WO2008083610A1 - Dispositif de mesure du courant et procédé d'étalonnage de ce dernier - Google Patents

Dispositif de mesure du courant et procédé d'étalonnage de ce dernier Download PDF

Info

Publication number
WO2008083610A1
WO2008083610A1 PCT/CN2008/000013 CN2008000013W WO2008083610A1 WO 2008083610 A1 WO2008083610 A1 WO 2008083610A1 CN 2008000013 W CN2008000013 W CN 2008000013W WO 2008083610 A1 WO2008083610 A1 WO 2008083610A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
module
current
output
range
Prior art date
Application number
PCT/CN2008/000013
Other languages
English (en)
French (fr)
Inventor
Huabin Zhao
Original Assignee
Huabin Zhao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huabin Zhao filed Critical Huabin Zhao
Publication of WO2008083610A1 publication Critical patent/WO2008083610A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/181Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references

Definitions

  • the invention relates to the field of electric energy measurement, in particular to the field of current detection and calibration technology, in particular to
  • the Rogowski coil is the sensor's current sensing device and its calibration method.
  • the range of RIS devices generally covers 20A-300KA, and in special cases, the value can be higher.
  • the Rogowski coil has been connected to the integrator to form a current detecting device.
  • This understanding has existed for decades, and it has in fact become a classic theory, no doubt. Even if the calibration of the RIS device built under the guidance of this understanding is in trouble, people have never doubted that this understanding itself has problems, but always attribute the problem to the imperfect and flawed measurement principle of the Rogowski coil.
  • the highest value of the method of value transfer and traceability is limited by the maximum current value and load capacity of the standard current source.
  • the maximum value of RIS cannot exceed the maximum value of the standard current source.
  • the standard current source value and load that can be provided by the national legal metrology institutions are small, about 100A-1000A. According to this method, the RMS value of the RIS with the value up to several hundred K amps cannot be transmitted and traced. .
  • the method requires the inspection of the Rogowski coil, the establishment of the experimental circuit, the configuration of the standard transformer, by the application of Rogowski
  • the mutual inductance M is compared with the standard transformer Ms to determine the mutual inductance. Then, the mutual inductance and the parameters of all the devices in the whole circuit are substituted into the overall circuit calculation formula to complete the RIS calibration. To calibrate the RIS device in this way, the entire RIS circuit needs to be disconnected and the parameters of all devices measured.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art, to provide a standard current source capable of not limiting the maximum amount, requiring no large signal, and having no need to measure the mutual inductance of the Rogowski coil, without disassembling the RIS device, It is easy to realize automatic calibration, current detection device that is easily accepted and used by people and its calibration method.
  • the current detecting device includes a sensing module and an integral amplifying module formed by a Rogowski coil, and the main feature thereof is that the device includes a standard variable voltage constant voltage source and a partial pressure conversion having a plurality of ranges a module, the input end of the voltage dividing conversion module is selectively connected to the sensing module or a standard variable voltage constant voltage source, and the output end of the voltage dividing conversion module is connected to the integral amplification Module.
  • the voltage division conversion module of the current detecting device comprises a sampling resistor unit and a band switching unit, wherein an input end of the sampling resistor unit is selectively connected to an output end of the sensing module or an output end of a standard variable voltage constant voltage source And the sampling resistor unit has a plurality of variable voltage dividing outputs, and the input end of the band switching unit is selectively connected to one of the plurality of variable voltage dividing outputs, and the band switch The output of the unit is connected to the input of the integral amplification module.
  • the sampling device of the current detecting device P and the unit includes a plurality of voltage dividing resistors connected in series, and the plurality of voltage dividing resistors selectively fall to the ends of the sensing weight block, the ends of the detecting end or the standard described in the test.
  • the output ends of the variable voltage constant voltage source are connected, and the lead wires between the adjacent dividing voltages are connected to the corresponding inch variable voltage output terminals.
  • the electrical detection device further includes a switch module, the fixed end of the switch module is connected to the end of the voltage division conversion module, and the switch end of the switch module is selectively coupled to the pass The output of the sense module or the output of a standard variable voltage voltage source is connected.
  • the switching end of the switching module of the current detecting module also selectively connects the sensing module to the standard variable and the switching end of the tan switching module.
  • the current detecting device also includes an electric following module, and the voltage following module is connected to the partial voltage converting module The output of the block is between the input of the integral amplification module and the input.
  • the calibration coefficient of the current detecting device in the condition that the voltage dividing conversion module is in the small-range band includes the following steps: (21) the voltage dividing conversion module is disposed in a small-scale band suitable for the current II output of the standard current source; 22) Set the voltage division conversion module to the small-scale band, and measure the voltage across the output terminal of the integral amplification module.
  • the step (22) in the method of calibrating the current detecting device is:
  • the life-pressure conversion mode is set to a range that is suitable for loading the standard current source output current.
  • the step (.3) in the method of calibrating the current detecting device is:
  • the pair of electropaths the measuring device is calibrated, and the detection current detecting device in the * is in the input/output ratio of the voltage division conversion module in different range bands, and includes the following steps:
  • the size of the voltage U2 outputted by the constant voltage source of the device is set to the number of towns of the current range of the current detecting device;
  • step (46) If the current detecting device further has not detected the other range bands, then the voltage dividing module is switched to be set to the corresponding range band, and the above step (42) is repeated.
  • the calibration coefficient obtained by the current detecting device in the method for performing the current detecting device in the condition that the voltage dividing conversion module is in different range bands is specifically:
  • Klx corresponds to ⁇ 3/ ⁇ 2 in the span band.
  • the step (1) in the method of aligning the current detecting device further includes the following steps:
  • the independent input current output voltage ratio of the sensing module in the method of detecting the electrical device, the internal resistance of the Rogowski coil in the sensing module, and the resistance of the input of the voltage dividing module include the following steps:
  • the electrical detection device in the method for calibrating the electrical circuit includes a switch module, and the fixed end of the switching and closing module is connected to the input end of the voltage division conversion module, and the Switching the switching terminal selection
  • the sensing module is sequentially connected in series with the standard variable voltage constant voltage source and connected to the switching end of the switching module, and the step (3) is:
  • the weighting block is sequentially connected in series with the standard voltage and constant voltage source and connected to the switching end of the switching module.
  • the input/output voltage ratio of the detection current detecting device in the method for calibrating the current detecting device in the different range bands of the voltage dividing conversion module includes the following steps:
  • the calibration coefficient obtained by the current detecting device in the method for calibrating the current detecting device in the different range bands of the voltage dividing conversion module is specifically:
  • K K1 corresponds to ⁇ 3/ ⁇ 2.
  • the step (1) in the method of calibrating the ⁇ ? ⁇ line includes the following steps:
  • the independent input current output voltage ratio of the front sensing module in the current ⁇ ⁇ line method includes the following steps:
  • the magnitude of the quasi-current current is set to a value within a minimum range of the electrical measuring device; (A22) measuring the voltage Us at the output end of the sensing module;
  • the calibration coefficient obtained by the current detecting device in the method of directly calibrating the current detecting device in the condition that the voltage dividing conversion module is in different range bands is specifically:
  • K Ksx K3 in different range bands.
  • the step (3) of the method for calibrating the current detecting device without the voltage following module is: disconnecting the voltage dividing module from the sensing module, and the standard can be A variable voltage constant voltage source is coupled to the voltage division conversion module.
  • the method for calibrating the current detecting device detects the input-to-output voltage ratio of the voltage dividing device in different range bands , including the following steps:
  • the step W ( 1 ) in the method of calibrating the current detecting device includes the following steps:
  • A2 Check the internal resistance of the Rogo ⁇ ci ⁇ line, the voltage divider module is in the range of different range bands! f and, the independent input current output voltage ratio of the sensor module.
  • the internal resistance of the Rogowski coil in the sensing module of the method for detecting the electric mist and the voltage-dividing module is at the input end resistance of the different *-section strip 4, and the independent input current output of the sensing module Voltage ratio, including Next steps:
  • the tester should pass ⁇ : the electric output at both ends of the output end;
  • the current detecting device obtained by the convection check method in the quasi-method is in the condition that the partial pressure conversion module is in different range bands, and the true body is:
  • K Ksx is the same as ⁇ 3 ⁇ (corresponding to R3 + Rs under the charter) / (corresponding to R3 in the range).
  • the calibration system t obtained by the method for performing the calibration of the % flow detecting device in the method of dividing the voltage conversion module in different range bands is specifically:
  • Disconnect the 4-Rogowski coil exaggerate the 1-standard variable AC voltage constant voltage source; throw the connection state three (connect the contact points a, j, connect the contact points h, b, connect the contact points g, k): series ⁇ - Rogowski group, series (-standard variable AC voltage constant voltage source;
  • the current detecting device includes a sensing module and an integral amplifying module formed by a Rogowski coil, wherein the device further includes a standard variable voltage constant voltage source and a voltage dividing module having a plurality of range bands.
  • the input end of the voltage division conversion module is selectively connected to the sensing module or the standard variable voltage constant voltage source, and the output end of the voltage division conversion module is connected to the integral amplification module.
  • the voltage division conversion module includes a sampling resistor unit and a band switch unit, and an input end of the sampling resistor unit is selectively connected to an output end of the sensing module or a standard variable voltage constant voltage The output of the source, and the
  • the current detecting device of the present invention further includes a switching switch module, the fixed end of the switching switch module is connected to the input end of the voltage dividing conversion module, and the switching end of the switching switch module is selectively implemented
  • the following functions throwing and falling, a series of 4-Rogowski coils, disconnecting 1 - standard variable AC voltage constant voltage source;
  • the selectivity is selectively connected to the output of the mode or the output of the standard variable voltage constant voltage source, or the standard variable voltage burning source of the mode:, is sequentially connected in series and switched Switching terminal phase of the switch module ' . ⁇ :: ⁇ .
  • the electric follower module is connected to the input end of the voltage dividing module of the voltage dividing module, and in the following specific embodiment, One kind of scheme is that the ' ⁇ ' is in the square, and the third type is not included.
  • the method of correcting the flow of the current method includes the following steps:
  • the transformation module is connected to the sensing ⁇ ;
  • the access party ⁇ connects the sensing mode and the standard voltage constant voltage source in series and is connected to the switch module
  • the access method is adopted by the scheme ⁇ ⁇ and scheme 3, and the access mode is adopted by the scheme 2.
  • the inrush current output voltage ratio of the sensing module is Ks:
  • the calibration coefficient of the electric device is obtained under the condition that the sub-transformation module is in different conditions, specifically: - ⁇
  • the calibration coefficient of the electrical measuring device in the different range bands of the voltage division conversion module is calculated as follows: . , ⁇ + '
  • K Ksx K3x (Rf+Rs) / (Rf) in different range bands;
  • the steps in (1) of the method also include the following steps:
  • K Ksx K3 in different range bands.
  • the step (1) in the method also includes the following steps:
  • the resistance at the input includes the following steps:
  • step (h) If the current detection setting still has other range bands that have not been detected yet, the divided voltage conversion module is switched to the corresponding range band, and the above step (f) is repeated.
  • the calibration coefficient of the electric test is set under the condition of different range bands of the partial pressure change mode, which is: according to the electric power, the calibration coefficient of the subdivided partial pressure conversion module in different range bands is determined.
  • the route of the ⁇ 4 of the sacred is as follows: Program
  • Ks Is/Us (such as lOA/mV). Since the measurement process current is zero and there is no internal resistance loss, Ks is a constant and can be applied to other high-value ranges of several hundred KA.
  • the second step is to find the calibration coefficient of the RIS system in a small range, that is, the input current output voltage ratio Kl.
  • Disconnect the Rogowski 3 ⁇ 4 sampling resistor connection 'cut the voltage divider to different ranges, and connect the voltage divider to the two ends of the Rogowski coil ⁇ voltage U2 (such as 10mV-100mV-lV-10V-100V), voltage and RIS current
  • U2 such as 10mV-100mV-lV-10V-100V
  • the range current The current is induced on the Rogowski coil.
  • the voltage measured by the RIS is measured by the current U3 (indicated by voltage), and the ratio of the J 3 transmission voltage to the K3 U2/U3 is calculated.
  • Step 5 Find Different Range Calibration Coefficients for RIS Devices ⁇
  • the current should be within this range, the current is too large, it is easy to burn out the equipment; the current is too small, it is inconvenient to measure.
  • the minimum range is 20A ⁇ 200A, the current is taken ⁇ );
  • the third ⁇ , the ⁇ is the same as the amount of output ⁇ ⁇ output voltage ratio K3.
  • connection state two that is, series standard variable AC voltage constant voltage source 1;
  • Step find the input electrical output voltage ratio s of the owski coil.
  • Is fc*
  • fc*
  • wski ⁇ side ⁇ electric & Us
  • Ks Is/Us (such as 10A ⁇ mV)
  • C t path current is zero, no internal resistance loss, so Ks is a constant, can be applied to several other hundred: iA ⁇ 3 ⁇ 43 ⁇ 4 f process): ,
  • the first step is to ask for RIS! ⁇ , the calibration coefficient under the range, that is, the input current output voltage ratio Kl.
  • K2 K3.
  • the fourth step is to find the different range calibration coefficients of the RIS device.
  • the standard variable AC voltage source 1 is supplied with a voltage U3 which does not exceed the voltage range across the Rogowski line when the RIS device detects the current range current.
  • the fourth step is to find the different range calibration coefficients of the RIS device.
  • K Ksx corresponds to the range ⁇ 3.
  • Rogowski ⁇ measures the voltage across Rogowski by the current Is (eg 100A ) of the standard source
  • the fourth step is to find the different range calibration coefficients set by RIS.
  • K corresponds to Cheng Hao 3X ' (R3 + Rs for the corresponding range) R R3 for the corresponding range.
  • K ⁇ K3/K2X for the corresponding range (R3 + Rs for the corresponding range) / (R2+Rs for the corresponding range);
  • the calibration coefficient K under different ranges (such as lOOA-lkA-lOkA-lOOkA-lOOOkA) can be obtained.
  • the first step is to find the calibration coefficient of the RIS system in a small range, that is, the input current output voltage ratio Kl.
  • Double-throw switch 5 connect state four, disconnect Rogowski. Circle 4, and disconnect standard variable AC voltage constant voltage source
  • resistance Rs is the resistance between two points of M, N (such as ⁇ );
  • the fourth, ⁇ is the circuit of the circuit ⁇ with the output of the charter ratio of 3.
  • the fourth step is to find the different range calibration coefficients of the RIS device.
  • K Ksx corresponds to the range ⁇ 3 ⁇ (corresponding to R3 + Rs in the range) / (corresponding to R3 in the range).
  • K Kl x corresponds to the range ⁇ ' K / K2x (corresponding to R3 + Rs in the range) / (corresponding to R2+Rs in the range);

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

电流检测装置及其校准方法
技术领域
本发明涉及电能计量领域, 特别涉及电流检测及校准技术领域, 具体是指一种以
Rogowski线圈为传感器的电流检测装置及其校准方法。
背景技术
目前, 公知的以 Rogowski线圈为传感器的电流检测装置(简称 RIS )的校准方法一直不 善》 有待 ί ~。
当前, RIS装置的量程范围一般覆盖 20A-300KA, 特殊情况下, 量值还可以更高。
公知的对 Rogowski线圏的认识, 具体请参阅以下文献:
揭秉信《大电 测》, 北京: 工业出版社 1987年 1月
其中,一直是将 Rogowski线圈接积分器即可构成电流检测装置。这种认识已经存在了几 十年, 它事实上已成为经典理论, 不容质疑。 即使在这种认识指导下构建的 RIS装置的校准 陷入了困境, 人们也从来没有怀疑过这种认识本身有问题, 却始终将问题归结为 Rogowski 线團的测量原理不完善、 有缺陷。
公知的 RIS装置校准方法有以下两种:
( 1 )一种是直接方法, 其通过标准电流源输入电流 II , RIS装置测得电流 12, 从而可以 测出 RIS的校准系数 K = 11/12。
此方法实际上是行不通的, 原因很简单:
'首先, 若有上百 K安培的高量值的标准电流源, 则设备庞大, 无法移动, 而 RIS也同样 设备庞大, 无法移动, 不具备整体送检条件; 若拆开 RIS, 部分送检, 则破坏了 RIS工作的 基本状^。
这种方法量值传递和溯源的最高量值会受到标准电流源最高量值和负荷能力限制, RIS 的最高量值不能超过标准电流源最高量值。 目前, 国家法定计量机构所能够提供的标准电流 源量值和负荷均较小, 约为 100A-1000A, 按此方法, 不能对量值高达几百 K安培的 RIS进 行量值的传埠和溯源。
( 2 )另一种是间接方法, 具体也请参阅以下文献:
揭秉信《大电流检测》, 北京: 工业出版社 1987年 1月
该方法需要送检 Rogowski线圏, 建立实验电路, 配置标准互感器, 通过将 Rogowski的 互感 M和标准互感器 Ms相比较, 确定互感系数。 然后, 将互感系数及整个电路中所有器件 的参数, 代入整体电路计算公式, 从而完成 RIS的校准。 按此方法校准 RIS装置, 需要将整 个 RIS电 全部拆开, 并测量所有器件的参数。
由于在不拆开 RIS电路的情况下,无法进行校准。 因而此方法破坏了 RIS装置的完整性, 实际上无实际操作性可言。 发明内容
本发明的目的是克服了上述现有技术中的缺点, 提供一种能够不限制最高量值、 不需要 大信号的标准电流源、 不需要测定 Rogowski线圈的互感系数、 不需要拆开 RIS装置、 易实现 自动校准、 易被人们所共同接受和使用的电流检测装置及其校准方法。
本发明解决其技术问题所采用的技术方案是:
该电流检测装置, ^括以 Rogowski线圈所构成的传感模块和积分放大模块,其主要特点 是, 所述的装置中 ^包括标准可变电压恒压源和具有数个量程波段的分压变换模块, 所述的 分压变换模块的输入端选择性地与所述的传感模块或者标准可变电压恒压源相连接, 且该分 压变换模块的输出端连摔于所述的积分放大模块。
该电流检测装置的分压变换模块包括取样电阻单元和波段开关单元, 所述的取样电阻单 元的输入端选 性 连接于所述的传感模块的输出端或者标准 变电压恒压源的输出端, 且 该取样电阻单元具有数个可变分压输出端, 所述的波段开关单元的输入端选择性地与该数个 可变分压输出端中的一个输出端相连接, 且该波段开关单元的输出端与所述的积分放大模块 的输入端相连接。
该电流检测装置的取样电 P且单元包括依次串联的数个分压电阻, 该数个分压电阻选择性 摔于所述的传感權块的,出端两端或考所述的标准可变电压恒压源的输出端两端, 且相 邻的分庄电^^间的引出线连接于对应的寸变分压输出端。
该电 检测装置中还包括有切椽开关模块, 所述的切换开关模块的固定端连接于所述的 分压变换模块的 端, 且该切换开关模块的切换端选择性 ^与所述的传感模块的输出端或 者标准可变电压怛压源的输出端相连接。
该电流检 ¾ 罩的切 升关模块的切换端还选择性地使得所述的传感模块与所述的标准 可变 ^惮^ 俸 专 并与谭切换 模块的切^端相连接。
该电流检测装皇中还 &括有电 跟随模块, 所述的电压跟随模块接入所述的分压变换模 块的输出端与所述的积分放大模块的输入端之间。
该对上述的电流检测装置进行枝准的方法, 其主要特点是, 所述的方法包括以下步骤:
( 1 )将所述的分压变换模块与所述的传感模块相连接;
( 2 )将一标准电流源的电流加载至传感模块,检测所述的电流检测装置在分压变换模块 处于小量程波段条件下的校准系数;
( 3 )将所述的标准可变电压恒压源接入所述的分压变换模块;
( 4 )检测该电流检测装置在分压变换模块处于不同量程波段条件下的输入输出电压比; ( 5 )根据检测结果得到该电流检测装置在分压变换模块处于不同量程波段条件下的校准 系数。
该电流检测装置在分压变换模块处于小量程波段条件下的校准系数, 包括以下步骤: ( 21 ) 分压变换模块设置于该标准电流源输出的电流 II大小所能够适合的小量程波段; ( 22 )将分压变换模块设置于小量程波段条件下, 测量积分放大模块输出端两端的电压
U1;
( 23 ) 以下公式计算该电流检测装置在分压变换模块处于小量程波段条件下的校准 系数 K1:
K1 = 11肌
该对电流检测装置迸行校准的方法中的步骤(22 )为:
将命压变换模 设置于维够适合^加载该标准电流源输出电流大小的量程波段。
该对电流检测装置进行校准的方法中的步骤(.3 )为:
将所述的分压变换模块断开与传感模块的连接, 并将所述的标准可变电压恒压源与所述 的分压变换模块相连接。
该对电疼^:测装置进舞校准 方, *中的检测电流检测装置在分压变换模块处于不同量程 波段条件下的输入输出电 比, 包括以下步骤:
( 41 )将所述的分压变换模块设置于共中一个量程涑段;
( 42 ) 所迷的輛准 变电^恒压源输出的电压 U2 的大小设置为该电流检测装置的当 前量程波段^的数镇;、
( 43 ) 所述的 分放大模块的输出端 端的电压 U3;
( 44 )根捧以下公 计算该电¾ ^测装置在当前量程蟓 的输入输出电压比 3:
K3 = U2/U3; . ( 45 )如果当前量程波段与检测该传感模块的输入电流输出电压比 K1 时的量程波段相 同, 则第二输入输出电压比 K2 = K3;
( 46 )如果所述的电流检测装置还存在其它量程波段尚未进行检测, 则将所述的分压变 换模块切换设置于相应的量程波段, 并重复上述步骤(42 )。
该对电流检测装置进行 准的方法中的得到电流检测装置在分压变换模块处于不同量程 波段条件下的校准系数, 具体为:
根据以下公式计算该电流检测装置在分压变换模块处于不同量程波段条件下的校准系数
Κ:
Κ = Klx对应量程波段下的 Κ3/Κ2。
该对电流检测装置进行楝准的方法中的步骤(1 )之前还包括以下步驟:
( A1 )将所述的 变换模块断开与传感模块的连接;
( Α2 )将一标准电流源的电流加载至传感模块, 检测该传感模块的独立输入电流输出电 压比、 传感模 ^:中 Rogowski线圈的内阻以及分压变换模块输入端的电阻。
该对电¾¾^装置进特枝准的方法中的检测传感模块的独立输入电流输出电压比、 传感 模块中 Rogowski线圏的内阻以及分压变换模块输入端的电阻, 包括以下步骤:
( A21 )将该标准电流濂输出的电流 Is的大 '』 殳置为该电流检测装置的最小量程波段内 的数值;
( A2 ) 蚩 传 φ模块输出端两端的.电压 L¾;
( A23 ) :根据以下公 计算该传感模块的输入电流输出电压比 Ks:
Ks = Is/Us;
( A24 )测 该 感 块中 Rogo^ki线围的输'出鴣两端的电阻 Rs;
( A25 ): 章 模块输^ V端 端的电阻 Rf- 对电流 ^置进行 准的方法 的得到电 ¾^检测装置在分压变换模块处于不同量程 波段 H ,下的校准系 , 具体为: - 根据以下 式计算^ 测装置在命压 换模块处于不同量程波段^ ft下的校准系数
.,. K ^Ksx不同量程波段下的 K3x ( Rf+Rs ) / ( RfX
该对电 ¾ ^ 巷置 行校准的方法中的电 检测装翠中还包括有切换开关模块, 所述的 切换并关模^的 定端连接 所述的分压变换模块的输入端 , 且该切换升关模块的切换端选 择性地使得所述的传感模块与所述的标准可变电压恒压源依次串联并与该切换开关模块的切 换端相连接, 所迷的步骤( 3 )为:
将所述的传 權块与所述的标准可吏电压恒压源依次串联并与该切换开关模块的切换端 相连接。
该对电流检测装置进行校准的方法中的检测电流检测装置在分压变换模块处于不同量程 波段 ^下的输入输出电压比, 包括以下步骤:
( 41 )将所述的分压变换模块设置于其中一个量程波段;
( 42 )将所述的标准可变电压恒压源输出的电压 U2 的大小设置为该电流检测装置的当 前量程波段内的数值;
( 43 )测量所述的积分放大模块的输出端两端的电压 U3;
( 44 )根据以下分式计算该电¾ ^测装置在当前量程波段的输入输出电压比 K3:
K3 = U2AJ3;
( 45 )如果当前量程波段与检测该传感模块的输入电流输出电压比 K1 时.的量程波段相 同, 则第 输入输出 ¾压比^2 = {:3;
( 46 )如果所述的电流检测装置还存在其它量程波段尚未进行检测, 则将所述的分压变 换模块切换 置于相应 量程波段, 并重复上述步骤 ( 42 )。.
该对电流检测装置进行校准的方法中的得到电流检测装置在分压变换模块处于不同量程 波段 下的校准系数, 具体为:
根据 下公式计算该电流检测装置在分压变换模块处于不同量程波段条件下的校准系数
K:
)■:: K = K1 对应量 下的 Κ3/Κ2。
该对^ ^ ^? ^行校准的方法中的步骤( 1 )之前 包括以下步骤:
( A1 )将所迷的分 变换模块斯开与传感模块的连接;
( Α2 ) 一标 电^ 的电流加 至传感模块, 检测该传感模块的独立输入电流输出电 压比。 ■' ' : ·
该对电流^^ ^^ 行 准 ^方法中的锋测传感模块的独立输入电流输出电压比, 包括 以下步骤:
( A21 ) 该, 准电流^犄出^电流 的大小设置为该电 测装置的最小量程波段内 的数值; ( A22 )测量该传感模块输出端两端的电压 Us;
( A23 )根据以下 ^式计算该传感模块的输入电流输出电压比 s:
Ks = Is/Us„
该对电流检测装直进行校准的方法中的得到电流检测装置在分压变换模块处于不同量程 波段条件下的校准系数, 具体为:
根据以下公式计算该电 ¾^测装置在分压变换模块处于不同量程波段条件下的校准系数
K:
K = Ksx不同量程波段下的 K3。
该对电流检测装置在不包括电压跟随模块的条件下进行校准的方法中的步骤(3 )为: 将所述的分压变换模块断开与传感模块的连接, 并将所述的标准可变电压恒压源与所述 的分压变换模块相连接。
该对电流检测装置进行校准的方法中的检测 流检测装置在分压变换模块处于不同量程 波段糸 下的输入输出电压比, 包括 1¾下步骤:
( 41 )将所迷的分压变换模块设置于其中一个量程波段;
( 42 ) .将所述的标 可变电压恒 源输 iii的电压 U2 的大小设置为该电流检测装置的当 前量程波段内的数值;
. ( 43 )测量所述的积分放大模块的输出端两端的电压 U3;
( 44 )根择以下公 算该电 测装置在当前量程波段的输入输出电压比 K3:
K3 = U2/U3;
( 45 )如果^前章程波段与检测该传感模 的 入电流输出电压比 K1 时的量程波段相 同, 则第二输入输出电^比 K2 = K3;:
( 46 ) '如果所述的电流检测装翠还存在其它量程波段尚未进行检测, 则将所述的分压变 换^ t切换谀盍于相应的章程波段, 并重复上迷步骤(42 )。
该对电流检测装置 ¾行校准的^法中的步 W ( 1 )之前还包括以下步骤:
( A1 )将 的 换模块 并与传感模 的:连接;
A2 检 爾 ^ t中 Rogo ^ci^线困的内阻、 该分压变换模块处于不同量程波段条 件下的输 Λ端电! f且、.该传感模块的独立输入电流输出电压比。
该对电 ^雾 ^亍枚准的方法 的检测传感模块中 Rogowski线圏的内阻、分压变换 模块处†不同 *程 段条 4下的输入端电阻、 传感模块的独立输入电流输出电压比, 包括以 下步骤:
( A21 )该标准电 φ溽输出电^ Is;
测童该传^^:输出端两端的电庄^;
( A23 )根据以下公式计算该传感模块的输入电流输出电压比 Ks:
Ks = Is/Us;
( A24 )将该标准电流源输出电流关闭;
( A25 )测量该传感模块中 Rogowski线圈的输出端两端的电阻 Rs;
( A26 )测量该分压变换模块处于不同量程波段条件下的输入端电阻 R3;
( A27 )如果当前量程波段与检测该传感模块的输入电流输出电压比 K1时的量程波段相 同, 则第二输入端电 |?a R2 = R3;
( A28 如果所述^电 检测裴直还存在其它量程波段尚未进行检测, 则将所述的分压 变换模块切换设:置于相禽 量程波段, 并重复上迷步骤( A26 )。
该对 流检 置进行 准的方法中的得到电流检测装置在分压变换模块处于不同量程 波段条件下的校^系数, ;;真体为:
根据以: 公 计^ 电 测蓼置在分压 换模块处子不同量程波段条件下的校准系数
K:
K Ksx对^量裎下 Κ3χ (对应章程下 R3 + Rs ) / (对应量程下 R3 )。 该对%流检测装置进行徠准的方法中的得到电¾¾脸测装置在分压变换模块处于不同量程 波段条件下的校准系 t, 具体为:
根据以下公式计算该电流检测装翠在分压变换模块处于不同量程波段条件下的校准系数
Figure imgf000009_0001
附图说明. ·
, 1表本发明的电: 测装置的电^^理^。 ―
图 2a、 2b、 2c和 2d分别是图 1中⑤-切换开关的四种连接状态图。 其中:
① -标准可变交流电压恒压源, 模拟 Rogowski线團提供电压信号
② -标准可变交流电流源
③ -垂直穿过 Rogowski线圈的金属导体
④ -Rogowski线圈
(|)-切换开关'
掷 接状夸一 触点 g、 a,: ^¾触点 h、 b):
串联 ¾)- ogowski:线圏, 断开①-标准可变 ¾流电压恒^源; 掷连接状^ - (连 接触点 g、 j, 连摔接解 h、 k ):
断开④ -Rogowski线圈, 夸联①-标准可变交流电压恒压源; 掷连接状态三 (连接接触点 a、 j, 连接接触点 h、 b,连接接触点 g、 k): 串联 Φ-Rogowski 團, 串联 ( -标准可变交流电压恒压源;
Figure imgf000010_0001
⑥ -取样^阻
⑦ ::
掷接^ 程;
掷接 点 d接通^大量程;
掷接触 接 i¾较小童程;
掷接触点 f接 ifi最小量程。 Φ - 鋒 :
-积 放^器 具体实施方式
为了能够更清楚地理解本发明的技术内容, 特举以下实施例详细说明。
该电流检测装置, 包括以 Rogowski线圏所构成的传感模块和积分放大模块, 其中, 所述 的装置中还包括标准可变电压恒压源和具有数个量程波段的分压变换模块, 所述的分压变换 模块的输入端选择性地与所述的传感模块或者标准可变电压恒压源相连接, 且该分压变换模 块的输出端连接于所述的积分放大模块。
其中, 所述的分压变換模块包括取样电阻单元和波段开关单元, 所述的取样电阻单元的 输入端选^性地连接于所述的传感模块的输出端或者标准可变电压恒压源的输出端, 且该取
Figure imgf000011_0001
而且, 本发明的电流检测装置中还包括有切换开关模块, 所述的切换开关模块的固定端 连接于所述的分压变换模块的输入端, 且该切换开关模块的切换端选择性地实现以下功能: 掷连摔状态,一串 ④ -Rogowski线圏, 断开① -标准可变交流电压恒压源;
掷连择 ^ 断 Φ-RogQwski线團, .串联①标准可 交流电压恒压源;
梆棒接雜 联④ rRogowSki线圏, 串联①-标准可变交流电压恒压源;
掷连槔状态^断开④ilogowski,线圏,:渐开① -标准可变交流电压恒压源。
即, :选择性 与所 的传^模 的 出端或者标准可变电压恒压源的输出端相连接, 或 者使得所^的 模 : , 的标准可变电压燒压源依次串联并与该切换开关模块的切换端 相 ' .■:: · .
该电流 装置中 ^以 抟有电^ 随模块, 所迷的电 跟随模块接入所述的分压变 换模块的输 端 ^迷„分放大模块的输入端 间, 在 下的具体实施方案中, 第一种方 案 Ψ是' 抟的 方聿中是 的, 第三种 ^案申是不包括的。 该对 ^述的^流检 直进行 准的 法, 包括以下步骤:
. ( 1 ) ^^^^分 ^变换模块与所 的传感 ^相连接;
( 2 )将一 准电流源的电流加载至传感模块,检测该电流检测装置在分压变换模块处于 小量程波段条件下的枝准系数, 包括以下步骤:
( a )将分压变换模块设置于该标准电¾源输出的电流 II大小所能够适合的小量程波段;
( b )测量该传感模块输出端两端的电压 U1 ;
( c )根据以下公式许算该电流检测装置在分压变换模块处于小量程波段条件下的校准系 数 K1 :
Kl = I1/U1;
,( 3 )将所迷的标准可变^ <压恒压源接入所述的分压变换模块, 具体为:
接入^ r式一, 将所 的分压变换模块断开与传感模块的连接, 并将所述的标准可变电压 恒压源与 j斤述的分压变换^块相连接; 或者:
接入方 ·^,:将所^^传感模 与所述的标准可¾电压恒压源依次串联并与该切换开关 模块的切 相连接
接入方式 被方案^ ~、 方案三采用, 接入方式 被方案二采用。
( 4 ) '检 ¾电¾ ^测裴覃在分厚 换模块处于不同量程波段^ 下的输入输出电压比, 包括以下步骤:
Figure imgf000012_0001
( 5 )在采用方案: ^、 方案二条件下, 根据检测结果得 该电 »测装置在分压变换模块 处于芊同量 校准系数, 体为:
Figure imgf000013_0001
(A1)将所述的分压变换模块断开与传感模块的连接;
(Α2 )将一标准电流源的电流加载至传感模块, 检测该传感模块的独立输入电流输出电 压比、 传感模块中 Rogowski线困的内阻以及分压变换模块输入端的电阻, 包括以下步骤:
( a )该标准电流源输出电流 Is;
( b ) ,测量该传感模块输出端两端的电压 Us;
(c)根据 下公式 耳该传感模块的榆入电流输出电压比 Ks:
Ks = Is/Us;
( d 测量 ¾ 感模块中 Rogowski ^围的输出端两端的电阻 Rs;
(e) ¾量¾分压变找模块输入端 端的电阻 Rf;
此时〖 得到 电 ¾ ^测装置在分 变换模块处于不同 *程波徒条件下的校准系数, 具体 为: - . ■
根据以下公 ^计算该电 测装置在分压变换模块处于不同量程波段 ^下的校准系数 : . ,·+ '
K = Ksx不同量程波段下的 K3x (Rf+Rs) / (Rf);
或者, 釆 方案 条件下, 该方法中的步骤 ( 1 )之前还包括以下步骤:
( A1)将 的夯在变换模 开 传感模块的连锋;
准 ΐ¾濂 电 裁^ 感模 , 检测该传感模块的独立输入电流输出电 压比,. '包持 '以 步'骤: ': .■ '
i ) t该标准电; 电流 is;
(b)测 *该传 棱块输出端两端的电压 us; -
( ^ ^算该传感^ 的输 ;电流输出电压比 Ks:
: Ks = Is/Us„
此时,「得到 测 置在分 变採模块^于不同量程波段条件下的校准系数, 具体 为: .
根据以 公 ¾算 电流检测装置在分压变换模块处于不同量程波段 下的校准系数 κ:
K = Ksx不同量程波段下的 K3。
或者, 在耒用方案三奈件下, 该方法中的步骤( 1 )之前还包括以下步骤:
(A1)将所述的分压变採模块断开与传感模块的连接;
( Α2 )将一标准电流源的电流加载至传感模块, 检测该传感模块的独立输入电流输出电 压比、传感模块中 Rogowski线圈的内阻以及分压变换模块处于不同量程波段条件下的输入端 的电阻, 包括以下步骤:
(a)该标准电流源输出电流 Is;
( b )测量该传感模块输出端两端的电压 Us;
( c )根挺! ¾下公式计算该传感模块的输入电流输出电压比 Ks:
s = Is/Us;
(d)将 标准电流源输出电流关闭;
(e)测章该传感模 中 Rogowski线團的输出端两端的电阻 Rs;
(f: 「测量该夯庄变换構块处于不同量程波段 下的输入端电阻 R3;
( g WP果当前量程波段与检测该传感模块的输入电流输出电压比 K1时的量程波段相同, 则第二输入端电阻 R2 ;
(h)如果所述的电流检测 置还存在其它量程波段尚未进行检测,则将所述的分压变换 模块切换设置于相应的量程波段, 并重复上述步骤(f)。
此时,,得到该电 ¼測装置在分压变椽模块处于不同量程波段条件下的校准系数, 具体 为: . ' ·
测装翼在分压变换模块处于不同量程波段 下的校准系数
Κ: ..
对^ ¾桎F Κ3χ ('对应量程" P 3 + Rs ) / (砷应量程下 R3 )。
或者? ':. : :'■ '::: · -: :: . '■' : - '.' '
得到该电 测捧置在分压 換模^:处 f不同量程波段条件下的校准系数, 具体为: 据 下公 该电 , 测笨置 分压变换模块 于不同量程波段 下的校准系数
Figure imgf000014_0001
在实^庳用垂中, :雄明的棊 4路线如下: 方案
Ks, Rogowski线圏的内阻 Rs,分压器
Figure imgf000015_0001
给 Rogowski线圏通过标准电流源的电流 Is (如 100A ), 测量 Rogowski两侧的电压 Us (如 IOIHV ), 计算电 电压比 Ks = Is/Us (如 lOA/mV )。 因测量过程电流为零, 无内阻损 耗, 因而 Ks是一个常量, 可以应用到其他几百 KA的高量值量程。
测量 Rogowski线圏的内 Rs和分压器输入端电阻 Rf。
第二步, 求 RIS系统小量程下的校准系数, 即输入电流输出电压比 Kl。
切换分压器到小量程(如 200Α ),给 Rogowski线圈通过标准电流源的电流 II (如 100A ), 读取 RIS测章的电流 U (用电压表示, 如 10V ), 计算电 电压比 Kl = I1/U (如 10 )。
第三步, 求信号处 ¾路的不同量程的输入输出电压比 K3。
断开 Rogowski ¾取样 阻 连接, '切 分压器到不同量程, 给分压器原连接 Rogowski线囷的两端^ 电压 U2 (如 10mV-100mV-lV-10V-100V ), 电压大小与 RIS当前量 程范.围内电流在 Rogowski线圈上感应 ^电压相当, 读取 RIS测量的电流 U3(用电压表示), 计算不同 ¾程 J 输 输 电压比 K3 U2/U3。
若 K3的量程与 -K1的章程相 !¾ , 则 K2 = K3。
第? 5步, 求 RIS装置的不同量程校准系数 ^
将 KDK3/K2即^ 到不同量程(如 100A-lkA-10kA-100kA-1000kA )下的校准系数 K。 将 χ χ (i f+ Rs ) / ( Rf)即可得到不同量程(如 100A-lkA-10kA-100kA-1000kA ) 下的校准系数 。:
请参 所示,„是方案 的校准方法的具体实施过 的进一步说明:
第 步,. R^o^yski'线圈的输 电流输出电压比 Ks, Rogowski线圈的内阻 Rs,分压器 输入端电阻 Rf„K
„开呆⑤ ,.掷 摔#态四, 断开 Rogowski线圈④, 并 开标准可变交流电压恒压源
①; (如 10mV );
Figure imgf000015_0002
测量^ ¾oWski线歸的,:内 P且 Rs, 即为图 1中为 M、 N两点间电阻(如 ΙΟΟηιΩ);
测量分压器输入端电 f且 Rf, 即为图.1中的 T、 Υ两点间电阻(如 50Ω )。
笫二步, 求 RIS系统 '〗、,量程下的校准 数, 即输入电流输出电压比 Kl„
将双掷开关⑤, 掷连接状态一, 即串联 Rogowski线團④;
将波段开关⑦, 掷接触点 f接通最小量程;
使标准可变交流电流^②输出 RIS最小量程内的电流 11(电流要在此量程内, 电流太大, 易烧坏设备; 电流太小, 不便测量。 例如最小量程为 20A~200A, 电流取 ΙΟΟΑο );
测量 RIS输出的电压 Ul, 即为图 1中的 P、 Q两点间电压(如 10V);
计算电 ; 电压比 K1 ,= I1U1 (如 10A/V); K1即为小量程下的校准系数。
注意:'.该第二步不表 定要选择最小量程。 只要标准可变交流电流源②输出电流大小能 满足的 都寸以。
第三^, 求 ^的术同量轾的输 Λ ^出电压比 K3。
将双 开 ©? ^连接状态二, 即串联标准可变交流电压恒压源①;
选择量程, .将波段开关⑦, 掷到某 接触点。 ,
使标准"^ £交¾^电#悸压源①提供电压 U2,电压大小不超出 RIS装置检测当前量程电流 时 Rbgowski线 ¾端 电 ¾围。
测量 RIS'输: 端的 ¾压 1^ 图 为 、 Q两点;间电压;
计算 ¾前量^的输 ^输出电压比 K3 = U2/U3;
切採^段开 ⑦到其他量程, 照上面的方法, 计算出其他量程的输入输出电压比 K3.
Figure imgf000016_0001
步, 求 o owski线圈的输入电 输出电压比 s。给 Rogowski线圏通过标准电流源 的电流 Is :fc* )θλ), :^^Rp^>wski ^侧^电& Us (如 10mV ),计算电^电压比 Ks = Is/Us (如 10A^mV)C t程电流为零, 无内阻损耗, 因而 Ks是一个常量, 可以应用到其他 几百: iA^¾¾ f程): ,
第 步, 求 RIS系!^、量程下的校准系数, 即输入电流输出电压比 Kl。
Figure imgf000017_0001
交流恒压源输出电压 U2 (如 10mV-100mV-lV-10V-100V ), 电压大小与 RIS当前量程范围内 电流在 Rogowski线圏上感应的电压相当, 读取 RIS测量的电流 U3(用电压表示), 计算不同 量程下输入输出电压比 K3 == U2 U3。
若 K3的量程与 K1的量程相同, 则 K2 = K3。
第四步,. 求 RIS装置的不同量程校准系数。
Figure imgf000017_0002
标准 ¾來流 源②输出 ;最小量程内的电流 II (电流要在此量程内, 电流太大,
Figure imgf000017_0003
①; :: „
: f^,¾« A@, 掷到某 接触点。.
使标准可变交流电 惲压源①提供电压 U3,电压大小不超出 RIS装置检测当前量程电流 时 Rogowski线圏两端的电压范围。
测量 RIS输出端的电压 U2, 图中为 P、 Q两点间电压;
计算当前量程的输入输 it电压比 K3 = U3/U2;
切换波段开关 (¾到其他量程, 按照上面的方法, 计算出其他量程的输入输出电压比 K3。 若 Κ3量程与 K1量程相同, 则 K2 = K3;
第四步, 求 RIS装置的不同量程校准系数。
Κ = Κ1 χ对应量程下 K3/K2; 或者:
K = Ksx对应量程下 Κ3。
方案三: : · "
第 , 求 系¾ '、量程下的校准系数, 即输入电^ 出电压比 Ki。
¾换 压器到^ ^k200A ),给 Rdgo sfci线團通过标准电流源的电流 II (如 100A ), 读取 RIS 章的电流 '(用电压表示, 如 10V ), 计算电 电压比 K1 = I1/U (如 10 )。
第二步,'求: 0^^^ 團 ^输入电' 输出电压比 Ks, Rogowski线圈的内阻 Rs, 分压器 不同量程¾输入端 阻 ί :
给 Rogowski ^ 通过标准电^源的电流 Is (如 100A ), 测量 Rogowski两侧的电压 Us
Figure imgf000018_0001
程范围 :读取 RIS测暈的电流 U3(用电压表示),
Figure imgf000018_0002
计算不同量释 ^裨^输出电 比 K3 = U2 U3。
若 的 ϊ¾与 量程相同, 则 Κ2 = 3„ : 第四步, 求 RIS 置的不同量程校准系数。
K = 对应 程卞 3X ' (对应量程下 R3 + Rs )〃对应量程下 R3 )。
或者 =::■: -
K = Κΐχ对应量程下 K3/K2X (对应量程下 R3 + Rs ) / (对应量程下 R2+Rs );
即可得到不同量程(如 lOOA-lkA-lOkA-lOOkA-lOOOkA )下的校准系数 K。
请参阅图 1所示, 下面是方案三的校准方法的具体实施过程的进一步说明:
第一步, 求 RIS系统小量程下的校准系数, 即输入电流输出电压比 Kl。
将双掷开关⑤, 掷连接状态一, 即串联 Rogowski线圈④;
将波段开关⑦, 掷接触点. f接通最小量程;
Figure imgf000019_0001
不同量程的输入端电具 R3。
将双掷开关⑤, 连接状态四, 断开 Rogowski. 圈④, 并断开标准可变交流电压恒压源
①; ■ 间电 (如 10mV );
Figure imgf000019_0002
"]量 ^ogowsl^ 内:阻 Rs, 为图 1中:为 M、 N两点间电阻(如 ΙΟΟπιΩ );
测糞食 1 同 的 ^"入端电阻 3, 即为图 1中的 T、 Υ两点间电阻(如 50Ω )。 若 的量禪与 K1 ; 章禪相同, 则 R2 = R3。
第 4歩,^ 处赛电路 ^同章程的 输出电库比 3。
将双掷开关⑤, 掷连爭 态二, 即串联标准可变交流电压恒压源①;
选择 ¾裎,:: 波段 ^:⑦, 掷到某 接触点。 ' 装置检测当前量程电流
Figure imgf000020_0001
切换波段开关⑦到其他量程, 按照上面的方法, 计算出其他量程的输入输出电压比 K3. 若 K3的量程与 K1的量程相同, 则 K2 = K3;
第四步, 求 RIS装置的不同量程校准系数。
K = Ksx对应量程下 Κ3χ (对应量程下 R3 + Rs ) / (对应量程下 R3 )。
或者:
K = Kl x对应量程卞' K /K2x (对应量程下 R3 + Rs ) / (对应量程下 R2+Rs );
采用 T本 明的电^:测装置;和校准方法,:由于其所需的仪器均比较常见, 电压表、 电 流表^准 比: ¾US ¾标定的准确度高一个或两 数量级, 标准电流源只要 100A左右, 标准电 源^ 几毫 到 伏, 逸 *全部都是国家法定计量机构中常见的小型移动仪器, 从而 公众从 导的技^声堍中解脱出来, 并找出了公知的 RIS蓼置不可高量值传递和溯 源的根源; 到.^易祐 .、 厂商、 用户、 第三方国家法定计量机构所共同接受和使用的新 的简便可杼^ IS:装覃^ ^ 方法, 从 ft有力推动了 RIS装置的实用化和行业推广应用。
在此^明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以作出各种 修改 变换而 -不背 ^ 的精神和范围。 gj jtt, 说明书和附 ¾应被认为是说明性的而非限 制性的。,;: ' '

Claims

权利要求
1、 ¾流 ¾ ^:,^包括以; Rogriwski线團所构成的传感模块和积分放大模块, 其特 征在于, 所述的装直中还包括标准可变电压恒压源和具有数个量程波段的分压变换模块, 所 述的分压变换模块的输入端选择性地与所述的传感模块或者标准可变电压恒压源相连接, 且 该分压变换模块的输出端连接于所述的积分放夫模块。
2、根据权利要求 1所述的电流检测装置, 其特征在于, 所述的分压变换模块包括取样电 阻单元和波段开关单元, 所述的取样电阻单元的输入端选择性地连接于所述的传感模块的输 出端或者标准可变电压恒压源的输出端, 且该取样电阻单元具有数个可变分压输出端, 所述 的波段开关单元的榆 端选择性地与该数个可变分压输出端中的一个输出端相连接, 且该波 段开关单元的输出端与所述的积分放大模块的输入端相连接。
3、 舞求 斩 ^电流检测装置, 其特征在于 所述的取样电阻单元包括依次串 联的数个分压电阻, 该 个分压电阻选择性地跨接于所述的传感模块的输出端两端或者所述 的标 可变 压恒压 愈 Φ端两端, 且相邻 分压电阻之间的引出线连接于对应的可变分 压输出端。' .
4、根据权利要求 1至 3中任一项所述的电 测装置, 其特征在于, 所述的装置中还包 括有切换开关模块, 所述的切换开关模 的固定端连接于所述的分压变换模块的输入端, 且 该切换开 块的 "t刀换 择性地与所^的传感模块的输出端或者标准可变电压恒压源的输 出端相连接。
_5、根据权利要求 4所述的电流检测装置, 其特征在于, 所述的切换开关模块的切换端还 选择性地 ^jf^i^l传舞裤块与所述的标准可康电厍恒压源依 串联并与该切换开关模块的 切换端相^ "。: ' .
6、根据权利要求 1至. '3中任一项:所逸的电 ϋ测装置, 其特征在于, 所述的装置中还包
Figure imgf000021_0001
Figure imgf000022_0001
系数。
8、根据权利要求 7:所述的对电流检测装置进行校准的方法, 其特征在于, 所述的电流检 测装置在分压变换模块处于小量程波段条件下的校准系数, 包括以下步骤:
( 21 分厍变换模块设置于该标准电流源输出的电流 II大小所能够适合的小量程波段; ( 22 )将务压变换模块设置于小量程波段条件下, 测量积分放大模块输出端两端的电压
U1;
.( 23 )根据以下公 ^计算该电流检测装置在分压变换模块处于小量程波段条件下的校准 系数 K1: :
: K1 =丽 1。
9、根 杈利要求, 8;:所蜂的对电流检测装置进行校准的方法,其特征在于,所述的步骤 ( 22 ) 为: . ■· ... ·- . ,
将分压 換模块设置 f能够适合所加栽该标准电流源输出电流大小的量程波段。
10、 捧据 利要求 :8所 的对电 检测装置进 校准的方法, 其特征在于, 所述的装置 中还包括有电压^:随模块 ., '所述的电压跟随模块接入所述的分¾变换模块的输出端与所述的
Figure imgf000022_0002
电流检 覃存分 ^ 模块处于不同量程波段条件下^输入输出电压比, 包括以下步骤:
( 4i 换模块设置 其中 个量程波威;
, .( 42 ¾ 所 ^的 准可 电压惮压源输 ^电压 的大小设置为该电流检测装置的当 前量程 段内 数值; , :
( 43 ¾章所 大模块的输 Φ端两端的电压 U3;
. ( 44J)根据以下今式计算该电»测装覃在当前量程波段的输入输出电压比 3:
K3 = U2/U3; .
( 45 量稱 段与检测该传感模块的输入电流输出电压比 K1 时的量程波段相 同, 则第二输入输出电压比 K2 = K3;
(46)如果所述的电流检测装置还存在其它量程波段尚未进行检测, 则将所述的分压变 换模块切 i i i相 程波段, J:童复上述步骤( 42 )。
12、禪据权利要求 11所述的对电流检测装置进行校准的方法, 其特征在于, 所述的得到 电流检测装直在分压变换模块处于不同量程波段 ^下的校准系数, 具体为:
根据以下公式计算该电流检测装置在分压变换模块处于不同量程波段 ^下的校准系数
K:
K = Κΐχ对应量程波段下的 K3/K2。
13、根据权利要求 11所述的对电流检测装置进行校准的方法, 其特征在于, 所述的步骤 ( 1 )之前还包括以下步骤:
( A1 )将 的分庄变换模块断开与传感模块的连接;
( Α2 )将一标准^充源的电流加载暴传感模块, 检测该传感模块的独立输入电流输出电 压比 传感模块中 RogQ>ysid线圏的'内阻以及分压变换模块输入端的电阻。
14、 ,根据权 舞 : ^ "迷的对电流检测装置进行校准的方法, 其特征在于, 所述的检测 传感模块的独立输入电流输:出电压比、传感模块中. Rogowski线圏的内阻以及分压变换模块输 入端:的电阻, 包括以下步骤:
(A21) ΐ拿标准电流源输出电流 Is;
(A2 )测量该传 模块输出端两端的电压 Us;
( ) 下^ ¾( 算该传 ^模块的输入电流输出电压比 Ks:
'' ';···,·.. . Ks = Is/Us; .
( A24)测量'该传感 块中 RQgowski线圏的输出端两端的电阻 Rs;
J A25 ;测^ ^ ^块输入 两端的 ^电阻 Rfo . '
15、根 权利要求;; ^ i ^的对电流检测装置进行校准妁方法, 其特征在于, 所述的得到 电流检 ^分 块处于不同量程波段条:件 的校准系数, 具体为:
Figure imgf000023_0001
: ::: -,: - , .一 .: '一'
,. K - Ksx不同量程 下的 Κ3χ ( Rf+Rs ) I ( RfX
,16、 鐸^利要求 '8 述的对电流检测裴 ^^行校准的方法, 其特征在于, 所述的电流 检测装置 还包¾有切换开关模块, 所迷的切换开关模块的固定端连接于所述的分压变换模 块的输人端 J且 切换 关模块的切换端选择性地使得所迷的传感模块与所述的标准可变电 压' 1^¾源¼ ^串 并 ^开关模^ ,换端相连接 所迷的:步驟(3 )为:
将所迷 ^传: 模块与所述的标准可变电压恒压源依次串联并与该切换开关模块的切换端 相连接。
17、根据权利要求 16所述的对电流检测装置进行校准的方法, 其特征在于, 所述的检测 电流检测装真在分压变换模块处于不同量程波段条件下的输入输出电压比, 包括以下步骤:
( 41 )将所述的分压变换模块设置于其中一个量程波段;
( 42 )将所述的标准可变电压恒压源输出的电压 U2的大小设置为该电流检测装置的当 前量程波段内的数值;
( 43 )测量所述的积分放大模块的输出端两端的电压 U3;
( 44 )根据以卞今 计算该电 ¾|装置在当前量程波段的输入输出电压比 Κ3:
' Κ3 = U2/U3;
: ( 45 ) 果 前量釋波段与检测该传感模块的输 Λ电沭输出电压比 K1 时的量程波段相 同, !)第 ^ ^输 ¾J ;Kii 2 = K3r; ' .. :': :
( 46 :)如果所 ^的电流检测装置还存在其它量程波段尚未进行检测, 则将所述的分压变 换模块切换设 于相应 ^量程波段, 并重复上 步骤 ( 42 )。
18、根捧权利要求17所述的对电流检测装置进行校准的方法, 其特征在于, 所述的得到 电流检测 置在分压卑换模块处于不同量寿呈波段条件下的校准系数, 具体为:
计 ¾电 测舉! ^分厍 ¾ 模块处乎不同量程波段条件下的校准系数
其特征在于, 所述的步骤
Figure imgf000024_0001
( A2 )将;^标准 流源的电¾ ^栽 传感模块, 检测该传感模块的独立输入电流输出电 压 :.::
20 要求 ί9所迷的对电流检测装置进行校准的方法, 其特征在于, 所述的检测 传感模块的独立输入电專输出电压 包括以下步骤:
( AgJ ) :该 ^电流源输出电流 Is; (Λ¾ ): 章谭 输出端两端的电压: Us;
A23 ) 以1¾¾ ^算该传感 块的输入电流瘉出电压比 Ks: Ks = IsUs。
21、根据权利要求 20所述的对电流检测装置进行校准的方法, 其特征在于, 所述的得到 电流检测装置在分压变 模块处于不同量程波段 ^下的校准系数, 具体为:
根据以下公式计算该电 测装置在分压变换模块处于不同量程波段条件下的校准系数
K:
K = Ksx不同量程波段下的 K3。
22、 根据权利要求 8所述的对电流检测装置进行校准的方法, 其特征在于, 所述的步骤 (3)为:
将所^的分 变换模^:断开与传感模块的连接, 并将所述的标准可变电压恒压源与所述 的分压变换^:相连铁
23、 ¾ *^<] ^ "述的对电流检测装置进行校准的方法, 其特征在于, 所述的检测 电^ ^ 装畧在 压 抉模 处于不同. ¾程波段务降下的输入 ^出电压比, 包括以下步骤:
( 41)将所蜂的分压变换模块设置于其中一个量程波段;
(42)将所 ¾的标准:可变电压恒压源输出的电压 U2的大小设置为该电流检测装置的当 前量程波段内的 值; .
(43 )测量所 i4的积分放大模块的输出 两塢的电压 U3;
(44) 据以下 算该电流检测装置在当前量程^:段的输入输出电压比 K3:
. · : ':: R3 = U2U3; . -
(45)如果当前查程;皮段与检测 i亥传感模块的输入电流输出电压比 K1 时的量程波段相 同, 则第 出 4Α Κ2 = Ι ;
,(46 )如果所 的 流鎿测装置还存在其它量程波段尚未进行检测, 则将所述的分压变 换模块 ΐ程波段,;:并重复上述 骤( 42),:
?4、: i ;^f e 3所^的对 流检测装置 ϋ行校准的方法, 其特征在于, 所述的步骤
( 1 )之前还包 下 榦::
分 卑换模块断开与传感模块的连接;
( Α2)检测该传感模块中 Rogowski线圏的内阻、 该分压变换模块处于不同量程波段条 件下 输 端 该传感 块的独立输 电 输出电压比。:
25、 据权^ ] ^ ^所述的对电 ^¾检 装草进行校准的方法, 其特征在于, 所述的传感 阻、
Figure imgf000026_0001
( A22 )测量该传感模块输出端两端的电压 Us;
( A23 )根据以下公式计算该传感模块的输入电流输出电压比 Ks:
s = Is/Us;
( A24 )将该标准电流源输出电流关闭;
( A25 )测量该传感模块中 Rogowski线圈的输出端两端的电阻 Rs;
( A26 )测量该分压变换模块处于不同量程波段条件下的输入端电阻 R3;
Figure imgf000026_0002
K: .. , ·:'■
K =.Ksx对应量程波橾下的 ^3 (对应 程波徒下的 R3 + Rs ) / (对应量程波段下的 R3 )。
27、根 ^] 求¾ 迷的对电 棒测装 进行校准的方法, 其特征在于, 所述的得到 电 ¾^测装置在 ^压^蜂模块处于不同量程波 下的校准系数, 具体为:
根据以下公式 算 电,测装置在分压变换模块处于不同量程波段条件下的校准系数
K:
K iii:x ¾^^ :K3^2x( 应量程波段卞 Rs )/(对应量程波段下 R2 + Rs )。
PCT/CN2008/000013 2007-01-06 2008-01-02 Dispositif de mesure du courant et procédé d'étalonnage de ce dernier WO2008083610A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710004164 2007-01-06
CN200710004164.1 2007-01-06

Publications (1)

Publication Number Publication Date
WO2008083610A1 true WO2008083610A1 (fr) 2008-07-17

Family

ID=39608366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/000013 WO2008083610A1 (fr) 2007-01-06 2008-01-02 Dispositif de mesure du courant et procédé d'étalonnage de ce dernier

Country Status (2)

Country Link
CN (2) CN101216542A (zh)
WO (1) WO2008083610A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589051A (zh) * 2014-11-18 2016-05-18 德信东源电力技术服务(北京)有限公司 电流校准、检测方法及装置
CN111458378A (zh) * 2020-05-20 2020-07-28 北京圣通和科技有限公司 空气离子检测仪信号放大器校准装置及校准方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398473B (zh) * 2008-10-16 2011-07-20 广州市格宁电气有限公司 一种溯源校正中的量值传递方法
CN102288932B (zh) * 2011-05-10 2015-03-04 山东电力研究院 一种输电线路雷击故障波形精确测量方法
CN102436897B (zh) * 2011-09-15 2014-01-29 西安交通大学 一种用于直流系统短路电流检测的柔性罗氏线圈及其设计方法
BR112014022364B1 (pt) * 2012-04-20 2021-07-06 Abb Schweiz Ag método para calibragem de um transdutor de corrente do tipo rogowski e transdutor de corrente do tipo rogowski
EP2653876B1 (en) * 2012-04-20 2014-09-03 ABB Technology AG Arrangement for measuring a current with a current transducer of the Rogowski type
CN103033667B (zh) * 2012-12-11 2015-03-18 工业和信息化部电子第五研究所 电流测量装置和方法
CN103616655A (zh) * 2013-12-10 2014-03-05 河池市计量测试研究所 校准医用诊断x射线辐射源管电流测量仪的方法及设备
CN104092381B (zh) * 2014-07-17 2017-05-24 苏州华兴源创电子科技有限公司 高质量多通道电压连续可调电源模块
CN104569896B (zh) * 2014-12-11 2018-06-15 许继集团有限公司 一种电子式电流互感器采集单元数字信号配置方法
CN104569545A (zh) * 2014-12-11 2015-04-29 许继集团有限公司 一种基于罗氏线圈型电流互感器宽范围测量用控制电路
CN105510686A (zh) * 2015-12-11 2016-04-20 谭焕玲 一种电流测量装置和方法
CN105891584B (zh) * 2016-06-06 2019-08-09 海盐新跃电器有限公司 一种高精度宽量程可互换修正的电流钳表
CN106556733B (zh) * 2016-11-09 2017-09-01 华中科技大学 基于旋转对消原理的空芯线圈互感系数误差消除方法及应用
CN106526286B (zh) * 2016-11-11 2019-07-26 广州极飞科技有限公司 电流检测电路、方法及电池系统
CN106443140A (zh) * 2016-11-29 2017-02-22 尤宣来 一种交流电动态检测装置及方法
CN106950525B (zh) * 2017-03-17 2019-03-22 中国科学院电工研究所 一种脉冲小电流校准装置
CN111122775A (zh) * 2019-12-10 2020-05-08 北京蛙鸣华清环保科技有限公司 一种面向污染浓度监测设备的分段数据校准方法及系统
CN111337737B (zh) * 2020-04-13 2022-05-31 深圳市华星光电半导体显示技术有限公司 电压测量系统及电压测量方法
CN113406467B (zh) * 2021-06-01 2022-06-24 长江存储科技有限责任公司 辅助测量电路、测量电路及半导体器件电信号测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2277075Y (zh) * 1995-03-18 1998-03-25 尤宣来 液晶数字交流电压、电流两用表
US6313623B1 (en) * 2000-02-03 2001-11-06 Mcgraw-Edison Company High precision rogowski coil
CN1430069A (zh) * 2002-12-31 2003-07-16 武汉华电国电高压科技发展有限公司 电流比例标准式高准确度电流互感器检定方法及装置
US6614218B1 (en) * 1998-04-22 2003-09-02 Power Electronic Measurements Limited Current measuring device
CN1570655A (zh) * 2004-04-28 2005-01-26 华中科技大学 双重检测式电流传感器
CN2689240Y (zh) * 2004-04-28 2005-03-30 华中科技大学 双重检测式电流传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645167B1 (ko) * 2004-03-12 2006-11-10 엘에스전선 주식회사 가공 송전선 낙뢰 및 사고지점 검출장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2277075Y (zh) * 1995-03-18 1998-03-25 尤宣来 液晶数字交流电压、电流两用表
US6614218B1 (en) * 1998-04-22 2003-09-02 Power Electronic Measurements Limited Current measuring device
US6313623B1 (en) * 2000-02-03 2001-11-06 Mcgraw-Edison Company High precision rogowski coil
CN1430069A (zh) * 2002-12-31 2003-07-16 武汉华电国电高压科技发展有限公司 电流比例标准式高准确度电流互感器检定方法及装置
CN1570655A (zh) * 2004-04-28 2005-01-26 华中科技大学 双重检测式电流传感器
CN2689240Y (zh) * 2004-04-28 2005-03-30 华中科技大学 双重检测式电流传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589051A (zh) * 2014-11-18 2016-05-18 德信东源电力技术服务(北京)有限公司 电流校准、检测方法及装置
CN111458378A (zh) * 2020-05-20 2020-07-28 北京圣通和科技有限公司 空气离子检测仪信号放大器校准装置及校准方法

Also Published As

Publication number Publication date
CN101256204A (zh) 2008-09-03
CN101256204B (zh) 2013-03-20
CN101216542A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
WO2008083610A1 (fr) Dispositif de mesure du courant et procédé d&#39;étalonnage de ce dernier
ES2439279T3 (es) Método y aparato para diagnóstico de transformador
WO2013004146A1 (zh) 在线式交流电流检测装置及方法
CN102928802A (zh) 基于交直流标准的电流互感器耐直流性能检测方法
CN102736049A (zh) 一种可无线遥控的模拟介质损耗器
CN105372614A (zh) 电子式自动调零方法及装置
EP1532461B1 (en) Circuit for simultaneous testing of electricity meters with interconnected current and voltage circuits
TWM485518U (zh) 蓄電池內阻的監測系統
CN208421060U (zh) 一种双向电流检测电路
RU2390035C1 (ru) Способ контроля технического состояния однофазных и трехфазных двухобмоточных трансформаторов в рабочем режиме
CN109387802A (zh) 一种高压电流互感器的额定电流误差检定方法
RU100633U1 (ru) Устройство поверки однофазных средств измерений электрической мощности и энергии
TWI418828B (zh) Transformer test system
US20210311153A1 (en) Method and Apparatus for Calibrating a Measurement Device
CN106353643B (zh) 电阻比例电缆故障测试仪
RU2704394C1 (ru) Способ дистанционного определения места замыкания фазы на землю
CN102590648B (zh) 变压器测试系统
CN102707118A (zh) 压流互感器及其测量系统
RU2282208C1 (ru) Устройство для поверки измерительных трансформаторов напряжения
JP3964654B2 (ja) 電気回路診断装置
CN201548652U (zh) 电流互感器极性测试装置
CN202870289U (zh) 电流互感器耐直流性能检测装置
JP2016042045A (ja) 電力量計の試験装置
CN104330614A (zh) 一种用于高压输电线路的大电流检测装置
Feng et al. AC internal resistance measurement of batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08700573

Country of ref document: EP

Kind code of ref document: A1