WO2008095707A2 - Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne - Google Patents

Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne Download PDF

Info

Publication number
WO2008095707A2
WO2008095707A2 PCT/EP2008/000942 EP2008000942W WO2008095707A2 WO 2008095707 A2 WO2008095707 A2 WO 2008095707A2 EP 2008000942 W EP2008000942 W EP 2008000942W WO 2008095707 A2 WO2008095707 A2 WO 2008095707A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
linear
deflection
transducer
rotor shell
Prior art date
Application number
PCT/EP2008/000942
Other languages
German (de)
English (en)
Other versions
WO2008095707A3 (fr
Inventor
Marinus Jacobus Van Der Hoek
Original Assignee
Hottinger Baldwin Messtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hottinger Baldwin Messtechnik Gmbh filed Critical Hottinger Baldwin Messtechnik Gmbh
Priority to EP08715704A priority Critical patent/EP2217895A2/fr
Publication of WO2008095707A2 publication Critical patent/WO2008095707A2/fr
Publication of WO2008095707A3 publication Critical patent/WO2008095707A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • G01H1/006Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines of the rotor of turbo machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/83Testing, e.g. methods, components or tools therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a device for detecting vibrations or deflections of rotor blades of a wind turbine according to the preamble of patent claim 1.
  • the rotor blades are among the most heavily loaded components. These usually consist of a glass fiber reinforced plastic (GRP) and are designed as a hollow wing, which is clamped on one side at its root area.
  • GRP glass fiber reinforced plastic
  • Such rotor blades are about 30 to 80 m long and have a surface width of their aerodynamic shell of 2 to 3 m and are exposed in the operating state strong lateral wind loads. Due to the wind loads on the one hand clamped rotor blades caused strong bending moments within the aerodynamic shell which these rotor blades can bend preferably in the wind direction to about 20 cm or more.
  • such rotor blades are delivered by their rotation and centrifugal forces, sunlight, different temperature influences and ice accumulation, which they need to hold many years in continuous operation to allow economic operation of the wind turbine.
  • an accelerometer is mounted in the interior of the rotor blade in the first third of the root area on the inner shell, which is connected to a located in the rotor hub evaluation via a shielded
  • the structure-borne sound signals detected by the accelerometer are converted into their frequency spectrum and, by comparison with defined damage or reference spectra, possible rotor blade damage or overloads are determined therefrom. Since the actual transducer elements are mounted with their supply voltage and measurement lines within the rotor blade, this can lead to disturbances of the monitoring device or failure of the acceleration sensor at lightning overvoltages.
  • a wind turbine with a monitoring device for the rotor blades is known, which can determine damaging vibrations or strains in consequence to large or uneven forces.
  • a triaxial acceleration sensor is preferably mounted in each rotor blade on the inside of the rotor shell at a predetermined distance from the rotor base. This can be accelerations of the aerodynamic shell are displayed, resulting from leaf or edge vibrations.
  • the triaxial acceleration sensors are incorporated in a battery powered black box, which apparently transmits the vibration signals from the interior of the rotor blade via a radio link to the signal processing unit, which indicates possible overloads or damage by comparison with known signal patterns.
  • electrical Auf fiesysteme are exposed to lightning very strong overvoltages and shocks that difficult to prevent or can be filtered out and so easily cause interference with this monitoring device.
  • From DE 198 47 982 C2 is another device for detecting vibrations on the rotor blades of a
  • Wind turbine known.
  • a longitudinal bar is provided within the aerodynamic shell in the area near the rotor root.
  • This longitudinal bar is mounted in two spaced-apart holding blocks, which are attached directly to the inner rotor blade wall.
  • a distance sensor spaced apart by a defined air gap is arranged in front of the bar end.
  • this can be detected by the distance sensor as a result of a change in the defined air gap.
  • This device requires at least for the distance sensor, the laying of a fault-prone cable connection within the aerodynamic rotor shell.
  • the invention is therefore based on the object, a
  • the invention has the advantage that a deflectable linear thread of the deflection device, a larger rotor blade area can be monitored or tested from the rotor root to the rotor tip, although this no wired and fault-prone transducer elements must be secured within the aerodynamic rotor shell.
  • a deflection device with a linear thread has the advantage that it basically has only a small acceleratable mass, and therefore the measurement result of the detected rotor blade vibrations or deflections can not be adversely affected by the rotating and vibrated rotor blades due to an inherent acceleration.
  • the invention also has the advantage that the electrical or optical transducer elements are not arranged within the unshielded rotor blade, so that additional shielding or surge arrester can largely be dispensed with.
  • a particular embodiment of the invention with a linear yarn made of a high-strength fiber-reinforced plastic (GRP) has the advantage that this approximately the same temperature behavior Like the aerodynamic rotor blade shell, so that temperature compensation measures are not necessary because of different expansion.
  • GRP high-strength fiber-reinforced plastic
  • An additional special embodiment of the invention has a Wandle Researchit in which the deflection of the rotor blade is detected in two or all three spatial axes, which has the advantage that almost all possible operating conditions and damage to the rotor shell can be detected and evaluated.
  • Fig. 1 a schematic representation of a rotor blade with monitoring device arranged thereon
  • Fig. 2 is a schematic representation of one with a
  • a monitoring device which includes a deflection device 4 within the rotor blade 1 and a pickup unit 5 outside the aerodynamic shell of the rotor 1, wherein the deflection device 4 detects the lateral deflection of the rotor blade 1 and this on the pickup unit. 5 transmits, which converts them by means of a transducer element 7 in a rotor deflection proportional signal.
  • the rotor blade 1 shown schematically is part of a wind turbine, not shown, and forms with another offset by 180 ° wing the rotor, which is connected with its hub via a drive shaft with a generator.
  • the rotor blade 1 has, for example, a length of about 50 m and at its root a circular
  • the rotor blade 1 is hollow inside and has an aerodynamic rotor shell 2, which usually consists of a glass fiber reinforced plastic (GRP) and which is attached to a metal bearing ring 3.
  • GRP glass fiber reinforced plastic
  • Such a bearing ring 3 is shown in detail in Fig. 2 of the drawing.
  • the bearing ring 3 is rotatably mounted in a bearing housing 8 within a nacelle, not shown, to align the rotor blade 1 in the desired angles of attack to the wind direction. Since such a rotor blade 1 is exposed in continuous operation different wind loads, wind turbulence and a Eisbesatz, arise at its aerodynamic shell 2 low-frequency vibrations and deflections in all three spatial axes, which can lead to material damage or material overloads or are caused by them. In particular, abrupt deflections in the edge direction X or in the direction of the blade Y can cause a breakage of the rotor shell 2 or an impermissible wind load as the cause.
  • the device according to the invention is used.
  • a monitoring device which detects only one bending direction and preferably the rotor blade oscillations or -blatt tailorbiegonne in the Y direction and that in the wind direction transverse to the flat shell surface.
  • a deflection device 4 is mounted within the aerodynamic rotor shell 2 on the reinforced synthetic material, which consists essentially of a linear high-strength thread 9 made of a fiber-reinforced plastic.
  • This linear yarn 9 preferably has a diameter of 0.5 to 1.5 mm and is firmly connected within the rotor shell 2 in the longitudinal direction of a fastening unit 10 with one of its two ends.
  • the fastening unit 10 is approximately 15 m away from the bearing ring 3 in the blade interior mounted on a wall of the flat rotor shell side preferably in the middle. As a result, the fastening unit 10 is deflected in accordance with the deflection of the rotor blade 1 mostly in the wind direction with the rotor blade 1. The distance is dependent on the flexibility of the rotor blade and in practice is usually between 2 m and 15 m.
  • the synthetic fiber thread 9 is still arranged on a tension spring 11 so that it always remains linearly aligned with a given clamping force.
  • the fixing unit 10 is formed so that the linear thread 9 is spaced from the inner wall of the rotor shell 2 and indeed so far that it can not touch the rotor shell 2 at maximum lateral deflection.
  • a tension roller 12 is provided, which is locked against the spring force of the fastening unit 10 via a toothed ratchet, so that the thread 9 is always stretched with a predetermined clamping force linearly between the pickup unit 10 and the attachment point 16 on the rotor inner wall.
  • the clamping force of the circular tension roller 12 can be specified as a fastening element by a specific torque, with which the sensitivity of the device is adjustable.
  • a Spannkrafteinstellvorraum is provided, in which via a geared motor, the clamping force can be set automatically with a predetermined value and readjusted at certain intervals.
  • the latter may preferably be surrounded by a protective tube (not shown) between the pick-up unit 5 and the fastening unit 10, which is hingedly connected to the fastening unit 10 and / or the pick-up unit 5.
  • a protective tube (not shown) between the pick-up unit 5 and the fastening unit 10, which is hingedly connected to the fastening unit 10 and / or the pick-up unit 5.
  • the monitoring device forms a structural unit, which is given a thread length.
  • the protective tube of the linear yarn 9 can be biased, wherein the assembly preferably has a length of 1 to 5 m.
  • For larger monitoring sections and longer units are executable that can be provided with telescopic tubes for transport reasons.
  • transducer element 7 is provided, which is connected to the linear yarn 9.
  • This transducer element 7 may represent a sensitive force transducer, which is non-positively or positively connected via a transverse web 13 with the linear thread 9 spaced from the tension roller 12.
  • the force transducer 7 with its force introduction side 14 with the transverse web 13 and with its force receiving side 15 connected to the housing of the pickup unit 5.
  • the longitudinal distance between the tension roller 12 and the transverse web 13 is selected so that the force causes a sufficient signal resolution in a side deflection of the linear yarn 9, with a distance of about 5 to 10 cm from the second clamping end is sufficient.
  • the pickup unit 10 must be aligned such that the linear thread 9 has a straight alignment from its clamping end the reference point 17 to the attachment point 16, so that no force is introduced into the force transducer 7 without a rotor blade deflection.
  • the circular tension roller 12 may also be arranged on an eccentric mounting plate or the tension roller 12 may be formed in eccentric shape to its axis of rotation.
  • the force transducer could be calibrated in which he gives no or no defined output signal without deflection of the rotor blade 1.
  • a motor-driven adjustment of the eccentric mounting plate or the eccentric tension roller 12 such a calibration could also be carried out automatically and can be repeated at regular intervals as a new calibration. This would lead to a considerable simplification in the installation and calibration of the monitoring device.
  • transducer elements 7 and force transducer with optical strain gauges according to DE 10 2005 030 751 Al are used, which are much less sensitive to electromagnetic interference or against surges.
  • the deflection of the linear yarn 9 can also be detected directly by means of distance sensors, preferably by optical or inductive distance sensors.
  • the pickup unit 5 is preferably made of a shielded metal housing, which is attached as shown in Fig. 2 of the drawing on the inner wall of the bearing ring 3 outside the rotor shell 2 as a reference point 17.
  • the reference point 17 can, however, also be arranged elsewhere outside the aerodynamic rotor shell 2 of the rotor blade 1, but it must be ensured that the deflection of the linear thread 9 does not change even with a change in the angle of attack, such as e.g. on the axis of rotation.
  • the force transducer 7 is at a lateral
  • the pick-up unit 5 is still electrically connected to an evaluation device 6, in which the Auftechniksignale can be evaluated, displayed or signaled in any other way.
  • the evaluation device 6 is given corresponding reference or limit values, which are e.g. a maximum allowable lateral
  • Vibration or deflection values are compared, for example, can occur in a known rotor damage and require immediate repair or shutdown. Furthermore, such a device can also be used for test purposes, in which the bending strength of the rotor blade 1 or its fatigue phenomena are determined. In a specific embodiment of the device has also proved to be advantageous to provide a separate monitoring device in each of the two rotor blades 1, whereby damage can be derived by comparing the individual measured values of each blade 1 with the same rotor position. For this purpose, the acquired measured values can be stored in a program-controlled electronic
  • Evaluation or computing device 6 are detected and stored to compare these measurements with the other rotor readings in the same rotor position.
  • two deflecting devices 4 would have to be provided at least on the opposite flat rotor inner surface, whose deflections could be detected both in a common pickup unit 5 or two separate pickup units 5 arranged opposite one another.
  • a different deflection in sheet direction Y would mean a torsion of the rotor blade 1 about one of its longitudinal axes. Therefore, then with an appropriate
  • Fig. 2 of the drawing is in particular a
  • the pickup unit 5 preferably two or three force transducers 7 are provided, which detect the thread tension not only in a deflection in the wing or wind direction (Y), but also in the direction of the edges (X) and / or in wing longitudinal direction (Z).
  • the force transducers 7 are preferably arranged in two or all three spatial axes (X, Y, Z direction) offset by 90 ° and connected to the linear thread 9 in such a way that they detect their tension force components separately.
  • edge deflection X
  • Y Y
  • Z Deflections in the edge direction X, which require defrosting and can be displayed separately as edge vibrations or edge deflections ⁇ X, also occur with strong ice lapping on the rotor blades 2.

Abstract

La présente invention concerne un dispositif permettant de déterminer des oscillations ou des flexions d'une pale de rotor (1) d'une éolienne. Ce dispositif comprend un dispositif de déviation (4) qui renferme un élément linéaire (9), lequel élément linéaire (9) est placé parallèlement à la paroi intérieure de la coque de rotor aérodynamique (2) dans la direction longitudinale de la pale (Z) et est appliqué sur la paroi intérieure de la coque de rotor (2) en un point de fixation (16) qui est éloigné de la région d'emplanture. Sur la face opposée, l'élément linéaire (9) est relié à une unité réceptrice (5) qui détecte la déviation latérale de l'élément linéaire (9) et qui la signale au moins en cas de dépassement d'une flexion prédéfinie de la coque de rotor (2) ou qui continue à l'évaluer. Cette invention est caractérisée en ce que l'élément linéaire (9) est conçu sous forme de fil linéaire (9) tendu entre l'unité réceptrice (5) et le point de fixation (16). Selon cette invention, l'unité réceptrice (5) est fixée en un point de référence (17) qui n'est pas soumis à une flexion, à l'extérieur de la coque de rotor aérodynamique (2).
PCT/EP2008/000942 2007-02-08 2008-02-07 Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne WO2008095707A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08715704A EP2217895A2 (fr) 2007-02-08 2008-02-07 Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007007047.2 2007-02-08
DE102007007047A DE102007007047A1 (de) 2007-02-08 2007-02-08 Vorrichtung zur Erfassung von Schwingungen oder Durchbiegungen von Rotorblättern einer Windkraftanlage

Publications (2)

Publication Number Publication Date
WO2008095707A2 true WO2008095707A2 (fr) 2008-08-14
WO2008095707A3 WO2008095707A3 (fr) 2008-10-30

Family

ID=39592726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/000942 WO2008095707A2 (fr) 2007-02-08 2008-02-07 Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne

Country Status (3)

Country Link
EP (1) EP2217895A2 (fr)
DE (1) DE102007007047A1 (fr)
WO (1) WO2008095707A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007004A3 (fr) * 2010-07-14 2012-05-10 Vestas Wind Systems A/S Procédé et système de détection de givrage pour pales d'éoliennes
US9032807B2 (en) 2010-07-14 2015-05-19 Vestas Wind Systems A/S Method and system for monitoring bending strains of wind turbine blades
CN106837709A (zh) * 2017-04-20 2017-06-13 北京金风科创风电设备有限公司 风力发电机组叶片的监测方法和监测系统
EP3990777B1 (fr) 2019-06-27 2023-06-07 Vestas Wind Systems A/S Commande de puissance de sortie d'une éolienne au dessous de la vitesse nominale du vent
CN117129072A (zh) * 2023-10-25 2023-11-28 创新精密(苏州)有限公司 一种转轴振动检测装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922448B2 (en) * 2008-09-19 2011-04-12 General Electric Company Differential vibration control for wind turbines
GB2465790A (en) * 2008-11-28 2010-06-02 Vestas Wind Sys As System to measure load on a wind turbine blade
DE102010007500A1 (de) * 2010-02-09 2011-09-29 Position Control Messtechnik Gmbh Verfahren zur Bestimmung der Abweichung der Lage eines turmartigen Bauwerks von dessen Solllage
CN102445339A (zh) * 2010-09-30 2012-05-09 通用电气公司 用于检测和控制转子叶片偏转的系统及方法
DE102011083747B4 (de) * 2011-09-29 2016-07-21 Aktiebolaget Skf Vorrichtung und Verfahren zum Erfassen eines Abstandswertes
DE102016112633A1 (de) 2016-07-11 2018-01-11 Wobben Properties Gmbh Torsionswinkelmessung eines Rotorblatts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29720741U1 (de) * 1997-11-22 1998-05-28 Aerodyn Eng Gmbh Vorrichtung zur Erfassung von Schwingungen der Rotorblätter einer Windkraftanlage
WO1999057435A1 (fr) * 1998-04-30 1999-11-11 Lm Glasfiber A/S Eolienne avec indicateur de contraintes
DE20021970U1 (de) * 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umw Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
US20060000269A1 (en) * 2004-06-30 2006-01-05 Lemieux David L Methods and apparatus for measuring wind turbine blade deflection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29715248U1 (de) 1997-08-25 1998-12-24 Inst Solare Energieversorgungstechnik Iset Windenergieanlage
DE102005017054B4 (de) 2004-07-28 2012-01-05 Igus - Innovative Technische Systeme Gmbh Verfahren und Vorrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
DE102005030751A1 (de) 2005-06-29 2007-01-11 Hottinger Baldwin Messtechnik Gmbh Optischer Dehnungsmessstreifen
DE102006002709B4 (de) * 2006-01-19 2008-01-17 Siemens Ag Rotorblatt einer Windenergieanlage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29720741U1 (de) * 1997-11-22 1998-05-28 Aerodyn Eng Gmbh Vorrichtung zur Erfassung von Schwingungen der Rotorblätter einer Windkraftanlage
WO1999057435A1 (fr) * 1998-04-30 1999-11-11 Lm Glasfiber A/S Eolienne avec indicateur de contraintes
DE20021970U1 (de) * 2000-12-30 2001-04-05 Igus Ingenieurgemeinschaft Umw Einrichtung zur Überwachung des Zustandes von Rotorblättern an Windkraftanlagen
US20060000269A1 (en) * 2004-06-30 2006-01-05 Lemieux David L Methods and apparatus for measuring wind turbine blade deflection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012007004A3 (fr) * 2010-07-14 2012-05-10 Vestas Wind Systems A/S Procédé et système de détection de givrage pour pales d'éoliennes
US20130177417A1 (en) * 2010-07-14 2013-07-11 Ib Svend Olesen Ice detection method and system for wind turbine blades
US9032807B2 (en) 2010-07-14 2015-05-19 Vestas Wind Systems A/S Method and system for monitoring bending strains of wind turbine blades
US9523354B2 (en) 2010-07-14 2016-12-20 Vestas Wind Systems A/S Ice detection method and system for wind turbine blades
CN106837709A (zh) * 2017-04-20 2017-06-13 北京金风科创风电设备有限公司 风力发电机组叶片的监测方法和监测系统
EP3990777B1 (fr) 2019-06-27 2023-06-07 Vestas Wind Systems A/S Commande de puissance de sortie d'une éolienne au dessous de la vitesse nominale du vent
CN117129072A (zh) * 2023-10-25 2023-11-28 创新精密(苏州)有限公司 一种转轴振动检测装置
CN117129072B (zh) * 2023-10-25 2024-02-02 创新精密(苏州)有限公司 一种转轴振动检测装置

Also Published As

Publication number Publication date
DE102007007047A1 (de) 2008-08-14
EP2217895A2 (fr) 2010-08-18
WO2008095707A3 (fr) 2008-10-30

Similar Documents

Publication Publication Date Title
WO2008095707A2 (fr) Dispositif permettant de détecter des oscillations ou des flexions de pales de rotor d'une éolienne
DE102005016524B4 (de) Verfahren und Vorrichtung zur Erkennung von Rotorblatteis
EP1994280B1 (fr) Système d'avertissement de risque de collision destiné à une éolienne
EP2021890A1 (fr) Procede de surveillance des contraintes de pales de rotor d'eoliennes
EP2898216A1 (fr) Procédé et dispositif permettant de surveiller les états de fonctionnement de pales de rotor
DE10219664A1 (de) Windenergieanlage, Regelanordnung für eine Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
EP0570066A1 (fr) Transducteur de contrainte pour mesurer le couple dans un arbre cylindrique
EP3513069A1 (fr) Procédé et dispositif pour déterminer des sollicitations exercées sur un mât d'éolienne
EP2547905B1 (fr) Procede pour faire fonctionner une eolienne
DE112018004704B4 (de) Sensoranordnung zur Erfassung von Biegemomenten in einem länglichen Bauteil, längliches Bauteil, Sensorsystem und Windenergieanlage
DE19847982C2 (de) Vorrichtung zur Erfassung von Schwingungen der Rotorblätter einer Windkraftanlage
EP3482182B1 (fr) Mesure de l'angle de torsion d'une pale de rotor
WO2019229172A1 (fr) Arrangement de capteur pour un aérogénérateur
DE102006002709B4 (de) Rotorblatt einer Windenergieanlage
EP2870354B1 (fr) Connexion de composants contrôlée, éolienne, procédé pour contrôler une connexion de composants pour détecter une séparation non souhaitée des composants une fois la connexion réalisée
DE102009036517A1 (de) Windenergieanlage mit Einrichtung zur Lastminimierung
EP2802773B1 (fr) Turbine éolienne munie d'un anémomètre de mesure a distance
EP2473818B1 (fr) Dispositif pour mesurer et/ou enregistrer des distances et des variations de distance et dispositif pour mesurer et/ou enregistrer des contraintes mécaniques
DE102011000054A1 (de) Torsionssensor
DE102011083747B4 (de) Vorrichtung und Verfahren zum Erfassen eines Abstandswertes
DE102017006370B4 (de) Drehmomentmessverfahren für einen Doppelflansch-Drehmomentaufnehmer
EP2096226B1 (fr) Marquise dotée d'un agencement de capteur destiné à la détermination de charges éoliennes et hydrauliques
EP4325048A1 (fr) Procédé mis en oeuvre par ordinateur et dispositif d'ajustement d'un système de mesure de charge de pale d'une pale de rotor d'une éolienne, éolienne pourvue d'au moins une pale de rotor doté d'un capteur de déformation et support de stockage lisible par ordinateur
EP3492735B1 (fr) Procédé et dispositif de détermination d'une force statique d'un rotor d'une éolienne
DE102013007744A1 (de) Windkraftanlage und Verfahren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08715704

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008715704

Country of ref document: EP

122 Ep: pct application non-entry in european phase

Ref document number: 08715704

Country of ref document: EP

Kind code of ref document: A2