WO2008090242A1 - Non-invasive device for determining the temperature and ice content of frozen foods - Google Patents

Non-invasive device for determining the temperature and ice content of frozen foods Download PDF

Info

Publication number
WO2008090242A1
WO2008090242A1 PCT/ES2007/070208 ES2007070208W WO2008090242A1 WO 2008090242 A1 WO2008090242 A1 WO 2008090242A1 ES 2007070208 W ES2007070208 W ES 2007070208W WO 2008090242 A1 WO2008090242 A1 WO 2008090242A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ultrasound
ice content
determining
frozen foods
Prior art date
Application number
PCT/ES2007/070208
Other languages
Spanish (es)
French (fr)
Inventor
Pedro Dimas SANZ MARTÍNEZ
Cristina APARICIO PEÑA
Antonio MOLINA GARCÍA
Laura María OTERO GARCÍA
Bérengère GUIGNON
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2008090242A1 publication Critical patent/WO2008090242A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02466Biological material, e.g. blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0251Solidification, icing, curing composites, polymerisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02881Temperature

Definitions

  • Freezing consists in the reduction of the temperature of a system with a variable aqueous content, so that part of the water changes state, solidifying.
  • the main effect that favors conservation is the effective reduction of the amount of free water when part is transformed into ice.
  • Free water is necessary for microbial growth and is involved in chemical reactions between the different components of the system. Various micro-organisms cannot develop below certain water activity values.
  • chemical reactions and a series of physical processes that also require mobility depend on the amount of free water and its speed decreases with this amount.
  • the reduction of the temperature also acts against the microbial activity as well as slows the chemical reactions.
  • the fraction of water that has been converted to ice can be determined by various analytical procedures (for example, DR Heldman, 1973, “Predicting the Relationship between Unfrozen Water Fraction and Temperature during Food Freezing Using Freezing Point Depression", ASAE Paper No. 72-890, and Chen, CS., 1985, “Thermodynamic Analysis of the Freezing and Thawing of Foods: Ice Conten ⁇ and Mollier Diagram ", Journal of Food Science, 50, 1163-1166) or experimental, being the most accurate measurement by differential scanning calorimetry.
  • This method is highly invasive, since it requires that a small fraction of the product is taken and packaged to be introduced into the instrument, except in those cases where the freezing conditions can be reproduced correctly in the calorimeter, the result may be different from reality, since it is difficult to fragment and package the sample without altering its ice content In any case, the process is slow, invasive and not very adaptable to situations of industrial interest.
  • Freezing is carried out in most cases by inducing a heat flow to the outside of the system, through the wall or walls that separate it from the cooling medium.
  • the temperature during freezing is not really constant, since the limited thermal conductivity of many systems means that the temperature in the center or the furthest point of the cold wall is at occasions very different from that of this one.
  • An adequate monitoring of the progress of the amount of ice formed cannot be obtained with precision only from the heat exchange temperature, but a complete map of the temperature distribution in the product is required.
  • the procedure described below allows the continuous monitoring of the ice content and the temperature during freezing / defrosting irrespective of the temperature at which they are actually performed.
  • the final temperature of the freezing process and that at which frozen products are stored is usually usually set between -18 and -2O 0 C.
  • the temperature is not always constant, due to fluctuations in the freezing equipment (compressor cycles, defrosts) and incidents such as opening doors, changing containers, entry and exit of product batches, etc.
  • knowledge of the ice content and its temperature may be of interest to control the final quality and to predict the time that a given product can continue to be stored in that state.
  • Recrystallization is the growth of larger ice crystals at the expense of smaller ones and occurs in all frozen systems that retain a fraction of water in a liquid state, as this mediates in the process. Recrystallization is the main limiting process of the shelf life of frozen systems (as can be seen in MN Martino and NE Zaritzky, 1989, "Ice Recrystallization in a Model System and in Frozen Muscle Tissue", Cryobiology, 26, 138-148 ). This speed, as indicated, is a function of the amount of free water, and therefore of the ice, present in the system. Therefore, a monitoring of this amount by the procedure described below may estimate the speed at which the recrystallization process will take place and, therefore, help the prediction of the shelf life of frozen products.
  • Non-classical processes of freezing are those carried out at high pressure (PD Sanz, 2005, “Freezing and Thawing under Pressure", in “Novel Food Processing Technologies", edited by GV Barbosa-Cánovas, MS Tapia, and MP Cano, pgs. 233-260, Marcel Dekker CRC Press).
  • the freezing temperature of the water decreases considerably with increasing pressure, so that this variation can be used to carry out a series of innovative processes with energy advantages and maintenance of the quality of the products.
  • the information that can be reached on a system that is being subjected to a freezing or thawing process in a vessel with thick steel walls is limited.
  • this patent for the determination of the temperature and the ice content of a food, allow its operation in non-equilibrium conditions, regardless of the existence of all kinds of flows, changes and inhomogeneities in the system. For example, during freezing or thawing, where the percentage of ice changes over time and where the distribution of temperatures between surface and center of the product can be very irregular. Thus, this patent allows the monitoring of these processes.
  • This invention is characterized by allowing to determine the temperature and the ice content of a frozen food whose nature is known and its initial freezing temperature.
  • the determination is made by measuring the speed of ultrasound propagation through a portion of the food of known thickness, which may or may not be packaged, or inside containers of various types, among other possibilities.
  • the measurement of the speed of ultrasound propagation is carried out by means of the emission of a signal of characteristics between those considered generally as low power ultrasound, and its subsequent reception, the speed being calculated as the ratio of the distance traveled by the ultrasound (the thickness of the sample) divided by the time elapsed between transmission and reception of the signal (flight time).
  • Both the emitter and the receiver are formed by transducers or piezoelectric.
  • an ultrasonic reflection system is located.
  • the emission is carried out by means of a pulse generating equipment and the reception by means of an oscilloscope or equivalent device.
  • the equipment that generates and displays the received signal is equipment commonly available in the market.
  • the measurements must be carried out in such a way that the emission signals do not overlap or that the signal is not interfered with and the reception of the signals, in the case of the use of reflectors
  • the emission frequency and therefore the nature of the piezoelectric or Transducers must be included among those corresponding to what is generally considered low power ultrasound.
  • the frequency range used is 1 to 10 MHz, with the best results being frequencies between 1 and 3 MHz.
  • Figure 1 Diagram of the device (1) food, (2) Thermostatic bath, (3) Oscilloscope, (4) PC, (5) Pulse generator (6) Magnetic stirrer)
  • This invention consists of a device created from an experimental development ( Figure 1) and a computer program by means of which the temperature and the ice content of a food can be determined from the measurement of the ultrasonic propagation speed within it.
  • the requirements to determine the ice content of a food are: that two piezoelectric or transducers are arranged (or in an alternative experimental design, a piezoelectric or transducer and an ultrasonic reflector) with their faces parallel and facing both ends of a fraction shows.
  • the food must have a minimum thickness of 1 mm and a maximum of 500 mm, preferably between 5 mm and 200 mm, losing precision in the measure if these limits are exceeded.
  • the thickness should be constant or of known variation.
  • the piezoelectric, transducers or reflectors should be in intimate contact with the food a or separated by materials that little attenuate the intensity of the ultrasounds, such as quartz, glass or metals, being soft materials such as rubber or rubber being inadvisable because they hinder the diffusion of the waves as well as materials with discontinuities.
  • Foods whose temperature and ice content can be determined in this way include fruit, vegetables, fish or meat that have a freezing temperature greater than -2.4 0 C. They can be packaged or not, by systems that do not contribute significantly to Ia ultrasound attenuation. Thus, thick wraps of elastic plastic materials, such as rubber or rubber, will be inadvisable. It is also not convenient for the system to contain air or bubbles. They may be contained between rigid walls of metals, glass or glass.
  • the process can be carried out in a variety of installations, the non-exhaustive list being: experimental and industrial freezing facilities, inside chambers, trucks, warehouses and other enclosures for frozen storage of food; in defrosting facilities, etc.
  • the freezing point of the food is determined by thermal measurements.
  • the measuring device determines the flight time by means of the pulse transmission technique, placing the parallel emitters-receivers facing both sides of the product section considered.
  • the distance between both elements is between 1 mm and 500 mm (optimally 5 mm and 200 mm) and measured accurately.
  • This section of the product may or may not be contained in a container or a rigid container, or it may be generated when the emitter-receivers are introduced into holes such that the desired portion is included between them.
  • These emitters-receivers are two piezoelectric or commercially available transducers, suitable for emitting ultrasound frequencies between those generally considered low power ultrasound.
  • it is possible to work with the pulse-echo technique where one of the transducers or piezoelectric can be replaced by an ultrasound reflector, a rigid surface, flat and parallel to the other transducer or piezoelectric.
  • Ultrasonic pulses are emitted, of adequate duration and intensity for their correct reception, by means of the pulse generator of the device, connected to one of the transducers or piezoelectric.
  • This device determines the interval of time elapsed between emission and reception (flight time), the distance between them and the speed of ultrasound propagation.
  • the device is complemented by a computer program that obtains the temperature and the percentage of ice existing in the food from the speed of sound. As inputs, it only requires parameterizing the type of food (fruit-vegetable or meat-fish). However, if its composition is known, that is, its free water content and its bound water content, the accuracy of the program is accentuated. If the data on its bound water content is not available, it can be substituted, introducing its protein and carbohydrate content.
  • That the procedure is non-invasive, and can be adapted to all or most of the imaginable situations.
  • That the procedure is independent, under the conditions described, of the knowledge of the temperature of the product. That the procedure is independent of the fact that the distribution of the product temperature is known.
  • the procedure is independent of both internal and external movements suffered by the product.
  • the product is defrosting or is in a production or storage chain.
  • That the procedure is simple, fast and can be performed continuously. That the procedure can be carried out with minimal intrusion at the measurement sites.
  • That the procedure can be adapted to a wide variety of environments. That the data of temperature or ice content, thus obtained, can be used to obtain a better indication of the state of quality or deterioration of the frozen food, which would be achieved from the mere measurement of the external temperature of the product .
  • a first test is carried out to obtain the relationship between the speed of ultrasound propagation through a slice of frozen hake at different temperatures and its ice content under the same conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

The invention relates to a non-invasive device for determining the temperature and ice content of frozen foods using ultrasound, comprising a 1-10 MHz frequency receiver/reflector and transmitter. The method uses a program to perform calculations as a function of the thickness of the sample and the flight time of the wave which is determined using conventional methods, with the type of material (fruit - vegetable or meat - fish) and the initial freezing point thereof being known. The more specific the aforementioned parameters, the more precise the final measurement.

Description

TÍTULO TITLE
DISPOSITIVO NO INVASIVO PARA DETERMINAR LA TEMPERATURA Y ELNON-INVASIVE DEVICE FOR DETERMINING TEMPERATURE AND
CONTENIDO EN HIELO DE UN ALIMENTO CONGELADO.ICE CONTENT OF A FROZEN FOOD.
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
Alimentación humana, industria de Ia congelación, almacenamiento en estado congelado.Human food, freezing industry, frozen storage.
ESTADO DE LA TÉCNICA La congelación y el subsiguiente mantenimiento en estado congelado constituyen unos de los principales recursos empleados en Ia actualidad para Ia conservación de alimentos. El volumen de negocio implicado en esta actividad, comprendiendo las industrias relacionadas de Ia producción de equipo para Ia congelación, su mantenimiento y su control, es considerable.STATE OF THE TECHNIQUE Freezing and subsequent maintenance in the frozen state constitute one of the main resources currently used for food preservation. The volume of business involved in this activity, including the related industries of the production of equipment for freezing, maintenance and control, is considerable.
La congelación consiste en Ia reducción de Ia temperatura de un sistema con un contenido acuoso variable, de manera que parte del agua cambia de estado, solidificando. El efecto principal que favorece Ia conservación es Ia reducción efectiva de Ia cantidad de agua libre al transformarse parte en hielo. El agua libre es necesaria para el crecimiento microbiano y está involucrada en las reacciones químicas entre los distintos componentes del sistema. Diversos micro-organismos no pueden desarrollarse por debajo de determinados valores de actividad de agua. Por su parte las reacciones químicas y una serie de procesos físicos que requieren también movilidad dependen de Ia cantidad de agua libre y su velocidad disminuye con esta cantidad. Adicionalmente, Ia reducción de Ia temperatura también actúa en contra de Ia actividad microbiana así como ralentiza las reacciones químicas.Freezing consists in the reduction of the temperature of a system with a variable aqueous content, so that part of the water changes state, solidifying. The main effect that favors conservation is the effective reduction of the amount of free water when part is transformed into ice. Free water is necessary for microbial growth and is involved in chemical reactions between the different components of the system. Various micro-organisms cannot develop below certain water activity values. On the other hand, chemical reactions and a series of physical processes that also require mobility depend on the amount of free water and its speed decreases with this amount. Additionally, the reduction of the temperature also acts against the microbial activity as well as slows the chemical reactions.
La fracción de agua que se ha convertido en hielo puede ser determinada por diversos procedimientos, analíticos (por ejemplo, D. R. Heldman, 1973, "Predicting the Relationship between Unfrozen Water Fraction and Temperature during Food Freezing Using Freezing Point Depression", ASAE Paper No. 72- 890, y Chen, CS. , 1985, "Thermodynamic Analysis of the Freezing and Thawing of Foods: Ice Contení and Mollier Diagram", Journal of Food Science, 50, 1163-1166) o experimentales, siendo el más exacto Ia medida por calorimetría diferencial de barrido. Este método es altamente invasivo, pues requiere que una fracción pequeña del producto sea tomada y envasada para ser introducida en el instrumento. Salvo en aquellos casos en que las condiciones de congelación puedan ser reproducidas correctamente en el calorímetro, el resultado puede ser diferente de Ia realidad, ya que es difícil fragmentar y envasar Ia muestra sin alterar su contenido en hielo. En cualquier caso, el proceso es lento, invasivo y poco adaptable a situaciones de interés industrial.The fraction of water that has been converted to ice can be determined by various analytical procedures (for example, DR Heldman, 1973, "Predicting the Relationship between Unfrozen Water Fraction and Temperature during Food Freezing Using Freezing Point Depression", ASAE Paper No. 72-890, and Chen, CS., 1985, "Thermodynamic Analysis of the Freezing and Thawing of Foods: Ice Contení and Mollier Diagram ", Journal of Food Science, 50, 1163-1166) or experimental, being the most accurate measurement by differential scanning calorimetry. This method is highly invasive, since it requires that a small fraction of the product is taken and packaged to be introduced into the instrument, except in those cases where the freezing conditions can be reproduced correctly in the calorimeter, the result may be different from reality, since it is difficult to fragment and package the sample without altering its ice content In any case, the process is slow, invasive and not very adaptable to situations of industrial interest.
En todos los sistemas acuosos con componentes en disolución (Io que comprende todos los alimentos) el contenido en hielo varía en dependencia con Ia temperatura. La concentración de solutos, según una dependencia ampliamente estudiada (como, por ejemplo, se muestra en las dos citas anteriores) determina Ia temperatura a Ia que comienza Ia congelación. Sin embargo, el hielo formado expulsa de su seno las moléculas de soluto que distorsionarían Ia red cristalina. De este modo, a medida que procede Ia formación de hielo tiene lugar un proceso de crioconcentración, aumentando Ia cantidad de solutos contenidos en Ia fracción de agua aún en estado líquido. Esto causa una disminución de Ia temperatura del equlibrio sólido-líquido. Así, distintos sistemas presentan un contenido en hielo diferente en dependencia de Ia temperatura a Ia que son mantenidos. CA. Miles, 1974, en su trabajo "The Ice Contení of Frozen Meat and its Measurement Using Ultrasonic Waves", en "Meat Freezing: Why and How", editado por CL. Cutting, pgs. 15.1-15.7, Langford, Bristol, Gran Bretaña apunta a que se podría estimar Ia cantidad de hielo utilizando ultrasonidos en una muestra de carne. La presente invención aplica a cualquier alimento que tenga una temperatura inicial de congelación mayor que -2.40C (que son prácticamente todos los de interés). Además él necesita introducir; el valor de Ia velocidad del sonido a O0C en Ia muestra y Ia fracción de agua de Ia muestra, mientras que Ia que ahora se propone, estos valores iniciales no son necesarios. Los autores H. Sigfusson, G. R. Ziegler and J. N. Coupland, 2004, en Ia publicación "Ultrasonic monitoring of food freezing" en Journal of Food Engineering 62, pags 263-269) miden el tiempo de vuelo de los ultrasonidos para conocer cuando el alimento está totalmente congelado. Detectan Ia capa de hielo que se ha formado. Sin embargo, en Ia presente invención se consigue conocer el porcentaje de hielo y Ia temperatura del alimento en cualquier instante. Por otra parte, no toda el agua contenida en un sistema es congelable. Una parte puede estar unida de maneras diversas a componentes tales como proteínas, hidratos de carbono, etc. Esta fracción de agua no congelable no siempre es conocida o estimable de antemano, y puede ser considerable, de manera que los cálculos realizados de forma teórica entre Ia temperatura del sistema y su contenido en hielo pueden ser erróneos. Por ejemplo, en las dos citas bibliográficas antes mencionadas, no se tiene en cuenta esa fracción. El procedimiento descrito a continuación permite Ia determinación del contenido en hielo sin necesidad de disponer del conocimiento previo de estas fracciones de agua, y en determinados casos, también contribuir a su cálculo.In all aqueous systems with components in solution (which includes all foods) the ice content varies depending on the temperature. The concentration of solutes, according to a widely studied dependence (as, for example, shown in the two previous quotes) determines the temperature at which the freezing begins. However, the formed ice expels from its bosom the solute molecules that would distort the crystalline network. Thus, as the ice formation proceeds, a cryoconcentration process takes place, increasing the amount of solutes contained in the fraction of water still in a liquid state. This causes a decrease in the temperature of the solid-liquid equlibrio. Thus, different systems have a different ice content depending on the temperature at which they are maintained. AC. Miles, 1974, in his work "The Ice Contained of Frozen Meat and its Measurement Using Ultrasonic Waves", in "Meat Freezing: Why and How", edited by CL. Cutting, pgs. 15.1-15.7, Langford, Bristol, Great Britain suggests that the amount of ice could be estimated using ultrasound in a meat sample. The present invention applies to any food that has an initial freezing temperature greater than -2.4 0 C (which are practically all of interest). In addition he needs to introduce; the value of the speed of sound at 0 ° C in the sample and the fraction of water of the sample, while the one that is now proposed, these initial values are not necessary. The authors H. Sigfusson, GR Ziegler and JN Coupland, 2004, in the publication "Ultrasonic monitoring of food freezing" in Journal of Food Engineering 62, pages 263-269) they measure the flight time of the ultrasounds to know when the food is completely frozen. They detect the ice sheet that has formed. However, in the present invention it is possible to know the percentage of ice and the temperature of the food at any time. On the other hand, not all the water contained in a system is frozen. A part may be linked in various ways to components such as proteins, carbohydrates, etc. This fraction of non-freezing water is not always known or estimated beforehand, and it can be considerable, so that the calculations made theoretically between the temperature of the system and its ice content can be wrong. For example, in the two aforementioned bibliographic citations, that fraction is not taken into account. The procedure described below allows the determination of the ice content without having prior knowledge of these water fractions, and in certain cases, also contributing to its calculation.
La congelación se realiza en Ia mayor parte de los casos mediante Ia inducción de un flujo de calor hacia el exterior del sistema, a través de Ia o las paredes que Io separan del medio de enfriamiento. En productos de geometría compleja, en movimiento, o de determinado espesor, Ia temperatura durante Ia congelación no es realmente constante, pues Ia limitada conductividad térmica de muchos sistemas hace que Ia temperatura en el centro o el punto más alejado de Ia pared fría sea en ocasiones muy diferente de Ia de ésta. Una adecuada monitorización del progreso de Ia cantidad de hielo formado no puede obtenerse con precisión a partir sólo de Ia temperatura de intercambio de calor, sino que se requiere de un mapa completo de Ia distribución de temperaturas en el producto. Sin embargo, el procedimiento descrito a continuación, permite Ia monitorización continua del contenido de hielo y de Ia temperatura durante Ia congelación/descongelación con independencia de Ia temperatura a Ia que éstas se realizan efectivamente.Freezing is carried out in most cases by inducing a heat flow to the outside of the system, through the wall or walls that separate it from the cooling medium. In products of complex geometry, in motion, or of a certain thickness, the temperature during freezing is not really constant, since the limited thermal conductivity of many systems means that the temperature in the center or the furthest point of the cold wall is at occasions very different from that of this one. An adequate monitoring of the progress of the amount of ice formed cannot be obtained with precision only from the heat exchange temperature, but a complete map of the temperature distribution in the product is required. However, the procedure described below allows the continuous monitoring of the ice content and the temperature during freezing / defrosting irrespective of the temperature at which they are actually performed.
En alimentos, Ia temperatura final del proceso de congelación y aquella a Ia que se almacenan los productos congelados suele ser fijada generalmente entre -18 y -2O0C. Durante dicho almacenamiento, Ia temperatura no siempre es constante, debido a las fluctuaciones del equipo de congelación (ciclos de compresores, desescarches) y a incidencias tales como apertura de puertas, cambio de contenedores, entrada y salida de lotes de producto, etc. En estas condiciones variables, el conocimiento del contenido en hielo y de su temperatura puede ser de interés para controlar Ia calidad final y poder predecir el tiempo que un determinado producto puede continuar almacenado en ese estado.In food, the final temperature of the freezing process and that at which frozen products are stored is usually usually set between -18 and -2O 0 C. During said storage, the temperature is not always constant, due to fluctuations in the freezing equipment (compressor cycles, defrosts) and incidents such as opening doors, changing containers, entry and exit of product batches, etc. In these variable conditions, knowledge of the ice content and its temperature may be of interest to control the final quality and to predict the time that a given product can continue to be stored in that state.
La recristalización es el crecimiento de los cristales de hielo mayores a costa de los más pequeños y ocurre en todos los sistemas congelados que conservan una fracción de agua en estado líquido, pues ésta media en el proceso. La recristalización es el principal proceso limitante de Ia vida útil de los sistemas congelados (como se puede observar en M. N. Martino y N. E. Zaritzky, 1989, "Ice Recrystallization in a Model System and in Frozen Muscle Tissue", Cryobiology, 26, 138-148). Esta velocidad, como se indica, es función de Ia cantidad de agua libre, y por tanto, del hielo, presente en el sistema. Por consiguiente, una monitorización de esta cantidad mediante el procedimiento descrito a continuación podrá estimar Ia velocidad a Ia cual el proceso de recristalización tendrá lugar y, por tanto, ayudar a Ia predicción de Ia vida útil de los productos congelados.Recrystallization is the growth of larger ice crystals at the expense of smaller ones and occurs in all frozen systems that retain a fraction of water in a liquid state, as this mediates in the process. Recrystallization is the main limiting process of the shelf life of frozen systems (as can be seen in MN Martino and NE Zaritzky, 1989, "Ice Recrystallization in a Model System and in Frozen Muscle Tissue", Cryobiology, 26, 138-148 ). This speed, as indicated, is a function of the amount of free water, and therefore of the ice, present in the system. Therefore, a monitoring of this amount by the procedure described below may estimate the speed at which the recrystallization process will take place and, therefore, help the prediction of the shelf life of frozen products.
Las fluctuaciones de Ia temperatura de un contenedor de productos congelados se reflejan en el contenido en hielo de los mismos. Estas fluctuaciones aceleran el proceso de recristalización y Ia salida de agua del producto, por Io que son indeseables. Pero Ia variación de Ia temperatura exterior tiene un reflejo variable en Ia temperatura de diversas regiones del producto. En especial en aquellos envasados en porciones de gran masa y poca superficie, el reflejo de estas fluctuaciones en Ia temperatura central de Ia porción dependerá en gran medida de Ia conductividad térmica del producto, función a su vez del contenido en hielo del mismo. Por consiguiente, Ia medida directa del contenido en hielo y de su temperatura, como permite el procedimiento descrito a continuación, puede constituir un dato más fiable y conveniente que Ia mera fluctuación de Ia temperatura externa para poder determinar el grado de alteración que el producto está sufriendo en realidad.The fluctuations in the temperature of a container of frozen products are reflected in their ice content. These fluctuations accelerate the recrystallization process and the water output of the product, so they are undesirable. But the variation of the outside temperature has a variable reflection in the temperature of various regions of the product. Especially in those packaged in portions of large mass and small surface area, the reflection of these fluctuations in the central temperature of the portion will depend largely on the thermal conductivity of the product, which in turn depends on the ice content thereof. Therefore, the direct measurement of the ice content and its temperature, as allowed by the procedure described below, may be more reliable and convenient than mere external temperature fluctuation to determine the degree of alteration that the product is actually suffering.
El almacenamiento en estado congelado implica una posterior descongelación del producto. Dependiendo del tipo y usos de los mismos, los procesos deben ser conducidos en diversas condiciones de velocidad, para mantener las propiedades y calidad del producto. Una forma adecuada de monitorizar este proceso, es mediante el empleo de esta patente, Ia cual permite obtener un fiable promedio de Ia temperatura en el mismo alimento.Storage in the frozen state implies a subsequent defrosting of the product. Depending on the type and uses of the same, the processes must be conducted in various speed conditions, to maintain the properties and quality of the product. A suitable way to monitor this process is through the use of this patent, which allows to obtain a reliable average of the temperature in the same food.
Entre los procesos no clásicos de congelación (y descongelación) se hallan los que se realizan a alta presión (P. D. Sanz, 2005, "Freezing and Thawing under Pressure", en "Novel Food Processing Technologies", editado por G.V. Barbosa-Cánovas, M.S. Tapia, y M. P. Cano, pgs. 233-260, Marcel Dekker CRC Press). La temperatura de congelación del agua disminuye considerablemente al aumentar Ia presión, de manera que esta variación puede ser utilizada para realizar una serie de novedosos procesos con ventajas energéticas y de mantenimiento de Ia calidad de los productos. La información que puede ser alcanzada sobre un sistema que esta siendo sometido a un proceso de congelación o descongelación en una vasija de gruesas paredes de acero es limitada. El procedimiento más adelante descrito permite, sin embargo, de manera fácil y no invasiva, con una mínima instalación que no implica grandes dificultades técnicas, el conocimiento de Ia cantidad de hielo formada en un sistema y su temperatura. De especial interés es el caso de Ia congelación por salto de presión (P. D. Sanz y L. Otero, 2005, "High Pressure Freezing", en "Emerging Technologies for Food Processing", Food Science & Technology International Series, pgs. 627-652, Elsevier Ltd), en el cual Ia temperatura de un sistema es reducida bajo presión hasta el punto menor en el cual no tienen lugar Ia congelación. Después Ia presión es bruscamente liberada y eso da lugar a Ia congelación de una considerable fracción del agua libre, de manera instantánea. Tanto Ia ausencia de hielo antes de Ia expansión como Ia cantidad de hielo formado tras ésta y su evolución temporal son de especial interés en el estudio y control de estos procesos, así como Ia evolución de Ia temperatura promedio del producto y su punto de congelación.Among the non-classical processes of freezing (and defrosting) are those carried out at high pressure (PD Sanz, 2005, "Freezing and Thawing under Pressure", in "Novel Food Processing Technologies", edited by GV Barbosa-Cánovas, MS Tapia, and MP Cano, pgs. 233-260, Marcel Dekker CRC Press). The freezing temperature of the water decreases considerably with increasing pressure, so that this variation can be used to carry out a series of innovative processes with energy advantages and maintenance of the quality of the products. The information that can be reached on a system that is being subjected to a freezing or thawing process in a vessel with thick steel walls is limited. The procedure described below allows, however, in an easy and non-invasive manner, with minimal installation that does not imply great technical difficulties, knowledge of the amount of ice formed in a system and its temperature. Of special interest is the case of pressure freezing (PD Sanz and L. Otero, 2005, "High Pressure Freezing", in "Emerging Technologies for Food Processing", Food Science & Technology International Series, pgs. 627-652 , Elsevier Ltd), in which the temperature of a system is reduced under pressure to the lowest point at which the freezing does not take place. Then the pressure is abruptly released and that results in the freezing of a considerable fraction of the free water, instantaneously. Both the absence of ice before the expansion and the amount of ice formed after it and its temporal evolution are of special interest in the study and control of these processes, as well as the evolution of the average temperature of the product and its freezing point.
Las características de esta patente para Ia determinación de Ia temperatura y del contenido en hielo de un alimento, permiten su funcionamiento en condiciones de no equilibrio, independientemente de que existan todo tipo de flujos, cambios e inhomogeneidades en el sistema. Por ejemplo, durante Ia congelación o descongelación, donde el porcentaje de hielo cambia con el tiempo y donde Ia distribución de temperaturas entre superficie y centro del producto puede ser muy irregular. Así, esta patente permite Ia monitorización de estos procesos.The characteristics of this patent for the determination of the temperature and the ice content of a food, allow its operation in non-equilibrium conditions, regardless of the existence of all kinds of flows, changes and inhomogeneities in the system. For example, during freezing or thawing, where the percentage of ice changes over time and where the distribution of temperatures between surface and center of the product can be very irregular. Thus, this patent allows the monitoring of these processes.
Por último se pueden mencionar las situaciones donde Ia congelación es un evento no deseado. Es el caso de Ia conservación de alimentos en estado refrigerado, en Ia cual se intenta evitar Ia formación de hielo que pueda alterar las propiedades de ciertos productos.Finally, we can mention situations where freezing is an unwanted event. This is the case of the preservation of food in a refrigerated state, in which it is tried to avoid the formation of ice that can alter the properties of certain products.
BREVE DESCRIPCIÓN DE LA INVENCIÓNBRIEF DESCRIPTION OF THE INVENTION
Este invento se caracteriza por permitir determinar Ia temperatura y el contenido en hielo de un alimento congelado del que se conoce su naturaleza y su temperatura inicial de congelación.This invention is characterized by allowing to determine the temperature and the ice content of a frozen food whose nature is known and its initial freezing temperature.
La determinación se realiza mediante Ia medida de Ia velocidad de propagación de ultrasonidos a través de una porción del alimento de espesor conocido, que puede estar envasado o no, o en el interior de contenedores de diverso tipo, entre otras posibilidades. La medida de Ia velocidad de propagación de ultrasonidos se realiza mediante Ia emisión de una señal de características comprendidas entre las consideradas generalmente como de ultrasonidos de baja potencia, y su posterior recepción, calculándose Ia velocidad como el cociente de Ia distancia recorrida por los ultrasonidos (el espesor de Ia muestra) dividido entre el tiempo transcurrido entre emisión y recepción de Ia señal (tiempo de vuelo). Tanto el emisor como el receptor están formados por transductores o piezoeléctricos. Alternativamente, en lugar del segundo elemento, se sitúa un sistema de reflexión de ultrasonidos. La emisión se realiza mediante un equipo generador de pulsos y Ia recepción mediante un osciloscopio o aparato equivalente. Los equipos que generan y visualizan Ia señal recibida son equipamientos comúnmente disponibles en el mercado.The determination is made by measuring the speed of ultrasound propagation through a portion of the food of known thickness, which may or may not be packaged, or inside containers of various types, among other possibilities. The measurement of the speed of ultrasound propagation is carried out by means of the emission of a signal of characteristics between those considered generally as low power ultrasound, and its subsequent reception, the speed being calculated as the ratio of the distance traveled by the ultrasound ( the thickness of the sample) divided by the time elapsed between transmission and reception of the signal (flight time). Both the emitter and the receiver are formed by transducers or piezoelectric. Alternatively, instead of the second element, an ultrasonic reflection system is located. The emission is carried out by means of a pulse generating equipment and the reception by means of an oscilloscope or equivalent device. The equipment that generates and displays the received signal is equipment commonly available in the market.
Las medidas deben realizarse de tal manera que no se solapen las señales de emisión o que no se interfiera entre Ia emisión y Ia recepción de las señales, en el caso del empleo de reflectores La frecuencia de emisión y por tanto Ia naturaleza de los piezoeléctricos o transductores deben estar comprendidas entre las correspondientes a Io que se considera generalmente como ultrasonidos de baja potencia. En esta patente el intervalo de frecuencias empleado es de 1 a 10 MHz, dando los mejores resultados las frecuencias comprendidas entre 1 y 3 MHz.The measurements must be carried out in such a way that the emission signals do not overlap or that the signal is not interfered with and the reception of the signals, in the case of the use of reflectors The emission frequency and therefore the nature of the piezoelectric or Transducers must be included among those corresponding to what is generally considered low power ultrasound. In this patent, the frequency range used is 1 to 10 MHz, with the best results being frequencies between 1 and 3 MHz.
DESCRIPCIÓN DE LA FIGURADESCRIPTION OF THE FIGURE
Figura 1 , Esquema del dispositivo (1 ) alimento, (2) Baño termostático, (3) Osciloscopio, (4) PC, (5) Generador de pulsos (6) Agitador magnético)Figure 1, Diagram of the device (1) food, (2) Thermostatic bath, (3) Oscilloscope, (4) PC, (5) Pulse generator (6) Magnetic stirrer)
Figura 2, Determinación experimental del punto de congelación de Ia merluza donde T representa Ia temperatura, t, el tiempo, N el punto de congelación y P el plato de congelación.Figure 2, Experimental determination of the freezing point of the hake where T represents the temperature, t, the time, N the freezing point and P the freezing plate.
Figura 3, Relación entre Ia velocidad de propagación de los ultrasonidos (vs (m/s)), el contenido en hielo (X1 (%)), expresado como fracción molar: número de moles de hielo dividido entre el número de moles de agua totales) y Ia temperatura (T (0C)) determinada por el programa de cálculo para una muestra de merluza.Figure 3, Relationship between the speed of ultrasound propagation (v s (m / s)), the ice content (X 1 (%)), expressed as a molar fraction: number of moles of ice divided by the number of moles of total water) and the temperature (T ( 0 C)) determined by the calculation program for a hake sample.
DESCRIPCIÓN DE LA INVENCIÓN. Esta invención consiste en un dispositivo creado a partir de un desarrollo experimental (Figura 1 ) y de un programa informático mediante el cual se puede determinar Ia temperatura y el contenido en hielo de un alimento a partir de Ia medida de Ia velocidad de propagación de ultrasonidos en su seno. Los requerimientos para determinar el contenido en hielo de un alimento son: que se dispongan dos piezoeléctricos o transductores (o en un diseño experimental alternativo, un piezoeléctrico o transductor y un reflector de ultrasonidos) con sus caras paralelas y enfrentadas a ambos extremos de una fracción de muestra. El alimento deberá tener un espesor mínimo de 1 mm y máximo de 500 mm, preferentemente entre 5 mm y 200 mm, perdiéndose precisión en Ia medida si se sobrepasan estos límites. El espesor deberá ser constante o de variación conocida. Esta variación podrá ser absorbida por el proceso de calibrado si las condiciones en las que se realiza son físicamente equivalentes a las de medida. Los piezoeléctricos, transductores o reflectores deberán estar en contacto íntimo con el alimento a o separadas por materiales que atenúen poco Ia intensidad de los ultrasonidos, tales como cuarzo, cristal o metales, siendo desaconsejables materiales blandos como caucho o goma porque dificultan Ia difusión de las ondas así como materiales con discontinuidades.DESCRIPTION OF THE INVENTION This invention consists of a device created from an experimental development (Figure 1) and a computer program by means of which the temperature and the ice content of a food can be determined from the measurement of the ultrasonic propagation speed within it. The requirements to determine the ice content of a food are: that two piezoelectric or transducers are arranged (or in an alternative experimental design, a piezoelectric or transducer and an ultrasonic reflector) with their faces parallel and facing both ends of a fraction shows. The food must have a minimum thickness of 1 mm and a maximum of 500 mm, preferably between 5 mm and 200 mm, losing precision in the measure if these limits are exceeded. The thickness should be constant or of known variation. This variation may be absorbed by the calibration process if the conditions under which it is performed are physically equivalent to those of measurement. The piezoelectric, transducers or reflectors should be in intimate contact with the food a or separated by materials that little attenuate the intensity of the ultrasounds, such as quartz, glass or metals, being soft materials such as rubber or rubber being inadvisable because they hinder the diffusion of the waves as well as materials with discontinuities.
Los alimentos cuya temperatura y contenido en hielo puede ser determinado de esta manera comprenden Ia fruta, verdura, pescado o carne que tengan una temperatura de congelación mayor de -2.40C. Pueden hallarse empaquetados o no, mediante sistemas que no contribuyan significativamente a Ia atenuación del ultrasonido. Así serán desaconsejables gruesas envolturas de materiales plásticos elásticos, como goma o caucho. Tampoco es conveniente que el sistema contenga aire o burbujas. Podrán estar contenidos entre paredes rígidas de metales, vidrio o cristal. Podrá hallarse en reposo o en movimiento, siendo este movimiento solidario con el ensamblaje de medida (tal y como podría suceder en un sistema transportado), fluyendo en una tubería o de otra forma, entre paredes o sin paredes que Ie separen de los piezoeléctricos, transductores o reflectores, o siendo agitados por sistemas mecánicos, o de otro tipo o por mera agitación térmica o convección.Foods whose temperature and ice content can be determined in this way include fruit, vegetables, fish or meat that have a freezing temperature greater than -2.4 0 C. They can be packaged or not, by systems that do not contribute significantly to Ia ultrasound attenuation. Thus, thick wraps of elastic plastic materials, such as rubber or rubber, will be inadvisable. It is also not convenient for the system to contain air or bubbles. They may be contained between rigid walls of metals, glass or glass. It may be at rest or in motion, this movement being in solidarity with the measurement assembly (as it could happen in a transported system), flowing in a pipe or otherwise, between walls or without walls that separate it from the piezoelectric, transducers or reflectors, or being agitated by mechanical systems, or of another type or by mere thermal agitation or convection.
El proceso se puede llevar a cabo en una variedad de instalaciones, siendo Ia lista no exhaustiva: instalaciones experimentales e industriales de congelación, en el interior de cámaras, camiones, depósitos y otros recintos para el almacenamiento en estado congelado de alimentos; en instalaciones de descongelación, etc.The process can be carried out in a variety of installations, the non-exhaustive list being: experimental and industrial freezing facilities, inside chambers, trucks, warehouses and other enclosures for frozen storage of food; in defrosting facilities, etc.
El procedimiento completo sería el siguiente:The complete procedure would be as follows:
1o) Se determina el punto de congelación del alimento por medidas térmicas.1 o ) The freezing point of the food is determined by thermal measurements.
2o) El dispositivo de medida determina del tiempo de vuelo mediante Ia técnica de transmisión de pulsos, situando los emisores-receptores paralelos y enfrentados a ambos lados de Ia sección de producto considerada. La distancia entre ambos elementos está comprendida entre 1 mm y 500 mm (óptimamente 5 mm y 200 mm) y medida con precisión. Esta sección de producto puede estar contenida o no en un envase o en un contenedor rígido, o ser generada al introducir los emisores-receptores en orificios tales que Ia porción deseada quede comprendida entre ellos. Estos emisores-receptores son dos piezoeléctricos o transductores disponibles en el mercado, apropiados para emitir ultrasonidos de frecuencias comprendidas entre las consideradas generalmente de ultrasonidos de baja potencia. Alternativamente se puede trabajar con Ia técnica pulso-eco, donde uno de los transductores o piezoeléctricos se puede sustituir por un reflector de ultrasonidos, superficie rígida, plana y paralela al otro transductor o piezoeléctrico.2 o ) The measuring device determines the flight time by means of the pulse transmission technique, placing the parallel emitters-receivers facing both sides of the product section considered. The distance between both elements is between 1 mm and 500 mm (optimally 5 mm and 200 mm) and measured accurately. This section of the product may or may not be contained in a container or a rigid container, or it may be generated when the emitter-receivers are introduced into holes such that the desired portion is included between them. These emitters-receivers are two piezoelectric or commercially available transducers, suitable for emitting ultrasound frequencies between those generally considered low power ultrasound. Alternatively, it is possible to work with the pulse-echo technique, where one of the transducers or piezoelectric can be replaced by an ultrasound reflector, a rigid surface, flat and parallel to the other transducer or piezoelectric.
3o) Se emiten pulsos ultrasónicos, de duración e intensidad adecuada para su correcta recepción, mediante el generador de pulsos del dispositivo, conectado a uno de los transductores o piezoeléctricos.3 o ) Ultrasonic pulses are emitted, of adequate duration and intensity for their correct reception, by means of the pulse generator of the device, connected to one of the transducers or piezoelectric.
Este dispositivo determina el intervalo de tiempo transcurrido entre emisión y recepción (tiempo de vuelo), Ia distancia entre ellos y Ia velocidad de propagación de los ultrasonidos.This device determines the interval of time elapsed between emission and reception (flight time), the distance between them and the speed of ultrasound propagation.
El dispositivo se complementa con un programa informático que obtiene Ia temperatura y el porcentaje de hielo existentes en el alimento a partir de Ia velocidad del sonido. Como entradas, requiere, únicamente, parametrizar el tipo de alimento (fruta-verdura o carne-pescado). Sin embargo, si se conoce su composición, esto es, su contenido en agua libre y su contenido en agua ligada, Ia precisión del programa se acentúa. En caso de no disponerse del dato sobre su contenido en agua ligada, se puede sustituir éste, introduciendo su contenido en proteínas y en carbohidratos.The device is complemented by a computer program that obtains the temperature and the percentage of ice existing in the food from the speed of sound. As inputs, it only requires parameterizing the type of food (fruit-vegetable or meat-fish). However, if its composition is known, that is, its free water content and its bound water content, the accuracy of the program is accentuated. If the data on its bound water content is not available, it can be substituted, introducing its protein and carbohydrate content.
Dicho programa se ejecuta directamente desde cualquier PC que tenga instalado el lenguaje de programación Matlab® 7This program runs directly from any PC that has the Matlab ® 7 programming language installed
(http://www.mathworks.es/company/aboutus/), o superior. Para que se ejecute en otros PCs es preciso Ia instalación de una serie de librerías e instrucciones que se adjuntan con el programa.(http://www.mathworks.es/company/aboutus/), or higher. In order for it to run on other PCs, it is necessary to install a series of libraries and instructions that are attached with the program.
Las ventajas del procedimiento para utilizar el dispositivo de esta invención respecto a las técnicas existentes son:The advantages of the method for using the device of this invention over existing techniques are:
Que el procedimiento es no invasivo, pudiendo ser adaptado a todas o Ia mayor parte de las situaciones imaginables.That the procedure is non-invasive, and can be adapted to all or most of the imaginable situations.
Que el procedimiento es independiente, en las condiciones descritas, del conocimiento de Ia temperatura del producto. Que el procedimiento es independiente de que Ia distribución de Ia temperatura del producto sea conocida.That the procedure is independent, under the conditions described, of the knowledge of the temperature of the product. That the procedure is independent of the fact that the distribution of the product temperature is known.
Que el procedimiento es independiente de movimientos tanto internos como externos sufridos el producto. Por ejemplo que el producto se esté descongelando o que se encuentre en una cadena de producción o en almacenamiento.That the procedure is independent of both internal and external movements suffered by the product. For example, the product is defrosting or is in a production or storage chain.
Que el procedimiento es universal y comparable en multitud de casos y aplicaciones.That the procedure is universal and comparable in many cases and applications.
Que el procedimiento es sencillo, rápido y puede ser realizado de manera continua. Que el procedimiento puede llevarse a cabo con una mínima intrusión en los lugares de medida.That the procedure is simple, fast and can be performed continuously. That the procedure can be carried out with minimal intrusion at the measurement sites.
Que el procedimiento puede ser adaptado a una gran diversidad de entornos. Que los datos de temperatura o de contenido en hielo, así obtenidos, pueden ser empleados para obtener una mejor indicación del estado de calidad o de deterioro del alimento congelado, que Io que se conseguiría a partir de Ia mera medida de Ia temperatura exterior del producto.That the procedure can be adapted to a wide variety of environments. That the data of temperature or ice content, thus obtained, can be used to obtain a better indication of the state of quality or deterioration of the frozen food, which would be achieved from the mere measurement of the external temperature of the product .
EJ EMPLOS DE REALIZACIÓN DE LA INVENCIÓN EJ EMPLO 1EXAMPLES OF EMBODIMENT OF THE INVENTION EXAMPLE 1
Se cita un primer ensayo llevado a cabo para obtener Ia relación entre Ia velocidad de propagación de ultrasonidos a través de una rodaja de merluza congelada a diversas temperaturas y su contenido en hielo en las mismas condiciones.A first test is carried out to obtain the relationship between the speed of ultrasound propagation through a slice of frozen hake at different temperatures and its ice content under the same conditions.
1o) Se emplearon dos piezoeléctricos enfrentados y paralelos, conectados uno a un generador de pulsos y el otro a un osciloscopio, actuando como receptor.1 o ) Two opposite and parallel piezoelectric devices were used, connected one to a pulse generator and the other to an oscilloscope, acting as a receiver.
2o) El espesor de Ia muestra, contenida en una célula, fue de 12.4 mm.2 o ) The thickness of the sample, contained in a cell, was 12.4 mm.
3o) Se emitieron pulsos de frecuencia 1 MHz y amplitud máxima 12 voltios. La periodicidad del pulso emitido fue de 200 Hz y su duración de 1 μs.3 o ) Pulses of frequency 1 MHz and maximum amplitude 12 volts were emitted. The periodicity of the emitted pulse was 200 Hz and its duration was 1 μs.
4o) Se determinó el tiempo de vuelo y se obtuvo Ia velocidad de propagación de los ultrasonidos, por división de Ia distancia de separación emisor-receptor entre este tiempo.4 o ) The flight time was determined and the propagation speed of the ultrasound was obtained, by dividing the distance of the transmitter-receiver separation between this time.
5o) Se determinó experimentalmente el punto de congelación de Ia merluza, que resultó ser -0.90C. El procedimiento se detalla en Ia Figura 2,5 o ) The freezing point of the hake was determined experimentally, which turned out to be -0.9 0 C. The procedure is detailed in Figure 2,
6o) Situando el sistema de medida completo (muestra en su contenedor más emisor y receptor) en el interior de un baño criostático de temperatura finamente regulada, se realizaron determinaciones de Ia velocidad de propagación de ultrasonidos, según se ha descrito, a diversas temperaturas, todas ellas por debajo del punto de congelación del producto. 7o) Mediante el programa de cálculo explicado con anterioridad, se obtuvo el contenido en hielo y Ia temperatura del sistema, mediante Ia medida de Ia velocidad de propagación de ultrasonidos (Figura-3)6 o ) By placing the complete measurement system (shows in its container more emitter and receiver) inside a cryostatic bath of finely regulated temperature, determinations of the speed of ultrasonic propagation were made, as described, at various temperatures , all of them below the freezing point of the product. 7 o ) By means of the calculation program explained above, the ice content and the temperature of the system were obtained, by measuring the speed of ultrasound propagation (Figure-3)
La calidad de los resultados puede apreciarse a partir de Ia relación entre el contenido en hielo y Ia temperatura obtenida experimentalmente para otro sistema muscular, de Ia misma actividad de agua, empleando otra técnica (invasiva) Woolrich, W.R. Secondary Refrigerations. In "Handbook of Refrigeration Engineering" VoI.1 , pp 358-361. AVI Publ., Westport, CT, 1965)vThe quality of the results can be seen from the relationship between the ice content and the temperature obtained experimentally for another muscular system, of the same water activity, using another (invasive) technique Woolrich, W.R. Secondary Refrigerations. In "Handbook of Refrigeration Engineering" VoI.1, pp 358-361. AVI Publ., Westport, CT, 1965) v
EJ EMPLO 2EXAMPLE 2
Se cita el ensayo llevado a cabo para obtener Ia relación entre Ia velocidad de propagación de ultrasonidos a través de una rodaja de merluza congelada a diversas temperaturas y su contenido en hielo en las mismas condiciones.The test carried out to obtain the relationship between the speed of ultrasound propagation through a slice of frozen hake at different temperatures and its ice content under the same conditions is cited.
1o) Se emplearon dos piezoeléctricos enfrentados y paralelos, conectados uno a un generador de pulsos y el otro a un osciloscopio, actuando como receptor.1 o ) Two opposite and parallel piezoelectric devices were used, connected one to a pulse generator and the other to an oscilloscope, acting as a receiver.
2o) El espesor de Ia muestra, contenida en una célula, fue de 25 mm.2 o ) The thickness of the sample, contained in a cell, was 25 mm.
3o) Se emitieron pulsos de frecuencia 3MHz y amplitud máxima 12 voltios. La periodicidad del pulso emitido fue de 200 Hz y su duración de 1 μs.3 o ) Pulses of frequency 3MHz and maximum amplitude 12 volts were emitted. The periodicity of the emitted pulse was 200 Hz and its duration was 1 μs.
4o) Se determinó el tiempo de vuelo y se obtuvo Ia velocidad de propagación de los ultrasonidos, por división de Ia distancia de separación emisor-receptor entre este tiempo.4 o ) The flight time was determined and the propagation speed of the ultrasound was obtained, by dividing the distance of the transmitter-receiver separation between this time.
5o) Se utilizó como punto de congelación de Ia merluza el indicado en Pham, 1987, "Calculation of bound water in frozen food" vol. 52, p. 210., siendo 0,888°5 o ) The one indicated in Pham, 1987, "Calculation of bound water in frozen food" vol. 52, p. 210., being 0.888 °
6°) Situando el sistema de medida completo (muestra en su contenedor más emisor y receptor) en el interior de un baño criostático de temperatura finamente regulada, se realizaron determinaciones de Ia velocidad de propagación de ultrasonidos, según se ha descrito, a diversas temperaturas, todas ellas por debajo del punto de congelación del producto.6 °) Placing the complete measurement system (shows in its container more emitter and receiver) inside a cryostatic temperature bath finely regulated, ultrasonic propagation speed determinations were made, as described, at various temperatures, all of them below the freezing point of the product.
7o) Mediante el programa de cálculo explicado con anterioridad, se obtuvo el contenido en hielo y Ia temperatura del sistema, mediante Ia medida de Ia velocidad de propagación de ultrasonidos. 7 o ) By means of the calculation program explained above, the ice content and the temperature of the system were obtained, by measuring the speed of ultrasound propagation.

Claims

REIVINDICACIONES1 Dispositivo para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados caracterizado por comprender: • un Emisor-Receptor de ultrasonidos en un intervalo de frecuencias comprendido entre 1 MHz y 10 MHz.• Generador de pulsos del dispositivo, conectado a uno de los transductores o piezoeléctricos• Un receptáculo para muestras con un espesor comprendido entre 1 mm y δOO mm.• Un sistema de control de temperatura como un baño criostático, un sistema peltier, una cámara termostática.• No ser invasivo• Opcionalmente puede presentar un agitador magnético2 Dispositivo para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados según Ia reivindicación 1 caracterizado porque el Emisor-Receptor son transductores o piezoeléctricos, paralelos y colocados en los extremos de Ia muestra, empleando Ia técnica de transmisión3 Dispositivo para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados según las reivindicaciones 1 y 2 caracterizado porque el Emisor-Receptor son transductores o piezoeléctricos, paralelos y colocados en los extremos de Ia muestra, empleando Ia técnica de transmisión4 Dispositivo para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados según las reivindicaciones 1 y 2 caracterizado porque el Emisor-Receptor es un emisor de ultrasonidos, ya sea un transductor o piezoeléctrico, y un reflector de ultrasonidos, superficie rígida, plana y paralela al otro transductor o piezoeléctrico y colocados en los extremos de Ia muestra, empleando Ia técnica de pulso eco.Procedimiento para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados caracterizado por emplear el dispositivo de las reivindicaciones 1 a 4 y por• Determinar el punto de congelación del alimento ya sea por medidas térmicas o por estimación en tablas.• Realizar medidas en alimentos que tengan una temperatura de congelación mayor que -2.40C (frutas o verduras, pescados o carnes) con un espesor de Ia muestra comprendido entre 1 mm y 500 mm.• Emitir pulsos ultrasónicos, de duración e intensidad adecuada para su correcta recepción, mediante el generador de pulsos del dispositivo, conectado a uno de los transductores o piezoeléctricos • Determinar el intervalo de tiempo transcurrido entre emisión y recepción (tiempo de vuelo), Ia distancia entre ellos, calculando y Ia velocidad de propagación de ultrasonidosProcedimiento para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados según las reivindicaciones CLAIMS1 Device for the determination of the temperature and ice content of frozen foods characterized by comprising: • an ultrasound transmitter-receiver in a frequency range between 1 MHz and 10 MHz. • Pulse generator of the device, connected to one of the transducers or piezoelectric • A receptacle for samples with a thickness between 1 mm and δOO mm • A temperature control system such as a cryostatic bath, a peltier system, a thermostatic chamber • Not to be invasive • Optionally it can have a magnetic stirrer2 Device for determining the temperature and ice content of frozen foods according to claim 1 characterized in that the Transmitter-Receiver are transducers or piezoelectric, parallel and placed at the ends of the sample, using the transmission technique3 Device for Ia determination of temperature and ice content of frozen foods according to claims 1 and 2 characterized in that the Emitter-Receiver are transducers or piezoelectric, parallel and placed at the ends of the sample, using the transmission technique4 Device for determining the temperature and ice content of frozen foods according to claims 1 and 2 characterized in that the Emitter-Receiver is an ultrasound emitter, either a transducer or piezoelectric, and an ultrasound reflector, rigid, flat surface parallel to the other transducer or piezoelectric and placed at the ends of the sample , using the eco pulse technique. Procedure for determining the temperature and ice content of frozen foods characterized by using the device of claims 1 to 4 and by • Determining the freezing point of the food either by thermal measurements or by estimation in tables • Carry out measurements on foods that have a freezing temperature greater than -2.40C (fruits or vegetables, fish or meat) with a thickness of the sample between 1 mm and 500 mm • Issue ultrasonic pulses, of adequate duration and intensity for proper reception, by means of the generator Pulses of the device, connected to one of the transducers or piezoelectric • Determine the time interval between emission and reception (flight time), the distance between them, calculating and the speed of ultrasound propagation Procedure for determining the temperature and ice content of frozen foods according to the claims
1.2.3 y 5 caracterizado porque Ia velocidad de propagación de los ultrasonidos se calcula como el cociente de Ia distancia de separación de dos emisores-receptores de ultrasonidos, dividido por el intervalo de tiempo transcurrido entre Ia emisión y Ia recepción de Ia señal.1.2.3 and 5 characterized in that the propagation speed of the ultrasound is calculated as the quotient of the separation distance of two ultrasonic emitters-receivers, divided by the time interval elapsed between the emission and the reception of the signal.
Procedimiento para Ia determinación de Ia temperatura y del contenido en hielo de alimentos congelados según las reivindicacionesProcedure for determining the temperature and ice content of frozen foods according to the claims
1.3.4 y 5 caracterizado porque Ia velocidad de propagación de los ultrasonidos se calcula como el cociente del doble de Ia distancia de separación de un emisor de ultrasonidos, y un reflector, dividido por el intervalo de tiempo transcurrido entre Ia emisión y Ia recepción de Ia recepción de Ia señal 1.3.4 and 5 characterized in that the propagation speed of the ultrasound is calculated as the ratio of twice the separation distance of an ultrasound emitter, and a reflector, divided by the time interval elapsed between the emission and the reception of Ia reception of the signal
PCT/ES2007/070208 2007-01-25 2007-12-10 Non-invasive device for determining the temperature and ice content of frozen foods WO2008090242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200700204 2007-01-25
ESP200700204 2007-01-25

Publications (1)

Publication Number Publication Date
WO2008090242A1 true WO2008090242A1 (en) 2008-07-31

Family

ID=39644153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/070208 WO2008090242A1 (en) 2007-01-25 2007-12-10 Non-invasive device for determining the temperature and ice content of frozen foods

Country Status (1)

Country Link
WO (1) WO2008090242A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044403A1 (en) * 2010-09-27 2012-04-05 Sartorius Stedim North America Inc. Systems and methods for use in freezing or thawing biopharmaceutical materials
TWI561783B (en) * 2015-10-29 2016-12-11 Tai Yiaeh Entpr Co Ltd
TWI580918B (en) * 2015-10-29 2017-05-01 Tai Yiaeh Enterprise Co Ltd The immediate detection method of the drying process
WO2019099806A1 (en) * 2017-11-17 2019-05-23 The Coca-Cola Company Non-invasive temperature measurement of packaged food products
US11857111B2 (en) 2014-06-06 2024-01-02 Koninklijke Philips N.V. Cooking device and method of cooking food item based on predicting food core temperature

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GÜLSEREN ET AL.: "Ultrasonic velocity measurements in frozen model food solutions", SCIENCEDIRECT, 18 April 2006 (2006-04-18), Retrieved from the Internet <URL:http://www.sciencedirect.com> *
SIGFUSSON ET AL.: "Ultrasonic monitoring of food freezing", JOURNAL OF FOOD ENGINEERING, vol. 62, April 2004 (2004-04-01), pages 263 - 269 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012044403A1 (en) * 2010-09-27 2012-04-05 Sartorius Stedim North America Inc. Systems and methods for use in freezing or thawing biopharmaceutical materials
US8550703B2 (en) 2010-09-27 2013-10-08 Sartorius Stedim North America Inc. Systems and methods for use in freezing or thawing biopharmaceutical materials
US11857111B2 (en) 2014-06-06 2024-01-02 Koninklijke Philips N.V. Cooking device and method of cooking food item based on predicting food core temperature
TWI561783B (en) * 2015-10-29 2016-12-11 Tai Yiaeh Entpr Co Ltd
TWI580918B (en) * 2015-10-29 2017-05-01 Tai Yiaeh Enterprise Co Ltd The immediate detection method of the drying process
WO2019099806A1 (en) * 2017-11-17 2019-05-23 The Coca-Cola Company Non-invasive temperature measurement of packaged food products

Similar Documents

Publication Publication Date Title
WO2008090242A1 (en) Non-invasive device for determining the temperature and ice content of frozen foods
Povey Ultrasonics in food engineering Part II: Applications
Delgado et al. Influence of ultrasound on freezing rate of immersion-frozen apples
McClements et al. Ultrasonic characterization of foods and drinks: Principles, methods, and applications
US10962524B2 (en) Characterization of blood hemostasis and oxygen transport parameters
US8550703B2 (en) Systems and methods for use in freezing or thawing biopharmaceutical materials
US10962508B2 (en) Ultrasound-based method and related system to evaluate hemostatic function of whole blood
Xu et al. Influence of power ultrasound on ice nucleation of radish cylinders during ultrasound-assisted immersion freezing
US11788904B2 (en) Acoustic temperature measurement in layered environments
US20110088413A1 (en) System and method for producing and determining cooling capacity of two-phase coolants
ES2164707T3 (en) PROCEDURE FOR MEASURING THE MOLAR MASS OF GASES OR MIXTURES OF GASES AND DEVICE FOR THE PERFORMANCE OF THIS PROCEDURE.
EP2077759B1 (en) 3d quantitative ultrasonic device for bone inspection and its implementation
CN107727683A (en) Method, controller and the refrigeration plant of chill point are judged with the non-frozen water content of food
Aparicio et al. Ice content and temperature determination from ultrasonic measurements in partially frozen foods
Povey Rapid determination of food material properties
Pedersen et al. Ultrasound properties of lung tissue and their measurements
Coupland et al. Ultrasonic sensors forthe food industry
Gülseren et al. Ultrasonic properties of partially frozen sucrose solutions
McCarthy et al. Ultrasound properties
JPH05228148A (en) Ultrasonic transmission inspecting system
Ross et al. Estimating turbulent dissipation rates from acoustic backscatter
Koc et al. Ultrasonic velocity measurements on some liquids under thermal cycle: Ultrasonic velocity hysteresis
Kress-Rogers et al. Ultrasound propagation in foods and ambient gases: principles and applications
Liang et al. Review of the Low-Temperature Acoustic Properties of Water, Aqueous Solutions, Lipids, and Soft Biological Tissues
US11604294B2 (en) Determining layer characteristics in multi-layered environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07858292

Country of ref document: EP

Kind code of ref document: A1