branched from the circulation passage 44.
  • An exhaust / drain valve H 5 is disposed in the exhaust / drain passage 46.
  • the exhaust / drain valve H 5 is operated according to a command from the controller 60 to discharge the fuel off-gas and impurities including impurities in the circulation passage 44 to the outside. By opening the exhaust drain valve H 5, the concentration of impurities in the fuel off-gas in the circulation passage 44 can be lowered, and the hydrogen concentration in the fuel off-gas circulating in the circulation system can be increased.
  • the fuel off-gas discharged through the exhaust / drain valve H 5 is mixed with the oxidizing off-gas flowing through the oxidizing off-gas passage 34 and diluted by a diluter (not shown).
  • the circulation pump 45 circulates and supplies the fuel off-gas in the circulation system to the fuel cell stack 20 by driving the motor.
  • the power system 50 includes a DC / DC converter 51, a battery 52, a traction inverter 5 3, a traction motor 5 4, and auxiliary equipment 5 5.
  • Fuel cell system 10 DC / DC converter 5 1 and traction impeller Data parallel to the fuel cell stack 20 is connected to the fuel cell stack 20 in parallel.
  • the DC / DC converter 51 boosts the DC voltage supplied from the battery 52 and outputs it to the traction inverter 53, and the DC power generated by the fuel cell stack 20 or traction by regenerative braking. It has a function to step down the regenerative power collected by the motor 54 and charge the battery 52. With these functions of the D CZD C converter 51, charging / discharging of the battery 52 is controlled.
  • the operation point (output voltage, output current) of the fuel cell stack 20 is controlled by voltage conversion control by the D CZD C converter 51.
  • the battery 52 functions as a surplus power storage source, a regenerative energy storage source during regenerative braking, and an energy buffer during load fluctuations associated with acceleration or deceleration of the fuel cell vehicle.
  • a secondary battery such as a nickel-powered lithium storage battery, a nickel-hydrogen storage battery, or a lithium secondary battery is preferable.
  • the battery 52 is provided with a SOC sensor 73 for detecting SOC (State of charge).
  • the traction inverter 53 is, for example, a PWM inverter driven by a pulse width modulation method, and in accordance with a control command from the controller 60, the DC voltage output from the fuel cell stack 20 or the battery 52 is three-phased. It converts to AC voltage and controls the rotational torque of the Traction Motor 54.
  • the traction motor 54 is, for example, a three-phase AC motor, and constitutes a power source for the fuel cell vehicle.
  • Auxiliary machinery 5 5 includes motors (for example, power sources such as pumps) disposed in each part of the fuel cell system 10, inverters for driving these motors, and various types of motors.
  • In-vehicle accessories for example, air compressors, injectors, cooling water circulation pumps, radiators, etc.
  • Controller 60 is CPU, ROM, RAM, and I / O interface. This is a computer system equipped with a fuel cell and controls each part of the fuel cell system 10. For example, when the controller 60 receives the start signal IG output from the ignition switch, the controller 60 starts operation of the fuel cell system 10 and outputs the accelerator opening signal ACC output from the accelerator sensor or the vehicle speed sensor. The required power of the entire system is obtained based on the vehicle speed signal VC. The required power of the entire system is the sum of the vehicle travel power and auxiliary power.
  • the auxiliary power includes the power consumed by in-vehicle auxiliary equipment (humidifier, air compressor, hydrogen pump, cooling water circulation pump, etc.), and equipment required for vehicle travel (transmission, wheel control device, Power consumed by steering devices, suspension devices, etc.) and power consumed by devices (air conditioners, lighting fixtures, audio, etc.) disposed in the passenger space.
  • in-vehicle auxiliary equipment humidity, air compressor, hydrogen pump, cooling water circulation pump, etc.
  • equipment required for vehicle travel transmission, wheel control device, Power consumed by steering devices, suspension devices, etc.
  • devices air conditioners, lighting fixtures, audio, etc.
  • FIG. 2 is an exploded perspective view of the cell 21 constituting the fuel cell stack 20.
  • the cell 21 is composed of a polymer electrolyte membrane 2 2, an anode electrode 2 3, a force sword electrode 2 4, and separators 2 6 and 2 7.
  • the anode electrode 2 3 and cathode electrode 2 4 are diffusion electrodes having a sandwich structure with the polymer electrolyte membrane 2 2 sandwiched from both sides.
  • Separators 2 6, 2 7 made of a gas-impermeable conductive member are provided on the anode electrode 2 3 while sandwiching this sandwich structure from both sides. And a flow path for fuel gas and oxidizing gas between the cathode electrode 24 and the cathode electrode 24, respectively.
  • the separator 26 is formed with a lip 26 a having a concave cross section.
  • the separator 27 is formed with a rib 27 a having a concave cross section.
  • the force sword pole 24 comes into contact with the rib 27a, the opening of the rib 27a is closed and an oxidizing gas flow path is formed.
  • the anode electrode 23 is mainly composed of carbon powder supporting a platinum-based metal catalyst (Pt, Pt—Fe, Pt_Cr, Pt—Ni, Pt_Ru, etc.) It has a catalyst layer 2 3a in contact with the polymer electrolyte membrane 22 and a gas diffusion layer 2 3b formed on the surface of the catalyst layer 2 3a and having both air permeability and electronic conductivity.
  • the force sword electrode 24 has a catalyst layer 24a and a gas diffusion layer 24b. More specifically, the catalyst layers 2 3 a and 2 4 a are formed by dispersing carbon powder carrying platinum or an alloy made of platinum and another metal in a suitable organic solvent, and adding an appropriate amount of an electrolyte solution.
  • the gas diffusion layers 2 3 b and 2 4 b are formed of carbon cloth, carbon paper, or carbon felt woven with carbon fiber yarns.
  • the polymer electrolyte membrane 22 is a proton-conductive ion exchange membrane formed of a solid polymer material, for example, a fluororesin, and exhibits good electrical conductivity in a wet state.
  • a membrane-electrode assembly 25 is formed by the polymer electrolyte membrane 2 2, the anode 2 3, and the cathode 2 4.
  • FIG. 3 is a timing chart showing operation control of the fuel cell system 10.
  • the fuel cell system 10 improves power generation efficiency by switching the operation mode of the fuel cell stack 20 according to the operating load.
  • the fuel cell system 10 controls the operation by setting the power generation command value of the fuel cell stack 20 to zero in the low load region where the power generation efficiency is low (the operation region where the power generation request is less than a predetermined value). Battery power required for driving and system operation 5 2 (Hereinafter referred to as the first operation mode).
  • the power generation command value of the fuel cell stack 20 is calculated based on the accelerator opening and the vehicle speed, etc.
  • operation mode 2 the power required for vehicle travel and the power required for system operation are covered only by the power generated by the fuel cell stack 20 or by the power generated by the fuel cell stack 20 and the power from the battery 52 (hereinafter referred to as This is referred to as operation mode 2).
  • the fuel cell system 10 monitors the control flag indicating the operation mode at regular intervals, and controls the operation in the first operation mode when the control flag is turned on, and performs the second operation when the control flag is turned off. Control operation in mode.
  • the output voltage of the fuel cell stack 20 during normal operation is basically limited to the operation range between the upper limit voltage V I and the lower limit voltage V 2.
  • the upper limit voltage V 1 is preferably a voltage that satisfies the condition that the platinum catalyst contained in the catalyst layers 2 3 a and 2 4 a of the fuel cell stack 20 does not elute, Furthermore, in addition to the above conditions, when the output voltage of the fuel cell stack 20 is maintained at the upper limit voltage VI when the reaction gas supply to the fuel cell stack 20 is stopped, the fuel cell stack 20 It is preferable that the voltage satisfies the condition that it is in a voltage range that can be consumed by the auxiliary machinery 55. In the fuel cell stack 20, the platinum catalyst in the catalyst layer 24 a can be eluted, especially when the potential of the force sword electrode 24 is kept high, such as during low-density current operation or idle operation. There is sex.
  • controlling the output voltage of the fuel cell stack 20 to be equal to or lower than the upper limit voltage VI used and maintaining the durability of the fuel cell stack 20 is referred to as high potential avoidance control.
  • the upper limit voltage V 1 may be referred to as a high potential avoidance voltage.
  • high potential avoidance control is executed in any operation mode.
  • the upper limit voltage VI is preferably set so that the voltage is about 0.9 V per cell, for example.
  • the lower limit voltage V 2 is preferably a voltage that satisfies the condition that the cell voltage is within a voltage range that does not decrease in the reduction region. If the fuel cell stack 20 is continuously operated in the oxidation region, an effective area of the platinum catalyst is reduced by forming an oxide film on the surface of the platinum catalyst contained in the catalyst layer 24 a. Then, since the activation voltage increases, the I-V characteristic of the fuel cell stack 20 decreases. By performing the catalyst activation treatment, the oxide film is reduced and the oxide film is removed from the platinum catalyst, so that the I-V characteristics can be recovered. However, the cell voltage is reduced between the oxidation region and the reduction region. If the transition is made frequently, the durability of the fuel cell stack 20 will decrease.
  • the carbon carrying the platinum catalyst may be oxidized. Taking these circumstances into consideration, it is possible to suppress a decrease in the durability of the fuel cell stack 20 by controlling the output voltage of the fuel cell stack 20 during normal operation to the lower limit voltage V 2 or more.
  • the lower limit voltage V 2 is preferably set so that the voltage is about 0.8 V per cell, for example.
  • the output voltage of the fuel cell stack 20 during normal operation is controlled between the upper limit voltage VI and the lower limit voltage V 2 as a general rule.
  • the output voltage may be controlled to the upper limit voltage V 1 or higher, or may be controlled to the lower limit voltage V 2 or lower.
  • the SOC of the battery 52 is greater than or equal to the specified value
  • the output voltage of the fuel cell stack 20 is raised to the open-circuit voltage.
  • the catalyst activation process is performed, the output voltage of the fuel cell stack 20 is lowered to the use lower limit voltage V 2 or less.
  • the controller 60 sets the power generation command value to zero, stops the supply of the reaction gas to the fuel cell stack 20, and sets the voltage command value to the DC / DC converter 51. Set to upper limit voltage VI (time t0 to t4). Even after the supply of the reaction gas is stopped, the unreacted reaction gas remains in the fuel cell stack 20, so that the fuel cell stack 20 generates a slight amount of power for a while.
  • the period from time t 0 to t 2 is a power generation period in which a minute amount of power generation is continued by converting the chemical energy of the residual reaction gas into electric energy.
  • the residual reaction gas has enough energy for the output voltage of the fuel cell stack 20 to maintain the upper limit voltage V 1, so the output voltage of the fuel cell stack 20 is equal to the upper limit voltage V 1 Continue to maintain.
  • the power generated during this power generation period is consumed by the auxiliary machinery 55, but if it cannot be consumed by the auxiliary machinery 55, the battery 52 is charged.
  • the generated energy of the fuel cell stack 20 exceeds the consumption capacity of the accessories 55, so that a part of the generated energy is charged in the battery 52.
  • the power generation energy released from the fuel cell stack 20 according to the consumption of the residual reactant gas gradually decreases, so the power generation energy released from the fuel cell stack 20 at the time t1.
  • the consumption capacity of the traps 55 is balanced, and the electric power charged to the battery 52 becomes a negative outlet.
  • the generated power released from the fuel cell stack 20 cannot cover the power consumption of the auxiliary machinery 5 5. Electric power is supplied from the battery 5 2 to the auxiliary machinery 5 5.
  • the period from time t 2 to t 4 is a power generation stop period in which the output voltage of the fuel cell stack 20 can no longer be maintained at the use upper limit voltage V 1 due to the consumption of residual reaction gas, and power generation stops.
  • Use the output voltage of the fuel cell stack 20 When the residual reaction gas does not have the energy necessary to maintain the upper limit voltage V 1 for use, power generation is stopped, and the output voltage of the fuel cell stack 20 gradually decreases.
  • the power generated by the fuel cell stack 20 is zero, so the power supplied from the battery 52 to the auxiliary machinery 55 is substantially constant.
  • the oxidizing gas supply system 30 is driven, and the oxidizing gas is supplied to the fuel cell stack 20. Since the fuel cell stack 20 is supplied with the oxidizing gas and generates power, the output voltage of the fuel cell stack 20 starts to rise. When the output voltage of the fuel cell stack 20 is increased to a predetermined voltage (for example, 3600 V), the oxidizing gas supply is finished. In this way, during the power generation stop period, whenever the output voltage of the fuel cell stack 20 drops to the lower limit voltage V2, the oxidizing gas is appropriately replenished so that the output voltage does not fall below the lower limit voltage V2. Be controlled.
  • a predetermined voltage for example, 3600 V
  • the controller 60 calculates the power generation command value according to the required load, controls the supply of the reaction gas to the fuel cell stack 20, and uses the fuel cell via the DC ZDC converter 51. Controls the operation point (output voltage, output current) of stack 20 (time t4 to time t5). At this time, the voltage command value to the D C ZD C converter 51 is limited to the operation range between the upper limit voltage V I and the lower limit voltage V 2.
  • the measured voltage V DC measured by the voltage sensor 71 may be smaller than the actual voltage V TC of the fuel cell stack 20 by ⁇ V stack .
  • the main causes of the error AV stack are the voltage drop due to the diode 75 provided to prevent the backflow of the stack current and the measurement error due to the voltage sensor 71.
  • the controller 60 controls the DC / DC converter 51 so that the measured voltage V DC that is smaller by ⁇ V stack than the actual voltage V TC matches the target voltage. Therefore, the actual voltage V TC The voltage is controlled to be higher by ⁇ V stack than the pressure.
  • the actual voltage V TC is controlled to a voltage higher than the target voltage by ⁇ V stack , the deterioration of the fuel cell stack 20 will be accelerated, so the measurement voltage VDC will be corrected taking into account the error ⁇ V stack
  • Actual voltage VTC is equal to the total value Vcelall of each cell 2 1 cell voltage measured by the cell monitor, calculated at a predetermined computation cycle error delta Vstack between V ce LL-aU and V DC
  • the DC / DC converter 51 may be controlled such that the measured voltage V DC is corrected in real time in consideration of the error ⁇ V stack and the actual voltage V TC matches the target voltage.
  • the output voltage (cell voltage) of the cell 2 1 varies.
  • the target voltage per cell is the voltage obtained by dividing the target voltage of the fuel cell stack 20 by the total number of cells.) .
  • the controller 60 monitors the cell voltage of each cell 21 constituting the fuel cell stack 20 with a cell voltage detection device (not shown), and determines the maximum cell voltage V ce i Lmax and the average cell. It is preferable to correct the target voltage of the fuel cell stack 20 based on the difference AV cel i from the voltage V cel and ave, and control so that the cell voltage of any cell 21 does not exceed the target voltage per cell. Good.
  • Figure 6 is a timing chart showing the intermittent stop of the DC / DC converter 51.
  • This timing chart shows a series of control processes in which the fuel cell vehicle gradually decelerates from low-speed traveling to stop the vehicle.
  • the control flag switches from off to on.
  • the operation mode of the fuel cell system 10 is switched from the second operation mode to the first operation mode.
  • the traveling flag is switched from on to off.
  • the traveling flag is flag information indicating whether or not the vehicle is in a traveling state. When the fuel cell vehicle is traveling (the vehicle speed is a predetermined value or more), the traveling flag is turned on, When the vehicle is stopped (the vehicle speed is less than the predetermined value), the travel flag is turned off.
  • the motor drive permission flag is switched from on to off.
  • the motor driving permission flag is flag information indicating whether or not the driving of the traction motor 54 is permitted.
  • the motor driving permission flag is turned on. If the driving of the traction motor 54 cannot be permitted (the state where the traction motor 54 is shut down), the motor driving permission flag is turned off.
  • the controller 60 sets the power generation command value to zero, stops the supply of the reaction gas to the fuel cell stack 20, and sets the voltage command value to the DC ZD C converter 51.
  • sufficient reaction gas is maintained in the fuel cell stack 20 to maintain the output voltage of the fuel cell stack 20 at the use upper limit voltage V1.
  • the amount of residual reactive gas gradually decreases due to the small amount of power generated by the residual reactive gas.
  • power generation is stopped, and the output voltage of the fuel cell stack 20 gradually decreases. I will do it.
  • the converter drive permission flag is flag information indicating whether or not the drive of the DC / DC converter 51 is permitted.
  • the converter drive permission flag is When it is turned on and the drive of the DC / DC converter 51 cannot be permitted, the converter drive permission flag is turned off.
  • the controller 60 drives the oxidizing gas supply system 40 to replenish the fuel cell stack 20 with oxidizing gas. Since the fuel cell stack 20 generates electric power upon replenishment of the oxidizing gas, the output voltage of the fuel cell stack 20 starts to rise. Further, at time t 14 when oxidant gas supply to the fuel cell stack 20 is started, the converter drive permission flag is switched from OFF to ON, and the D CZD C converter 51 is restarted.
  • the output of the fuel cell stack 20 is output by the amount of power generated by the fuel cell stack 20 that cannot be consumed by the traction impeller 53. There is a risk that the voltage will rise and exceed the upper limit of use voltage V1.
  • FIG. 7 is an explanatory diagram showing conditions for executing the high potential avoidance control.
  • (A1) 30 of battery 52 is 3001 or less
  • (B 1) the vehicle is not in regenerative braking
  • (C 1) It is necessary to satisfy all the conditions that gas leak detection is not being judged.
  • the implementation of high potential avoidance control is prohibited.
  • (A2) Notch 52 SOC is SOC 2 or higher
  • (B 2) Vehicle is in regenerative braking
  • the controller 60 periodically monitors the state of charge of the battery 52 by reading the signal output from the SOC sensor 73.
  • controller 60 switches the high potential avoidance control function from on (permitted) to off (prohibited).
  • the high potential avoidance control function is turned off, the output voltage of the fuel cell stack 20 is maintained at the open end voltage.
  • the SOC of the battery 52 becomes SOC 1 (for example, 70%) or less, the controller 60 switches the high battery avoidance control function from OFF to ON.
  • the high potential avoidance control function is turned on, the output voltage of the fuel cell stack 20 is controlled below the upper limit voltage VI.
  • the output voltage of the fuel cell stack 20 is set to the upper limit voltage VI of use even though the power generation command value to the fuel cell stack 20 is the outlet.
  • the fuel cell stack 20 generates a small amount of electricity through an electrochemical reaction caused by residual reaction gas.
  • the power generated by this power generation can be consumed by auxiliary equipment 55 as auxiliary equipment loss, but due to fluctuations in power generation by the fuel cell stack 20, fluctuations in power consumption by auxiliary equipment 55, etc.
  • Auxiliary equipment 55 alone may not be fully consumed. In such a case, power that cannot be consumed by the auxiliary equipment 55 will be charged to the battery 52. However, if the SOC of the battery 52 is high, it will cause overcharge and damage the battery 52.
  • the high potential avoidance control function is switched from on to off, so that the battery 52 can be prevented from being damaged due to overcharging.
  • the charge capacity of the battery 52 is used as a reference. Judgment conditions for switching on / off the high potential avoidance control function may be set.
  • the high potential avoidance control function is switched from OFF to ON, while the charging capacity of the battery 52 is decreased to Win 2 (for example, 1 At 2 kW) or more, the high potential avoidance control function is switched from on to off.
  • Win 1 for example, 1 kW
  • Win 2 for example, 1 At 2 kW
  • the judgment condition for switching the high potential avoidance control function on and off does not necessarily have a hysteresis characteristic. .
  • FIG. 1 shows a series of processes in which the fuel cell vehicle shifts from a running state to regenerative braking.
  • the traction motor 5 4 performs regenerative braking and converts the kinetic energy of the vehicle into electric energy.
  • the regeneration flag switches from off to on.
  • the regenerative flag is flag information indicating whether or not the vehicle is performing regenerative braking.
  • the regenerative flag is off, and when the vehicle is regeneratively braking, regenerative braking is performed. The flag is turned on.
  • the controller 60 changes the upper limit voltage of the fuel cell stack 2 0 from the upper limit voltage V 1 to the open circuit voltage, and the output voltage of the fuel cell stack 20 exceeds the upper limit voltage VI. Allow open circuit voltage. Since the required load on the fuel cell stack 20 during regenerative braking is light, the output voltage of the fuel cell stack 20 gradually increases and becomes equal to the open-circuit voltage at time t 21, and thereafter Continue to maintain the open circuit voltage. In addition, after time t2 1 when the output voltage of the fuel cell stack 20 becomes equal to the open-circuit voltage. The generated current becomes zero.
  • the fact that the power generation current of the fuel cell stack 20 becomes zero means that the fuel cell stack 20 does not generate power, so that it is not necessary to charge the generated power to the battery 52.
  • the regenerative power indicated by the solid line indicates the power that can be charged to the battery 52 by prohibiting the high potential avoidance control during regenerative braking
  • the regenerative power indicated by the dotted line indicates that the high potential avoidance control is performed during regenerative braking.
  • Indicates the power that can be charged to battery 52. The difference between the two is the regenerative power that can be recovered more by the battery 52 because the battery 52 does not need to be charged with the power generated by the fuel cell stack 20 during regenerative braking. Indicates.
  • the high potential avoidance control function is turned off, so that the generated power of the fuel cell stack 20 can be reduced to zero and more regenerative power can be charged to the battery 52. Efficiency can be increased.
  • the high potential avoidance function may not be turned off, but the upper limit voltage V 1 may be controlled to be higher than the open circuit voltage.
  • the SOC of the battery 52 is low, not only the regenerative power collected by the traction motor 54 but also the power generated by the fuel cell stack 20 can be charged.
  • High potential avoidance control may be turned off on condition that regenerative braking is performed when the value is equal to or greater than a predetermined value.
  • the target value of the high potential avoidance voltage during regenerative braking may be changed according to the vehicle running mode ((/ ⁇ range).
  • the D range is a driving mode used during normal driving
  • the B range is used when a braking force greater than that during normal driving is required, such as when driving on a downhill or a road. This is the running mode used for.
  • the motor regeneration The torque is converted into electric power and charged to the battery 52. Therefore, when high potential avoidance control is performed even during regenerative braking, the following electric power balance is established.
  • Battery charge power + Auxiliary machine power consumption Motor regenerative power + Fuel cell power generation-(4)
  • the controller 60 variably sets the high potential avoidance voltage so that the following equation (5) is satisfied during vehicle braking.
  • the high potential avoidance voltage derived from the relational expression (5) may be held in the ROM in the controller 60 as map data as shown in FIG.
  • the horizontal axis represents regenerative power
  • the vertical axis represents high potential avoidance voltage. Since the braking torque is different between the B range and D / R range, different map data are used.
  • the solid line shows the map data for the D range
  • the broken line shows the map data for the B range.
  • the controller 60 determines whether the driving mode of the vehicle is the D range or the B range based on the shift position. If the driving mode is the B range, the driving mode is the D range.
  • the target value of the high potential avoidance voltage is increased to ensure a large braking force. As a result, the drivability of the vehicle can be improved.
  • the operation control for switching on / off the high potential avoidance control according to the presence or absence of gas leak detection will be described with reference to the timing chart shown in FIG.
  • This timing chart shows that the stopped fuel cell vehicle is the first Gas leakage into the fuel gas piping system of the fuel cell system 10 during operation in the operation mode
  • the control flag switches from off to on. Then, the controller 60 controls the operation of the fuel cell stack 20 in the first operation mode.
  • the controller 60 is a gas leak for determining whether or not a hydrogen leak has occurred in the fuel gas piping system when the stopped fuel cell vehicle is operated and controlled in the first operation mode. Invoke the detection routine.
  • the gas leak detection routine When the gas leak detection routine is started, the shut-off valve H 3 arranged upstream of the fuel gas inlet of the fuel cell stack 20 and the shut-off valve H arranged downstream of the fuel gas outlet 4 and 4 are closed to form a sealed space inside the fuel gas piping system.
  • the gas pressure inside the sealed space is detected by a pressure sensor 74. If the amount of gas pressure drop per unit time inside the enclosed space is greater than or equal to a predetermined threshold, it is determined that a gas leak has occurred.
  • the gas leak detection flag is switched from OFF to ON.
  • the gas leak detection flag is flag information indicating whether or not the gas leak detection process is being performed.
  • the gas leak detection flag is turned on and the gas leak detection process is performed. If not, the gas leak detection flag is turned off.
  • the high potential avoidance flag is switched from on to off.
  • the high potential avoidance flag is flag information indicating whether or not high potential avoidance control is permitted.
  • the high potential avoidance flag is turned on and the high potential avoidance control is enabled.
  • the high potential avoidance flag is turned off. High potential avoidance during gas leak detection
  • the gas leak detection completion flag switches from off to on at the time t 3 1 when the time required for gas leak detection has elapsed and the gas leak detection processing is complete.
  • the gas leak detection completion flag is flag information indicating whether or not the gas leak detection is completed. When the gas leak detection is completed, the gas leak detection completion flag is turned on and the gas leak detection is not completed. Sometimes the gas leak detection completion flag is turned off.
  • the gas leak detection flag is switched from on to off, and the high potential avoidance flag is switched from off to on.
  • the output voltage of the fuel cell stack 20 gradually decreases from the open-circuit voltage at time t 3 1 and eventually reaches the use upper limit voltage V 1.
  • the shutoff valves 8 1 and 8 2 are opened.
  • high-pressure avoidance control is permitted during gas leak detection by forming a sealed space inside the fuel gas piping system and measuring the amount of gas pressure drop inside the sealed space after a predetermined time has elapsed Since the fuel cell stack 20 generates power and consumes hydrogen gas in the sealed space, there is a possibility of erroneous determination.
  • high potential avoidance control is prohibited while gas leak detection is being performed, so that the hydrogen gas consumption inside the sealed space caused by power generation by the fuel cell stack 20 This makes it possible to carry out highly accurate gas leak determination.
  • the usage mode in which the fuel cell system 10 is used as an in-vehicle power supply system has been illustrated.
  • the usage mode of the fuel cell system 10 is This is not limited to examples.
  • the fuel cell system 10 may be mounted as a power source for a mobile body (robot, ship, aircraft, etc.) other than the fuel cell vehicle.
  • the fuel cell system 10 according to this embodiment is installed in a power generation facility such as a house or a building.
  • the upper limit of the output voltage of the fuel cell is set to a high potential avoidance voltage that is lower than the open-circuit voltage, so that the deterioration of the catalyst due to the increase of the output voltage of the fuel cell to the open-circuit voltage is prevented. Can be suppressed.

Abstract

A fuel cell system performs control as follows. When a request power for the fuel cell is lower than a predetermined value, supply of a reaction gas to a fuel cell is stopped and the output voltage of the fuel cell is maintained at a high potential-avoiding voltage (V1) lower than the open end voltage (OCV). When the request power for the fuel cell is higher than the predetermined value, the output voltage of the fuel cell is controlled to be the high potential-avoiding voltage (V1) at the highest. By setting the upper limit of the output voltage of the fuel cell to the high potential-avoiding voltage (V1) which is lower than the open end voltage (OCV), it is possible to suppress degradation of a catalyst caused by increase of the output voltage of the fuel cell to the open end voltage (OCV).

Description

明細書  Specification
燃料電池システム  Fuel cell system
技術分野 Technical field
本発明は燃料電池の出力電圧を開放端電圧よりも低い高電位回避電圧を上 限として運転制御する燃料電池システムに関する。 背景技術  The present invention relates to a fuel cell system that performs operation control with an output voltage of a fuel cell being set to a high potential avoidance voltage that is lower than an open-circuit voltage. Background art
燃料電池スタックは、 燃料を電気化学プロセスによつて酸化させることに より、 酸化反応に伴って放出されるエネルギーを電気エネルギーに直接変換 する発電システムである。 燃料電池スタックは、 水素イオンを選択的に輸送 するための高分子電解質膜の両側面を多孔質材料から成る一対の電極によつ て挟持してなる膜一電極アッセンプリを有する。 一対の電極のそれぞれは、 白金系の金属触媒を担持するカーボン粉末を主成分とし、 高分子電解質膜に 接する触媒層と、 触媒層の表面に形成され、 通気性と電子導電性とを併せ持 つガス拡散層とを有する。  A fuel cell stack is a power generation system that directly converts energy released during an oxidation reaction into electrical energy by oxidizing fuel through an electrochemical process. The fuel cell stack has a membrane-one electrode assembly in which both side surfaces of a polymer electrolyte membrane for selectively transporting hydrogen ions are sandwiched by a pair of electrodes made of a porous material. Each of the pair of electrodes is mainly composed of carbon powder supporting a platinum-based metal catalyst, and is formed on the surface of the catalyst layer in contact with the polymer electrolyte membrane, and has both air permeability and electronic conductivity. Gas diffusion layer.
燃料電池システムを電力源として搭載する燃料電池車両では、 発電効率の よい高出力領域では、 燃料電池スタックを発電させて、 燃料電池スタックと 二次電池の両方又は燃料電池スタックのみからトラクションモータに電力を 供給する一方、 発電効率の悪い低出力領域では、 燃料電池スタックの発電を 一時休止し、 二次電池のみからトラクシヨンモータに電力を供給する運転制 御を行っている。 このように、 燃料電池システムの発電効率の低い低負荷領 域において、 燃料電池スタックの運転を一時休止することを間欠運転と称す る。 燃料電池システムの発電効率が低下する低負荷領域では、 間欠運転を実 施することで、 燃料電池スタツクをエネルギー変換効率の高い範囲内で運転 させることが可能となり、 燃料電池システム全体の効率を高めることができ る。 特開 2004— 1 72028号公報には、 燃料電池スタックへの要求負荷 が所定値以下である場合に、 間欠運転を実施する燃料電池システムについて 言及している。 同公報は、 間欠運転を実施することで発電休止状態に移行し た燃料電池スタックのセル電圧が所定値を下回ったときに、 エアコンプレツ サを駆動させて、 燃料電池スタックに酸素ガスを供給し、 燃料電池スタック のカソード極における酸素不足を解消してセル電圧を回復させ、 発電要求に 対する応答遅れを改善することについても言及している。 In a fuel cell vehicle equipped with a fuel cell system as a power source, in a high output region where the power generation efficiency is good, the fuel cell stack is generated and power is supplied to the traction motor from both the fuel cell stack and the secondary battery or only from the fuel cell stack. On the other hand, in the low output region where the power generation efficiency is low, the fuel cell stack is temporarily stopped to control the operation to supply power to the traction motor only from the secondary battery. In this way, temporarily stopping the operation of the fuel cell stack in a low load region where the power generation efficiency of the fuel cell system is low is called intermittent operation. In the low-load region where the power generation efficiency of the fuel cell system is reduced, intermittent operation can be performed to operate the fuel cell stack within a range where the energy conversion efficiency is high, increasing the efficiency of the entire fuel cell system. be able to. Japanese Laid-Open Patent Publication No. 2004-172028 refers to a fuel cell system that performs intermittent operation when the required load on the fuel cell stack is below a predetermined value. According to this publication, when the cell voltage of a fuel cell stack that has shifted to a power generation halt state due to intermittent operation falls below a predetermined value, an air conditioner is driven to supply oxygen gas to the fuel cell stack. It also mentions that the oxygen shortage at the cathode of the fuel cell stack can be resolved to restore the cell voltage and improve the response delay to power generation requirements.
[特許文献 1] 特開 2004— 1 72028号公報 発明の開示  [Patent Document 1] Japanese Patent Laid-Open No. 2004-172028 Disclosure of Invention
ところで、 従来の間欠運転では、 燃料電池スタックへの反応ガス供給を停 止するとともに、 燃料電池スタックの出力端子に並列接続する D C/D Cコ ンパータの指令電圧を開放端電圧に設定して、 燃料電池スタックの出力端子 電圧を開放端電圧 (OCV) に制御していた。 燃料電池スタックの出力端子 電圧を開放端電圧に維持することで、 間欠運転中に燃料電池スタックから電 流が流出しないように制御できる。  By the way, in the conventional intermittent operation, the supply of the reaction gas to the fuel cell stack is stopped, and the command voltage of the DC / DC converter connected in parallel to the output terminal of the fuel cell stack is set to the open-end voltage to The output terminal voltage of the battery stack was controlled to the open circuit voltage (OCV). By maintaining the output terminal voltage of the fuel cell stack at the open-circuit voltage, it is possible to control so that no current flows out of the fuel cell stack during intermittent operation.
しかし、 低負荷運転時に燃料電池スタックの出力端子電圧を開放端電圧に 維持すると、 膜一電極ァッセンブリの触媒層に含まれる白金触媒がィオン化 して溶出することがあるので、 燃料電池スタックの性能低下を抑制すること が検討課題となる。  However, if the output terminal voltage of the fuel cell stack is maintained at the open-circuit voltage during low-load operation, the platinum catalyst contained in the catalyst layer of the membrane-one electrode assembly may be ionized and eluted, so the performance of the fuel cell stack Suppressing the decline is an issue to be studied.
そこで、 本発明は、 燃料電池の発電効率の向上と耐久性維持を両立するこ とのできる燃料電池システムを提案することを課題とする。  Therefore, an object of the present invention is to propose a fuel cell system capable of achieving both improvement in power generation efficiency of a fuel cell and maintenance of durability.
上記の課題を解決するため、 本発明に係わる燃料電池システムは、 反応ガ スの供給を受けて発電する燃料電池と、 燃料電池に対する要求電力が所定値 未満のときに燃料電池への反応ガス供給を停止するとともに燃料電池の出力 電圧が開放端電圧よりも低い高電位回避電圧に維持されるように制御し、 燃 料電池に対する要求電力が所定値以上のときに、 高電位回避電圧を上限とし て燃料電池の出力電圧を制御する制御装置とを備える。 In order to solve the above-described problems, a fuel cell system according to the present invention includes a fuel cell that generates power upon receiving a reaction gas supply, and a reaction gas supply to the fuel cell when the required power for the fuel cell is less than a predetermined value. Control so that the output voltage of the fuel cell is maintained at a high potential avoidance voltage lower than the open-circuit voltage. And a control device for controlling the output voltage of the fuel cell with the high potential avoidance voltage as an upper limit when the required power for the fuel cell is a predetermined value or more.
燃料電池の出力電圧の上限を開放端電圧よりも低い高電位回避電圧に設定 することで、 燃料電池の出力電圧が開放端電圧まで上昇することによる触媒 の劣化を抑制できる。  By setting the upper limit of the output voltage of the fuel cell to a high potential avoidance voltage lower than the open end voltage, it is possible to suppress catalyst deterioration due to the output voltage of the fuel cell rising to the open end voltage.
本発明に係わる燃料電池システムは、 燃料電池の出力電圧を制御する D C ZD Cコンバータを更に備える。 制御装置は、 燃料電池に対する要求電力が 所定値未満のときに、 燃料電池の出力電圧が高電位回避電圧よりも所定電圧 低下した段階で D C ZD Cコンバータの駆動を停止する。  The fuel cell system according to the present invention further includes a D C ZD C converter for controlling the output voltage of the fuel cell. When the required power for the fuel cell is less than a predetermined value, the control device stops driving the D C ZD C converter when the output voltage of the fuel cell is lower than the high potential avoidance voltage by a predetermined voltage.
燃料電池の出力電圧が高電位回避電圧よりも所定電圧低下した段階で D C /D Cコンバータの駆動を停止することにより、 D C /D Cコンバータのス ィツチング損失を抑制するとともに、 燃料電池内部に残留する反応ガスによ る燃料電池の出力電圧上昇を回避することができる。  By stopping the DC / DC converter drive when the output voltage of the fuel cell falls below the high potential avoidance voltage by a predetermined voltage, the switching loss of the DC / DC converter is suppressed and the reaction remaining inside the fuel cell An increase in the output voltage of the fuel cell due to gas can be avoided.
本発明に係わる燃料電池システムは、蓄電装置を更に備える。制御装置は、 燃料電池の発電電力が蓄電装置によつて充電可能な電力と捕機類によって消 費可能な電力との合計を超えている場合には、 燃料電池の出力電圧が開放端 電圧まで昇圧することを許可する。  The fuel cell system according to the present invention further includes a power storage device. When the power generated by the fuel cell exceeds the sum of the power that can be charged by the power storage device and the power that can be consumed by the catcher, the control device can output the fuel cell up to the open-circuit voltage. Allow boosting.
燃料電池の発電電力が蓄電装置の充電可能な電力を超えている場合には、 燃料電池の出力電圧が開放端電圧まで昇圧することを許可することで、 蓄電 装置の損傷を回避できる。  When the generated power of the fuel cell exceeds the chargeable power of the power storage device, damage to the power storage device can be avoided by allowing the output voltage of the fuel cell to be boosted to the open-circuit voltage.
本発明に係わる燃料電池システムは、 トラクションモータを更に備える。 制御装置は、 トラクションモータによる回生制動が実施されている最中では 燃料電池の出力電圧が開放端電圧まで昇圧することを許可する。  The fuel cell system according to the present invention further includes a traction motor. The control device allows the output voltage of the fuel cell to be boosted to the open-end voltage while regenerative braking is being performed by the traction motor.
トラクシヨンモータによる回生制動が実施されている最中では燃料電池の 出力電圧が開放端電圧まで昇圧することを許可することで、 回生制動中にお ける燃料電池の発電を停止し、 回生電力をより多く蓄電装置に充電できる。 本発明に係わる燃料電池システムは、 燃料電池に反応ガスを供給するため の配管系統に配設される複数の遮断弁を更に備える。 制御装置は、 複数の遮 断弁を閉弁することにより配管系統内部に閉空間を形成し、 閉空間内部のガ ス圧変動を検出することによりガス漏れを検出している最中は、 燃料電池の 出力電圧が開放端電圧まで昇圧することを許可する。 While the regenerative braking by the traction motor is being implemented, by allowing the output voltage of the fuel cell to increase to the open end voltage, the power generation of the fuel cell during the regenerative braking is stopped and the regenerative power is reduced. More power storage devices can be charged. The fuel cell system according to the present invention further includes a plurality of shut-off valves arranged in a piping system for supplying a reaction gas to the fuel cell. The control device forms a closed space inside the piping system by closing a plurality of shut-off valves, and detects gas leaks by detecting gas pressure fluctuations inside the closed space. Allows the battery output voltage to be boosted to the open-circuit voltage.
ガス漏れ検出をしている最中では、 燃料電池の出力電圧が開放端電圧まで 昇圧することを許可することで、 ガス漏れ検出中における燃料電池の発電に よる反応ガス消費を抑制しガス漏れ検出精度を高めることができる。  During gas leak detection, by allowing the output voltage of the fuel cell to increase to the open-circuit voltage, the consumption of reactive gas due to power generation by the fuel cell during gas leak detection is suppressed, and gas leak detection is performed. Accuracy can be increased.
ここで、 燃料電池は、 複数のセルを積層してなるセルスタックである。 制 御装置は、 複数のセルの出力電圧のうちの最高電圧が所定値以下になるよう に、高電位回避電圧を補正するのが好ましい。セル電圧がばらついていると、 複数のセルの出力電圧のうち最も高い電圧が 1セルあたりの高電位回避電圧 を上回る場合がある。 複数のセルの出力電圧のうちの最高電圧が所定値 (例 えば、 セルスタックの目標電圧をセル総数で除した電圧値) 以下になるよう に、 高電位回避電圧を補正することで、 セル電圧のばらつきに起因する耐久 性低下を抑制できる。 図面の簡単な説明  Here, the fuel cell is a cell stack formed by stacking a plurality of cells. The control device preferably corrects the high potential avoidance voltage so that the highest voltage among the output voltages of the plurality of cells is equal to or lower than a predetermined value. If the cell voltage varies, the highest output voltage of multiple cells may exceed the high potential avoidance voltage per cell. By correcting the high potential avoidance voltage so that the maximum voltage among the output voltages of multiple cells is below a predetermined value (for example, the voltage value obtained by dividing the target voltage of the cell stack by the total number of cells), the cell voltage It is possible to suppress a decrease in durability caused by variations in the thickness. Brief Description of Drawings
図 1は、 本実施形態に係わる燃料電池システムのシステム構成図である。 図 2は、 燃料電池スタックを構成するセルの分解斜視図である。  FIG. 1 is a system configuration diagram of a fuel cell system according to the present embodiment. FIG. 2 is an exploded perspective view of the cells constituting the fuel cell stack.
図 3は、 本実施形態に係わる燃料電池システムの運転制御を示すタイミン グチヤートである。  FIG. 3 is a timing chart showing operation control of the fuel cell system according to the present embodiment.
図 4は、 スタック電圧の検出誤差を示すグラフである。  Figure 4 is a graph showing the stack voltage detection error.
図 5は、 セル電圧のばらつきを示すグラフである。  Figure 5 is a graph showing cell voltage variation.
図 6は、 D C /D Cコンバータの間欠停止を示すタイミングチャートであ る。 図 7は、 高電位回避制御の実行条件を示す説明図である。 FIG. 6 is a timing chart showing intermittent stop of the DC / DC converter. FIG. 7 is an explanatory diagram showing conditions for executing the high potential avoidance control.
図 8は、 回生制動の有無に応じて高電位回避制御をオン/オフ切り替えす るための運転制御を示すタイミングチャートである。  FIG. 8 is a timing chart showing operation control for switching on / off high potential avoidance control in accordance with the presence or absence of regenerative braking.
図 9は、 走行モードと高電位回避電圧との関係を示すグラフである。  Figure 9 is a graph showing the relationship between the driving mode and the high potential avoidance voltage.
図 1 0は、 ガス漏れ検出の有無に応じて高電位回避制御をオン Zオフ切り 替えするための運転制御を示すタイミングチヤ一トである。 発明を実施するための最良の形態  FIG. 10 is a timing chart showing operation control for switching high potential avoidance control on and off according to the presence or absence of gas leak detection. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 各図を参照しながら本発明に係わる実施形態について説明する。 図 1は燃料電池車両の車載電源システムとして機能する燃料電池システム 1 0のシステム構成を示す。  Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 shows a system configuration of a fuel cell system 10 that functions as an in-vehicle power supply system for a fuel cell vehicle.
燃料電池システム 1 0は、 燃料電池車両に搭載される車載電源システムと して機能するものであり、 反応ガス (燃料ガス、 酸化ガス) の供給を受けて 発電する燃料電池スタック 2 0と、 酸化ガスとしての空気を燃料電池スタツ ク 2 0に供給するための酸化ガス供給系 3 0と、 燃料ガスとしての水素ガス を燃料電池スタック 2 0に供給するための燃料ガス供給系 4 0と、 電力の充 放電を制御するための電力系 5 0と、 システム全体を統括制御するコント口 ーラ 6 0とを備えている。  The fuel cell system 10 functions as an in-vehicle power supply system mounted on a fuel cell vehicle. The fuel cell system 10 generates power by receiving a reaction gas (fuel gas, oxidation gas), and an oxidation system. An oxidizing gas supply system 30 for supplying air as gas to the fuel cell stack 20; a fuel gas supply system 40 for supplying hydrogen gas as fuel gas to the fuel cell stack 20; It includes a power system 50 for controlling the charging / discharging of the system and a controller 60 for controlling the entire system.
燃料電池スタック 2 0は、 多数のセルを直列に積層してなる固体高分子電 解質型セルスタックである。 燃料電池スタック 2 0では、 アノード極におい て (1 ) 式の酸化反応が生じ、 力ソード極において (2 ) 式の還元反応が生 じる。 燃料電池スタック 2 0全体としては (3 ) 式の起電反応が生じる。  The fuel cell stack 20 is a solid polymer electrolyte cell stack in which a large number of cells are stacked in series. In the fuel cell stack 20, the oxidation reaction of the equation (1) occurs at the anode electrode, and the reduction reaction of the equation (2) occurs at the force sword electrode. The fuel cell stack 20 as a whole undergoes an electromotive reaction of the formula (3).
H2 → 2 H++ 2 e:… ( 1 ) H 2 → 2 H ++ 2 e :… (1)
( 1 / 2 ) 〇2 + 2 H++ 2 e · → H20 … ( 2 ) (1/2) 〇 2 + 2 H ++ 2 e · → H 2 0… (2)
H2+ ( 1 / 2 ) 02 → H20 … ( 3 ) H 2 + (1/2) 0 2 → H 2 0… (3)
燃料電池スタック 2 0には、燃料電池スタック 2 0の出力電圧(F C電圧) を検出するための電圧センサ 7 1、 及び出力電流 (F C電流) を検出するた めの電流センサ 7 2が取り付けられている。 The fuel cell stack 20 has an output voltage (FC voltage) of the fuel cell stack 20 A voltage sensor 7 1 for detecting the current and a current sensor 7 2 for detecting the output current (FC current) are attached.
酸化ガス供給系 3 0は、 燃料電池スタック 2 0のカソード極に供給される 酸化ガスが流れる酸化ガス通路 3 3と、 燃料電池スタック 2 0から排出され る酸化オフガスが流れる酸化オフガス通路 3 4とを有している。 酸化ガス通 路 3 3には、 フィルタ 3 1を介して大気中から酸化ガスを取り込むエアコン プレッサ 3 2と、 エアコンプレッサ 3 2により加圧される酸化ガスを加湿す るための加湿器 3 5と、 燃料電池スタック 2 0への酸化ガス供給を遮断する ための遮断弁 A 1とが設けられている。 酸化オフガス通路 3 4には、 燃料電 池スタック 2 0からの酸化オフガス排出を遮断するための遮断弁 A 2と、 酸 化ガス供給圧を調整するための背圧調整弁 A 3と、 酸化ガス (ドライガス) と酸化オフガス (ウエットガス) との間で水分交換するための加湿器 3 5と が設けられている。  The oxidizing gas supply system 30 includes an oxidizing gas passage 3 3 through which oxidizing gas supplied to the cathode electrode of the fuel cell stack 20 flows, and an oxidizing off gas passage 3 4 through which oxidizing off gas discharged from the fuel cell stack 20 flows. have. The oxidant gas passage 3 3 includes an air conditioner 3 2 that takes in the oxidant gas from the atmosphere via the filter 3 1, and a humidifier 3 5 that humidifies the oxidant gas pressurized by the air compressor 3 2. A shutoff valve A 1 is provided for shutting off the oxidizing gas supply to the fuel cell stack 20. The oxidizing off gas passage 3 4 includes a shutoff valve A 2 for shutting off the oxidizing off gas discharge from the fuel cell stack 20, a back pressure adjusting valve A 3 for adjusting the oxidizing gas supply pressure, and an oxidizing gas. A humidifier 35 for exchanging moisture between the (dry gas) and the oxidizing off gas (wet gas) is provided.
燃料ガス供給系 4 0は、 燃料ガス供給源 4 1と、 燃料ガス供給源 4 1から 燃料電池スタック 2 0のアノード極に供給される燃料ガスが流れる燃料ガス 通路 4 3と、 燃料電池スタック 2 0から排出される燃料オフガスを燃料ガス 通路 4 3に帰還させるための循環通路 4 4と、 循環通路 4 4内の燃料オフガ スを燃料ガス通路 4 3に圧送する循環ポンプ 4 5と、 循環通路 4 4に分岐接 続される排気排水通路 4 6とを有している。  The fuel gas supply system 40 includes a fuel gas supply source 41, a fuel gas passage 4 3 through which fuel gas supplied from the fuel gas supply source 41 to the anode of the fuel cell stack 20 flows, and a fuel cell stack 2 A circulation passage 4 4 for returning the fuel off-gas discharged from 0 to the fuel gas passage 4 3, a circulation pump 4 5 for pumping the fuel off-gas in the circulation passage 4 4 to the fuel gas passage 4 3, and a circulation passage 4 It has exhaust drainage passages 4 and 6 that are branched and connected to 4.
燃料ガス供給源 4 1は、 例えば、 高圧水素タンクや水素吸蔵合金などで構 成され、高圧(例えば、 3 5 M P a乃至 7 O M P a )の水素ガスを貯留する。 遮断弁 H Iを開くと、 燃料ガス供給源 4 1から燃料ガス通路 4 3に燃料ガス が流出する。 燃料ガスは、 レギユレータ H 2やインジェクタ 4 2により、 例 えば、 2 0 0 k P a程度まで減圧されて、 燃料電池スタック 2 0に供給され る。  The fuel gas supply source 41 is composed of, for example, a high-pressure hydrogen tank or a hydrogen storage alloy, and stores high-pressure (for example, 35 MPa to 7 OMPa) hydrogen gas. When the shut-off valve HI is opened, the fuel gas flows out from the fuel gas supply source 4 1 to the fuel gas passage 4 3. The fuel gas is depressurized to, for example, about 200 kPa by the regulator H 2 and the injector 42 and supplied to the fuel cell stack 20.
尚、 燃料ガス供給源 4 1は、 炭化水素系の燃料から水素リッチな改質ガス を生成する改質器と、 この改質器で生成した改質ガスを高圧状態にして蓄圧 する高圧ガスタンクとから構成してもよい。 The fuel gas supply source 41 is a hydrogen-rich reformed gas from hydrocarbon fuel. And a high-pressure gas tank that stores the reformed gas generated in the reformer in a high-pressure state.
燃料ガス通路 4 3には、 燃料ガス供給源 4 1からの燃料ガスの供給を遮断 又は許容するための遮断弁 H 1と、 燃料ガスの圧力を調整するレギユレータ H 2と、 燃料電池スタック 2◦への燃料ガス供給量を制御するインジヱクタ 4 2と、 燃料電池スタック 2 0への燃料ガス供給を遮断するための遮断弁 H 3と、 圧力センサ 7 4とが設けられている。  In the fuel gas passage 4 3, there are a shutoff valve H 1 for shutting off or allowing the supply of fuel gas from the fuel gas supply source 4 1, a regulator H 2 for adjusting the pressure of the fuel gas, and a fuel cell stack 2 ◦ There are provided an indicator 42 for controlling the amount of fuel gas supplied to the fuel cell, a shutoff valve H3 for shutting off the fuel gas supply to the fuel cell stack 20, and a pressure sensor 74.
レギユレータ H 2は、 その上流側圧力 (一次圧) を、 予め設定した二次圧 に調圧する装置であり、 例えば、 一次圧を減圧する機械式の減圧弁などで構 成される。 機械式の減圧弁は、 背圧室と調圧室とがダイアフラムを隔てて形 成された筐体を有し、 背圧室内の背圧により調圧室内で一次圧を所定の圧力 に減圧して二次圧とする構成を有する。 インジヱクタ 4 2の上流側にレギュ レータ H 2を配置することにより、 インジェクタ 4 2の上流側圧力を効果的 に低減させることができる。 このため、 インジェクタ 4 2の機械的構造 (弁 体、 筐体、 流路、 駆動装置等) の設計自由度を高めることができる。 また、 インジェクタ 4 2の上流側圧力を低減させることができるので、 インジェク タ 4 2の上流側圧力と下流側圧力との差圧の増大に起因してィンジェクタ 4 2の弁体が移動し難くなることを抑制することができる。 従って、 インジェ クタ 4 2の下流側圧力の可変調圧幅を広げることができるとともに、 インジ ェクタ 4 2の応答性の低下を抑制することができる。  The regulator H 2 is a device that regulates the upstream pressure (primary pressure) to a preset secondary pressure, and is composed of, for example, a mechanical pressure reducing valve that reduces the primary pressure. The mechanical pressure reducing valve has a housing in which a back pressure chamber and a pressure adjusting chamber are formed with a diaphragm therebetween, and the primary pressure is reduced to a predetermined pressure in the pressure adjusting chamber by the back pressure in the back pressure chamber. To have a secondary pressure. By disposing the regulator H 2 on the upstream side of the injector 42, the upstream pressure of the injector 42 can be effectively reduced. For this reason, the degree of freedom in designing the mechanical structure of the injector 42 (valve body, casing, flow path, driving device, etc.) can be increased. Further, since the upstream pressure of the injector 42 can be reduced, the valve body of the injector 42 becomes difficult to move due to an increase in the differential pressure between the upstream pressure and the downstream pressure of the injector 42. This can be suppressed. Accordingly, it is possible to widen the adjustable pressure width of the downstream pressure of the injector 42, and to suppress a decrease in the response of the injector 42.
ィンジェクタ 4 2は、 弁体を電磁駆動力で直接的に所定の駆動周期で駆動 して弁座から離隔させることによりガス流量やガス圧を調整することが可能 な電磁駆動式の開閉弁である。 ィンジ クタ 4 2は、 燃料ガス等の気体燃料 を噴射する噴射孔を有する弁座を備えるとともに、 その気体燃料を噴射孔ま で供給案内するノズルボディと、 このノズルボディに対して軸線方向 (気体 流れ方向)に移動可能に収容保持され噴射孔を開閉する弁体とを備えている。 本実施形態においては、 ィンジヱクタ 4 2の弁体は電磁駆動装置であるソ レノィドにより駆動され、 このソレノィドに給電されるパルス状励磁電流の オン ·オフにより、 噴射孔の開口面積を 2段階に切り替えることができる。 コントローラ 6 0から出力される制御信号によってインジヱクタ 4 2のガス 噴射時間及びガス噴射時期が制御されることにより、 燃料ガスの流量及び圧 力が高精度に制御される。 インジェクタ 4 2は、 弁 (弁体及び弁座) を電磁 駆動力で直接開閉駆動するものであり、 その駆動周期が高応答の領域まで制 御可能であるため、 高い応答性を有する。 インジェクタ 4 2は、 その下流に 要求されるガス流量を供給するために、 インジヱクタ 4 2のガス流路に設け られた弁体の開口面積 (開度) 及び開放時間の少なくとも一方を変更するこ とにより、 下流側に供給されるガス流量 (又は水素モル濃度) を調整する。 循環通路 4 4には、 燃料電池スタック 2 0からの燃料オフガス排出を遮断 するための遮断弁 H 4と、 循環通路 4 4から分岐する排気排水通路 4 6とが 接続されている。排気排水通路 4 6には、排気排水弁 H 5が配設されている。 排気排水弁 H 5は、 コントローラ 6 0からの指令によって作動することによ り、循環通路 4 4内の不純物を含む燃料オフガスと水分とを外部に排出する。 排気排水弁 H 5の開弁により、 循環通路 4 4内の燃料オフガス中の不純物の 濃度が下がり、 循環系内を循環する燃料オフガス中の水素濃度を上げること ができる。 The injector 42 is an electromagnetically driven on / off valve that can adjust the gas flow rate and gas pressure by driving the valve body directly with a predetermined driving cycle with electromagnetic driving force and separating it from the valve seat. . The injector 42 has a valve seat having an injection hole for injecting gaseous fuel such as fuel gas, a nozzle body for supplying and guiding the gaseous fuel to the injection hole, and an axial direction (gas And a valve body that is accommodated and held so as to be movable in the flow direction) and opens and closes the injection hole. In the present embodiment, the valve body of the injector 42 is driven by a solenoid that is an electromagnetic drive device, and the opening area of the injection hole is switched in two stages by turning on and off the pulsed excitation current fed to the solenoid. be able to. By controlling the gas injection time and gas injection timing of the indicator 42 by the control signal output from the controller 60, the flow rate and pressure of the fuel gas are controlled with high accuracy. The injector 42 is a valve (valve body and valve seat) that opens and closes directly with an electromagnetic driving force, and has a high responsiveness because its driving cycle can be controlled to a highly responsive region. The injector 42 changes at least one of the opening area (opening) and the opening time of the valve body provided in the gas flow path of the injector 42 in order to supply the required gas flow rate downstream thereof. Adjust the gas flow rate (or hydrogen molar concentration) supplied downstream. The circulation passage 44 is connected to a shutoff valve H 4 for shutting off the fuel off-gas discharge from the fuel cell stack 20 and an exhaust / drain passage 46 branched from the circulation passage 44. An exhaust / drain valve H 5 is disposed in the exhaust / drain passage 46. The exhaust / drain valve H 5 is operated according to a command from the controller 60 to discharge the fuel off-gas and impurities including impurities in the circulation passage 44 to the outside. By opening the exhaust drain valve H 5, the concentration of impurities in the fuel off-gas in the circulation passage 44 can be lowered, and the hydrogen concentration in the fuel off-gas circulating in the circulation system can be increased.
排気排水弁 H 5を介して排出される燃料オフガスは、 酸化オフガス通路 3 4を流れる酸化オフガスと混合され、 希釈器 (図示せず) によって希釈され る。 循環ポンプ 4 5は、 循環系内の燃料オフガスをモータ駆動により燃料電 池スタック 2 0に循環供給する。  The fuel off-gas discharged through the exhaust / drain valve H 5 is mixed with the oxidizing off-gas flowing through the oxidizing off-gas passage 34 and diluted by a diluter (not shown). The circulation pump 45 circulates and supplies the fuel off-gas in the circulation system to the fuel cell stack 20 by driving the motor.
電力系 5 0は、 D C /D Cコンバータ 5 1、 パッテリ 5 2、 トラクシヨン インバータ 5 3、 トラクシヨンモータ 5 4、 及ぴ補機類 5 5を備えている。 燃料電池システム 1 0は、 D C / D Cコンバータ 5 1とトラクションインパ ータ 5 3とが並列に燃料電池スタック 2 0に接続するパラレルハイプリッド システムとして構成されている。 D C /D Cコンバータ 5 1は、 ノ ッテリ 5 2から供給される直流電圧を昇圧してトラクションィンバータ 5 3に出力す る機能と、 燃料電池スタック 2 0が発電した直流電力、 又は回生制動により トラクションモータ 5 4が回収した回生電力を降圧してパッテリ 5 2に充電 する機能とを有する。 D CZD Cコンバータ 5 1のこれらの機能により、 パ ッテリ 5 2の充放電が制御される。 また、 D CZD Cコンバータ 5 1による 電圧変換制御により、 燃料電池スタック 2 0の運転ポイント (出力電圧、 出 力電流) が制御される。 The power system 50 includes a DC / DC converter 51, a battery 52, a traction inverter 5 3, a traction motor 5 4, and auxiliary equipment 5 5. Fuel cell system 10 DC / DC converter 5 1 and traction impeller Data parallel to the fuel cell stack 20 is connected to the fuel cell stack 20 in parallel. The DC / DC converter 51 boosts the DC voltage supplied from the battery 52 and outputs it to the traction inverter 53, and the DC power generated by the fuel cell stack 20 or traction by regenerative braking. It has a function to step down the regenerative power collected by the motor 54 and charge the battery 52. With these functions of the D CZD C converter 51, charging / discharging of the battery 52 is controlled. In addition, the operation point (output voltage, output current) of the fuel cell stack 20 is controlled by voltage conversion control by the D CZD C converter 51.
パッテリ 5 2は、余剰電力の貯蔵源、回生制動時の回生エネルギー貯蔵源、 燃料電池車両の加速又は減速に伴う負荷変動時のエネルギーバッファとして 機能する。 パッテリ 5 2としては、 例えば、 ニッケル '力ドミゥム蓄電池、 ニッケル ·水素蓄電池、 リチウム二次電池等の二次電池が好適である。 パッ テリ 5 2には、 S O C (State of charge) を検出するための S O Cセンサ 7 3が取り付けられている。  The battery 52 functions as a surplus power storage source, a regenerative energy storage source during regenerative braking, and an energy buffer during load fluctuations associated with acceleration or deceleration of the fuel cell vehicle. As the battery 52, for example, a secondary battery such as a nickel-powered lithium storage battery, a nickel-hydrogen storage battery, or a lithium secondary battery is preferable. The battery 52 is provided with a SOC sensor 73 for detecting SOC (State of charge).
トラクシヨンインバータ 5 3は、 例えば、 パルス幅変調方式で駆動される P WMインパータであり、 コントローラ 6 0からの制御指令に従って、 燃料 電池スタック 2 0又はバッテリ 5 2から出力される直流電圧を三相交流電圧 に変換して、 トラクシヨンモータ 5 4の回転トルクを制御する。 トラクショ ンモータ 5 4は、 例えば、 三相交流モータであり、 燃料電池車両の動力源を 構成する。  The traction inverter 53 is, for example, a PWM inverter driven by a pulse width modulation method, and in accordance with a control command from the controller 60, the DC voltage output from the fuel cell stack 20 or the battery 52 is three-phased. It converts to AC voltage and controls the rotational torque of the Traction Motor 54. The traction motor 54 is, for example, a three-phase AC motor, and constitutes a power source for the fuel cell vehicle.
補機類 5 5は、 燃料電池システム 1 0内の各部に配置されている各モータ (例えば、 ポンプ類などの動力源) や、 これらのモータを駆動するためのィ ンパータ類、 更には各種の車載補機類 (例えば、 エアコンプレッサ、 インジ ェクタ、 冷却水循環ポンプ、 ラジェータなど) を総称するものである。 コントローラ 6 0は、 C P U、 R OM, R AM, 及び入出力インタフエ一 スを備えるコンピュータシステムであり、 燃料電池システム 1 0の各部を制 御する。 例えば、 コントローラ 6 0は、 ィグニッシヨンスィッチから出力さ れる起動信号 I Gを受信すると、 燃料電池システム 1 0の運転を開始し、 ァ クセルセンサから出力されるァクセル開度信号 A C Cや、 車速センサから出 力される車速信号 V Cなどを基に、 システム全体の要求電力を求める。 シス テム全体の要求電力は、 車両走行電力と補機電力との合計値である。 Auxiliary machinery 5 5 includes motors (for example, power sources such as pumps) disposed in each part of the fuel cell system 10, inverters for driving these motors, and various types of motors. In-vehicle accessories (for example, air compressors, injectors, cooling water circulation pumps, radiators, etc.) are generic names. Controller 60 is CPU, ROM, RAM, and I / O interface. This is a computer system equipped with a fuel cell and controls each part of the fuel cell system 10. For example, when the controller 60 receives the start signal IG output from the ignition switch, the controller 60 starts operation of the fuel cell system 10 and outputs the accelerator opening signal ACC output from the accelerator sensor or the vehicle speed sensor. The required power of the entire system is obtained based on the vehicle speed signal VC. The required power of the entire system is the sum of the vehicle travel power and auxiliary power.
ここで、 補機電力には、 車載補機類 (加湿器、 エアコンプレッサ、 水素ポ ンプ、 及び冷却水循環ポンプ等) で消費される電力、 車両走行に必要な装置 (変速機、 車輪制御装置、 操舵装置、 及び懸架装置等) で消費される電力、 乗員空間内に配設される装置 (空調装置、 照明器具、 及びオーディオ等) で 消費される電力などが含まれる。  Here, the auxiliary power includes the power consumed by in-vehicle auxiliary equipment (humidifier, air compressor, hydrogen pump, cooling water circulation pump, etc.), and equipment required for vehicle travel (transmission, wheel control device, Power consumed by steering devices, suspension devices, etc.) and power consumed by devices (air conditioners, lighting fixtures, audio, etc.) disposed in the passenger space.
そして、 コントローラ 6 0は、 燃料電池スタック 2 0とパッテリ 5 2との それぞれの出力電力の配分を決定し、 燃料電池スタック 2 0の発電量が目標 電力に一致するように、 酸化ガス供給系 3 0及び燃料ガス供給系 4 0を制御 するとともに、 D C /D Cコンバータ 5 1を制御して、 燃料電池スタック 2 0の出力電圧を調整することにより、 燃料電池スタック 2 0の運転ポイント (出力電圧、 出力電流) を制御する。 更に、 コントローラ 6 0は、 アクセル 開度に応じた目標トルクが得られるように、 例えば、 スイッチング指令とし て、 U相、 V相、 及び W相の各交流電圧指令値をトラクシヨンインバータ 5 3に出力し、トラクションモータ 5 4の出力トルク、及び回転数を制御する。 図 2は燃料電池スタック 2 0を構成するセル 2 1の分解斜視図である。 セル 2 1は、 高分子電解質膜 2 2と、 アノード極 2 3と、 力ソード極 2 4 と、 セパレータ 2 6, 2 7とから構成されている。 アノード極 2 3及ぴカソ 一ド極 2 4は、 高分子電解質膜 2 2を両側から挟んでサンドィツチ構造を成 す拡散電極である。ガス不透過の導電性部材から構成されるセパレータ 2 6 , 2 7は、 このサンドイッチ構造をさらに両側から挟みつつ、 アノード極 2 3 及びカソード極 2 4との間にそれぞれ燃料ガス及び酸化ガスの流路を形成す る。 セパレータ 2 6には、 断面凹状のリプ 2 6 aが形成されている。 リブ 2 6 aにアノード極 2 3が当接することで、 リブ 2 6 aの開口部は閉塞され、 燃料ガス流路が形成される。 セパレータ 2 7には、 断面凹状のリブ 2 7 aが 形成されている。 リブ 2 7 aに力ソード極 2 4が当接することで、 リブ 2 7 aの開口部は閉塞され、 酸化ガス流路が形成される。 Then, the controller 60 determines the output power distribution between the fuel cell stack 20 and the battery 52, and the oxidizing gas supply system 3 so that the power generation amount of the fuel cell stack 20 matches the target power. 0 and the fuel gas supply system 40, and also the DC / DC converter 51 to adjust the output voltage of the fuel cell stack 20 so that the operating point of the fuel cell stack 20 (output voltage, Output current). Further, the controller 60, for example, supplies each AC voltage command value of the U phase, V phase, and W phase to the traction inverter 53 as a switching command so as to obtain a target torque according to the accelerator opening. Output and control the output torque and rotation speed of the traction motor 54. FIG. 2 is an exploded perspective view of the cell 21 constituting the fuel cell stack 20. The cell 21 is composed of a polymer electrolyte membrane 2 2, an anode electrode 2 3, a force sword electrode 2 4, and separators 2 6 and 2 7. The anode electrode 2 3 and cathode electrode 2 4 are diffusion electrodes having a sandwich structure with the polymer electrolyte membrane 2 2 sandwiched from both sides. Separators 2 6, 2 7 made of a gas-impermeable conductive member are provided on the anode electrode 2 3 while sandwiching this sandwich structure from both sides. And a flow path for fuel gas and oxidizing gas between the cathode electrode 24 and the cathode electrode 24, respectively. The separator 26 is formed with a lip 26 a having a concave cross section. When the anode electrode 23 is in contact with the rib 26a, the opening of the rib 26a is closed and a fuel gas flow path is formed. The separator 27 is formed with a rib 27 a having a concave cross section. When the force sword pole 24 comes into contact with the rib 27a, the opening of the rib 27a is closed and an oxidizing gas flow path is formed.
アノード極 2 3は、 白金系の金属触媒 (P t , P t—F e , P t _ C r, P t— N i , P t _ R uなど) を担持するカーボン粉末を主成分とし、 高分 子電解質膜 2 2に接する触媒層 2 3 aと、 触媒層 2 3 aの表面に形成され、 通気性と電子導電性とを併せ持つガス拡散層 2 3 bとを有する。 同様に、 力 ソード極 2 4は、 触媒層 2 4 aとガス拡散層 2 4 bとを有する。 より詳細に は、 触媒層 2 3 a , 2 4 aは、 白金、 又は白金と他の金属からなる合金を担 持したカーボン粉を適当な有機溶媒に分散させ、 電解質溶液を適量添加して ペース ト化し、 高分子電解質膜 2 2上にスクリーン印刷したものである。 ガ ス拡散層 2 3 b、 2 4 bは、炭素繊維から成る糸で織成したカーボンクロス、 カーボンペーパー、 又はカーボンフェルトにより形成されている。 高分子電 解質膜 2 2は、 固体高分子材料、 例えば、 フッ素系樹脂により形成されたプ 口トン伝導性のイオン交換膜であり、 湿潤状態で良好な電気伝導性を発揮す る。 高分子電解質膜 2 2、 アノード極 2 3、 及ぴカソード極 2 4によって膜 —電極アッセンブリ 2 5が形成される。  The anode electrode 23 is mainly composed of carbon powder supporting a platinum-based metal catalyst (Pt, Pt—Fe, Pt_Cr, Pt—Ni, Pt_Ru, etc.) It has a catalyst layer 2 3a in contact with the polymer electrolyte membrane 22 and a gas diffusion layer 2 3b formed on the surface of the catalyst layer 2 3a and having both air permeability and electronic conductivity. Similarly, the force sword electrode 24 has a catalyst layer 24a and a gas diffusion layer 24b. More specifically, the catalyst layers 2 3 a and 2 4 a are formed by dispersing carbon powder carrying platinum or an alloy made of platinum and another metal in a suitable organic solvent, and adding an appropriate amount of an electrolyte solution. And screen printed on the polymer electrolyte membrane 22. The gas diffusion layers 2 3 b and 2 4 b are formed of carbon cloth, carbon paper, or carbon felt woven with carbon fiber yarns. The polymer electrolyte membrane 22 is a proton-conductive ion exchange membrane formed of a solid polymer material, for example, a fluororesin, and exhibits good electrical conductivity in a wet state. A membrane-electrode assembly 25 is formed by the polymer electrolyte membrane 2 2, the anode 2 3, and the cathode 2 4.
図 3は燃料電池システム 1 0の運転制御を示すタイミングチャートである。 燃料電池システム 1 0は、 運転負荷に応じて、 燃料電池スタック 2 0の運 転モードを切り替えることにより発電効率の向上を図る。 例えば、 燃料電池 システム 1 0は、 発電効率の低い低負荷領域 (発電要求が所定値未満となる 運転領域) では、 燃料電池スタツク 2 0の発電指令値をゼロに設定して運転 制御し、 車両走行に要する電力やシステム運用上必要な電力をバッテリ 5 2 からの電力によって賄う (以下、 第 1の運転モードと称する。)。 一方、 発電 効率の高い高負荷領域 (発電要求が所定値以上となる運転領域) では、 ァク セル開度や車速などを基に燃料電池スタック 2 0の発電指令値を算出して運 転制御し、 車両走行に要する電力やシステム運用上必要な電力を燃料電池ス タック 2 0による発電電力のみによって又は燃料電池スタック 2 0による発 電電力とバッテリ 5 2からの電力とによって賄う (以下、 第 2の運転モード と称する。)。 FIG. 3 is a timing chart showing operation control of the fuel cell system 10. The fuel cell system 10 improves power generation efficiency by switching the operation mode of the fuel cell stack 20 according to the operating load. For example, the fuel cell system 10 controls the operation by setting the power generation command value of the fuel cell stack 20 to zero in the low load region where the power generation efficiency is low (the operation region where the power generation request is less than a predetermined value). Battery power required for driving and system operation 5 2 (Hereinafter referred to as the first operation mode). On the other hand, in the high load region where power generation efficiency is high (the operation region where the power generation request exceeds a predetermined value), the power generation command value of the fuel cell stack 20 is calculated based on the accelerator opening and the vehicle speed, etc. However, the power required for vehicle travel and the power required for system operation are covered only by the power generated by the fuel cell stack 20 or by the power generated by the fuel cell stack 20 and the power from the battery 52 (hereinafter referred to as This is referred to as operation mode 2).
燃料電池システム 1 0は、 運転モードを示す制御フラグを一定周期で監視 しており、 制御フラグがオンになると第 1の運転モードにて運転制御し、 制 御フラグがオフになると第 2の運転モードにて運転制御する。 何れの運転モ 'ードにおいても、 通常運転時における燃料電池スタック 2 0の出力電圧は、 原則として、 使用上限電圧 V Iと使用下限電圧 V 2との間の運転範囲に制限 される。  The fuel cell system 10 monitors the control flag indicating the operation mode at regular intervals, and controls the operation in the first operation mode when the control flag is turned on, and performs the second operation when the control flag is turned off. Control operation in mode. In any operation mode, the output voltage of the fuel cell stack 20 during normal operation is basically limited to the operation range between the upper limit voltage V I and the lower limit voltage V 2.
使用上限電圧 V 1としては、 燃料電池スタック 2 0の触媒層 2 3 a , 2 4 aに含まれている白金触媒が溶出しない程度の電圧範囲であるという条件を 満たす電圧であることが好ましく、 更にはその条件に加えて、 燃料電池スタ ック 2 0への反応ガス供給を停止した状態で燃料電池スタック 2 0の出力電 圧を使用上限電圧 V Iに維持したときに、 燃料電池スタック 2 0が発電する 電力を補機類 5 5によって消費できる程度の電圧範囲であるという条件を満 たす電圧であることが好ましい。 燃料電池スタック 2 0では、 特に低密度電 流運転時やアイドル運転時のような力ソード極 2 4の電位が高く保持される ような場合に、 触媒層 2 4 aの白金触媒が溶出する可能性がある。 本明細書 では、 燃料電池スタック 2 0の出力電圧を使用上限電圧 V I以下に制御し、 燃料電池スタック 2 0の耐久性を維持することを高電位回避制御と称する。 また使用上限電圧 V 1を高電位回避電圧と称する場合がある。 本実施形態で は、 何れの運転モードにおいても、 原則として、 高電位回避制御が実行され る。 使用上限電圧 V Iは、 例えば一つのセルあたりに電圧が 0 . 9 V程度に なるように設定するのが好適である。 The upper limit voltage V 1 is preferably a voltage that satisfies the condition that the platinum catalyst contained in the catalyst layers 2 3 a and 2 4 a of the fuel cell stack 20 does not elute, Furthermore, in addition to the above conditions, when the output voltage of the fuel cell stack 20 is maintained at the upper limit voltage VI when the reaction gas supply to the fuel cell stack 20 is stopped, the fuel cell stack 20 It is preferable that the voltage satisfies the condition that it is in a voltage range that can be consumed by the auxiliary machinery 55. In the fuel cell stack 20, the platinum catalyst in the catalyst layer 24 a can be eluted, especially when the potential of the force sword electrode 24 is kept high, such as during low-density current operation or idle operation. There is sex. In this specification, controlling the output voltage of the fuel cell stack 20 to be equal to or lower than the upper limit voltage VI used and maintaining the durability of the fuel cell stack 20 is referred to as high potential avoidance control. The upper limit voltage V 1 may be referred to as a high potential avoidance voltage. In this embodiment, in principle, high potential avoidance control is executed in any operation mode. The The upper limit voltage VI is preferably set so that the voltage is about 0.9 V per cell, for example.
使用下限電圧 V 2としては、 セル電圧が還元領域に低下しない程度の電圧 範囲であるという条件を満たす電圧であることが好ましい。 燃料電池スタツ ク 2 0を酸化領域にて連続運転し続けると、 触媒層 2 4 aに含まれる白金触 媒の表面に酸化皮膜が形成されることにより白金触媒の有効面積が減少する。 すると、 活性電圧が増大するので、 燃料電池スタック 2 0の I一 V特性が低 下する。 触媒活性化処理を実施することにより、 酸化皮膜を還元し、 白金触 媒から酸化皮膜を除去することで、 I一 V特性を回復させることができるが、 セル電圧を酸化領域と還元領域との間で頻繁に遷移させると、 燃料電池スタ ック 2 0の耐久性が低下する。また、セル電圧を還元領域にまで下げた後に、 要求負荷の増大に応じてセル電圧を酸化領域まで引き上げると、 白金触媒を 担持するカーボンが酸化する場合がある。 このような事情を勘案し、 通常運 転時における燃料電池スタック 2 0の出力電圧を使用下限電圧 V 2以上に制 御することで、燃料電池スタック 2 0の耐久性低下を抑制することができる。 使用下限電圧 V 2は、 例えば一つのセルあたりに電圧が 0 . 8 V程度になる ように設定するのが好適である。  The lower limit voltage V 2 is preferably a voltage that satisfies the condition that the cell voltage is within a voltage range that does not decrease in the reduction region. If the fuel cell stack 20 is continuously operated in the oxidation region, an effective area of the platinum catalyst is reduced by forming an oxide film on the surface of the platinum catalyst contained in the catalyst layer 24 a. Then, since the activation voltage increases, the I-V characteristic of the fuel cell stack 20 decreases. By performing the catalyst activation treatment, the oxide film is reduced and the oxide film is removed from the platinum catalyst, so that the I-V characteristics can be recovered. However, the cell voltage is reduced between the oxidation region and the reduction region. If the transition is made frequently, the durability of the fuel cell stack 20 will decrease. In addition, if the cell voltage is raised to the oxidation region as the required load increases after the cell voltage is lowered to the reduction region, the carbon carrying the platinum catalyst may be oxidized. Taking these circumstances into consideration, it is possible to suppress a decrease in the durability of the fuel cell stack 20 by controlling the output voltage of the fuel cell stack 20 during normal operation to the lower limit voltage V 2 or more. . The lower limit voltage V 2 is preferably set so that the voltage is about 0.8 V per cell, for example.
尚、通常運転時における燃料電池スタック 2 0の出力電圧は、原則として、 使用上限電圧 V Iと使用下限電圧 V 2との間に制御されるが、 システム運用 の必要上、 燃料電池スタック 2 0の出力電圧を使用上限電圧 V 1以上に制御 したり、或いは使用下限電圧 V 2以下に制御したりする場合がある。例えば、 バッテリ 5 2の S O Cが所定以上のとき、 ガス漏れ検出を実施するとき、 回 生制動により回生電力を回収するときなどは、 燃料電池スタック 2 0の出力 電圧は、 開放端電圧まで引き上げられる。 また、 触媒活性化処理を実施する ときには、 燃料電池スタック 2 0の出力電圧は使用下限電圧 V 2以下に引き 下げられる。 さて、 第 1の運転モードでは、 コントローラ 6 0は、 発電指令値をゼロに 設定し、 燃料電池スタック 2 0への反応ガス供給を停止するとともに、 D C /D Cコンバータ 5 1への電圧指令値を使用上限電圧 V Iに設定する (時刻 t 0〜t 4 )。反応ガス供給を停止した後においても、燃料電池スタック 2 0 内部には、未反応の反応ガスが残留しているので、燃料電池スタック 2 0は、 暫く微量に発電する。 In general, the output voltage of the fuel cell stack 20 during normal operation is controlled between the upper limit voltage VI and the lower limit voltage V 2 as a general rule. The output voltage may be controlled to the upper limit voltage V 1 or higher, or may be controlled to the lower limit voltage V 2 or lower. For example, when the SOC of the battery 52 is greater than or equal to the specified value, when gas leak detection is performed, or when regenerative power is recovered by regenerative braking, the output voltage of the fuel cell stack 20 is raised to the open-circuit voltage. . Further, when the catalyst activation process is performed, the output voltage of the fuel cell stack 20 is lowered to the use lower limit voltage V 2 or less. In the first operation mode, the controller 60 sets the power generation command value to zero, stops the supply of the reaction gas to the fuel cell stack 20, and sets the voltage command value to the DC / DC converter 51. Set to upper limit voltage VI (time t0 to t4). Even after the supply of the reaction gas is stopped, the unreacted reaction gas remains in the fuel cell stack 20, so that the fuel cell stack 20 generates a slight amount of power for a while.
時刻 t 0〜 t 2の期間は、 残留反応ガスが有する化学エネルギーが電気工 ネルギーに変換されることにより、 微量発電が継続されている発電期間であ る。 この発電期間では、 燃料電池スタック 2 0の出力電圧が使用上限電圧 V 1を維持できるだけのエネルギーを残留反応ガスが有しているので、 燃料電 池スタック 2 0の出力電圧は使用上限電圧 V 1を維持し続ける。 この発電期 間中に発電された電力は、 補機類 5 5にて消費されるが、 補機類 5 5にて消 費しきれない場合には、 パッテリ 5 2に充電される。  The period from time t 0 to t 2 is a power generation period in which a minute amount of power generation is continued by converting the chemical energy of the residual reaction gas into electric energy. During this power generation period, the residual reaction gas has enough energy for the output voltage of the fuel cell stack 20 to maintain the upper limit voltage V 1, so the output voltage of the fuel cell stack 20 is equal to the upper limit voltage V 1 Continue to maintain. The power generated during this power generation period is consumed by the auxiliary machinery 55, but if it cannot be consumed by the auxiliary machinery 55, the battery 52 is charged.
時刻 t 0〜 t 1の期間では、 燃料電池スタツク 2 0の発電エネルギーが補 機類 5 5の消費容量を超えているため、 発電エネルギーの一部がバッテリ 5 2に充電されている。 ところが、 残留反応ガスの消費に応じて燃料電池スタ ック 2 0から放出される発電エネルギーは、 次第に減少していくので、 時刻 t 1の時点では、 燃料電池スタック 2 0から放出される発電エネルギーと、 捕機類 5 5の消費容量とがバランスし、 パッテリ 5 2に充電される電力はゼ 口となる。 そして、 時刻 t 1〜時刻 t 2の期間では、 燃料電池スタック 2 0 から放出される発電エネルギーでは、 補機類 5 5の消費電力を賄うことがで きなくなるので、 その不足電力を補うため、 パッテリ 5 2から補機類 5 5に 電力が供給されるようになる。  During the period from time t 0 to t 1, the generated energy of the fuel cell stack 20 exceeds the consumption capacity of the accessories 55, so that a part of the generated energy is charged in the battery 52. However, the power generation energy released from the fuel cell stack 20 according to the consumption of the residual reactant gas gradually decreases, so the power generation energy released from the fuel cell stack 20 at the time t1. And the consumption capacity of the traps 55 is balanced, and the electric power charged to the battery 52 becomes a negative outlet. During the period from time t 1 to time t 2, the generated power released from the fuel cell stack 20 cannot cover the power consumption of the auxiliary machinery 5 5. Electric power is supplied from the battery 5 2 to the auxiliary machinery 5 5.
時刻 t 2〜 t 4の期間は、 残留反応ガスの消費により、 燃料電池スタック 2 0の出力電圧をもはや使用上限電圧 V 1に維持することができなくなり、 発電停止に至る発電停止期間である。 燃料電池スタック 2 0の出力電圧を使 用上限電圧 V 1に維持するために必要なエネルギーを残留反応ガスが有しな くなると、 発電停止に至り、 燃料電池スタック 2 0の出力電圧は、 次第に低 下していく。 この発電停止期間では、 燃料電池スタック 2 0の発電エネルギ 一はゼロとなるので、 パッテリ 5 2から補機類 5 5に供給される電力はほぼ 一定となる。 The period from time t 2 to t 4 is a power generation stop period in which the output voltage of the fuel cell stack 20 can no longer be maintained at the use upper limit voltage V 1 due to the consumption of residual reaction gas, and power generation stops. Use the output voltage of the fuel cell stack 20 When the residual reaction gas does not have the energy necessary to maintain the upper limit voltage V 1 for use, power generation is stopped, and the output voltage of the fuel cell stack 20 gradually decreases. During this power generation stop period, the power generated by the fuel cell stack 20 is zero, so the power supplied from the battery 52 to the auxiliary machinery 55 is substantially constant.
燃料電池スタック 2 0の出力電圧が使用下限電圧 V 2まで低下する時刻 t 3では、 酸化ガス供給系 3 0を駆動し、 燃料電池スタック 2 0に酸化ガスを 補給する。燃料電池スタック 2 0は、酸化ガスの補給を受けて発電するので、 燃料電池スタック 2 0の出力電圧は上昇に転じる。 燃料電池スタック 2 0の 出力電圧が所定電圧 (例えば、 3 6 0 V) まで昇圧した段階で、 酸化ガス補 給を終了する。 このように、 発電停止期間中では、 燃料電池スタック 2 0の 出力電圧が使用下限電圧 V 2まで低下する度に酸化ガスが適宜補給され、 出 力電圧が使用下限電圧 V 2を下回らないように制御される。  At the time t3 when the output voltage of the fuel cell stack 20 drops to the lower limit voltage V2, the oxidizing gas supply system 30 is driven, and the oxidizing gas is supplied to the fuel cell stack 20. Since the fuel cell stack 20 is supplied with the oxidizing gas and generates power, the output voltage of the fuel cell stack 20 starts to rise. When the output voltage of the fuel cell stack 20 is increased to a predetermined voltage (for example, 3600 V), the oxidizing gas supply is finished. In this way, during the power generation stop period, whenever the output voltage of the fuel cell stack 20 drops to the lower limit voltage V2, the oxidizing gas is appropriately replenished so that the output voltage does not fall below the lower limit voltage V2. Be controlled.
第 2の運転モードでは、 コントローラ 6 0は、 要求負荷に応じて発電指令 値を算出し、 燃料電池スタック 2 0への反応ガス供給を制御するとともに、 D C ZD Cコンバータ 5 1を介して燃料電池スタック 2 0の運転ポイント (出力電圧、 出力電流) を制御する (時刻 t 4〜時刻 t 5 )。 このとき、 D C ZD Cコンバータ 5 1への電圧指令値は、 使用上限電圧 V Iと使用下限電圧 V 2との間の運転範囲に制限される。  In the second operation mode, the controller 60 calculates the power generation command value according to the required load, controls the supply of the reaction gas to the fuel cell stack 20, and uses the fuel cell via the DC ZDC converter 51. Controls the operation point (output voltage, output current) of stack 20 (time t4 to time t5). At this time, the voltage command value to the D C ZD C converter 51 is limited to the operation range between the upper limit voltage V I and the lower limit voltage V 2.
尚、 図 4に示すように、 電圧センサ 7 1によって測定される測定電圧 VDC は、 燃料電池スタック 2 0の実電圧 VTCよりも Δ Vstackだけ小さい場合があ る。 誤差 A Vstackの主な原因として、 スタック電流の逆流を防止するために 設けられたダイオード 7 5による電圧降下や電圧センサ 7 1による計測誤差 などが考えられる。 このような誤差が生じると、 コントローラ 6 0は、 実電 圧 VTCよりも Δ Vstackだけ小さい測定電圧 VDCが目標電圧に一致するように、 D C /D Cコンバータ 5 1を制御することになるので、 実電圧 VTCは目標電 圧よりも Δ Vstackだけ高い電圧に制御されることになる。 As shown in FIG. 4, the measured voltage V DC measured by the voltage sensor 71 may be smaller than the actual voltage V TC of the fuel cell stack 20 by ΔV stack . The main causes of the error AV stack are the voltage drop due to the diode 75 provided to prevent the backflow of the stack current and the measurement error due to the voltage sensor 71. When such an error occurs, the controller 60 controls the DC / DC converter 51 so that the measured voltage V DC that is smaller by ΔV stack than the actual voltage V TC matches the target voltage. Therefore, the actual voltage V TC The voltage is controlled to be higher by ΔV stack than the pressure.
実電圧 VTCが目標電圧よりも Δ Vstackだけ高い電圧に制御されると、 燃料 電池スタック 2 0の劣化を促進してしまうので、 誤差 Δ Vstackを加味した上 で、 測定電圧 VDCを補正し、 実電圧 VTCが目標電圧に一致するように D Cノ D Cコンバータ 5 1を制御するのが好ましい。 具体的には、 ダイオード 7 5 による電圧降下や、 電圧センサ 7 1による計測誤差を定常誤差として取り扱 うことができる場合には、 補正値としての Δ Vstackを測定電圧 VDCに加算し て、 これを実電圧 VTCとして取り扱い、 実電圧 VTCが目標電圧に一致するよ うに D C / D Cコンバータ 5 1を制御すればよい。 If the actual voltage V TC is controlled to a voltage higher than the target voltage by Δ V stack , the deterioration of the fuel cell stack 20 will be accelerated, so the measurement voltage VDC will be corrected taking into account the error Δ V stack However, it is preferable to control the DC / DC converter 51 so that the actual voltage V TC matches the target voltage. Specifically, if the voltage drop due to the diode 75 or the measurement error due to the voltage sensor 71 can be handled as a steady-state error, add ΔV stack as the correction value to the measurement voltage VDC. , which treated as actual voltage V TC, actual voltage V TC may be controlled urchin DC / DC converter 5 1 by matching the target voltage.
実電圧 VTCは、 セルモニタによって測定される各セル 2 1のセル電圧の合 計値 Vcelallに等しいので、 Vcell— aUと VDCとの間の誤差 Δ Vstackを所定の演 算周期で算出し、 誤差 Δ Vstackを加味した上で測定電圧 VDCをリアルタイム に補正し、 実電圧 VTCが目標電圧に一致するように D C / D Cコンバータ 5 1を制御してもよい。 Actual voltage VTC is equal to the total value Vcelall of each cell 2 1 cell voltage measured by the cell monitor, calculated at a predetermined computation cycle error delta Vstack between V ce LL-aU and V DC The DC / DC converter 51 may be controlled such that the measured voltage V DC is corrected in real time in consideration of the error Δ V stack and the actual voltage V TC matches the target voltage.
但し、 実電圧 VTCが目標電圧に一致するように D C Z D Cコンバータ 5 1 を制御したとしても、 図 5に示すように、 セル 2 1の出力電圧 (セル電圧) には、 ばらつきがあるので、 一部のセル 2 1のセル電圧が 1セル当たりの目 標電圧を超える場合がある (1セル当たりの目標電圧とは、 燃料電池スタツ ク 2 0の目標電圧をセル総数で除した電圧値をいう。)。このような場合には、 当該一部のセル 2 1の劣化が促進されてしまうので、 どのセル 2 1のセル電 圧も 1セル当たりの目標電圧を超えないように、 コントローラ 6 0は、 目標 電圧を補正するのが好ましい。 具体的には、 コントローラ 6 0は、 燃料電池 スタック 2 0を構成するそれぞれのセル 2 1のセル電圧をセル電圧検出装置 (図示せず) によって監視し、最高セル電圧 VceiLmaxと平均セル電圧 Vcelave との差分 A Vceliを基に燃料電池スタック 2 0の目標電圧を補正し、 どのセル 2 1のセル電圧も 1セル当たりの目標電圧を超えないように制御するのが好 ましい。 However, even if the DCZDC converter 5 1 is controlled so that the actual voltage V TC matches the target voltage, as shown in Fig. 5, the output voltage (cell voltage) of the cell 2 1 varies. (The target voltage per cell is the voltage obtained by dividing the target voltage of the fuel cell stack 20 by the total number of cells.) .) In such a case, the deterioration of some of the cells 21 is promoted, so that the controller 60 does not increase the target voltage so that the cell voltage of any cell 21 does not exceed the target voltage per cell. It is preferable to correct the voltage. Specifically, the controller 60 monitors the cell voltage of each cell 21 constituting the fuel cell stack 20 with a cell voltage detection device (not shown), and determines the maximum cell voltage V ce i Lmax and the average cell. It is preferable to correct the target voltage of the fuel cell stack 20 based on the difference AV cel i from the voltage V cel and ave, and control so that the cell voltage of any cell 21 does not exceed the target voltage per cell. Good.
図 6は D C /D Cコンバータ 5 1の間欠停止を示すタイミングチヤ一トで ある。  Figure 6 is a timing chart showing the intermittent stop of the DC / DC converter 51.
このタイミングチャートは、 燃料電池車両が低速走行から次第に減速して 車両停止に至る一連の制御過程を示している。  This timing chart shows a series of control processes in which the fuel cell vehicle gradually decelerates from low-speed traveling to stop the vehicle.
低速走行をしている燃料電池車両の負荷が軽くなり、 燃料電池スタック 2 0への要求負荷が所定の閾値を下回る時刻 t 1 0では、 制御フラグはオフか らオンに切り替わる。 これにより、 燃料電池システム 1 0の運転モードは、 第 2の運転モードから第 1の運転モードに切り替わる。 そして、 車速が所定 値 (例えば、 数 k m/ h程度) 以下となる時刻 t 1 1では、 走行フラグは、 オンからオフに切り替わる。 走行フラグとは、 車両が走行状態にあるか否か を示すフラグ情報であり、 燃料電池車両が走行している状態 (車速が所定値 以上の状態) にあるときは、走行フラグはオンとなり、停止している状態(車 速が所定値未満の状態) にあるときは、 走行フラグはオフとなる。 At time t 10 when the load on the fuel cell vehicle running at low speed becomes light and the required load on the fuel cell stack 20 falls below a predetermined threshold, the control flag switches from off to on. As a result, the operation mode of the fuel cell system 10 is switched from the second operation mode to the first operation mode. Then, at time t 11 when the vehicle speed is equal to or less than a predetermined value (for example, about several km / h), the traveling flag is switched from on to off. The traveling flag is flag information indicating whether or not the vehicle is in a traveling state. When the fuel cell vehicle is traveling (the vehicle speed is a predetermined value or more), the traveling flag is turned on, When the vehicle is stopped (the vehicle speed is less than the predetermined value), the travel flag is turned off.
燃料電池車両が完全に停止する時刻 t 1 2では、モータ駆動許可フラグは、 オンからオフに切り替わる。 モータ駆動許可フラグとは、 トラクシヨンモー タ 5 4の駆動が許可されている状態か否かを示すフラグ情報であり、 トラク シヨンモータ 5 4の駆動を許可できる場合は、 モータ駆動許可フラグはオン となり、 トラクシヨンモータ 5 4の駆動を許可できない場合 (トラクシヨン モータ 5 4がシャットダウンしている状態) は、 モータ駆動許可フラグはォ フとなる。  At time t 1 2 when the fuel cell vehicle is completely stopped, the motor drive permission flag is switched from on to off. The motor driving permission flag is flag information indicating whether or not the driving of the traction motor 54 is permitted. When the driving of the tractive motor 54 can be permitted, the motor driving permission flag is turned on. If the driving of the traction motor 54 cannot be permitted (the state where the traction motor 54 is shut down), the motor driving permission flag is turned off.
さて、 第 1の運転モードでは、 コントローラ 6 0は、 発電指令値をゼロに 設定し、 燃料電池スタック 2 0への反応ガス供給を停止するとともに、 D C ZD Cコンパータ 5 1への電圧指令値を使用上限電圧 V 1に設定する。 反応 ガス供給が停止された直後では、 燃料電池スタック 2 0の出力電圧を使用上 限電圧 V 1に維持するために十分な反応ガスが燃料電池スタック 2 0内部に 残留しているが、 残留反応ガスによる微量発電により、 残留反応ガスは次第 に減少していく。 燃料電池スタック 2 0の出力電圧を使用上限電圧 V 1に維 持するために必要なエネルギーを残留反応ガスが有しなくなると、 発電停止 に至り、 燃料電池スタック 2 0の出力電圧は、 次第に低下していく。 In the first operation mode, the controller 60 sets the power generation command value to zero, stops the supply of the reaction gas to the fuel cell stack 20, and sets the voltage command value to the DC ZD C converter 51. Use upper limit voltage V1. Immediately after the supply of the reaction gas is stopped, sufficient reaction gas is maintained in the fuel cell stack 20 to maintain the output voltage of the fuel cell stack 20 at the use upper limit voltage V1. Although it remains, the amount of residual reactive gas gradually decreases due to the small amount of power generated by the residual reactive gas. When the residual reaction gas no longer has the energy required to maintain the output voltage of the fuel cell stack 20 at the upper limit voltage V 1, power generation is stopped, and the output voltage of the fuel cell stack 20 gradually decreases. I will do it.
燃料電池スタック 2 0の出力電圧が使用上限電圧 V 1から Δ νだけ低下し て電圧 V 3に至る時刻 t 1 3では、 コンバータ駆動許可フラグは、 オンから オフに切り替わる。 コンバータ駆動許可フラグとは、 D C /D Cコンバータ 5 1の駆動が許可されている状態か否かを示すフラグ情報であり、 D C /D Cコンバータ 5 1の駆動を許可できる場合は、 コンバータ駆動許可フラグは オンとなり、 D C /D Cコンバータ 5 1の駆動を許可できない場合は、 コン パータ駆動許可フラグはオフとなる。  At time t 1 3 when the output voltage of the fuel cell stack 20 decreases from the upper limit voltage V 1 by Δ ν to reach the voltage V 3, the converter drive permission flag is switched from on to off. The converter drive permission flag is flag information indicating whether or not the drive of the DC / DC converter 51 is permitted. When the drive of the DC / DC converter 51 can be permitted, the converter drive permission flag is When it is turned on and the drive of the DC / DC converter 51 cannot be permitted, the converter drive permission flag is turned off.
燃料電池スタック 2 0の出力電圧が使用下限電圧 V 2を下回る時刻 t 1 4 では、 コントローラ 6 0は、 酸化ガス供給システム 4 0を駆動し、 燃料電池 スタック 2 0に酸化ガスを補給する。 燃料電池スタック 2 0は、 酸化ガスの 補給を受けて発電するので、 燃料電池スタック 2 0の出力電圧は上昇に転じ る。 また、 燃料電池スタック 2 0への酸化ガス補給が開始される時刻 t 1 4 では、 コンバータ駆動許可フラグがオフからオンに切り替わり、 D CZD C コンバータ 5 1が再起動される。 D CZD Cコンバータ 5 1が再起動する時 刻 t 1 4の時点では、 制御フラグはオンのままなので、 D CZD Cコンパ一 タ 5 1への電圧指令値は、 使用上限電圧 V 1に設定される。 これにより、 燃 料電池スタック 2 0の出力電圧は、 使用上限電圧 V 1と使用下限電圧 V 2と の間に制御される。  At time t 1 4 when the output voltage of the fuel cell stack 20 falls below the lower limit voltage V 2, the controller 60 drives the oxidizing gas supply system 40 to replenish the fuel cell stack 20 with oxidizing gas. Since the fuel cell stack 20 generates electric power upon replenishment of the oxidizing gas, the output voltage of the fuel cell stack 20 starts to rise. Further, at time t 14 when oxidant gas supply to the fuel cell stack 20 is started, the converter drive permission flag is switched from OFF to ON, and the D CZD C converter 51 is restarted. At time t 1 4 when D CZD C converter 5 1 restarts, the control flag remains on, so the voltage command value to D CZD C comparator 51 is set to the upper limit voltage V 1 The As a result, the output voltage of the fuel cell stack 20 is controlled between the upper limit voltage V 1 and the lower limit voltage V 2.
このように、 「トラクションモータ 5 4がシャットダウンしていること」、 「燃料電池スタック 2 0の出力電圧が使用上限電圧 V Iから だけ低下し たこと」 を条件として、 D C ZD Cコンバータ 5 1の駆動 (トランジスタの スイッチング動作) を停止ずる (以下、 間欠停止と称する。) ことにより、 D C/DCコンバータ 5 1のスイッチング損失を低減し、 エネルギー効率を高 めることができる。 In this way, driving the DC ZD C converter 5 1 on the condition that “the traction motor 54 is shut down” and “the output voltage of the fuel cell stack 20 has dropped only from the upper limit voltage VI” (Transistor switching operation) is stopped (hereinafter referred to as intermittent stop). The switching loss of the C / DC converter 51 can be reduced and energy efficiency can be increased.
ここで、 上記二つの条件を、 DCZDCコンバータ 5 1を間欠停止するた めの条件とする理由について説明する。 仮にトラクシヨンモータ 54がシャ ットダウンしていない状態で DC/DCコンバータ 5 1の駆動を停止すると、 DC/DCコンバータ 5 1による燃料電池スタック 20への電圧制御が働か なくなるので、 燃料電池スタック 20の出力電圧は、 トラクシヨンインバー タ 53によって引き下げられてしまい、コントロール不能に陥るだけでなく、 燃料電池スタック 20の出力電圧が使用下限電圧 V 2を下回る虞がある。 また、 燃料電池スタック 20の出力電圧が使用上限電圧 V 1を維持してい る状態では、 十分な量の反応ガスが燃料電池スタック 20に残留していて発 電を継続している可能性がある。 仮にこのような状態で、 DC/DCコンパ ータ 5 1の駆動を停止すると、 燃料電池スタック 20が発電する電力のうち トラクシヨンインパータ 53によって消費し切れない分だけ燃料電池スタツ ク 20の出力電圧が吹け上がってしまい、 使用上限電圧 V 1を超えてしまう 虞がある。  Here, the reason why the above two conditions are used as conditions for intermittently stopping the DCZDC converter 51 will be described. If the driving of the DC / DC converter 51 is stopped when the traction motor 54 is not shut down, voltage control to the fuel cell stack 20 by the DC / DC converter 51 will not work. The output voltage is pulled down by the truncation inverter 53, resulting in not being out of control, and the output voltage of the fuel cell stack 20 may fall below the lower limit voltage V2. In addition, when the output voltage of the fuel cell stack 20 maintains the upper limit voltage V 1, there is a possibility that a sufficient amount of reaction gas remains in the fuel cell stack 20 and continues to generate electricity. . If the driving of the DC / DC converter 51 is stopped in such a state, the output of the fuel cell stack 20 is output by the amount of power generated by the fuel cell stack 20 that cannot be consumed by the traction impeller 53. There is a risk that the voltage will rise and exceed the upper limit of use voltage V1.
一方、 燃料電池スタック 20の出力電圧が使用上限電圧 V 1から AVだけ 低下する状態では、 残留反応ガスの量は微量であり、 しかも発電停止状態に あるので、 DC/DCコンバータ 5 1の駆動を停止しても、 燃料電池スタツ ク 20の出力電圧が吹け上がることはない。 以上の理由から、 上記二つの条 件を、 DC/DCコンバータ 5 1を間欠停止するための条件としている。 図 7は高電位回避制御の実行条件を示す説明図である。  On the other hand, when the output voltage of the fuel cell stack 20 decreases by AV from the upper limit voltage V 1, the amount of residual reaction gas is very small and the power generation is stopped, so the DC / DC converter 51 is driven. Even when stopped, the output voltage of the fuel cell stack 20 does not rise. For these reasons, the above two conditions are the conditions for intermittently stopping the DC / DC converter 51. FIG. 7 is an explanatory diagram showing conditions for executing the high potential avoidance control.
同図に示すように、 高電位回避制御の実施が許可されるためには、 (A1) パッテリ 52の30じが3001以下であること、 (B 1)車両が回生制動中 でないこと、 (C 1)ガス漏れ検出の判定中でないこと、の全ての条件が満た されていることが必要である。 一方、 高電位回避制御の実施が禁止されるた めには、 (A2) ノ ッテリ 52の SOCが SOC 2以上であること、 (B 2) 車両が回生制動中であること、 (C 2)ガス漏れ検出の判定中であること、の. 何れかの条件が満たされていることが必要である。 As shown in the figure, in order to allow the execution of high potential avoidance control, (A1) 30 of battery 52 is 3001 or less, (B 1) the vehicle is not in regenerative braking, (C 1) It is necessary to satisfy all the conditions that gas leak detection is not being judged. On the other hand, the implementation of high potential avoidance control is prohibited. (A2) Notch 52 SOC is SOC 2 or higher, (B 2) Vehicle is in regenerative braking, (C 2) Gas leak detection is being judged. It is necessary that these conditions are satisfied.
(バッテリ)  (Battery)
コントローラ 60は、 SOCセンサ 73から出力される信号を読み取るこ とにより、 パッテリ 5 2の充電状態を定期的に監視する。 そして、 バッテリ 52の30じが3002 (例えば 75%) 以上になると、 コントローラ 6 0 は、 高電位回避制御機能をオン (許可) からオフ (禁止) に切り替える。 高 電位回避制御機能がオフになると、 燃料電池スタック 20の出力電圧は、 開 放端電圧に維持される。 一方、 バッテリ 52の SOCが SOC 1 (例えば 7 0%) 以下になると、 コントローラ 60は、 高電池回避制御機能をオフから オンに切り替える。 高電位回避制御機能がオンになると、 燃料電池スタック 20の出力電圧は、 使用上限電圧 VI以下に制御される。  The controller 60 periodically monitors the state of charge of the battery 52 by reading the signal output from the SOC sensor 73. When 30 of battery 52 reaches 3002 (for example, 75%) or more, controller 60 switches the high potential avoidance control function from on (permitted) to off (prohibited). When the high potential avoidance control function is turned off, the output voltage of the fuel cell stack 20 is maintained at the open end voltage. On the other hand, when the SOC of the battery 52 becomes SOC 1 (for example, 70%) or less, the controller 60 switches the high battery avoidance control function from OFF to ON. When the high potential avoidance control function is turned on, the output voltage of the fuel cell stack 20 is controlled below the upper limit voltage VI.
第 1の運転モードにおいて、 高電池回避制御を実施すると、 燃料電池スタ ック 20への発電指令値はゼ口であるにも関らず、 燃料電池スタック 20の 出力電圧は使用上限電圧 VIに維持されるので、 燃料電池スタック 20は、 残留反応ガスによる電気化学反応により微量に発電する。 この発電によって 生成された電力は、 補機損として、 補機類 55によって消費可能と考えられ るが、 燃料電池スタック 20の発電のばらつきや、 補機類 5 5による消費電 力のばらつき等により、 補機類 55だけでは、 消費し切れない場合がある。 このような場合には、 補機類 55が消費し切れない電力をパッテリ 52に充 電することとなるが、 バッテリ 52の S OCが高い場合には、 過充電を引き 起こし、 バッテリ 52が破損する虞がある。 そこで、 上記のように、 パッテ リ 52の SOCが SOC 2以上になることを条件として、 高電位回避制御機 能をオンからオフに切り替えることで、 過充電によるバッテリ 52の破損を 回避できる。 尚、 上記の説明では、 バッテリ 5 2の S O Cを基準に高電位回避制御機能 のオン/オフ切り替えをするための判定条件を設定する例を示したが、 パッ テリ 5 2の充電能力を基準に高電位回避制御機能のオン/オフ切り替えをす るための判定条件を設定してもよい。 例えば、 バッテリ 5 2の充電能力が W i n 1 (例えば一 4 k W) 以下になると、 高電位回避制御機能をオフからォ ンに切り替える一方、バッテリ 5 2の充電能力が W i n 2 (例えば一 2 k W) 以上になると、 高電位回避制御機能をオンからオフに切り替える。 但し、 高 電位回避制御機能をオン Zオフ切り替えするための判定条件は、 必ずしもヒ ステリシス特性を有している必要はない。 . When the high battery avoidance control is performed in the first operation mode, the output voltage of the fuel cell stack 20 is set to the upper limit voltage VI of use even though the power generation command value to the fuel cell stack 20 is the outlet. As a result, the fuel cell stack 20 generates a small amount of electricity through an electrochemical reaction caused by residual reaction gas. The power generated by this power generation can be consumed by auxiliary equipment 55 as auxiliary equipment loss, but due to fluctuations in power generation by the fuel cell stack 20, fluctuations in power consumption by auxiliary equipment 55, etc. Auxiliary equipment 55 alone may not be fully consumed. In such a case, power that cannot be consumed by the auxiliary equipment 55 will be charged to the battery 52. However, if the SOC of the battery 52 is high, it will cause overcharge and damage the battery 52. There is a risk of doing. Therefore, as described above, on condition that the SOC of the battery 52 becomes SOC 2 or more, the high potential avoidance control function is switched from on to off, so that the battery 52 can be prevented from being damaged due to overcharging. In the above explanation, an example of setting the judgment condition for switching on / off the high potential avoidance control function based on the SOC of the battery 52 is shown. However, the charge capacity of the battery 52 is used as a reference. Judgment conditions for switching on / off the high potential avoidance control function may be set. For example, when the charging capacity of the battery 52 is equal to or lower than Win 1 (for example, 1 kW), the high potential avoidance control function is switched from OFF to ON, while the charging capacity of the battery 52 is decreased to Win 2 (for example, 1 At 2 kW) or more, the high potential avoidance control function is switched from on to off. However, the judgment condition for switching the high potential avoidance control function on and off does not necessarily have a hysteresis characteristic. .
(回生制動)  (Regenerative braking)
回生制動の有無に応じて高電位回避制御をオン Zオフ切り替えするための 運転制御について、図 8に示すタイミングチャートを参照しながら説明する。 このタイミングチャートは、 燃料電池車両が走行状態から回生制動に移行す る一連の経過を示している。 ドライバが時刻 t 2 0でプレーキペダルを踏む と、 トラクションモータ 5 4は、 回生制動をし、 車両の運動エネルギーを電 気エネルギーに変換する。 また、 時刻 t 2 0において、 回生フラグは、 オフ からオンに切り替わる。 回生フラグとは、 車両が回生制動をしているか否か を示すフラグ情報であり、 車両が回生制動してないときは、 回生フラグはォ フとなり、 車両が回生制動しているときは、 回生フラグはオンとなる。  The operation control for switching the high potential avoidance control on and off according to the presence or absence of regenerative braking will be described with reference to the timing chart shown in FIG. This timing chart shows a series of processes in which the fuel cell vehicle shifts from a running state to regenerative braking. When the driver depresses the brake pedal at time t 2 0, the traction motor 5 4 performs regenerative braking and converts the kinetic energy of the vehicle into electric energy. At time t 2 0, the regeneration flag switches from off to on. The regenerative flag is flag information indicating whether or not the vehicle is performing regenerative braking. When the vehicle is not regeneratively braked, the regenerative flag is off, and when the vehicle is regeneratively braking, regenerative braking is performed. The flag is turned on.
回生フラグがオンになると、 コントローラ 6 0は、 燃料電池スタック 2 0 の上限電圧を使用上限電圧 V 1から開放端電圧に変更し、 燃料電池スタック 2 0の出力電圧が使用上限電圧 V Iを超えて開放端電圧になることを許容す る。 回生制動時における燃料電池スタック 2 0への要求負荷は軽いので、 燃 料電池スタック 2 0の出力電圧は、 次第に上昇していき、 時刻 t 2 1の時点 で開放端電圧に等しくなり、 その後は開放端電圧を維持し続ける。 また、 燃 料電池スタック 2 0の出力電圧が開放端電圧に等しくなる時刻 t 2 1以降で は、 発電電流はゼロになる。 When the regeneration flag is turned on, the controller 60 changes the upper limit voltage of the fuel cell stack 2 0 from the upper limit voltage V 1 to the open circuit voltage, and the output voltage of the fuel cell stack 20 exceeds the upper limit voltage VI. Allow open circuit voltage. Since the required load on the fuel cell stack 20 during regenerative braking is light, the output voltage of the fuel cell stack 20 gradually increases and becomes equal to the open-circuit voltage at time t 21, and thereafter Continue to maintain the open circuit voltage. In addition, after time t2 1 when the output voltage of the fuel cell stack 20 becomes equal to the open-circuit voltage. The generated current becomes zero.
燃料電池スタック 2 0の発電電流がゼロになるということは、 燃料電池ス タック 2 0が発電しなくなることを意味しているので、 発電電力をパッテリ 5 2に充電する必要がなくなる。 これにより、 回生電力を十分にパッテリ 5 2に充電することができる。 ここで、 実線で示す回生電力は、 回生制動時に 高電位回避制御を禁止することによりパッテリ 5 2に充電できる電力を示し、 点線で示す回生電力は、 回生制動時に高電位回避制御を実施することにより バッテリ 5 2に充電できる電力を示す。 両者の差分 A Wは、 回生制動時に燃 料電池スタック 2 0が発電した電力をバッテリ 5 2に充電する必要がなくな つたことに起因して、 バッテリ 5 2により多く回収することのできる回生電 力を示す。  The fact that the power generation current of the fuel cell stack 20 becomes zero means that the fuel cell stack 20 does not generate power, so that it is not necessary to charge the generated power to the battery 52. As a result, the regenerative power can be sufficiently charged to the battery 52. Here, the regenerative power indicated by the solid line indicates the power that can be charged to the battery 52 by prohibiting the high potential avoidance control during regenerative braking, and the regenerative power indicated by the dotted line indicates that the high potential avoidance control is performed during regenerative braking. Indicates the power that can be charged to battery 52. The difference between the two is the regenerative power that can be recovered more by the battery 52 because the battery 52 does not need to be charged with the power generated by the fuel cell stack 20 during regenerative braking. Indicates.
このように、 車両が回生制動するときには、 高電位回避制御機能をオフに することにより、 燃料電池スタック 2 0の発電電力をゼロにし、 より多くの 回生電力をパッテリ 5 2に充電できるので、 エネルギー効率を高めることが できる。  As described above, when the vehicle is regeneratively braked, the high potential avoidance control function is turned off, so that the generated power of the fuel cell stack 20 can be reduced to zero and more regenerative power can be charged to the battery 52. Efficiency can be increased.
尚、 回生制動時には、 高電位回避機能をオフにするのではなく、 使用上限 電圧 V 1を開放端電圧より低い電圧に引き上げるように制御してもよい。 ま た、 バッテリ 5 2の S O Cが低い場合には、 トラクションモータ 5 4が回収 した回生電力だけでなく、 燃料電池スタック 2 0の発電電力をも充電できる 余裕があるので、 バッテリ 5 2の S O Cが所定値以上のときに回生制動する ことを条件として、 高電位回避制御をオフにしてもよい。  During regenerative braking, the high potential avoidance function may not be turned off, but the upper limit voltage V 1 may be controlled to be higher than the open circuit voltage. In addition, when the SOC of the battery 52 is low, not only the regenerative power collected by the traction motor 54 but also the power generated by the fuel cell stack 20 can be charged. High potential avoidance control may be turned off on condition that regenerative braking is performed when the value is equal to or greater than a predetermined value.
また、 車両の走行モード ( Ό / Βレンジ) に応じて、 回生制動中の高電位 回避電圧の目標値を変更してもよい。 ここで、 Dレンジは、 通常走行時に用 いられる走行モードであり、 . Bレンジは、 下り坂や峠道などを走行する場合 のように、 通常走行時よりも大きい制動力が要求されるときに用いられる走 行モードである。 トラクシヨンモータ 5 4による回生制動中は、 モータ回生 トルクは、 電力に変換され、 パッテリ 5 2に充電されるので、 回生制動中に も高電位回避制御が実施されている場合、 以下に示す電力収支が成立する。 パッテリ充電電力 +補機消費電力 =モータ回生電力 +燃料電池発電電力 - · · ( 4 ) Further, the target value of the high potential avoidance voltage during regenerative braking may be changed according to the vehicle running mode ((/ Β range). Here, the D range is a driving mode used during normal driving, and the B range is used when a braking force greater than that during normal driving is required, such as when driving on a downhill or a road. This is the running mode used for. During regenerative braking by the Traction Motor 54, the motor regeneration The torque is converted into electric power and charged to the battery 52. Therefore, when high potential avoidance control is performed even during regenerative braking, the following electric power balance is established. Battery charge power + Auxiliary machine power consumption = Motor regenerative power + Fuel cell power generation-(4)
( 4 ) 式に示すように、 車両制動時の燃料電池発電電力が多いと、 モータ 回生電力がその分だけ減少してしまい、 十分な制動トルクを確保できない。 このため、 車両制動時には高電位回避電圧を引き上げることで、 燃料電池発 電電力を減少させ、 十分な制動トルクを確保するのが好ましい。 そこで、 コ ントローラ 6 0は、 車両制動時に、 以下の (5 ) 式が成立するように高電位 回避電圧を可変設定する。  As shown in equation (4), if the fuel cell power generated during vehicle braking is large, the motor regenerative power will be reduced by that amount, and sufficient braking torque cannot be secured. For this reason, it is preferable to increase the high potential avoidance voltage during vehicle braking to reduce the fuel cell generated power and to ensure sufficient braking torque. Therefore, the controller 60 variably sets the high potential avoidance voltage so that the following equation (5) is satisfied during vehicle braking.
パッテリ充電電力 +補機消費電力 モータ回生電力 +燃料電池発電電力 …Battery charging power + Auxiliary machine power consumption Motor regenerative power + Fuel cell power generation…
( 5 ) ( Five )
ここで、 (5 )式の関係式から導かれる高電位回避電圧は、図 9に示すよう なマップデータとして、 コントローラ 6 0内の R OMに保持してもよい。 図 9において、 横軸は回生電力を示し、 縦軸は高電位回避電圧を示している。 Bレンジと D /Rレンジとでは、 制動トルクが異なるので、 異なるマップデ ータとしている。 実線は、 Dレンジのマップデータを示し、 破線は、 Bレン ジのマップデータを示している。 コントローラ 6 0は、 車両の走行モードが Dレンジであるのか或いは Bレンジであるのかを、 シフトポジションに基づ いて判定し、 走行モードが Bレンジである場合には、 走行モードが Dレンジ の場合よりも高電位回避電圧の目標値を引き上げ、大きな制動力を確保する。 これにより、 車両のドライバビリティを高めることができる。  Here, the high potential avoidance voltage derived from the relational expression (5) may be held in the ROM in the controller 60 as map data as shown in FIG. In Fig. 9, the horizontal axis represents regenerative power, and the vertical axis represents high potential avoidance voltage. Since the braking torque is different between the B range and D / R range, different map data are used. The solid line shows the map data for the D range, and the broken line shows the map data for the B range. The controller 60 determines whether the driving mode of the vehicle is the D range or the B range based on the shift position. If the driving mode is the B range, the driving mode is the D range. The target value of the high potential avoidance voltage is increased to ensure a large braking force. As a result, the drivability of the vehicle can be improved.
(ガス漏れ検出)  (Gas leak detection)
ガス漏れ検出の有無に応じて高電位回避制御をオン/オフ切り替えするた めの運転制御について、 図 1 0に示すタイミングチャートを参照しながら説 明する。 このタイミングチャートは、 停車状態にある燃料電池車両が第 1の 運転モードにて運転中に燃料電池システム 1 0の燃料ガス配管系にガス漏れThe operation control for switching on / off the high potential avoidance control according to the presence or absence of gas leak detection will be described with reference to the timing chart shown in FIG. This timing chart shows that the stopped fuel cell vehicle is the first Gas leakage into the fuel gas piping system of the fuel cell system 10 during operation in the operation mode
(水素漏れ) が生じているか否かを判定するための一連の制御過程を示して いる。 A series of control processes for determining whether or not (hydrogen leakage) has occurred is shown.
燃料電 車両が停車する等の理由で燃料電池スタック 2 0に対する要求電 力が所定値未満になる時刻 t 3 0では、 制御フラグは、 オフからオンに切り 替わる。 すると、 コントローラ 6 0は、 第 1の運転モードにて燃料電池スタ ック 2 0を運転制御する。  At time t 3 0 when the required power for the fuel cell stack 20 becomes less than a predetermined value due to, for example, the vehicle stopping, the control flag switches from off to on. Then, the controller 60 controls the operation of the fuel cell stack 20 in the first operation mode.
コントローラ 6 0は、 停車状態にある燃料電池車両が第 1の運転モードに て運転制御されることを契機として、 燃料ガス配管系に水素漏れが生じてい るか否かを判定するためのガス漏れ検出ルーチンを起動する。 ガス漏れ検出 ルーチンが起動されると、 燃料電池スタック 2 0の燃料ガス入り口の上流側 に配設されている遮断弁 H 3と、 燃料ガス出口の下流側に配設されている遮 断弁 H 4とがそれぞれ閉弁され、 燃料ガス配管系内部に密閉空間が形成され る。 この密閉空間内部のガス圧は、 圧力センサ 7 4によって検出される。 密 閉空間内部の単位時間あたりのガス圧低下量が所定の閾値以上である場合に は、 ガス漏れが生じているものと判定される。  The controller 60 is a gas leak for determining whether or not a hydrogen leak has occurred in the fuel gas piping system when the stopped fuel cell vehicle is operated and controlled in the first operation mode. Invoke the detection routine. When the gas leak detection routine is started, the shut-off valve H 3 arranged upstream of the fuel gas inlet of the fuel cell stack 20 and the shut-off valve H arranged downstream of the fuel gas outlet 4 and 4 are closed to form a sealed space inside the fuel gas piping system. The gas pressure inside the sealed space is detected by a pressure sensor 74. If the amount of gas pressure drop per unit time inside the enclosed space is greater than or equal to a predetermined threshold, it is determined that a gas leak has occurred.
ガス漏れ検出ルーチンが起動される時刻 t 3 0では、 ガス漏れ検出フラグ は、 オフからオンに切り替わる。 ガス漏れ検出フラグは、 ガス漏れ検出処理 が実施されているか否かを示すフラグ情報であり、 ガス漏れ検出が実施され ているときは、 ガス漏れ検出フラグはオンとなり、 ガス漏れ検出処理が実施 されていないときには、 ガス漏れ検出フラグはオフになる。  At time t3 0 when the gas leak detection routine is started, the gas leak detection flag is switched from OFF to ON. The gas leak detection flag is flag information indicating whether or not the gas leak detection process is being performed. When the gas leak detection is being performed, the gas leak detection flag is turned on and the gas leak detection process is performed. If not, the gas leak detection flag is turned off.
ガス漏れ検出フラグがオンになる時刻 t 3 0では、 高電位回避フラグはォ ンからオフに切り替わる。 高電位回避フラグとは、 高電位回避制御を許可し ているか否かを示すフラグ情報であり、 高電位回避制御を許可しているとき には、 高電位回避フラグはオンとなり、 高電位回避制御を禁止しているとき には、 高電位回避フラグはオフになる。 ガス漏れ検出中における高電位回避 制御を禁止することで、 燃料電池スタック 2 0の出力電圧は、 時刻 t 3 0の 時点で使用上限電圧 V Iから次第に上昇し、 やがて開放端電圧に至る。 燃料 電池スタック 2 0の出力電圧が開放端電圧に一致すると、 燃料電池スタック 2 0による発電は停止する。 At time t 30 when the gas leak detection flag is turned on, the high potential avoidance flag is switched from on to off. The high potential avoidance flag is flag information indicating whether or not high potential avoidance control is permitted. When high potential avoidance control is permitted, the high potential avoidance flag is turned on and the high potential avoidance control is enabled. When this is prohibited, the high potential avoidance flag is turned off. High potential avoidance during gas leak detection By prohibiting the control, the output voltage of the fuel cell stack 20 gradually increases from the use upper limit voltage VI at the time t 30 and eventually reaches the open-circuit voltage. When the output voltage of the fuel cell stack 20 matches the open-circuit voltage, power generation by the fuel cell stack 20 is stopped.
ガス漏れ判定に必要な所要時間が経過し、 ガス漏れ検出処理が完了する時 刻 t 3 1ではガス漏れ検出完了フラグがオフからオンに切り替わる。 ガス漏 れ検出完了フラグとは、 ガス漏れ検出が完了したか否かを示すフラグ情報で あり、 ガス漏れ検出が完了すると、 ガス漏れ検出完了フラグはオンになり、 ガス漏れ検出が完了していないときには、 ガス漏れ検出完了フラグはオフに なる。  At time t 3 1, the gas leak detection completion flag switches from off to on at the time t 3 1 when the time required for gas leak detection has elapsed and the gas leak detection processing is complete. The gas leak detection completion flag is flag information indicating whether or not the gas leak detection is completed. When the gas leak detection is completed, the gas leak detection completion flag is turned on and the gas leak detection is not completed. Sometimes the gas leak detection completion flag is turned off.
また、 ガス漏れ検出処理が完了する時刻 t 3 1では、 ガス漏れ検出フラグ はオンからオフに切り替わり、 高電位回避フラグはオフからオンに切り替わ る。 高電位回避フラグがオフからオンに切り替わることで、 燃料電池スタツ ク 2 0の出力電圧は時刻 t 3 1の時点で開放端電圧から次第に低下し、 やが て使用上限電圧 V 1に至る。 また、 ガス漏れ検出処理が完了すると、 遮断弁 8 1, 8 2は、 開弁される。  At time t 31 when the gas leak detection process is completed, the gas leak detection flag is switched from on to off, and the high potential avoidance flag is switched from off to on. When the high potential avoidance flag is switched from OFF to ON, the output voltage of the fuel cell stack 20 gradually decreases from the open-circuit voltage at time t 3 1 and eventually reaches the use upper limit voltage V 1. When the gas leak detection process is completed, the shutoff valves 8 1 and 8 2 are opened.
燃料ガス配管系内部に密閉空間を形成し、 所定時間経過後の密閉空間内部 のガス圧低下量を測定することで、 ガス漏れ検出を実施している最中に高電 位回避制御を許可すると、 燃料電池スタック 2 0が発電し、 密閉空間内部の 水素ガスを消費してしまうので、 誤判定する可能性がある。 これに対し、 本 実施形態によれば、 ガス漏れ検出を実施している最中における高電位回避制 御を禁止するので、 燃料電池スタック 2 0が発電することによる、 密閉空間 内部の水素ガス消費を抑制できるので、 高精度なガス漏れ判定を実施するこ とが可能になる。  If high-pressure avoidance control is permitted during gas leak detection by forming a sealed space inside the fuel gas piping system and measuring the amount of gas pressure drop inside the sealed space after a predetermined time has elapsed Since the fuel cell stack 20 generates power and consumes hydrogen gas in the sealed space, there is a possibility of erroneous determination. On the other hand, according to the present embodiment, high potential avoidance control is prohibited while gas leak detection is being performed, so that the hydrogen gas consumption inside the sealed space caused by power generation by the fuel cell stack 20 This makes it possible to carry out highly accurate gas leak determination.
尚、 上述の実施形態では、 燃料電池システム 1 0を車載電源システムとし て用いる利用形態を例示したが、 燃料電池システム 1 0の利用形態は、 この 例に限られるものではなレ、。 例えば、 燃料電池システム 1 0を燃料電池車両 以外の移動体(ロボット、船舶、航空機等)の電力源として搭載してもよい。 また、 本実施形態に係わる燃料電池システム 1 0を住宅やビル等の発電設備In the above-described embodiment, the usage mode in which the fuel cell system 10 is used as an in-vehicle power supply system has been illustrated. However, the usage mode of the fuel cell system 10 is This is not limited to examples. For example, the fuel cell system 10 may be mounted as a power source for a mobile body (robot, ship, aircraft, etc.) other than the fuel cell vehicle. Further, the fuel cell system 10 according to this embodiment is installed in a power generation facility such as a house or a building.
(定置用発電システム) として用いてもよい。 産業上の利用可能性 It may be used as a stationary power generation system. Industrial applicability
本発明によれば、 燃料電池の出力電圧の上限を開放端電圧よりも低い高電 位回避電圧に設定することで、 燃料電池の出力電圧が開放端電圧まで上昇す ることによる触媒の劣化を抑制できる。  According to the present invention, the upper limit of the output voltage of the fuel cell is set to a high potential avoidance voltage that is lower than the open-circuit voltage, so that the deterioration of the catalyst due to the increase of the output voltage of the fuel cell to the open-circuit voltage is prevented. Can be suppressed.

Claims

請求の範囲 The scope of the claims
1 . 反応ガスの供給を受けて発電する燃料電池と、 1. a fuel cell that generates power by receiving a supply of reaction gas;
前記燃料電池に対する要求電力が所定値未満のときに前記燃料電池への反 応ガス供給を停止するとともに前記燃料電池の出力電圧が開放端電圧よりも 低い高電位回避電圧に維持されるように制御し、 前記燃料電池に対する要求 電力が所定値以上の'ときに、 前記高電位回避電圧を上限として前記燃料電池 の出力電圧を制御する制御装置と、  Control is performed such that when the required power for the fuel cell is less than a predetermined value, supply of the reactive gas to the fuel cell is stopped and the output voltage of the fuel cell is maintained at a high potential avoidance voltage lower than the open-circuit voltage. A control device that controls the output voltage of the fuel cell with the high potential avoidance voltage as an upper limit when the required power for the fuel cell is equal to or greater than a predetermined value;
を備える燃料電池システム。  A fuel cell system comprising:
2 . 請求項 1に記載の燃料電池システムであって、 2. The fuel cell system according to claim 1, wherein
前記燃料電池の出力電圧を制御する D C /D Cコンパータを更に備え、 前記制御装置は、 前記燃料電池に対する要求電力が所定値未満のときに、 前記燃料電池の出力電圧が前記高電位回避電圧よりも所定電圧低下した段階 で前記 D C /D Cコンバータの駆動を停止する、 燃料電池システム。  A DC / DC converter for controlling the output voltage of the fuel cell; and the control device is configured such that when the required power to the fuel cell is less than a predetermined value, the output voltage of the fuel cell is higher than the high potential avoidance voltage. A fuel cell system that stops driving the DC / DC converter when a predetermined voltage drops.
3 . 請求項 1に記載の燃料電池システムであって、 3. The fuel cell system according to claim 1, wherein
蓄電装置を更に備え、  A power storage device,
前記制御装置は、 前記燃料電池の発電電力が前記蓄電装置によって充電可 能な電力と捕機類によって消費可能な電力との合計を超えている場合には、 前記燃料電池の出力電圧が開放端電圧まで昇圧することを許可する、 燃料電 池システム。  When the generated power of the fuel cell exceeds the sum of the power that can be charged by the power storage device and the power that can be consumed by traps, the control device outputs an output voltage of the fuel cell. A fuel cell system that allows boosting to a voltage.
4 . 請求項 1に記載の燃料電池システムであって、  4. The fuel cell system according to claim 1, wherein
トラクションモータを更に備え、  A traction motor,
前記制御装置は、 前記トラクシヨンモータによる回生制動が実施されてい る最中では前記燃料電池の出力電圧が開放端電圧まで昇圧することを許可す る、 燃料電池システム。  The fuel cell system, wherein the control device permits the output voltage of the fuel cell to be boosted to an open-circuit voltage while regenerative braking by the traction motor is being performed.
5 . 請求項 1に記載の燃料電池システムであって、 前記燃料電池に反応ガスを供給するための配管系統に配設される複数の遮 断弁を更に備え、 5. The fuel cell system according to claim 1, wherein A plurality of shut-off valves disposed in a piping system for supplying the reaction gas to the fuel cell;
前記制御装置は、 前記複数の遮断弁を閉弁することにより前記配管系統内 部に閉空間を形成し、 前記閉空間内部のガス圧変動を検出することによりガ ス漏れを検出している最中は、 前記燃料電池の出力電圧が開放端電圧まで昇 圧することを許可する、 燃料電池システム。  The control device forms a closed space inside the piping system by closing the plurality of shut-off valves, and detects a gas leak by detecting a gas pressure fluctuation inside the closed space. In the fuel cell system, the output voltage of the fuel cell is allowed to increase to the open-circuit voltage.
6 . 請求項 1に記載の燃料電池システムであって、  6. The fuel cell system according to claim 1, wherein
前記燃料電池は、 複数のセルを積層してなるセルスタックであり、 前記制御装置は、 前記複数のセルの出力電圧のうちの最高電圧が所定値以 下になるように、 前記高電位回避電圧を補正する、 燃料電池システム。  The fuel cell is a cell stack formed by stacking a plurality of cells, and the control device is configured to control the high potential avoidance voltage so that a maximum voltage among output voltages of the plurality of cells is a predetermined value or less. To correct the fuel cell system.
PCT/JP2008/051988 2007-02-05 2008-01-31 Fuel cell system WO2008099743A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020097016308A KR101109715B1 (en) 2007-02-05 2008-01-31 Fuel cell system
CN2008800013146A CN101569044B (en) 2007-02-05 2008-01-31 Fuel cell system
DE112008000096.4T DE112008000096B4 (en) 2007-02-05 2008-01-31 Fuel cell system and control method for a fuel cell system
US12/440,787 US9034495B2 (en) 2007-02-05 2008-01-31 Fuel cell system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-026086 2007-02-05
JP2007026086 2007-02-05
JP2007-333012 2007-12-25
JP2007333012A JP5007665B2 (en) 2007-02-05 2007-12-25 Fuel cell system

Publications (1)

Publication Number Publication Date
WO2008099743A1 true WO2008099743A1 (en) 2008-08-21

Family

ID=39689980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/051988 WO2008099743A1 (en) 2007-02-05 2008-01-31 Fuel cell system

Country Status (1)

Country Link
WO (1) WO2008099743A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021257A1 (en) * 2009-03-31 2012-01-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
CN102379060A (en) * 2009-03-31 2012-03-14 丰田自动车株式会社 Fuel cell system, and vehicle equipped with the fuel cell system
CN102379061A (en) * 2009-03-31 2012-03-14 丰田自动车株式会社 Fuel cell system, and electric vehicle equipped with the fuel cell system
US20120274137A1 (en) * 2010-01-18 2012-11-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method therefor
JP5354482B2 (en) * 2009-07-09 2013-11-27 トヨタ自動車株式会社 Fuel cell system and control method thereof
JP2014035861A (en) * 2012-08-08 2014-02-24 Honda Motor Co Ltd Method of stopping fuel cell system
US8920994B2 (en) 2009-07-10 2014-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229138A (en) * 2002-02-05 2003-08-15 Equos Research Co Ltd Fuel cell system
JP2004014159A (en) * 2002-06-04 2004-01-15 Toyota Motor Corp Power supply device
JP2004172028A (en) * 2002-11-22 2004-06-17 Toyota Motor Corp Fuel cell system, movable body mounting the same, and control method of fuel cell system
JP2005100820A (en) * 2003-09-25 2005-04-14 Nissan Motor Co Ltd Fuel cell system
JP2007109569A (en) * 2005-10-14 2007-04-26 Nissan Motor Co Ltd Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229138A (en) * 2002-02-05 2003-08-15 Equos Research Co Ltd Fuel cell system
JP2004014159A (en) * 2002-06-04 2004-01-15 Toyota Motor Corp Power supply device
JP2004172028A (en) * 2002-11-22 2004-06-17 Toyota Motor Corp Fuel cell system, movable body mounting the same, and control method of fuel cell system
JP2005100820A (en) * 2003-09-25 2005-04-14 Nissan Motor Co Ltd Fuel cell system
JP2007109569A (en) * 2005-10-14 2007-04-26 Nissan Motor Co Ltd Fuel cell system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120021257A1 (en) * 2009-03-31 2012-01-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system, control method for the fuel cell system, and vehicle equipped with the fuel cell system
CN102379060A (en) * 2009-03-31 2012-03-14 丰田自动车株式会社 Fuel cell system, and vehicle equipped with the fuel cell system
CN102379061A (en) * 2009-03-31 2012-03-14 丰田自动车株式会社 Fuel cell system, and electric vehicle equipped with the fuel cell system
US8710790B2 (en) 2009-03-31 2014-04-29 Toyota Jidosha Kabushiki Kaisha Fuel cell system, and electric vehicle equipped with the fuel cell system
US8815423B2 (en) * 2009-03-31 2014-08-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system comprising voltage adjustment portion, control method for the fuel cell system, and vehicle equipped with the fuel cell system
JP5354482B2 (en) * 2009-07-09 2013-11-27 トヨタ自動車株式会社 Fuel cell system and control method thereof
US8795913B2 (en) 2009-07-09 2014-08-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method thereof
US8920994B2 (en) 2009-07-10 2014-12-30 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US20120274137A1 (en) * 2010-01-18 2012-11-01 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method therefor
US9437888B2 (en) * 2010-01-18 2016-09-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system and control method therefor
JP2014035861A (en) * 2012-08-08 2014-02-24 Honda Motor Co Ltd Method of stopping fuel cell system

Similar Documents

Publication Publication Date Title
JP5007665B2 (en) Fuel cell system
JP5023374B2 (en) Fuel cell system
JP4591721B2 (en) Fuel cell system
JP4492824B2 (en) Fuel cell system
KR101719674B1 (en) Fuel cell system
WO2013128610A1 (en) Fuel cell system
WO2013128609A1 (en) Fuel cell system
KR101135654B1 (en) Fuel cell system and control method of the system
CN107123821B (en) Method for detecting abnormality of pressure sensor and fuel cell system
JP2006333602A (en) Fuel cell electric vehicle and control method thereof
JP2010244937A (en) Fuel cell system
WO2008099743A1 (en) Fuel cell system
JP5850136B2 (en) Fuel cell system
JP2008130442A (en) Fuel cell system
JP5769083B2 (en) Fuel cell system and fuel cell vehicle
JP5812423B2 (en) Fuel cell system
CN107452974B (en) Hydrogen deficiency judgment method and hydrogen deficiency judgment device
JP2013258038A (en) Fuel cell system and control method thereof
JP4831437B2 (en) Fuel cell system and control method thereof
JP2013243009A (en) Fuel battery system
JP2008130443A (en) Fuel cell system
JP2008140618A (en) Fuel cell system
JPWO2013128610A1 (en) Fuel cell system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001314.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12440787

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120080000964

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020097016308

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112008000096

Country of ref document: DE

Date of ref document: 20091119

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 08710884

Country of ref document: EP

Kind code of ref document: A1