WO2008084169A2 - Method for estimating the exhaust gas pressure upstream from the turbine of a turbocharger - Google Patents

Method for estimating the exhaust gas pressure upstream from the turbine of a turbocharger Download PDF

Info

Publication number
WO2008084169A2
WO2008084169A2 PCT/FR2007/052557 FR2007052557W WO2008084169A2 WO 2008084169 A2 WO2008084169 A2 WO 2008084169A2 FR 2007052557 W FR2007052557 W FR 2007052557W WO 2008084169 A2 WO2008084169 A2 WO 2008084169A2
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
pressure
variation
upstream
engine
Prior art date
Application number
PCT/FR2007/052557
Other languages
French (fr)
Other versions
WO2008084169A3 (en
Inventor
Thomas Turpin
Jean Christophe Schmitt
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Publication of WO2008084169A2 publication Critical patent/WO2008084169A2/en
Publication of WO2008084169A3 publication Critical patent/WO2008084169A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to the field of control of a vehicle engine, comprising a turbocharger.
  • the invention relates more specifically to a method for estimating the pressure upstream of the turbine of the turbocharger.
  • the invention applies in particular to a turbocharged supercharger diesel engine.
  • the pressure upstream of the turbine can be used for engine control for different purposes.
  • a pressure sensor To know the pressure upstream of the turbine of the turbocharger, a pressure sensor is often used. But a pressure sensor has several disadvantages such as the disturbance of the measurement signal, the drifts and dispersions thereof, especially in a severe thermal environment, or the difficulties of implantation.
  • Document DE 103293 discloses, for example, a method for estimating this pressure, which is based on a power budget on the turbocharger shaft and on the knowledge of the characteristics of the turbine.
  • a disadvantage of this method is that it requires heavy mathematical operations, difficult to implement in the calculators usually used.
  • Another disadvantage is related to manufacturing dispersions, which cause inaccuracy on the knowledge of the characteristics of the turbine.
  • the document FR 2 853 693 presents, for example, a method for estimating this pressure, which is based on a measurement of the mass of gases in the exhaust manifold.
  • An object of the invention is to provide a new method for estimating the pressure of the exhaust gas am am turbocompressor turbine.
  • Another object of the invention is to propose a com m eted motor, for which this new process is implemented.
  • a method for estimating the exhaust gas pressure in a turbocharger turbine of an internal combustion vehicle engine is provided within the scope of the invention, characterized in that the turbine upstream pressure is estimated by the following formula:
  • P 4 i is the exhaust gas pressure downstream of the turbine
  • P 1 the air intake pressure in am have compressor
  • P 21 the air pressure downstream of the compressor
  • the functions f! and f 3 corrective functions of constant value or dependent on one of the following parameters: admission air flow rate, fuel flow rate, engine exhaust gas flow rate, gas flow rate recirculation, variation of the air flow at the intake, variation of the fuel flow, variation of the exhaust gas flow at the engine output, variation of the recirculation gas flow rate, engine speed, torque demand m operator, variation of the engine torque demand, com m iter of the position of the fins or bypass, variation of the turbocompressor control, temperature and pressure upstream of the particulate filter in the case of a diesel engine, coolant temperature; and the functions f 2 a dependent corrective function at the pressures P 21 and P 1 .
  • FIG. a diagram of an internal combustion engine for a vehicle, fitted with a turbocharger;
  • FIGS. 2, 3 and 4 respectively illustrate the errors between a measurement of the am am pressure of the turbine as a function of the time on a vehicle engine and, respectively, different models for estimating the pressure upstream of the engine. the turbine.
  • FIG. 1 shows an internal combustion engine 1, comprising a turbocharger, for the purpose of increasing the quantity of air admitted into the cylinders.
  • the turbocompressor consists of a compressor 20 located on the adm ission line of the motor 1 and m onté on the same axis as a turbine 21 as for it located at the output of the exhaust manifold.
  • the turbine 21 is driven by the exhaust gas and the power supplied by it can be modulated by installing a relief valve if the turbine is a fixed geometry turbine or variable geometry vanes (TGV).
  • TSV variable geometry vanes
  • the discharge circuit is a bypass of the turbine permitting not to use the entire flow of the exhaust gas to drive the turbine.
  • the fins allow to modulate the incidence of the flow of the exhaust gases on the turbine and therefore on the power it provides.
  • the motor 1 also comprises, in a conventional manner, an admission flap 2, an engine block 10 comprising the cylinders, an EGR circuit 3 comprising a valve 31, a cooler 32 and a bypass 33.
  • the engine 1 also includes in the exhaust line, a set of gas treatment m aines in the case of a diesel engine, namely a pre-catalyst 41, a particulate filter 42 and a silencer 43, for example.
  • Ti and Pi are defined as the temperature and the motor inlet pressure (or upstream compressor 20).
  • the temperatures and pressure downstream of the compressor are also respectively defined as T 21 and P 21 respectively.
  • T 31 and P 31 respectively define the temperature and pressure am am of the turbine.
  • T 41 and P 41 respectively define the temperature and pressure downstream of the turbine.
  • Cp g az and C P ⁇ a ⁇ r are the heating capacities at constant pressure of exhaust gases and air at admission respectively
  • the invention proposes to reduce equation (1) to equation (2):
  • the functions f 1 , f 2 , f 3 are corrective functions that may be constants or be expressed as a function of at least one of the following parameters, provided in a nonlimiting manner:
  • FIGS. 2, 3 and 4 respectively illustrate the errors between a measurement of the pressure upstream of the turbine as a function of the time on a vehicle engine and, respectively, different models for estimating the pressure P 31 in FIG. am have turbine 21.
  • the model thus considered is very simple, but it results in a relative error of ⁇ 20%.
  • This model is more complicated than the first and makes it possible to define a generally less spread error with respect to the data resulting from the measurement. In other words, we find that the average value of the error committed over the duration of the test is less than with the first model. (To make this comparison, keep in mind that an absolute error of 500mbar is roughly equivalent to a relative error of 20%).
  • a 1 and B are mappings based on the influence of the variation of pressure (P 21 -P 1 ) across the compressor and the flow (Q gas ) of the exhaust gas at the output of the engine and, A 2 is a mapping established according to the influence of the temperature T 3 1 of the exhaust gases in am have the turbine and the power control setpoint (RCO) is either an actuator of the blades of the turbine if it is a variable geometry turbine or an actuator of bypass of the exhaust gas if the turbine is geometry fixed.
  • RCO power control setpoint
  • This third model is a little more complicated than the other two, but can further reduce the error estimation of the pressure. Indeed, it is found that the average value of the error com m on the duration of the test is lower than for the other two models.
  • the average error is approximately 10%, which corresponds to the measurement accuracy of a pressure sensor which is used for series vehicles.

Abstract

The invention relates to a method for estimating the exhaust gas pressure (P31) upstream from the turbine of a supercharger in a vehicle internal combustion engine. The method comprises estimating the turbine upstream pressure (P<SUB>31</SUB>) using the following relation Formula P <SUB>31</SUB>

Description

Procédé d'estimation de la pression des gaz d'échappement en amont d'une turbine de turbocompresseur Method for estimating the exhaust gas pressure upstream of a turbocharger turbine
L'invention concerne le domaine du contrôle d'un moteur de véhicule, comprenant un turbocompresseur.The invention relates to the field of control of a vehicle engine, comprising a turbocharger.
L'invention concerne plus précisément un procédé d'estimation de la pression en amont de la turbine du turbocompresseur.The invention relates more specifically to a method for estimating the pressure upstream of the turbine of the turbocharger.
L'invention s'applique en particulier à un moteur diesel de véhicule suralimenté par turbocompresseur. La pression en amont de la turbine peut être utilisée pour le contrôle moteur dans différents buts.The invention applies in particular to a turbocharged supercharger diesel engine. The pressure upstream of the turbine can be used for engine control for different purposes.
Par exemple, il s'avère intéressant de connaître celle-ci pour protéger la turbine de surpressions éventuelles ou pour le calcul des pertes par pompage du moteur, ou encore dans la mesure où elle sert en tant que paramètre d'entrée dans les modèles thermodynamiques permettant de déterminer la performance du moteur.For example, it is interesting to know this one to protect the turbine of possible overpressures or for the calculation of the losses by pumping of the engine, or insofar as it serves as an input parameter in the thermodynamic models to determine the performance of the engine.
Pour connaître la pression en amont de la turbine du turbocompresseur, on utilise souvent un capteur de pression. Mais un capteur de pression présente plusieurs inconvénients comme la perturbation du signal de mesure, les dérives et dispersions de celui-ci surtout dans un environnement thermique sévère, ou encore les difficultés d'implantation.To know the pressure upstream of the turbine of the turbocharger, a pressure sensor is often used. But a pressure sensor has several disadvantages such as the disturbance of the measurement signal, the drifts and dispersions thereof, especially in a severe thermal environment, or the difficulties of implantation.
Pour éviter ces inconvénients, on a donc recours à des procédés et moyens permettant de fournir une estimation de la pression en amont de la turbine.To avoid these drawbacks, it is therefore necessary to use methods and means for providing an estimate of the pressure upstream of the turbine.
Le document DE 103293 30 présente par exemple un procédé pour estimer cette pression, lequel est basé sur un bilan de puissance sur l'arbre du turbocompresseur et sur la connaissance des caractéristiques de la turbine. Un inconvénient de cette méthode est qu'elle nécessite des opérations mathématiques lourdes, difficilement implémentables dans les calculateurs usuellement employés. Un autre inconvénient est lié aux dispersions de fabrication, qui engendrent une imprécision sur la connaissance des caractéristiques de la turbine. Le document FR 2 853 693 présente par exem ple un procédé pour estimer cette pression, qui est basé sur un bilan de m asse des gaz dans le collecteur d'échappem ent.Document DE 103293 discloses, for example, a method for estimating this pressure, which is based on a power budget on the turbocharger shaft and on the knowledge of the characteristics of the turbine. A disadvantage of this method is that it requires heavy mathematical operations, difficult to implement in the calculators usually used. Another disadvantage is related to manufacturing dispersions, which cause inaccuracy on the knowledge of the characteristics of the turbine. The document FR 2 853 693 presents, for example, a method for estimating this pressure, which is based on a measurement of the mass of gases in the exhaust manifold.
Un objectif de l'invention est de proposer un nouveau procédé d'estimation de la pression des gaz d'échappement en am ont d'une turbine de turbocom presseur.An object of the invention is to provide a new method for estimating the pressure of the exhaust gas am am turbocompressor turbine.
Un autre objectif de l'invention est de proposer un m oteur com m andé, pour lequel ce nouveau procédé est m is en oeuvre.Another object of the invention is to propose a com m eted motor, for which this new process is implemented.
Pour atteindre cet objectif, il est prévu dans le cadre de l'invention un procédé d'estim ation de la pression des gaz d'échappement en am ont d'une turbine de turbocompresseur d'un m oteur de véhicule à combustion interne, caractérisé en ce qu'on estim e la pression amont turbine par Iq form ulation suivante :To achieve this objective, a method for estimating the exhaust gas pressure in a turbocharger turbine of an internal combustion vehicle engine is provided within the scope of the invention, characterized in that the turbine upstream pressure is estimated by the following formula:
où P4i est la pression des gaz d'échappem ent en aval de la turbine, P1 la pression d'adm ission de l'air en am ont du compresseur, P21 la pression de l'air en aval du com presseur, les fonctions f! et f3 des fonctions correctives de valeur constante ou dépendant de l'un au m oins des param ètres suivants : débit d'air à l'adm ission, débit de carburant, débit des gaz d'échappement en sortie moteur, débit de gaz de recirculation, variation du débit d'air à l'adm ission, variation du débit de carburant, variation du débit des gaz d'échappement en sortie m oteur, variation du débit de gaz de recirculation, régime m oteur, demande de couple m oteur, variation de la demande de couple moteur, com m ande de la position des ailettes ou de la dérivation, variation de la com mande de turbocom presseur, température et pression en amont du filtre à particules dans le cas d'un moteur Diesel, température de liquide de refroidissem ent ; et la fonctions f2 une fonction corrective dépendante au m oins des pressions P21 et P1.where P 4 i is the exhaust gas pressure downstream of the turbine, P 1 the air intake pressure in am have compressor, P 21 the air pressure downstream of the compressor , the functions f! and f 3 corrective functions of constant value or dependent on one of the following parameters: admission air flow rate, fuel flow rate, engine exhaust gas flow rate, gas flow rate recirculation, variation of the air flow at the intake, variation of the fuel flow, variation of the exhaust gas flow at the engine output, variation of the recirculation gas flow rate, engine speed, torque demand m operator, variation of the engine torque demand, com m iter of the position of the fins or bypass, variation of the turbocompressor control, temperature and pressure upstream of the particulate filter in the case of a diesel engine, coolant temperature; and the functions f 2 a dependent corrective function at the pressures P 21 and P 1 .
Le procédé selon l'invention pourra en outre présenter au m oins l'une des caractéristiques suivantes : on estime la pression en amont de la turbine par la relation (2), en considérant les fonctions correctives fi = 1 , f2 = P21-P1, et f3 = constante ; on estime la pression en amont de la turbine par la relation (2), en considérant les fonctions correctives fi = A(Qgaz, P21-P1) , f2 =The method according to the invention may also have at least one of the following characteristics: the pressure upstream of the turbine is estimated by the relation (2), considering the corrective functions fi = 1, f 2 = P21-P1, and f 3 = constant; the pressure upstream of the turbine is estimated by relation (2), considering the corrective functions fi = A (Q gas , P21-P1), f 2 =
P21-P1, et f3 = B(Qgaz, P21-P1), où A et B sont des cartographies établies en fonction de l'influence de la variation de pression (P21- P1) aux bornes du compresseur et du débit (Qgaz) des gaz d'échappement du moteur ; - on estime la pression en amont de la turbine par la relation (2), en considérant les fonctions fi = A1(Q932, P21-P1)* A2(RCO, T31) , f2 = P21-P1 et f3 = B(Qgaz, P21-P1) où A1 et B sont des cartographies établies en fonction de l'influence de la variation de pression (P21- P1) aux bornes du compresseur et du débit Qgaz des gaz d'échappement du moteur et, où A2 est une cartographie établie en fonction de l'influence de la température des gaz T31 d'échappement en amont de la turbine et de la consigne de commande de puissance RCO soit d'un actionneur des ailettes de la turbine si celle-ci est une turbine à géométrie variable soit d'un actionneur de dérivation des gaz d'échappement si la turbine est à géométrie fixe ; pour déterminer les fonctions correctives f1; f2, f3, on effectue une mesure de l'évolution de la pression en amont de la turbine en fonction du temps sur un moteur, on propose des fonctions f1; f2, f3, et on compare les valeurs estimées, avec ces fonctions correctives, de la pression P31 en amont de la turbine aux valeurs mesurées de cette pression.P21-P1, and f 3 = B (Q gas , P21-P1), where A and B are mappings based on the influence of the pressure variation (P 21 - P 1 ) at the terminals of the compressor and the flow rate (Q gas ) of the engine exhaust gases; the pressure upstream of the turbine is estimated by the relation (2), considering the functions fi = A 1 (Q 932 , P 21 -P 1 ) * A 2 (RCO, T 31 ), f 2 = P 21 -P 1 and f 3 = B (Q gas , P 21 -P 1 ) where A 1 and B are mappings established as a function of the influence of the pressure variation (P 21 - P 1 ) at the terminals of the compressor and the flow rate Q gas of the engine exhaust gas and, where a 2 is a mapping established according to the influence of the temperature T 31, the exhaust gas upstream of the turbine and RCO power control setpoint either a turbine fin actuator if it is a variable geometry turbine or an exhaust gas bypass actuator if the turbine has a fixed geometry; to determine the corrective functions f 1; f 2 , f 3 , a measurement is made of the evolution of the pressure upstream of the turbine as a function of time on a motor, functions f 1 are proposed ; f 2 , f 3 , and comparing the estimated values, with these corrective functions, of the pressure P 31 upstream of the turbine to the measured values of this pressure.
Pour atteindre cet objectif, il est également prévu un moteur à combustion interne pour véhicule, comprenant un turbocompresseur formé d'un compresseur et d'une turbine, caractérisé en ce qu'il comprend des moyens pour mettre en œuvre le procédé selon l'invention. D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre, et en regard des dessins annexés, donnés à titre d'exem ples non lim itatifs et sur lesquels : - la figure 1 illustre un schém a d'un m oteur à com bustion interne pour véhicule, m uni d'un turbocompresseur ; les figures 2, 3 et 4 illustrent respectivem ent les erreurs entre une m esure de la pression en am ont de la turbine en fonction du tem ps sur un moteur de véhicule et, respectivement, différents modèles d'estimation de la pression en amont de la turbine.To achieve this objective, there is also provided an internal combustion engine for a vehicle, comprising a turbocharger formed of a compressor and a turbine, characterized in that it comprises means for implementing the method according to the invention . Other features, objects and advantages of the present invention will appear on reading the detailed description which follows, and with reference to the appended drawings, given as nonlimiting examples and in which: FIG. a diagram of an internal combustion engine for a vehicle, fitted with a turbocharger; FIGS. 2, 3 and 4 respectively illustrate the errors between a measurement of the am am pressure of the turbine as a function of the time on a vehicle engine and, respectively, different models for estimating the pressure upstream of the engine. the turbine.
Sur la figure 1 , il est représenté un moteur à com bustion interne 1 , comprenant un turbocompresseur, dans le but d'augmenter la quantité d'air adm ise dans les cylindres. Le turbocom presseur est constitué d'un compresseur 20 situé sur la ligne d'adm ission du m oteur 1 et m onté sur le m êm e axe qu'une turbine 21 quant à elle située en sortie du collecteur d'échappement.FIG. 1 shows an internal combustion engine 1, comprising a turbocharger, for the purpose of increasing the quantity of air admitted into the cylinders. The turbocompressor consists of a compressor 20 located on the adm ission line of the motor 1 and m onté on the same axis as a turbine 21 as for it located at the output of the exhaust manifold.
La turbine 21 est entraînée par les gaz d'échappement et la puissance fournie par ceux-ci peut être modulée en installant une soupape de décharge si la turbine est une turbine à géom étrie fixe ou encore des ailettes à géométrie variable (TGV) .The turbine 21 is driven by the exhaust gas and the power supplied by it can be modulated by installing a relief valve if the turbine is a fixed geometry turbine or variable geometry vanes (TGV).
Dans le cas d'un turbocompresseur à géom étrie fixe, le circuit de décharge est une dérivation de la turbine perm ettant de ne pas utiliser la totalité du débit des gaz d'échappement pour actionner la turbine. Dans le cas d'un turbocom presseur à géométrie variable, les ailettes perm ettent de moduler l'incidence du débit des gaz d'échappement sur la turbine et donc sur la puissance qu'elle fournit.In the case of a turbocharger with fixed geometry, the discharge circuit is a bypass of the turbine permitting not to use the entire flow of the exhaust gas to drive the turbine. In the case of a turbocompressor with variable geometry, the fins allow to modulate the incidence of the flow of the exhaust gases on the turbine and therefore on the power it provides.
Le m oteur 1 com prend en outre, et ce de manière classique, un volet d'adm ission 2, un bloc moteur 10 comprenant les cylindres, un circuit EGR 3 comprenant une vanne 31 , un refroidisseur 32 et un by- pass 33. Enfin, le m oteur 1 com prend également dans la ligne d'échappem ent, un ensemble de m oyens de traitem ent des gaz d'échappem ent, à savoir par exem ple dans le cas d'un moteur Diesel, un pré-catalyeur 41 , un filtre à particules 42 et un silencieux 43.The motor 1 also comprises, in a conventional manner, an admission flap 2, an engine block 10 comprising the cylinders, an EGR circuit 3 comprising a valve 31, a cooler 32 and a bypass 33. Finally, the engine 1 also includes in the exhaust line, a set of gas treatment m aines in the case of a diesel engine, namely a pre-catalyst 41, a particulate filter 42 and a silencer 43, for example.
Sur cette figure 1 , on définit Ti et Pi les température et pression d'entrée moteur (ou amont com presseur 20) . On définit également respectivement T21 et P21 com me les tem pérature et pression en aval du compresseur. T31 et P31 définissent respectivement les température et pression en am ont de la turbine. Enfin, T41 et P41 définissent respectivement les tem pérature et pression en aval de la turbine.In this FIG. 1, Ti and Pi are defined as the temperature and the motor inlet pressure (or upstream compressor 20). The temperatures and pressure downstream of the compressor are also respectively defined as T 21 and P 21 respectively. T 31 and P 31 respectively define the temperature and pressure am am of the turbine. Finally, T 41 and P 41 respectively define the temperature and pressure downstream of the turbine.
Pour estimer la pression amont turbine P31 , on propose ici de se baser sur une sim plification (ou réduction) des équations régissant le fonctionnem ent du turbocompresseur.To estimate the upstream pressure P 31 turbine, it is proposed here to be based on a sim plification (or reduction) of the equation governing the operation of the turbocompressor.
Pour déterm iner le fonctionnement du turbocompresseur, on effectue un bilan de puissance sur l'arbre de celui-ci, en ayant préalablement déterm iné l'énergie échangée dans le compresseur d'une part et dans la turbine d'autre part. On aboutit alors, en fonctionnement stabilisé du turbocom presseur, à la relation suivante :To determine the operation of the turbocharger, a power budget is carried out on the shaft thereof, having previously determined the energy exchanged in the compressor on the one hand and in the turbine on the other hand. In stabilized operation of the turbocompressor, the following relationship is then reached:
" ~~ )
Figure imgf000007_0001
" ~~ )
Figure imgf000007_0001
où Cp gaz et CPιaιr sont les capacités calorifique à pression constante des gaz d'échappem ent et de l'air à l'adm ission respectivem ent, γ est le rapport de la capacité calorifique spécifique à pression constante et la capacité calorifique spécifique à volum e constant (γ = cp/cv) , et ηturbme et η compresseur les rendem ents de la turbine 21 et du com presseur 20 respectivement.where Cp g az and C Pιaιr are the heating capacities at constant pressure of exhaust gases and air at admission respectively, γ is the ratio of the specific heat capacity at constant pressure and the specific heat capacity at constant volum e (γ = c p / c v ), and η turbine and η compressor rendem ents of the turbine 21 and com presseur 20 respectively.
La relation ( 1 ) issue d'un bilan de puissance est parfaitement connue de l'hom me du m étier.The relationship (1) resulting from a power budget is perfectly known to the man of the trade.
L'invention se propose de réduire l'équation ( 1 ) pour aboutir à l'équations (2) :
Figure imgf000008_0001
The invention proposes to reduce equation (1) to equation (2):
Figure imgf000008_0001
dans lesquelles les fonctions fi , f2, f3 sont des fonctions correctives pouvant être des constantes ou être exprim ées en fonction d'au moins l'un des param ètres suivants, fournis à titre non lim itatif :in which the functions f 1 , f 2 , f 3 are corrective functions that may be constants or be expressed as a function of at least one of the following parameters, provided in a nonlimiting manner:
- débit d'air à l'adm ission, débit de carburant, débit des gaz d'échappem ent en sortie moteur, débit de gaz de recirculation (circuit EGR) ;- Admission air flow, fuel flow, exhaust gas flow at engine output, recirculation gas flow (EGR circuit);
- variation du débit d'air à l'adm ission, variation du débit de carburant, variation du débit des gaz d'échappement en sortie moteur, variation du débit de gaz de recirculation (circuit EGR) ;- variation of the air flow at the intake, variation of the fuel flow, variation of the exhaust gas flow at the engine output, variation of the recirculation gas flow (EGR circuit);
- régime m oteur, demande de couple moteur ; variation de la dem ande de couple moteur ; - com m ande de la position des ailettes (turbocompresseur à géométrie variable) ou de la dérivation (turbocom presseur à géom étrie fixe) , variation de la com m ande de turbocom presseur ;- motor speed, motor torque demand; variation in motor torque demand; - com m ande of the position of the vanes (turbocharger with variable geometry) or of the bypass (turbocompressor with fixed geometry), variation of the turbocompressor com- mander;
- tem pérature et pression en am ont du filtre à particules dans le cas d'un moteur Diesel, tem pérature de liquide de refroidissem ent.- Temperatures and pressures in am of the particle filter in the case of a diesel engine, coolant temperature.
On notera que cette réduction aboutissant à l'équation (2) est basée sur une form e a priori de la loi de comportem ent, inspirée de la form e physique de la loi de com portement. Une telle réduction présente l'avantage de prendre en compte de nombreux paramètres, contrairement à l'art antérieur où on choisit le plus souvent de ne pas en considérer certains.It will be noted that this reduction leading to equation (2) is based on a priori form of the behavior law, inspired by the physical form of the behavior law. Such a reduction has the advantage of taking into account many parameters, unlike the prior art where one chooses most often not to consider some.
Les figures 2, 3 et 4 illustrent respectivem ent les erreurs entre une m esure de la pression en amont de la turbine en fonction du tem ps sur un moteur de véhicule et, respectivem ent, différents modèles d'estimation de la pression P31 en am ont de la turbine 21 .FIGS. 2, 3 and 4 respectively illustrate the errors between a measurement of the pressure upstream of the turbine as a function of the time on a vehicle engine and, respectively, different models for estimating the pressure P 31 in FIG. am have turbine 21.
Ces m odèles sont basés sur l'équation (2) et consistent donc à proposer différentes fonctions correctives fi , f2 et f3. Pour cela, on effectue un test dans lequel la pression P31 est mesurée par un capteur de pression, on propose des fonctions correctives f1; f2 et f3, on détermine cette même pression P31 par l'équation (2) et on calcule l'erreur entre le modèle et les données issues des mesures (figures 2 à 4).These models are based on equation (2) and therefore consist in proposing different corrective functions fi, f 2 and f 3 . For that, we performs a test in which the pressure P 31 is measured by a pressure sensor, corrective functions f 1 are proposed ; f 2 and f 3 , the same pressure P 31 is determined by equation (2) and the error between the model and the data obtained from the measurements is calculated (FIGS. 2 to 4).
Dans un premier cas, illustré sur la figure 2, on estime la pression P31 en amont de la turbine par la relation (2), en considérant les fonctions correctives U = 1 , f2 = P21-P1, et f3 = constante. Le modèle ainsi considéré est très simple, mais il aboutit à une erreur relative de ± 20%.In a first case, illustrated in FIG. 2, the pressure P 31 upstream of the turbine is estimated by the relation (2), considering the corrective functions U = 1, f 2 = P21-P1, and f 3 = constant . The model thus considered is very simple, but it results in a relative error of ± 20%.
Dans un deuxième cas, illustré sur la figure 3, on estime la pression P31 en amont de la turbine par la relation (2), en considérant les fonctions correctives f! = A(Qgaz, P21-P1) , f2 = P21-P1, et f3 = B(Qgaz, P21-P1), où A et B sont des cartographies établies en fonction de l'influence de la variation de pression (P21-P1) aux bornes du compresseur 20 et du débit Qgaz des gaz d'échappement en sortie du moteur (entrée turbine). Le plus souvent, ces cartographies sont établies par des moyens de calculs automatiques, qui permettent en fonction des paramètres variables choisis dans celle-ci de coller au mieux aux résultats des essais.In a second case, illustrated in FIG. 3, the pressure P 31 upstream of the turbine is estimated by the relation (2), considering the corrective functions f! = A (Q gas , P 21 -P 1 ), f 2 = P 21 -P 1 , and f 3 = B (Q gas , P 21 -P 1 ), where A and B are mappings based on influence of the pressure variation (P 21 -P 1 ) at the compressor terminals 20 and at the gas flow rate Q of the exhaust gas at the engine outlet (turbine inlet). Most often, these mappings are established by means of automatic calculations, which as a function of the variable parameters chosen in this one, can best be glued to the results of the tests.
Ce modèle est plus compliqué que le premier et permet de définir une erreur globalement moins étalée par rapport aux données issues de la mesure. En d'autres termes, on constate que la valeur moyenne de l'erreur commise sur la durée du test est moindre qu'avec le premier modèle. (Pour effectuer cette comparaison, il faut garder à l'esprit qu'une erreur absolue de 500mbar correspond a peu près à une erreur relative de 20%).This model is more complicated than the first and makes it possible to define a generally less spread error with respect to the data resulting from the measurement. In other words, we find that the average value of the error committed over the duration of the test is less than with the first model. (To make this comparison, keep in mind that an absolute error of 500mbar is roughly equivalent to a relative error of 20%).
Dans un troisième cas, illustré sur la figure 4, on estime la pression P31 en amont de la turbine par la relation (2), en considérant les fonctions f, = A1(Q932, P21-P1)^A2(RCO, T31) , f2 = P21-P1 et f3 = B(Qgaz,In a third case, illustrated in FIG. 4, the pressure P 31 upstream of the turbine is estimated by the relation (2), considering the functions f 1 = A 1 (Q 932 , P 21 -P 1 ). 2 (RCO, T 31 ), f 2 = P 21 -P 1 and f 3 = B (Q gases ,
Dans ce troisième cas, A1 et B sont des cartographies établies en fonction de l'influence de la variation de pression (P21-P1) aux bornes du compresseur et du débit (Qgaz) des gaz d'échappement en sortie du m oteur et, A2 est une cartographie établie en fonction de l'influence de la température T31 des gaz d'échappement en am ont de la turbine et de la consigne de com m ande de puissance (RCO) soit d'un actionneur des ailettes de la turbine si celle-ci est une turbine à géométrie variable soit d'un actionneur de dérivation des gaz d'échappement si la turbine est à géométrie fixe.In this third case, A 1 and B are mappings based on the influence of the variation of pressure (P 21 -P 1 ) across the compressor and the flow (Q gas ) of the exhaust gas at the output of the engine and, A 2 is a mapping established according to the influence of the temperature T 3 1 of the exhaust gases in am have the turbine and the power control setpoint (RCO) is either an actuator of the blades of the turbine if it is a variable geometry turbine or an actuator of bypass of the exhaust gas if the turbine is geometry fixed.
Ce troisièm e modèle est un peu plus compliqué que les deux autres, m ais permet de réduire encore l'erreur d'estimation de la pression. En effet, on constate que la valeur m oyenne de l'erreur com m ise sur la durée de l'essai est plus faible que pour les deux autres m odèles.This third model is a little more complicated than the other two, but can further reduce the error estimation of the pressure. Indeed, it is found that the average value of the error com m on the duration of the test is lower than for the other two models.
En effet, l'erreur m oyenne est globalem ent de ±10% , ce qui correspond à la précision de mesure d'un capteur de pression usuellem ent utilisé pour les véhicules de série.In fact, the average error is approximately 10%, which corresponds to the measurement accuracy of a pressure sensor which is used for series vehicles.
Quel que soit le m odèle choisi, la réduction des équations permet d'im plém enter ce modèle dans l'unité de contrôle électronique ( UCE) du m oteur avec un temps de calcul raisonnable.Whatever the model chosen, the reduction of the equations makes it possible to im plem ent this model in the electronic control unit (ECU) of the motor with a reasonable calculation time.
Selon l'application désirée, on pourra cependant choisir d'im plém enter, en fonction de l'importance relative attachée à la précision de la mesure d'une part ou au temps de calcul d'autre part, l'un ou l'autre de ces modèles. Depending on the desired application, however, it will be possible to choose to im plem ent, depending on the relative importance attached to the accuracy of the measurement on the one hand or to the calculation time on the other, one or the other. other of these models.

Claims

REVENDICATIONS
1. Procédé d'estimation de la pression (P3i) des gaz d'échappement en amont d'une turbine de turbocompresseur d'un moteur de véhicule à combustion interne, caractérisé en ce qu'on estime la pression amont turbine (P3i) par la formulation suivante:
Figure imgf000011_0001
1. A method for estimating the pressure (P 3 i) of the exhaust gas upstream of a turbocharger turbine of an internal combustion engine engine, characterized in that it estimates the upstream pressure turbine (P 3 i) by the following wording:
Figure imgf000011_0001
où P41 est la pression des gaz d'échappement en aval de la turbine, Pi la pression d'admission de l'air en amont du compresseur, P21 la pression de l'air en aval du compresseur, les fonctions U et f3, des fonctions correctives de valeur constante ou dépendant de l'un au moins des paramètres suivants : débit d'air à l'admission, débit de carburant, débit des gaz d'échappement en sortie moteur, débit de gaz de recirculation, variation du débit d'air à l'admission, variation du débit de carburant, variation du débit des gaz d'échappement en sortie moteur, variation du débit de gaz de recirculation, régime moteur, demande de couple moteur, variation de la demande de couple moteur, commande de la position des ailettes ou de la dérivation, variation de la commande de turbocompresseur, température et pression en amont du filtre à particules dans le cas d'un moteur Diesel, température de liquide de refroidissement ; et la fonctions f2 une fonction corrective dépendante au moins des pressions P21 et P1.where P 4 1 is the exhaust gas pressure downstream of the turbine, Pi the inlet air pressure upstream of the compressor, P 21 the air pressure downstream of the compressor, the functions U and f 3 corrective functions of constant value or depending on at least one of the following parameters: intake air flow rate, fuel flow rate, engine exhaust gas flow rate, recirculation gas flow rate, variation of the intake air flow rate, variation of the fuel flow, variation of the exhaust gas flow at the engine output, variation of the recirculation gas flow rate, engine speed, engine torque demand, variation of the engine demand, motor torque, control of the position of the fins or the bypass, variation of the turbocharger control, temperature and pressure upstream of the particulate filter in the case of a diesel engine, coolant temperature; and the functions f 2 a corrective function depending at least on the pressures P 21 and P 1 .
2. Procédé selon la revendication 1, caractérisé en ce qu'on estime la pression (P31) en amont de la turbine par la relation (2), en considérant les fonctions correctives f! = 1 , f2 = P21-P1, et f3 = constante.2. Method according to claim 1, characterized in that it estimates the pressure (P 31 ) upstream of the turbine by the relation (2), considering the corrective functions f! = 1, f 2 = P 21 -P 1 , and f 3 = constant.
3. Procédé selon la revendication 1, caractérisé en ce qu'on estime la pression (P31) en amont de la turbine par la relation (2), en considérant les fonctions correctives f! = A(Qgaz, P21-P1) , f2 = P21-P1, et f3 = B(Qgaz, P21-P1), où A et B sont des cartographies établies en fonction de l'influence de la variation de pression (P21-P1) aux bornes du compresseur et du débit (Qgaz) des gaz d'échappement du moteur.3. Method according to claim 1, characterized in that the pressure (P 31 ) upstream of the turbine is estimated by the relation (2), considering the corrective functions f! = A (Q gas , P 21 -P 1 ), f 2 = P 21 -P 1 , and f 3 = B (Q gas , P 21 -P 1 ), where A and B are mappings based on the influence of the pressure variation (P21-P1) at the compressor terminals and the flow rate (Q gas ) of the engine exhaust gases.
4. Procédé selon la revendication 1, caractérisé en ce qu'on estime la pression (P31) en amont de la turbine par la relation (2), en considérant les fonctions :4. Method according to claim 1, characterized in that the pressure (P 31 ) upstream of the turbine is estimated by the relation (2), considering the functions:
U = A1(Q931, P21-P1TA2(RCO, T31) , f2 = P21-P1 et f3 = B(Qgaz, P21-P1)U = A 1 (Q 931 , P 21 -P 1 TA 2 (RCO, T 31 ), f 2 = P 21 -P 1 and f 3 = B (Q gases , P 21 -P 1 )
où A1 et B sont des cartographies établies en fonction de l'influence de la variation de pression (P21-P1) aux bornes du compresseur et du débit (Qga∑) des gaz d'échappement du moteur et,where A 1 and B are mappings based on the influence of the pressure variation (P 21 -P 1 ) at the compressor terminals and the flow rate (QgaΣ) of the engine exhaust gases and,
où A2 est une cartographie établie en fonction de l'influence de la température (T31) des gaz d'échappement en amont de la turbine et de la consigne de commande de puissance (RCO) soit d'un actionneur des ailettes de la turbine si celle-ci est une turbine à géométrie variable soit d'un actionneur de dérivation des gaz d'échappement si la turbine est à géométrie fixe.where A 2 is a map established as a function of the influence of the temperature (T 31 ) of the exhaust gas upstream of the turbine and the power control setpoint (RCO) of an actuator of the fins of the turbine if it is a variable geometry turbine or an exhaust gas bypass actuator if the turbine is fixed geometry.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que, pour déterminer les fonctions correctives f1; f2, f3, on effectue une mesure de l'évolution de la pression en amont de la turbine en fonction du temps sur un moteur, on propose des fonctions f1; f2, f3, et on compare les valeurs estimées, avec ces fonctions correctives, de la pression (P31) en amont de la turbine aux valeurs mesurées de cette pression.5. Method according to one of the preceding claims, characterized in that, for determining the corrective functions f 1; f 2 , f 3 , a measurement is made of the evolution of the pressure upstream of the turbine as a function of time on a motor, functions f 1 are proposed ; f 2 , f 3 , and comparing the estimated values, with these corrective functions, of the pressure (P 31 ) upstream of the turbine to the measured values of this pressure.
6. Moteur à combustion interne pour véhicule, comprenant un turbocompresseur formé d'un compresseur et d'une turbine, caractérisé en ce qu'il comprend des moyens pour estimer la pression (P31) des gaz d'échappement en amont de la turbine selon la formulation suivante:
Figure imgf000013_0001
6. Internal combustion engine for a vehicle, comprising a turbocharger formed of a compressor and a turbine, characterized in that it comprises means for estimating the pressure (P 31 ) of the exhaust gas upstream of the turbine according to the following wording:
Figure imgf000013_0001
où ( P41) est la pression des gaz d'échappem ent en aval de la turbine, P1 la pression d'adm ission de l'air en amont du com presseur, P21 la pression de l'air en aval du compresseur, les fonctions ^ et f3 des fonctions correctives de valeur constante ou dépendant de l'un au m oins des param ètres suivants : débit d'air à l'adm ission, débit de carburant, débit des gaz d'échappement en sortie m oteur, débit de gaz de recirculation, variation du débit d'air à l'adm ission, variation du débit de carburant, variation du débit des gaz d'échappement en sortie m oteur, variation du débit de gaz de recirculation, régime moteur, demande de couple moteur, variation de la demande de couple m oteur, com m ande de la position des ailettes ou de la dérivation, variation de la com mande de turbocompresseur, tem pérature et pression en am ont du filtre à particules dans le cas d'un moteur Diesel, température de liquide de refroidissem ent ; et la fonction f2 une fonction corrective dépendante au m oins des pressions P21 et P1. where (P 41 ) is the exhaust gas pressure downstream of the turbine, P 1 the air intake pressure upstream of the compressor, P 21 the air pressure downstream of the compressor , the functions ^ and f 3 corrective functions of constant value or dependent on one of the following parameters: admission air flow, fuel flow, exhaust gas flow output m operator, recirculating gas flow rate, air flow variation at intake, variation in fuel flow, variation in exhaust gas flow at engine output, variation in recirculating gas flow, engine speed, motor torque demand, variation of the motor torque demand, com pletion of the position of the fins or the bypass, variation of the turbocompressor control, temperature and pressure in the particle filter in the case of a diesel engine, coolant temperature; and the function f 2 a dependent corrective function at the pressures P 21 and P 1 .
PCT/FR2007/052557 2006-12-19 2007-12-19 Method for estimating the exhaust gas pressure upstream from the turbine of a turbocharger WO2008084169A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655642A FR2910059A1 (en) 2006-12-19 2006-12-19 Exhaust gas pressure estimating method for oil engine of motor vehicle, involves estimating pressure of exhaust gas in upstream of turbine by choosing one of two formulas comprising parameters e.g. pressure of gas in downstream of turbine
FR0655642 2006-12-19

Publications (2)

Publication Number Publication Date
WO2008084169A2 true WO2008084169A2 (en) 2008-07-17
WO2008084169A3 WO2008084169A3 (en) 2008-10-23

Family

ID=38222518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052557 WO2008084169A2 (en) 2006-12-19 2007-12-19 Method for estimating the exhaust gas pressure upstream from the turbine of a turbocharger

Country Status (2)

Country Link
FR (1) FR2910059A1 (en)
WO (1) WO2008084169A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933137B1 (en) * 2008-06-30 2010-08-20 Renault Sas SYSTEM AND METHOD FOR CORRECTING THE MEASUREMENT OF A TURBINE FRONT PRESSURE SENSOR
FR2941267B1 (en) * 2009-01-22 2011-01-21 Renault Sas METHOD AND APPARATUS FOR DETERMINING THE PRESSURE BEFORE A TURBINE OF A TURBOCHARGER OF A THERMAL MOTOR.
FR2987076B1 (en) * 2012-02-17 2014-02-21 Renault Sa SYSTEM AND METHOD FOR ESTIMATING THE RELATIONSHIP BETWEEN UPSTREAM PRESSURE AND DOWNWARD PRESSURE OF THE TURBINE OF A SUPERCHARGED MOTOR OF A MOTOR VEHICLE.
EP2846027A1 (en) * 2013-09-10 2015-03-11 Delphi International Operations Luxembourg S.à r.l. Method to determine exhaust manifold pressure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356162A (en) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd Exhaust pressure detecting device and control device for engine
EP1221544A2 (en) * 2001-01-09 2002-07-10 Nissan Motor Co., Ltd. Fuel injection control for diesel engine
US20030101723A1 (en) * 2000-07-07 2003-06-05 Christian Birkner Method for controlling a charge pressure in an internal combustion engine with an exhaust gas turbocharger
WO2003046356A2 (en) * 2001-11-28 2003-06-05 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
US6715287B1 (en) * 1999-12-28 2004-04-06 Robert Bosch Gmbh Method and device for controlling an internal combustion engine that is provided with an air system
EP1416138A2 (en) * 2002-11-01 2004-05-06 Toyota Jidosha Kabushiki Kaisha EGR-gas flow rate estimation apparatus for internal combustion engine
FR2873409A1 (en) * 2004-07-22 2006-01-27 Siemens Vdo Automotive Sas METHOD FOR DETERMINING THE EXHAUST PRESSURE OF A TURBOOCOMPRESSED INTERNAL COMBUSTION ENGINE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356162A (en) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd Exhaust pressure detecting device and control device for engine
US6715287B1 (en) * 1999-12-28 2004-04-06 Robert Bosch Gmbh Method and device for controlling an internal combustion engine that is provided with an air system
US20030101723A1 (en) * 2000-07-07 2003-06-05 Christian Birkner Method for controlling a charge pressure in an internal combustion engine with an exhaust gas turbocharger
EP1221544A2 (en) * 2001-01-09 2002-07-10 Nissan Motor Co., Ltd. Fuel injection control for diesel engine
WO2003046356A2 (en) * 2001-11-28 2003-06-05 Volkswagen Aktiengesellschaft Method for determining the composition of a gas mixture in a combustion chamber of an internal combustion engine with re-circulation of exhaust gas and a correspondingly embodied control system for an internal combustion engine
EP1416138A2 (en) * 2002-11-01 2004-05-06 Toyota Jidosha Kabushiki Kaisha EGR-gas flow rate estimation apparatus for internal combustion engine
FR2873409A1 (en) * 2004-07-22 2006-01-27 Siemens Vdo Automotive Sas METHOD FOR DETERMINING THE EXHAUST PRESSURE OF A TURBOOCOMPRESSED INTERNAL COMBUSTION ENGINE

Also Published As

Publication number Publication date
WO2008084169A3 (en) 2008-10-23
FR2910059A1 (en) 2008-06-20

Similar Documents

Publication Publication Date Title
EP2156036B1 (en) System for regulating the supercharging pressure of an internal combustion engine having two staged turbochargers
WO2013045785A1 (en) Diagnostics method and system for a power plant having two staged turbocompressors
FR2874237A1 (en) Supercharged internal combustion engine e.g. gasoline engine, controlling method, involves comparing values of mass air flow, and estimating defect if values have amplitude difference higher than predefined threshold
EP2279340B1 (en) Method for controlling an engine
EP2361349B1 (en) Method of dynamically estimating the fresh air flow rate supplied to an engine with high-pressure and low-pressure egr circuits
EP2956651B1 (en) Method of determination of exhaust gas pressure upstream of a turbo charger and of gas flow amount passing through its turbine
WO2010084255A1 (en) Method and device for determining the pressure upstream from the turbine of a supercharging turbocharger of a thermal engine
EP2061961B1 (en) Control system for estimating the fresh air flow entering an internal combustion engine, and method therefor
WO2008084169A2 (en) Method for estimating the exhaust gas pressure upstream from the turbine of a turbocharger
FR2915237A1 (en) Variable geometry supercharger controlling system i.e. electronic control unit, for internal combustion engine i.e. diesel engine, of motor vehicle, has calculating block deducing set point of geometry of compressor to regulate geometry
EP1630387A1 (en) Method for controlling the amount of recirculated exhaust gas in an internal combusiton engine of a vehicle
FR2948415A1 (en) Intake air supercharging device control system for internal combustion engine of motor vehicle, has detection unit comprising comparison unit to compare difference of estimated and measured pressure with supercharging defect threshold
FR2903147A1 (en) Internal combustion engine e.g. supercharged oil engine, controlling method for motor vehicle, involves determining, by calculation, set point value of expansion rate of turbine and position of waste gate for adjusting boost pressure
EP2539567B1 (en) Exhaust pressure estimation in a vehicle
WO2014041296A1 (en) Method for regulating a supercharge for a turbocompressor coupled to an electric machine, and corresponding turbocompressor device
FR2821890A1 (en) Determination of turbine exhaust gas output temperature of an automobiles turbo-compressor, uses turbine rotational speed, turbine efficiency and gas input temperature
FR2923538A3 (en) Turbine upstream pressure estimating system for supercharged oil engine of motor vehicle, has calculation units calculating expansion ratio of turbine from magnitude representing temperature variation to deduce upstream pressure of turbine
EP2751416B1 (en) System and method for controlling an internal combustion engine of an automotive vehicle with high-pressure and low-pressure exhaust gas recirculation circuits in transient mode operation
WO2006092527A1 (en) Method for optimized transient-phase regulation in a turbocharger
EP1828578B1 (en) Method for controlling a supercharged engine
FR2833998A1 (en) I.c. engine recycled exhaust gas mass flow calculation procedure and apparatus uses measurements of pressure and fresh air temperature
WO2011001057A2 (en) System for calibrating the operating range of a supercharged internal combustion engine
EP1748174B1 (en) Method and apparatus for estimating air flow quantity of a vehicle tubocharged engine
FR2917125A1 (en) Boost pressure regulating system for e.g. diesel engine of vehicle, has prepositioning unit prepositioning actuators, and regulators cooperating with arbitration unit to control one of actuators to modify pressure of turbocompressors
FR2874968A1 (en) Internal combustion engine`s e.g. overfed diesel engine, boost pressure controlling method for motor vehicle, involves determining set point value of pressure in upstream of turbine of turbocompressor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07871970

Country of ref document: EP

Kind code of ref document: A2